
Citation: Akhmet, M.;

Tleubergenova, M.; Seilova, R.;

Nugayeva, Z. Poisson Stability in

Symmetrical Impulsive Shunting

Inhibitory Cellular Neural Networks

with Generalized Piecewise Constant

Argument. Symmetry 2022, 14, 1754.

https://doi.org/10.3390/

sym14091754

Academic Editor: Sergio Elaskar

Received: 17 July 2022

Accepted: 19 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Poisson Stability in Symmetrical Impulsive Shunting
Inhibitory Cellular Neural Networks with Generalized
Piecewise Constant Argument
Marat Akhmet 1,* , Madina Tleubergenova 2,3 , Roza Seilova 2,3 and Zakhira Nugayeva 2,3

1 Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey
2 Department of Mathematics, Aktobe Regional University, Aktobe 030000, Kazakhstan
3 Institute of Information and Computational Technologies CS MES RK, Almaty 050010, Kazakhstan
* Correspondence: marat@metu.edu.tr; Tel.: +90-312-210-5355

Abstract: In the paper, shunting inhibitory cellular neural networks with impulses and the gener-
alized piecewise constant argument are under discussion. The main modeling novelty is that the
impulsive part of the systems is symmetrical to the differential part. Moreover, the model depends
not only on the continuous time, but also the generalized piecewise constant argument. The process
is subdued to Poisson stable inputs, which cause the new type of recurrent signals. The method of
included intervals, recently introduced approach of recurrent motions checking, is effectively utilized.
The existence and asymptotic properties of the unique Poisson stable motion are investigated. Simu-
lation examples for results are provided. Finally, comparing impulsive shunting inhibitory cellular
neural networks with former neural network models, we discuss the significance of the components
of our model.

Keywords: impulsive shunting inhibitory cellular neural networks; symmetry of impulsive and
differential parts; continuous and impact activations; generalized piecewise constant argument;
method of included intervals; continuous and discontinuous Poisson stable inputs and outputs

1. Introduction

This article discusses locally connected systems, which are called cellular neural
networks (CNNs). The model was introduced in 1988 by L.O. Chua and L. Yang [1,2]
as a new type of information processing systems that has key characteristics of neural
networks and admits important applications in parallel image and signal processing, as
well as pattern recognition [3–5].

A class of CNNs based on shunting inhibition was introduced in paper [6] by A.
Bouzerdoum and R.B. Pinter. The shunting inhibitory cellular neural networks (SICNNs)
have been effectively applied in vision and image processing adaptive pattern recogni-
tion [7–10]. The layers in SICNNs are considered arrays of neurons with two dimensions.
The interactions of the cells inside a single layer are subdued to the biophysical mechanism
of the recurrent shunting inhibition, where the conductance is modulated by voltages of
neighboring elements [6].

The impulses in neural networks are used to model the impact inputs. That is, in
implementation, the state of a network can be subject to instantaneous perturbations
and changes at certain moments, which may be reasoned by abrupt noise or the impact
phenomenon. All this leads to a need for studies of impulsive neural networks. There
are several results which explore anti-periodic, almost periodic and periodic solutions of
impulse models of SICNN [11–13].

If one considers the impact actions as limits of continuous ones, then the jump equa-
tion of the impulsive neural network must have a functional structure identical to the
differential equation. Hence, it is of great interest to consider neural networks with the
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structure of the impulses symmetrical to the original model. That is, the components of the
impulsive equation must be analogues of components of the differential equation. Due to
the similarity, the model is named the symmetrical impulsive shunting inhibitory cellular
neural network (SISICNN). Previously, in the literature, non-symmetrical impulsive models
were considered [11–16].

The research of recurrence types, such as periodicity, quasi periodicity and others,
started within the theory of celestial dynamics and was widely spread over all areas of
applied mathematics. The next position occupies the class of complex types of dynamic
behavior, such as Poisson stable motions. The stability was considered by H. Poincaré as the
main property in describing the complexity of celestial dynamics [17,18]. Accordingly, it is
logical to suppose that Poisson stable dynamics in neural networks should be investigated
based on arguments which were provided for the discussion of other types of oscillation
in neuroscience. The concepts of recurrent motions and Poisson stability are conservative
notions, which are focused on the theory of differential equations and dynamical systems. If
H. Poincaré is the founder of the Poisson stability theory [17,18], G. Birkhoff, by introducing
recurrent motions [19], established the important interrelationship of recurrent motions
and the most sophisticated type of recurrence, Poisson stability.

The theoretical as well as application merits of periodicity, quasi-periodicity and
almost periodicity for SICNNs have already been approved by many researchers [7–13].
Similarly, Poisson-stable and unpredictable motions can be considered for the same reasons.
The papers [20–24] and book [25] can be cited as examples.

In this paper, the method of included intervals is applied to show the existence and
uniqueness of discontinuous Poisson stable motions for SISICNNs. The novelties as well as
contributions, present and potential, can be emphasized as follows:

• In previous studies [20–25], Poisson stability was considered for continuous systems.
Here, we research the Poisson stability of discontinuous neural networks.

• Neural models, described separately by impulsive differential equations and differ-
ential equations with generalized piecewise constant arguments were considered
in earlier results [11–13,26,27]. In this paper, we study SICNNs that include both
impulses and the piecewise constant argument.

• The structure of the impulsive action is symmetrical to the differential part of the
SICNN, and this is the main modeling novelty of the research. The complete symmetry
can be considered not only for SICNNs, but also for Hopfield-type neural networks,
Cohen–Grossberg-type neural networks, inertial neural networks and other models.

• In future investigations, the new method of included intervals can be used for neural
networks with different types of discontinuity, as well as partial differential equations
and functional differential equations.

The symbols R, N and Z, in the present paper, mean the sets of real numbers, natural
numbers and integers, respectively.

Let us fix sequences θk, ξk, k ∈ Z, of real numbers, which satisfy θk < θk+1, θk ≤ ξk ≤
θk+1 for all k ∈ Z, and |θk| → ∞ as |k| → ∞. It is supposed that there exist two positive real
numbers θ, θ such that θ ≤ θk+1 − θk ≤ θ for all k ∈ Z.

In the present study, we consider SISICNN in the form

dxij(t)
dt

= aijxij(t)− ∑
Chl∈Nr(i,j)

Chl
ij f (xhl(γ(t)))xij(t) + vij(t), t 6= θk,

∆xij

∣∣∣
t=θk

= bijxij(θk) + ∑
Chl∈Nr(i,j)

Dhl
ij g(xhl(θk))xij(θk) + hijk,

(1)

where t ∈ R, xij ∈ R, bij 6= −1 for each i = 1, 2, . . . , m and j = 1, 2, . . . , n; γ(t) = ξk, if
θk ≤ t < θk+1, k ∈ Z, is a piecewise constant function; Chl

ij ≥ 0 is the connection or coupling
strength of the postsynaptic activity of the cell Chl transmitted to the cell Cij; the constants
aij represent the passive decay rate of the cells activity; xij with fixed i and j is the activity
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of the cell Cij; the activation function f (xhl) is a positive function representing the output
or firing rate of the cell Chl ; the couple (vij(t), hijk) is the continuous-impact external input
to the cell Cij; and Nr(i, j) is the r−neighborhood of the cell Cij, defined as

Nr(i, j) = {Chl : max{|h− i|, |l − j|} ≤ r, 1 ≤ h ≤ m, 1 ≤ l ≤ n}.

Like the continuous components of system (1), one can say the same about the compo-
nents of impacts, that is, the constant bij with fixed i and j is the passive decay impulsive rate
of the cell activity; the impact activation g(xhl) is the output localized at a moment of impact
of the cell Chl ; and Dhl

ij ≥ 0 is the strength of coupling by impacts due to the postsynaptic
activity between cells Chl and Cij. We assume that f (s), g(s) and v(t) are continuous and
bounded functions.

Next, we present Poisson stability for continuous and discontinuous functions and
Poisson stable sequence.

Definition 1 ([28]). A function v(t) : R → R, is said to be Poisson stable, provided that it
is bounded, continuous and there exists a sequence tp, tp → ∞ as p → ∞, which satisfies
v(t + tp)→ v(t) as p→ ∞ on each bounded interval of R.

Definition 2 ([28]). A sequence κk, k ∈ Z, in R is called Poisson stable, provided that it is bounded
and there exists a sequence lp → ∞, p ∈ N, of positive integers, which satisfies κk+lp → κk as
p→ ∞ on bounded intervals of integers.

A piecewise continuous function v(t) : R→ R, is called conditional uniform continuous,
if for every number ε > 0, there exists a number σ > 0 which satisfies |v(t1)− v(t2)| < ε
whenever the points t1 and t2 belong to the same continuity interval and |t1 − t2| < σ [26].

Let us consider the set D of matrix functions ϕ(t) = (ϕij(t)), ϕij(t) : R → R,
i = 1, 2, . . . , m, j = 1, 2, . . . , n, such that each entry of the function is conditional uniform
continuous. The entries of functions are continuous, except a countable set of moments,
where they are left-continuous. The sets of points of discontinuity are unbounded on both
sides and do not have finite accumulation points. For different functions, discontinuity
moments are not necessarily common.

Definition 3 ([29]). Two functions G(t) = {Gij(t)} and F(t) = {Fij(t)}, i = 1, 2, . . . , m,
j = 1, 2, . . . , n, from D, are called ε−equivalent on a bounded interval J, if the discontinuity points
θG

k and θF
k , k = 1, 2, . . . , l, of G(t) and F(t) in J respectively are such that |θG

k − θF
k | < ε for each

k = 1, 2, . . . , l, and max
(i,j)

∣∣Gij(t)− Fij(t)
∣∣ < ε, for each t ∈ J, i = 1, 2, . . . , m, j = 1, 2, . . . , n,

except possibly those between θG
k and θF

k for all k.

In the case that G, F are ε−equivalent on J, we also call the functions in ε−neighborhoods
of each other on J. The topology defined on the basis of all ε− neighborhoods is said to be
B-topology [29].

Definition 4. A member ϕ(t) of D is said to be a discontinuous Poisson stable function provided
that there exists a sequence tp → ∞ of real numbers, which satisfies ϕ(t + tp)→ ϕ(t) as p→ ∞
in B-topology on each compact set of real numbers.

2. Methods

Extending the Poisson stable point, M. Akhmet and M.O. Fen introduced the concept
of the unpredictable point [30]. Then, by assuming the separation property [30], they
introduced the concept of an unpredictable function and thereby elaborated the recurrence
in functional spaces. An unpredictable function is a Poisson stable function. That is, to
test the unpredictability, we check the validity of the Poisson stability. In papers [20–24]
and book [25], considering the existence and uniqueness of unpredictable solutions, we
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developed a new approach: the method of included intervals for asserting the Poisson
stability of solutions. The method is certainly different from the method of comparability
by the character of recurrence in [31–34].

A novelty in the considered model (1) is the generalized piecewise constant argument.
Differential equations with generalized piecewise constant argument were introduced
in 2005 by M. Akhmet [26,35,36], and they attracted the attention of scientists for their
effectiveness in the fields of biology, physics, economics, and neural networks [26,27]. The
proposals became the most general not only in modeling, but also very powerful in the
methodological sense since the equivalent integral equations were suggested to open the
research gate for methods of operators’ theory and functional analysis. The suggestions
were followed by the impressive research of ordinary differential, impulsive differential,
functional differential, and partial differential equations [37–39]. Mathematically, the
generalized piecewise constant argument combines equations with retarded (delay) and
advanced arguments, thereby making it possible to increase the applicability.

Impulsive systems are models for processes in which sharp interruptions of contin-
uous processes are observed, and they are important in various fields such as medicine,
mechanics, electronics, communication systems and neural networks [40–42]. Currently,
significant results of neural networks with impulses have been obtained. Basically, in these
models, the impulsive part is of a simple form. In the present work, the impulsive part
completely “copies” the original model, i.e., it is identical to the SICNN. The passive decay
rates aij, i = 1, 2, . . . , m, j = 1, 2, . . . , n, of SICNNs in [43,44] are positive. Unlike them, we
do not demand the positiveness. In this paper, the coefficient can be positive, negative or
zero valued, that is, due to the possibility of negative capacitance [45–47]. Thus, in this
article, using the methods of studying impulsive systems in previous results [22,29,48], we
investigate the existence of Poisson stable motion of SISCINN (1).

3. Main Results

Let us introduce the subset PD ⊂ D of matrix functions w(t) = (wij(t)), i =
1, 2, . . . , m, j = 1, 2, . . . , n, with the fixed set of moments of discontinuity θk, k ∈ Z, and Pois-
son stable entries which satisfy |wij(t)| < H, where H is a positive number, i = 1, 2, . . . , m,
j = 1, 2, . . . , n. All functions of the given subset have the common convergence sequence tp,
p ∈ N.

The function x(t) =
{

xij(t)
}

satisfies SISICNN (1), if and only if it is a solution of the
integral equation

xij(t) = −
∫ t

−∞
uij(t, s)

[
∑

Chl∈Nr(i,j)
Chl

ij f (xhl(γ(s)))xij(s)− vij(s)
]
ds

+ ∑
−∞<θk<t

uij(t, θk+)
[

∑
Chl∈Nr(i,j)

Dhl
ij g(xhl(θk))xij(θk) + hijk

]
for each i and j [29].

Define on PD the operator Φw(t) =
{

Φijw(t)
}

, i = 1, 2, . . . , m, j = 1, 2, . . . , n, as

Φijw(t) ≡ −
∫ t

−∞
uij(t, s)

[
∑

Chl∈Nr(i,j)
Chl

ij f (whl(γ(s)))wij(s)− vij(s)
]
ds

+ ∑
−∞<θk<t

uij(t, θk+)
[

∑
Chl∈Nr(i,j)

Dhl
ij g(whl(θk))wij(θk) + hijk

]
.

We required that system (1) satisfies the following conditions:

(C1) The inputs vij(t), i = 1, 2, . . . , m, j = 1, 2, . . . , n, are Poisson stable and the sequence tp,
p ∈ N, is common for all inputs;
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(C2) For the sequence {hijk}, i = 1, 2, . . . , m, j = 1, 2, . . . , n, k ∈ Z, hijk ∈ R, there exists

sequence lp of integers, which diverges to infinity such that
∣∣∣hijk+lp − hijk

∣∣∣ → 0, as
p→ ∞ on each bounded interval of integers and for each i = 1, 2, . . . , m, j = 1, 2, . . . , n;

(C3) For the sequences tp, p ∈ N, θk, and ξk, k ∈ Z, there exists sequence lp of integers, which

diverges to infinity which satisfies
∣∣∣θk+lp − tp − θk

∣∣∣ → 0 and |ξk+lp − tp − ξk| → 0 as
p→ ∞ on each finite set of integers.

Let us consider the linear homogeneous impulsive system associated with (1),

dxij(t)
dt

= aijxij(t), t 6= θk,

∆xij

∣∣∣
t=θk

= bijxij(θk),
(2)

where t ∈ R, constants aij, bij, i = 1, 2, . . . , m, j = 1, 2, . . . , n, are real valued numbers. The
transition matrix of this system has the form [29]

uij(t, s) = eaij(t−s)(1 + bij)
i([s,t)), t ≥ s, (3)

where i([s, t)) is the number of the members of the sequence θk, lying in the interval [s, t).
The following conditions for the system (1) are required:

(C4) It is true that λij = aij +
1
θ

ln |1 + bij| < 0, for all i = 1, 2, . . . , m, j = 1, 2, . . . , n;

(C5) ∃M > 0, Mij > 0 such that the following equalities are valid sup
s∈R
| f (s)|+ sup

s∈R
|g(s)| = M

and sup
s∈R

∣∣vij(s)
∣∣+ sup

k∈Z

∣∣∣hijk

∣∣∣ = Mij;

(C6) ∃ L > 0, which satisfies the inequality | f (s2)− f (s1)|+ |g(s2)− g(s1)| ≤ L|s2 − s1|
for all s1, s2 ∈ R.

Due to (3) and condition (C4), there exist numbers Kij ≥ 1 such that the relation∣∣uij(t, s)
∣∣ ≤ Kije

λij(t−s), s ≤ t, (4)

is valid for all i = 1, 2, . . . , m, j = 1, 2, . . . , n [29].
We also need the following conditions:

(C7)
Kij Mij

(
1
−λij

+ 1
1−eλijθ

)
1− Kij M(

∑Chl∈Nr(i,j) Chl
ij

−λij
+

∑Chl∈Nr(i,j) Dhl
ij

1−eλijθ )

< H;

(C8) Kij(M + LH)

(
∑Chl∈Nr(i,j) Chl

ij
−λij

+
∑Chl∈Nr(i,j) Dhl

ij

1−eλijθ

)
< 1;

(C9) θ
[(
|aij|+ M ∑Chl∈Nr(i,j) Chl

ij
)(

1 + LHθ ∑Chl∈Nr(i,j) Chl
ij
)
e
(
|aij |+M ∑Chl∈Nr(i,j) Chl

ij

)
θ

+ LH ∑Chl∈Nr(i,j) Chl
ij

]
< 1.

Let us accept the following notation

Nij =
(
1− θ

[(
|aij|+ M ∑Chl∈Nr(i,j) Chl

ij
)(

1 + LHθ ∑Chl∈Nr(i,j) Chl
ij
)
e
(
|aij |+∑Chl∈Nr(i,j) Chl

ij

)
θ
+ LH ∑Chl∈Nr(i,j) Chl

ij
])−1. (5)

(C10) λij +
(

M + LHNij
)

∑Chl∈Nr(i,j) Chl
ij +

1
θ ln(M + LH)∑Chl∈Nr(i,j) Dhl

ij < 0.

Theorem 1. The SISICNN (1) admits a unique bounded on R discontinuous Poisson stable motion,
provided conditions (C1)–(C8).

Proof. We will prove that system (1) possesses a unique discontinuous Poisson stable
solution by using the contraction mapping principle.
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Let us show Φ(PD) ⊆ PD. If w(t) belongs to PD, then

∣∣Φijw(t)
∣∣ ≤ ∫ t

−∞
Kije

λij(t−s)
(

MH ∑
Chl∈Nr(i,j)

Chl
ij + Mij

)
ds

+ ∑
−∞<θk<t

Kije
λij(t−θk)

(
MH ∑

Chl∈Nr(i,j)
Dhl

ij + Mij

)
.

Making use of the inequality ∑
−∞<θk<t

eλij(t−θk) ≤ 1

1− eλijθ
, one can obtain that

∣∣Φijw(t)
∣∣ ≤ Kij

−λij

(
MH ∑

Chl∈Nr(i,j)
Chl

ij + Mij

)
+

Kij

1− eλijθ

(
MH ∑

Chl∈Nr(i,j)
Dhl

ij + Mij

)
.

From the last inequality and condition (C7), it follows that
∣∣Φijw(t)

∣∣ < H.
Fix an arbitrary number ε > 0 and a compact interval [a, b], where b > a. We will

prove for sufficiently large n that the inequality |Φijw(t + tp)−Φijw(t)| < ε is satisfied for
each t in [a, b]. Choose numbers c < a and ζε > 0 such that

Kij
(

∑Chl∈Nr(i,j) Chl
ij MH + Mij

)
+ 2Kij

(
∑Chl∈Nr(i,j) Chl

ij (LH2 + MH) + Mij
)

−λij
eλij(a−c) <

ε

7
, (6)

Kij
(

∑Chl∈Nr(i,j) Chl
ij MH + Mij

)
+ 2Kij

(
∑Chl∈Nr(i,j) Chl

ij (LH2 + MH) + Mij
)

−λij(1− eλijθ)
(e−λijζε − 1) <

ε

7
, (7)

Kij

1− eλijθ

[(
∑

Chl∈Nr(i,j)
Dhl

ij MH + Mij
)
+ Kij

(
∑

Chl∈Nr(i,j)
Dhl

ij (LH + M) + 1
)]

ζε <
ε

7
, (8)

2Kij

1− eλijθ

(
∑

Chl∈Nr(i,j)
Dhl

ij (LH2 + 2MH) + 2Mij
)
eλij(a−c) <

ε

7
(9)

and

Kij

−λij

[
∑

Chl∈Nr(i,j)
Chl

ij M + 1
]
ζε <

ε

7
. (10)

Consider the number p sufficiently large for |whl(θk+lp)− whl(θk)| < ζε, |hij k+lp −
hijk| < ζε,

∣∣∣θk+lp − tp − θk

∣∣∣ < ζε, whenever θk ∈ [c, b], k ∈ Z and |whl(t+ tp)−whl(t)| < ζε,
|vij(t + tp)− vij(t)| < ζε for all t ∈ [c, b], i = 1, 2, . . . , m, j = 1, 2, . . . , n.

For a fixed t ∈ [a, b], we assume, without loss of generality, that θk ≤ θk+lp − tp and
θk ≤ θk+lp − tp = c < θk+1 < θk+2 < · · · < θk+d ≤ θk+d+łp − tn ≤ t < θk+d+1 so that there
exist exactly d moments of discontinuity in the interval [c, t]. Moreover, assume that

2KijLH
−λij

∑
Chl∈Nr(i,j)

Chl
ij (d + 1)(1− eλijθ)ζε <

ε

7
, (11)

2KijLH
−λij

∑
Chl∈Nr(i,j)

Chl
ij Hd(e−λijζε − 1) <

ε

7
. (12)
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If t ∈ [a, b], then we have

|Φijw(t + tp)−Φijw(t)|

≤
∫ c

−∞
|uij(t + tp, s + tp)− uij(t, s)|

×
[

∑
Chl∈Nr(i,j)

Chl
ij | f (whl(γ(s + tp)))||wij(s + tp)||vij(s + tp)|

]
ds

+ ∑
−∞<θk<c

|uij(t + tp, θk+lp+)− uij(t, θk+)|

×
[

∑
Chl∈Nr(i,j)

Dhl
ij |g(whl(θk+lp))||wij(θk+lp)|+ |hijk+lp |

]
+
∫ t

c
|uij(t + tp, s + tp)− uij(t, s)|

×
[

∑
Chl∈Nr(i,j)

Chl
ij | f (whl(γ(s + tp)))||wij(s + tp)|+ |vij(s + tp)|

]
ds

+ ∑
c≤θk<t

|uij(t + tp, θk+lp+)− uij(t, θk+)|

×
[

∑
Chl∈Nr(i,j)

Dhl
ij |g(whl(θk+lp))||wij(θk+lp)|+ |hijk+lp |

]
+
∫ c

−∞
|uij(t, s)|

[
∑

Chl∈Nr(i,j)
Chl

ij

∣∣∣[ f (whl(γ(s + tp)))− f (whl(γ(s)))]wij(s + tp)

+ f (whl(γ(s)))[wij(s + tp)− wij(s)][vij(s + tp)− vij(s)]
∣∣∣]ds +

+ ∑
−∞<θk<c

|uij(t, θk+)|
[

∑
Chl∈Nr(i,j)

Dhl
ij

∣∣∣[g(whl(θk+lp))− g(whl(θk))]wij(θk+lp)

+g(whl(θk))[wij(θk+lp)− wij(θk)] + [hijk+lp − hijk]
∣∣∣]

+
∫ t

c
|uij(t, s)|

[
∑

Chl∈Nr(i,j)
Chl

ij

∣∣∣[ f (whl(γ(s + tp)))− f (whl(γ(s)))]wij(s + tp)

+ f (whl(γ(s)))[wij(s + tp)− wij(s)] + [vij(s + tp)− vij(s)]
∣∣∣]ds

+ ∑
c≤θk<t

|uij(t, θk+)|
[

∑
Chl∈Nr(i,j)

Dhl
ij

∣∣∣[g(whl(θk+lp))− g(whl(θk))]wij(θk+lp)

+g(whl(θk))[wij(θk+lp)− wij(θk)] + [hijk+lp − hijk]
∣∣∣].
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By virtue of Appendix A Lemma A1, one can obtain∫ c

−∞
|uij(t + tp, s + tn)− uij(t, s)|

×
[

∑
Chl∈Nr(i,j)

Chl
ij | f (whl(γ(s + tp)))||wij(s + tp)|+ |vij(s + tp)|

]
ds

+ ∑
−∞<θk<c

|uij(t + tp, θk+lp+)− uij(t, θk+)|

×
[

∑
Chl∈Nr(i,j)

Dhl
ij |g(whl(θk+lp))||wij(θk+lp)|+ |hijk+lp |

]

≤
c∫

−∞

K eλij(t−s)[ ∑
Chl∈Nr(i,j)

Chl
ij MH + Mij]ds

+
k−1

∑
i′=−∞

[
Keλij(t+tp−θi′+1+lp ) + Keλij(t−θi′+1)

]
[ ∑
Chl∈Nr(i,j)

Dhl
ij MH + Mij]

< [ ∑
Chl∈Nr(i,j)

Chl
ij MH + Mij]

K

|λij|
eλij(t−s) + [ ∑

Chl∈Nr(i,j)
Dhl

ij MH + Mij]
2K

1− eλijθ
eλij(t−θi′+1)

≤ [ ∑
Chl∈Nr(i,j)

Chl
ij MH + Mij]

K

|λij|
eλij(a−c) + [ ∑

Chl∈Nr(i,j)
Dhl

ij MH + Mij]
2K

1− eλijθ
eλij(a−c)

if i = 1, 2, . . . , m, j = 1, 2, . . . , n. Additionally, we obtain

t∫
c

|uij(t + tp, s + tn)− uij(t, s)|

×
[

∑
Chl∈Nr(i,j)

Chl
ij | f (whl(γ(s + tp)))||wij(s + tp)|+ |vij(s + tp)|

]
ds

+ ∑
c≤θk<t

|uij(t + tp, θk+lp+)− uij(t, θk+)|

×
[

∑
Chl∈Nr(i,j)

Dhl
ij |g(whl(θk+lp))||wij(θk+lp)|+ |hijk+lp |

]

≤
k+d−1

∑
i′=k

θi′+1+lp−tp∫
θi′+1

Kije
λij(t−s)[ ∑

Chl∈Nr(i,j)
Chl

ij MH + Mij]ds

+
k+d−1

∑
i′=k

Kije
λij(t−θi′+1)ζε[ ∑

Chl∈Nr(i,j)
Dhl

ij MH + Mij]

< [ ∑
Chl∈Nr(i,j)

Cijhl MH + Mij]
Kij(e

−λijζε − 1)

−λij(1− eλijθ)

+[ ∑
Chl∈Nr(i,j)

Dhl
ij MH + Mij]

Kijζε

1− eλijθ

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n.
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Similarly, one can see that∫ c

−∞
|uij(t, s)|

[
∑

Chl∈Nr(i,j)
Chl

ij
[
| f (whl(γ(s + tp)))− f (whl(γ(s)))||wij(s + tp)|

+| f (whl(γ(s)))||wij(s + tp)− wij(s)|
]
+ |vij(s + tp)− vij(s)|

]
ds

+ ∑
−∞<θk<c

|uij(t, θk+)|
[

∑
Chl∈Nr(i,j)

Dhl
ij
[
|g(whl(θk+lp))− g(whl(θk))||wij(θk+lp)|

+|g(whl(θk))||wij(θk+lp)− wij(θk)|
]
+ |hijk+lp − hijk|

]
≤

c∫
−∞

Kije
λij(t−s)

[
∑

Chl∈Nr(i,j)
Chl

ij (2LH2 + 2MH) + 2Mij

]
ds

+
k−1

∑
i′=−∞

Kije
λij(t−θi′+1)

[
∑

Chl∈Nr(i,j)
Dhl

ij (2LH2 + 2MH) + 2Mij

]

≤
2Kij

[
∑Chl∈Nr(i,j) Chl

ij (LH2 + MH) + Mij

]
−λij

eλij(a−c)

+
2Kij

[
∑Chl∈Nr(i,j) Dhl

ij (LH2 + MH) + Mij

]
1− e−λijθ

eλij(a−c)

if i = 1, 2, . . . , m, j = 1, 2, . . . , n.
Further, we need to obtain an upper bound for the following integral

I(t) = ∑
Chl∈Nr(i,j)

Chl
ij

t∫
c

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds.

We evaluate I(t) by considering it on finite number of sub-intervals as
described below:

I(t) = ∑
Chl∈Nr(i,j)

Chl
ij

θk+1∫
c

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds

+ ∑
Chl∈Nr(i,j)

Chl
ij

θk+1+lp−tp∫
θk+1

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds

+ ∑
Chl∈Nr(i,j)

Chl
ij

θk+2∫
θk+1+lp−tp

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds

+ ∑
Chl∈Nr(i,j)

Chl
ij

θk+2+lp−tp∫
θk+2

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds
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+ ∑
Chl∈Nr(i,j)

Chl
ij

θk+3∫
θk+2+lp−tp

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds

...

+ ∑
Chl∈Nr(i,j)

Chl
ij

t∫
θk+d+lp−tn

eλij(t−s)|whl(γ(s + tn))− whl(γ(s))|ds

=
k+d−1

∑
i′=k

Ai′ +
k+d−1

∑
i′=k

Bi′ + ∑
Chl∈Nr(i,j)

Chl
ij

t∫
θk+d+lp−tp

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds,

where

Ai′ = ∑
Chl∈Nr(i,j)

Chl
ij

θi′+1∫
θi′+lp−tp

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds

and

Bi′ = ∑
Chl∈Nr(i,j)

Chl
ij

θi′+1+lp−tp∫
θi′+1

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds

for i′ = k, k + 1, . . . , k + d− 1. For t ∈ [θi′+lp − tp, θi′+1), i′ ∈ Z, it is clear that γ(t) = ξi′

and it follows from the condition (C3) that γ(t + tp) = ξi′+lp . Using this result, we reach
the following estimation:

Ai′ = ∑
Chl∈Nr(i,j)

Chl
ij

θi′+1∫
θi′+lp−tp

eλij(t−s)|whl(ξi′+lp)− whl(ξi′)|ds

= ∑
Chl∈Nr(i,j)

Chl
ij

θi′+1∫
θi′+lp−tp

eλij(t−s)|whl(ξi′ + tp + o(1))− whl(ξi′)|ds

≤ ∑
Chl∈Nr(i,j)

Chl
ij

θi′+1∫
θi′+lp−tp

eλij(t−s)|whl(ξi′ + tp)− whl(ξi′)|ds

+ ∑
Chl∈Nr(i,j)

Chl
ij

θi′+1∫
θi′+lp−tp

eλij(t−s)|whl(ξi′ + tp + o(1))− whl(ξi′ + tp)|ds

≤ ∑
Chl∈Nr(i,j)

Chl
ij

θi′+1∫
θi′+lp−tp

eλij(t−s)
[
ζε + |whl(ξi′ + tp + o(1))− whl(ξi′ + tp)|

]
ds.

We already know that w is a uniformly continuous function. Thus, for ζε > 0 and
sufficiently large p one can find a ρ > 0 such that |whl(ξi′ + tp + o(1))− whl(ξi′ + tp)| < ζε

if |ξi′+lp − ξi′ − tp| < ρ. This implies in turn that

Ai′ ≤ 2ζε ∑
Chl∈Nr(i,j)

Chl
ij

θi′∫
θi′−1+lp−tp

eλij(t−s)ds ≤ 2ζε

−λij
∑

Chl∈Nr(i,j)
Chl

ij (1− eλijθ).
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On the other hand, condition (C3) gives us that

Bi′ ≤ 2H ∑
Chl∈Nr(i,j)

Chl
ij

θi′+lp−tp∫
θi′

eλij(t−s)ds ≤ 2H
−λij

∑
Chl∈Nr(i,j)

Chl
ij (e

−λijζε − 1).

If we use a similar approach used for the estimation of the integral Ai′ , then it
follows that

∑
Chl∈Nr(i,j)

Chl
ij

t∫
θk+d−1+lp−tp

eλij(t−s)|whl(γ(s+ tp))−whl(γ(s))| ≤
2ζε

−λij
∑

Chl∈Nr(i,j)
Chl

ij (1− eλijθ).

Therefore, it can be seen that

I(t) ≤ 2ζε(d + 1)
∑Chl∈Nr(i,j) Chl

ij

−λij
(1− eλijθ) + 2Hd

∑Chl∈Nr(i,j) Chl
ij

−λij
(e−λijζε − 1).

Using the last inequality, we have∫ t

c
|uij(t, s)|

[
∑

Chl∈Nr(i,j)
Chl

ij

∣∣∣[ f (whl(γ(s + tp)))− f (whl(γ(s)))]wij(s + tp)

+ f (whl(γ(s)))[wij(s + tp)− wij(s)] + [vij(s + tp)− vij(s)]
∣∣∣]ds

+ ∑
c≤θk<t

|uij(t, θk+)|
[

∑
Chl∈Nr(i,j)

Dhl
ij

∣∣∣[g(whl(θk+lp))− g(whl(θk))]wij(θk+lp)

+g(whl(θk))[wij(θk+lp)− wij(θk)] + [hijk+lp − hijk]
∣∣∣]

≤
t∫

c

Kije
λij(t−s)

[
∑

Chl∈Nr(i,j)
Chl

ij (LH|whl(γ(s + tp))− whl(γ(s))|+ Mζε) + ζε

]
ds

+
k+d−1

∑
i′=k

θi′+1+lp∫
θi′+1

Kije
λij(t−s)

[
∑

Chl∈Nr(i,j)
Chl

ij (2LH2 + 2MH) + 2Mij

]
ds

+
k+d−1

∑
i′=k

Kije
λij(t−θi′+1)

[
∑

Chl∈Nr(i,j)
Dhl

ij (LHζε + Mζε) + ζε

]

≤ KijLH ∑
Chl∈Nr(i,j)

Chl
ij

t∫
c

eλij(t−s)|whl(γ(s + tp))− whl(γ(s))|ds

+Kijζε

[
∑

Chl∈Nr(i,j)
Chl

ij M + 1
] t∫

c

eλij(t−s)ds

+Kij

[
∑

Chl∈Nr(i,j)
Chl

ij (2LH2 + 2MH) + 2Mij

] k+d−1

∑
i′=k

θi′+1+lp∫
θi′+1

eλij(t−s)ds

+Kijζε

[
∑

Chl∈Nr(i,j)
Dhl

ij (LH + M) + 1
] k+d−1

∑
i′=k

eλij(t−θi′+1)
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≤
2KijLH
−λij

∑
Chl∈Nr(i,j)

Chl
ij

[
ζε(d + 1)(1− eλijθ) + Hd(e−λijζε − 1)

]

+
Kijζε

−λij

[
∑

Chl∈Nr(i,j)
Chl

ij M + 1
]
+

2Kij(e
−λijζε − 1)

−λij(1− eλijθ)

[
∑

Chl∈Nr(i,j)
Chl

ij (LH2 + MH) + Mij

]
+

Kijζε

1− eλijθ

[
∑

Chl∈Nr(i,j)
Dhl

ij (LH + M) + 1
]

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n.
As a result of the computations, we obtain

|Φijw(t + tp)−Φijw(t)|

≤ [ ∑
Chl∈Nr(i,j)

Chl
ij MH + Mij]

Kij

−λij
eλij(a−c) + [ ∑

Chl∈Nr(i,j)
Dhl

ij MH + Mij]
2Kij

1− eλijθ
eλij(a−c)

+[ ∑
Chl∈Nr(i,j)

Cijhl MH + Mij]
Kij(e

−λijζε − 1)

−λij(1− eλijθ)
+ [ ∑

Chl∈Nr(i,j)
Dhl

ij MH + Mij]
Kijζε

1− eλijθ

+
[

∑
Chl∈Nr(i,j)

Chl
ij (LH2 + MH) + Mij

] 2Kij

−λij
eλij(a−c)

+
[

∑
Chl∈Nr(i,j)

Dhl
ij (LH2 + MH) + Mij

] 2Kij

1− e−λijθ
eλij(a−c)

+ ∑
Chl∈Nr(i,j)

Chl
ij

[
ζε(d + 1)(1− eλijθ) + Hd(e−λijζε − 1)

]2KijLH
−λij

+
[

∑
Chl∈Nr(i,j)

Chl
ij M + 1

]Kijζε

−λij
+
[

∑
Chl∈Nr(i,j)

Chl
ij (LH2 + MH) + Mij

]2Kij(e
−λijζε − 1)

−λij(1− eλijθ)

+
[

∑
Chl∈Nr(i,j)

Dhl
ij (LH + M) + 1

] Kijζε

1− eλijθ

for all t ∈ [a, b].
In consequence, the inequalities (6) to (12) give that |Φijw(t + tp)−Φijw(t)| < ε for

t ∈ [a, b]. Thus, Φ(PD) ⊆ PD.
Next, introduce the norm ‖w(t)‖0 = max

(i,j)

∥∥wij(t)
∥∥, where

∥∥wij
∥∥ = sup

t∈R

∣∣wij(t)
∣∣, i =

1, 2, . . . , m, j = 1, 2, . . . , n for functions defined on PD.
Let us show that Φ is a contraction operator. If w(t), w(t) ∈ PD, then

(Φw(t))ij − (Φw(t))ij

= −
∫ t

−∞
uij(t, s) ∑

Chl∈Nr(i,j)
Chl

ij
[

f (whl(γ(s)))wij(s)− f (whl(γ(s)))wij(s)
]
ds

+ ∑
−∞<θk<t

uij(t, θk+) ∑
Chl∈Nr(i,j)

Dhl
ij
[
g(whl(θk))wij(θk)− g(whl(θk))wij(θk)

]
.
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Therefore, we have∣∣(Φw(t))ij − (Φw(t))ij
∣∣

≤
∫ t

−∞
Kije

λij(t−s) ∑
Chl∈Nr(i,j)

Chl
ij

(
| f (whl(γ(s)))|

∣∣wij(s)− wij(s)
∣∣

+
∣∣wij(s)

∣∣| f (whl(γ(s)))− f (whl(γ(s)))|
)

+ ∑
−∞<θk<t

Kije
λij(t−θk)

(
|g(whl(θk))|

∣∣wij(s)− wij(s)
∣∣

+
∣∣wij(s)

∣∣|g(whl(θk))− g(whl(θk))|
)

≤ Kij(M + LH)

(
∑Chl∈Nr(i,j) Chl

ij

−λij
+

∑Chl∈Nr(i,j) Dhl
ij

1− eλijθ

)
‖w− w‖0.

The inequality yields ‖Φw−Φw‖0 ≤ Kij(M + LH)

(
∑Chl∈Nr(i,j) Chl

ij
−λij

+
∑Chl∈Nr(i,j) Dhl

ij

1−eλijθ

)
×

‖w− w‖0. Therefore, according to the condition (C8), Φ is a contractive operator.
Next, denote by [â, b], a, b ∈ R the interval [a, b], if a < b and the interval [b, a], if b < a.
Let us prove the completeness of the space PD. Consider a Cauchy sequence φl(t) =

{φl
ij(t)}, i = 1, 2, . . . , m, j = 1, 2, . . . , n, l = 1, 2, . . ., in PD, which converges to a limit

function φ(t) on R. Fix a closed and bounded interval J ⊂ R. Denote θk, k = r, r + 1, . . . , r +
m′, the points of discontinuity of φ(t) and φl(t), and θ

p
k = θk+lp − tp, k = r, r + 1, . . . , r + m′,

the points of discontinuity of φ(t + tp) and φl(t + tp) in the interval J, respectively. Let p
be a large enough number such that |θp

k − θk| < ε, k = r, r + 1, · · · , r + m′. Because of the
convergence of φl(t) we have that |φij(t + tp)− φl

ij(t + tp)| < ε
3 and |φl

ij(t)− φij(t)| < ε
3

if l sufficiently large. Since φl(t) ∈ PD, for sufficiently large p we have that |φl
ij(t +

tp) − φl
ij(t)| <

ε
3 for t /∈ [θ̂k, θ

p
k ], i = 1, 2, . . . , m, j = 1, 2, . . . , n, and |θp

k − θk| < ε, k =

r, r + 1, . . . , r + m′. Thus, for sufficiently large p, l and i = 1, 2, . . . , m, j = 1, 2, . . . , n it is
true that

|φij(t + tp)− φij(t)| ≤ |φij(t + tp)− φl
ij(t + tp)|+ |φl

ij(t + tp)− φl
ij(t)|

+|φl
ij(t)− φij(t)| < ε

(13)

for all t /∈ [θ̂k, θ
p
k ], and |θp

k − θk| < ε, k = r, r + 1, . . . , r + m′. That is, φ(t + tp) → φ(t)
uniformly in B-topology as p→ ∞ on J. So, the space PD is complete.

According to the conditions (C1)–(C8) operator Φ is invariant in PD and contractive.
Consequently, by the contractive mapping theorem, there exists a unique bounded on the
R discontinuous Poisson stable solution φ(t) =

{
φij(t)

}
of the SISICNN (1).

Theorem 2. Assume that the conditions (C9) and (C10) are valid, then the unique discontinuous
Poisson stable solution of the network (1) is globally asymptotically stable.

Proof. Theorem 1 implies that the network (1) has the unique discontinuous Poisson stable
solution. Therefore, it remains to prove that the solution φ(t) possesses the
asymptotic property.

Let us give our attention to the stability analysis of the solution φ(t).
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Denote yij(t) = zij(t)− φij(t) for each i = 1, 2, . . . , m, j = 1, 2, . . . , n, where zij(t) is
another solution of the system (1). Then yij(t) will be a solution of the system (A2) and
thus it is true that

|yij(t)| ≤ Kije
λij(t−t0)|yij(t0)|

+
∫ t

t0

Kije
λij(t−s) ∑

Chl∈Nr(i,j)
Chl

ij

[
| f (yij(γ(s)) + φij(γ(s)))||yij(s)|

+| f (yij(γ(s)) + φij(γ(s)))− f (φij(γ(s)))||φij(s)|
]
ds

+ ∑
t0≤θk<t

Kije
λij(t−θk) ∑

Chl∈Nr(i,j)
Dhl

ij

[
|g(yij(θk) + φij(θk))||yij(θk)|

+|g(yij(θk) + φij(θk))− g(φij(θk))||φij(s)|
]
,

(14)

|yij(t)| ≤ Kije
λij(t−t0)|yij(t0)|+

∫ t

t0

Kije
λij(t−s) ∑

Chl∈Nr(i,j)
Chl

ij
[
M|yij(s)|+ LH|yij(ξk)|

]
ds

+ ∑
t0≤θk<t

Kije
λij(t−θk) ∑

Chl∈Nr(i,j)
Dhl

ij
[
M|yij(θk)|+ LH|yij(θk)|

]
.

Hence, according to Lemma A2, we find

|yij(t)| ≤ Kije
λij(t−t0)|yij(t0)|+

∫ t

t0

Kije
λij(t−s) ∑

Chl∈Nr(i,j)
Chl

ij
[
M|yij(s)|+ LHNij|yij(s)|

]
ds

+ ∑
t0≤θk<t

Kije
λij(t−θk) ∑

Chl∈Nr(i,j)
Dhl

ij
[
M|yij(θk)|+ LH|yij(θk)|

]
≤ Kije

λij(t−t0)|yij(t0)|+
∫ t

t0

eλij(t−s) ∑
Chl∈Nr(i,j)

Chl
ij
[
M + LHNij

]
|yij(s)|

+ ∑
t0≤θk<t

Kije
λij(t−θk) ∑

Chl∈Nr(i,j)
Dhl

ij
[
M + LH

]
|yij(θk)|

where Nij is determined by formula (5), and multiplying by e−λijt, then using the Gronwall–
Bellman Lemma [29], one can obtain

|yij(t)| ≤ Kij|yij(t0)|e

(
λij+[M+LHNij ]∑Chl∈Nr(i,j) Chl

ij +
1
θ ln[M+LH]∑Chl∈Nr(i,j) Dhl

ij

)
(t−t0)

.

This inequality means that

|zij(t)− φij(t)|

≤ Kij|zij(t0)− φij(t0)|e

(
λij+[M+LHNij ]∑Chl∈Nr(i,j) Chl

ij +
1
θ ln[M+LH]∑Chl∈Nr(i,j) Dhl

ij

)
(t−t0)

. (15)

From the condition (C10), we reach the conclusion that the Poisson stable solution
φ(t) of (1) is globally asymptotically stable. The theorem is proved.

In the next examples, we illustrate the results of the paper.

Example 1. We will construct a Poisson stable function. Consider the logistic equation

vk+1 = µvk(1−vk), k ∈ Z. (16)

in the interval [0, 1]. For each µ ∈ [3 + ( 2
3 )

1/2, 4], the equation has Poisson stable solution

τk, k ∈ Z [23]. That is, there exists a sequence lp → ∞, p ∈ N, which satisfies
∣∣∣τk+lp − τk

∣∣∣→ 0 as
p→ ∞, for each k in finite set of integers.
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First, we specify the discontinuity moments as follows

θk = k + τk, k ∈ Z, (17)

where τk, k ∈ Z is the Poisson stable solution of (16). Since τk, k ∈ Z is a Poisson stable sequence,
there exists a sequence lp → ∞, p ∈ N, which satisfies |θk+lp − θk| → 0 as n → ∞ for each k in
bounded intervals of integers.

Let us show that θk, k ∈ Z is a Poisson stable sequence, with tp = lp for each p ∈ N. We
have that ∣∣∣θk+lp − tp − θk

∣∣∣ = ∣∣∣k + lp + τk+lp − lp − k− τk

∣∣∣ = ∣∣∣τk+lp − τk

∣∣∣→ 0,

as p→ ∞, k ∈ Z for each k in finite set of integers.
Consider the following integral equation defined by

Θ(t) =
∫ t

−∞
e−3(t−s)Ω(s)ds, t ∈ R,

where Ω(t) is a piecewise constant function, which is determined by the equation Ω(t) = τk for
t ∈ [θk, θk+1), k ∈ Z, on R. Θ(t) is bounded function on the whole real axis which satisfies
sup
t∈R
|Θ(t)| ≤ 1/3 (Figure 1).

0 10 20 30 40 50 60 70 80 90 100

0.0999

0.0999

0.1

0.1

0.1

0.1

0.1

0.1001

0.1001

t

Θ
(t
)

Figure 1. Discontinuous Poisson stable function Θ(t).

Let us check if the function Θ(t) satisfies the Poisson stability condition. Consider a number
ε > 0 and a bounded and closed interval [α, β]. Assume, without loss of generality, that α and β

are integers. Choose ζε > 0 and γ < α, which satisfy 2
3 e−3(α−γ) < ε

3 , 1
3 ζε

[
1− e−3(β−γ)

]
< ε

3

and 2
3 (e

3ζε − 1) < ε
3 , where γ ∈ Z. Moreover, let n be a large natural number such that

|Ω(t + tp)− |Ω(t)| < ζε on [γ, β].
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Then for all [α, β], we obtain

|Θ(t + tp)−Θ(t)| = |
∫ t

−∞
e−3(t−s)(Ω(s + tp)−Ω(s))ds|

≤ |
∫ γ

−∞
e−3(t−s)(Ω(s + tp)−Ω(s))ds|

+|
∫ β

γ
e−3(t−s)(Ω(s + tp)−Ω(s))ds|

+|
k+d−1

∑
i′=k

θi′+1+lp−tp∫
θi′+1

e−3(t−s)(Ω(s + tp)−Ω(s))ds|

≤
∫ γ

−∞
e−3(t−s)2ds +

∫ β

γ
e−3(t−s)ζεds +

k+d−1

∑
i′=k

θi′+1+lp−tp∫
θi′+1

e−3(t−s)2ds

≤ 2
3

e−3(α−γ) +
1
3

ζε[1− e−3(β−γ)] +
2
3
(e3ζε − 1)

≤ ε

3
+

ε

3
+

ε

3
= ε.

Thus, |Θ(t + tp)−Θ(t)| → 0 as n→ ∞ uniformly on the interval [α, β].

Example 2. Finally, let us consider the SISICNN

dxij(t)
dt

= aijxij(t)− ∑
Chl∈Nr(i,j)

Chl
ij f (xhl(γ(t)))xij(t) + vij(t), t 6= θk,

∆xij

∣∣∣
t=θk

= bijxij(θk) + ∑
Chl∈Nr(i,j)

Dhl
ij g(xhl(θk))xij(θk) + hijk,

(18)

where m = 2, n = 3, the rates of the cells activity are given as follows: a11 = 0.2, a12 = −0.2,
a13 = −0.1, a21 = −0.2, a22 = 0, a23 = −0.1, b11 = e−1.2− 1, b12 = e−0.6− 1, b13 = e−0.6− 1,
b21 = e−1.8 − 1, b22 = e−0.8 − 1, b23 = e−1.2 − 1, and the coupling strength of postsynaptic
activity are given by(

C11
ij C12

ij C13
ij

C21
ij C22

ij C23
ij

)
=

(
0.03 0.07 0.04
0.02 0.05 0.01

)
,(

D11
ij D12

ij D13
ij

D21
ij D22

ij D23
ij

)
=

(
0.06 0.03 0.01
0.09 0.02 0.03

)
for each i and j such that the cell Chl , h, l = 1, 2, 3, belong to the neighborhood N1(i, j). As
activation and impact activations, we consider the following functions f (s) = 0.008 arctan( s

6 ),
g(s) = 0.005 tanh( s

4 ), and the continuous-impact external inputs are given by(
v11(t) v12(t) v13(t)
v21(t) v22(t) v23(t)

)
=

(
0.32Θ3(t) 0.48Θ(t)− 0.5 0.27Θ3(t)− 0.1
0.54Θ(t) 0.15Θ3(t)− 0.3 −0.49Θ(t)− 0.2

)
,(

h11k(t) h12k(t) h13k(t)
h21k(t) h22k(t) h23k(t)

)
=

(
−0.4τk + 0.03 −0.6τ3

k 0.5τk
0.2τ3

k − 0.02 0.3τk 0.1τk

)
.

The argument function γ(t) = ξk is defined by the sequence ξk = θk, k ∈ Z.
We checked that conditions (C1)–(C8) are satisfied for (18) with Kij = 2.5, Mij = 1.26 for all

i = 1, 2, j = 1, 2, 3, λ11 = −1, λ12 = −0.8, λ13 = −0.7, λ21 = −2, λ22 = −0.8, λ23 = −1.3,
L = 0.0026, M = 0.013 and H = 12. Then there exists the unique discontinuous Poisson stable
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motion x(t) of SISICNNs (18). In addition, the asymptotic stability conditions (C9)–(C10) are
valid for this solution.

One cannot simulate Poisson stable solution x(t) since it is impossible to determine the initial
value precisely. Consequently, we will consider solution ψ(t), with initial values ψ11(0) = −0.67,
ψ12(0) = −0.43, ψ13(0) = 2.56, ψ21(0) = 0.25, ψ22(0) = −8.42, ψ23(0) = 1.26. Using (15),
one can obtain that ‖ψ(t)− x(t)‖ ≤ e−1.39t‖x(t0)− ψ(t0)‖, t ≥ 0. It means that the difference
x(t)− ψ(t) is decreasing exponentially. So, the graph of ψ(t) approaches the discontinuous Poisson
stable solution x(t) of the SISCINN (18), as t increases. Then, we consider the graph of ψ(t) instead
of the curve of the Poisson-stable solution x(t). The coordinates of the function ψ(t) are shown in
Figures 2 and 3.
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Figure 2. Coordinates of ψ(t), which converges to the Poisson stable solution x(t) of the SISICNN (18).
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Figure 3. The ψ1 − ψ2 − ψ3 and ψ4 − ψ5 − ψ6 space coordinates of ψ(t), which converges to the
Poisson stable solution x(t) of the SISICNN (18).

4. Discussion

The advantages of the SISICNNs under study lie in the following factors: the impulsive
part is symmetrical to the differential equation; the inputs/outputs of the system are
Poisson-stable functions and the derivatives of the sequences of discontinuity moments are
Poisson stable; and there is a presence of a generalized piecewise constant argument.

It is known that many processes studied in applied sciences are described by differen-
tial equations. However, in many phenomena that have a sudden change in state [40–42],
the situation is completely different. The mathematical models of these processes are impul-
sive differential equations. Thus, we are to study the dynamics of continuous phenomena
with sudden interruptions. There are many weighty theoretical and practical results on
impulse differential equations [11–13,26,40–42]. Previously, many models of impulsive
neural networks were considered, where the impulsive parts are analogous to their differ-
ential parts [11–13,43]. Thus, the study of neural networks, in which the equations for the
impulses are of the same structure as differential ones have not been practically considered.
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In this paper, we have removed the deficiency. The symmetry of the model allows to study
in detail the state of the network when sharp jumps occur, which makes it possible to
explore complex models of impulsive neural networks. Note that such symmetry of the
impulsive part can be used not only for SICNNs, but also for impulse models of neural
networks of the Hopfield type, neural networks of the Cohen–Grossberg type and those of
the inertial type.

In this paper, by continuing the line of new types of oscillations for impulsive models
of neural networks, we considered the discontinuous Poisson stable motions of SISICNNs.
Poisson stable and unpredictable motions of SICNNs have been researched in several pa-
pers and books [20–25]. However, neural networks with impacts have not been considered
for Poisson stability yet.

Differential equations with piecewise constant argument [26,35,36] occupy an inter-
mediate position between ordinary and functional differential equations. There are many
significant results for neural networks, which are separately either impulsive differential
equations [11–16] and equations with generalized piecewise constant arguments [27]. In
this paper, SICNNs were investigated with both impulses and piecewise constant argument.

5. Conclusions

The paper proceeds with the research of oscillations in neural networks and considers
Poisson stability. The principal novelty is that the SICNN is symmetrical. That is, the
structure of the impulsive part is analogous to the differential equation since circuits for
electrical processes happen shortly and have to mimic those with continuous time.

The new model as well as the type of recurrence provide challenges in the analysis
of the neural networks and proving of Poisson stability. Moreover, additional complexity
in the research is caused by the discontinuous argument. Conditions for the existence of
Poisson-stable discontinuous motions of SISICNNs are obtained.

The results can be effectively used in parallel image and signal processing, pattern
recognition [3–5,7–10], and different problems of control and synchronization in determin-
istic and stochastic processes [49–51].
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Appendix A

The following assertions are needed for the main result to prove Theorem 1.

Lemma A1. Assume that condition (C4) is true, then the following inequality holds:

|uij(t + tp, s + tp)− uij(t, s)| ≤ Kije
λij(t−s), t ≥ s, (A1)

where Kij = Kij max
(
1,
∣∣bij
∣∣).

Proof. By applying (3) and (4), we have

|uij(t + tp, s + tp)− uij(t, s)| ≤
∣∣∣eλij(t−s)(1 + bij

)i([s+tp ,t+tp)) − eλij(t−s)(1 + bij
)i([s,t))

∣∣∣
≤
∣∣∣eλij(t−s)(1 + bij

)i([s,t))
∣∣∣∣∣∣(1 + bi)

|i([s+tp ,t+tp))−i([s,t))| − 1
∣∣∣ ≤ Kij max

(
1,
∣∣bij
∣∣)eλij(t−s)

for all t ≥ s, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Lemma A2. Assume that the conditions (C6), (C9) hold true and φ(t) = (φij(t)), i = 1, 2, . . . , m,
j = 1, 2, . . . , n is a piecewise continuous function with |φij(t)| < H. If y(t) = (yij(t)),
i = 1, 2, . . . , m, j = 1, 2, . . . , n is a solution of the following system

y′ij(t) = aijyij(t)− ∑
Chl∈Nr(i,j)

Chl
ij

[
f (yhl(γ(t)) + φhl(γ(t)))yij(t)

+[ f (yhl(γ(t)) + φhl(γ(t)))− f (φhl(γ(t)))]φij(t)
]
,

(A2)

then the inequality given by

|yij(γ(t))| ≤ Nij|yij(t)| (A3)

is satisfied for all t ∈ R, i = 1, 2, . . . , m j = 1, 2, . . . , n.

Proof. Fix k ∈ Z, then for t ∈ [θk, θk+1), i = 1, 2, . . . , m, j = 1, 2, . . . , n,

yij(t) = yij(ξk) +

t∫
ξk

(
aijyij(s) + ∑

Chl∈Nr(i,j)
Chl

ij

[
f (yhl(γ(s)) + φhl(γ(s)))yij(s)

+[ f (yhl(γ(s)) + φhl(γ(s)))− f (φhl(γ(s)))]φij(s)
])

ds,

and consider the cases:
(a) θk ≤ ξk ≤ t < θk+1 and (b) θk ≤ t < ξk < θk+1.
In the case (a), fof t ≥ ξk, we can write that

|yij(t)| ≤ |yij(ξk)|+
t∫

ξk

(
|aij||yij(s)|

+ ∑
Chl∈Nr(i,j)

Chl
ij

[
| f (yhl(γ(s)) + φhl(γ(s)))||yij(s)|

+| f (yhl(γ(s)) + φhl(γ(s)))− f (φhl(γ(s)))||φij(s)|
])

ds

≤ |yij(ξk)|+
t∫

ξk

(
|aij||yij(s)|+ ∑

Chl∈Nr(i,j)
Chl

ij

[
M|yij(s)|+ LH|yij(ξk)|

])
ds

≤ |yij(ξk)|
(

1 + LHθ ∑
Chl∈Nr(i,j)

Chl
ij

)
+

t∫
ξk

(
|aij|+ M ∑

Chl∈Nr(i,j)
Chl

ij

)
|yij(s)|ds
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for all i = 1, 2, . . . , m, j = 1, 2, . . . , n. If we use the Gronwall–Bellman Lemma, we obtain

|yij(t)| ≤ |yij(ξk)|
(

1 + LHθ ∑
Chl∈Nr(i,j)

Chl
ij

)
e

(
|aij |+M ∑Chl∈Nr(i,j) Chl

ij

)
θ

.

In other respects, we have that

|yij(ξk)| ≤ |yij(t)|+
t∫

ξk

(
|aij||yij(s)|+ ∑

Chl∈Nr(i,j)
Chl

ij

[
| f (yhl(γ(s)) + φhl(γ(s)))||yij(s)|

+| f (yhl(γ(s)) + φhl(γ(s)))− f (φhl(γ(s)))||φij(s)|
])

ds

≤ |yij(t)|+
t∫

ξk

(
|aij||yij(s)|+ ∑

Chl∈Nr(i,j)
Chl

ij

[
M|yij(s)|+ LH|yij(ξk)|

])
ds

≤ |yij(t)|+
t∫

ξk

[(
|aij|+ ∑

Chl∈Nr(i,j)
Chl

ij M
)
|yij(s)|+ LH ∑

Chl∈Nr(i,j)
Chl

ij |yij(ξk)|
]
ds

≤ |yij(t)|+
t∫

ξk

[(
|aij|+ M ∑

Chl∈Nr(i,j)
Chl

ij

)(
1 + LHθ ∑

Chl∈Nr(i,j)
Chl

ij

)
e

(
|aij |+M ∑Chl∈Nr(i,j) Chl

ij

)
θ

+LH ∑
Chl∈Nr(i,j)

Chl
ij

]
|yij(ξk)|ds

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n.
Therefore, condition (C10) yields that |yij(γ(t))| ≤ Nij|yij(t)|, for i = 1, 2, . . . , m,

j = 1, 2, . . . , n, t ∈ [θk, θk+1), k ∈ Z. Hence, (A3) holds for all θk ≤ ξk ≤ t < θk+1, k ∈ Z.
In the second case (b) where θk ≤ t < ξk < θk+1, k ∈ Z can be proved by using a similar
approach. Thus, the inequality (A3) holds true for all t ∈ R. The lemma is proved.
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