
EVENT DETECTION VIA TRACKING THE CHANGE IN COMMUNITY
STRUCTURE, COMMUNICATION TRENDS, AND GRAPH EMBEDDINGS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

RIZA AKTUNÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

NOVEMBER 2022

Approval of the thesis:

EVENT DETECTION VIA TRACKING THE CHANGE IN COMMUNITY
STRUCTURE, COMMUNICATION TRENDS, AND GRAPH EMBEDDINGS

submitted by RIZA AKTUNÇ in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Pınar Karagöz
Supervisor, Computer Engineering, METU

Prof. Dr. İsmail Hakkı Toroslu
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Tolga Can
Computer Science, Colorado School of Mines

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Computer Engineering, METU

Assoc. Prof. Dr. Mehmet Tan
Artificial Intelligence Engineering, TOBB ETU

Assoc. Prof. Dr. Lale Özkahya
Computer Engineering, Hacettepe University

Date: 04.11.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Rıza Aktunç

Signature :

iv

ABSTRACT

EVENT DETECTION VIA TRACKING THE CHANGE IN COMMUNITY
STRUCTURE, COMMUNICATION TRENDS, AND GRAPH EMBEDDINGS

Aktunç, Rıza

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Pınar Karagöz

Co-Supervisor: Prof. Dr. İsmail Hakkı Toroslu

November 2022, 124 pages

Event detection is a popular research problem aiming to detect events from various

data sources, such as climate records, traffic data, news texts, social media postings

or social interaction patterns. In this work, event detection is studied on social inter-

action and communication data via tracking changes in community structure, commu-

nication trends, and graph embeddings. With this aim, various community structure,

communication trend, and graph embedding based event detection methods are pro-

posed. Additionally, a new strategy called community size range based change track-

ing is presented such that the proposed algorithms can focus on communities with

different size ranges, and considerable time efficiency can be obtained. The event

detection performance of the proposed methods are analyzed using a set of real world

and benchmark data sets in comparison to previous solutions in the literature. The ex-

periments show that the proposed methods have higher event detection accuracy than

the baseline methods. Additionally their scalability is presented through analysis by

using high volume of communication data. Among the proposed methods, CN-NEW,

which is a community structure based method, performs the best on the overall. The

v

proposed communication trend based methods perform better mostly on communi-

cation data sets (such as CDR), whereas community structure based methods tend

to perform better on social media-based data sets. The proposed graph embedding

based methods have the potential to produce higher accuracy values with generally

low execution times on small communication data sets.

Keywords: Event detection, community detection, temporal network, network fea-

tures, change tracking, community structure, communication trend, graph embed-

ding, ensemble model

vi

ÖZ

TOPLULUK YAPISINDAKİ, İLETİŞİM TRENDLERİNDEKİ VE ÇİZGE
TEMSİLLERİNDEKİ DEĞİŞİKLİĞİ İZLEME YOLUYLA OLAY TESPİTİ

Aktunç, Rıza

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Pınar Karagöz

Ortak Tez Yöneticisi: Prof. Dr. İsmail Hakkı Toroslu

Kasım 2022 , 124 sayfa

Olay tespiti, iklim kayıtları, trafik verileri, haber metinleri, sosyal medya gönderileri

veya sosyal etkileşim kalıpları gibi çeşitli veri kaynaklarından olayları tespit etmeyi

amaçlayan popüler bir araştırma problemidir. Bu çalışmada, topluluk yapısındaki, ile-

tişim eğilimlerindeki ve çizge temsillerindeki değişiklikleri izleyerek olay tespiti ya-

pılması amaçlanmıştır. Bu amaçla, çeşitli topluluk yapısı, iletişim eğilimi ve çizge

temsili tabanlı olay tespit yöntemleri önerilmiştir. Ek olarak, önerilen algoritmaların

farklı büyüklük aralıklarına sahip topluluklara odaklanabilmesi ve önemli ölçüde za-

man verimliliği elde edilebilmesi için topluluk büyüklük aralığına dayalı değişiklik

izleme adı verilen yeni bir strateji sunulmaktadır. Önerilen yöntemlerin olay algı-

lama performansı, literatürdeki önceki çözümlere kıyasla bir dizi gerçek dünya ve kı-

yaslama veri seti kullanılarak analiz edilmiştir. Deneyler, önerilen yöntemlerin temel

yöntemlerden daha yüksek olay algılama doğruluğuna sahip olduğunu göstermekte-

dir. Ayrıca ölçeklenebilirlikleri, yüksek hacimli iletişim verileri kullanılarak analiz

edilmiş ve sunulmuştur. Önerilen yöntemler arasında topluluk yapısı temelli bir yön-

vii

tem olan CN-NEW genel olarak en iyi performansı göstermektedir. Önerilen iletişim

trendine dayalı yöntemler, çoğunlukla iletişim veri setlerinde (CDR gibi) daha iyi

performans gösterirken, topluluk yapısına dayalı yöntemler sosyal medya tabanlı veri

setlerinde daha iyi performans gösterme eğilimindedir. Önerilen çizge temsili tabanlı

yöntemler, genellikle düşük yürütme sürelerine ve küçük iletişim veri kümelerinde

daha yüksek doğruluk değerleri üretme potansiyeline sahiptir.

Anahtar Kelimeler: Olay algılama, topluluk algılama, zaman dizili ağ, ağ özellikleri,

değişiklik izleme, topluluk yapısı, iletişim eğilimi, çizge temsili, karma model

viii

In dedication to my creator, Allah the Almighty, and my great teacher/messenger,

the holy Prophet Muhammad (may Allah bless and grant him)

ix

ACKNOWLEDGMENTS

In the name of Allah, the most gracious and the most merciful.

All praises to Allah and his blessing for the completion of this thesis. I thank god

for all the opportunities, trials and strength that have been showered on me to finish

writing the thesis. My humblest gratitude to the holy Prophet Muhammad (peace be

upon him) whose way of life has been a continuous guidance for me.

I would like to sincerely thank my supervisors Prof. Dr. Pinar Karagoz and Ismail

Hakki Toroslu for their guidance, understanding, and patience. They have been in-

credible mentors to me in this journey and kept me on the road. It has been a great

pleasure and honour to have them as my supervisors.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xix

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

2 RELATED WORK . 7

3 PRELIMINARIES . 13

3.1 Basic Definitions . 13

3.2 Community Detection . 16

3.2.1 dSLM: Dynamic Modularity Optimizer 16

3.2.2 InfoMap: Map Equation Optimizer 17

3.3 Graph Embedding . 18

3.4 Distance Metrics on Vectors . 20

4 PROPOSED EVENT DETECTION METHODS 23

xi

4.1 Overall Architecture and Pipeline 24

4.1.1 Pre-processing & Graph Generation 24

4.1.2 Community Detection . 24

4.1.3 Event Detection . 24

4.2 Pre-processing & Graph Generation 25

4.3 Event Detection Methods by Tracking the Change in the Community
Structures . 26

4.3.1 Tracking the Change in the Number of Communities 26

4.3.2 Tracking the Change in the Central Nodes 27

4.3.3 Tracking the Change in the Community Members 29

4.3.4 Early Ensemble Strategies . 30

4.3.4.1 Combining the Variations of the Change Tracking in
the Number of Communities 30

4.3.4.2 Combining the Change Tracking in the Number of Com-
munities and the Change Tracking in the Central Nodes 32

4.3.5 Improved Ensemble Strategies 33

4.3.5.1 Ensemble of Tracking the Change in the Number of
Communities Method with Different Bucket Variations . 33

4.3.5.2 Ensemble of Tracking the Change in the Number of
Communities and Tracking the Change in the Central
Nodes . 33

4.4 Event Detection Methods by Tracking the Change in the Communi-
cation Trends . 34

4.5 Event Detection Methods by Tracking the Change in the Graph Em-
beddings . 35

5 EXPERIMENTS ON EVENT DETECTION PERFORMANCE 39

5.1 Data Sets & Ground Truths . 39

xii

5.2 Early Experiments of Community Structure Based Methods with RM
Data Sets . 42

5.2.1 Experiments on Basic Methods 43

5.2.2 Experiments on Ensemble Methods 48

5.2.3 Experiments on Scalability 53

5.2.4 Overview & Discussion . 54

5.3 Broad Experiments of Community Structure and Communication Trend
Based Methods with All Data Sets 56

5.3.1 Event Detection Performance of the Methods under the Basic
Settings . 57

5.3.2 Event Detection Performance of the Ensemble Methods under
the Basic Settings . 59

5.3.3 Analysis on the Effect of Bucket Sizes 63

5.3.4 Analysis on the Effect of Time Resolution 63

5.3.5 Analysis on the Effect of Community Change Comparison
Method . 65

5.3.6 Analysis on the Running Time Performance 66

5.3.7 Comparison with Baseline Studies 67

5.3.8 Overview & Discussion . 69

5.3.8.1 Overall Winners . 71

5.3.8.2 Contributions to Community Structure Based Event De-
tection . 71

5.3.8.3 Contributions to Communication Trend Based Event
Detection . 72

5.3.8.4 Comparison with Graph Feature Based Event Detection 73

5.3.8.5 Data Set based Analysis and Discussion 73

5.4 Experiments of Graph Embedding Based Methods with All Data Sets 74

xiii

5.4.1 Experiments on Big Data Sets: TGSM, BBR 75

5.4.2 Experiments on Small Data Sets: BCS, CS, ENRON, RMS,
RMV . 75

5.4.3 Overview & Discussion . 80

6 CONCLUSION . 83

REFERENCES . 87

APPENDICES . 93

A DETAILED EXPERIMENTS EXPLANATION FOCUSING PER DATA SET 95

B DETAILED EXPERIMENTS ON ENRON DATA SETS 97

C DETAILED EXPERIMENTS ON BBM/BBR DATA SETS 105

D DETAILED EXPERIMENTS ON RM DATA SETS 107

E DETAILED EXPERIMENTS ON TGSM DATA SETS 113

CURRICULUM VITAE . 123

xiv

LIST OF TABLES

TABLES

Table 5.1 Enron ground truth events . 40

Table 5.2 Change in # of Communities on Weighted Net. (Initial Partitioning) 43

Table 5.3 Change in # of Communities on Weighted Net. (Improved Parti-

tioning) . 44

Table 5.4 Change in # of Communities on Unweighted Net. (Initial Partitioning) 45

Table 5.5 Change in # of Communities on Unweighted Net. (Improved Parti-

tioning) . 46

Table 5.6 Change in the Central Nodes on Weighted Net. 47

Table 5.7 Change in the Central Nodes on Unweighted Net. 47

Table 5.8 Change in the Community Members 48

Table 5.9 Ensemble # of Communities on Weighted Net. 49

Table 5.10 Ensemble # of Communities on Unweighted Net. 50

Table 5.11 Ensemble # of Communities and Central Nodes on Weighted Net. . 51

Table 5.12 Ensemble # of Communities and Central Nodes on Unweighted Net. 52

Table 5.13 Data Set Scalability Performance Analysis 53

Table 5.14 Abbreviations for the basic methods 57

Table 5.15 Evaluation on Basic Methods (In Average Precision) 58

xv

Table 5.16 Evaluation on Basic Methods: RM data sets (In Average Precision) . 58

Table 5.17 Evaluation on Basic Methods: TGSM data set (In Average Precision) 58

Table 5.18 Abbreviations for the ensemble methods 59

Table 5.19 Evaluation on Ensemble Methods (In Average Precision) 60

Table 5.20 Evaluation on Ensemble Methods: RM (In Average Precision) . . . 61

Table 5.21 Evaluation on Ensemble Methods: TGSM (In Average Precision) . . 62

Table 5.22 Evaluation on Basic Methods: Bucket Size Effect (CDR data sets)

(In Average Precision) . 64

Table 5.23 Evaluation on Basic Methods: Bucket Size Effect (Social media

data sets) (In Average Precision) . 64

Table 5.24 Evaluation on Basic Methods: Resolution Effect (In Average Preci-

sion) . 65

Table 5.25 Evaluation on Basic Methods: SD Effect (In Average Precision) . . 66

Table 5.26 Evaluation on Basic Methods: Run Times (In Seconds) 66

Table 5.27 Evaluation on Basic Methods: Run Times: TGSM data sets (In

Seconds) . 67

Table 5.28 Execution times of TGSM Experiments (7 basic, 2 ensemble methods) 68

Table 5.29 Evaluation of Methods in [1] (In Average Precision) 69

Table 5.30 The Overview of the Best Results: Method (In Average Precision) . 70

Table 5.31 The Overview of the Best Results: Bucket (In Average Precision) . . 70

Table 5.32 Evaluation on Graph2Vec Method: TGSM and BBR Data Sets (In

Avp.) . 75

Table 5.33 Evaluation on Graph Embedding Methods: Bray-Curtis Distance

(In Avp.) . 76

xvi

Table 5.34 Evaluation on Graph Embedding Methods: Canberra Distance (In

Avp.) . 76

Table 5.35 Evaluation on Graph Embedding Methods: Chebyshev Distance (In

Avp.) . 77

Table 5.36 Evaluation on Graph Embedding Methods: Cityblock Distance (In

Avp.) . 77

Table 5.37 Evaluation on Graph Embedding Methods: Correlation Distance (In

Avp.) . 77

Table 5.38 Evaluation on Graph Embedding Methods: Cosine Distance (In Avp.) 78

Table 5.39 Evaluation on Graph Embedding Methods: Euclidian Distance (In

Avp.) . 78

Table 5.40 Evaluation on Graph Embedding Methods: Minkowski Distance

(Parameter p is set as 1) (In Avp.) . 79

Table 5.41 Evaluation on Graph Embedding Methods: Run Times (In Seconds) 79

Table A.1 Abbreviations for all the methods that are experimented 96

Table B.1 Evaluation on Enron Data Sets (Res: 1 Week) 97

Table B.2 Evaluation on Enron Data Sets (Res: 2 Weeks) 98

Table B.3 Evaluation on Enron Data Sets (Res: 3 Weeks) 99

Table B.4 Evaluation on Enron Data Sets (Res: 4 Weeks) 100

Table B.5 Evaluation on Enron Data Sets (Res: 5 Weeks) 101

Table B.6 Evaluation on Enron Data Sets (Res: 6 Weeks) 102

Table B.7 Evaluation on Enron Data Sets (Res: 7 Weeks) 103

Table C.1 Evaluation on Boston Bombing Mention Data Set 105

xvii

Table C.2 Evaluation on Boston Bombing Retweet Data Set 106

Table D.1 Evaluation on Reality Mining SMS Directed Weighted Data Set . . 107

Table D.2 Evaluation on Reality Mining SMS Directed Unweighted Data Set . 108

Table D.3 Evaluation on Reality Mining SMS Undirected Weighted Data Set . 109

Table D.4 Evaluation on Reality Mining Voice Directed Weighted Data Set . . 110

Table D.5 Evaluation on Reality Mining Voice Directed Unweighted Data Set . 111

Table D.6 Evaluation on Reality Mining Voice Undirected Weighted Data Set . 112

Table E.1 Evaluation on TGSM Data Set (Res: 1 Day) 113

Table E.2 Evaluation on TGSM Data Set (Res: 2 Days) 114

Table E.3 Evaluation on TGSM Data Set (Res: 3 Days) 115

Table E.4 Evaluation on BCS Data Set (Res: 1 Day) 116

Table E.5 Evaluation on BCS Data Set (Res: 2 Days) 117

Table E.6 Evaluation on BCS Data Set (Res: 3 Days) 118

Table E.7 Evaluation on CS Data Set (Res: 1 Day) 119

Table E.8 Evaluation on CS Data Set (Res: 2 Days) 120

Table E.9 Evaluation on CS Data Set (Res: 3 Days) 121

xviii

LIST OF FIGURES

FIGURES

Figure 4.1 The Overview of the Method 23

Figure 5.1 Illustration of Big Central Square and Central Squares subsets

of Turkish GSM Operator data set . 42

Figure 5.2 Weighted Graph: Exec. Time/Data Set Size 54

Figure 5.3 Unweighted Graph: Exec. Time/Data Set Size 54

Figure 5.4 Data Matrix to summarize data set based analysis 73

xix

LIST OF ABBREVIATIONS

SLM Smart Local Moving Algorithm

dSLM Dynamic Smart Local Moving Algorithm

InfoMap Map Equation Optimizer Algorithm

CDR Call Detail Records

GSM Global System for Mobile Communications

IN Initial Network: the graph for the initial time window (G0)

IILR Inter-Intra Links Ratio

CN Central Nodes

SD Standard Deviation

ENR Enron Data Set

BBM Boston Bombing Tweet Mention Data Set

BBR Boston Bombing Tweet Retweet Data Set

RMS Reality Mining SMS Data Set

RMV Reality Mining Voice Data Set

TGSM Turkish GSM Operator Data Set

BCS Turkish GSM Operator Data Set: Big Central Square Portion

CS Turkish GSM Operator Data Set: Central Square Portion

xx

CHAPTER 1

INTRODUCTION

Event detection has been a trending research topic [2, 1, 3, 4, 5], since it can be useful

for a variety of domains such as planning emergency actions for disasters, managing

urban transportation effectively [6], and getting the trending and up-to-date news such

as financial changes [7]. Event refers to a happening that takes place at a certain time

and at a certain location, and attracts people’s attention. One can find variations of this

definition depending on the domain, such as event can happen at a time period instead

of a time instance, or place can be multiple or even virtual. But in all definitions, event

is considered as an interesting happening and hence affects people’s situation and also

behavior.

Events can be detected from a variety of resources. One of the most popular data

resources is textual contents in the social media and the web [8, 9, 2, 10, 3, 11],

such that events trigger social posts and provide a rich resource to detect the events

in a much more rapid way than traditional news media. Another valuable resource

for event detection is the social interaction and communication structures and their

evolution through time. Changes in social communications can indicate events since

such happenings can trigger interaction among individuals out of daily and ordinary

routines. One of the approaches for event detection from communications is based

on modeling communication traces as temporal graphs and analyzing the changes

through graph features [12, 13, 1, 14].

Recently, event detection studies analyzing the change in the community structure

[15, 16] and communication trend [17] on the communication graphs have produced

effective solutions. They offer an alternative to feature analysis on communication

graphs, and focus on the structural changes on the graph. In [15, 16], event detection

1

problem is modeled as change detection in the community structures extracted from a

given communication network. The communities are determined for predefined time

intervals, such as daily or weekly communication traces, and the striking changes

within the detected communities are marked as event. Community detection is also

a popular research problem, and there is already variety of successful methods in the

literature, such as SLM [18], dSLM [19], Louvain [20], InfoMap [21], and more ad-

vanced models [22, 23, 24], which can be used for community detection based event

detection solutions. On the other hand, in [17], an event is modeled as a strong change

of communication patterns within the communication network. The communities are

detected once at the beginning of the time span and the changes in inter-intra commu-

nity communications are tracked at each time interval. Moreover, there are also more

recent event detection methods are proposed based on graph embeddings. A subset of

these methods focus on temporal graph data sets such as streaming climate [4], traffic

[25], news [5], and social media [11] data sets. They propose to embed the graphs

at the consecutive time steps and then find the anomalous embedding vectors to de-

tect the event time steps. Although all these 3 approaches provide promising results,

there are still plenty of possibilities for further improvement and there is a need for a

thorough and comparative analysis on a variety of data sets.

In order to fill in this gap, this work proposes new concepts and approaches, as well as

improvements over previous community structure, communication trend, and graph

embedding based event detection approaches. For all the proposed solutions, a com-

munication graph, which is constructed from communication or social interaction

data, and evolution of such graph along the timeline constitute the basis. For each

time interval, a communication graph is generated such that nodes represent the users

and edges represent the communications or interactions between the users. In the

community structure based solutions, at each time interval, communities within the

graph are extracted and tracked, whereas in communication trend based solutions,

graph of each time interval is considered as a whole and compared against the initial

graph constructed at the beginning of the timeline. In the graph embedding based

solutions, the graph of each time interval is embedded with various graph embed-

ding methods and then the distances between those embedded vectors are calculated

with various vector distance computation methods. In this setting, the novelty and

2

contributions provided by this study are as follows:

• For community structure based event detection, determining the central nodes

of the communities and tracking the change in terms of central nodes is shown

to be a promising approach in the previous studies [15, 16], however in such ear-

lier studies, node centrality measurement is not performed with well-structured

graph centrality metrics. In this study, a new community structure based event

detection approach is proposed, such that central nodes of a community are

determined with PageRank algorithm. By this way, the changes in the central

nodes are tracked in terms of several indicators, such as inclusion and drop

of central nodes from communities. Changes in such indicators are used for

detecting events.

• In community structure based event detection, this study hypothesizes that con-

sidering all sizes of communities might prevent detecting events effectively

since there are very small (with one or two members) and very large size

communities in the daily routine. To overcome this problem, the concept of

community size range based change tracking is proposed, such that, under the

community size range parameters, a method can focus on certain sizes of com-

munities. The experiments show that this mechanism can provide increase in

event detection accuracy as well as time efficiency for some of the cases.

• The resolution of the time intervals (i.e., time windows) is a crucial parameter

in analysis environment. The effect of time resolution (such as daily, 2-day,

3-day, etc.) on event detection performance for data sets of varying nature has

been experimentally analyzed. The experiments reveal that relaxing the time

resolution to a certain limit positively affect the accuracy and time efficiency,

whereas the event detection performance deteriorates when the resolution is

relaxed too much.

• Two novel approaches are proposed for constructing ensemble models. The

first one combines the variations of the method that tracks the number of com-

munities with different community size ranges. The second ensemble approach

combines the methods tracking the number of communities with the methods

tracking the central nodes.

3

• Various change tracking techniques using the modularity of the graphs are pro-

posed, as alternatives to the communication trend based method in [17] that

tracks the change in inter-intra communication ratio. Modularity is a function

that gives higher values for graphs, as the community structures get denser with

sparser interactions between the communities. According to the conducted ex-

periments, in general, the proposed change tracking techniques are more effec-

tive.

• A new time step values comparison method is introduced to the communication

trend based methods. The standard deviation value is used as the time step

values comparison method in the communication trend based method in [17].

In this work, comparing the values of previous and current time steps is also

introduced as time step values comparison method. It is based on a hypothesis

that the change in consecutive time steps communication trend might indicate

an event in the latter time step.

• Besides the changes in community structure and communication trend, the

changes in graphs overall structures might indicate an event. To test this hy-

pothesis, a new graph embedding based event detection method is proposed.

This method first embeds the structural properties of the graph of each time

step with several graph embedding methods and thus produce a vector for each

time step. Then, it calculates the distances between time steps vectors and the

reference vector, either mean of the vectors or the initial graphs vector, with

several vector distance computation methods. Finally, the distances are com-

pared against a threshold value and the time steps whose values are above the

threshold value are marked as event time steps.

• A comprehensive set of experiments are conducted comparing the proposed

and previous event detection approaches over data sets representing different

forms of communications including CDR (Turkish GSM Operator and Reality

Mining), network of social media posts (Boston Bombing) and e-mail commu-

nication (Enron) data sets. The performance analyses are conducted in terms

of accuracy, time efficiency and scalability, aiming to determine which method

to prefer under which communication data characteristics. According to the

experiments, proposed communication trend based methods tend to perform

4

better than the competitors on CDR based data sets, whereas proposed commu-

nity structure based methods tend to perform better on social media-based data

sets. In general, community structure based methods have lower execution time

and better scalability than the communication trend based methods. The graph

embedding based methods tend to improve best accuracy results obtained by

community structure and communication trend based methods for CDR based

data sets.

This thesis is organized as follows. In Chapter 2, related studies are summarized. In

Chapter 3, the event detection, community detection, and graph embedding related

concepts that are used in this thesis are explained. In Chapter 4, the proposed event

detection methods by tracking the change in community structure, communication

trend, and graph embedding are described. In Chapter 5, the data sets and the results

of the experiments are presented and discussed. Finally, the paper is concluded with

an overview in Chapter 6, and all combined community structure and communication

trend based event detection experiment results per data set in Appendices.

5

6

CHAPTER 2

RELATED WORK

In the literature, there is a variety of studies that focus on detecting events from data

collections. Some of them take the textual content into account and aim to detect

events by analyzing the textual content [8, 9, 2, 10, 3, 26], whereas some others focus

on detecting events in temporal graphs and analyze the graph properties [15, 16, 17,

1]. A subset of these studies first detect the communities in temporal graphs and track

the community based features to detect events in temporal graphs [15, 16, 17].

Community detection is also a popular and recent research problem [19, 20, 27, 28,

18]. In all these studies, different ways are used to model and extract community

structures. They can be grouped under the categories of modularity, compression,

significance, and diffusion based community detection methods [29]. In this work,

dSLM and InfoMap are used as community detection algorithms. dSLM is a modular-

ity based community detection algorithm, whereas InfoMap is a compression based

method.

For temporal graph based event detection, methods presented in [16, 17, 1] can be

considered as related to the community structure and communication trend based

event detection parts of this study. These methods compute a value for each time

interval in temporal graph, and aim to detect the time intervals whose values differs

from others with respect to a given threshold. The difference between these studies

are basically the graph values considered and tracked at each time interval. Some of

them use graph features such as eigen-behavior, node degrees [30, 31, 32, 1], whereas

some others use community structure based properties [16], or communication trends

such as inter-intra ratio links based on initial community structure [17]. These stud-

ies also differ in the way of computing the change and comparison. Some of them

7

consider the change with respect to the previous time interval [16], while the others

consider mean and standard deviation for comparison [17].

Rayana et. al. propose an ensemble of five basic graph feature based event detec-

tion methods [1]. These five basic methods are eigen-behavior based event detection

(EBED), probabilistic time series anomaly detection (PTSAD) [30], Streaming Pat-

tern DIscoveRy in multIple Time-Series (SPIRIT) [32], anomalous subspace based

event detection (ASED) [31], and moving-average based event detection (MAED).

They make experiments on Reality Mining data sets and provide the average preci-

sion values. This study also makes experiments on these data sets, provides average

precision values and compares the results based on both event detection and execution

time performance.

Moriano et. al. propose that events can be detected by tracking the change in inter and

intra community communications in temporal graphs [17]. The authors also introduce

the resolution concept which expands granularity of time intervals. The experiments

are conducted on Enron and Boston Bombing tweets data sets. The authors provide

precision recall curves for analysis on Enron data sets, however analysis on Boston

Bombing tweets data sets is presented as a case study. This study also performs

experiments on both Enron and Boston Bombing tweets data sets and compares the

results in terms of event detection and execution time performance.

Bommakanti et. al. focus on community mining in temporal graphs and track the evo-

lution of communities to detect events in temporal graphs [33]. The authors detect

communities at each time step, identify similar communities through the time steps,

and track their evolution. In order to detect event time steps, they compare commu-

nities against those in the previous time interval. The community changes can be in

the form of appear (new community born), disappear (community lost), merge, split,

and survive. They use Louvain algorithm which is a modularity based community

detection algorithm [20]. Since identifying communities through time steps depends

on similarity check, various similarity thresholds are experimented with. The study

focuses on the individual community level events and not the global events. Thus, the

work does not include results on network level event detection performance. There-

fore, this method could not be used as a baseline for comparison.

8

Zhu et. al. approaches community detection based event detection differently [34].

Instead of detecting communities at each time interval, the authors consider each time

interval as nodes of a larger network and detect communities in that large network.

First, they extract graph features for the network of each time steps and thus construct

a feature vector per time step. Then, they pairwise similarity of feature vectors are

calculate to determine edge between them. Then, communities are detected on within

in this network, a community label is assigned to each node. When the nodes are

sorted in time order with respect to their community labels, if a change is detected

in the community label, that time step is considered as change point (event). They

experiment their methods on four small data sets and provide precision, recall and f1

measure values. Since their approach are considerably different than our methods and

the results are obtained for only small data sets, it is not included as a baseline study

in our experiments.

Methods presented in [26, 5, 35, 36, 37] are applying graph embedding methods for

event detection on data sets that are not necessarily streaming on time series. They

have a set of content and detect the anomalous contents in that set of content. For

graph embedding based event detection focused on temporal graphs, methods pre-

sented in [4, 25, 38, 39, 40, 11] can be considered as related to the graph embedding

based event detection parts of this study since it also focuses on temporal graphs.

These methods focus on different kinds of temporal data sets such as climate, traffic,

human pose, social network, and cyber security data sets. They make a way to con-

vert the data points into graphs and then embed those data points. After this step, the

anomalous data points are detected either by looking at similarities of the embedding

vectors or making use of the clustering algorithms.

Li et. al. propose a method that constructs temporal graphs from climate report time

series and detects abnormal time steps by using a dynamic graph embedding model

[4]. They make experiments on both artificial and real world data sets and present the

results in [4]. Similarly, Li et. al. also propose an anomaly detection method that is

based on dynamic graph embedding that is applied on traffic data [25]. The graph data

points in time instances of the given temporal traffic data graph is embedded with a

dynamic graph embedding model based on the graph similarity. Then, the embedded

vectors are clustered to find out the anomalous time instances which represent the

9

traffic incidents. They make experiments on traffic data produced by the Simulation

of Urban Mobility framework and present the results in [25].

Markovitz et. al. focus on human pose graphs in video sequences and proposes a

method to detect abnormal human pose actions in a given video sequence [38]. They

embed the human pose graphs and cluster them. This enables them to mark each

human pose action as normal or not based on the clustering results. They evaluate

the proposed method on two anomaly detection data sets and present the results in

[38]. Genc et. al. constructs embedding from the user, date, and social content data

collected from social networks. Then, they propose a graph embedding based event

detection method that detects anomalous embedding values from these constructed

embedding values [11].

Abd et. al. proposes a method to detect anomalies in a stream of heterogeneous

graphs in real time. They also propose a graph embedding method for graph streams

and a incremental similarity measure based on graph edit distance that are used in

the steps of the proposed event detection method [39]. Kosan et. al. also focus on

detecting the events in dynamic graphs in real time [40]. To this aim, they propose a

graph embedding based deep learning model for event detection on dynamic graphs.

Their approach combine temporal and structural properties and aim to detect both the

structural and temporal aspects of events.

This study contributes to temporal graph based event detection in terms of commu-

nity structure, communication trend, and graph embedding based change detection.

In community structure based approach, the bucket and resolution concepts are pro-

posed. Additionally, central node based change tracking approach is revised and

modified by using PageRank for determining central nodes. In communication trend

based approaches, using modularity besides IILR as communication trend metric is

proposed. Additionally, change computation method is modified such that the graph

value is compared against the previous time interval. The data set variety is also ex-

tended including one small, and one large social media data set, and one small, and

one large CDR data sets. This enables us to have observations on which methods are

more effective on which kind of data sets. In graph embedding based approaches, it

is hypothesized that the distance between two consecutive graph instances in a tem-

10

poral graph data set indicate an event in the latter graph instances time point. Based

on this hypothesis, a graph embedding based event detection method that involves

various graph embedding models and various vector distance computation methods

is proposed. It is experimented on all the data sets in this study and results are com-

pared with the community structure and communication trend based event detection

methods.

11

12

CHAPTER 3

PRELIMINARIES

3.1 Basic Definitions

In this section, the basic concepts that are used in order to introduce the problem and

the proposed methods are defined.

Temporal Graphs: The graphs that change over time are defined as temporal graphs.

In our context, both nodes and edges can change (added or deleted) over discrete

sequential time steps. Thus, temporal graph can be expressed as a sequence of graphs

such as < G1, G2, ..., Gt >.

Resolution: The time window length used to construct the temporal graphs is defined

as the resolution. The resolution can be chosen according to the data set and the

requirements of the event detection problem. For instance, if the resolution is set as 1

day, then each graph instance in the temporal graph corresponds to communications

per day.

Community: Although there is no universally accepted definition, in general, com-

munity in a graph is defined as a set of nodes that have links with each other more

than they have with the other nodes of the network [41, 27, 28].

Modularity: Modularity is a measure about the community structure of a graph. In

order to compute the modularity value of a network, firstly, a null model of that net-

work should be generated. A null model of a network can be constructed by removing

the existing edges, and replacing them with the new ones randomly while maintain-

ing the original degrees of the nodes. For a given network, modularity is defined as

the fraction of the difference between the total number of internal edges in the real

13

network and the total number of internal edges in its null model, to the total number

of the edges in the whole network. It is calculated as given in Equation 3.1. The

measure is motivated from the idea that a randomly created network is not expected

to have a good community structure. Thus, as the real network differs from its null

model, its community structure is considered to be stronger [41, 42].

Q =
1

2e

∑
ij

(Oij −Nij)δ(Ci, Cj) (3.1)

In the equation, Oij is the number of edges between node i and node j in the original

network and Nij is the number of edges between node i and node j in the null model.

The δ function ensures taking only internal edges into account in the summation by

generating 1 if node i and node j are in the same community (Ci = Cj), and it returns

0 otherwise. The summation iterates over all pairs of nodes of the network. Finally, e

represents the total number of edges of the network. Note that, the number of nodes

and the number of edges are the same for both the original network and its null model,

since null model preserves the nodes and their degrees.

Initial Network (IN): Given a sequence of time-stamped communications, initial

network is the graph constructed for the initial time window (G1) with respect to the

given resolution.

Inter-Intra Links Ratio (IILR): For a given set of communities, inter-intra link ra-

tio is defined as the difference between the number of inter community links and the

number of intra community links to the total number of links in the full network. The

calculation of the number of inter community links, the number of intra community

links and IILR are as given in Equations 3.2, 3.3, and 3.4, respectively. In the equa-

tions, Oij , Ci, Cj , and δ mean the same as in Equation 3.1. The ω function returns 0

if node i and node j are in the same community (Ci = Cj), and, 1 otherwise. This

definition is used in [17] to detect events that trigger information flow changes across

communities.

Ginter =
∑
ij

Oijω(Ci, Cj) (3.2)

14

Gintra =
∑
ij

Oijδ(Ci, Cj) (3.3)

IILR =
Ginter −Gintra

Ginter +Gintra

(3.4)

Central Nodes (CN): Central nodes of a community are the nodes whose centrality

scores are higher than the average centrality score within the network. In our study,

PageRank [43] is used as the centrality metric.

Community Size Range (Bucket): In determining the change in the community

structures, taking all of the communities into account may lead to incorrect predic-

tions since events may only affect communities of certain size. Additionally, for large

data sets, using only the communities of certain sizes may positively affect execution

time considerably compared to using all communities for change detection. With this

motivation, the following groups (buckets) of communities are defined with respect

to their sizes:

• Bucket A (all) includes all communities without any filtering.

• Bucket F (filtered) excludes the very small communities (of size one and two

nodes) and very large ones and includes the rest of the communities. The fil-

tered large communities contain less than 0.001 % of the total nodes.

• Bucket Q1 includes the first quarter of the filtered communities (Bucket F)

(initial 25% partition) with respect to community distribution with respect to

size.

• Bucket Q2 includes the second quarter of the filtered communities (the second

25% partition).

• Bucket Q3 includes the third quarter of the filtered communities (the third 25%

partition).

• Bucket Q4 includes the last quarter of the filtered communities (the fourth 25%

partition).

15

• Bucket H1 includes the first half of the filtered communities (initial 50% parti-

tion).

• Bucket H2 includes the second half of the filtered communities (the second

50% partition).

Note that H1 = Q1 ∪ Q2, H2 = Q3 ∪ Q4, and F = H1 ∪ H2. When change detection

is applied for a given bucket, only the nodes of the communities in the bucket are

considered.

Event: This study considers that an event is expressed with a signal (reflection) in its

corresponding time interval.

Event Detection: It is aimed to determine the time intervals that include event.

Hence, it is hypothesized that the change in the community structure and community

communication trend within communication network provide signals (reflections) of

events. Different ways to determine the change in community structure and commu-

nity communication trend are elaborated.

3.2 Community Detection

In the literature, there are several community detection algorithms [19, 27, 21]. In this

work, dSLM [19] and InfoMap [21] are used as the community detection methods.

3.2.1 dSLM: Dynamic Modularity Optimizer

Modularity is a metric generally used for evaluating the quality of community detec-

tion algorithms. It is a function that outputs higher values if a given network can be

partitioned better as communities. In some of the community detection algorithms it

is also used as the objective to be maximized. dSLM [19] is the dynamic and faster

version of SLM algorithm [18] which aims to determine communities by optimizing

the modularity values of networks. It optimizes modularity by applying the following

steps [18]:

16

1. Assign each node as a singleton community (i.e., each node is a community

itself).

2. For each node and its neighbours, in random order, move the node from its own

community to its neighbor’s community and recalculate the modularity value.

If it is increased, keep the change, else, revert the movement. This step is called

as local moving heuristic since it heuristically tries to improve the modularity

value by moving the nodes among communities.

3. After step 2 is completed, mark each community as as a sub-network and apply

step 1 and 2 to each one of the sub-networks. At the end of this step, a set of

sub-networks, which have its own set of communities are generated.

4. Then, this structure is converted into a new (reduced) graph where each com-

munity is a node, and, each sub-network is a community.

5. Apply steps 2, 3, and 4 to this reduced network recursively until the network

that cannot be reduced further.

3.2.2 InfoMap: Map Equation Optimizer

The InfoMap algorithm detects the communities by minimizing the map equation

value of the given network. InfoMap detects community structure by minimizing the

description length in the map equation. Since it is infeasible to check all possible par-

titionings and choose the one that minimizes the map equation value, it uses heuristic

search to find the near optimum structure [21].

The map equation formula that InfoMap minimizes is given in Equation 3.5.

L(M) = q↷H(θ) +
m∑
i=1

pi⟳H(αi) (3.5)

In the equation, M is a proposed community structure of the network such that each

node belongs to a community. L(M) is the average length to describe an infinite

random walk on the network whose community structure is M.

17

The map equation calculates the minimum description length of a random walk on

the network based on the partition M. The first part of the equation gives the average

number of bits necessary to describe movement between communities, and the second

part determines the average number of bits necessary to describe movement within

communities [21].

3.3 Graph Embedding

There are two main ways to represent a graph as either set of vectors or only one

vector. The first one is to get an embedding vector of each node in the graph, thus

get a matrix for the inputted graph by combining each node’s embedding vector. The

second one gets only one vector for the inputted graph by embedding whole graph

into one vector.

There are algorithms such as DeepWalk [44], node2vec [45], struc2vec [46] that em-

bed the graph and output a matrix where each vector represents a node in the graph.

DeepWalk is based on skip-gram model of Word2vec [47] algorithm which aims to

convert words into vectors. It hypothesizes that similar nodes should have similar

embedding vectors such that similar words should have similar embedding vectors.

It uses random walks that start from selected nodes then move to random neighbours

for a certain number of times to sample the graph. These random walks are used as

training input to the skip-gram model. Then, the hidden layer of the skip-gram model

is outputted as the embedding vector for each node in the graph.

Node2vec is also based on skip-gram model of Word2vec [47] algorithm. It differs

from DeepWalk by doing the random walks in a biased way whereas DeepWalk does

unbiased, completely random walks. By this way, it tries to produce embedding vec-

tor that better preserves the local neighbourhood of the input node.

Struc2vec includes the position of the node in the network structure as an information

during the node embedding process. This way, it can capture the nodes structural

position information in their embedding vectors. This helps for the tasks where the

nodes structural position matters. Node2vec and DeepWalk algorithms tend to fail

18

such tasks that require nodes structural position information since they do not encode

this information into nodes embedding vectors.

The algorithms such as graph2vec [48], GL2vec [49], FEATHER [50], LDP [51]

embed the given graph as a whole and produce one vector.

Graph2vec is based on a neural embedding model as inspired by skip-gram model of

doc2vec [52]. It learns the embedding vectors in an unsupervised way. Thus, it could

be used for graph classification, clustering, and aiding event detection on temporal

graphs. It samples and labels all sub graphs in the given graph. These sub graphs are

then fed to the skip-gram model as training input. Finally, the result of the hidden

layer of skip-gram model is produced as the embedding vector for the whole graph.

GL2vec is proposed as an updated version of graph2vec algorithm. [49] claims that

graph2vec has two limitations such that it cannot handle edge labels and does not

preserve enough structural information to compute structural similarity. It aims to

overcome these limitations of graph2vec algorithm by constructing a line graph and

attaching its embedding vector to the embedding vector of the original graph. So,

basically it uses the graph2vec algorithm on both original graph and its generated line

graph version and then combine their embedding vectors. A line graph L(G) [53] for

a graph G is constructed as follows: create a node in L(G) for each edge in G, then

create an edge between two nodes in L(G) if their corresponding edges in G has a

node in common.

FEATHER is a recent graph embedding algorithm that uses characteristic functions

of node features with random walk weights to describe node neighborhoods. Combi-

nations of these node embedding values result in aggregated graph descriptors such

that an embedding vector for the whole graph. [50]

LDP is another recent graph embedding algorithm that computes the histograms of

degree profiles, then concatenates them to form the embedding vector for the whole

graph. It is designed for non-attributed graphs and thus has low performance on tasks

that focus on attributed graphs. On the other hand, it is very efficient on execution

time aspect by having linear computation time. [51]

In this study, the approach that produce a vector for a graph is used since comparing

19

vectors is easier than comparing matrices of a set of given graphs. Besides, the order

of the embedding vector representations of the nodes cannot be preserved in the ma-

trix representations of the consecutive graphs. Moreover, each time steps graph may

have different number of nodes and this may lead to having different size of matrices

to compare. This is also another obstacle in using the first approach that produce a

matrix for a graph for the proposed graph embedding based event detection meth-

ods. So, given all these reasons, the second graph embedding approach that produce

a vector for a graph is used for the proposed graph embedding based event detection

methods. In this category, all graph2vec [48], GL2vec [49], FEATHER [50], LDP

[51] methods are used and experimented.

3.4 Distance Metrics on Vectors

In this work, during the event detection based on graph embedding method’s embed-

ding vector distance calculation phase, the Bray-Curtis, Canberra, Chebyshev, City-

block (Manhattan), Correlation, Cosine, Euclidian, and Minkowski distance methods

are used. All distance methods take 2 vectors denoted as u and v as required parame-

ters. They also take a weight vector that is used as a weight for each value in u and v

as optional parameter. When, it is not provided, each value has equal 1.0 weight.

The Bray-Curtis distance [54] is in the range [0, 1] if all values in the input vectors are

positive which is the case for the experiments in this study. It is defined in Equation

3.6.

DBray−Curtis(u, v) =

∑
i |ui − vi|∑
i |ui + vi|

(3.6)

The Canberra distance is defined in Equation 3.7.

DCanberra(u, v) =
∑
i

|ui − vi|
|ui|+ |vi|

(3.7)

The Chebyshev distance is defined in Equation 3.8.

20

DChebyshev(u, v) = max
i
|ui − vi| (3.8)

The Cityblock (Manhattan) distance is defined in Equation 3.9.

DCityblock(u, v) =
∑
i

|ui − vi| (3.9)

The Correlation distance is defined in Equation 3.10 where u is the mean of the ele-

ments of u and u.v is the dot product of u and v.

DCorrelation(u, v) = 1− (u− u).(v − v)

∥(u− u)∥2 ∥(v − v)∥2
(3.10)

The Cosine distance is defined in Equation 3.11 where u.v is the dot product of u and

v.

DCosine(u, v) = 1− u.v

∥u∥2 ∥v∥2
(3.11)

The Euclidean distance is defined in Equation 3.12.

DEuclidean(u, v) = (
∑
i

|ui − vi|2)1/2 (3.12)

The Minkowski distance is defined in Equation 3.13. When parameter p is set as 2

which is the default, it is same as the Euclidian distance. With the p parameter, it is

more flexible than the Euclidian distance.

DMinkowski(u, v) = (
∑
i

|ui − vi|p)1/p (3.13)

21

22

CHAPTER 4

PROPOSED EVENT DETECTION METHODS

This study considers that a significant change in the community structure or the com-

munication trend between the graphs of consecutive time steps indicates an event.

To this aim, several basic and ensemble methods are proposed to track the changes

in the graphs and detect events. The overview of the proposed approach’s architec-

ture is presented in Figure 4.1. As given in the figure, for the proposed methods, the

event detection pipeline is composed of three basic steps: Pre-processing, community

detection and applying a set of change tracking methods.

Figure 4.1: The Overview of the Method

23

4.1 Overall Architecture and Pipeline

4.1.1 Pre-processing & Graph Generation

For the proposed methods, the communication data is represented as a graph. To

this aim, in order to analyze the effect of graph type, directed, undirected, weighted,

unweighted graphs are constructed from raw data sets. Since the nature of raw data

sets differ from each other, different processes must be applied to form these graphs.

For example CDR data set is a collection of call records between two users containing

their IDs, the time of the call, and additional other information in each data instance.

For each time interval, separate graphs are constructed by considering the records

having timestamps in the interval. By including the number of calls, or the duration

of the calls, weighted graph can be formed. By distinguishing the caller and callee,

directed graph can be generated.

4.1.2 Community Detection

For the community structure and communication trend based event detection meth-

ods, from time intervals of the data sets, directed weighted, directed unweighted, and

undirected weighted graphs are generated as described above. The dSLM algorithm

[19] is used as the community detection technique for all data sets. The InfoMap

community detection method is also used in order to compare our proposed methods

with the method proposed in [17].

4.1.3 Event Detection

Basically, there are 3 different kinds of change structures tracked in our method.

In the first one, changes in the community structure are tracked. Two basic commu-

nity structure features, Number of Communities and Central Nodes are considered

for tracking. Besides tracking these two features, ensembles of these methods are

developed as well. The first type of ensembles is the combination of change track-

ing on different buckets (community size ranges). The second type is ensemble of

24

the change tracking of the central nodes and the change tracking of the number of

communities methods.

As the second main tracking method, the changes in the communication trends among

the communities are tracked. Here, communities are detected once and the changes in

community interactions are examined. The modularity and inter-intra link ratio [17]

are used in order to measure the change in communication trends.

The third main tracking objective is the graph embeddings of the time steps in the

temporal graphs. Each time steps graph is embedded with several graph embedding

methods and this way a vector is produced for each time step. Then, the distance

between the vector of each time step and the reference vector is computed. The time

steps whose distances are more than a threshold value are marked as event time steps.

The details of pre-processing and proposed event detection methods are described in

the rest of this section.

4.2 Pre-processing & Graph Generation

Since the nature of the raw data sets differs from each other, pre-processing step also

includes different sub-tasks for different data sets. The details for each of the data

sets used in the study are as follows:

1. Enron This well-known data set is a collection of email records of the Enron

company collected between 1999-01-01 and 2002-04-30. It is structured as a

network such that nodes represent the employees and edges represent the emails

sent/received between employees. The number of exchanged emails is used as

the weight of the edge. Therefore, a directed weighted network is obtained. For

this data set, time interval granularity set as one week.

2. Boston Bombing Tweets This data set contains the networks of retweets and

mentions on bombing event happened during the Boston marathon in April

2013. The data set is partitioned daily, thus 30 networks for each of the retweets

and mentions collection are generated. The generated networks are directed and

weighted where weights are the mention and retweet counts, respectively.

25

3. Reality Mining This data set is a Call Detail Record (CDR) collection includ-

ing date of the call, caller id and call receiver id. The time interval is set as a

week, since the ground truth is provided over weeks. In the constructed graphs,

nodes represent IDs of the participants, and the edges represent the calls be-

tween them. The weight of an edge represents the number of calls made be-

tween the participants. The data set contains both SMS and Voice Call collec-

tions. For both of them, directed weighted, directed unweighted and undirected

weighted networks are generated, resulting with 6 networks in total.

4. Turkish GSM Operator This data set is also a CDR data, including the records

of GPRS, SMS and voice calls made in a large metropolitan city in Turkey in

September 2012. The voice call records are used in this study. The data set

is partitioned into days, and a directed weighted graph is constructed for each

partition. In the constructed graphs, nodes represent the the users, the edges

represent the calls. The weight of an edge represents the number of calls made

between the users.

4.3 Event Detection Methods by Tracking the Change in the Community Struc-

tures

In order to track the change in community structure between two consecutive time

intervals, the following two indicators are considered: change in the number of com-

munities and change in the central nodes of communities.

4.3.1 Tracking the Change in the Number of Communities

The focus of this method is determining the change in the number of communities

generated for consecutive time windows. The algorithm for the method is given in

Algorithm 1. It takes set of communities, bucket, and event detection threshold values

as parameters. For each time window, the algorithm finds the number of communi-

ties that are in the range of given bucket. Then, the change ratio in the number of

communities is calculated by taking the absolute difference between the number of

communities in the previous time step and the current time step and dividing the result

26

by the number of communities in the previous time step. If a time window’s change

ratio is greater than or equal to the given event detection threshold value, that time

window is marked to include an event.

Algorithm 1 Event Detection via Change on # of Comm
Require: setOfComm, bucket, threshold

Ensure: events

prev← NOC(setOfComm(t1), bucket)

for i← 2 to timeWindowCount do

cur← NOC(setOfComm(ti), bucket)

change← abs(cur − prev)/prev

if change ≥ threshold then

add i to events

end if

prev← cur

end for

return events

4.3.2 Tracking the Change in the Central Nodes

In this method, the focus is on the central nodes of the communities within the com-

munication network and their change across time windows. The algorithm for this

method is presented in Algorithm 2. Similar to the previous one, it takes set of com-

munities, change detection method, bucket, and event detection threshold values as

input parameters. For each time window, the algorithm finds the number of com-

munities that are in the range of given bucket; furthermore, the central nodes of the

communities are also determined. Based on the given change detection method, the

algorithm can find change ratios in four different ways:

1. SIZE: If the given change detection method is based on Size, the change ratio

is calculated according to the difference between the number of central nodes in

the previous time window and the number of central nodes in the current time

window.

27

2. NOT_ANY_MORE: If the given change detection method is Not Any More,

the change ratio is calculated by computing the number of central nodes of

previous time step that are not any more central nodes in the current time step.

3. NEW: If the given change detection method is New, the change ratio is calcu-

lated by computing the number of newly introduced central nodes in the current

time window.

4. NOT_ANY_MORE_NEW: If the given change detection method is Not Any

More and New, the change ratio is calculated by computing the number of

central nodes of previous time step that are not anymore central nodes in the

current time step added up with the number of newly introduced central nodes

in the current time window.

As in the previous algorithm, time window is marked to include an event, if a time

window’s change ratio is greater than or equal to the given event detection threshold

value.

Algorithm 2 Event Detection via Change On Central Nodes
Require: setOfComm, changeMethod, bucket, threshold

Ensure: events

prev← setOfComm(t1).centralNodes

for i=2 to timeWindowCount do

cur← setOfComm(ti).centralNodes

change← comp(changeMethod, prev, cur)

if change ≥ threshold then

add i to events

end if

prev← cur

end for

return events

28

4.3.3 Tracking the Change in the Community Members

We consider the change in the community members as another candidate for event in-

dicator. However, community detection techniques do not assign global identifiers to

communities to be tracked over time windows. To be able to track the change within

the same community, we assume that two communities in consecutive windows are

the same if they have common central nodes. Therefore, we firstly find the commu-

nities of consecutive windows around similar central nodes. Then, we compute the

change in the number of members within the community. We compute the change in

three different ways: the minimum (MIN) of change magnitude, the average (AVG) of

the change magnitude, and the maximum (MAX) change magnitude. The algorithm

of the method is given in Algorithm 3 and Algorithm 4.

Algorithm 3 Event Detection via Change on Comm Members
Require: setOfComm, changeCompMethod, changeThreshold

Ensure: events

prev = setOfComm(t1).members

for i=2 to timeWindowCount do

cur = setOfComm(ti).members

change = ComputeChangeOnMembers(

changeCompMethod, prev, cur)

if change ≥ changeThreshold then

add i to events

end if

prev = cur

end for

return events

29

Algorithm 4 Compute Change on Community Members
Require: changeCompMethod, prev, cur

Ensure: change

if changeCompMethod is MIN then

return min of the change values on the comm members

else if changeCompMethod is AVERAGE then

return avg of the change values on the comm members

else if changeCompMethod is MAX then

return max of the change values on the comm members

end if

4.3.4 Early Ensemble Strategies

4.3.4.1 Combining the Variations of the Change Tracking in the Number of

Communities

In the first ensemble method, we hypothesize that events can be detected better if the

results of the variations of the number of communities based event detection method

are merged. In the basic method (given in Section 4.3.1), we hypothesize that events

might arise from communities of certain size. Our motivation behind this hybrid

approach is to extend the initial hypothesis to cover the cases that an event might

arise from set of communities of certain several sizes. For instance an event may

involve communities that contain 3-5 and 11-20 people. The initial basic method

would not be able to detect such kind of events, whereas this ensemble method can

detect the kind of events that involve communities of different sizes.

The ensemble method takes the communication network, range of minimum and max-

imum community sizes, change threshold and detection threshold parameters as in-

put. It executes the basic event detection method based on the change tracking in the

number of communities with the given parameters. If the count of events of a week

fulfills the predefined detection threshold, the ensemble method marks that week to

include an event. The details of the first ensemble method can be seen in Algorithm

5.

30

Algorithm 5 Event Detection via Ensemble of Change on # of Comm
Require: setOfComm, listOf(minCommSize, maxCommSize),

changeThreshold, detectionThreshold

Ensure: events

events = emptyList()

listOfEventList = emptyList()

for each minCommSize, maxCommSize in listOf(minCommSize, maxComm-

Size) do

eventList = EventDetectionviaChangeon#ofComm(

setOfComm, minCommSize, maxCommSize, changeThreshold)

add eventList to listOfEventList

end for

for i=2 to timeWindowCount do

detectionCount = 0

for each eventList in listOfEventList do

if eventList contains i then

detectionCount = detectionCount + 1

end if

end for

if detectionCount ≥ detectionThreshold then

add i to events

end if

end for

return events

31

4.3.4.2 Combining the Change Tracking in the Number of Communities and

the Change Tracking in the Central Nodes

This hybrid approach is based on the idea that an event might be related with both

central node changes and number of communities changes. Therefore, we propose an

ensemble method that tracks the changes both in the central nodes and in the number

of communities in order to mark a week for event inclusion.

Algorithm 6 Event Detection via Ensemble of Change on # of Comm and Change

On Central Nodes
Require: setOfComm, minCommSize, maxCommSize, changeComptMethod

changeThreshold, detectionThreshold

Ensure: events

events = emptyList()

numberOfCommEvents = EventDetectionviaChangeon#ofComm(

setOfComm, minCommSize, maxCommSize, changeThreshold)

centralNodeEvents = EventDetectionviaChangeonCentralNodes(

setOfComm, changeComptMethod, changeThreshold)

for i=2 to timeWindowCount do

detectionCount = 0

if numberOfCommEvents contains i then

detectionCount = detectionCount + 1

end if

if centralNodeEvents contains i then

detectionCount = detectionCount + 1

end if

if detectionCount ≥ detectionThreshold then

add i to events

end if

end for

return events

This ensemble method takes the network, the range of minimum and maximum com-

munity size, central node change detection type, change threshold and detection

32

threshold parameters as input. The basic event detection method on the change track-

ing in the number of communities is applied on the data under the given input pa-

rameters. Similarly, the basic method on the change tracking in the central nodes is

also executed on the same data. A week is marked to include an event, if its event

detection count fulfills the given detection threshold parameter. In fact, for this en-

semble method, practically the only applicable event detection thresholds are 1 and

2 in terms of event count, as each of the two methods can return either 0 or 1 as the

output. In other words, we can state that count threshold value one refers to or/union,

and count threshold value two refers to and/intersection of the basic methods’ results.

The details of this algorithm are given in Algorithm 6.

4.3.5 Improved Ensemble Strategies

4.3.5.1 Ensemble of Tracking the Change in the Number of Communities Method

with Different Bucket Variations

In order to detect complex events that can effect communities of only certain size

ranges, an ensemble algorithm that combines change tracking of number of commu-

nities for different buckets is generated. For example an event may effect the com-

munities in the buckets Q1 and Q3. Then, an ensemble of change tracking for bucket

Q1 and change tracking for bucket Q3 can be constructed. At this point, there are two

alternative ways to determine the final decision of the ensemble: ANDing vs ORing

the results from individual event detectors. Since all kinds of communication data

can be processed to generate buckets, this ensemble approach can be used very easily

regardless of the data size or structure.

4.3.5.2 Ensemble of Tracking the Change in the Number of Communities and

Tracking the Change in the Central Nodes

As another complex event type, there may be cases that affect both the number of

communities and the central nodes. Therefore, as a natural extension, this study gen-

erates an ensemble combining two basic methods, one tacking the number of commu-

nities, and the other tracking the central nodes. As in the previous ensemble method,

33

in this one, the final decision can be determined through logical operations of AND-

ing and ORing the results of the individual event detectors. Similar to the above

approach, it is also possible to determine changes in community structures between

consecutive time steps to all kinds of data sizes and structures.

4.4 Event Detection Methods by Tracking the Change in the Communication

Trends

In this method, firstly, the initial network is constructed. Then, the community detec-

tion algorithms, either dSLM or InfoMap, is applied on this initial network. Rather

than applying community detection at each time interval, communities are determined

only once, and then in each of the subsequent time intervals, the change in the com-

munication trends is computed based on this initial structure.

The change is quantified using two different metrics: inter-intra links ratio (IILR) and

modularity (MOD). Two different comparison strategies are used for change detec-

tion. In the first one, the standard deviation (SD) value obtained in a time interval

is compared against a given threshold. Note that this value can be computed either

with IILR (CT-IILR-SD) or modularity (CT-MOD-SD). In the second one, rather

than the standard deviation value obtained for the network of the time interval, the

amount of change with respect to the previous time interval is compared against a

given threshold. For this strategy, the value of the network can be determined by

IILR (CT-IILR) or modularity (CT-MOD). A similar approach is used by Moriano et

al. in [17] such that the authors use InfoMap as the community detection algorithm,

IILR as the value to track and standard deviation as the comparison method. This

study extends the method in [17] by including dSLM as the community detection

algorithm, modularity as the value to track and the change from the previous time

interval as the comparison strategy.

The algorithm using the standard deviation as comparison method is given in Algo-

rithm 7, whereas the other one using the change from the previous time interval is

given in Algorithm 8. In both algorithms, the tracked value of graph corresponding to

the given time interval can be computed by either IILR or modularity (denoted with

34

Algorithm 7 Event Detection via Change on CT (St. Dev.)
Require: IN, setOfGraphs, equation, bucket, threshold

Ensure: events

for i← 1 to timeWindowCount do

cur← CT(IN, setOfGraphs(ti), equation, bucket)

if cur ≥ threshold then

add i to events

end if

end for

return events

equation parameter in the algorithms).

Algorithm 8 Event Detection via Change on CT (Cur-Prev)
Require: IN, setOfGraphs, equation, bucket, threshold

Ensure: events

prev← CT(IN, setOfGraphs(t1), equation, bucket)

for i=2 to timeWindowCount do

cur← CT(IN, setOfGraphs(ti), equation, bucket)

change← abs(cur − prev)/prev

if change ≥ threshold then

add i to events

end if

prev← cur

end for

return events

4.5 Event Detection Methods by Tracking the Change in the Graph Embed-

dings

This study also hypothesizes that the changes that are above some threshold in the

graph structure of a temporal graph might indicate an event. The changes in the

graph structure can be computed by comparing two graphs in the set of graphs in a

35

temporal graph data set. This comparison can be done by measuring the minimum

number of graph operations required to transform one graph to the other graph [55].

However, such methods are proven to be NP-hard in execution time aspect [56]. To

overcome the execution time limitation, instead of comparing the raw original graphs,

the embedding vectors of the graphs are compared to detect the changes in the graph

structure. Comparing two vectors are much easier and much less time consuming

than comparing two graphs.

In this method, the community detection step is not needed since it does not focus on

communities but focus on the embedding vector of each time step’s network. Though,

the initial "Pre-processing & Graph Generation" step explained in Section 4.2 is still

needed to generate the graphs. This event detection method that is based on graph

embeddings is applied to a given data set by following steps:

1. The graphs for each time step are generated as described in Section 4.2.

2. The various graph embedding methods such as Graph2vec [48], GL2vec [49],

FEATHER [50], LDP [51] are applied on the generated graphs of each time

step and the initial network (IN). Thus, for each graph embedding method, we

now have a set of vectors that represent the time steps’ graphs for the given data

set and also a separate vector for the initial network.

3. For each set of vectors that represent the time steps’ graphs:

(a) The mean vector is computed and selected.

(b) The distance between each vector in the set and the mean vector is com-

puted and stored. All the vector distance computation methods defined in

Section 3.4 are used in this step and all the results are stored.

(c) The distance between each vector in the set and the initial networks vector

is computed and stored. All the vector distance computation methods

defined in Section 3.4 are used in this step and all the results are stored.

At this point, there are 2 set of distance values for each graph embedding

method and vector distance computation method variations. One set is for dis-

tances from the mean vector and the other is for the distances from the initial

networks vector.

36

4. For each set of distances, from minimum value to maximum value 100 thresh-

old values are computed. Based on each threshold, the time steps whose dis-

tances that are higher than the threshold value are marked as event time steps.

Given 100 threshold values, it produces 100 precision and recall values. The

average precision value is computed by calculating the area under precision

recall curve.

Thus, for each graph embedding method, each vector distance computation method,

and each reference vector, either mean or initial networks vector, the average preci-

sion value is produced.

37

38

CHAPTER 5

EXPERIMENTS ON EVENT DETECTION PERFORMANCE

The effectiveness of the proposed methods is analyzed in terms of a variety of aspects

including community size, group of communities, time resolution and scalability,

through a set of experiments. In this section, the data sets are presented followed by

experiment settings. Then the results of the experiments analyzing different aspects

are given in separate subsections.

5.1 Data Sets & Ground Truths

In this section, the data sets used in the experiments and the ground truth events within

the data sets are presented.

Enron. This is an email communication data set containing more than 125,000 emails

sent by 184 employees of Enron company between 1999-01-01 and 2002-04-30. En-

ron is a U.S company that has filed for bankruptcy just before 2000 [57]. There are

seven significant events marked in this time interval [58, 17]. The following dates in-

clude ground truth events: 2001-05-17, 2001-07-12, 2001-08-03, 2001-10-16, 2001-

12-02, 2002-02-14, 2002-04-09. The details of the events are given in Table 5.1 which

is taken from Moriano et. al. [17].

Boston Bombing Tweets. The data set contains tweet communication networks ex-

tracted from more than 456 million English tweets posted in April 2013 [17]. The

mention networks contain around 7 million nodes and 10 million edges for each day.

39

Table 5.1: Enron ground truth events

Event ID Date Description

1 2001-05-17 Schwarzenegger, Lay, Milken meeting.

2 2001-07-12 Quarterly conference call.

3 2001-08-03 Skilling makes a bullish speech on Enron Energy Ser-

vices. That afternoon, he lays off 300 employees.

4 2001-10-16 Enron reports a 618 million third-quarter loss and de-

clares a 1.01 billion non-recurring charge against its bal-

ance sheet, partly related to “structured finance” opera-

tions run by chief financial officer Andrew Fastow. In

the analyst conference call that day, Lay also announces

a 1.2 billion cut in shareholder equity.

5 2001-12-02 Enron, at the time the largest bankruptcy in U.S. history,

files for Chapter 11 bankruptcy protection.

6 2002-02-14 Sherron Watkins, the Enron whistleblower, testifies be-

fore a Congressional panel against Skilling and Lay.

7 2002-04-09 David Duncan, Arthur Andersen’s former top auditor,

pleads guilty to obstruction.

The retweet networks contain around 3.5 million nodes and 4.2 million edges for each

day. There are two major events in this time interval. These ground truth events are

as follows:

• 2013-04-15 Bombing

• 2013-04-19 Manhunt

In the results, mention network of this data set is abbreviated as BBM. Similarly,

retweet network is shown as BBR.

Reality Mining. This data set is a CDR collection containing 99,633 call record

instances. It includes the communication data of 97 faculty, student, and staff at MIT,

40

recorded by the software on their mobile devices over 50 weeks from August 2004 to

July 2005 [59]. There are 50 weeks in this data set’s time span and the weeks having

id 6, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 27, 31, 32, 34, 35 are marked as ground

truth event weeks. These weeks involve semester breaks, exam and sponsor weeks,

and holidays [1]. The name of this data set is abbreviated as RM in the result tables.

The sub communication network obtained by SMS interactions is shown with RMS

and the sub-network of voice calls is shown as RMV. Different graph structures based

on edge directions (directed-D vs. undirected-U), and edge weight (weighted-W vs.

unweighted-U) are constructed.

Turkish GSM Operator. There are 297,009,183 call records in this CDR data set.

In total, there are 12,521,352 individuals (nodes in the communication network), and

56,316,192 phone call relations (edges) recorded in September 20121. When the days

in the data set are labelled from 1 to 30, the days with id 2, 3, 4, 5, 6, 11, 16, 17, 18, 22,

24, 25, 29, 30 are marked as ground truth event days. These events are extracted from

public news resources in Turkey for September 2012. This full data set is denoted as

TGSM in the result tables. This data set corresponds to calls covering a large area

including a smaller and much more crowded city center. Some events in this data

set are related with the whole country whereas some others are related with the city

center. In order to evaluate the effect of considering only central area, two subsets of

the data set are constructed. The whole area covered by the communication network

is represented as a 12 by 12 grid. Then, the middle 4 by 4 grid region is marked as

Big Central Square (BCS), and 2 by 2 inmost grid is marked as Central Square as

shown in Figure 5.1. The details of these subsets are as follows:

• Big Central Square (BCS). It contains the records collected from 11545 base

stations in the central region out of total 13281 base stations. In total there are

2,853,473 nodes and 11,376,594 edges in this communication network.

• Central Square (CS). It contains the records collected from the central 85 base

stations out of total 13281 base stations. In total there are 1,335,945 nodes and

3,568,967 edges in this subset.

1 The 56,316,192 edges correspond to distinct interactions within 297,009,183 entries.

41

Figure 5.1: Illustration of Big Central Square and Central Squares subsets of Turkish

GSM Operator data set

5.2 Early Experiments of Community Structure Based Methods with RM Data

Sets

Event detection experiments are conducted on weighted and unweighted versions of

the network under varying change thresholds. The experiments of the method that

detects events via tracking the change on community members have the same results

for both weighted and unweighted versions of the network. Therefore, we present the

results for this method as a single table.

In the tables, the first column includes the change model parameter analyzed. For

basic model, this column includes the community size, the type of change in central

node, or the type of change in the community members, depending on the model to be

analyzed. For ensemble methods, the first column includes a set of change parameters

that belong to the models that are combined. For the ensemble of number of com-

munities methods’ variations, this includes a set of community size ranges. For the

ensemble of number of communities and central nodes methods, this column includes

the community size range and the change detection method. In the ensemble methods,

additionally, the first column includes event detection threshold value specified after

DT prefix. In all the tables, the second column shows the applied change threshold.

For each method, we present the best three results with respect to F1-measurement,

per parameter setting.

42

5.2.1 Experiments on Basic Methods

For the first basic method of change detection in the number of communities, initially,

we grouped the communities with respect to the size by observing the number of

communities of each size range on several week samples. The results for this type

of partitioning are given in Table 5.2 and 5.4 for weighted and unweighted networks,

respectively.

Table 5.2: Change in # of Communities on Weighted Net. (Initial Partitioning)

Type Thr Precision Recall F1-meas.

3-5 nodes 0.05 0.62 0.81 0.70

3-5 nodes 0.15 0.62 0.81 0.70

3-5 nodes 0.25 0.6 0.75 0.67

6-10 nodes 0.05 0.38 0.56 0.46

6-10 nodes 0.15 0.38 0.56 0.46

6-10 nodes 0.25 0.36 0.5 0.42

11-20 nodes 0.05 0.48 0.88 0.63

11-20 nodes 0.15 0.48 0.88 0.63

11-20 nodes 0.25 0.5 0.75 0.60

21-30 nodes 0.05 0.32 0.44 0.38

21-30 nodes 0.15 0.32 0.44 0.38

21-30 nodes 0.25 0.32 0.44 0.38

31-40 nodes 0.05 0.55 0.38 0.45

31-40 nodes 0.15 0.55 0.38 0.45

31-40 nodes 0.25 0.55 0.38 0.45

We further analyzed the effect of partitioning under several variations, and observed

that the best result is obtained under the partitioning with respect to the following size

ranges: 3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90. The results under this partitioning

are given in Table 5.3 and Table 5.5 for weighted and unweighted graphs, respectively.

We have observed that this change in the partitioning did not lead to an increase in

the maximum F1-measure, however, the average performance of the size ranges has

increased. Additionally, these new size ranges provide better results in ensemble

43

method.

Table 5.3: Change in # of Communities on Weighted Net. (Improved Partitioning)

Type Thr Precision Recall F1-meas.

3-5 nodes 0.05 0.62 0.81 0.70

3-5 nodes 0.10 0.62 0.81 0.70

3-5 nodes 0.15 0.62 0.81 0.70

6-8 nodes 0.45 0.71 0.62 0.67

6-8 nodes 0.50 0.71 0.62 0.67

6-8 nodes 0.55 0.71 0.62 0.67

12-16 nodes 0.35 0.50 0.62 0.56

12-16 nodes 0.40 0.50 0.62 0.56

12-16 nodes 0.60 0.56 0.56 0.56

32-90 nodes 0.05 0.64 0.44 0.52

32-90 nodes 0.10 0.64 0.44 0.52

32-90 nodes 0.15 0.64 0.44 0.52

10-11 nodes 0.05 0.38 0.50 0.43

10-11 nodes 0.10 0.38 0.50 0.43

10-11 nodes 0.15 0.38 0.50 0.43

17-31 nodes 0.05 0.38 0.50 0.43

17-31 nodes 0.10 0.38 0.50 0.43

17-31 nodes 0.15 0.35 0.44 0.39

9-9 nodes 0.05 0.46 0.38 0.41

9-9 nodes 0.10 0.46 0.38 0.41

9-9 nodes 0.15 0.46 0.38 0.41

As shown in Table 5.6 and Table 5.7, the method of tracking change in central nodes

present a similar performance for weighted and unweighted graphs. On the overall,

although the recall is high, the precision value is lower than the method on the number

of communities, due to high number of false positives.

44

Table 5.4: Change in # of Communities on Unweighted Net. (Initial Partitioning)

Type Thr Precision Recall F1-meas.

3-5 nodes 0.05 0.62 0.81 0.70

3-5 nodes 0.15 0.62 0.81 0.70

3-5 nodes 0.25 0.62 0.81 0.70

6-10 nodes 0.05 0.43 0.62 0.51

6-10 nodes 0.15 0.43 0.62 0.51

6-10 nodes 0.25 0.43 0.62 0.51

11-20 nodes 0.05 0.54 0.94 0.69

11-20 nodes 0.15 0.54 0.94 0.69

11-20 nodes 0.25 0.58 0.88 0.7

21-30 nodes 0.05 0.48 0.69 0.57

21-30 nodes 0.15 0.48 0.69 0.57

21-30 nodes 0.25 0.48 0.69 0.57

31-40 nodes 0.05 0.53 0.56 0.55

31-40 nodes 0.15 0.53 0.56 0.55

31-40 nodes 0.25 0.5 0.5 0.5

45

Table 5.5: Change in # of Communities on Unweighted Net. (Improved Partitioning)

Type Thr Precision Recall F1-meas.

3-5 nodes 0.05 0.62 0.81 0.70

3-5 nodes 0.10 0.62 0.81 0.70

3-5 nodes 0.15 0.62 0.81 0.70

32-90 nodes 0.05 0.60 0.75 0.67

32-90 nodes 0.10 0.60 0.75 0.67

32-90 nodes 0.15 0.58 0.69 0.63

12-16 nodes 0.60 0.57 0.75 0.65

12-16 nodes 0.55 0.55 0.75 0.63

12-16 nodes 0.05 0.43 1.00 0.60

9-9 nodes 0.05 0.89 0.50 0.64

9-9 nodes 0.10 0.89 0.50 0.64

9-9 nodes 0.15 0.89 0.50 0.64

17-31 nodes 0.25 0.50 0.69 0.58

17-31 nodes 0.20 0.48 0.69 0.56

17-31 nodes 0.05 0.46 0.69 0.55

6-8 nodes 0.05 0.41 0.44 0.42

6-8 nodes 0.10 0.41 0.44 0.42

6-8 nodes 0.15 0.41 0.44 0.42

10-11 nodes 0.55 0.33 0.38 0.35

10-11 nodes 0.60 0.33 0.38 0.35

10-11 nodes 0.65 0.33 0.38 0.35

46

Table 5.6: Change in the Central Nodes on Weighted Net.

Type Thr Precision Recall F1-meas.

NEW 0.05 0.33 0.94 0.49

NEW 0.15 0.33 0.94 0.49

NEW 0.25 0.33 0.94 0.49

NOT_ANY_MORE 0.05 0.33 0.94 0.49

NOT_ANY_MORE 0.15 0.33 0.94 0.49

NOT_ANY_MORE 0.65 0.39 0.75 0.52

NOT_ANY_MORE_NEW 0.05 0.33 0.94 0.49

NOT_ANY_MORE_NEW 0.15 0.33 0.94 0.49

NOT_ANY_MORE_NEW 0.25 0.33 0.94 0.49

SIZE 0.05 0.32 0.75 0.45

SIZE 0.15 0.36 0.5 0.42

SIZE 0.25 0.27 0.19 0.23

Table 5.7: Change in the Central Nodes on Unweighted Net.

Type Thr Precision Recall F1-meas.

NEW 0.35 0.34 0.94 0.5

NEW 0.45 0.34 0.94 0.5

NEW 0.55 0.34 0.94 0.5

NOT_ANY_MORE 0.05 0.33 0.94 0.49

NOT_ANY_MORE 0.15 0.33 0.94 0.49

NOT_ANY_MORE 0.65 0.39 0.81 0.53

NOT_ANY_MORE_NEW 0.05 0.33 0.94 0.49

NOT_ANY_MORE_NEW 0.15 0.33 0.94 0.49

NOT_ANY_MORE_NEW 0.25 0.33 0.94 0.49

SIZE 0.05 0.31 0.75 0.44

SIZE 0.15 0.36 0.5 0.42

SIZE 0.25 0.25 0.19 0.22

47

Among the three basic change tracking methods, the one on the change in the com-

munity members has the lowest event detection performance (Table 5.8). Among

the variations of this basic method, considering the minimum change can not capture

any event, which is an expected result since small change in the community may be

observed under ordinary behaviour as well. The performance under the maximum

change and average change is just the same, showing a strong bias towards marking

week to include an event.

Table 5.8: Change in the Community Members

Type Thr Precision Recall F1-meas.

AVG 0.05 0.33 1 0.5

AVG 0.15 0.33 1 0.5

AVG 0.25 0.33 1 0.5

MAX 0.05 0.33 1 0.5

MAX 0.15 0.33 1 0.5

MAX 0.25 0.33 1 0.5

MIN 0.05 0 0 0

MIN 0.15 0 0 0

MIN 0.25 0 0 0

5.2.2 Experiments on Ensemble Methods

Among the basic community structure change models, since the first two perform

better, we constructed two ensemble methods by combining variations of them. The

first one combines the variations of the first basic method, whereas the second ensem-

ble method combines the best performing variations of the first and the second basic

methods.

The results of the first ensemble method are given in Table 5.9 and 5.10 on weighted

and unweighted graphs, respectively. Similarly, the performance for weighted and

unweighted versions of the graph for the second ensemble method are given in Table

5.11 and 5.12, respectively. The event detection performance in terms of F1-measure

48

is higher for unweighted graphs for both of the ensemble methods.

Table 5.9: Ensemble # of Communities on Weighted Net.

Type Thr Prec. Rec. F1.

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 3 0.05 0.62 0.94 0.75

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 3 0.10 0.62 0.94 0.75

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 3 0.15 0.62 0.94 0.75

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 2 0.45 0.48 0.94 0.64

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 2 0.50 0.48 0.94 0.64

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 2 0.55 0.50 0.81 0.62

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 4 0.05 0.64 0.56 0.60

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 4 0.10 0.64 0.56 0.60

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 4 0.15 0.62 0.50 0.55

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 1 0.70 0.42 0.94 0.58

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 1 0.75 0.42 0.94 0.58

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 1 0.55 0.40 1.00 0.57

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 5 0.25 0.67 0.25 0.36

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 5 0.30 0.67 0.25 0.36

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 5 0.35 0.67 0.25 0.36

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 6 0.05 1.00 0.19 0.32

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 6 0.10 1.00 0.19 0.32

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 6 0.15 1.00 0.19 0.32

49

Table 5.10: Ensemble # of Communities on Unweighted Net.

Type Thr Pre. Rec. F1.

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 4 0.05 0.68 0.94 0.79

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 4 0.10 0.68 0.94 0.79

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 4 0.25 0.70 0.88 0.78

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 3 0.35 0.52 0.88 0.65

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 3 0.05 0.48 0.94 0.64

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 3 0.10 0.48 0.94 0.64

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 5 0.20 0.89 0.50 0.64

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 5 0.25 0.89 0.50 0.64

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 5 0.30 0.89 0.50 0.64

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 1 0.85 0.46 1.00 0.63

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 1 0.90 0.46 1.00 0.63

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 1 0.95 0.46 1.00 0.63

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 2 0.55 0.44 1.00 0.62

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 2 0.45 0.42 1.00 0.59

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 2 0.50 0.42 1.00 0.59

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 6 0.05 1.00 0.19 0.32

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 6 0.10 1.00 0.19 0.32

3-5, 6-8, 9-9, 10-11, 12-16, 17-31, 32-90, DT: 6 0.15 1.00 0.19 0.32

50

Table 5.11: Ensemble # of Communities and Central Nodes on Weighted Net.

Type Chng Pre. Rec. F1.

3-5, SIZE, DT: 2 0.05 0.60 0.75 0.67

3-5, NEW, DT: 2 0.05 0.60 0.75 0.67

3-5, NOT_ANY_MORE, DT: 2 0.05 0.60 0.75 0.67

3-5, NOT_ANY_MORE_NEW, DT: 2 0.05 0.60 0.75 0.67

6-8, SIZE, DT: 2 0.05 0.60 0.56 0.58

6-8, NEW, DT: 2 0.05 0.60 0.56 0.58

6-8, NOT_ANY_MORE, DT: 2 0.05 0.60 0.56 0.58

6-8, NOT_ANY_MORE_NEW, DT: 2 0.05 0.60 0.56 0.58

12-16, SIZE, DT: 2 0.05 0.45 0.62 0.53

12-16, NEW, DT: 2 0.05 0.45 0.62 0.53

12-16, NOT_ANY_MORE, DT: 2 0.05 0.45 0.62 0.53

12-16, NOT_ANY_MORE_NEW, DT: 2 0.05 0.45 0.62 0.53

32-90, SIZE, DT: 2 0.05 0.64 0.44 0.52

32-90, NEW, DT: 2 0.05 0.64 0.44 0.52

32-90, NOT_ANY_MORE, DT: 2 0.05 0.64 0.44 0.52

32-90, NOT_ANY_MORE_NEW, DT: 2 0.05 0.64 0.44 0.52

3-5, SIZE, DT: 1 0.05 0.34 1.00 0.51

3-5, NEW, DT: 1 0.05 0.34 1.00 0.51

3-5, NOT_ANY_MORE, DT: 1 0.05 0.34 1.00 0.51

3-5, NOT_ANY_MORE_NEW, DT: 1 0.05 0.34 1.00 0.51

6-8, SIZE, DT: 1 0.05 0.34 1.00 0.51

6-8, NEW, DT: 1 0.05 0.34 1.00 0.51

6-8, NOT_ANY_MORE, DT: 1 0.05 0.34 1.00 0.51

6-8, NOT_ANY_MORE_NEW, DT: 1 0.05 0.34 1.00 0.51

17-31, SIZE, DT: 1 0.05 0.34 1.00 0.51

17-31, NEW, DT: 1 0.05 0.34 1.00 0.51

17-31, NOT_ANY_MORE, DT: 1 0.05 0.34 1.00 0.51

17-31, NOT_ANY_MORE_NEW, DT: 1 0.05 0.34 1.00 0.51

51

Table 5.12: Ensemble # of Communities and Central Nodes on Unweighted Net.

Type Chng Pre. Rec. F1.

3-5, SIZE, DT: 2 0.05 0.62 0.81 0.70

3-5, NEW, DT: 2 0.05 0.62 0.81 0.70

3-5, NOT_ANY_MORE, DT: 2 0.05 0.62 0.81 0.70

3-5, NOT_ANY_MORE_NEW, DT: 2 0.05 0.62 0.81 0.70

9-9, SIZE, DT: 2 0.05 1.00 0.50 0.67

9-9, NEW, DT: 2 0.05 1.00 0.50 0.67

9-9, NOT_ANY_MORE, DT: 2 0.05 1.00 0.50 0.67

9-9, NOT_ANY_MORE_NEW, DT: 2 0.05 1.00 0.50 0.67

32-90, SIZE, DT: 2 0.05 0.58 0.69 0.63

32-90, NEW, DT: 2 0.05 0.58 0.69 0.63

32-90, NOT_ANY_MORE, DT: 2 0.05 0.58 0.69 0.63

32-90, NOT_ANY_MORE_NEW, DT: 2 0.05 0.58 0.69 0.63

12-16, SIZE, DT: 2 0.05 0.44 0.94 0.60

12-16, NEW, DT: 2 0.05 0.44 0.94 0.60

12-16, NOT_ANY_MORE, DT: 2 0.05 0.44 0.94 0.60

12-16, NOT_ANY_MORE_NEW, DT: 2 0.05 0.44 0.94 0.60

17-31, SIZE, DT: 2 0.05 0.45 0.62 0.53

17-31, NEW, DT: 2 0.05 0.45 0.62 0.53

17-31, NOT_ANY_MORE, DT: 2 0.05 0.45 0.62 0.53

17-31, NOT_ANY_MORE_NEW, DT: 2 0.05 0.45 0.62 0.53

6-8, SIZE, DT: 1 0.05 0.35 1.00 0.52

6-8, NEW, DT: 1 0.05 0.35 1.00 0.52

6-8, NOT_ANY_MORE, DT: 1 0.05 0.35 1.00 0.52

6-8, NOT_ANY_MORE_NEW, DT: 1 0.05 0.35 1.00 0.52

32-90, SIZE, DT: 1 0.05 0.35 1.00 0.52

32-90, NEW, DT: 1 0.05 0.35 1.00 0.52

32-90, NOT_ANY_MORE, DT: 1 0.05 0.35 1.00 0.52

32-90, NOT_ANY_MORE_NEW, DT: 1 0.05 0.35 1.00 0.52

52

5.2.3 Experiments on Scalability

In order to analyze the scalability of the proposed method, we conducted an experi-

ment to measure the time performance under varying data set size. The original data

set contains nearly 100000 call detail records. For each week of this data, we con-

structed 5 different versions by constructing multiples of the data set by 1, 2, 4, 8,

and 16 Each of the resulting 5 different version of data set contains nearly 100000,

200000, 400000, 800000, and 1,6M call detail records, respectively. As in the pre-

vious experiments, we performed the analysis for both weighted and unweighted

graphs.

The execution times of the proposed method on the scaled data sets are presented in

Table 5.13, Figure 5.2, and Figure 5.3. Table 5.13 lists all the durations in seconds,

whereas Figure 5.2, and Figure 5.3 show the nature of the trend for weighted and

unweighted graphs, respectively. As seen in the results, the quadratic complexity of

the community detection method is reflected in the execution times.

Table 5.13: Data Set Scalability Performance Analysis

Graph Type Data Set Size (# of CDR) Exec. Time (secs)

Weighted 100,000 15

Weighted 200,000 27

Weighted 400,000 89

Weighted 800,000 308

Weighted 1,600,000 1231

Unweighted 100,000 12

Unweighted 200,000 27

Unweighted 400,000 91

Unweighted 800,000 296

Unweighted 1,600,000 1260

53

Figure 5.2: Weighted Graph: Exec. Time/Data Set Size

Figure 5.3: Unweighted Graph: Exec. Time/Data Set Size

5.2.4 Overview & Discussion

We can summarize the results of the experiments in this section as follows:

• Among basic change tracking models, event detection according to the change

in number of communities has the highest scores in terms of precision and F1-

measure. Although it is the simplest approach, it provides a stronger indicator

for event. Additionally, it has better potential to be applied online due to its

lower computationally cost.

• Change tracking on smallest communities (communities with 3-5 members)

provides the highest precision and recall results. This indicates that an event

54

triggers communication among small groups that emerges new, possibly short-

lived communities.

• As a general observation for the first two basic change tracking methods, lower

change threshold values provides the highest accuracy scores. Except for just a

few cases, under increasing change threshold, both precision and recall values

decrease.

• It is observed that the basic method on tracking the change of central nodes is

not sensitive to change threshold. Although high recall values (recall 0.94) are

obtained for this method, precision values remain low.

• As in the second method, the method on tracking the change in the community

members appears to be insensitive to change threshold. The accuracy values re-

main the same for each of AVG, MAX and MIN settings. This method provides

the highest recall score (recall value 1.00) under AVG and MAX, however, low

precision value shows that it has tendency towards labeling time windows as

event.

• The accuracy values under weighted and unweighted network structures do not

indicate a strong difference. The results are the same for the method with

change of community members for both of the graphs. For the other two

basic and two ensemble methods, the accuracy values slightly higher for the

unweighted network structure. Thus, unweighted network structure may be

preferable due to its lightweight structure.

• The ensemble method combining the variations of change tracking on number

of communities gives the best results by even exceeding the results of number

of communities based basic method. The highest F1-measure value is 0.79 for

unweighted and 0.75 for weighted directed network. Therefore, we can state

that the ensemble method that we combines the results of number of communi-

ties change tracking basic method variations is successful.

• On the other hand, the ensemble method that combines the results of number

of communities and central nodes based event detection method variations do

not give better results than the basic methods. The highest F1-measure value is

0.67 for unweighted and 0.70 for weighted directed network.

55

• The scalability experiments reflect the quadratic complexity of the employed

community detection method in increasing time costs. This time cost is con-

sidered to be similar to previous solutions that rely on the change the graph

attributes, such as node centrality [60], [1]. However, such previous studies did

not report time cost, we can not provide a quantified comparison for scalability

analysis.

5.3 Broad Experiments of Community Structure and Communication Trend

Based Methods with All Data Sets

In these experiments, the results are analyzed under precision, recall, f-measure, false

positive rate, and true positive rate metrics. However, for the overall comparison

the area under the Precision-Recall curve is used. The curve is plotted under 100

threshold values and the area under this curve is denoted as Average Precision [1].

The experiments are conducted on a computer with 32 GB RAM and Intel(R) Core(TM)

i7-10750H CPU@2.60GHz processor.

A set of experiments is devised in order to answer the following research questions:

• RQ1. How effective are the proposed change tracking methods for event detec-

tion?

• RQ2. Is the size and amount of the communities to consider an effect for event

detection? How does it affect the detection performance?

• RQ3. How does the time resolution affect the community detection?

• RQ4. Does community change comparison method effect the community de-

tection performance?

• RQ5. Does community detection based event detection approach provide a

feasible solution in terms of running time performance?

In the following subsections, the experiments conducted to answer the above research

questions are presented. Additionally, the event detection performance of these ex-

periments is compared with the previous studies.

56

The results of the proposed methods with various bucket configurations per data set

are presented in Appendices. These results can be examined to drill on the perfor-

mances of the proposed methods under different configurations per data set.

5.3.1 Event Detection Performance of the Methods under the Basic Settings

In this experiment, the performance of the proposed approaches are analyzed under

the basic settings (i.e., full data set, all communities (Bucket A), finest time resolu-

tion (Resolution 1)). In Table 5.14, the list of methods and their abbreviations are

presented. However, due to the high number of methods to list, in the initial analysis,

only the best performing methods are demonstrated in Table 5.15. In this table, for

Boston Bombing (BBM and BBR), Enron (ENR), Reality Mining (RMS and RMV)

and Turkish GSM (TGSM) data sets, the best performance obtained for data set mod-

eling variations is given. The detailed results for RM and TGSM data sets are pre-

sented in Table 5.16 and Table 5.17, respectively. In Table 5.16, name of the data sets

reflect the graph structure used for modeling the network. For example S-DU denotes

SMS communication network with Directed Unweighted graph.

Table 5.14: Abbreviations for the basic methods

Abbreviation Method Description

CN-NEW Track the number of new central nodes

CN-SIZE Track the number of central nodes

CN-NOT Track the number of not anymore central nodes

CN-NOT-NEW Track the number of not anymore + new central nodes

NOC Track the number of communities

CT-IILR Track the IILR by comparing with prev time

CT-MOD Track the Modularity by comparing with prev time

CT-IILR-SD Track the IILR with respect to standard deviation

CT-MOD-SD Track the Modularity with respect to standard deviation

According to the results, there is no single method that consistently outperforms the

others on all data sets. CN-NEW gives the highest average precision on three data

sets (BBM, RMS, RMV), and CN-NOT, CT-IILR, CT-MOD provide the best results

57

Table 5.15: Evaluation on Basic Methods (In Average Precision)

Method/Dataset BBM BBR ENR RMS RMV TGSM

CN-NEW 0.58 0.13 0.07 0.26 0.35 0.6

CN-NOT 0.11 0.05 0.07 0.19 0.32 0.62

CN-NOT-NEW 0.03 0.03 0.13 0.18 0.3 0.24

CN-SIZE 0.12 0.2 0.13 0.25 0.35 0.57

CT-IILR 0.17 0.32 0.07 0.25 0.23 0.3

CT-MOD 0.35 0.13 0.19 0.25 0.25 0.6

NOC 0.18 0.6 0.08 0.25 0.33 0.41

Table 5.16: Evaluation on Basic Methods: RM data sets (In Average Precision)

Method/Dataset S-DU S-DW S-UW V-DU V-DW V-UW

CN-NEW 0.26 0.34 0.4 0.35 0.26 0.3

CN-NOT 0.19 0.26 0.33 0.32 0.23 0.27

CN-NOT-NEW 0.18 0.24 0.23 0.3 0.23 0.17

CN-SIZE 0.25 0.27 0.36 0.35 0.23 0.33

CT-IILR 0.25 0.26 0.24 0.23 0.23 0.22

CT-MOD 0.25 0.22 0.24 0.25 0.23 0.25

NOC 0.25 0.26 0.21 0.33 0.33 0.24

Table 5.17: Evaluation on Basic Methods: TGSM data set (In Average Precision)

Method/Dataset TGSM BCS CS

CN-NEW 0.6 0.62 0.5

CN-NOT 0.62 0.54 0.42

CN-NOT-NEW 0.24 0.24 0.22

CN-SIZE 0.57 0.56 0.53

CT-IILR 0.3 0.43 0.52

CT-MOD 0.6 0.75 0.62

NOC 0.41 0.55 0.58

58

for the other three data sets (TGSM, BBR, ENR), respectively.

At this point, it is worth examining the results given in Table 5.17. In these results,

it is observed that using the central part of the geographical area increases the event

detection performance up until 0.75 with CT-MOD on BCS. Narrowing down the

area decreases the data set size as well. The effect of this change on running time is

elaborated in Section 5.3.6.

5.3.2 Event Detection Performance of the Ensemble Methods under the Basic

Settings

Detection performance of several ensemble event detectors are also analyzed under

the basic setting. The list of methods with their abbreviations are presented in Table

5.18. The results are presented in Table 5.19. As in the previous analysis, in this

table, the highest event detection values obtained for data set modeling variations of

BB, ENR, RM and TGSM data sets are given. The detailed results for RM and TGSM

data sets are presented in Table 5.20 and Table 5.21, respectively.

Table 5.18: Abbreviations for the ensemble methods

Abbreviation Method Description

NOC-qx..qy-OR OR ensemble of buckets x..y in NOC

NOC-qx..qy-AND AND ensemble of buckets x..y in NOC

NOC-NEW-OR OR ensemble of NOC and CN-NEW

NOC-NEW-AND AND ensemble of NOC and CN-NEW

NOC-NOT-OR OR ensemble of NOC and CN-NOT

NOC-NOT-AND AND ensemble of NOC and CN-NOT

NOC-NOT-NEW-OR OR ensemble of NOC and CN-NOT-NEW

NOC-NOT-NEW-AND AND ensemble of NOC and CN-NOT-NEW

NOC-SIZE-OR OR ensemble of NOC and CN-SIZE

NOC-SIZE-AND AND ensemble of NOC and CN-SIZE

In the results, it is seen that there is performance improvement only for some of the

data sets. The ensemble method bringing the improvement varies for each of these

59

Table 5.19: Evaluation on Ensemble Methods (In Average Precision)

Method/Dataset BBM BBR ENR RMS RMV TGSM
NOC-q1q2-OR 0.13 0.55 0.1 0.27 0.3 0.54
NOC-q1q3-OR 0.13 0.55 0.1 0.27 0.3 0.54
NOC-q1q4-OR 0.13 NA 0.1 0.27 0.3 0.54
NOC-q2q3-OR 0.13 0.55 0.1 0.27 0.3 0.54
NOC-q2q4-OR 0.13 NA 0.1 0.27 0.3 0.54
NOC-q3q4-OR 0.13 NA 0.1 0.27 0.3 0.54
NOC-q1q2-AND 0.19 0.6 0.08 0.2 0.29 0.4
NOC-q1q3-AND 0.19 0.6 0.08 0.2 0.29 0.4
NOC-q1q4-AND 0.19 NA 0.08 0.2 0.29 0.4
NOC-q2q3-AND 0.19 0.6 0.08 0.2 0.29 0.4
NOC-q2q4-AND 0.19 NA 0.08 0.2 0.29 0.4
NOC-q3q4-AND 0.19 NA 0.08 0.2 0.29 0.4
NOC-q1q2q3-OR 0.13 0.55 0.18 0.28 0.27 0.55
NOC-q1q2q4-OR 0.13 NA 0.18 0.28 0.27 0.55
NOC-q2q3q4-OR 0.13 NA 0.18 0.28 0.27 0.55
NOC-q1q3q4-OR 0.13 NA 0.18 0.28 0.27 0.55
NOC-q1q2q3-AND 0.16 0.6 0.08 0.08 0.25 0.43
NOC-q1q2q4-AND 0.16 NA 0.08 0.08 0.25 0.43
NOC-q2q3q4-AND 0.16 NA 0.08 0.08 0.25 0.43
NOC-q1q3q4-AND 0.16 NA 0.08 0.08 0.25 0.43
NOC-q1q2q3q4-OR 0.1 NA 0.1 0.33 0.27 0.57
NOC-q1q2q3q4-AND 0.17 NA 0.05 0.02 0.18 0.38
NOC-NEW-OR 0.58 0.13 0.08 0.28 0.32 0.6
NOC-NEW-AND 0.18 0.6 0.08 0.23 0.43 0.41
NOC-NOT-OR 0.11 0.05 0.08 0.26 0.32 0.62
NOC-NOT-AND 0.18 0.6 0.08 0.2 0.39 0.41
NOC-NOT-NEW-OR 0.03 0.03 0.12 0.27 0.32 0.24
NOC-NOT-NEW-AND 0.18 0.6 0.07 0.21 0.41 0.41
NOC-SIZE-OR 0.27 0.2 0.14 0.28 0.29 0.56
NOC-SIZE-AND 0.06 0.6 0.07 0.21 0.46 0.43

60

Table 5.20: Evaluation on Ensemble Methods: RM (In Average Precision)

Method/Dataset SDU SDW SUW VDU VDW VUW
NOC-q1q2-OR 0.27 0.26 0.31 0.3 0.28 0.29
NOC-q1q3-OR 0.27 0.26 0.31 0.3 0.28 0.29
NOC-q1q4-OR 0.27 0.26 0.31 0.3 0.28 0.29
NOC-q2q3-OR 0.27 0.26 0.31 0.3 0.28 0.29
NOC-q2q4-OR 0.27 0.26 0.31 0.3 0.28 0.29
NOC-q3q4-OR 0.27 0.26 0.31 0.3 0.28 0.29
NOC-q1q2-AND 0.2 0.1 0.15 0.29 0.22 0.18
NOC-q1q3-AND 0.2 0.1 0.15 0.29 0.22 0.18
NOC-q1q4-AND 0.2 0.1 0.15 0.29 0.22 0.18
NOC-q2q3-AND 0.2 0.1 0.15 0.29 0.22 0.18
NOC-q2q4-AND 0.2 0.1 0.15 0.29 0.22 0.18
NOC-q3q4-AND 0.2 0.1 0.15 0.29 0.22 0.18
NOC-q1q2q3-OR 0.28 0.27 0.31 0.27 0.27 0.3
NOC-q1q2q4-OR 0.28 0.27 0.31 0.27 0.27 0.3
NOC-q2q3q4-OR 0.28 0.27 0.31 0.27 0.27 0.3
NOC-q1q3q4-OR 0.28 0.27 0.31 0.27 0.27 0.3
NOC-q1q2q3-AND 0.08 0.07 0.13 0.25 0.15 0.11
NOC-q1q2q4-AND 0.08 0.07 0.13 0.25 0.15 0.11
NOC-q2q3q4-AND 0.08 0.07 0.13 0.25 0.15 0.11
NOC-q1q3q4-AND 0.08 0.07 0.13 0.25 0.15 0.11
NOC-q1q2q3q4-OR 0.33 0.3 0.28 0.27 0.25 0.3
NOC-q1q2q3q4-AND 0.02 0.02 0.01 0.18 0.11 0.02
NOC-NEW-OR 0.28 0.29 0.36 0.32 0.3 0.32
NOC-NEW-AND 0.23 0.28 0.23 0.43 0.28 0.22
NOC-NOT-OR 0.26 0.27 0.32 0.32 0.32 0.31
NOC-NOT-AND 0.2 0.25 0.24 0.39 0.23 0.22
NOC-NOT-NEW-OR 0.27 0.28 0.22 0.32 0.29 0.2
NOC-NOT-NEW-AND 0.21 0.26 0.23 0.41 0.25 0.22
NOC-SIZE-OR 0.28 0.27 0.34 0.29 0.28 0.31
NOC-SIZE-AND 0.21 0.24 0.24 0.46 0.26 0.27

61

Table 5.21: Evaluation on Ensemble Methods: TGSM (In Average Precision)

Method/Dataset TGSM BCS CS
NOC-q1q2-OR 0.54 0.57 0.65
NOC-q1q3-OR 0.54 0.57 0.65
NOC-q1q4-OR 0.54 0.57 0.65
NOC-q2q3-OR 0.54 0.57 0.65
NOC-q2q4-OR 0.54 0.57 0.65
NOC-q3q4-OR 0.54 0.57 0.65
NOC-q1q2-AND 0.4 0.49 0.59
NOC-q1q3-AND 0.4 0.49 0.59
NOC-q1q4-AND 0.4 0.49 0.59
NOC-q2q3-AND 0.4 0.49 0.59
NOC-q2q4-AND 0.4 0.49 0.59
NOC-q3q4-AND 0.4 0.49 0.59
NOC-q1q2q3-OR 0.55 0.61 0.66
NOC-q1q2q4-OR 0.55 0.61 0.66
NOC-q2q3q4-OR 0.55 0.61 0.66
NOC-q1q3q4-OR 0.55 0.61 0.66
NOC-q1q2q3-AND 0.43 0.45 0.51
NOC-q1q2q4-AND 0.43 0.45 0.51
NOC-q2q3q4-AND 0.43 0.45 0.51
NOC-q1q3q4-AND 0.43 0.45 0.51
NOC-q1q2q3q4-OR 0.57 0.62 0.65
NOC-q1q2q3q4-AND 0.38 0.45 0.51
NOC-NEW-OR 0.6 0.62 0.54
NOC-NEW-AND 0.41 0.55 0.53
NOC-NOT-OR 0.62 0.54 0.45
NOC-NOT-AND 0.41 0.55 0.53
NOC-NOT-NEW-OR 0.24 0.24 0.25
NOC-NOT-NEW-AND 0.41 0.55 0.53
NOC-SIZE-OR 0.56 0.6 0.61
NOC-SIZE-AND 0.43 0.55 0.49

62

cases. For RMS data set, average precision increases from 0.26 to 0.33 by NOC-

q1q2q3q4-OR. For RMV, there is increase from 0.35 to 0.46 average precision by

NOC-SIZE-AND.

The same situation is also observed for the variations of TGSM data set, which are

BCS and CS. Some of the ensemble methods provide improvement over basic meth-

ods. For BCS data set, the highest performance obtained by CT-MOD is not exceeded

by any ensemble method. However, for CS data set, average precision increases from

0.62 to 0.66 by NOC-q1q2q3-OR.

5.3.3 Analysis on the Effect of Bucket Sizes

As described in Section 3.1, the detected communities are sorted in ascending order

of community size and grouped under buckets. In this grouping, for instance, A refers

to all communities, whereas Q3 refers to the set of communities in the third quartile.

The results of the experiments under these buckets are presented in Table 5.22 for

CDR data sets (RMS, RMV and TGSM) and in Table 5.23 for Social media data sets

(BBM, BBR and ENR).

The results clearly show that, for CDR data sets, certain buckets of communities affect

the event detection performance. In CDR data sets, for RMS data set, performance of

CN-NEW method increases from 0.26 to 0.38 when H1 is used. Similarly, for RMV,

the performance of CN-NEW rises from 0.35 to 0.48. However, the bucket to prefer is

data dependent. On the other hand, for social media data sets, using buckets generally

degrades the performance, the highest average precision results are obtained with all

communities (bucket A).

5.3.4 Analysis on the Effect of Time Resolution

In our data sets, the events are marked per day or per week. Therefore, the changes

in the communities are tracked on the time resolution given in the data set. However,

this resolution can be too strict when the effect of the event on the communication

network is propagated with a delay. In order to analyze the effect of time resolution

63

Ta
bl

e
5.

22
:E

va
lu

at
io

n
on

B
as

ic
M

et
ho

ds
:B

uc
ke

tS
iz

e
E

ff
ec

t(
C

D
R

da
ta

se
ts

)(
In

A
ve

ra
ge

Pr
ec

is
io

n)

M
et

ho
d/

D
at

as
et

R
M

S
R

M
V

T
G

SM

B
uc

ke
tS

iz
e

A
F

H
1

H
2

Q
1

Q
2

Q
3

Q
4

A
F

H
1

H
2

Q
1

Q
2

Q
3

Q
4

A
F

H
1

H
2

Q
1

Q
2

Q
3

Q
4

C
N

-N
E

W
0.

26
0.

35
0.

38
0.

33
0.

28
0.

2
0.

33
0.

2
0.

35
0.

4
0.

48
0.

41
0.

4
0.

49
0.

32
0.

42
0.

6
0.

61
0.

61
0.

46
0.

78
0.

62
0.

5
0.

37

C
N

-N
O

T
0.

19
0.

24
0.

3
0.

25
0.

24
0.

22
0.

28
0.

27
0.

32
0.

38
0.

37
0.

33
0.

29
0.

46
0.

22
0.

43
0.

62
0.

61
0.

63
0.

49
0.

66
0.

52
0.

52
0.

38

C
N

-N
O

T-
N

E
W

0.
18

0.
23

0.
21

0.
17

0.
16

0.
16

0.
22

0.
15

0.
3

0.
36

0.
26

0.
29

0.
21

0.
23

0.
2

0.
29

0.
24

0.
24

0.
24

0.
22

0.
25

0.
24

0.
24

0.
25

C
N

-S
IZ

E
0.

25
0.

24
0.

3
0.

27
0.

26
0.

24
0.

33
0.

25
0.

35
0.

37
0.

36
0.

33
0.

3
0.

41
0.

3
0.

46
0.

57
0.

71
0.

67
0.

67
0.

64
0.

56
0.

71
0.

63

N
O

C
0.

25
0.

21
0.

18
0.

25
0.

28
0.

28
0.

32
0.

12
0.

33
0.

25
0.

26
0.

18
0.

1
0.

37
0.

26
0.

4
0.

41
0.

51
0.

5
0.

51
0.

57
0.

52
0.

49
0.

41

Ta
bl

e
5.

23
:E

va
lu

at
io

n
on

B
as

ic
M

et
ho

ds
:B

uc
ke

tS
iz

e
E

ff
ec

t(
So

ci
al

m
ed

ia
da

ta
se

ts
)(

In
A

ve
ra

ge
Pr

ec
is

io
n)

M
et

ho
d/

D
at

as
et

B
B

M
B

B
R

E
N

R

B
uc

ke
tS

iz
e

A
F

H
1

H
2

Q
1

Q
2

Q
3

Q
4

A
F

H
1

H
2

Q
1

Q
2

Q
3

Q
4

A
F

H
1

H
2

Q
1

Q
2

Q
3

Q
4

C
N

-N
E

W
0.

58
0.

52
0.

04
0.

09
0.

04
0.

04
0.

08
0.

04
0.

13
0.

06
0.

05
0.

05
0.

05
0.

05
0.

01
0.

01
0.

07
0.

06
0.

14
0.

07
0.

06
0.

04
0.

09
0.

01

C
N

-N
O

T
0.

11
0.

27
0.

04
0.

09
0.

04
0.

04
0.

07
0.

04
0.

05
0.

06
0.

06
0.

05
0.

06
0.

05
0.

01
0.

01
0.

07
0.

06
0.

12
0.

08
0.

03
0.

03
0.

06
0.

05

C
N

-N
O

T-
N

E
W

0.
03

0.
03

0.
03

0.
04

0.
03

0.
03

0.
04

0.
04

0.
03

0.
03

0.
03

0.
03

0.
03

0.
04

0.
01

0.
01

0.
13

0.
07

0.
05

0.
11

0.
04

0.
04

0.
08

0.
07

C
N

-S
IZ

E
0.

12
0.

1
0.

07
0.

11
0.

01
0.

1
0.

14
0.

05
0.

2
0.

28
0.

27
0.

3
0.

27
0.

35
0.

06
0.

06
0.

13
0.

11
0.

18
0.

06
0.

11
0.

06
0.

08
0.

03

N
O

C
0.

18
0.

09
0.

08
0.

12
0.

03
0.

13
0.

11
0.

06
0.

6
0.

55
0.

55
0.

55
0.

55
0.

56
0.

54
0.

54
0.

08
0.

08
0.

17
0.

02
0.

13
0.

02
0.

05
0.

01

64

for change detection, the setting for ENR and TGSM data sets is modified, such

that, time window is set as 2 days and 3 days, in addition to daily time window

(window size 1). The results of the analysis is given in Table 5.24. The analysis

shows a considerable increase in the performance of CT-MOD, which provided the

highest accuracy performance with the finest grained time resolution for ENR data

set, specifically for window size 2. The trend is similar also for the other methods.

Table 5.24: Evaluation on Basic Methods: Resolution Effect (In Average Precision)

Method/Dataset ENRON TGSM BCS CS

Resolution 1 2 3 1 2 3 1 2 3 1 2 3

CN-NEW 0.07 0.07 0.2 0.6 0.85 0.83 0.62 0.68 0.86 0.5 0.81 0.71

CN-NOT 0.07 0.18 0.17 0.62 0.76 0.73 0.54 0.84 0.73 0.42 0.8 0.67

CN-NOT-NEW 0.13 0.26 0.21 0.24 0.32 0.33 0.24 0.32 0.33 0.22 0.32 0.33

CN-SIZE 0.13 0.17 0.09 0.57 0.64 0.67 0.56 0.77 0.58 0.53 0.79 0.75

CT-IILR 0.07 0.18 0.29 0.3 0.06 0.08 0.43 0.5 0.08 0.52 0.72 0.58

CT-MOD 0.19 0.22 0.18 0.6 0.94 0.9 0.75 0.94 0.89 0.62 0.92 0.9

NOC 0.08 0.13 0.24 0.41 0.79 0.46 0.55 0.82 0.65 0.58 0.81 0.78

5.3.5 Analysis on the Effect of Community Change Comparison Method

In [17], Moriano et al. propose event detection through tracking communication trend

changes in communities using InfoMap as the community detection algorithm, IILR

as the value to track and standard deviation as the comparison method. In our pro-

posed solution, solution of [17] is modified such that, dSLM is used as the community

detection algorithm, modularity is used as the value to track and change from the pre-

vious time interval is used as change comparison method. In this analysis, the change

comparison method in our setting is replaced with change from the previous time

interval tracking in order to evaluate its effect on event detection performance. The

results are presented in Table 5.25. The results reveal that the way change is computed

is effective on the result. The proposed change tracking method has clear advantage

for the CT-MOD method as it produces higher accuracy values for 6 out of 8 data

sets, whereas it performs similar with the standard deviation based change tracking

65

method for the CT-IILR method.

Table 5.25: Evaluation on Basic Methods: SD Effect (In Average Precision)

Method/Dataset BBM BBR ENRON RMS RMV TGSM BCS CS

CT-IILR 0.17 0.32 0.07 0.25 0.23 0.3 0.43 0.52

CT-IILR-SD 0.15 0.28 0.16 0.39 0.27 0.38 0.39 0.37

CT-MOD 0.35 0.13 0.19 0.25 0.25 0.6 0.75 0.62

CT-MOD-SD 0.19 0.09 0.05 0.34 0.5 0.36 0.44 0.51

5.3.6 Analysis on the Running Time Performance

Although all investigated methods include community detection as a core task, the

change detection approaches and techniques differ considerably. This difference leads

to variations in time costs for the methods. In Table 5.26, the running time duration

of the basic methods are given in seconds. All the CN methods are computed in one

run to increase performance. In the table, the average execution time for 4 CN based

methods are reported. As seen in the results, the methods based on change tracking on

the community structure (CN and NOC) are computationally lightweight compared

to communication trend based methods (CT-IILR, CT-MOD).

The running time duration for variations of TGSM data set are given in Table 5.27. As

expected, execution time decreases for BCS and CS, as the size of the processed data

gets smaller compared to TGSM. As an interesting observation, focusing on central

regions affects also event detection performance positively.

Table 5.26: Evaluation on Basic Methods: Run Times (In Seconds)

Method/Dataset BBM BBR ENR RMS RMV TGSM

CN 158.22 58.49 0.08 0.06 0.11 70.93

CT-IILR 470.9 181.41 0.24 0.09 0.14 154.47

CT-MOD 93.62 45.6 0.15 0.12 0.14 51.95

NOC 13.59 4.89 0.41 0.03 0.03 4.12

66

Table 5.27: Evaluation on Basic Methods: Run Times: TGSM data sets (In Seconds)

Method/Dataset TGSM BCS CS

CN 70.93 5.43 1.26

CT-IILR 154.47 13.29 5.11

CT-MOD 51.95 3.33 0.86

NOC 4.12 0.65 0.28

5.3.7 Comparison with Baseline Studies

As the baseline methods, the methods by Moriano et al. in [17] and Rayana et al. in

[1] are used.

Comparison with [17]. As the basic differences from the communication trend based

solution of our work, Moriano et al. present experiments by using the InfoMap com-

munity detection algorithm and standard deviation for change computing. In [17], the

event detection performance on Enron data set is presented only in terms of precision-

recall curve. Our results on the same data set with CT based methods using dSLM

are given in Table 5.25. Additionally, the average precision with InfoMap community

detection algorithm (using the original source codes provided by Moriano et al.) on

Enron data set is 0.14.

Moriano et. al. also conducted experiments on Boston Bombing data set. They pro-

vide the results of tracking the inter-intra ratio visually [17], but precision-recall curve

or the average precision result are not reported. In our analysis, average precision val-

ues obtained on this data set is relatively low. This is possibly due to noise in the data

set such that there are fluctuations, and on day 8, the data includes another event not

related with Boston bombing and hence not considered in the ground truth event set.

Additionally, there is missing data for day 18. As for execution time performance,

for this data set, our community detection step takes 356 minutes in total for both

mention and retweet networks. The event detection step takes 103 minutes in total.

Thus, experiments including both networks are completed in 459 minutes (7.6 hours).

67

Comparison with [1]. When the original source code of the methods in [1] is ex-

ecuted on Boston Bombing data set, the mention network experiment results in out

of memory error under 32 GB RAM. The retweet network data is read in about 1

hour, but the codes cannot process it even after 7 hours. Therefore, the experiment is

canceled after 8 hours without obtaining any result.

On reality mining data set, 5 basic and 5 ensemble methods of [1] are executed on

both directed weighted voice call and SMS networks. The analysis on the voice

call network takes 258 seconds, whereas it takes 36 seconds on the SMS network

experiment. Thus, in total, it takes 294 seconds for all of the analysis on this data set.

When all the proposed methods are performed (7 basic and 2 ensemble methods, with

all bucket size variations) on all Reality mining networks, the community detection

step takes 4 seconds, and the event detection step takes 13 seconds. Hence, on the

total, it takes 17 seconds for our methods to conduct the whole analysis for this data

set.

When the source code of [1] is executed on Turkish GSM Operator data set, it results

with out of memory error, as well, under 32 GB RAM. For BCS and CS subsets, the

code execution was stuck at PTSAD method of [1]. Therefore, the part of the source

code related with this method is commented out and other base methods are used. The

analysis on BCS data set takes 1272 seconds, and on CS data set, it takes 448 seconds.

The execution times of all our proposed methods on TGSM, BCS and CS data sets

are given in Table 5.28 for three different time resolutions. As seen in the table, for

BCS it takes 701 seconds and for CS data set it takes 246 seconds (in resolution 1).

Therefore, the execution time efficiency advantage of the proposed methods is clear.

Table 5.28: Execution times of TGSM Experiments (7 basic, 2 ensemble methods)

Dataset Comm. Det. Event Det. Total Exec.

TGSM 89 mins 86 mins 175 mins

BCS 253 secs 448 secs 701 secs

CS 60 secs 186 secs 246 secs

Table 5.29 presents the event detection performance of the methods in [1] on Reality

Mining, BCS and CS data sets, and the best results obtained by the proposed methods

68

on the same data sets. For BCS data set, CT-MOD on bucket A (abbreviated as

CT-MOD-A in the table) provides the highest average precision with a gap of 8%

(compared to EBED outdegree). For the other data sets, although the methods in

[1] provide higher event detection performance, the results of the proposed methods

can be considered comparable also considering their time performance advantage,

particularly for RMS-DW and CS data sets.

Table 5.29: Evaluation of Methods in [1] (In Average Precision)

Method/Dataset RMS-DW RMV-DW BCS CS

EBED indeg 0.39 0.34 0.63 0.67

PTSAD indeg 0.51 0.48 NA NA

SpiritTest indeg 0.68 0.56 0.48 0.49

ASED indeg 0.47 0.58 0.4 0.4

MAED indeg 0.53 0.66 0.48 0.47

EBED outdeg 0.37 0.47 0.67 0.65

PTSAD outdeg 0.39 0.53 NA NA

SpiritTest outdeg 0.63 0.5 0.4 0.4

ASED outdeg 0.5 0.66 0.44 0.66

MAED outdeg 0.58 0.65 0.46 0.47

Full Ensemble 0.53 0.6 0.46 0.63

SELECT-H Ensemble 0.6 0.64 0.42 0.5

SELECT-V Ensemble 0.47 0.65 0.53 0.62

DivE Ensemble 0.49 0.5 0.63 0.67

ULARA Ensemble 0.57 0.61 0.52 0.62

CT-IILR-SD - F 0.6 0.25 0.39 0.35

CT-MOD-SD - A 0.23 0.52 0.44 0.51

CT-MOD - A 0.22 0.23 0.75 0.62

5.3.8 Overview & Discussion

The overview of the performance of all proposed methods on all data sets is presented

in Table 5.30. Additionally, an overview of the performance for all buckets on all data

69

sets is provided in Table 5.31. For each data set, the top result is colored with dark

brown, the second top result is colored with orange, and the third top result is colored

with light yellow. In Table 5.30, the methods are ordered based on the number of

colored cells.

Table 5.30: The Overview of the Best Results: Method (In Average Precision)

The points are given such that first results are 3, the second results are 2, and the third results are 1 point. Thus, each method

has a total point. The methods are ordered descending by total points. Thus, the best method is on top.

Table 5.31: The Overview of the Best Results: Bucket (In Average Precision)

The points are given such that first results are 3, the second results are 2, and the third results are 1 point. Thus, each bucket has

a total point. The buckets are ordered descending by total points. Thus, the best bucket is on top.

The results and contributions are analyzed under 4 parts. First, the overall winners

of the experimented algorithms are presented. After that, the contributions of this

study to community structure based, communication trend based, and general event

detection areas are discussed. Additionally, a data set based analysis and discussion

is presented.

70

5.3.8.1 Overall Winners

Based on Table 5.30 which is sorted from best to worst method, the winner is the

proposed CN-NEW method. The second one is an ensemble, NOC-NEW-OR. These

two community structure based methods are followed by two communication trend

based ones, namely CT-IILR-SD and CT-MOD-SD.

As seen in Table 5.30, communication trend based methods tend to perform better on

CDR based data sets, whereas community structure based methods tend to perform

better on social media-based data sets.

Community structure based methods have better execution time performance than the

communication trend based approaches as seen in Table 5.26.

5.3.8.2 Contributions to Community Structure Based Event Detection

In this work, a new bucket concept is introduced. It is experimented on various scale

of data sets. As seen in Table 5.22, using a bucket of the data set improves the

accuracy of the community structure based event detection algorithms, particularly

for the CDR based data sets. For instance, CN-NEW has 0.49 average precision value

for the second quarter (Q2) of RMV dataset, whereas it has 0.35 average precision

value for RMV data set. So, it can be stated that bucket concept increased average

precision of CN-NEW method from 0.35 to 0.49 in RMV, from 0.62 to 0.78 in TGSM,

from 0.26 to 0.38 in RMS data sets. As a summary, it can be stated that the bucket

concept improves the accuracy of several methods for CDR based data sets. On the

other hand, as it can be seen in Table 5.23, the similar improvement has not been

observed for social media based data sets.

Table 5.31 also shows that using buckets H1, Q2, and Q4 produce best results for

some of the cases. Regarding the execution time, using buckets considerably im-

proves the execution time of the proposed methods since it decreases the amount of

data to be processed.

The ensemble strategies devised in this work give clearer results than [16], since

logical and/or combinations of the quarter buckets are used to form the ensembles.

71

Furthermore, the proposed ensemble methods increase the best average precision val-

ues for some cases, such as, from 0.26 to 0.33 for RMS, from 0.35 to 0.46 for RMV,

and from 0.62 to 0.66 for CS data sets, as it can be seen in Tables 5.15, 5.17, 5.19,

5.21.

The proposed resolution strategy provides the capability to detect events that come

with a delayed communication representation. As seen in Table 5.24, this strategy

improves the highest average precision values. For example, for different resolution

values, average precision increases for ENR from 0.19 to 0.29, for TGSM from 0.62

to 0.94, for BCS from 0.75 to 0.89, and for CS from 0.62 to 0.92.

In this work, as a contribution to community structure based event detection, multi-

ple centrality score calculation methods such as Betweenness, Katz, Harmonic, and

PageRank centrality metrics are tested. As a result of these experiments, the highest

average precision values for the CN methods have been obtained with the PageRank

centrality metric. Thus, only the results with the PageRank centrality metric have

been presented.

5.3.8.3 Contributions to Communication Trend Based Event Detection

The study in [17] uses InfoMap as community detection method, whereas the pro-

posed method, CT-IILR-SD, uses dSLM for community detection. For comparison,

CT-IILR-SD with InfoMap is applied on ENR data set. CT-IILR-SD produces 0.16

average precision and outperforms CT-IILR-SD with InfoMap which produces 0.14

average precision on ENR data set. Furthermore, as seen in Table 5.25, when the

tracked value and the tracking strategy are changed, it is observed that the event de-

tection performance further improves over [17].

Among the communication trend based methods that are experimented, CT-MOD

provides the best execution time performance. For instance, it is about 4 times faster

than CT-IILR as seen in Tables 5.26, 5.27.

72

5.3.8.4 Comparison with Graph Feature Based Event Detection

The proposed community structure and communication trend based methods can

be executed without any resource problems for big data sets (BBM, BBR, TGSM)

whereas the graph feature based event detection methods [1] cannot reach the similar

scalability level. For small data sets such as RM, community structure and communi-

cation trend based methods execute about 20 times faster than the graph feature based

event detection methods. As seen in Table 5.29, the best performing proposed meth-

ods for these small data sets produce comparable event detection accuracy values with

the graph feature based event detection methods in significantly less execution time.

5.3.8.5 Data Set based Analysis and Discussion

Figure 5.4: Data Matrix to summarize data set based analysis

The best resulting techniques with respect to data sets are summarized in Figure 5.4.

In the figure, the data sets are grouped with respect to type (CDR vs. social media,

e-mail) and size (small vs. large). For example, RM data set is small in size, and it is

a CDR collection. For each data set, the technique giving the best result is also given

together with the bucket size and the threshold used in the analysis (given in paren-

thesis). The denoted threshold value is the one that gives the highest f-measure for

that case. Notice that CS data set is medium in size, and hence it is placed separately.

73

As seen in the figure, the best technique varies with respect to the nature of the data

set in terms of size and type. It is observed that ensemble of tracking the change in

the number of communities and tracking the change in the central nodes gives the

best results for two cases, particularly for ENR and CS data sets.

Additionally, the thresholds used for the algorithms vary with respect to the data set,

as well. For example, for CT based method on TGSM data set, a low threshold value

of 0.01 gives the best result. On the other hand, for ENR data set, a much higher

change threshold value of 1.05 gives the best result. Apparently, the ground truth

events in ENR data set lead to a much stronger change in the community structures

within communication networks. Another interesting observation is that, for Boston

Bombing data set, different threshold values are set for mention (BBM) and retweet

(BBR) communication networks. Since higher threshold values are used for BBR

data set, we can deduce that retweet communication reflects the events more strongly.

5.4 Experiments of Graph Embedding Based Methods with All Data Sets

In these experiments, the area under the Precision-Recall curve is used as the accuracy

indicator. The curve is plotted under 100 threshold values and the area under this

curve is denoted as Average Precision. [1]

The experiments are conducted on a computer with 32 GB RAM and Intel(R) Core(TM)

i7-10750H CPU@2.60GHz processor.

The proposed method as described in Section 4.5 is applied on all the data sets. It

produces out of memory errors for the TGSM, BBM, and BBR data sets. Therefore,

only graph2vec algorithm is applied on these data sets. The graph2vec algorithm

works for TGSM and BBR data sets but gives out of memory error for BBM data set.

This way, except BBM, all the data sets have results on graph embedding based event

detection methods.

74

5.4.1 Experiments on Big Data Sets: TGSM, BBR

The average precision values of the graph2vec embedding based event detection al-

gorithm with various vector distance computation methods experiment on the TGSM

and BBR data sets are demonstrated in Table 5.32. There is also another dimension

which is called the reference vector. The vector distances are computed based on a

reference vector which is either the mean of the time steps vectors or the vector of the

initial network for the given data set. This dimension is also presented as the second

header row in Table 5.32. For each column, the cell that holds the highest precision

value is marked in bold.

Table 5.32: Evaluation on Graph2Vec Method: TGSM and BBR Data Sets (In Avp.)

Distance/Dataset TGSM BBR

Reference Vector Initial Mean Initial Mean

Euclidian 0.5 0.59 0.06 0.08

Cosine 0.47 0.45 0.07 0.05

Minkowski 0.5 0.55 0.06 0.08

Bray-Curtis 0.51 0.53 0.06 0.08

Canberra 0.43 0.5 0.07 0.08

Chebyshev 0.48 0.5 0.05 0.12

City Block 0.5 0.55 0.06 0.08

Correlation 0.42 0.5 0.06 0.05

5.4.2 Experiments on Small Data Sets: BCS, CS, ENRON, RMS, RMV

There are four dimensions which are graph embedding method, data set, vector dis-

tance computation method, and reference vector. To represent the results effectively,

the vector distance computation method is kept as constant, graph embedding method

is used as index column, data set is used as the column header having the reference

vector values as children. The values in the result tables are all in average precision.

For each data set and reference vector pairs, the columns in the result tables, the high-

est average precision values are marked in bold. This way, the performance of each

75

graph embedding method can be examined by looking at the frequency of bold colors

in its row.

So, a table represents the results for each vector distance computation method. The

results of the Bray-Curtis distance method can be seen in Table 5.33. The results of

the Canberra distance method can be seen in Table 5.34. The results of the Chebyshev

distance method can be seen in Table 5.35. The results of the Cityblock distance

method can be seen in Table 5.36. The results of the Correlation distance method can

be seen in Table 5.37. The results of the Cosine distance method can be seen in Table

5.38. The results of the Euclidian distance method can be seen in Table 5.39. The

results of the Minkowski distance method run with p = 1 can be seen in Table 5.40.

Table 5.33: Evaluation on Graph Embedding Methods: Bray-Curtis Distance (In

Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.43 0.59 0.4 0.5 0 0 0.24 0.23 0.24 0.23

GL2Vec 0.53 0.45 0.46 0.54 0.09 0.09 0.36 0.38 0.32 0.51

Graph2Vec 0.56 0.61 0.48 0.46 0.14 0.15 0.22 0.28 0.25 0.41

LDP 0.57 0.49 0.59 0.48 0 0 0.21 0.22 0.2 0.23

Table 5.34: Evaluation on Graph Embedding Methods: Canberra Distance (In Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.46 0.58 0.47 0.51 0 0 0.23 0.22 0.22 0.24

GL2Vec 0.53 0.46 0.45 0.57 0.1 0.09 0.3 0.38 0.27 0.5

Graph2Vec 0.54 0.64 0.4 0.47 0.15 0.19 0.22 0.28 0.23 0.43

LDP 0.6 0.48 0.49 0.49 0 0 0.21 0.22 0.21 0.22

76

Table 5.35: Evaluation on Graph Embedding Methods: Chebyshev Distance (In Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.39 0.62 0.39 0.49 0 0 0.25 0.23 0.24 0.22

GL2Vec 0.43 0.53 0.46 0.44 0.09 0.09 0.58 0.43 0.36 0.8

Graph2Vec 0.4 0.66 0.59 0.52 0.15 0.15 0.22 0.3 0.35 0.5

LDP 0.57 0.49 0.59 0.47 0 0 0.21 0.37 0.2 0.22

Table 5.36: Evaluation on Graph Embedding Methods: Cityblock Distance (In Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.47 0.58 0.42 0.49 0 0 0.24 0.22 0.25 0.23

GL2Vec 0.55 0.42 0.4 0.47 0.09 0.09 0.46 0.41 0.49 0.44

Graph2Vec 0.54 0.7 0.42 0.41 0.15 0.14 0.22 0.3 0.36 0.46

LDP 0.58 0.48 0.59 0.48 0 0 0.21 0.41 0.2 0.23

Table 5.37: Evaluation on Graph Embedding Methods: Correlation Distance (In

Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.41 0.56 0.4 0.65 0 0 0.25 0.23 0.25 0.21

GL2Vec 0.5 0.43 0.48 0.55 0.12 0.12 0.56 0.48 0.39 0.48

Graph2Vec 0.49 0.5 0.45 0.47 0.16 0.16 0.22 0.22 0.42 0.45

LDP 0.49 0.72 0.39 0 0 0 0.24 0.21 0.23 0.21

77

Table 5.38: Evaluation on Graph Embedding Methods: Cosine Distance (In Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.42 0.69 0.39 0.65 0 0 0.25 0.23 0.25 0.2

GL2Vec 0.49 0.43 0.47 0.55 0.12 0.12 0.55 0.48 0.38 0.45

Graph2Vec 0.5 0.5 0.45 0.46 0.16 0.16 0.21 0.22 0.42 0.45

LDP 0.44 0.3 0.52 0.32 0 0 0.24 0.21 0.22 0.21

Table 5.39: Evaluation on Graph Embedding Methods: Euclidian Distance (In Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.42 0.59 0.39 0.48 0 0 0.25 0.23 0.25 0.22

GL2Vec 0.55 0.46 0.41 0.52 0.09 0.09 0.48 0.43 0.45 0.43

Graph2Vec 0.52 0.68 0.44 0.42 0.15 0.15 0.22 0.3 0.35 0.46

LDP 0.57 0.48 0.59 0.47 0 0 0.21 0.39 0.2 0.23

78

Table 5.40: Evaluation on Graph Embedding Methods: Minkowski Distance

(Parameter p is set as 1) (In Avp.)

Method/Dataset BCS CS ENRON RMS RMV

Refer. Vector Init. Mean Init. Mean Init. Mean Init. Mean Init. Mean

FEATHER 0.47 0.58 0.42 0.49 0 0 0.24 0.22 0.25 0.23

GL2Vec 0.55 0.42 0.4 0.47 0.09 0.09 0.46 0.41 0.49 0.44

Graph2Vec 0.54 0.7 0.42 0.41 0.15 0.14 0.22 0.3 0.36 0.46

LDP 0.58 0.48 0.59 0.48 0 0 0.21 0.41 0.2 0.23

Table 5.41: Evaluation on Graph Embedding Methods: Run Times (In Seconds)

Method/Dataset BCS CS ENR RMS RMV

FEATHER 312.92 100.41 ERR 0.22 1.15

GL2Vec 4419.31 243.95 0.75 0.51 7.29

Graph2Vec 218.64 72.77 0.3 0.21 0.86

LDP 439.16 147.23 ERR 0.29 1.58

Total Graph Embed. Time 5390.03 564.36 1.05 1.23 10.88

Total Dist. Comp. Time 45.97 7.34 0.88 0.37 0.46

Total Experiment Time 5436 571.7 1.93 1.6 11.34

It can be seen from the result tables that FEATHER and LDP embedding algorithms

give 0 average precision for ENRON data set since they give error on ENRON data

set. The execution times of all these executions are presented in Table 5.41. As it

can be seen in Table 5.41, graph2vec is the fastest graph embedding algorithm fol-

lowed by FEATHER and LDP in order. GL2vec algorithm is the slowest embedding

algorithm among the four embedding algorithms. After the embedding step, there is

distance computation and event detection step. The execution time for that step is

also presented in Table 5.41 and it is much less than the graph embedding execution

times. Given these execution times, the total experiment times per data set is also

presented in Table 5.41.

79

5.4.3 Overview & Discussion

The results of the experiments in this section can be summarized as follows:

• The graph2vec embedding method is the fastest method and thus can pro-

duce results for all data sets except BBM. It produces 0.59 average precision

value with Euclidian distance method and mean vector as reference for TGSM

data set as seen in Table 5.32. The highest average precision value obtained

for TGSM is 0.86 obtained by CT-IILR as seen in Table 5.30. The result of

graph2vec embedding method based event detection is less than the best result

obtained in previous sections, but it is still a comparable method considering its

low execution time thanks to its independence from the community detection

step.

• The graph2vec embedding method based event detection produces 0.12 average

precision value with Chebyshev distance method and mean vector as reference

for BBR data set as seen in Table 5.32. The highest average precision value ob-

tained for BBR is 0.60 obtained by community structure based event detection

methods as seen in Table 5.30. Therefore, it can be stated that graph embedding

based event detection method could not produce better results for the BBR data

set than the studies in previous sections.

• The overall highest precision values obtained by the graph embedding based

event detection methods for BCS, CS, ENRON, RMS, RMV data sets are 0.72,

0.65, 0.19, 0.58, 0.80, respectively as seen in tables in Section 5.4.2. The over-

all highest precision values obtained by the community structure and communi-

cation trend based event detection methods for BCS, CS, ENRON, RMS, RMV

data sets are 0.75, 0.73, 0.21, 0.39, 0.53, respectively as seen in Table 5.30.

There is a considerable accuracy increases in RMS and RMV data sets results

by graph embedding based event detection methods, while other data sets best

results are very similar.

• The total execution times of the graph embedding based event detection meth-

ods for BCS and CS data sets are 5436 and 571 seconds, respectively as seen

in Table 5.41. The total execution times of the community structure and com-

80

munication trend based event detection methods for BCS and CS data sets are

701 and 246 seconds, respectively as seen in Table 5.28. When the total ex-

ecution times are compared, it is observed that the graph embedding based

event detection methods are 2-8 times slower than the community structure

and communication trend based methods. The major responsibility on this be-

longs to GL2vec embedding method which is 3-20 times slower than graph2vec

embedding method. Considering graph2vec is also one of the best performed

embedding method, if its time can be compared with the community structure

and communication trend based methods, it is seen that graph2vec embedding

based event detection method is faster.

• Based on the experiments in Section 5.4.2, it is observed that graph2vec and

GL2vec generally have more best results than LDP and FEATHER. LDP per-

forms better than FEATHER since it has more best results as seen in tables in

Section 5.4.2.

• For ENRON data set, graph2vec is the best performed embedding algorithm for

every vector distance computations.

• Mean reference vector perform better than initial reference vector in TGSM,

BBR, BCS, RMV data sets, whereas initial reference vector perform better than

mean reference vector in RMS data set. In CS and ENRON data sets, there is

no clear difference observed.

• As seen in tables in Section 5.4.2 and in Table 5.32, there is no clear advantage

of one or more distance methods over others. Only considerable observation

can be FEATHER starting having best results on some of the distance methods.

81

82

CHAPTER 6

CONCLUSION

In this work, event detection methods that track changes in community structures,

communication trends, and graph embeddings are proposed. The focus of the study

is on temporal graphs corresponding to social interaction and communication among

users. The changes occurring in the communication graph is considered to denote an

event.

The proposed event detection algorithms are basically in 3 main approaches. The first

one tracks the changes in the community structures between consecutive time steps.

There are several indicators whose change in the community structure can denote an

event, such as number of communities, and central nodes. Therefore, the proposed

methods in this group consider the change in the number of communities and central

nodes as the event indicators. The change in central nodes is defined in four different

ways, which are considering all central nodes, the number of newly introduced ones,

the number of central nodes not anymore existing as central nodes, and the sum of the

number of newly introduced and the not anymore existing central nodes. The second

main approach is to track the changes in communication trends within consecutive

time steps. In this group, various indicators including the change in the inter-intra

communication ratio and modularity of the graph are used. There are also proposed

variations as to how these indicators are measured. Either the difference in values

within consecutive time steps or the standard deviation values are examined in order

to detect an event. The third main approach is to track the changes in graph structures

by computing the distances between consecutive time steps graph embeddings. The

time steps whose vectors distance from the previous time steps vector are more than

a threshold value are marked as event time steps. In this approach, several graph

83

embedding methods are used in graph embedding phase, and several vector distance

computation methods are used in distance computation phase. All graph embedding

method and vector distance computation method combinations are experimented and

the results are presented.

Another novelty proposed by the study is the use of the buckets, which denote a set

of communities of certain size range. To this aim, 8 different buckets (community

size ranges) are defined. Community structure based methods are performed with

different buckets (hence considering only communities of certain sizes), and the event

detection performance are analyzed with respect to the buckets.

The results of the experiments show that the proposed methods are scalable and can

be used on a wide range of social interaction and communication data. According to

the results, the proposed methods execute faster than the graph feature based event de-

tection methods of [1]. The proposed methods generally provide better accuracy than

the method of Moriano et. al [17] for most of the data sets that they experimented on.

Focusing on certain community size ranges improves both speed and accuracy of the

proposed community structure based event detection methods. The graph embedding

based event detection methods can further improve the best average precision values

obtained by the community structure and communication trend based event detection

methods for especially CDR data sets. It is observed that communication trend based

methods perform better on mobile phone communication data sets while the commu-

nity structure based methods perform better on social media communication data sets.

As it can be inferred from this observation, mobile phone communications react more

dynamically to events while the social media communications react more structurally

to events.

As future work, the proposed methods can be enhanced in various aspects. As one of

the research directions, the effect of using different community detection algorithms,

other than dSLM and InfoMap, can be analyzed within community structure based

methods. In the study, the change in the modularity is proposed as an event indicator

to track in communication trend based methods. Modularity reflects the quality of the

community structure of a network and it is hypothesized that a change in the quality

of community structure can indicate an event. As a future study, besides modularity,

84

other community structure quality indicators, such as the number of intra-edges, con-

traction, the number of inter-edges, expansion, conductance [61], modularity density

[62], community score, and community fitness [63] can be used as the event indi-

cators to track in the communication trend based event detection methods. In the

presented study, it is observed that the performance of the proposed event detection

methods may depend on the nature of the data set and the bucket size to be used.

The proposed study can be further extended towards a meta learning such that data

and the results of the conducted analysis can be used to construct a machine learning

model to determine the optimal event detection method and the bucket size, as well as

other parameters, for a given data set. As another future work, the proposed methods

can be enhanced to work on streaming temporal graphs in near real time. For this, in

addition to the use of dynamic community detection methods, such as dSLM, event

detection methods should be enhanced to perform on the fly.

85

86

REFERENCES

[1] S. Rayana and L. Akogli, “Less is more: Building selective anomaly ensem-

bles,” ACM Trans. Knowl. Discov. Data, vol. 10, pp. 42:1–42:33, May 2016.

[2] O. Ozdikis, P. Karagoz, and H. Oğuztüzün, “Incremental Clustering with Vector

Expansion for Online Event Detection in Microblogs,” Social Network Analysis

and Mining, vol. 7, no. 1, p. 56, 2017.

[3] X. Zhou and L. Chen, “Event Detection over Twitter Social Media Streams,”

The VLDB Journal, vol. 23, no. 3, pp. 381–400, 2014.

[4] G. Li and J. Jung, “Entropy-based dynamic graph embedding for anomaly de-

tection on multiple climate time series,” Scientific Reports, vol. 11, p. 13819, 07

2021.

[5] J. Lv, J. Liang, and Z. Yang, “Hge2med: Heterogeneous graph embedding for

multi-domain event detection,” in 2020 IEEE 32nd International Conference on

Tools with Artificial Intelligence (ICTAI), pp. 1036–1043, 2020.

[6] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake Shakes Twitter Users: Real-

time Event Detection by Social Sensors,” in International Conference on World

Wide Web (WWW), pp. 851–860, 2010.

[7] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling,

“TwitterStand: News in Tweets,” in ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems (GIS), pp. 42–51, 2009.

[8] F. Atefeh and W. Khreich, “A Survey of Techniques for Event Detection in

Twitter,” Computational Intelligence, vol. 31, no. 1, pp. 132–164, 2015.

[9] M. Imran, C. Castillo, F. Diaz, and S. Vieweg, “Processing social media mes-

sages in mass emergency: Survey summary,” in Companion Proceedings of the

The Web Conference 2018, pp. 507–511, 2018.

87

[10] O. Ozdikis, P. Senkul, and H. Oguztuzun, “Semantic Expansion of Tweet Con-

tents for Enhanced Event Detection in Twitter,” in International Conference on

Advances in Social Networks Analysis and Mining (ASONAM), pp. 20–24, 2012.

[11] H. Genc and B. Yilmaz, “Text-based event detection: Deciphering date informa-

tion using graph embeddings,” in Big Data Analytics and Knowledge Discovery

(C. Ordonez, I.-Y. Song, G. Anderst-Kotsis, A. M. Tjoa, and I. Khalil, eds.),

(Cham), pp. 266–278, Springer International Publishing, 2019.

[12] Y. Dong, F. Pinelli, Y. Gkoufas, Z. Nabi, F. Calabrese, and N. V. Chawla, “In-

ferring unusual crowd events from mobile phone call detail records,” CoRR,

vol. abs/1504.03643, 2015.

[13] I. A. Karatepe and E. Zeydan, “Anomaly detection in cellular network data us-

ing big data analytics,” in European Wireless 2014; 20th European Wireless

Conference, pp. 1–5, May 2014.

[14] V. A. Traag, A. Browet, F. Calabrese, and F. Morlot, “Social event detection

in massive mobile phone data using probabilistic location inference,” in 2011

IEEE Third International Conference on Privacy, Security, Risk and Trust and

2011 IEEE Third International Conference on Social Computing, pp. 625–628,

Oct 2011.

[15] R. Aktunc, I. Toroslu, and P. Karagoz, “Event detection by change tracking

on community structure of temporal networks,” in ASONAM, pp. 928–931, 08

2018.

[16] R. Aktunc, I. H. Toroslu, and P. Karagoz, Event Detection on Communities:

Tracking the Change in Community Structure within Temporal Communication

Networks, pp. 75–96. Cham: Springer International Publishing, 2020.

[17] P. Moriano, J. Finke, and Y.-Y. Ahn, “Community-based event detection in tem-

poral networks,” Scientific Reports, vol. 9, p. 4358, 03 2019.

[18] L. Waltman and N. J. van Eck, “A smart local moving algorithm for large-scale

modularity-based community detection.,” CoRR, vol. abs/1308.6604, 2013.

88

[19] R. Aktunc, I. H. Toroslu, M. Ozer, and H. Davulcu, “A dynamic modularity

based community detection algorithm for large-scale networks: Dslm,” in Pro-

ceedings of the 2015 IEEE/ACM International Conference on Advances in So-

cial Networks Analysis and Mining 2015, ASONAM ’15, pp. 1177–1183, 2015.

[20] V. Blondel, J. Guillaume, R. Lambiotte, and E. Mech, “Fast unfolding of com-

munities in large networks,” J. Stat. Mech, p. P10008, 2008.

[21] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks

reveal community structure,” Proceedings of the National Academy of Sciences,

vol. 105, no. 4, pp. 1118–1123, 2008.

[22] R. Shang, W. Zhang, L. Jiao, X. Zhang, and R. Stolkin, “Dynamic immunization

node model for complex networks based on community structure and threshold,”

IEEE Transactions on Cybernetics, vol. 52, no. 3, pp. 1539–1552, 2022.

[23] R. Shang, W. Zhang, J. Zhang, J. Feng, and L. Jiao, “Local community detection

based on higher-order structure and edge information,” Physica A: Statistical

Mechanics and its Applications, vol. 587, p. 126513, 2022.

[24] R. Shang, W. Zhang, J. Zhang, L. Jiao, Y. Li, and R. Stolkin, “Local commu-

nity detection algorithm based on alternating strategy of strong fusion and weak

fusion,” IEEE Transactions on Cybernetics, pp. 1–14, 2022.

[25] G. Li, T.-H. Nguyen, and J. J. Jung, “Traffic incident detection based on dynamic

graph embedding in vehicular edge computing,” Applied Sciences, vol. 11,

no. 13, 2021.

[26] F. Cekinel and P. KARAGOZ, “Event prediction from news text using subgraph

embedding and graph sequence mining,” World Wide Web, 02 2022.

[27] G. K. Orman, V. Labatut, and H. Cherifi, “Comparative evaluation of commu-

nity detection algorithms: A topological approach,” CoRR, vol. abs/1206.4987,

2012.

[28] L. Tang and H. Liu, Community Detection and Mining in Social Media. Synthe-

sis Lectures on Data Mining and Knowledge Discovery, Morgan and Claypool

Publishers, 2010.

89

[29] G. Orman and V. Labatut, “A comparison of community detection algorithms

on artificial networks,” in Discovery Science, pp. 242–256, 2009.

[30] L. Akoglu and C. Faloutsos, “Event detection in time series of mobile commu-

nication graphs,” in Proc. of Army Science Conference, 2010.

[31] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anoma-

lies,” in ACM SIGCOMM Computer Communication Review, vol. 34, pp. 219–

230, 2004.

[32] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery in mul-

tiple time-series,” in Proceedings of the 31st international conference on Very

large data bases, pp. 697–708, VLDB Endowment, 2005.

[33] S. Bommakanti and S. Panda, “Events detection in temporally evolving social

networks,” in 2018 IEEE International Conference on Big Knowledge (ICBK),

pp. 235–242, 2018.

[34] T. Zhu, P. Li, L. Yu, K. Chen, and Y. Chen, “Change point detection in dynamic

networks based on community identification,” IEEE Transactions on Network

Science and Engineering, vol. 7, no. 3, pp. 2067–2077, 2020.

[35] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec: A het-

erogeneous graph embedding based approach for detecting cyber threats within

enterprise,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’19, (New York, NY, USA), p. 1777–1794,

Association for Computing Machinery, 2019.

[36] Q. Xiao, J. Liu, Q. Wang, Z. Jiang, X. Wang, and Y. Yao, “Towards network

anomaly detection using graph embedding,” in Computational Science – ICCS

2020 (V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra,

P. M. A. Sloot, S. Brissos, and J. Teixeira, eds.), (Cham), pp. 156–169, Springer

International Publishing, 2020.

[37] A. Modell, J. Larson, M. Turcotte, and A. Bertiger, “A graph embedding ap-

proach to user behavior anomaly detection,” in 2021 IEEE International Con-

ference on Big Data (Big Data), pp. 2650–2655, 2021.

90

[38] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan, “Graph

embedded pose clustering for anomaly detection,” 2019.

[39] A. E. Kiouche, S. Lagraa, K. Amrouche, and H. Seba, “A simple graph em-

bedding for anomaly detection in a stream of heterogeneous labeled graphs,”

Pattern Recognition, vol. 112, p. 107746, 2021.

[40] M. Kosan, A. Silva, S. Medya, B. Uzzi, and A. Singh, “Event detection on

dynamic graphs,” 2021.

[41] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486,

pp. 75–174, 2010.

[42] M. E. J. Newman, “Modularity and community structure in networks,” in Pro-

ceedings of the National Academy of Sciences, vol. 103, pp. 8577–8582, 2006.

[43] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search en-

gine,” in COMPUTER NETWORKS AND ISDN SYSTEMS, pp. 107–117, 1998.

[44] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk,” in Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data min-

ing, ACM, aug 2014.

[45] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,”

2016.

[46] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning

node representations from structural identity,” in Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

ACM, aug 2017.

[47] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” 2013.

[48] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and

S. Jaiswal, “graph2vec: Learning distributed representations of graphs,” 2017.

[49] H. Chen and H. Koga, “Gl2vec: Graph embedding enriched by line graphs with

edge features,” in Neural Information Processing (T. Gedeon, K. W. Wong, and

M. Lee, eds.), (Cham), pp. 3–14, Springer International Publishing, 2019.

91

[50] B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs: Birds of a

feather, from statistical descriptors to parametric models,” 2020.

[51] C. Cai and Y. Wang, “A simple yet effective baseline for non-attributed graph

classification,” 2018.

[52] Q. V. Le and T. Mikolov, “Distributed representations of sentences and docu-

ments,” 2014.

[53] F. Harary and R. Z. Norman, “Some properties of line digraphs,” Rendiconti del

Circolo Matematico di Palermo, vol. 9, pp. 161–168, 1960.

[54] J. R. Bray and J. T. Curtis, “An ordination of the upland forest communities

of southern wisconsin,” Ecological Monographs, vol. 27, no. 4, pp. 325–349,

1957.

[55] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed relational

graphs for pattern recognition,” IEEE Transactions on Systems, Man, and Cy-

bernetics, vol. SMC-13, no. 3, pp. 353–362, 1983.

[56] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing stars: On

approximating graph edit distance,” Proc. VLDB Endow., vol. 2, p. 25–36, aug

2009.

[57] J. Diesner, T. Frantz, and K. Carley, “Communication networks from the enron

email corpus “it’s always about the people. enron is no different”,” Computa-

tional & Mathematical Organization Theory, vol. 11, pp. 201–228, 10 2005.

[58] R. Darst, C. Granell, A. Arenas, S. Gomez, J. Saramäki, and S. Fortunato, “De-

tection of timescales in evolving complex systems,” Scientific Reports, vol. 6,

04 2016.

[59] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship network structure

by using mobile phone data,” Proceedings of the National Academy of Sciences,

vol. 106, no. 36, pp. 15274–15278, 2009.

[60] S. Rayana and L. Akoglu, “Less is more: Building selective anomaly ensembles

with application to event detection in temporal graphs,” in SDM, 2015.

92

[61] J. Yang and J. Leskovec, “Defining and evaluating network communities based

on ground-truth,” 2012.

[62] M. Chen, T. Nguyen, and B. K. Szymanski, “On measuring the quality of a

network community structure.,” in SocialCom, pp. 122–127, IEEE Computer

Society, 2013.

[63] S. Kaur, S. Singh, S. Kaushal, and A. Sangaiah, “Comparative analysis of qual-

ity metrics for community detection in social networks using genetic algorithm,”

Neural Network World, vol. 26, pp. 625–641, 01 2016.

93

94

Appendix A

DETAILED EXPERIMENTS EXPLANATION FOCUSING PER DATA SET

Each proposed method is run with each bucket parameter for each data set and the

best performed 25 results are represented in the Tables in this chapter.

Ratio column represent the ratio of the number of nodes in the bucket given in that row

to the number of nodes in the A bucket. This data gives an insight on what portion of

the data the processed bucket corresponds to. Each bucket contains the communities

whose size are greater than or equal to a minimum threshold and less than or equal to a

maximum threshold. The size range column represents these minimum and maximum

thresholds for the bucket in that row. This information gives an insight on the sizes

of the communities that are targeted in that execution of the method. As seen in the

tables, the initial A target has 0 as minimum and 100,000 as maximum threshold

values. The values for the other buckets vary depending on the size of the data set

since they are computed based on F and its proportions.

For each data set, there is a section with the corresponding experiment results in it.

For Enron data set, there are 7 resolutions experimented such that each resolution

corresponds to number of weeks an the results for each resolution are represented in

Appendix B. Similarly, 3 resolution steps with days as the time window are exper-

imented for the TGSM data sets and the results are presented in Appendix E. The

results for Boston Bombing data sets are presented in Appendix C and for Reality

Mining data sets are presented in Appendix D with 1 resolution.

The aggregated overall tested methods name abbreviations and their meanings can be

seen in Table A.1.

95

Table A.1: Abbreviations for all the methods that are experimented

Abbreviation Method Description

CN-NEW Track the number of new central nodes

CN-SIZE Track the number of central nodes

CN-NOT Track the number of not anymore central nodes

CN-NOT-NEW Track the number of not anymore + new central nodes

NOC Track the number of communities

NOC-qx..qy-OR OR ensemble of buckets x..y in NOC

NOC-qx..qy-AND AND ensemble of buckets x..y in NOC

NOC-NEW-OR OR ensemble of NOC and CN-NEW

NOC-NEW-AND AND ensemble of NOC and CN-NEW

NOC-NOT-OR OR ensemble of NOC and CN-NOT

NOC-NOT-AND AND ensemble of NOC and CN-NOT

NOC-NOT-NEW-OR OR ensemble of NOC and CN-NOT-NEW

NOC-NOT-NEW-AND AND ensemble of NOC and CN-NOT-NEW

NOC-SIZE-OR OR ensemble of NOC and CN-SIZE

NOC-SIZE-AND AND ensemble of NOC and CN-SIZE

CT-IILR Track the IILR by comparing with prev time

CT-IILR-BaseInfomap Initial network communities detected by InfoMap

CT-IILR-Base10 Initial network is constructed by merging initial 10 time steps

CT-IILR-BaseAll Initial network is constructed by merging all time steps

CT-IILR-SD Track the IILR with respect to standard deviation

CT-IILR-BaseInfomap-SD Initial network communities detected by InfoMap

CT-IILR-Base10-SD Initial network is constructed by merging initial 10 time steps

CT-IILR-BaseAll-SD Initial network is constructed by merging all time steps

CT-MOD Track the Modularity by comparing with prev time

CT-MOD-SD Track the Modularity with respect to standard deviation

96

Appendix B

DETAILED EXPERIMENTS ON ENRON DATA SETS

Table B.1: Evaluation on Enron Data Sets (Res: 1 Week)

Event Detection Method Bucket Ratio Size Range Av. Prec.
NOC-SIZE-AND H1 0.45 3-10 0.21
NOC-NEW-OR H1 0.45 3-10 0.20
NOC-NOT-NEW-AND H1 0.45 3-10 0.20
CT-MOD A 1.00 0-100000 0.19
CN-SIZE H1 0.45 3-10 0.18
NOC-q1q2q3-OR A 1.00 0-100000 0.18
NOC-q1q2q4-OR A 1.00 0-100000 0.18
NOC-q2q3q4-OR A 1.00 0-100000 0.18
NOC-q1q3q4-OR A 1.00 0-100000 0.18
NOC-NOT-OR H1 0.45 3-10 0.18
NOC H1 0.45 3-10 0.17
CT-IILR-SD A 1.00 0-100000 0.16
NOC-SIZE-OR H1 0.45 3-10 0.16
NOC-NEW-AND H1 0.45 3-10 0.15
CN-NEW H1 0.45 3-10 0.14
CT-IILR-BaseInfomap A 1.00 0-100000 0.14
CT-IILR-BaseInfomap-SD A 1.00 0-100000 0.14
NOC-SIZE-OR A 1.00 0-100000 0.14
NOC-SIZE-OR Q1 0.22 3-6 0.14
NOC Q1 0.22 3-6 0.13
CN-SIZE A 1.00 0-100000 0.13
CN-NOT-NEW A 1.00 0-100000 0.13
NOC-NOT-AND H1 0.45 3-10 0.13
CN-NOT H1 0.45 3-10 0.12
NOC-NOT-NEW-OR A 1.00 0-100000 0.12

97

Table B.2: Evaluation on Enron Data Sets (Res: 2 Weeks)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-MOD-SD A 1.00 0-100000 0.45

CN-NOT-NEW H2 0.39 13-27 0.38

CT-IILR-BaseInfomap-SD A 1.00 0-100000 0.38

CN-NOT-NEW H1 0.47 3-12 0.36

CT-IILR-BaseAll-SD A 1.00 0-100000 0.33

CN-NOT F 0.86 3-27 0.32

CN-NOT-NEW F 0.86 3-27 0.28

CN-NOT-NEW Q3 0.23 13-19 0.27

CN-NOT H1 0.47 3-12 0.26

CN-NOT-NEW A 1.00 0-100000 0.26

CT-IILR-SD A 1.00 0-100000 0.26

CT-IILR-BaseInfomap A 1.00 0-100000 0.26

NOC-NOT-NEW-OR H1 0.47 3-12 0.26

NOC-NOT-NEW-OR H2 0.39 13-27 0.25

NOC-NEW-OR Q4 0.16 20-27 0.24

CN-SIZE H2 0.39 13-27 0.22

CN-NOT H2 0.39 13-27 0.22

CT-MOD A 1.00 0-100000 0.22

NOC-NOT-NEW-OR F 0.86 3-27 0.22

NOC-NOT-NEW-OR Q3 0.23 13-19 0.21

CN-NOT-NEW Q2 0.22 9-12 0.19

NOC-q1q2q3q4-OR A 1.00 0-100000 0.19

NOC-NOT-AND A 1.00 0-100000 0.19

NOC-SIZE-OR F 0.86 3-27 0.19

NOC-NOT-OR F 0.86 3-27 0.19

98

Table B.3: Evaluation on Enron Data Sets (Res: 3 Weeks)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-IILR-BaseInfomap-SD A 1.00 0-100000 0.64

CT-IILR-SD A 1.00 0-100000 0.49

CT-IILR-BaseAll-SD A 1.00 0-100000 0.47

CN-NOT-NEW H1 0.42 3-12 0.36

NOC-NOT-NEW-OR F 0.83 3-24 0.32

CN-NOT-NEW F 0.83 3-24 0.31

CT-IILR-BaseAll A 1.00 0-100000 0.31

NOC-q1q2-OR A 1.00 0-100000 0.30

NOC-q1q3-OR A 1.00 0-100000 0.30

NOC-q2q3-OR A 1.00 0-100000 0.30

NOC-q1q4-OR A 1.00 0-100000 0.30

NOC-q2q4-OR A 1.00 0-100000 0.30

NOC-q3q4-OR A 1.00 0-100000 0.30

NOC-NOT-OR F 0.83 3-24 0.30

NOC-NOT-NEW-OR H1 0.42 3-12 0.30

CT-IILR A 1.00 0-100000 0.29

CN-NOT F 0.83 3-24 0.28

CN-NOT H1 0.42 3-12 0.28

NOC-NOT-AND F 0.83 3-24 0.28

CN-NOT-NEW Q2 0.23 10-13 0.27

NOC-NOT-NEW-OR A 1.00 0-100000 0.27

NOC-SIZE-OR F 0.83 3-24 0.27

NOC F 0.83 3-24 0.26

CT-IILR-BaseInfomap A 1.00 0-100000 0.26

NOC-NEW-OR A 1.00 0-100000 0.26

99

Table B.4: Evaluation on Enron Data Sets (Res: 4 Weeks)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-IILR-BaseInfomap-SD A 1.00 0-100000 0.65

CT-IILR-BaseAll A 1.00 0-100000 0.54

CT-IILR-BaseAll-SD A 1.00 0-100000 0.54

CN-NOT-NEW Q1 0.20 3-8 0.52

CN-NOT-NEW F 0.80 3-28 0.45

CT-IILR-BaseInfomap A 1.00 0-100000 0.43

NOC-NOT-OR A 1.00 0-100000 0.43

NOC-NEW-OR A 1.00 0-100000 0.42

CN-NOT Q1 0.20 3-8 0.41

NOC-NOT-NEW-OR A 1.00 0-100000 0.40

CN-NOT-NEW A 1.00 0-100000 0.39

CN-NOT A 1.00 0-100000 0.38

CT-IILR-SD A 1.00 0-100000 0.36

NOC-NOT-NEW-OR Q1 0.20 3-8 0.36

NOC A 1.00 0-100000 0.35

CN-NOT Q4 0.16 21-28 0.35

NOC-SIZE-OR A 1.00 0-100000 0.35

NOC-NOT-OR Q4 0.16 21-28 0.35

CN-NEW A 1.00 0-100000 0.33

CT-IILR A 1.00 0-100000 0.33

CN-SIZE F 0.80 3-28 0.32

CN-NOT F 0.80 3-28 0.32

CN-NOT-NEW Q4 0.16 21-28 0.32

NOC-NEW-OR F 0.80 3-28 0.32

NOC-NOT-NEW-OR F 0.80 3-28 0.32

100

Table B.5: Evaluation on Enron Data Sets (Res: 5 Weeks)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CN-NOT A 1.00 0-100000 0.58

CN-NOT-NEW A 1.00 0-100000 0.57

CT-IILR-SD A 1.00 0-100000 0.56

CT-MOD A 1.00 0-100000 0.52

CT-IILR-BaseInfomap A 1.00 0-100000 0.50

NOC-NOT-NEW-OR A 1.00 0-100000 0.48

NOC-NOT-OR Q4 0.16 22-37 0.48

CT-IILR A 1.00 0-100000 0.46

CN-NOT-NEW Q2 0.22 11-14 0.44

CT-IILR-BaseInfomap-SD A 1.00 0-100000 0.42

NOC-NOT-OR A 1.00 0-100000 0.42

NOC-NEW-OR Q2 0.22 11-14 0.42

CN-NOT-NEW Q3 0.25 15-20 0.40

CT-IILR-BaseAll-SD A 1.00 0-100000 0.40

NOC-SIZE-OR F 0.87 3-37 0.40

NOC-NOT-OR Q2 0.22 11-14 0.40

NOC-NOT-NEW-OR Q2 0.22 11-14 0.40

CN-NOT H2 0.45 14-37 0.39

CN-NOT-NEW H2 0.45 14-37 0.38

CN-SIZE Q2 0.22 11-14 0.37

CN-NOT F 0.87 3-37 0.37

NOC-NEW-OR F 0.87 3-37 0.37

NOC-SIZE-OR Q2 0.22 11-14 0.37

CN-NOT-NEW F 0.87 3-37 0.36

NOC-SIZE-OR A 1.00 0-100000 0.36

101

Table B.6: Evaluation on Enron Data Sets (Res: 6 Weeks)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-IILR-BaseInfomap-SD A 1.00 0-100000 0.85

CN-NOT-NEW Q2 0.21 11-15 0.81

CN-NOT-NEW F 0.73 3-24 0.78

CT-IILR-BaseAll A 1.00 0-100000 0.77

CN-NOT H2 0.35 15-24 0.76

CN-NOT F 0.73 3-24 0.74

CN-NOT-NEW H2 0.35 15-24 0.71

CT-IILR-SD A 1.00 0-100000 0.68

CN-NOT-NEW Q1 0.21 3-10 0.66

NOC-NOT-OR Q4 0.10 22-24 0.64

CN-NOT Q2 0.21 11-15 0.63

NOC-NOT-NEW-OR Q2 0.21 11-15 0.63

CN-NOT Q1 0.21 3-10 0.61

CN-NOT-NEW Q4 0.10 22-24 0.61

CT-IILR-BaseAll-SD A 1.00 0-100000 0.61

NOC-NOT-AND A 1.00 0-100000 0.61

NOC-SIZE-OR F 0.73 3-24 0.60

CN-NOT A 1.00 0-100000 0.59

CN-NOT-NEW A 1.00 0-100000 0.59

NOC-NOT-NEW-OR F 0.73 3-24 0.59

CN-SIZE Q1 0.21 3-10 0.57

CT-MOD A 1.00 0-100000 0.57

NOC-q1q2q3-OR A 1.00 0-100000 0.57

NOC-q1q2q4-OR A 1.00 0-100000 0.57

NOC-q2q3q4-OR A 1.00 0-100000 0.57

102

Table B.7: Evaluation on Enron Data Sets (Res: 7 Weeks)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-IILR A 1.00 0-100000 0.83

CT-IILR-BaseAll-SD A 1.00 0-100000 0.82

CT-IILR-BaseInfomap A 1.00 0-100000 0.80

CT-IILR-BaseInfomap-SD A 1.00 0-100000 0.80

CN-NOT F 0.81 3-26 0.76

CN-NOT-NEW F 0.81 3-26 0.75

CN-NOT-NEW A 1.00 0-100000 0.73

CN-NOT-NEW H2 0.41 16-26 0.69

CN-NOT-NEW Q3 0.24 17-22 0.68

NOC-NEW-OR A 1.00 0-100000 0.65

NOC-NOT-NEW-OR A 1.00 0-100000 0.65

CN-NOT H1 0.41 3-15 0.64

NOC-NOT-OR A 1.00 0-100000 0.64

NOC-NOT-AND F 0.81 3-26 0.64

CN-NOT Q3 0.24 17-22 0.63

CT-IILR-BaseAll A 1.00 0-100000 0.62

NOC-SIZE-OR A 1.00 0-100000 0.60

NOC-NOT-OR Q3 0.24 17-22 0.60

CN-NOT-NEW H1 0.41 3-15 0.59

NOC-NEW-OR Q3 0.24 17-22 0.59

CT-IILR-SD A 1.00 0-100000 0.58

NOC-NOT-NEW-OR F 0.81 3-26 0.58

NOC-NOT-OR F 0.81 3-26 0.57

CN-NOT H2 0.41 16-26 0.56

NOC-NOT-NEW-OR Q3 0.24 17-22 0.56

103

104

Appendix C

DETAILED EXPERIMENTS ON BBM/BBR DATA SETS

Table C.1: Evaluation on Boston Bombing Mention Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.
CN-NEW A 0.98 0-100000 0.58
NOC-NEW-OR A 0.98 0-100000 0.58
CN-NEW F 0.20 3-16 0.52
NOC-NEW-OR F 0.20 3-16 0.52
CT-MOD A 0.98 0-100000 0.35
CN-NOT F 0.20 3-16 0.27
NOC-SIZE-OR A 0.98 0-100000 0.27
NOC-NOT-OR F 0.20 3-16 0.27
NOC-SIZE-AND Q3 0.05 6-14 0.25
NOC-SIZE-AND H2 0.08 5-16 0.21
NOC-SIZE-AND Q2 0.06 4-5 0.21
CT-MOD-SD A 0.98 0-100000 0.19
NOC-q1q2-AND A 0.98 0-100000 0.19
NOC-q1q3-AND A 0.98 0-100000 0.19
NOC-q2q3-AND A 0.98 0-100000 0.19
NOC-q1q4-AND A 0.98 0-100000 0.19
NOC-q2q4-AND A 0.98 0-100000 0.19
NOC-q3q4-AND A 0.98 0-100000 0.19
NOC A 0.98 0-100000 0.18
NOC-NEW-AND A 0.98 0-100000 0.18
NOC-NOT-AND A 0.98 0-100000 0.18
NOC-NOT-NEW-AND A 0.98 0-100000 0.18
CT-IILR A 0.98 0-100000 0.17
NOC-q1q2q3q4-AND A 0.98 0-100000 0.17
NOC-q1q2q3-AND A 0.98 0-100000 0.16

105

Table C.2: Evaluation on Boston Bombing Retweet Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.

NOC A 0.91 0-100000 0.60

NOC-q1q2-AND A 0.91 0-100000 0.60

NOC-q1q3-AND A 0.91 0-100000 0.60

NOC-q2q3-AND A 0.91 0-100000 0.60

NOC-q1q2q3-AND A 0.91 0-100000 0.60

NOC-SIZE-AND A 0.91 0-100000 0.60

NOC-NEW-AND A 0.91 0-100000 0.60

NOC-NOT-AND A 0.91 0-100000 0.60

NOC-NOT-NEW-AND A 0.91 0-100000 0.60

NOC-SIZE-AND Q2 0.03 4-5 0.57

NOC Q2 0.03 4-5 0.56

NOC-SIZE-AND F 0.11 3-12 0.56

NOC-SIZE-AND H1 0.06 3-3 0.56

NOC-SIZE-AND Q1 0.06 3-3 0.56

NOC-NEW-AND Q2 0.03 4-5 0.56

NOC-NOT-AND Q2 0.03 4-5 0.56

NOC-NOT-NEW-AND Q2 0.03 4-5 0.56

NOC F 0.11 3-12 0.55

NOC H1 0.06 3-3 0.55

NOC H2 0.05 4-12 0.55

NOC Q1 0.06 3-3 0.55

NOC-q1q2-OR A 0.91 0-100000 0.55

NOC-q1q3-OR A 0.91 0-100000 0.55

NOC-q2q3-OR A 0.91 0-100000 0.55

NOC-q1q2q3-OR A 0.91 0-100000 0.55

106

Appendix D

DETAILED EXPERIMENTS ON RM DATA SETS

Table D.1: Evaluation on Reality Mining SMS Directed Weighted Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.
CT-IILR-SD F 0.70 3-50 0.60
CT-IILR Q3 0.18 12-26 0.43
CN-NEW H1 0.32 3-9 0.37
CN-NEW Q1 0.19 3-6 0.36
CN-NOT Q4 0.13 29-50 0.35
NOC-NOT-OR Q4 0.13 29-50 0.35
CN-NEW A 1.00 0-100000 0.34
NOC-NOT-OR Q3 0.18 12-26 0.32
NOC-NEW-OR H1 0.32 3-9 0.31
NOC-q1q2q3q4-OR A 1.00 0-100000 0.30
NOC-SIZE-OR Q3 0.18 12-26 0.30
NOC-NEW-OR A 1.00 0-100000 0.29
NOC-NEW-OR H2 0.38 10-50 0.29
NOC-NOT-OR H2 0.38 10-50 0.29
NOC-NEW-OR Q1 0.19 3-6 0.29
CN-NEW Q2 0.19 7-11 0.28
NOC-NEW-AND A 1.00 0-100000 0.28
NOC-NOT-NEW-OR A 1.00 0-100000 0.28
CN-SIZE A 1.00 0-100000 0.27
CN-SIZE Q4 0.13 29-50 0.27
CN-NOT Q1 0.19 3-6 0.27
NOC-q1q2q3-OR A 1.00 0-100000 0.27
NOC-q1q2q4-OR A 1.00 0-100000 0.27
NOC-q2q3q4-OR A 1.00 0-100000 0.27
NOC-q1q3q4-OR A 1.00 0-100000 0.27

107

Table D.2: Evaluation on Reality Mining SMS Directed Unweighted Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-IILR-SD A 1.00 0-100000 0.39

CN-NEW H1 0.37 3-9 0.38

NOC-NEW-OR H2 0.34 10-34 0.38

NOC-SIZE-OR Q3 0.18 10-15 0.37

NOC-NOT-AND Q3 0.18 10-15 0.37

NOC-SIZE-OR H2 0.34 10-34 0.36

NOC-NEW-OR Q3 0.18 10-15 0.36

CN-NEW F 0.70 3-34 0.35

NOC-NEW-OR H1 0.37 3-9 0.35

NOC-SIZE-OR Q1 0.18 3-5 0.35

CT-MOD-SD A 1.00 0-100000 0.34

CN-SIZE Q3 0.18 10-15 0.33

CN-NEW H2 0.34 10-34 0.33

CN-NEW Q3 0.18 10-15 0.33

NOC-q1q2q3q4-OR A 1.00 0-100000 0.33

NOC-SIZE-OR H1 0.37 3-9 0.33

NOC-NOT-OR H1 0.37 3-9 0.33

NOC Q3 0.18 10-15 0.32

NOC-NEW-OR F 0.70 3-34 0.32

NOC-NEW-OR Q1 0.18 3-5 0.31

NOC-NOT-OR Q1 0.18 3-5 0.31

NOC-NOT-NEW-AND Q3 0.18 10-15 0.31

CN-SIZE H1 0.37 3-9 0.30

CN-NOT H1 0.37 3-9 0.30

NOC-SIZE-OR F 0.70 3-34 0.30

108

Table D.3: Evaluation on Reality Mining SMS Undirected Weighted Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-IILR-SD F 0.74 3-25 0.55

CN-NEW A 1.00 0-100000 0.40

NOC-NEW-OR H1 0.37 3-7 0.40

CN-NOT Q3 0.20 9-14 0.39

CN-NEW Q3 0.20 9-14 0.39

NOC-NOT-OR H1 0.37 3-7 0.38

CN-NEW H1 0.37 3-7 0.37

CN-SIZE A 1.00 0-100000 0.36

CT-MOD-SD A 1.00 0-100000 0.36

NOC-NEW-OR A 1.00 0-100000 0.36

NOC-SIZE-OR H1 0.37 3-7 0.35

CN-NOT H1 0.37 3-7 0.34

NOC-SIZE-OR A 1.00 0-100000 0.34

CN-NOT A 1.00 0-100000 0.33

CT-IILR-SD A 1.00 0-100000 0.33

NOC-NOT-OR Q3 0.20 9-14 0.33

NOC-NOT-OR A 1.00 0-100000 0.32

CN-SIZE F 0.74 3-25 0.31

CN-NEW F 0.74 3-25 0.31

NOC-q1q2-OR A 1.00 0-100000 0.31

NOC-q1q3-OR A 1.00 0-100000 0.31

NOC-q2q3-OR A 1.00 0-100000 0.31

NOC-q1q2q3-OR A 1.00 0-100000 0.31

NOC-q1q4-OR A 1.00 0-100000 0.31

NOC-q2q4-OR A 1.00 0-100000 0.31

109

Table D.4: Evaluation on Reality Mining Voice Directed Weighted Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-MOD-SD A 1.00 0-100000 0.52

CN-NOT Q4 0.19 40-77 0.46

NOC-NEW-AND Q3 0.20 27-39 0.46

CN-NEW Q3 0.20 27-39 0.45

CN-NEW Q4 0.19 40-77 0.45

CN-NEW H1 0.40 3-25 0.44

CN-NOT H1 0.40 3-25 0.43

NOC-NEW-OR H1 0.40 3-25 0.42

NOC-NOT-OR H1 0.40 3-25 0.39

NOC-NEW-OR Q3 0.20 27-39 0.39

NOC-NEW-OR Q4 0.19 40-77 0.39

NOC-NOT-OR Q4 0.19 40-77 0.39

NOC-NOT-OR Q3 0.20 27-39 0.38

NOC Q3 0.20 27-39 0.36

NOC-NOT-OR F 0.81 3-77 0.36

NOC-SIZE-AND Q3 0.20 27-39 0.36

NOC-NOT-NEW-AND Q3 0.20 27-39 0.36

CN-NEW Q2 0.21 16-26 0.35

NOC-SIZE-OR Q4 0.19 40-77 0.35

CN-SIZE Q4 0.19 40-77 0.34

NOC A 1.00 0-100000 0.33

CN-NOT H2 0.41 26-77 0.33

CN-NEW F 0.81 3-77 0.33

NOC-NEW-OR F 0.81 3-77 0.33

NOC-NOT-NEW-OR F 0.81 3-77 0.33

110

Table D.5: Evaluation on Reality Mining Voice Directed Unweighted Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.

NOC-NOT-AND Q4 0.20 36-63 0.53

CT-MOD-SD A 1.00 0-100000 0.50

CN-NEW Q2 0.20 17-25 0.49

NOC-NEW-OR Q4 0.20 36-63 0.49

CN-NEW H1 0.42 3-25 0.48

CN-SIZE Q4 0.20 36-63 0.46

CN-NOT Q2 0.20 17-25 0.46

NOC-SIZE-AND A 1.00 0-100000 0.46

NOC-SIZE-OR Q4 0.20 36-63 0.46

NOC-NEW-OR H1 0.42 3-25 0.45

CN-NOT Q4 0.20 36-63 0.43

NOC-NEW-AND A 1.00 0-100000 0.43

NOC-NOT-AND Q2 0.20 17-25 0.43

CN-NEW Q4 0.20 36-63 0.42

NOC-NEW-OR Q2 0.20 17-25 0.42

NOC-NOT-NEW-AND Q4 0.20 36-63 0.42

CN-SIZE Q2 0.20 17-25 0.41

CN-NEW H2 0.40 26-63 0.41

NOC-NOT-NEW-AND A 1.00 0-100000 0.41

NOC-SIZE-AND Q2 0.20 17-25 0.41

NOC-NEW-AND Q2 0.20 17-25 0.41

NOC-NOT-OR Q4 0.20 36-63 0.41

NOC Q4 0.20 36-63 0.40

CN-NEW F 0.82 3-63 0.40

CN-NEW Q1 0.21 3-16 0.40

111

Table D.6: Evaluation on Reality Mining Voice Undirected Weighted Data Set

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-MOD-SD A 1.00 0-100000 0.46

CN-SIZE F 0.96 3-60 0.39

CN-SIZE Q4 0.18 37-60 0.39

CN-NEW H1 0.49 3-23 0.39

CN-NOT Q3 0.25 25-36 0.38

NOC-SIZE-OR Q4 0.18 37-60 0.38

NOC-NOT-NEW-AND Q4 0.18 37-60 0.37

NOC-NEW-AND Q4 0.18 37-60 0.36

CN-NOT H2 0.46 24-60 0.35

CN-NEW F 0.96 3-60 0.35

CN-NEW Q2 0.25 16-24 0.35

NOC-SIZE-OR F 0.96 3-60 0.35

NOC-NEW-OR F 0.96 3-60 0.35

NOC-NEW-OR H1 0.49 3-23 0.35

NOC-NOT-AND Q4 0.18 37-60 0.35

CN-NEW Q3 0.25 25-36 0.34

NOC-NEW-OR Q2 0.25 16-24 0.34

NOC-SIZE-AND Q4 0.18 37-60 0.34

NOC Q4 0.18 37-60 0.33

CN-SIZE A 1.00 0-100000 0.33

CN-NEW H2 0.46 24-60 0.33

NOC-NOT-OR F 0.96 3-60 0.33

NOC-NEW-OR A 1.00 0-100000 0.32

NOC-NOT-OR H1 0.49 3-23 0.32

NOC-NEW-OR H2 0.46 24-60 0.32

112

Appendix E

DETAILED EXPERIMENTS ON TGSM DATA SETS

Table E.1: Evaluation on TGSM Data Set (Res: 1 Day)

Event Detection Method Bucket Ratio Size Range Av. Prec.
CT-IILR Q2 0.04 4-5 0.86
CN-NEW Q1 0.04 3-3 0.78
NOC-NEW-OR Q1 0.04 3-3 0.78
CN-SIZE F 0.12 3-14 0.71
CN-SIZE Q3 0.03 6-10 0.71
NOC-SIZE-OR F 0.12 3-14 0.71
NOC-SIZE-OR Q3 0.03 6-10 0.71
NOC-SIZE-OR H2 0.05 5-14 0.70
NOC-NOT-OR Q1 0.04 3-3 0.70
NOC-SIZE-OR H1 0.06 3-4 0.68
NOC-SIZE-OR Q1 0.04 3-3 0.68
CN-SIZE H1 0.06 3-4 0.67
CN-SIZE H2 0.05 5-14 0.67
CN-NOT Q1 0.04 3-3 0.66
CN-SIZE Q1 0.04 3-3 0.64
CN-SIZE Q4 0.01 11-14 0.63
CN-NOT H1 0.06 3-4 0.63
NOC-NOT-OR H1 0.06 3-4 0.63
NOC-SIZE-OR Q4 0.01 11-14 0.63
CN-NOT A 1.00 0-100000 0.62
CN-NEW Q2 0.04 4-5 0.62
NOC-NOT-OR A 1.00 0-100000 0.62
NOC-NEW-OR Q2 0.04 4-5 0.62
CN-NOT F 0.12 3-14 0.61
CN-NEW F 0.12 3-14 0.61

113

Table E.2: Evaluation on TGSM Data Set (Res: 2 Days)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CN-SIZE Q1 0.02 3-3 0.94

CT-MOD A 1.00 0-100000 0.94

NOC-SIZE-OR Q1 0.02 3-3 0.94

NOC Q3 0.01 6-9 0.93

CN-SIZE F 0.05 3-10 0.93

CN-SIZE H1 0.03 3-4 0.93

NOC-SIZE-OR F 0.05 3-10 0.93

NOC-SIZE-OR H1 0.03 3-4 0.93

NOC-SIZE-OR H2 0.02 5-10 0.93

NOC-NEW-AND Q3 0.01 6-9 0.93

NOC-NOT-AND Q3 0.01 6-9 0.93

NOC-NOT-NEW-AND Q3 0.01 6-9 0.93

NOC F 0.05 3-10 0.92

NOC Q1 0.02 3-3 0.92

NOC Q2 0.02 4-5 0.92

NOC-q1q2-OR A 1.00 0-100000 0.92

NOC-q1q3-OR A 1.00 0-100000 0.92

NOC-q2q3-OR A 1.00 0-100000 0.92

NOC-q1q2q3-OR A 1.00 0-100000 0.92

NOC-q1q4-OR A 1.00 0-100000 0.92

NOC-q2q4-OR A 1.00 0-100000 0.92

NOC-q3q4-OR A 1.00 0-100000 0.92

NOC-q1q2q4-OR A 1.00 0-100000 0.92

NOC-q2q3q4-OR A 1.00 0-100000 0.92

NOC-q1q3q4-OR A 1.00 0-100000 0.92

114

Table E.3: Evaluation on TGSM Data Set (Res: 3 Days)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CN-SIZE F 0.03 3-9 0.90

CN-SIZE Q2 0.01 4-5 0.90

CT-MOD A 1.00 0-100000 0.90

NOC-SIZE-OR F 0.03 3-9 0.90

NOC-SIZE-AND F 0.03 3-9 0.90

NOC-SIZE-AND Q1 0.01 3-3 0.90

NOC-SIZE-OR Q2 0.01 4-5 0.90

NOC F 0.03 3-9 0.89

NOC H1 0.02 3-4 0.89

NOC Q1 0.01 3-3 0.89

NOC Q2 0.01 4-5 0.89

NOC-q1q2-OR A 1.00 0-100000 0.89

NOC-q1q3-OR A 1.00 0-100000 0.89

NOC-q2q3-OR A 1.00 0-100000 0.89

NOC-q1q2q3-OR A 1.00 0-100000 0.89

NOC-NEW-AND F 0.03 3-9 0.89

NOC-NOT-AND F 0.03 3-9 0.89

NOC-NOT-NEW-AND F 0.03 3-9 0.89

NOC-SIZE-AND H1 0.02 3-4 0.89

NOC-NEW-AND H1 0.02 3-4 0.89

NOC-NOT-AND H1 0.02 3-4 0.89

NOC-NOT-NEW-AND H1 0.02 3-4 0.89

NOC-NEW-AND Q1 0.01 3-3 0.89

NOC-NOT-NEW-AND Q1 0.01 3-3 0.89

NOC-SIZE-AND Q2 0.01 4-5 0.89

115

Table E.4: Evaluation on BCS Data Set (Res: 1 Day)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-MOD A 1.00 0-100000 0.75

CN-NEW H1 0.20 3-4 0.67

NOC-NEW-OR H1 0.20 3-4 0.67

NOC-SIZE-OR Q2 0.11 4-5 0.67

CN-NOT Q1 0.13 3-3 0.66

NOC-NOT-OR Q1 0.13 3-3 0.66

CN-NOT H1 0.20 3-4 0.64

CN-NEW Q1 0.13 3-3 0.64

NOC-NOT-OR H1 0.20 3-4 0.64

NOC-NEW-OR Q1 0.13 3-3 0.64

NOC H2 0.19 5-27 0.62

CN-NEW A 1.00 0-100000 0.62

NOC-q1q2q3q4-OR A 1.00 0-100000 0.62

NOC-NEW-OR A 1.00 0-100000 0.62

NOC-NEW-AND H2 0.19 5-27 0.62

NOC-NOT-AND H2 0.19 5-27 0.62

NOC-NOT-NEW-AND H2 0.19 5-27 0.62

NOC Q4 0.04 12-27 0.61

NOC-q1q2q3-OR A 1.00 0-100000 0.61

NOC-q1q2q4-OR A 1.00 0-100000 0.61

NOC-q2q3q4-OR A 1.00 0-100000 0.61

NOC-q1q3q4-OR A 1.00 0-100000 0.61

NOC-NEW-AND Q4 0.04 12-27 0.61

NOC-NOT-AND Q4 0.04 12-27 0.61

NOC-NOT-NEW-AND Q4 0.04 12-27 0.61

116

Table E.5: Evaluation on BCS Data Set (Res: 2 Days)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-MOD A 1.00 0-100000 0.94

NOC-SIZE-OR F 0.37 3-32 0.93

CN-SIZE F 0.37 3-32 0.92

NOC-q1q2-OR A 1.00 0-100000 0.91

NOC-q1q3-OR A 1.00 0-100000 0.91

NOC-q2q3-OR A 1.00 0-100000 0.91

NOC-q1q2q3-OR A 1.00 0-100000 0.91

NOC-q1q4-OR A 1.00 0-100000 0.91

NOC-q2q4-OR A 1.00 0-100000 0.91

NOC-q3q4-OR A 1.00 0-100000 0.91

NOC-q1q2q4-OR A 1.00 0-100000 0.91

NOC-q2q3q4-OR A 1.00 0-100000 0.91

NOC-q1q3q4-OR A 1.00 0-100000 0.91

NOC-SIZE-OR H1 0.21 3-5 0.91

NOC-SIZE-OR Q2 0.10 4-5 0.91

NOC-SIZE-OR A 1.00 0-100000 0.90

NOC-SIZE-OR Q4 0.06 12-32 0.90

CN-NOT Q3 0.10 6-11 0.88

NOC-q1q2q3q4-OR A 1.00 0-100000 0.88

NOC-NOT-OR Q3 0.10 6-11 0.88

CN-NEW Q2 0.10 4-5 0.87

NOC-NEW-OR Q2 0.10 4-5 0.87

CN-NOT F 0.37 3-32 0.86

NOC-NOT-OR F 0.37 3-32 0.86

CN-NOT H2 0.16 6-32 0.85

117

Table E.6: Evaluation on BCS Data Set (Res: 3 Days)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-MOD A 1.00 0-100000 0.89

CN-SIZE H2 0.14 6-29 0.86

CN-NEW A 1.00 0-100000 0.86

NOC-NEW-OR A 1.00 0-100000 0.86

NOC-SIZE-OR H2 0.14 6-29 0.86

CN-SIZE Q2 0.09 4-5 0.83

CN-SIZE Q3 0.09 6-11 0.83

CN-NEW H1 0.19 3-5 0.83

NOC-NEW-OR H1 0.19 3-5 0.83

NOC-SIZE-OR Q2 0.09 4-5 0.83

NOC-SIZE-OR Q3 0.09 6-11 0.83

CN-SIZE Q4 0.05 12-29 0.79

NOC-SIZE-OR Q4 0.05 12-29 0.79

CN-NEW F 0.33 3-29 0.76

NOC-NEW-OR F 0.33 3-29 0.76

NOC-SIZE-AND H1 0.19 3-5 0.75

CN-NOT A 1.00 0-100000 0.73

NOC-q1q2-OR A 1.00 0-100000 0.73

NOC-q1q3-OR A 1.00 0-100000 0.73

NOC-q2q3-OR A 1.00 0-100000 0.73

NOC-q1q2q3-OR A 1.00 0-100000 0.73

NOC-q1q4-OR A 1.00 0-100000 0.73

NOC-q2q4-OR A 1.00 0-100000 0.73

NOC-q3q4-OR A 1.00 0-100000 0.73

NOC-q1q2q4-OR A 1.00 0-100000 0.73

118

Table E.7: Evaluation on CS Data Set (Res: 1 Day)

Event Detection Method Bucket Ratio Size Range Av. Prec.

NOC-NOT-OR Q2 0.09 4-5 0.73

NOC Q4 0.02 14-23 0.70

CN-NOT Q2 0.09 4-5 0.69

CT-IILR H1 0.19 3-4 0.69

NOC Q2 0.09 4-5 0.68

NOC-NEW-OR Q2 0.09 4-5 0.68

NOC-q1q2q3-OR A 1.00 0-100000 0.66

NOC-q1q2q4-OR A 1.00 0-100000 0.66

NOC-q2q3q4-OR A 1.00 0-100000 0.66

NOC-q1q3q4-OR A 1.00 0-100000 0.66

NOC F 0.32 3-23 0.65

CN-NEW Q2 0.09 4-5 0.65

NOC-q1q2-OR A 1.00 0-100000 0.65

NOC-q1q3-OR A 1.00 0-100000 0.65

NOC-q2q3-OR A 1.00 0-100000 0.65

NOC-q1q4-OR A 1.00 0-100000 0.65

NOC-q2q4-OR A 1.00 0-100000 0.65

NOC-q3q4-OR A 1.00 0-100000 0.65

NOC-q1q2q3q4-OR A 1.00 0-100000 0.65

NOC-NEW-AND F 0.32 3-23 0.65

NOC-NOT-AND F 0.32 3-23 0.65

NOC-NOT-NEW-AND F 0.32 3-23 0.65

NOC H2 0.13 5-23 0.64

CN-NEW H1 0.19 3-4 0.64

NOC-NEW-OR H1 0.19 3-4 0.64

119

Table E.8: Evaluation on CS Data Set (Res: 2 Days)

Event Detection Method Bucket Ratio Size Range Av. Prec.

NOC-SIZE-OR F 0.32 3-28 0.93

CT-MOD A 1.00 0-100000 0.92

NOC-SIZE-OR H1 0.17 3-4 0.92

NOC H1 0.17 3-4 0.89

NOC Q3 0.08 6-13 0.89

NOC-q1q2-OR A 1.00 0-100000 0.89

NOC-q1q3-OR A 1.00 0-100000 0.89

NOC-q2q3-OR A 1.00 0-100000 0.89

NOC-q1q2q3-OR A 1.00 0-100000 0.89

NOC-q1q4-OR A 1.00 0-100000 0.89

NOC-q2q4-OR A 1.00 0-100000 0.89

NOC-q3q4-OR A 1.00 0-100000 0.89

NOC-q1q2q4-OR A 1.00 0-100000 0.89

NOC-q2q3q4-OR A 1.00 0-100000 0.89

NOC-q1q3q4-OR A 1.00 0-100000 0.89

NOC-q1q2q3q4-OR A 1.00 0-100000 0.89

NOC-NEW-AND Q2 0.09 4-5 0.89

NOC-NOT-AND Q2 0.09 4-5 0.89

NOC-NOT-NEW-AND Q2 0.09 4-5 0.89

NOC-NEW-AND Q3 0.08 6-13 0.89

NOC-NOT-AND Q3 0.08 6-13 0.89

NOC-NOT-NEW-AND Q3 0.08 6-13 0.89

NOC F 0.32 3-28 0.88

NOC Q1 0.12 3-3 0.88

CN-SIZE F 0.32 3-28 0.88

120

Table E.9: Evaluation on CS Data Set (Res: 3 Days)

Event Detection Method Bucket Ratio Size Range Av. Prec.

CT-MOD A 1.00 0-100000 0.90

CN-NEW Q1 0.12 3-3 0.88

NOC-NEW-OR Q1 0.12 3-3 0.88

CN-NEW Q3 0.08 6-13 0.86

NOC-NEW-OR Q3 0.08 6-13 0.86

NOC-q1q2q3q4-AND A 1.00 0-100000 0.85

NOC-q1q2-AND A 1.00 0-100000 0.80

NOC-q1q3-AND A 1.00 0-100000 0.80

NOC-q2q3-AND A 1.00 0-100000 0.80

NOC-q1q2q3-AND A 1.00 0-100000 0.80

NOC-q1q4-AND A 1.00 0-100000 0.80

NOC-q2q4-AND A 1.00 0-100000 0.80

NOC-q3q4-AND A 1.00 0-100000 0.80

NOC-q1q2q4-AND A 1.00 0-100000 0.80

NOC-q2q3q4-AND A 1.00 0-100000 0.80

NOC-q1q3q4-AND A 1.00 0-100000 0.80

NOC-SIZE-AND Q1 0.12 3-3 0.80

NOC F 0.31 3-29 0.79

NOC H1 0.17 3-4 0.79

NOC Q1 0.12 3-3 0.79

CN-NEW H2 0.14 5-29 0.79

CN-NEW Q2 0.09 4-5 0.79

CN-NEW Q4 0.03 14-29 0.79

NOC-q1q2-OR A 1.00 0-100000 0.79

NOC-q1q3-OR A 1.00 0-100000 0.79

121

122

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Aktunc, Riza

Nationality: Turkish (TC)

Date and Place of Birth: 1989, Kayseri

EDUCATION

Degree Institution Year of Graduation

M.S. METU Computer Engineering 2015

B.S. Bilkent Computer Science 2011

High School Sivas Science High School 2006

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2022-Current Microsoft Senior Software Engineer

2020-2022 Tork (Microsoft Vendor) Senior Software Engineer

2018-2020 Bayzat Senior Software Engineer

2011-2018 TUBITAK Software Engineer

PUBLICATIONS

1. R. Aktunc, P. Karagoz and I. H. Toroslu, "Event Detection via Tracking the

Change in Community Structure and Communication Trends," in IEEE Access,

vol. 10, pp. 109712-109728, 2022.

123

2. R. Aktunc, I. H. Toroslu, and P. Karagoz, "Event Detection on Communities:

Tracking the Change in Community Structure within Temporal Communication

Networks", pp. 75–96. Cham: Springer International Publishing, 2020.

3. R. Aktunc, I. Toroslu, and P. Karagoz, "Event detection by change tracking on

community structure of temporal networks" in ASONAM, pp. 928–931, 08

2018.

4. R. Aktunc, I. H. Toroslu, M. Ozer, and H. Davulcu, "A dynamic modular-

ity based community detection algorithm for large-scale networks: Dslm" in

Proceedings of the 2015 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining 2015, ASONAM ’15, pp. 1177–1183,

2015.

5. Selma Suloglu, Riza Aktunc, and Mustafa Yucefaydalı, "Verification of vari-

able service orchestrations using model checking" in Proceedings of the 2013

International Workshop on Quality Assurance for Service-based Applications

(QASBA 2013). Association for Computing Machinery, New York, NY, USA,

5–8, 2013.

124

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Related Work
	Preliminaries
	Basic Definitions
	Community Detection
	dSLM: Dynamic Modularity Optimizer
	InfoMap: Map Equation Optimizer

	Graph Embedding
	Distance Metrics on Vectors

	Proposed Event Detection Methods
	Overall Architecture and Pipeline
	Pre-processing & Graph Generation
	Community Detection
	Event Detection

	Pre-processing & Graph Generation
	Event Detection Methods by Tracking the Change in the Community Structures
	Tracking the Change in the Number of Communities
	Tracking the Change in the Central Nodes
	Tracking the Change in the Community Members
	Early Ensemble Strategies
	Combining the Variations of the Change Tracking in the Number of Communities
	Combining the Change Tracking in the Number of Communities and the Change Tracking in the Central Nodes

	Improved Ensemble Strategies
	Ensemble of Tracking the Change in the Number of Communities Method with Different Bucket Variations
	Ensemble of Tracking the Change in the Number of Communities and Tracking the Change in the Central Nodes

	Event Detection Methods by Tracking the Change in the Communication Trends
	Event Detection Methods by Tracking the Change in the Graph Embeddings

	Experiments on Event Detection Performance
	Data Sets & Ground Truths
	Early Experiments of Community Structure Based Methods with RM Data Sets
	Experiments on Basic Methods
	Experiments on Ensemble Methods
	Experiments on Scalability
	Overview & Discussion

	Broad Experiments of Community Structure and Communication Trend Based Methods with All Data Sets
	Event Detection Performance of the Methods under the Basic Settings
	Event Detection Performance of the Ensemble Methods under the Basic Settings
	Analysis on the Effect of Bucket Sizes
	Analysis on the Effect of Time Resolution
	Analysis on the Effect of Community Change Comparison Method
	Analysis on the Running Time Performance
	Comparison with Baseline Studies
	Overview & Discussion
	Overall Winners
	Contributions to Community Structure Based Event Detection
	Contributions to Communication Trend Based Event Detection
	Comparison with Graph Feature Based Event Detection
	Data Set based Analysis and Discussion

	Experiments of Graph Embedding Based Methods with All Data Sets
	Experiments on Big Data Sets: TGSM, BBR
	Experiments on Small Data Sets: BCS, CS, ENRON, RMS, RMV
	Overview & Discussion

	Conclusion
	REFERENCES
	APPENDICES
	Detailed Experiments Explanation Focusing Per Data Set
	Detailed Experiments on Enron Data Sets
	Detailed Experiments on BBM/BBR Data Sets
	Detailed Experiments on RM Data Sets
	Detailed Experiments on TGSM Data Sets
	CURRICULUM VITAE

