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Abstract: We propose an automated camera setup for photogrammetric roughness analysis in the 

laboratory environment. The developed fast and low-cost automation setup can be very useful for 

tedious and laborsome manual field logging practices. The photographs are processed in MATLAB 

to obtain disparity maps. Coding routines for stereo photogrammetry and digital measurements are 

written in MATLAB.  Secondly, 6 effecting factors (projecting an image onto core face, depth of 

field, brightness, camera-to-object to baseline distance ratio, projected image size and occlusion) 

influencing noise in roughness depth maps computed by employing stereo photogrammetry are 

investigated.  After deciding the best values that allow the lowest amount of noise, depth maps of 

6 core faces are computed. Using the 3D point cloud generated, roughness profile measurements 

are made. Then, 8 profile measurements are made for each core face, both manually and digitally. 

The accuracy of the disparity maps has been verified by comparing 48 joint roughness coefficient 

(JRC) measurements made manually using a profile gauge.  It was proved that surface roughness 

can be measured very fast in millimetric accuracy with an average Root Mean Square Error 

(RMSE) of 3.50 and Mean Absolute Error (MAE) of 3.02 by the help of the proposed set-up and 

calibration.  
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1. Introduction 

Joint roughness is an important parameter for the characterization of the shear strength of 

rock discontinuities.  Barton and Choubey (1977) proposed 10 typical profiles for estimating joint 

roughness coefficient (JRC) by visual comparison. Then, to reduce the bias in assigning JRC, Tse 

and Cruden (1979) developed two parameters that are strongly correlated to the 10 typical profiles, 

namely Z2 and SF, which are based on the root mean square and the mean square of the first 

derivative of the profile, respectively. Researchers developed a series of statistical parameters to 

calculate JRC (Yu and Vayssade, 1991; Yang et al., 2001; Tatone and Grasselli, 2010; Jang et al., 

2014, Li and Zhang, 2015). 

Surface roughness measurement methods can be grouped as contact and non-contact 

methods.  Contact methods include profilograph (Du et al., 2009) and profile gauge (Barton and 

Choubey, 1977). Non-contact methods can be listed as shadow profilometer (Franklin, et al., 1988), 

laser imaging (Mah et al., 2013, 2016), photogrammetry (Jessell et al. 1995; Cravero et al. 2001; 

Lee and Ahn 2004; Unal et al. 2004; Bistacchi et al. 2011; Sturzenegger and Stead 2009; Kim et 

al., 2015;2016; Vollgger and Cruden 2016), an X-ray computed tomography (Diaz et al., 2017). 

Laser imaging produce higher accuracy and resolution images than photogrammetry for long range, 

however, photogrammetry has significant advantages in terms of economic feasibility, portability, 

and legibility of color image information and convenience. Researchers agreed on the fact that 

high-resolution images are required to obtain reliable JRC values from photogrammetry models 

(Haneberg 2007; Baker et al. 2008; Poropat 2008; 2009; Tannant 2015; Zu et al. 2016; Saricam 

and Ozturk 2018; Zhang et al. 2018; Azarafza et. al 2019; 2021). The controlling factors regarding 

the photogrammetric 3D models have been widely discussed by many researchers (Fraser 1984; 

Poropat 2009; Dai and Lu 2010; Fooladgar et al. 2013; Dai et al.2014). The influencing factors 

which are categorized as camera and planning factors were discussed in detail by Kim et al. 2015. 
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They proposed JRC error models for both laboratory and field photogrammetric surveys. (Kim et 

al. 2015;2016).  

Researchers have performed stereo photogrammetry using variety of algorithms by the help 

of commercially available software packages. These packages have procedural similarities, and 

their processes generally require specific positions and orientations of cameras as well as a pre-

defined set of ground control points to achieve accurate 3D models. 

In this study, first we propose an automated camera setup for photogrammetric roughness 

analysis in the laboratory environment. In this set up the cores are placed in front of a camera slider, 

such that lens of the camera is normal to the fracture surfaces, with a predefined distance between 

them. A stationary projector is placed in a way that it projects a feature-rich image that fully covers 

the fracture surfaces of the cores. The camera slider is automated by using a Raspberry Pi and a 

stepper motor to achieve precise movements which can be very useful for field logging practices. 

Coding routines for controlling the motors are written in Python 3. Since two photographs are 

needed for stereo photogrammetry, the automated camera is configured such that the camera, which 

is calibrated in advance, takes two photographs, which are a few millimeters apart from each other, 

of each fracture surface. The photographs are then processed in MATLAB to obtain disparity maps. 

Coding routines for stereo photogrammetry and digital measurements are written in MATLAB 

(The MathWorks 2017).   

Secondly, 6 affecting factors (projecting an image onto core face, depth of field, brightness, 

camera-to-object to baseline distance ratio, projected image size and occlusion) influencing noise 

in roughness depth maps computed by employing stereo photogrammetry are investigated.  After 

deciding the best values that allow the lowest amount of noise, depth maps of 6 core faces are 

computed. Using the 3D point cloud generated, roughness profile measurements are made. Then, 

8 profile measurements are made for each core face, both manually and digitally. The accuracy of 



4 

 

the disparity maps has been verified by comparing 48 JRC measurements made manually using a 

profile gauge.   

2. Material and Methods 

Photogrammetry is a non-contact method used to obtain 3D geometry of the objects (Linder 

2009). The object’s image is taken from several different positions and angles. Given that the 

positions and parameters of the cameras are known, by finding the same pixel in different images, 

location of the pixel in the 3D space can be calculated.  

In stereo photogrammetry, only two photographs of the object are taken. The principle of 

stereo photogrammetry is shown in Figure 1. Because the position of object point P is different in 

left and right image planes (PL and PR), with already-known intrinsic and extrinsic parameters of 

the cameras, location of P in the 3D space can be calculated. 

 

Figure 1. Principle of stereo photogrammetry (Propat, 2006)   

 

The equipment used in this study contains a digital camera (Canon EOS 7D Mark II with 

Canon EF-S 18-135mm IS STM), a projector (NEC NP215 DLP), a tripod, a tripod head, a camera 
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slider (Jieyang 120 cm Carbon Slider), a Raspberry Pi (Raspberry Pi 3 Model B+), a stepper motor 

(Nema 17), a stepper motor driver (A4988), a servo motor, a camera remote (Canon RC-6), AA 

batteries, a battery holder, a profile gauge, a breadboard, a checkerboard pattern, timing belt, and 

pulleys. The setup can be observed in Figure 2 and Figure 3. 

 

Figure 2. Equipment and setup 
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Figure 3. Illustration of test environment with definitions (top view) 

 

The camera is mounted on top of the camera slider using the tripod head, which is mounted 

to the tripod. The camera slider is automated using the stepper motor, the timing belt, and the 

pulleys. The Raspberry Pi is used to control the position of the camera and to take pictures. While 

the stepper motor is used to move the camera sideways on the slider, the servo motor is used to 

press the button on the camera remote in order to take pictures. The stepper motor is driven by the 

A4988 driver. The breadboard is used to construct the circuits and to power the motors. Coding 

routines for controlling the motors are written in Python 3. 

The profile gauge is utilized to manually measure roughness of core faces. The checkboard 

pattern is used for stereo camera calibration. Coding routines for stereo photogrammetry and digital 

measurements are written in MATLAB (The MathWorks, 2017). 
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3. Theory and calculations 

To make accurate measurements using stereo photogrammetry, camera calibration should 

be done precisely. With camera calibration, parameters of the camera’s image sensor and its lens 

are estimated. The parameters are divided into two groups as intrinsic and extrinsic. The extrinsic 

parameters are related to the position of the camera in the world. They are composed of a rotation 

and a translation matrix. The intrinsic parameters contain the optical center, the focal length, and 

the skew coefficient. After estimating these parameters, lens distortions can be fixed, as well as 

measuring the size of the objects in world units. 

In this study, camera calibration is done by MATLAB’s Stereo Camera Calibrator App. 

The app requires a checkerboard pattern to estimate the camera parameters. Therefore, a 

checkboard pattern is photographed several times with the camera being on the left and the right 

positions. Since the setup contains only one camera which is moved from one position to another, 

it is crucial to move the camera precisely every time. A slight difference in position would make 

making precise measurements impossible. Although there is only one camera, there are two 

pictures taken to make measurements using stereo photogrammetry. Hence, from now on, the 

camera is referred to as left and right cameras, for the sake of simplicity. The left camera is the 

camera used to take a picture from the left side of the core. Likewise, the right camera is the camera 

used to take a picture from the right side. 

Several photographs are excluded from the calibration to reduce the reprojection errors 

below 1 pixel. After the stereo camera parameters are estimated, two pictures are taken using the 

left and the right camera. Next, using the stereo camera parameters, stereo image rectification is 

done. Stereo image rectification undistorts the images and projects them onto a common image 

plane such that the corresponding pixels are located in the same row coordinates. 
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Then, disparity map is computed using the rectified stereo images. The disparity map 

contains the information of how much a pixel is moved from one image to another, in pixels. Using 

the disparity map and the stereo camera parameters, a 3D point cloud is computed. The 3D point 

cloud contains the metric depth information of each pixel. Using the point cloud, profile 

measurements are made. Flowchart of this process can be observed in Figure 4. 

 

 

Figure 4. Flowchart 

 

3.1 Computing JRC from Digitized Profiles 

JRC computation is performed using the regression equation established by Tse and Cruden 

(1979), which uses Z2 (the root mean square ) coefficient (Myers, 1962): 

𝑍2 = [ 1𝑀(𝐷𝑥)2 ∑ (𝑦𝑖+1 − 𝑦𝑖)2𝑀𝑖=1 ]1/2
      (1) 

 𝐽𝑅𝐶 = 32.20 + 32.47log⁡(𝑍2)      (2) 

 

where M is the number of intervals, Dx is the interval size, and yi is the i-th interval. This 

parameter changes with the interval sizes. In this study, the interval size is used as 1 mm. Therefore, 
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the following equation is employed for JRC calculations for sampling size of 1 mm (Yu and 

Vayssade, 1991): 

 𝐽𝑅𝐶 = 64.22𝑍2 − 2.31       (3) 

 

3.2 Improving Quality of Depth Maps 

In photogrammetry, to find the corresponding points, the images should contain features. 

For example, 3D model of a white planar surface cannot be easily created using photogrammetry, 

since it does not contain enough features. In addition to this, photograph quality also affects the 

amount of noise in the disparity map. In this section, parameters causing noise are investigated. 

These parameters include projecting an image onto the core face, camera settings such as depth of 

field and brightness, ratio of baseline distance to camera-to-object distance, size and sharpness of 

the projected image, and occlusion. 

3.2.1 Effect of Projecting an Image onto Core Face 

Since finding corresponding points in the two images requires existence of features, regions 

that do not have pixels with different colors cannot be matched with their corresponding point. 

Hence, in order to increase the number of features in the single-color regions, an image is projected 

onto the core surfaces. 

Figure 5 shows the effect of projecting an image on the noise. In this figure, each row 

contains the left image of the core face and the millimetric depth map. The depth map at the top 

right is retrieved by using the photos taken without projecting an image, while the one at the bottom 

right is computed for the photos of the core whose face is projected with an image. As can be seen 

from Figure 5,  image projection greatly reduces the noise. 
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Figure 5. Effect of projecting an image on noise (colored camera to object distance depth 

legend in mm) 

3.2.2 Effect of Depth of Field 

In photography, depth of field (DoF) refers to the zone where objects appear sharp. The 

larger the DoF, the greater the zone in which the objects appear sharp. However, focusing on just 

the object of interest with a small DoF results in sharper pixels compared to covering a larger zone. 

To understand the effect of DoF on noise, an experiment with 6 different DoF values is 

conducted. Because changing DoF affects the brightness of the image, ISO settings are adjusted to 

keep the brightness levels of the images similar. The DoF values used in the experiment are f5, f10, 

f16, f20, f25, and f32. Among these values, f32 resulted in the lowest amount of noise. 

3.2.3 Effect of Brightness 
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Brightness of the photograph affects the performance of finding corresponding pixels. To 

find the best setting for brightness, an experiment with 7 different ISO values is conducted. The 

ISO values are 320, 500, 1250, 1600, 2000, 2500, and 5000. The lowest amount of noise is achieved 

with ISO 1600. 

3.2.4 Effect of Camera-to-Object to Baseline Distance Ratio 

Baseline distance is the distance between two cameras. The baseline distance (B) is kept as 

60 mm for all experiments. Camera-to-object distance (D) is the distance between the camera and 

the closest point of the core face to the camera. 

To observe the effects of D/B ratio on the noise, an experiment with 4 different D values is 

conducted. The distance values are 350 mm, 400 mm, 450 mm, and 500 mm, which result in B/D 

ratios of 5.83, 6.67, 7.5, and 8.33, respectively. The ratios 6.67 and 7.5 show the lowest noise, 

where the distances are 400 mm and 450 mm, respectively. 

3.2.5 Effect of Projected Image Size 

Because image projection reduces the noise greatly, size of the projected image is also 

analyzed to obtain the lowest amount of noise. 

Comparing the lowest zoom level to the highest zoom level, the highest zoom level has 

more noise. This is because the regions containing uniform colors increase as the projected image 

gets bigger.  

3.2.6 Effect of Occlusion 

Occlusion occurs when a point is hidden by another point such that the camera cannot see 

it. To test the effect of occlusion on noise, 3 photographs of a core face are taken by rotating the 

core face in a way that it results in occlusion. As the occlusion decreases, the noise decreases. 

Hence, the placement of the core in front of the camera has an important role in reducing noise. 



12 

 

3.3 Digitizing Manual Measurements 

Manual roughness measurements are made by using the profile gauge. A total of 48 

roughness measurements from 6 different core faces were taken. These manual measurements were 

digitized to find JRC values. Digitization was performed in MATLAB  (The MathWorks, 2017). 

This was done by photographing the manual profile measurements and diagnosing the profiles 

found in these photographs by image processing methods. 

First, each received profile is recorded as a different image. For each profile image, the 

images in the RGB color space are converted to grayscale using the “rgb2gray” function. Then, by 

the thresholding method, white and white pixels in the image are masked. A threshold value of 180 

was used. Thus, pixels with a value between 0 and 180 have been removed and only dark pixels 

are left. By the help of the “imclose” function, the gaps in the obtained profile mask are closed to 

prevent unwanted ruptures in the profile. Then, using the “bwboundaries” function, all boundaries 

in the resulting mask were found. With the assumption that the longest boundary belongs to the 

profile, the longest boundary is selected from the boundaries and the inside of the border is filled 

with the “imfill” function. The “bwmorph” function was then used to reduce the filled-in boundary 

to a thickness of 1 pixel. The shortest path between the left-most and right-most pixels of the 

skeleton was found in order to remove the branching from the resulting skeleton. Using the 

“bwdistgeodesic” function to find the shortest path, the distances from the leftmost pixels to all 

pixels and distances from all right pixels to all pixels are calculated. These distances were then 

collected and the lowest distance values between the obtained distances were masked. These values 

indicate the shortest path to the rightmost pixel to the rightmost pixel by following the pixels on 

the skeleton. This gives the value of the manual profile in pixels. While the manual measurements 

were being photographed, 10 cm long lines were drawn on the paper. Using these lines, it is 

calculated manually how many pixels a millimeter corresponds to. The profile from the pixel unit 
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obtained by the image processing method is converted to the millimeter unit using this manually 

calculated value. Thus, the manual measurement is digitized. 

3.4 Depth Mapping and Determination of the Core 

First of all, two pictures of the core are rectified by using the stereo camera parameters obtained 

after the camera calibration, so that the depth map can be generated. Rectified photographs are 

converted to gray color scales using the “rgb2gray” function of MATLAB. Then, by using the 

disparity function, two images are obtained as a map of contradiction. The offset map calculates 

how many pixels the same point is between two photos. The distortion of the points close to the 

camera is high, and the distortion of the photos away from the camera is low. This can be explained 

by the same effect, i.e. the parallax effect, as the moon is always in a fixed position when the car 

moves, but the trees on the side of the road move too quickly. After obtaining the map, a three-

dimensional point cloud is created by using the “reconstructScene” function, with the help of the 

contradiction map and the stereo camera parameters. 

The determination of the core in the depth map obtained starts with the conversion of the 

depth map to a binary mask. This mask is obtained by specifying values greater than zero as “1” in 

the depth map and all other values as “0”. Then, using the imclose function on this mask, the 

morphological shutdown is applied to clear the gaps on the surface of the core due to the noise in 

the depth map. The mask obtained by this process is applied morphologically using the imopen 

function. The mask obtained is a mask that can roughly mask the location of the core in the depth 

map. In order to more precisely determine the pixels representing the core, the edges of the depth 

map are found using the edge function, with the Canny edge detection algorithm. The image 

showing the edges is masked by a mask which can be found in the previous stage, which can 

roughly find the surface of the core, and only the edges below that mask are left. This masked edge 

image before the “imclose” function with the morphological shutdown, followed by the process of 
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closing the holes with the function “imfill”. The depth map is masked using the mask obtained as 

a result of these processes. The pixels obtained as a result of this masking process are pixels that 

represent the core in the depth map more precisely. Since these pixels may contain some noise as 

well as core pixels, the mask containing these pixels is morphologically decomposed with a small 

structural element and this mask is cleared of noises. The mask obtained from this process is a mask 

that removes the core from the depth map.  

Figure 6 was obtained by digital reconstruction of the point cloud obtained after filtering the depth 

map with the core mask. This image shows the core surface obtained from stereo photogrammetry 

in four different angles. 
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Figure 6. Images from different angles of the reconstructed core surface from the three-

dimensional point cloud 

3.5 Digital Measurement of Roughness 

Figure 7 shows a roughness measurement from the depth map of the core surface obtained by stereo 

photogrammetry. In this way, the measurements taken along the red line shown are shown in the 
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graph below. In this graph, the Y-axis shows the depth of the surface in millimeters, and the X-axis 

shows its distance from the pixel-type point to the starting point. 

Since there are noises in the depth map, the obtained profile values are not always as in 

Figure 7. The profile values include noise values such as “NaN”, “Inf”, “-Inf”. Therefore, before 

the JRC calculation is made, all of the noise values in the profile are replaced by “NaN”. Then, the 

“fillmissing” function is replaced with the average of values near the “NaN” values using the 

“movmedian” method. Thus, the profile values are cleared of noises. This applies to all axis values 

in the received profile, i.e. the X, Y, and Z axis values. 

 

 

Figure 7. roughness profile from the millimeter depth map. The legend shows the depth in 

millimeters. The Y values in the graph show the depth in mm and the X values in depth 

indicate the distance of the point from the pixel type to the starting point on the profile. 
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When performing the JRC calculation, the depth value taken is important. In this study, the 

measurement range is 1 mm. That is, the JRC is calculated by one of the values taken every 1 mm 

from the profile. For example, a value of 101 is taken from a 100 mm long profile. Even if the 

diameter of the cores is 64 mm, the length of the profile may vary, as the surfaces may be inclined. 

For this reason, when selecting the values to be used for the JRC calculation from the digitally 

acquired profile, the distance from one point to the other should be as close to 1 mm as possible. 

In order to achieve this, the distance from one point to another using the X and Y values of the 

profile points was calculated by the Euclidean method. After the measurement is taken from one 

point, it is ensured that the other point to be taken from the measurement is the distance to the 

previous point which is the closest to 1 mm. Thus, even if the surface of the core is inclined, 

measurement is always taken at 1 mm intervals. 

After obtaining a profile from the depth map, the JRC value of this profile was calculated 

and the lowest JRC value that the profile could take. The JRC calculation is sensitive to the rotation 

of the received profile, as it is aware of the depth values between the two adjacent points. Figure 8 

shows the effect of the rotation angle of the profile on the JRC. In this way, all profiles are rotated 

versions of the same profile. The JRC value to be obtained from this profile is 2.15, while the JRC 

value taken in the 15° rotated version is 13.22. 
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Figure 8. Effect of rotation of the profile on JRC 

In order to minimize the errors received due to rotation, the digitally measured profile is 

rotated at various angles to calculate more than one JRC for one profile and the lowest JRC value 

between the values is assigned as the JRC value of the profile. The angle at which the profile was 

rotated was found using the convex hull of the profile. For each line in the convex envelope, the 

profile is rotated so that the line is the X-axis of the profile. Thus, from the profile, the additional 

profile is derived from the number of lines in the convex hull of the profile. 

The profiles were rotated using the rotation matrix. The angle of inclination of the convex 

envelope line to be taken is calculated and the negative of this angle is used as the angle of rotation. 

The rotation matrix is given below. 

𝐑 = ⁡ [𝐜𝐨𝐬𝛉 −𝐬𝐢𝐧𝛉𝐬𝐢𝐧𝛉 𝐜𝐨𝐬𝛉 ]        (4) 

the rotated profile was obtained by multiplying the X and Y values of the original profile 

by the rotation matrix. 

3.6 Estimating JRC 
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To test the accuracy of the stereo photogrammetry in measuring roughness of core faces, 

3D point clouds for 6 core faces are generated. For each face, 8 profile measurements are made, 

both digitally and manually. The cores can be observed in Figure 9. Black lines on the faces of each 

core represent the profile lines. Cores are numbered the same as their row number. The first row 

contains core face 1, and the last row shows core face 6. 
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Figure 9. Six core faces used in the laboratory tests. Front, side, and top views of the cores 

are in the first, second, and third column, respectively. 

 

Photographs of the cores are taken by projecting an image onto their faces. For each pair of 

photographs, the baseline distance is 60 mm. For each photograph, the camera settings are 

configured as ISO 1600, shutter 40, f32, and focal length 50 mm. The camera-to-object distance is 

400 mm. 
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The digital measurements are made by following the black profile lines drawn onto the core 

faces. The measurement method can be observed in Figure 10.  

 

 

Figure 10. Digital measurement. Left: Original left image, Right: The left image with digital 

profiles. Each blue line is a different profile. 

Manual and digital JRC measurements for 6 core faces can be observed in Figure 11. A 

total of 48 JRC values were used to analyse the results.  The photogrammetric JRC measurements 

mainly overestimated the JRC values. These overestimated values were attributed to the distorted 

waviness in the profiles (Figure 12). 
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Figure 11. JRC values for core faces 1-6. 
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Figure 12. Manually measured core face profiles 
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4. Error Analysis and Discussion 

The root- mean-squared error (RMSE) and the mean absolute error (MAE) are commonly 

employed to measure the accuracy of the predicted values and the observed values. As a natural 

measure of average error magnitude, the advantages of MAE have also been reported (Willmott 

and Matsuura 2005; Chai and Draxler 2014; Kim et al. 2016). 

Errors, shown in Table 1, are calculated by finding normalized JRC (NJRC) (Eq.5) dividing 

digitally-measured JRC to manually-measured JRC. Root mean square error (RMSE) (Eq.6) values 

is also calculated for each core face.  

 

Table 1. NJRC and RMSE  

Core face Average N JRC RMSE MAE 

1 1.260.07 4.11 3.96 

2 1.100.19 1.47 1.07 

3 1.220.08 1.96 1.88 

4 1.340.13 4.64 4.48 

5 1.280.15 4.44 4.33 

6 1.180.24 3.34 2.39 

Overall 1.230.16 3.50 3.02 

 𝑁⁡𝐽𝑅𝐶 = 𝐽𝑅𝐶𝑝𝐽𝑅𝐶𝑚          (5) 

𝑅𝑀𝑆𝐸 = ⁡ √∑ (𝐽𝑅𝐶𝑚,𝑖−𝐽𝑅𝐶𝑝,𝑖)2𝑛𝑖=1 𝑁        (6) 

𝑀𝐴𝐸 = ∑ |𝐽𝑅𝐶𝑚,𝑖−𝐽𝑅𝐶𝑝,𝑖|𝑛𝑖=1 𝑁         (7) 
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where JRCm is the manually measured JRC value and JRCp is the JRC values obtained from 

the photogrammetry models. NJRC is a normalized value which indicates the accuracy of the 

photogrammetric JRC values compared to manual measurements. 

Even though the noise is tried to be reduced to minimum, some amount of noise exists in 

the metric depth maps. The noisy pixels are assigned a value using MATLAB’s “fillmissing” 

function. In other words, for noisy pixels, instead of the actual depth, a predicted value is used. 

Hence, this causes some amount of discrepancy between manual and digital measurements. 

The correct value of the roughness depends largely on camera calibration. Therefore, the 

camera calibration should be carried out very precisely, without causing any errors in the 

measurement. Larger sensor sizes and longer focal lengths also can achieve high-resolution images 

which might decrease the noise. 

Another issue to note is that the camera slider system should not move due to camera 

movements or any other factor. A movement that occurs during the camera movement causes a 

high level of noise in the map of inconsistency and negatively affects the measurement results. If 

the movement of the camera slider system cannot be prevented, instead of using a single camera, 

pairs of cameras produced for stereophotogrammetry consisting of two pre-calibrated cameras can 

be used. 

5. Conclusions 

Roughness profiles of core faces were measured by employing close range stereo 

photogrammetry. In order to improve the quality of the depth maps, the effects of projecting an 

image onto the core faces, depth of field, brightness, camera-to-object to baseline distance ratio, 

projected image size, and occlusion were investigated. The lowest amount of noise for baseline 

distance of 60 mm was achieved with 400 mm of camera-to-object distance, ISO 1600, shutter 40, 

f32, and focal length of 50 mm, with core face projected with an image. 
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Accuracy of the method was tested by comparing JRC values of 48 manually and digitally 

measured roughness profiles retrieved from 6 core faces. It was proved that surface roughness can 

be measured in millimetric accuracy with an average RMSE and 3.50 MAE of 3.02 by the help of 

the proposed set-up and calibration.  

3D image data are recorded fast, handled efficiently, and can be used to further characterize 

the discontinuity compared to manual measurements which are labor intensive and limits the 

number of measurements that can be acquired.  Since limited number of measurements can be 

achieved manually, this can cause biasing of results, especially where anisotropy might be observed 

in roughness which might lead to inaccurate estimates of joint surface frictional strength. The stereo 

photogrammetry analysis method set-up and calibration described here which can be very useful 

for field logging practices provides a means of generating 3D roughness map which generates many 

more data points than the time consuming sparse manual measurements. 
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