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Abstract

Over the last couple of years few-shot learning (FSL) has attracted great attention towards min-

imizing the dependency on labeled training examples. An inherent difficulty in FSL is the han-

dling of ambiguities resulting from having too few training samples per class. To tackle this fun-

damental challenge in FSL, we aim to train meta-learner models that can leverage prior semantic

knowledge about novel classes to guide the classifier synthesis process. In particular, we pro-

pose semantically-conditioned feature attention and sample attention mechanisms that estimate

the importance of representation dimensions and training instances. We also study the problem

of sample noise in FSL, towards the utilization of meta-learners in more realistic and imperfect

settings. Our experimental results demonstrate the effectiveness of the proposed semantic FSL

model with and without sample noise.

Keywords: Few-shot learning, vision and language integration

1. Introduction

Contemporary supervised learning approaches combined with large training datasets yield

excellent results on a variety of recognition problems. A major challenge, however, is learning

to model concepts with limited samples. Few-shot learning (FSL) [1, 2, 3, 4] techniques aim to

tackle this problem by learning to synthesize effective models based on a few examples.

A major source of motivation for studying FSL is the observation that humans, starting at

young ages, can learn new concepts with limited examples [5], [6], [7]. In addition, in most real-

world classification problems, such as object recognition [8], class distributions can be heavily
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(a) Spurious background. (b) Misleading relations.

(c) Feature ambiguity. (d) Prototypicality/noise.

Figure 1: (a) All dog instances appear in a misleadingly consistent beach background context. (b) Spuriously consistent

background-foreground relation may cause FSL models to ignore other salient features of classes. (c) It is difficult to

understand when a consistent foreground texture is informative or misleading, e.g., the Dalmatian texture is distinctive but

the Dalmatian dog class but otherwise misleading for the generic dog class. (d) Some examples can be more prototypical

than the others. A closely related problem is having sample noise in the training set.

long-tailed [9]. FSL research can be seen as the focused study of learning to recognize in the

low-data regime, which can play a central role in building semantically comprehensive and rich

models.

A variety of FSL approaches have been introduced in recent years. Most of the recent

work can be summarized as follows: metric learning based FSL [10, 11, 12, 13], generative

model based statistical data augmentation [14, 15, 16, 17, 18, 19, 20], non-generative data

augmentation [21, 22], feed-forward classifier synthesis [23, 24, 25], model initialization for

few-shot adaptation [26, 27, 28], learning-to-optimize for FSL [29] and memory-based FSL ap-

proaches [30, 31]. In addition, recent work has highlighted the importance of implementations

details in improving and evaluating FSL models, including batch normalization details [32],

feature extraction backbones [33] and pretraining strategies [34]. Variations of FSL, such as

cross-domain [35, 36, 37, 38, 39] and variable-shot [40] learning have also been introduced.

An inherent difficulty in FSL, independent of the method being used, is the ambiguity result-
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ing from having few training samples per class. Particularly, it is difficult to figure out whether

a cue that appears consistently in the limited set of examples is truly indicative. For example,

few-shot samples may contain misleadingly similar contextual information (Figure 1a), spurious

foreground-background relationships (Figure 1b), or suspiciously consistent foreground features

(Figure 1c). Similarly, some samples might actually be less prototypical [41] than the others or

completely noisy, due to a number of factors, such as background clutter, viewpoint, occlusions,

overall representativeness and sample noise (See Figure 1 for further discussion). Hence, FSL

model may overfit to incorrect features, misleading or noisy samples, or under-utilize distinctive

cues, due to the fundamental difficulty of disambiguating spurious cues from the informative

ones purely based on few examples.

To tackle these fundamental challenges in FSL, we aim to guide the meta-learner via semantic

priors, which we call semantic few-shot learning. To this end, we build meta-learning models

that can benefit from text-based semantic representations of classes of interest when synthesizing

target classifiers. For this purpose, we focus on one of the most popular metric based few-

shot learners Prototypical Networks [10] (PNs). In the context of PN formulation, we introduce

semantically-conditioned feature attention and sample attention mechanisms, towards reducing

the risk of overfitting to misleading features or samples and improving the data efficiency in

few-shot learning.

The use of semantic vector-space representations of classes, i.e., class embeddings, is promi-

nent in zero-shot learning (ZSL). Most mainstream ZSL approaches learn to estimate the de-

gree of relation between a given input (image) and a class embedding, so that previously unseen

classes can be recognized purely based on class embeddings, e.g., [42, 43, 44, 45, 18, 46, 47, 48].

In ZSL, class embeddings can be interpreted as class summaries from which valuable discrimi-

native or generative knowledge can be extracted. In our work, instead of relying purely on class

embeddings for building classification models, we aim to benefit from them in improving sample

efficiency in FSL.

The idea of jointly benefiting from class semantics in FSL has received attention only re-

cently. In [35], semantics-based class prototype priors are estimated and adaptively combined

with the data-driven class prototypes. [36] extends this model to multiple semantic information

sources. [37] aims to obtain augmented feature representations based on embedding images into

the semantic space and then decoding the sampled semantic features to obtain new samples for
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training purposes. [39] proposes to reformulate the PN loss based on task dependent similarities

measured from semantic priors to regulate the margin between classes in a task.

The prior work most related to ours is the AM3 model [35], which we use as our starting

point. While AM3 makes an important step forward by defining class semantics based models

priors, the approach does not leverage prior semantic knowledge in knowledge accumulation. To

this end, we explore the uses of semantic class knowledge in a deeper way in the following two

main ways. First, we aim to estimate the importance of provided few-shot samples for each class

by evaluating the consistency across samples and semantics. Second, we estimate per-dimension

feature importance factors for the data-driven class prototypes based on prior knowledge. Third,

we define a noisy FSL problem, where some of the support samples can be incorrectly labeled,

and evaluate the proposed approach in this setting. We believe that noise-tolerant FSL models

can have applications in variety of real-world problems, e.g., the construction of large-vocabulary

models over automatically retrieved web samples based on meta-data where top ranking items

tend to be much more coherent yet not without noise; large-scale fine-grained FSL problems

where human annotators are prone to making mistakes; and on-the-fly construction of models

from few interactively provided samples in robotic systems.

Our contributions can, therefore, be summarized as follows: (i) we propose semantics-driven

feature and sample attention mechanisms to improve FSL data efficiency in a principled way;

(ii) we define an experimental setting for noisy FSL and investigate the applicability of the pro-

posed sample attention approach to this problem; (iii) we present a detailed experimental analy-

sis towards understanding the effects and dynamics of the proposed attention mechanisms. Our

quantitative and qualitative experimental results demonstrate the effectiveness of the proposed

semantic FSL model both in clean and noisy settings.

2. Related work

In this section, we first present an overview of mainstream few-shot learning approaches. We

then present an overview of works on the recently emerging topic of semantic FSL. Finally, we

briefly discuss zero-shot learning and its relation to our work.

Few-shot learning. The most related mainstream FSL approaches can be summarized within

initialization based, metric learning based and generative model based groups. Initialization

based FSL methods aim to learn the ideal initial model such that the model can perform well
4



even when fine-tuned using just a few examples. MAML [26] is arguably the most well-known

example of this category. In MAML, the main idea is to learn the initial model that minimizes the

loss of validation samples when the initial model is fine-tuned using one or few gradient-based

updates. Several other related and follow-up works exist, such as [27, 28, 49, 29].

In metric learning based FSL, the goal is to learn a metric space where the similarity of fea-

ture representations of sample pairs can be used to classify pairs as same class/different class

pairs. One of the most well-known examples of this category is Prototypical Networks [10],

which we also use as the basis of our approach (see Section 3). Due to its simplicity and high

FSL performance, many other metric learning FSL approaches have also been introduced, e.g.,

[11, 12, 23, 24]. Despite these explorations, recent works show that a carefully tuned Proto-

typical Network can yield state-of-the-art few-shot learning results [34, 50, 51]. We adapt the

modernized PN implementation of [51] as the non-semantic FSL baseline in the construction of

our models.

Generative modeling based FSL approaches aim to learn a sample-synthesizing model, which

can be used for augmenting a few-shot training set. For example, [14] learns a mapping that can

be used to transform existing train samples into new ones, [52, 16] propose GAN [53] based

generative models towards synthesizing novel examples.

Another important research direction is learning generalizable feature representations [54,

50, 32]. The representation generalizability is a major problem in FSL as backbone networks are

utilized on novel classes at test time. [55] uses self-attention over spatial locations to improve

representations, similar to non-local networks [56], for a relation-network based FSL approach.

[57] proposes a transductive FSL approach that aims to obtain query-specific feature represen-

tations via attention mechanisms. These approaches are orthogonal to ours, as we focus on

leveraging semantic priors, in a query-independent way.

Sample noise in FSL is largely an overlooked problem. To the best of knowledge, the only

directly relevant work is the few-shot text classification approach of [58], which looks into noisy

annotations for few-shot relation classification. [58] defines query-to-support sentence and sup-

port samples driven feature-level attention mechanisms. Our work and focus fundamentally

differs as we (i) leverage prior knowledge for building conditional attention mechanisms, (ii)

estimate sample importance in a query-agnostic way, and (iii) define an experimental protocol

for studying the sample noise problem on the mainstream FSL image classification benchmarks

5



MiniImageNet [12] and TieredImageNet [59].

Semantic few-shot learning. Semantic FSL refers to an FSL problem variant where a sup-

plementary class-wise knowledge source is made available. Since such additional knowledge

often comes from a new data modality, semantic FSL is also sometimes referred to as multi-

modal FSL. There exists only a few and recent works on semantic FSL.

In a pioneering work, [35] proposes to define class prototypes as convex combinations of

average visual features and transformed semantic priors. [36] extends the approach of [35],

mainly by introducing multiple semantic priors (label, description or attribute) jointly to obtain

richer semantic information. In [37], visual features are mapped into a semantic space via an

encoder, where semantic features, belonging to the same class, can be sampled to augment visual

features via a decoder model. The approach then performs classification by using both real and

augmented features. Similarly, [18] aims to learn aligned auto-encoders with reconstruction

losses across modalities. In a more recent work, [39] uses semantic prior information with a

similarity function to obtain margin scores that are used as an additional term in a distance based

loss such as [10]. [60] uses semantic priors in addition to visual features to obtain two different

classification weights for a class. This work obtains visual feature based classification weights

by l2-normalizing support image features, averaging them per-class and learning a semantic

embedding vector that can be used as a classifier weight maximizing the inner product between

the support image based classification weights. [61] proposes a model that re-weights support

samples according to a generic weighting function and an auto-encoder that can use either class

embeddings or Gaussian noise vectors for encoding regularization. Among these models, the

most closely related one is AM3 [35], as we build our models on top of it. While nearly all

others can be considered as complementary to ours, instead of being alternatives, we provide

empirical comparisons to semantic FSL works in Section 4.

Zero Shot Learning. Zero shot learning aims to build recognition models that can handle

classes with no training examples, purely based on prior class semantic knowledge. Mainstream

ZSL approaches include learning mappings between the space of visual features and the semantic

class representations [42, 43, 44], and semantics conditional generative models [45, 18, 46, 47,

48]. In our work, we use class semantics to build attention mechanisms in the presence of few

training examples, instead of aiming to remove the need for training samples completely as in

zero-shot learning.
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3. Method

In this section, we first provide a formal definition of semantics-driven few-shot learning

and summarize the episodic training framework, which we embrace in our approach. We then

provide a summary of Prototypical Networks (PN) model [10] for few-shot learning and adap-

tive cross-modal few-shot learning (AM3) [35] model that extends PNs by utilizing semantic

knowledge to construct model priors. Finally, we present the proposed feature-attention and

sample-attention mechanisms and explain how we integrate them into the PN and AM3 models.

3.1. Problem definition and training framework

In our work, we focus on few-shot learning of image classification models. The goal is to

estimate a new classification model, for a set of target classes (C = {c1, ..., cn}), based on a

limited set of labeled training examples. In our discussion, an n-way classifier is expressed

in terms of a scoring function f(x; θ) that maps the input x ∈ X to an n-dimensional vector,

according to the model parameters θ. In a standard supervised training problem, a typical way to

estimate θ is to find the model parameters minimizing some regularized empirical loss function

on the train set.

In the case of few-shot learning, however, the main challenge is to estimate a successful

classification model based on a few training samples per class. In most practical cases, it is

fundamentally difficult to achieve generalization based on few examples, and, therefore, a model

learned by minimizing a generic empirical loss function is unlikely to perform well on novel

(test) data. To tackle this problem, the main interest in meta-learning based FSL is to learn

a meta-learner ξ(D;β) that can take a new limited set D of training examples and synthesize

the corresponding classification model parameters. β represents the trainable parameters of the

meta-learner model ξ.

Episodic training. A popular approach for training meta-learning models is episodic training.

The main idea is to construct a set or series of few-shot learning tasks and update the meta-

learning model based on the regularized empirical loss of meta-learned classification models.

More specifically, at each iteration, a new task T is created by sampling a subset CT of training

classes, and then sampling training Ds
T and validation Dq

T samples from the whole training set.

Each Ds
T consists of few-shot training samples of classes CT and is commonly referred to as the

support set. Similarly, each Dq
T consists of task-specific validation samples and is commonly
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referred to as the query set. The meta-learning, then, is achieved by minimizing the expected

empirical loss of meta-learned models over the pairs of support and query sets:

min
β

ET
[
E(x,y)∼Dq

T
[l(f(x; θ = ξ(Ds

T ;β)), y)]
]

(1)

where l(·, y) is a classification loss function for label y. θ represents the task-specific model

parameters inferred by the meta-learner ξ. No regularization term is shown for brevity.

Semantic FSL. Arguably, the main premise of meta-learning is to learn domain-specific induc-

tive biases better than what can be provided by general-purpose supervised learning formulations.

However, small-sized training sets can be inherently misleading and/or ambiguous due to spuri-

ous patterns, as previously illustrated in Figure 1. In this respect, prior knowledge about classes

can be a crucial source of information towards overcoming the limitations of few-shot training

sets. In our work, we presume that semantic knowledge about each class c is a de-dimensional

vector, represented by ψc. The meta-learner ξ, therefore, can additionally access to semantic

class embeddings during both training and testing. In the following parts, we define the base-

line and proposed meta-learner ξ variants, in terms of formulations for inferring task-specific

parameters θ from a set of support samples and semantic priors.

3.2. Semantics-driven attention mechanisms

We build our semantics-driven attention mechanisms on top of the semantic few-shot learning

model AM3, which is based on the prototypical network (PN) model. Below we first summarize

the PN and AM3 models and then present our approach in its context.

Prototypical networks and AM3. The core idea in PN is to estimate class prototypes based

on train samples provided in a task and then perform classification based on query-to-prototype

similarities. In PNs, a class prototype θPN for a class c is obtained by averaging the support

sample representations:

θPN(c) = EDs,c [φ(x)] (2)

where φ(x) is the feature embedding function parameterized by (a subset of) β that is being

trained as part of the PN model. φ(x) is ResNet12 in our experiments (see Section 4). Ds,c refers

to the subset of examples belonging to class c within a given support set. In the de facto standard

PN formulation, the classification score f for class c is given by the negative Euclidean distance

8



Sample
Attention

⨀

Few-shot training 
samples

(black footed albatros)

Class 
embedding

Feature
Attention

Semantic 
Prior

Weighted 
sum

Class 
prototype

Query 
Example

(black footed 
albatros)

Class
score

⨀

Figure 2: Summary of the proposed meta-learner (ξ), illustrating the process of a new class prototype estimation in the

5-shot setting. Arrows indicate the input dependencies across model components. Dashed lines are used to indicate

externally provided data input. Sample attention model (θSampleAtt) uses class embeddings (ψc) to assign relative impor-

tance weights to the provided support examples. Feature attention model (θFeatAtt) similarly uses class embeddings to

estimate task-specific feature dimension scaling coefficients. The final model (θCombined) is obtained by combining the

sample and feature attention driven task parameters with the semantics-only prior (θPrior). The resulting model is applied

to the test input(s).
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between the feature-space embedding of the input and the corresponding class prototype:

[f(x)]c = −‖φ(x)− θ
PN(c)‖2. (3)

The parameters β are estimated by minimizing cross entropy loss of query samples over the

episodes.

The AM3 model aims to improve the PN model by using semantic knowledge about classes

as prototype priors. More specifically, AM3 redefines a class prototype θPrior as the weighted

combination of transformed class semantic embeddings and feature averages:

θPrior(c) = αθPN(c) + (1− α)τPrior(ψc) (4)

where τPrior is a trainable transformation that maps the semantic class embeddings to the space of

class prototypes. α is the cross-validated hyper-parameter that controls the weight between the

original PN prototypes and class semantics based prototypes. τPrior is parameterized by β.

The AM3 model, therefore, can be interpreted as a way to build classification model priors

in the PN formulation. Consistent with the experimental results, such a prior is particularly

valuable in the case of one-shot learning, where the training data size is at its extreme minimum.

We propose and explore two novel ways to leverage semantic information in a more expressive

way towards tackling the inherent difficulties in few-shot learning: (i) sample attention, (ii)

feature attention. Below we provide the details of the proposed mechanisms, which act as the

components of the whole model, a scheme of which can be found in Figure 2.

Sample attention. We observe that, in the original PN model, each class prototype is defined as a

plain average of support examples. However, the information content of samples can vary greatly

due to a number of factors, including background clutter, viewpoint and occlusion. Towards

estimating the prototypicality of training samples, we introduce a sample attention mechanism

into the final model. Ultimately, we aim to build a model that can estimate the importance of

each sample based on the compatibility of samples and prior semantic information. Therefore,

we define sample attention module ηSampleAtt(x, c) as a function that computes the normalized

attention scores of a sample x ∈ Ds,c in the context of support sample set Ds,c, conditioned on

the class semantic embedding vector ψc:

ηSampleAtt(x, c) =
exp(γvis(φ(x))

>γsem(ψc))∑
x′∈Ds,c exp(γvis(φ(x′))>γsem(ψc))

(5)
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where γvis and γsem are trainable models that are used to obtain visual and semantic feature

embeddings. In our experiments, γvis and γsem are implemented as MLPs that take φ(x) and

ψc respectively and return embeddings whose inner products yield the attention scores. We note

that ηSampleAtt defines a distribution over the support samples, which we use to re-define a class

prototype:

θSampleAtt(c) = EηSampleAtt(x,c) [φ(x)] , (6)

which amounts to computing the attention-weighted average of sample features. This sample

attention mechanism also naturally handles potential sample noise in FSL, which we explore in

Section 4.

Feature attention. The motivation in feature attention is to tackle the problems resulting from

having too few examples. Overall, the goal is to enhance or attenuate certain prototype dimen-

sions as a function of semantic class embeddings. For this purpose, we introduce the feature

attention function ηFeatAtt and re-define the class prototype as follows:

θFeatAtt(c) = ηFeatAtt(ψc)� θ0(c) (7)

where θ0(c) refers to averaging based class prototypes, which can either be the vanilla PN pro-

totype (θPN) or the sample attention based prototype (θSampleAtt). � represents the Hadamard

product operator. Here, the trainable feature attention function ηFeatAtt predicts per-dimension

scaling coefficients as a function of class embeddings. The feature attention output is applied to

both the prototype and the query, resulting in the following scoring function:

[f(x)]
FeatAtt
c = −‖ηFeatAtt(ψc)� φ(x)− θFeatAtt(c)‖2. (8)

The final model. We build our final model by integrating our semantic-driven sample and fea-

ture attention mechanisms into the semantic FSL framework defined by the AM3 model. More

specifically, in the final combined attention model, we first estimate sample attention based class

prototypes θSampleAtt and then update them into θFeatAtt using the feature attention model. We

obtain the final class prototypes, which we call θCombined, by computing the α-weighted com-

bination of the attention-driven prototypes and the pure semantic embedding based prototypes

given by τPrior(ψc):

θCombined(c) = αηFeatAtt(ψc)� θSampleAtt(c) + (1− α)τPrior(ψc). (9)

The combined attention model corresponds to the scheme presented in Figure 2.
11



4. Experiments

In this section, we first explain our experimental setup and our implementation details. We

then present our main experimental results and analyses. Finally, we present and discuss our

results.

4.1. Experimental setup

Prior work [33, 32, 34] shows that implementation details, such as (batch) normalization

schemes, backbones, hyper-parameter tuning strategies and data augmentation schemes, can

make a great impact on few-shot learning results. Therefore, we systematically tune the hyper-

parameters, including learning rates, number of iterations, and dropout rates on the validation

sets for all results that we report based on our own implementation. Below we provide additional

details regarding our experimental setup and our efforts to make fair comparisons.

Datasets. We evaluate our model on the MiniImageNet [12] and TieredImageNet [59] datasets.

The MiniImageNet dataset is a subset of ImageNet dataset [62] with 100 classes and 600 images

per class. We use the split of [29] for MiniImageNet where the 64, 16 and 20 classes are used

as the train, validation and test subsets, respectively. TieredImageNet is a separate benchmark

based on [62], with 351, 97, 160 classes for training, validation and testing, respectively. In

all our experiments, we use Glove [63] vectors of class names to extract semantic embeddings.

Following [35], we use the Common Crawl version trained on 840B tokens with 300 dimensional

embeddings.

Evaluation. We report our test set results over 10000 random tasks and report the average accu-

racy and 95% confidence interval scores. In all k-shot experiments, we use 15 query examples

for each of the n classes in an episode. We execute all of our experiments using the same batch

structure for consistency across the experiments.

Backbone architecture. In all models we use the same ResNet-12 architecture as the feature

extraction backbone. We use Batch Normalization [64] only in backbone layers, using the eval

mode [65] for meta-testing to avoid accidental transductive setting, which is known to potentially

result in misleadingly better few-shot learning results [32].

Backbone pretraining. Following [51] we use supervised pretraining for ResNet-12 backbone

and the exact details can be found in [51]. After the pretraining we employ a two-staged training

12



approach. In the first stage we train everything except the backbone with learning rate 0.1,

momentum 0.9 and weight decay of 0.0005 for 200 epochs for MiniImageNet and 50 epochs for

TieredImageNet where an epoch contains 100 episodes. After every epoch we validate our results

by using 600 episodes for both MiniImageNet and TieredImageNet. After we complete the 200

epochs and 50 epochs for MiniImageNet and TieredImageNet respectively we train the whole

model end to end for another 200 epochs. In the second stage the learning rate for backbone is

selected to be 0.002 and 0.02 for the rest of the network. After every 40 epoch we halve the

learning rates. We use SGD as optimizer for every model and experiment.

PN implementation. Our code base is built upon the PN implementation of [51]. For a fair

comparison, therefore, we report the results that we obtain for PN and [51] using the publicly

available official source codes for [51]. Similar to [54], we use distance scaling and found that

it is better to divide the distances by 32 for MiniImageNet and 16 for TieredImageNet based on

the validation results.

AM3 implementation. In our re-implementation of AM3 [35], we have obtained the highest

validation accuracy scores using 0.4 as the dropout rate for the fully-connected (FC) layers, on

both MiniImageNet and TieredImageNet datasets. In the proposed model, we use 2 FC layers

to encode the visual and semantic information for the sample attention module. These FC layers

have the structure of FC-Dropout-ReLU-FC and the dimensions are reduced to 32. The dropout

probabilities are selected to be 0.2 and 0.6 for visual and semantic branches respectively by using

the validation sets. For feature attention module we use 2-layer FC module with the structure of

FC-Softmax-FC and the dimensionality is first reduced to 32 and then increased to the feature

dimensionality, which is 640 for ResNet-12. Finally, we also add the semantic prototype branch

of AM3 [35] exactly as it is with the only difference of keeping the α a fixed hyper-parameter

based on the validation set instead of predicting it from the semantic prior. We utilize the same

Euclidean scaling in AM3 as in PN to obtain fair results. Overall, our implementation signifi-

cantly improves the performance of the baseline AM3 model, compared to the scores originally

reported in [35].

Source code. Training of our final model takes approximately 4 hours on a single V100 GPU.

We are committed to making the PyTorch implementation of our approach publicly available

upon publication.
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4.2. Main results

In this section, we present our main results, ablative studies and experimental analysis of the

proposed model on few-shot learning benchmarks. We then present a comparison to state-of-the-

art approaches. Finally, we evaluate the approach on the more challenging 10-way and 15-way

few-shot learning setups.

Baselines. Table 1 presents our main results for 1-shot or 5-shot, 5-way classification, includ-

ing baselines that are carefully tuned in the same way to make fair comparisons. First of all,

we validate our PN and AM3 baselines. For this purpose, we compare our PN and AM3 re-

sults (lower part) to the results reported in the original AM3 work [35] (upper part of Table 1).

Overall, our results for both baselines are significantly better than the originally reported ones.

Noticeably, our PN results on MiniImageNet are higher for nearly 7 and 4 points in 1-shot and

5-shot cases, respectively. Similarly, our AM3 results are higher for nearly 4 and 5 points in

1-shot and 5-shot cases, respectively. We observe even larger improvements for both baselines

on TieredImageNet. These results re-highlight the importance of implementation details in FSL

and validate the strength of our main baselines. A major factor in obtaining strong baselines is

backbone pretraining, for which we present additional results in the context of our work later in

this section.

Main results and ablative experiments. The very last row of Table 1 contains our main results

using the final combined attention models. The preceding lines present the results for the ablated

versions of the model with only sample attention or only feature attention based AM3 extensions.

We note that in the case of 1-shot learning, sample attention has no difference by definition.

From the results, first, we observe that sample attention in the case of 5-shot learning slightly

degrades by 0.3 points on MiniImageNet but improves on TieredImageNet by nearly 0.5 points.

Second, feature attention improves the AM3 model by approximately 2 points for 1-shot and

slightly degrades by 0.5 points for 5-shot on MiniImageNet. We observe similar patterns on

TieredImageNet.

Looking into the final combined attention model results in Table 1, we observe consistent

improvements in all cases. The proposed combined attention improves 1-shot learning from

63.62 (PN) and 67.55 (AM3) to 69.76 on MiniImageNet. Similarly, 5-shot results improve from

78.37 (PN) and 80.22 (AM3) to 81.19. We observe similar improvements on TieredImageNet:

1-shot results improve from 67.58 (PN) and 72.60 (AM3) to 72.69, and 5-shot results improve
14



Table 1: Evaluation of our sample-attention, feature-attention and combined-attention models with comparisons to our

implementations of PN and AM3, in the 5-way classification setting.

MiniImageNet TieredImageNet

Model 1-Shot 5-Shot 1-Shot 5-Shot

Results from [35] (ResNet-12 backbone)

PN [10] 56.52 ± 0.45 74.28 ± 0.20 58.47 ± 0.64 78.41 ± 0.41

AM3 [35] 65.21 ± 0.30 75.20 ± 0.27 67.23 ± 0.34 78.95 ± 0.22

Our implementation (ResNet-12 backbone)

PN [10] 63.62 ± 0.23 78.37 ± 0.21 67.58 ± 0.22 84.71 ± 0.17

AM3 [35] 67.55 ± 0.24 80.22 ± 0.18 72.60 ± 0.21 84.59 ± 0.18

Sample attention (ours) 67.55 ± 0.24 79.93 ± 0.17 72.60 ± 0.21 85.02 ± 0.16

Feature attention (ours) 69.76 ± 0.21 79.84 ± 0.15 72.69 ± 0.20 84.24 ± 0.16

Combined (ours) 69.76 ± 0.21 81.19 ± 0.18 72.69 ± 0.20 85.29 ± 0.17

Table 2: Comparison of PN and Our approach with and without pretraining of the ResNet-12 backbone on MiniImageNet.

MiniImageNet

Model 1-Shot Val 1-Shot Test 5-Shot Val 5-Shot Test

PN w/o Pretraining [10] 43.43 ± 0.67 43.70 ± 0.24 71.90 ± 0.66 69.67 ± 0.22

Ours w/o Pretraining 64.55 ± 0.70 61.57 ± 0.23 72.46 ± 0.68 68.78 ± 0.19

PN with Pretraining [10] 68.73 ± 0.68 63.62 ± 0.20 80.88 ± 0.67 78.37 ± 0.22

Ours with Pretraining 76.44 ± 0.65 69.76 ± 0.21 85.02 ± 0.65 81.19 ± 0.18

from 84.71 (PN) and 84.59 (AM3) to 85.29.

Noticeably for 5-shot learning on TieredImageNet, the performance gaps between PN, AM3

and our semantic FSL models are relatively smaller, compared to those on MiniImageNet. This

can be due to the fact that the backbone is pretrained with a more diverse training set, which is

likely to yield better feature representations, make few-shot inference tasks less challenging and

reduce the need for leveraging semantic priors. Consistently, we also observe that FSL models

typically yield higher results on the test set of TieredImageNet, in comparison to MiniImageNet.

Importance of backbone pretraining. In Table 2 we inspect how pretraining and backbone

quality affects the few-shot learning performance. Here we use both PN and our approach to

see the effect in both uni-modal and multi-modal approaches. Models without pretraining are

trained in an end-to-end fashion. In order to create a fair comparison, we train the models by

using the same number of epochs in both cases. All of the models are trained for 400 epochs

and the results reported based on best validation score. As can be seen from Table 2, model
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Table 3: Few-shot classification accuracy on the test set of MiniImageNet for uni-modal (non-semantic) and multi-modal

FSL approaches. * indicates our own implementation.

MiniImageNet

Model Backbone 1-Shot 5-Shot

Uni-modal few-shot learning baselines

Prototypical Networks* [10] ResNet-12 63.62 ± 0.23 78.37 ± 0.21

Matching Networks [12] ResNet-18 52.91 ± 0.91 68.88 ± 0.69

Relation Net [66] ResNet-18 52.48 ± 0.86 69.83 ± 0.68

MAML [26] ResNet-18 49.61 ± 0.92 65.72 ± 0.77

LogReg [33] ResNet-18 51.75 ± 0.80 74.27 ± 0.63

LogReg Cosine [33] ResNet-18 51.87 ± 0.77 75.68 ± 0.63

SARN [55] Conv-4 51.62 ± 0.31 66.16 ± 0.51

TADAM [54] ResNet-12 58.56 ± 0.39 76.65 ± 0.35

STANet [57] ResNet-12 58.35 ± 0.57 71.07 ± 0.39

SimpleShot [67] ResNet-18 62.85 ± 0.20 80.02 ± 0.14

MetaOptNet [68] ResNet-12 62.64 ± 0.61 78.63 ± 0.46

LEO [28] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12

FEAT* [51] ResNet-12 65.38 ± 0.20 77.79 ± 0.15

Multi-modal few-shot learning baselines

KTN [60] Conv-128 64.42 ± 0.72 74.16 ± 0.56

RIN [61] ResNet-12 56.92 ± 0.81 75.62 ± 0.62

TriNet [37] ResNet-18 58.12 ± 1.37 76.92 ± 0.69

ACAM [69] ResNet-12 66.43 ± 0.57 75.74 ± 0.48

Baby steps [36] ResNet-10 67.2 74.8

AM3 + TRAML [39] ResNet-12 67.10 ± 0.52 79.54 ± 0.60

AM3* [35] ResNet-12 67.55 ± 0.24 80.22 ± 0.18

Ours ResNet-12 69.76 ± 0.21 81.19 ± 0.18

pretraining improves both approaches very significantly, and is crucial for achieving state-of-

the-art performance. An interesting result is the comparison of PN and our approach for the

1-shot setting without pretraining since it highlights the significance of semantic information

when the backbone quality and/or visual feature quality is low. As the backbone becomes better

with pretraining the gap becomes smaller.

Comparison to the state-of-the-art. Although comparing classification results across models

with different implementation details is particularly problematic in few-shot learning as previ-

ously stated, it is still of interest to show how well our results are in general, compared to the

relevant state-of-the-art methods. Table 3 and Table 4 present the results of FSL methods (upper
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Table 4: Few-shot classification accuracy on the test set of TieredImageNet for uni-modal (non-semantic) and multi-

modal FSL approaches. * indicates our own implementation.

TieredImageNet

Model Backbone 1-Shot 5-Shot

Uni-modal few-shot learning baselines

Prototypical Networks* [10] ResNet-12 67.58 ± 0.22 84.71 ± 0.19

Relation Net [66] ResNet-12 54.48 ± 0.93 71.32 ± 0.78

MAML [26] ResNet-12 51.67 ± 1.81 70.30 ± 0.08

MetaOptNet [68] ResNet-12 65.99 ± 0.72 81.56 ± 0.63

SimpleShot [67] ResNet-18 69.09 ± 0.22 84.58 ± 0.16

LEO [28] ResNet-12 66.33 ± 0.05 81.44 ± 0.09

FEAT* [51] ResNet-12 70.53 ± 0.22 84.71 ± 0.15

Multi-modal few-shot learning baselines

ACAM [69] ResNet-12 67.89 ± 0.69 79.23 ± 0.52

AM3* [35] ResNet-12 72.60 ± 0.21 84.59 ± 0.15

Ours ResNet-12 72.69 ± 0.21 85.24 ± 0.16

half) and semantic FSL methods (lower half), on MiniImageNet and TieredImageNet datasets

respectively. First, we observe that our modernized PN baselines are strong baselines, outper-

forming many other more recently proposed approaches. Second, our final model outperforms

all methods in FSL and semantic FSL categories on both MiniImageNet and TieredImageNet

datasets. Not surprisingly, the most significant improvements are observed in the 1-shot settings

on both datasets in comparison to the uni-modal (non-semantic) approaches since a single train-

ing sample is often insufficient and semantic prior becomes most valuable in this setting. Overall,

the results highlight the value of semantic priming for few-shot learning.

10-way and 15-way few-shot learning. In Table 5 and Table 6, we compare PN, AM3 and

the proposed approach for the more challenging 10-way and 15-way settings, respectively. As

expected, the performances of all models decrease as the way count increases, especially in

comparison to the commonly studied 5-way setting. Our model outperforms both PN and AM3 in

the 1-shot setting, in both 10-way and 15-way experiments and the performance margin between

those models increases. In the 5-shot setting, although our approach obtains nearly 1% better

accuracy on validation sets, it falls 0.5 points behind AM3 on test sets. This points to a less

than ideal correlation between the validation and test set performances. This is likely to degrade

as the way count increases with a fixed sized validation (or test) set, since the overlap across
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Table 5: Evaluation of 10-way few-shot classification on MiniImageNet.

MiniImageNet (10-way)

Model 1-Shot Val 1-Shot Test 5-Shot Val 5-Shot Test

PN [10] 53.61 ± 0.60 46.04 ± 0.13 70.30 ± 0.39 66.03 ± 0.10

AM3 [35] 61.46 ± 0.55 51.37 ± 0.12 72.92 ± 0.43 67.51 ± 0.10
Ours 62.63 ± 0.50 52.22 ± 0.12 73.76 ± 0.41 67.36 ± 0.10

Table 6: Evaluation of 15-way few-shot classification on MiniImageNet.

MiniImageNet (15-way)

Model 1-Shot Val 1-Shot Test 5-Shot Val 5-Shot Test

PN [10] 45.64 ± 0.43 37.42 ± 0.10 63.47 ± 0.28 58.40 ± 0.08

AM3 [35] 49.23 ± 0.44 39.10 ± 0.10 66.06 ± 0.30 60.27 ± 0.08
Ours 55.24 ± 0.35 43.54 ± 0.09 66.91 ± 0.28 59.72 ±0.08

tasks increase and the variance across tasks reduce with larger way settings, reducing the overall

richness and reliability of the evaluation.

4.3. Few-shot learning with noisy samples

While the problem of having support sample noise is not a commonly studied problem in

FSL, possibly due to the presumption that few samples are likely to be correct, there can be var-

ious real-world scenarios where few-shot learner needs to operate over noisy support examples,

e.g., learning in robotic systems through visual demonstration or through on-the-fly crawled sam-

ples of a desired class. In this sense, FSL techniques can be interpreted in a broader context as

fundamental learning mechanisms as parts of approaches tackling noisy supervision problems.

In addition, the support sample noise setting also provides a challenging experimental setup for

understanding the effectiveness of the proposed sample attention mechanism.

In our sample noise experiments, we focus on the 5-shot 5-way setting on MiniImageNet. We

artificially introduce noise into the support batches during training and testing using the following

procedure: for each class in a task, we guarantee the existence of at least three correctly labeled

support examples. With 50% probability, we apply label noise to the remaining samples by

randomly permuting their class labels, resulting in up to two noisy samples per class, per task.

We note that such within-task label noise is more challenging and practically more relevant than
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Table 7: Evaluation of sample attention for handling noisy support samples.

Method 5-way 5-Shot Acc.

PN [10] 62.61 +- 0.22

Only Sample Attention 70.48 +- 0.20

0.16 0.15 0.27 0.21 0.20

0.16 0.19 0.26 0.26 0.13

0.11 0.11 0.10 0.33 0.35

0.17 0.20 0.22 0.22 0.19

Figure 3: Sample attention examples for clean (top two rows) and noisy (lower two rows) support sample settings. Yellow

dashed lines represent the noisy samples. Numbers indicate attention scores.

having completely irrelevant support samples, as irrelevant samples are less likely to cause cross-

class confusion in the few-shot classification results. To evaluate sample attention in an isolated

manner, we use sample attention directly on top of PN in these experiments.

We report the results in Table 7. We observe a large performance margin of approximately

7.8 points between the baseline (62.61) and noise-aware sample attention (70.48). This strongly

suggests the ability of sample attention to utilize semantic priors for selecting the most infor-

mative support samples. To better understand how sample attention improves the results here,

we also provide qualitative results both with and without noise in support samples, in Figure 3.

Each image 5-tuple corresponds to a 5-shot support set of a class. For comparison, we present

the sample attention results from both the clean support settings (the upper two rows) and the

noisy support settings (the lower two rows). The dashed borders indicate noisy samples and the

numbers indicate the resulting attention values. In the the top-most example, we observe that the
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Figure 4: Distribution of sample attention weights for noisy and clean support samples.

model puts higher attention scores to support examples where the target lion is most recogniz-

able, and estimates significantly lower attention to the images where the lion is small (the first

example in the row) or pretty much unrecognizable (the second one). Similarly in the second

row, we observe that the model attends more strongly to the support samples where the target ant

instances are clearly recognizable. The example on the third row shows that the model estimates

a low attention score to the noisy (the first one in the row) and cluttered (the second and third

examples for the class) inputs for the target king crab classes. The fourth row shows an example

where the attention to the noisy sample is comparable to the correct ones, due to the similarity

across the noisy dalmatian dog sample and the target African wild dog class.

Sample attention distributions. The quantitative and qualitative examples highlight that sample

the proposed attention mechanisms is able to leverage semantics to a large extend in prioritizing

the training samples, but it can also unsurprisingly make (relative) mistakes due to variety of

reasons. To understand the correctness of the attention estimates in a quantitative manner, beyond

the accuracy values, we present the distribution of the attention score estimates for clean and

noisy samples in Figure 4. Each histogram bin corresponds to an attention score range, and

the shown frequencies are obtained over 100 randomly sampled 5-way, 5-shot tasks with noisy

support batches. In these two distributions, we make the following observations: (i) attention

scores given to noisy samples tend to be lower, especially where lower than 0.10 attention values

are assigned almost exclusively to noisy samples, (ii) noise detection has room for improvement,

as the assignment of relatively higher attention scores to noise samples is not rare, and (iii) the

learned importance estimator works in a non-degenerative way where attention scores vary from
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almost-zero values to 0.35 and above values.

5. Conclusions

In this paper, we propose an approach for leveraging semantic prior knowledge in few-shot

learning of classifiers. The main motivation of our approach is to utilize semantic prior knowl-

edge about classes to estimate importance of support samples and representation dimensions.

Our method performs well against not only the approaches that use only visual data but also

the ones that use additional semantic information. The performance gains are more prominent

in lower shot settings where the need for auxiliary semantic information is typically higher. We

also study the case of sample noise in support sets. We also study the approach in a noisy FSL

setting, where some of the few-shot support samples are stochastically corrupted. While we

focus on a single semantic modality throughout our experiments, we believe that incorporating

multiple modalities, as in [36], and integration into a generative FSL model based approach, as

in [37], are promising future work directions.
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