
EMPLOYMENT OF CYCLE-SPINNING IN DEEP LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÜLKÜ UZUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

DOCTOR OF PHILOSOPHY
IN

THE DEPARTMENT OF INFORMATION SYSTEMS

NOVEMBER 2022

EMPLOYMENT OF CYCLE-SPINNING IN DEEP LEARNING

submitted by ÜLKÜ UZUN in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Information Systems Department, Middle East Techni-
cal University by,

Prof. Dr. Banu Günel Kılıç
Director, Graduate School of Informatics

Prof. Dr. Altan Koçyigit
Head of Department, Information Systems

Prof. Dr. Alptekin Temizel
Supervisor, Modelling and Simulation, METU

Examining Committee Members:

Prof. Dr. Banu Günel Kılıç
Information Systems Dept., METU

Prof. Dr. Alptekin Temizel
Modelling and Simulation, METU

Assist. Prof. Dr. Gökhan Koray Gültekin
Information Systems, METU

Prof. Dr. Altan Koçyigit
Computer Engineering, AYBU

Assoc. Prof. Dr. Fatih Nar
Electrical and Electronics Engineering, AYBU

Date: 29.11.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: ÜLKÜ UZUN

Signature :

iii

ABSTRACT

EMPLOYMENT OF CYCLE-SPINNING IN DEEP LEARNING

UZUN, ÜLKÜ
Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Alptekin Temizel

November 2022, 102 pages

Cycle-spinning (CS) method has been used in wavelet domain processes such as

signal denoising, and image enhancement with great success. In this thesis, CS is

adapted to be used in deep-learning algorithms, particularly it is integrated into GAN-

based raindrop removal and CNN based image classification, and object detection

models. Experiments on commonly-used architectures, such as AlexNet, DenseNet,

ResNet, YOLOv5, EfficientDet, CenterNet, and TensorFlow Object Detection (TF-

OD) show that the application of the CS method produces favorable results with

higher perceptual quality in terms of full-reference metrics for raindrop removal,

increased accuracy in classification and better object detection performance. It is

shown that the proposed method reduces the signal degradation caused by aliased

components when it is employed before down-sampling and it can increase the per-

formance, without introducing any extra learnable parameters. Another advantage of

the CS method is that it inherently provides a smoothing-out effect and, as such, it

has potential uses in denoising.

iv

Keywords: Cycle-spinning, Generative Adversarial Network (GAN), Classification,

Object detection, Shift-invariant, Aliasing

v

ÖZ

DERİN ÖGRENMEDE DÖNGÜLÜ ÇEVİRİM YÖNTEMİNİN KULLANIMI

UZUN, ÜLKÜ
Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Alptekin Temizel

Kasım 2022, 102 sayfa

Döngülü-Çevirim (DÇ) yöntemi, sinyal gürültü giderme ve görüntü iyileştirme gibi

dalgacık alanı süreçlerinde büyük başarı ile kullanılmaktadır. Bu tezde DÇ yöntemi,

derin öğrenme algoritmalarında kullanılmak üzere uyarlanmış, özellikle GAN tabanlı

yağmur damlası giderme modellerine ve CNN tabanlı görüntü sınıflandırma ve nesne

algılama modellerine entegre edilmiştir. AlexNet, DenseNet, ResNet, YOLOv5, Ef-

ficientDet, CenterNet ve TensorFlow Object Detection (TF-OD) gibi yaygın olarak

kullanılan mimariler üzerinde yapılan deneyler, DÇ yönteminin yağmur damlalarının

giderilmesine etkisi referans bazlı metriklerle değerlendirildiğinde daha yüksek algı-

sal kalite verdiğini göstermektedir. Sınıflandırmada ve nesne tespiti problemlerinde

ise doğruluk ve daha yüksek nesne tespiti algılama performansı görülmüştür. Öneri-

len yöntemin, alt-örnekleme (downsampling) aşamasından önce kullanıldığı takdirde

ekstra öğrenilebilir herhangi bir parametreye ihtiyaç duymadan örtüşme (aliasing)

nedeniyle ortaya çıkan sinyal bozulmalarını azalttığı ve genel performansı arttırabile-

ceği gösterilmiştir. DÇ yönteminin bir başka avantajı da doğası gereği bir yumuşatma

vi

etkisi sağlaması ve bu nedenle gürültü gidermede potansiyel kullanımlara sahip ol-

masıdır.

Anahtar Kelimeler: Döngülü-Çevirim (DÇ), Çekişmeli Üretici Ağlar, Sınıflandırma,
Nesne tanıma, Kayma değişmezliği, Örtüşme

vii

To my family...

viii

ACKNOWLEDGMENTS

First and foremost, I am extremely grateful to my supervisor, Prof. Dr. Alptekin

TEMİZEL for his invaluable advice, continuous support, and patience during my

Ph.D. study. His immense knowledge and plentiful experiences have encouraged me

all the time in my academic research and daily life.

I would also thank my thesis committee for their valuable comments and sugges-

tions. I would also thank Prof.Dr.A.Aydın ALATAN for his suggestions that made

my research so much richer.

I would like to express my gratitude to my family. Without their tremendous under-

standing and encouragement over the past few years, it would be impossible for me

to complete my study.

A special feeling of gratitude to my loving mother and father, Hasbiye and Şaban

UZUN whose words of encouragement and push for tenacity ring in my ears. My sis-

ter Selcan UZUN ALTUNCU, her husband Uğraş ALTUNCU, and my little sunshine

Serra ALTUNCU have never left my side and are very special.

Finally, I am also grateful to my many friends who have supported me throughout

the process. I will always appreciate what they do, especially Assoc. Prof. Dr. M.

Yılmaz ÜSTÜNER for helping me improve my technology skills, editing for hours,

and being my constant supporter.

ix

TABLE OF CONTENTS

ABSTRACT. iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Definition . 3

1.2 Contributions of the Study . 4

1.3 Organization of the Thesis . 5

2 RELATED WORK . 7

2.1 Cycle-spinning (CS) method . 7

2.2 Deep learning algorithms . 11

2.3 Convolutional Neural Networks (CNNs) . 11

x

2.3.1 Image classification using CNNs . 14

2.3.2 Object detection using CNNs . 14

2.4 Generative Adversarial Networks (GANs) . 17

2.4.1 Image enhancement using GANs . 18

3 METHODOLOGY . 21

3.1 Cycle-spinning (CS) method . 21

3.1.1 Integrating CS into GAN-based models . 23

3.1.2 Integrating CS into the convolutional layer of CNN-based mod-
els . 23

3.2 Shifting . 35

4 INTEGRATING CS INTO GAN-BASED MODELS FOR RAINDROP RE-
MOVAL . 39

4.1 DeRaindrop algorithm . 39

4.1.1 Datasets . 39

4.1.2 Architecture . 40

4.1.3 Evaluation metrics . 41

4.1.4 Results . 44

5 INTEGRATING CS INTO CNN-BASED MODELS FOR IMAGE CLAS-
SIFICATION . 49

5.1 AlexNet . 50

5.1.1 Datasets . 50

5.1.2 Architecture . 51

5.1.3 Evaluation Metrics . 51

xi

5.1.4 Results . 51

5.2 DenseNet . 54

5.2.1 Architecture . 54

5.2.2 Results . 55

5.3 ResNet . 56

5.3.1 Dataset . 56

5.3.2 Architecture . 57

5.3.3 Results . 57

6 INTEGRATING CS INTO CNN-BASED MODELS FOR OBJECT DE-
TECTION . 59

6.1 YOLOv5 . 59

6.1.1 Datasets . 60

6.1.1.1 Cheetah-Human thermal dataset . 60

6.1.1.2 COCO (COmmon Objects in Context) dataset 60

6.1.1.3 Dataset for Object Detection in Aerial Images (DOTA) . 61

6.1.2 Architecture . 62

6.1.3 Evaluation metrics . 62

6.1.3.1 Intersection Over Union (IOU) . 62

6.1.3.2 Precision and Recall . 63

6.1.3.3 F1-Score . 63

6.1.3.4 Mean Average Precision (mAP) . 64

6.1.3.5 MS-COCO Method . 64

xii

6.1.4 Results . 65

6.1.4.1 Yolov5 Cheetah-Human dataset results 65

6.1.4.2 YOLOv5 COCO dataset results . 68

6.1.4.3 Yolov5 DOTA dataset results . 70

6.2 EfficientDet . 76

6.2.1 Dataset selection . 76

6.2.2 Architecture . 76

6.2.3 Results . 77

6.2.3.1 EfficientDet COCO Dataset results 77

6.3 CenterNet . 79

6.3.1 Dataset selection . 79

6.3.2 Architecture . 79

6.3.3 Results . 80

6.3.3.1 CenterNet Visdrone Dataset results 80

6.4 Discussion . 81

7 CONCLUSION AND FUTURE WORK . 85

REFERENCES . 89

xiii

LIST OF TABLES

Table 1 Average full- and no-reference evaluation results on raindrop added
real-life images and object detection measure mAP results. 44

Table 2 AlexNet Accuracy Results for CIFAR10 Dataset Without Augmen-
tation. 52

Table 3 AlexNet Accuracy Results for CIFAR10 Dataset With Augmentation. 53

Table 4 DenseNet Accuracy Results for CIFAR10 Dataset Without Aug-
mentation. 55

Table 5 DenseNet Accuracy Results for CIFAR10 Dataset With Augmenta-
tion. 56

Table 6 Accuracy Results of ResNet101 trained for ImageNet-Contrast 50000. 58

Table 7 The detection performance of the CS integrated YOLOv5s on the
Cheetah-Human dataset using different shift amounts. 65

Table 8 Detection performance of Yolov5s-CS on COCO validation set us-
ing different shift amounts. 69

Table 9 Detection performance of YOLOv5s, YOLOv5s-CS1, CS2, CS1+2

on COCO validation set. 69

Table 10 Detection performance of CS integrated YOLOv5s on DOTA vali-
dation set using different shift amounts. 71

Table 11 Detection performance of YOLOv5s, YOLOv5s-CS1, CS2, CS1+2

on DOTA validation set. 72

Table 12 Detection performance of EfficientDet, EfficientDet-CS1, CS2, CS1+2

on COCO validation set. 77

Table 13 Detection performance of CenterNet, CenterNet-CS1, CS2,CS1+2

on VISDRONE2019-DET validation set. 81

Table 14 Computational complexity results at 512x512 input resolution. 82

xiv

LIST OF FIGURES

Figure 1 Representation of one shift of JPEG. 8

Figure 2 Shifts are employed for various directional CS types [1]. 10

Figure 3 CNN architectures over a timeline. 12

Figure 4 Milestones of object detection. (Adapted from [2]) 15

Figure 5 The CS block diagram illustrates the adaptation of the CS method
by wrapping the algorithm. 24

Figure 6 Illustration of the cycle spinning (CS) method implementation. . . 25

Figure 7 Illustration of the cycle spinning (CS) method implementation
detail. 25

Figure 8 Output channels of a standard convolution operation on input
and element-wise multiplication of matrices followed by a max-pooling
are shown for the illustration. 26

Figure 9 Convolution results of f(t), g(t) functions without the CS method
employed. 27

Figure 10 Convolution results of f(t), g(t) functions after the employment
of the CS method. 27

Figure 11 The basic model for analyzing the results of 2D image processes. 27

Figure 12 Visual comparison of pooling results on synthetic test patterns. . . 29

Figure 13 Original image of Lena (left) and noisy version (right) with noise. 30

Figure 14 Visual comparison of pooling results on noisy Lena image. 31

Figure 15 Integrated gradient visualization results of the model on CIFAR-
10 test images. 33

Figure 16 Overview of Grad-CAM heatmap. (Adapted from [3]) 33

Figure 17 Comparison of the GradCAM visualizations. 34

Figure 18 Shifting examples of an image (Generated by Keras ImageData-
Generator Class). 35

xv

Figure 19 Examples of images with border objects that are not fully in the
frame. 36

Figure 20 The representation of four different padding methods on a sam-
ple image from the CIFAR-10 dataset. 37

Figure 21 Architecture of the attentive generative adversarial network [4]. . 41

Figure 22 NIQE workflow diagram. 43

Figure 23 BRISQUE workflow diagram. 43

Figure 24 BLIINDS-II workflow diagram. 44

Figure 25 Demonstration of a test image, raindrop applied version, and
raindrop removal results. 45

Figure 26 Demonstration of a natural scene test image, raindrop applied
version, and raindrop removal results. 47

Figure 27 Demonstration of a test image, raindrop applied version, and
raindrop removal results. 48

Figure 28 Object detection scores of (a) ground truth images, (b) images
with raindrops, (c) DeRaindrop algorithm output, (d) 1-shift CS output. 48

Figure 29 Block diagram of DenseNet classification algorithm. 54

Figure 30 Precision-Recall (PR) graphs of the Cheetah-Human validation
dataset. 66

Figure 31 F1 graphs of the Cheetah-Human validation dataset. 67

Figure 32 Object detection results on the Cheetah-Human test set using
baseline YOLOv5s (left) and YOLOv5s-CS1 (right). 68

Figure 33 The Cheetah-Human test image class label detail. 68

Figure 34 COCO test set results using base YOLOv5s model (left) and
YOLOv5s-CS1 (right). 70

Figure 35 Comparison of the original YOLOv5s and YOLOv5s-CS1 ver-
sion (mAP@0.5) on the DOTA test dataset. 72

Figure 36 DOTA test set results using base YOLOv5s model and YOLOv5s-
CS1. 73

Figure 37 Precission-Recall (PR) graph of the YOLOv5s (top) and YOLOv5s-
CS1 trained on the DOTA dataset. 74

Figure 38 F1 graph of the YOLOv5s (top) and YOLOv5s-CS1 trained on
the DOTA dataset. 75

xvi

Figure 39 COCO test dataset results using EfficientDet base model and
EfficientDet-CS1. 78

Figure 40 Comparison of the original and CS1+2 YOLOv5s in terms of
mAP@0.5 values of objects in the VisDrone2019-DET validation dataset. 80

xvii

LIST OF ABBREVIATIONS

CS Cycle-Spinning

GAN Generative Adversarial Network

CNN Convolutional Neural Network

CIFAR Canadian Institute for Advanced Research

YOLO You Only Look Once

DWT Decimated Wavelet Transform

JPEG Joint Photographic Experts Group

WZP Wavelet-domain Zero Padding

PCS Partial Cycle Spinning

UWT Undecimated Wavelet Transform

RCS Reduced Cycle Spinning

ANN Artificial Neural Network

DNN Deep Neural Network

VGG Visual Geometry Group

ILSVRC Large Scale Visual Recognition Challenge

COCO Common Objects In Context

HR High Resolution

LR Low Resolution

HF High Frequency

MNIST Modified National Institute of Standards and Technology

GPU Graphics Processing Units

PSNR Peak Signal-to-Noise Ratio

xviii

SSIM Structural Similarity Index Measure

IQA Internal Quality Assurance

NIQE Naturalness Image Quality Evaluator

BRISQUE Blind/Referenceless Image Spatial Quality Evaluator

DCT Discrete Cosine Transform

API Application Programming Interface

SSD Single Shot Detection

IOU Intersection Over Union

mAP MEAN Average Precision

AP Average Precision

DOTA Dataset for Object deTection in Aerial images

FPN Feature Pyramid Network

NAS Neural Architecture Search

NAS-FPN Neural Architecture Search-Feature Pyramid Network

BİFPN Bi-directional Feature Network

xix

xx

CHAPTER 1

INTRODUCTION

Although the theoretical background of current deep learning applications is based

on perceptron studies in the 1950s, the field has accelerated with recent developments

in hardware, software, and data science. Today, neural networks based deep learning

algorithms such as Convolutional Neural Networks (CNNs), Generative Adversarial

Networks (GANs), Recurrent Neural Networks (RNNs) have opened a new horizon.

Convolutional Neural Networks (CNNs) are among the most prominent models in

deep learning and are frequently employed for image recognition and classification.

Research on CNNs is still ongoing, while improvements of these networks are be-

coming more and more challenging due to problems to overcome physical and com-

putational barriers. On the other hand, due to their ubiquitous use, even small im-

provements in their performance are desirable and have real-world impact.

Despite being considered mainly shift and rotation invariant, CNNs performance may

be adversely affected by small pixel changes [5] and small shifts, translations, and ro-

tations can reduce its accuracy [6]. Because the combination of convolution and pool-

ing operations hampers their invariance to small shifts (i.e., a few pixels) in position

and other minor transformations of an object in modern deep learning algorithms. It

has been shown that even a single-pixel shift may alter the overall result [7, 8]. Fur-

thermore, blurring and additive noise have also detrimental effects on the accuracy

of CNN-based algorithms [9]. This is especially important in deep learning-based

systems because artifacts on an image may adversely affect various stages of deep

learning methods. It can be claimed that these disadvantages might be overcome

by employing traditional artifact removal methods such as applying various filtering

1

techniques. However, it can be advantageous to use more robust models against noisy

data, as image quality may vary after the deployment [5]. For this reason, instead of

using a pre-processing stage to clean the noisy images, it is more desirable to have

methods that work more reliably when fed such images.

This dissertation’s main focus is the adaptation of the cycle-spinning (CS) method

to use in deep networks and evaluate its impact on performance. CS method has

originally been used in association with the wavelet transform to remove noise and

artifacts in images with notable performance. On the other hand, its integration into

deep learning algorithms has not been explored before. In the CS method, the data is

first shifted by a small amount (i.e., a few pixels), the shifted data are then denoised,

the denoised data are then unshifted, and finally, the unshifted data are averaged to

obtain the final denoised result. The basic idea behind this approach is combining

several shifted versions of the processed signal, this produces a high redundancy of

the processed information and allows different points of view, resulting in converging

to better solutions in wavelet-based denoising. Because convolutional layers in the

time domain are equivalent to multiplication in the frequency domain, it is possible

to adapt the CS method to use in convolutional layers. The fact that modern convo-

lutional networks are not shift-invariant (to small shifts), as in the wavelet transform,

supports our proposal that the employment of the CS method would contribute to ob-

taining better results in these algorithms. The proposed method does not need any

additional trainable parameters and can be straightforwardly integrated into convolu-

tion layers without architectural changes. In the scope of this thesis, we integrate CS

into deep networks and mainly investigate its application in (i) raindrop removal on

images using CS-integrated generative adversarial network (GAN), (ii) image clas-

sification using CNNs by integrating CS into a convolutional layer of classification

networks, and (iii) object detection by integrating CS into a convolutional layer of

object detection networks.

2

1.1 Problem Definition

Deep learning algorithms have demonstrated notable performance improvements in

a number of real-world applications during the past several years. While several

improvements lead to better performance, deep learning algorithms are criticized for

lacking resilience against various image corruptions [10, 11, 12, 13]. Previous studies

have shown that representations learned by pre-training large models with noisy data

can be useful for prediction. However, training using noisy images also often results

in lower accuracy. Noisy images can naturally occur in real-world contexts due to the

use of noisy image sources, image shifts, and a variety of reasons. For this reason,

alternative methods are explored that can continuously add new data during training,

do not require clean-label data, and easily adapt to standard training pipelines with

little computational or memory overhead [14].

More specifically, a lack of invariance to small image deformations was reported

in several resources [7, 8, 15, 16]. This property has also been exploited to gen-

erate adversarial images with the purpose to fool a network [17, 18]. These stud-

ies propose and conclude, that modern networks are not robust against small shift

amounts. Currently, various convolution types, such as deformable convolution [19,

20] and dynamic region-aware convolution [21], have been proposed to improve in-

variance against large and unknown transformations. Deformable convolution with

Deformable pooling [19] extends the sampling grid with learnable offsets and spatial

sampling grids in the input feature map, instead of getting feature maps at fixed loca-

tions in standard convolutions. Similarly, the Adaptive Attention Network (AANet)

[20] adaptively adjusts the receptive fields to extract features with an attention-based

encoder. Dynamic Region-Aware Convolution (DRConv) [21] changes the spatial

feature in order to obtain better model semantic variations and also can maintain

translation invariance and extract more plentiful information.

The main components of CNNs are convolutional and pooling layers, followed by

non-linearities and subsequent fully-connected layers. The pooling layers effectively

subsample the data and one of the consequences of subsampling a signal is the unde-

3

sired effect of aliasing. Even if appropriate pooling is used, ensuring that a given layer

is shiftable, the subsequent nonlinearities in a CNN may not preserve the shift ability,

as the nonlinearities may again introduce high frequencies [8]. The Nyquist theorem

states that the sampling rate must be at least twice the highest frequency of the sig-

nal to avoid aliasing [22]. If the sampling rate is inadequate (i.e., not able to satisfy

the Nyquist rate), aliasing may occur. This results in the folding of higher-frequency

signals onto the low-frequency portion of the original signal causing distortions and

artifacts. As there are no explicit anti-aliasing filters in place at the front, the pool-

ing layer has the potential to cause aliasing. Aliasing is prevented in traditional im-

age/signal processing by using a low-pass filter before subsampling [23], however,

this filtering may cause some information loss by removing the high-frequency data

[24]. Accordingly, in this work, we propose the integration of cycle-spinning (CS)

into the convolution layers of a CNN network. The CS method, used in the context

of the wavelet domain, compensates for the lack of shift-invariance for small shifts

in the sampled wavelet transform by averaging over denoised cyclically-shifted ver-

sions of the signal or image [25]. Besides its de-noising property, CS also has an

anti-aliasing effect by spreading sharp image features across their neighboring pix-

els. This improves structural similarity between subsampled outputs of an image

and its shifted version [26]. Motivated by these observations, we propose integrating

the cycle-spinning (CS) into CNN-based models. When integrated into CNN-based

models, it does not increase the number of learnable parameters and it does not re-

quire any specific augmentation. Combining several shifted versions of the processed

signal without aliasing allows an enriched information flow to the subsequent layers.

1.2 Contributions of the Study

In this dissertation, we claim that the CS method, which is actually used for image

denoising and enhancement in wavelet-based studies, can also be used in the field of

deep learning and its edge recovery and anti-aliasing properties eventually increase

the accuracy. The proposed method preserves the semantic properties of the original

image. This is in contrast to traditional methods such as denoising the input image

4

where the original semantic properties are usually lost. The main contributions of this

study are as follows:

1) CS is integrated into a GAN for denoising and its performance improvement

for raindrop removal is demonstrated.

2) Anti-aliasing effect and edge-sharpening properties of CS are demonstrated

in CNNs.

3) It is shown that CS can be integrated into convolutional layer of CNN-based

classification networks to improve image classification performance.

4) It is shown that CS can be integrated into a convolutional layer of a CNN-

based object detection network to object detection performance.

The work presented in this thesis has led to the following publications [27, 28]:

• Ü. Uzun and A. Temizel, "Cycle-Spinning GAN for Raindrop Removal from

Images", 16th IEEE Int. Conf. Advanced Video and Signal Based Surveillance

(AVSS), 2019, pp. 1-6, doi: 10.1109/AVSS.2019.8909824

• Ü. Uzun and A. Temizel, "Cycle-Spinning Convolution for Object Detection",

IEEE Access, vol. 10, pp. 76340-76350, 2022, doi: 10.1109/ACCESS.2022.3192022

1.3 Organization of the Thesis

The dissertation is organized as follows; Chapter 2 provides a summary of related

works on deep learning and cycle-spinning (CS) method. Section 2.1 briefly explains

the underlying CS method and its variations used in this research. The deep learning

structure is discussed in section 2.2 which provides necessary background informa-

tion for adapting the CS method into deep learning algorithms. Section 2.3 provides

a background on Convolutional Neural Networks (CNNs) and two major applications

of CNNs, image classification and object detection are described in Section 2.3.1 and

5

Section 2.3.2, respectively. Section 2.4 Generative Neural Networks (GANs) aim to

give a broader view of the problems and proposed solutions on deep learning-based

image processing algorithms focusing particularly on raindrop removal in Section

2.4.1.

Chapter 3 describes the methodology with the experimental design, results, and anal-

ysis. This chapter starts with the details of the CS method and its use in imaging

applications are provided in Section 3.1. Then a brief introduction to the shifting

process which is an important part of the CS method is explained in Section 3.2.

Results and analysis of the experiments are presented in each chapter from Chapter

4 up to Chapter 6. Firstly, we propose an image resolution enhancement algorithm

by adapting cycle-spinning (CS) to the raindrop removal problem in hand. The CS

method adaptation to the deep learning-based GAN method for the raindrop removal

approach is explained in Section 4.1. Section 4.1.1 provides the used dataset. Section

4.1.2 explains the architecture, the experiment design and implementation details,

Section 4.1.3 the evaluation metrics details, and Section 4.1.4 the results of the exper-

iments of the proposed method.

Chapter 5 reports our deep learning-based image classification experiments. Section

5.1, Section 5.2, Section 5.3 explains the experimented image classification algo-

rithms. Similarly, Chapter 6 explains deep learning-based object detection algorithm

experiments. The used dataset, architectures, evaluation metrics and results of each

of the object detection algorithms experienced in Chapter 6 are explained in an orga-

nizational structure similar to Chapter 4 and Chapter 5.

Finally, the conclusion and the description of the future work are explained in Chapter

6.

6

CHAPTER 2

RELATED WORK

Firstly, the cycle-spinning (CS) method is reviewed in this section. Then, although

there are various deep learning algorithms available, two prominent algorithms, which

are directly related to this thesis, will be discussed: Convolutional Neural Networks

(CNNs) and the Generative Adversarial Neural Networks (GANs).

2.1 Cycle-spinning (CS) method

The CS method has been utilized in the processing of different types of images, in-

cluding radar, astronomical, medical, and classic images. However, CS has also been

employed for signal extraction from electrical discharges, denoising in electromag-

netic signals or ultrasonic signals [29].

The overall methodology of this dissertation research is based on the employment of

the cycle-spinning (CS) method integrated into deep learning algorithms. Note that

the CS method has, at the moment of writing, not yet been applied to the deep learning

algorithms as our literature survey reveals. We aim to apply the CS method whose

effectiveness has already been shown in the wavelet domain to the deep learning-

based domain.

In wavelet domain applications, the CS method causes an "averaging out" effect and

suppresses visual artifacts caused by decimated wavelet transform (DWT) such as the

Gibbs phenomena. The Gibbs phenomenon is a particular behavior of some func-

tions that appear as over and under waves around a jump- discontinuity which is seen

7

in many scientific problems and applications involving signal and image process-

ing [30]. The input image is shifted, de-noised, and then it is unshifted for a range

of shifts. These intermediate results are combined by averaging to obtain a recon-

structed image. The resulting image exhibits significantly fewer Gibbs effects than

thresholding-based de-noising with the conventional orthogonal wavelet transform.

Figure 1: Representation of one shift of JPEG. Notation x and y for spatial shifting
is in z-transform which converts a discrete-time signal into a complex frequency do-
main. (x and y notation show dimension and lower values of x,y show shift amounts,
minus shows opposite direction).

Figure 1 demonstrates the shifting process which explains the basic mechanism be-

hind the CS method for JPEG encoding. The JPEG encoding procedure shapes the

frequency in borders and this will reduce the intensity of the block appearance by

applying different shifts to the JPEG image [31].

It is possible that a signal can be re-aligned to reduce artefacts, but there is no guar-

antee that this will always be possible. When there are numerous discontinuities in a

signal, they may interfere with one another: the optimum shift for one discontinuity

may not be ideal for the other. Because of this reason several possible points and

their average is recommended for the wavelet domain [32]. The wavelet transform

is not time-invariant. It has been shown that, if a noisy signal is displaced and then

subjected to denoising, the estimate is different from denoising it without such a shift

8

[33] [34]. So, the periodic time-invariance of the wavelet transform is used by the CS

method.

In [31] and [35], the CS method idea was applied as a post-processing operation after

decompression. The results have shown significant improvement in the JPEG and

JPEG2000 image compression framework. The CS method has also been shown to

be a useful tool for improving the results after wavelet denoising.

The CS method is applied to images in the same manner and the process is summa-

rized in 5 steps below:

• Move the compressed images horizontally and vertically by (i, j)

• Apply JPEG to the shifted image

• Unshift JPEG applied image i.e. vertically and horizontally by (-i,-j)

• Repeat for all possible shifts

• Average all versions

JPEG encoding reduces the high-frequency content of the image and some artificial

high-frequency components are added at the block boundaries. Thus the size of data

loss reduces [36]. Three different types of shifting operations are offered in Nosra-

tinia’s study such as symmetric extension, row, and column replication, and zero-shift

replacement. The aforementioned algorithm can be viewed as an approach to reduc-

ing artifacts such as blockiness, and ringing artifacts and enhancing visual quality

where quantization plays the role of nonlinear denoising.

CS method can be applied to different neighborhood sizes; using a smaller neigh-

borhood suffers from not having adequate information, whereas a larger neighbor-

hood has the risk of crosstalk from spatially uncorrelated image features. However,

it should be noted that the choice of the optimum neighborhood size k, is also po-

tentially dependent on image size. Tests demonstrate that the findings indicate that

k = 2 is a trade-off between computational cost and quality for a variety of image

9

sizes [1]. The CS method used in this study can be thought as a linear combination of

many estimates of the enhanced resolution image.

It has been shown that the CS method yields good results for image denoising and

image resolution enhancement [37] [38] [39]. Additionally, the idea of CS was ex-

tended by multi-spinning for image denoising [40] which is based on random shifts

instead of using known the CS method shift practices such as horizontal, vertical, or

diagonal shifts like in Figure 2. The figure indicates the patterns used for CS shift

locations used are shown as shaded elements with the no shift location occupying.

As a result of this process, they mentioned two advantages averaging avoids Gibb’s

phenomenon and contribution of quality [40].

In [29], a variant of CS having a reduced computational cost, Partial Cycle Spinning

(PCS), is proposed. Although PCS is based on CS, fewer shifts are chosen for this

implementation. Also in this study, it is noted that the selection of the shifts has a

significant impact on the final denoising outcomes. It is recommended that to select

the shifts a sparse way for getting good results with PCS.

Figure 2: Shifts are employed for various directional CS types [1].

The CS method has certain benefits over other wavelet implementations. Combin-

ing several shifted versions of the processed signal produces a high redundancy of

the processed information and allows different points of view. Getting values from

different points of view can find the best solutions for wavelet denoising problems

[38].

10

2.2 Deep learning algorithms

Deep learning is a subset of machine learning that is loosely inspired by the human

brain [41]. Deep learning has gained big popularity and is widely used for solving

complex problems [42].

The building block of deep learning algorithms is an artificial neural network (ANN)

which consists of artificial neurons, also called nodes. These nodes are stacked next

to each other in layers such as the input layer, hidden layer(s), and output layer. Each

node multiplies its inputs with random weights, sums up, and adds a bias. Finally,

nonlinear functions, also known as activation functions, are applied to the output.

If ANNs have more than one hidden layer, they are called Deep Neural Networks

(DNNs) and if they are designed specifically with convolutional layers they are called

Convolutional Neural Networks (CNNs).

Deep learning algorithms have self-learning representations and during the training

process, algorithms use unknown items in input distribution to extract properties,

group objects and discover useful data models. Like training machines for self-

learning, this happens at multiple levels using algorithms to build models [41]. Deep

learning algorithms use different types of neural networks to perform specific tasks

and there may be different algorithms better suited to perform specific tasks [43].

Due to its widespread use recently, two fundamental deep learning algorithms, CNNs

and GANs, will be employed in this study.

2.3 Convolutional Neural Networks (CNNs)

CNNs, also known as ConvNets, consist of multiple convolutional layers and are

mainly used for image processing and object detection. Yann LeCun developed the

first CNN in 1988 and it was called LeNet. In this context, the history of deep CNNs

can be traced back to the appearance of LeNet [44].

11

CNNs are among the more popular neural network frameworks that are used in appli-

cations like deep learning models for classification [45]. Over the years, considerable

amounts of advancements have been done in this area [43]. As shown in Figure 3,

there are several different algorithms. According to our literature survey, we have

chosen state-of-the-art algorithms to study on. The main breakthrough in CNN per-

formance was brought by AlexNet, which provided a substantial performance leap in

2012-ILSVRC in comparison to conventional computer vision techniques [46].

Figure 3: CNN architectures over a timeline.

With the growing popularity of deep CNNs, it is becoming increasingly difficult to

establish filter dimensions, stride, padding, and other hyper-parameters for each layer

independently. Convolutional layers with a fixed topology that can be replicated sev-

eral times are used to solve this problem. The paradigm changed from custom layer

design to modular and uniform layer design as a result. The principle of modularity

in CNNs made them easy to adapt to various tasks [47] [48] [49].

While AlexNet concentrated on 3 × 3 window sizes and strides in the first convolu-

tional layer, VGG addresses depth. VGG then replaced the 11 × 11 and 5 × 5 filters

with a stack of 3×3 filters, demonstrating that the small (3×3) filters could cause the

effect of a large size filter (5×5 and 7×7). By reducing the number of parameters, the

use of small-size filters gives an added advantage of low computational complexity.

Afterward, the Visual Geometry Group (VGG) controls the network’s complexity by

inserting 1x1 convolutions between the convolutional layers, which also learn a linear

combination of the resultant feature maps. Max-pooling is put after the convolutional

layer for network tuning, while padding was used to keep the spatial resolution [50].

12

Later, Inception-V1 was the winner of the 2014-ILSVRC competition and is also

known as GoogleNet. The GoogleNet architecture’s key goal was to achieve high pre-

cision at a low computational cost [51]. Inception-V3, V4, and ResNet are followed

by Highway Networks. Srivastava et al. suggested a deep CNN, called Highway Net-

works, in 2015, based on the intuition that increasing network depth would increase

learning ability [52]. Highway Networks were seen to converge considerably faster

than simple networks, with 900 layers deep [49].

The Dense Network or DenseNet is also an important milestone in the deep learn-

ing architecture timeline. The idea here is that connecting a skip connection from

the previous layer improves the performance and this creates a direct route for the

information through the network. The research in CNN is still going on and has a

significant potential for improvement in the future. Image Classification, Segmenta-

tion, Object Detection, Video Processing, Natural Language Processing, and Speech

Recognition are some main tasks of CNNs.

CNN is generally known as a good algorithm for its ability to learn by utilizing dif-

ferent stages of information processing. This results in using larger amounts of data

but as the technology of data processing has improved, CNN became more popular

and related research work has been intensified. According to Khan et.al.; “Several in-

spiring ideas to bring advancements in CNNs have been explored, such as the use of

different activation and loss functions, parameter optimization, regularization, and ar-

chitectural innovations. However, the significant improvement in the representational

capacity of the deep CNN is achieved through architectural innovations” [49]. Vari-

ous types of layers have been added to CNN to improve its success in recent years.

In particular, ideas of using spatial and channel information, the depth and breadth of

architecture, and multipath information processing ideas have attracted considerable

attention. Similarly, the idea of using a block of layers as a structural unit is also

gaining popularity [49].

Besides improvements, studies about the robustness of CNNs to image corruption

exist [10, 11, 12, 53]. More specifically, the lack of invariance of modern CNNs to

small image deformations was reported in several resources [6, 7, 54] [55]. Even if

13

appropriate pooling is used, ensuring that a given layer is shiftable, the subsequent

nonlinearities in a CNN may not preserve the shift ability, as the nonlinearities may

again introduce high frequencies [56]. The Nyquist theorem states that the sampling

rate must be at least twice the highest frequency of the signal to avoid overlapping

[57]. Modern CNNs are brittle when the input is translated, rescaled, or otherwise

transformed. As these studies propose and conclude, modern networks are not shift-

invariant.

Accordingly, we offer to add the CS method to convolution neural network layers.

Consequently, each pixel learns the surrounding pixel structure and since the average

value is taken, stronger learning is to be provided without significant loss of value.

Since CNN possesses feature generation and discrimination ability to show the results

of our survey we have chosen two prominent CNN capabilities, classification and

object detection.

2.3.1 Image classification using CNNs

One of the most well-known CNN applications in computer vision is image classifi-

cation which consists of classifying an image into one of many different categories

[26]. The CNN architecture for classification includes convolutional layers, pooling

layers, and fully connected layers. Convolution layers are used to do feature detec-

tion, whereas pooling layers are used to select features. Each feature map of a pool-

ing layer is linked to the feature map of the convolutional layer before and lowers the

computational burden by reducing the number of connections between convolutional

layers. The output from convolution and pooling layers is fed into the fully connected

layers for classification [26].

2.3.2 Object detection using CNNs

Object detection aims to detect precise locations and classes of objects in an image.

Object detection methods have developed significantly and are used for numerous

tasks such as surveillance, disease identification, and autonomous driving.

14

Figure 4: Milestones of object detection. (Adapted from [2])

There are mainly two types of deep learning based object detection approaches: one-

stage and two-stage algorithms, as shown in Figure 4. A well-known two-stage based

algorithm is Region-CNN (R-CNN) [58], which is based on separating an image into

different regions of interest. Afterward, Fast R-CNN and Faster R-CNN [59] have

been developed, and in recent years Mask R-CNN [60] has been developed which

can illustrate the contours of a target position in addition to the position and type

of a target object. One-stage models separate an image into several candidates first

and they have higher precision, however higher computational costs limit their use

in real-life applications. Therefore, one-stage approach-based algorithms have been

proposed. These models perform regression analyses of targets of detection and di-

rectly predict the locations of the targets. While it offers faster compute speeds, these

method typically have lower accuracy relative to the aforementioned methods as it

utilizes single-shot detection to process an image. One-stage object detection models

include Single-Shot Detectors (SSD) [61] and the You Only Look Once (YOLO) se-

ries (such as YOLO [62], YOLO9000 [63], YOLOv3 [64], YOLOv4 [65], YOLOv5

[66]). The newly released YOLOv4 and YOLOv5 are reported to be more accurate

than many two-stage and one-stage approaches. But, the complex network structure

of YOLOv4 and YOLOv5 requires higher computational volumes, and consequently,

relies on high-level graphics cards, to attain a better learning performance [67]. Ac-

15

cording to our experiments, YOLOv5 outperforms the YOLOv4 Tiny model when

trained on the dataset [68] and evaluated on the same test datasets. As our main inter-

est is the analysis of small shifts, with suitability for the practical application being

a primary consideration, YOLOv5 was chosen as the primary object detection algo-

rithm for this study as it offers better speed, detection accuracy, and stability. In addi-

tion to YOLOv5, the EfficientDet algorithm [69] has been used to analyze the effects

of the CS method. EfficientDet model was developed by Google, and it consistently

achieves better efficiency. Similar to Yolov5, EfficientDet has also achieved remark-

able performances in Pascal VOC and Microsoft COCO tasks and is widely used in

real-world applications. EfficientDet employed state-of-the-art network EfficientNet

[70] as its backbone, enabling the model to learn complex objects. EfficientDet, like

EfficientNet, uses a compound scaling strategy to equally scale the resolution, depth,

and breadth of all backbone, feature network, and box/class prediction networks at

the same time ensuring maximum accuracy and efficiency while working with lim-

ited computational resources.

Most detectors use multiple basic boxes, or anchors, which are bounding boxes de-

fined by multiple boxes with different aspect ratios. A good regression of projected

bounding boxes depends on the design and number of anchors being used to general-

ize the location, size, aspect ratio, and classification of training data. Each spatial cell

in the output feature map predicts several boxes. Each box prediction is encoded as x-

and y- offsets relative to the cell center, and width- and height-offsets relative to the

corresponding anchor [71]. There are also anchorless object detection architectures

such as CenterNet [72].

Robustness to small image translations is a highly desirable property for object de-

tectors [73]. However, recent works have shown that CNN-based classifiers are not

shift invariant [26]. Modern object detection architectures, no matter if one-stage or

two-stage, anchor-based or anchor-free, are sensitive to even a one-pixel shift to the

input images [73]. When several possible solutions to this problem are investigated it

is seen that none of these methods can provide full shift-equivariance.

16

2.4 Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) for image synthesis mainly use deep convo-

lutional network architectures and consist of a generator and a discriminator. GANs

have two models which are trained simultaneously: a generative model G that cap-

tures the data distribution, and a discriminative model D that estimates the probability

of whether a sample came from the training data rather than G. The training procedure

for G is to maximize the probability of D making a mistake. This framework corre-

sponds to a minimax two-player game. In the space of arbitrary functions G and D,

a unique solution exists, with G recovering the training data distribution and D equal

to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons,

the entire system can be trained with backpropagation [74].

Unlike the previous loss function of deep convolutional networks, the GAN loss func-

tion includes the image’s perceptual loss, which comprises content loss and genera-

tion loss. The disparity between the real image and the artificial image created by the

generation network gives generation loss.

There has been significant interest in GANs in the recently [75, 74, 76, 77] and they

have been applied to various domains including computer vision [78, 79, 80], nat-

ural language processing [81, 82], time series synthesis [83, 84, 85], semantic seg-

mentation [86, 87, 88]. Also, GANs have a wide range of application areas such as

generating samples for image datasets, photographs of human faces, realistic pho-

tographs and cartoon characters, image-to-image translation, text-to-image transla-

tion, semantic-image-to-photo translation, face frontal view generation, generating

new human poses photograph editing, face aging, photo blending, super-resolution,

photo inpainting, clothing translation, video prediction, 3D object generation. Us-

ing generative adversarial networks (GANs) is promising for enhancing images and

removing artifacts [89, 90, 26].

Despite their considerable achievements, there are a number of issues of GANs:

mainly instability in training, difficulties in the generation of high-quality images,

and improving image diversity [91].

17

In this study, we adapt the cycle spinning (CS) method and integrate it into a GAN

for this purpose.

2.4.1 Image enhancement using GANs

It has been widely acknowledged that unpredictable impairments such as illumina-

tion, noise, and severe weather conditions (i.e. rain, snow, and fog) adversely affect

the performance of many computer vision algorithms for object detection, classifi-

cation, and tracking [26]. Recent years have witnessed significant progress in single

image de-raining. The progress in this field can be attributed to various prior stud-

ies [92, 93, 94, 95, 96] and deep convolutional neural network (CNN)-based models

[97, 98, 99, 4, 26]. GAN can be used for evaluating and analyzing performance differ-

ences between synthetic rainy images and real-world images by defining the strengths

and limits of each method [100].

There are early methods based on multiple frames based on de-raining algorithms

and using video by taking the average intensity of the detected rain streaks from the

previous and subsequent frames. However, those methods are not applicable to single

image de-raining [101, 101, 102, 103, 104, 105, 106].

Cleaned images used some other de-raining algorithms are beneficial but they tend

to have unsatisfactory performances on real images with complicated scenes and rain

forms remove [92, 93, 94, 95, 96].

Convolutional Neural Network (CNN) based algorithms have achieved success for

single image de-raining. Progress in single image de-raining can be attributed to var-

ious natural image priors [101, 102, 107, 104, 92, 105, 106] and deep convolutional

neural network (CNN)-based models mentioned before. Rain models in the literature

can be investigated in three major categories: rain streak, raindrop, rain, and mist.

One of the state-of-the-art models is the DeRaindrop algorithm [4] which is a CNN-

based single-image raindrop algorithm. It aims to improve the images by cleaning the

raindrops on a glass window or camera lens. As with all rain removal algorithms, the

type and size of the rain stain are unknown and information is lost on the rainy region

18

of the image. To resolve the problem, an attentive generative network using adversar-

ial training is used and the DeRaindrop algorithm has been applied. The DeRaindrop

algorithm uses an attentive generative network to generate raindrops mask. Then it

focuses on the rain regions and removes background interference.

As a result, the DeRaindrop algorithm is a successful method for raindrop images

according to objective experimental results, recently. The CS method can be used

for different aims such as dehazing [108, 100, 109], derainstreak [110]. Because

such fluctuations adversely impact vision systems that rely on small image features

for tracking, object detection, and recognition and there is no single best-deraining

algorithm for all rain types.

19

20

CHAPTER 3

METHODOLOGY

3.1 Cycle-spinning (CS) method

Eq. 1 summarizes the CS method in wavelet domain, where S(i, j) corresponds to

2-D circular shift, W is the wavelet transform, k1, k2 are the maximum number of

shifts and T is a thresholding operator [32]:

ŷ =
1

k1k2
·

k1k2∑
i=1,j=1

S−i,−j

(
W−1 (T (W (Si,j(y))))

)
(1)

The fact that various coefficients may be canceled out by different iterations for the

same shift value i and each iteration’s denoising procedures will not always correlate

to the same projection complicates the method. Despite these difficulties, the CS

method has been proven to converge [33]. The proof mentioned here does not imply

that the CS method estimates converge to the true signal, it shows that the CS method

converges to the intersection of a series of spaces containing the true signal, and

therefore the final estimate is close to the true signal.

In these studies, the CS method is proposed as a new method for image processing

to reduce ringing and impairments commonly associated with conventional resolu-

tion enhancement approaches due to the unavailability of higher spatial frequencies.

The following support that the CS method is an effective way of image resolution

enhancement [111, 112, 113, 114].

During the acquisition process and down-sampling of a digital picture, there is some

degree of high-frequency information loss. The resolution enhancement problem is

21

defined as estimating the missing higher spatial frequency information using the low-

frequency information available. Based on this information, the CS method has been

shown to restore high frequencies. The main idea of the CS method is based upon

using non-shift invariance. When applied to image processing this results in different

consequences. In fact, shifting the image in image processing generally results in

undesired consequences and usually distorts it [115, 55, 7]. However, if non-shifted

invariance is employed, such distortion may be eliminated. This has been shown in

the resolution enhancement of the images by [1]. The recovery of high-frequency data

entails the recovery of edges as well. Edges are the most crucial characteristics of an

image since they transmit substantial information about it [38]. In [38] study, the un-

known high-resolution (HR) image is generated using wavelet-domain zero padding

(WZP) as a new approximation to the CS method. First, a number of low-resolution

(LR) images are generated from spatial shifting, then wavelet transforming is ap-

plied and discarding the high frequency (HF) coefficients. Second, WZP processing

is applied to all images. Finally, these intermediate HR images are re-aligned and

averaged to give the final HR reconstructed image. As a result, visual artifacts and

oscillations around signal discontinuities, called pseudo-Gibbs phenomena, are fixed

by the shift variant property of the transform. We aim to apply the CS method, whose

effectiveness has already been shown in wavelet domain processes, to deep learning

algorithms for image processing.

In the light of all this information, we will be discussing how the CS method can be

applied in the field of deep learning. Deep convolutional neural networks (CNNs)

extract local features and learn spatial representations via convolutions in the spatial

domain. The objects in most of the images have consistent relative pixel densities,

which convolutions may take advantage of [116]. Pixel density is a calculation that

returns the number of physical pixels per inch on an image as important as the resolu-

tion. For dense pixel prediction tasks, the loss is spatially varying because of varying

scene elements on a pixel grid. For this reason, we proposed a new approach influ-

enced by the CS method and adapted it to deep learning algorithms. In this approach,

the basic operation is the convolution operation instead of wavelet transformation.

Convolution is a fundamental image processing and computer vision operation, as

22

well as a key component of CNN architectures [117]. When, as prior information, it

is known that a function of a limited number of surrounding pixels is helpful, it may

utilized to exploit local information. For example, convolutions in the first layer of a

convolutional network may be detecting the edges using local information when ana-

lyzing images. Because the statistics are expected to be similar at different locations

of the image, same edges may occur at various locations in the image. This leads to

the idea of sharing parameters across the network [118]. Listed below are the major

parts covered in this dissertation to explore the adaptability of the CS method to the

field of deep learning:

• Integrating CS into GAN-based models,

• Integrating CS into the convolutional layer of CNN-based models.

3.1.1 Integrating CS into GAN-based models

As the first step, we adapted the CS method to a GAN-based de-raindrop algorithm.

GANs are composed of three main parts: the generator, the discriminator, and the loss

function. In order to create a good generator G to fool the learned discriminator D and

to make the discriminator D good enough to distinguish the image from real ground

truth, the method updates G and D by using a loss function [119]. It is important to

use all information in an image during the convolution process in order to properly

employ the CS method, therefore, CS has been employed to wrap around the whole

algorithm. This is different from its other applications in this thesis, in which it only

wraps around a convolutional layer. The process is illustrated in Figure 5.

3.1.2 Integrating CS into the convolutional layer of CNN-based models

The second step is to adapt the CS method to use with CNN-based classification and

object detection models. Classification involves the prediction of the class to which

an image belongs. Some classifiers are binary, resulting in a yes/no decision. Others

23

Figure 5: The CS block diagram illustrates the adaptation of the CS method by wrap-
ping the algorithm.

are multi-class, able to categorize an item into one of several categories. Classifica-

tion is a very common use case of machine learning—classification algorithms are

used to solve problems like image recognition and object detection. So, in addition to

classification, we also apply the CS method to an object detection algorithm. In regu-

lar applications, the CS method wraps around the wavelet transformation, to adapt it

to use in classification and object detection networks, CS wraps around the first con-

volution operation. In particular, the first convolution operation is chosen because, in

signal processing applications, low-pass filters are often placed before downsampling

to avoid aliasing [7]. The CS method can also be added to the convolution operations

on different layers of the algorithm. The illustration of the CS method adaptation to

classification and object detection algorithms is shown in Figure 6 and the details of

the deep cycle-spinning convolution are shown in Figure 7.

If we denote the proposed CS method according to the spatial domain in Eq. 2, S(i,j)

means 2-D circular shift, C means a convolution, k1 k2 is the maximum number of

shifts:

ŷ =
1

k1k2
·

k1k2∑
i=1,j=1

S−i,−j (C (Si,j(y))) (2)

24

Figure 6: Illustration of the proposed algorithm in which cycle spins by convolving
the input via basic convolution at each iteration.

Figure 7: Flow of the cycle-spinning convolution method.

Firstly, in Figure 8, it is shown how different values are calculated at the end of the

pooling. It can be seen more clearly in the visualization that the weights for "to the

right of the center, down by one" and "to the left of the center, up by one" is differ-

25

ent, therefore if the output-centered filter is simply taken and used in a convolution

framework, it will yield different weights as a result of pooling [120]. Because of this

reason, models cannot utilize information effectively because it only adopts a fixed

stride strategy, which may result in poor generalization ability and information loss,

especially for edges and small details of objects. However, the CS method’s final

estimate is obtained by simply linearly averaging the shifted versions’ estimates. The

errors in the estimates are not completely dependent and sequentially averaging them

results in noise reduction, anti-aliasing, and edge-preserving.

Figure 8: Output channels of a standard convolution operation on input and element-
wise multiplication of matrices followed by a max-pooling are shown for the illustra-
tion.

Secondly, to show the behavior of the CS method two functions such as f and g that

act on the same domain of inputs can be assumed. When two functions are convolved,

the convolution operates like a function in the sense that we can compute the value of

the convolution at a certain moment t. Calculating a convolution between f and g, at

point t, it is taken the integral over all values α between negative and positive infinity,

and, at each point, multiplies the value of f(x) at position α by the value of g(x) at t.

We literally take one signal and shift it in the time domain. The integral of the over-

lapped section is then calculated by multiplying this signal with the other signal. As

a sample, we convolve the f(t) = e−|t| function with a sinc-squared function. Results

26

of convolution with and without the CS method are illustrated in Figure 9 and Figure

10 which shows what we get when the CS method has been added to the convolution

of the f(t) and g(t) functions: smoothness and information aggregation.

Figure 9: Convolution results of f(t), g(t) functions without the CS method employed.

Figure 10: Convolution results of f(t), g(t) functions after the employment of the CS
method.

Figure 11: The basic model for analyzing the results of 2D image processes.

To give an idea and to justify the usage of the CS method, we have analyzed 2D

image examples. Natural images have varying texture characteristics and frequency

contents. Therefore, test patterns are used for justification. A convolution operation

27

as seen in Figure 11 using Sobel x direction kernel ([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])

and afterward a max-pooling operation is used for test pattern experiments.

Firstly, we have chosen a well-known black-and-white TV test pattern. The selected

image has detailed vertical lines which may be affected in different ways with the

application of downsampling, strided convolution, and the like. [26]. When down-

sampling a signal, it is a general practice to use low-pass filtering for anti-aliasing

[24]. As the averaging process done by the CS method resembles a general low-pass

filter, we sought their differences in this test pattern experiment. Low-pass filters are

used to smooth out harsh intensity changes. Noise reduction is one apparent use of

smoothing; as random noise generally has rapid intensity shifts. In the second row

of Figure 12, it is observed that regular convolution causes aliasing and the details

of vertical lines are lost. This effect is more pronounced at the higher frequencies

towards the right side of the image. The CS convolution results (third row), exhibit

less aliasing due to the averaging-out effect and the lines are more distinctly visible.

In this case, more information is preserved and propagated forward to the subsequent

layers for further processing. 3× 3 low-pass filtering after the convolution operation

has an anti-aliasing effect (last row).

On the other hand, significant amounts of detail are lost in this instance due to filter-

ing, especially at the higher frequencies. The results confirm that the CS convolution

operation provides a good balance between regular convolution and convolution fol-

lowed by low-pass filtering, as it prevents anti-aliasing while preserving the details.

The same process was applied to test images consisting of a square and the letter

"a" (Figure 12). It is observed that the horizontal lines and the right side of the

vertical line disappear as a result of the max-pooling applied after convolution. The

CS convolution version preserves the horizontal lines to a degree and the vertical line

is more visible. On the other hand, horizontal lines and vertical lines become blurry

when low-pass filtering is used. Analysis of the results for the letter "a" shows that

more information is preserved around the upper curve of the letter “a” for the CS

method applied version, just as in the square and round object examples. Also, the

anti-aliasing effect is seen in the overall shape of the “a” letter. As in the other cases

28

Figure 12: Visual comparison of pooling results on synthetic test patterns. Origi-
nal patterns are shown at the top row, followed by max-pooling results using regular
convolution, using CS integrated convolution, and using a low-pass filter before con-
volution.

above, low-pass filtering results in blurring and there is more data loss around the

upper curve of the letter “a”.

To analyze the effects of the CS method in the presence of noise, we repeated the

experiment using the same algorithm by adding Gaussian noise to the Lena image

seen in Figure 13.

In the first row of Figure 14, the results of the convolution, CS applied and low-

pass filtered versions of the Lena image are shown sequentially. In the second row

of Figure 14, 8 times magnification of Lena’s hat section is shown for a better view

of the details. As a result, it is seen that the CS method implementation removes

29

Figure 13: Original image of Lena (left) and noisy version (right) with noise.

noise without losing details, as in the test pattern images. When the results have

been compared with the low-pass filtered version, it is also seen that the edge lines of

the objects are not blurred in the CS-implemented version. As is seen in the sample

experiments, the healing effects of the CS method are the motivation behind this

research.

These results on toy examples reveal that the CS method added versions of convo-

lution preserve the edges of the objects in the image and have a noise-suppressing

effect. In a multi-layer architecture, this implies that more information is passed onto

the subsequent layer. Next, we focus on the question ‘what gains will be achieved

in the deep learning algorithms?’. The research paper titled “Axiomatic Attribution

for Deep Networks” defines axioms for the correctness of attribution methods that

generate attribution scores for inputs to deep networks [121]. That study highlights

two such axioms as sensitivity and implementation invariance. These properties are

good for understanding the background of the CS method in deep learning. There

are several methods to calculate and visualize the results. We focus on the attribution

method which is called the Integrated Gradients. The advantage of Integrated Gradi-

ents is that it does not require network instrumentation and can be easily computed

with just a few calls to the gradient operation.

An attribution method scores the input data based on the predictions the model makes,

i.e. it attributes the predictions to its input signals or features, using scores for each

feature. For example, a score is generated for each feature in the input image the

model predicted for and the scores associated with each of these features give an in-

30

Figure 14: Visual comparison of pooling results on noisy Lena image. Detail of hat
(8×) images are shown in the second row. The max-pooling results using regular
convolution, using CS integrated convolution, and using low-pass filter before convo-
lution is in the top row.

dication of their role in prediction. The gradient is the signal that tells the neural

network how much to increase or decrease a certain weight/coefficient in the network

during the backpropagation. It relies heavily on the input features for this task, there-

fore, the gradient associated with each input feature with respect to the output can

help us get a clue about how important a feature is.

We used a basic network based on the architecture proposed in the CIFAR-10 be-

ginner tutorial to understand the effect of the CS method. The general architecture

application. This model has trained only 8 epochs for classes = (’plane’, ’car’, ’bird’,

’cat’, ’deer’, ’dog’, ’frog’, ’horse’, ’ship’, ’truck’) using Captum library [122] which

31

interprets output predictions with respect to inputs. We have trained with and without

the CS method and showed visualization results in Figure 15.

The CS method has been applied to the first convolution part of the model. Thus,

each batch is trained with 1 and 2-shift CS methods. Our experiments show that the

CS1+2 versions of the CS method are more successful than expected. Because of this

reason, we have employed both 1 and 2 shifts CS in this model. The CS method’s

final estimate is obtained by simply linearly averaging the shifted versions’ estimates.

The errors in the estimates are not completely dependent and sequentially averaging

them yields a noise reduction. It is crucial to achieving the same size results from

each phase of the CS method while averaging.

In the model trained on the CIFAR-10 data, we have examined the deep neural net-

work model with the aim to understand which of the features was most important

and how the network reached its prediction. Our selection is neuron (importance)

attribution algorithms because we search not only for classification but also for object

detection. In the first experiment, we applied the CS method on the first convolution

which has the following parameters: channel=3, height =6, kernel size= (5, 5), stride=

(1, 1). We also experimented with adding the CS method on the second convolution

of the model which has the following parameters: channel=6, height=16, kernel size=

(5, 5), stride= (1, 1). When the visualization results in Figure 15 are inspected, it can

be seen that the correlation with the data is higher with the addition of the CS method

and the contours of the objects in the image became more pronounced.

To provide some insight into how the proposed model comes to a decision and how it

compares against the baseline, we used Gradient-weighted Class Activation Mapping

(Grad-CAM) visualizations. The Grad-CAM uses the gradients and highlights the

important regions in the image [3]. This technique creates heatmaps using a trained

neural network after training is finished and the parameters are fixed. It is also known

as post-hoc attention. This is different from trainable attention, which entails learning

specific parameters during training to build attention maps.

32

Figure 15: Integrated gradient visualization results of the model on CIFAR-10 test
images. Left-most column: original image; middle column: its corresponding regular
method result; right-most column: CS1 method adaptation result.

Figure 16: Overview of Grad-CAM heatmap. (Adapted from [3])

33

A feature map shows the location of features in the image. As shown in Figure 16,

each channel in the feature map array is multiplied by the gradient of the highest

predicted class for the input image. The gradient is relative to the activations of the

last convolution layer. By doing this, the magnitudes of the fields that help with the

prediction increase. Then all channels are summed to get the class activation heatmap.

This heatmap can be used to analyze where the CS method is paying attention while

predicting the given image and compare it against the attention of the original model.

As seen in Figure 17, the proposed method concentrates more on the areas which

have more distinctive information about the object (i.e., focusing more on information

extracted toward the face and eye of the cat in this specific instance). The red and

yellow areas indicate the locations to which the model pays attention while making

predictions. Blue areas are the locations where activation is lower. For CS1 and

CS1+2 results, the heatmap is observed to move towards the face of the cat, indicating

that CS enables the model to be a better learner.

Figure 17: Comparison of the GradCAM visualizations of the baseline, CS1, and
CS1+2 applied versions of the object detection algorithm. Original image (top left),
baseline algorithm result (top right), CS1 applied version (bottom left), and CS1+2

applied version (bottom right).

34

3.2 Shifting

Shifting an image means moving all the pixels of the image while keeping the image

dimensions the same. This means that some pixels will be clipped from the image

and there will be a region in the image where new pixel values must be specified.

CS method involves spatial shifting of pixels of an image. There are alternative shift-

ing approaches, some of which may result in the loss of some information about the

object in the image, as shown in Figure 18. This may reduce the performance of

detection objects which are not fully in the frame or at the edge of the image like in

Figure 19.

Figure 18: Shifting examples of an image (Generated by Keras ImageDataGenerator
Class).

To overcome this problem, we decided to shift images using padding. In the context of

CNNs, padding refers to the pixels added to the image borders before it is processed

by the kernel of a CNN. For example, when zero-padding is used, then every pixel

value that is added will be of value zero. Padding works by extending the area that a

convolutional neural network processes.

In our experiments, we have evaluated constant, reflect, constant, replicate, and cir-

cular padding, as shown in Figure 20. It is shown that zero padding drives CNNs

to encode position information in their internal representations in contrast to conven-

tional padding types such as reflection, replicate, and circular [124]. According to

35

(a) Room scene (b) Work scene

(c) Group photo (d) Desk objects

Figure 19: Examples of images with border objects that are not fully in the frame,
selected from the MS COCO 2014 image set [123]. The images show different types
of images sampled in the dataset, including objects, and scenes.

Alsallakh et.al. circular padding is the second capable padding type in CNNs while

reflect and replicate padding is not as beneficial at the image boundaries. In circu-

lar padding, When the convolutional kernel hits the edge, it rolls to the other side,

and similarly, when shifting, pixels are rolled off from one edge to the other. Infor-

mation is lost on one side of the shift and must be filled in on the other. Especially

for small-sized datasets, circular padding is recommended [26]. As well, [29] gets

slightly better performance in experiments in feature space.

36

(a) Constant (b) Reflect

(c) Replicate (d) Circular

Figure 20: The representation of four different padding methods on a sample image
from the CIFAR-10 dataset.

37

38

CHAPTER 4

INTEGRATING CS INTO GAN-BASED MODELS FOR RAINDROP

REMOVAL

Based on the literature survey in Section 2.3.1, we decided to adapt the CS method

into Attentive GAN [4]. DeRaindrop (using Attentive GAN) is a method developed

specifically for raindrop removal and it is reported to be the best-performing method

for this particular problem in a recent benchmarking paper [125]. In this work, we

use De-Raindrop as a basis due to its proven performance and adapt the CS method

to further improve its state-of-the-art results.

4.1 DeRaindrop algorithm

The deRaindrop algorithm uses an attentive generative network to generate a raindrop

mask and then remove the raindrops by using it. Attentively focusing on rain regions

makes the algorithm stand out.

4.1.1 Datasets

Similar to most of the currently used deep learning methods, our method also requires

a relatively large amount of data with ground truths for training. Since a dataset for

raindrops attached to a glass window or lens does not exist, a dataset using two pieces

of the same glass: one sprayed with water, and the other clean, 1119 pairs of images,

with various background scenes and raindrops, were created with Sony A6000 and

Canon EOS 60 cameras for image acquisition by Qian et al. ([4]). To create a variety

39

of raindrop photos and limit the reflecting impact of the glass, a 3 mm glass slab was

utilized with a distance ranging from 2 to 5 cm between the glass and the camera.

Training has been done using the data set presented in ([4]) which consists of 720 ×
480 pixels, 860 real images, and 860 images having raindrops. Evaluations have been

done on 58 test images having a resolution of 720×480 pixels. All training and testing

processes have been carried out on Nvidia GeForce GTX 1080 GPU. All the quality

metrics have been calculated using MATLAB R2017b. Code is publicly available at

https://github.com/UlkuUZUN/cs-attentiveGAN.

4.1.2 Architecture

As shown in Figure 21, the algorithm architecture is generic and any artefact removal

algorithm having a shift-variant nature could be applied to it. In this network, there are

two main parts such as generator and discriminator networks, as in the known GAN

definition [74]. The attentive generative network is made up of two sub-networks:

an attentive-recurrent network and a contextual autoencoder. The attentive recurrent

network’s goal is to identify regions in the input image that require attention. These

are primarily the raindrop areas and their surrounding structures. The contextual au-

toencoder works in order to provide better local image restoration. The discriminative

network must focus on the evaluation. In order to localize and capture the character-

istics of the targeted regions in an image, visual attention models have been used by

writers. Visual attention is very important for producing raindrop-free background

images since it tells the network where to focus removal efforts. Each block in the

recurrent network consists of five ResNet [126] layers. These residual layers feed

into the next layer and directly into the layers about 2 hops away and that aid in the

extraction of features from the input image lost in previous layers. In this network,

also a convolutional LSTM unit [127], and convolutional layers are used for produc-

ing the 2D attention maps. In this network, attention maps are composed of values

between 0 and 1, and these values have meaningful consequences in the presence of

raindrops.

40

https://github.com/UlkuUZUN/cs-attentiveGAN

Figure 21: Architecture of the attentive generative adversarial network [4].

Two different variants of the proposed method have been evaluated. The first one

integrated the CS method into the test phase only. In this case, the algorithm is trained

without any modifications. The CS method is only applied in the test phase by using

shifted versions of the input image, then undoing the shift at the output, and taking

an average of both to reach the final result. The CS method is applied in the training

phase in the second case. In the application of the CS method with 1-pixel shifts, in

addition to the original image, combinations of 1-pixel shifts in x and y are used: [(1,

1), (1, 0), (0, 1), (-1, -1), (0, -1), (-1, 0), (-1, 1), (1, -1)]. The 1 and 2-pixel shift version

uses the original image, combinations of 1-pixel shifts, as well as combinations of 2-

pixel shifts : [(1, 1), (1, 0), (0, 1), (-1, -1), (0, -1), (-1, 0), (-1, 1), (1, -1), (2, 2), (2, 0),

(0, 2), (-2, -2), (0, -2), (-2, 0), (-2, 2), (2, -2)].

4.1.3 Evaluation metrics

Processing of an image can result in degradation of image quality. Image quality eval-

uation methods are classified as objective or subjective. The distinction between the

two approaches is that one focuses on the properties of signal processing in various

imaging systems, whereas the second focuses on the perceptual factors that make an

image appealing to human viewers. The performance of raindrop removal has been

examined using both quality approaches in our Cycle Spinning Generative Adversar-

ial Network experiment. All the quality metrics have been calculated using MATLAB

R2017b.

41

Firstly, we have calculated Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-

larity Index (SSIM) ([128]). The PSNR equation (Eq. 3) computes the peak signal-

to-noise ratio between two images in decibels using Mean Square Error (MSE). The

MSE (Eq. 4) is the cumulative squared error between the processed and the original

image. The better the quality, the higher the PSNR.

The PSNR is defined based on the ratio of the square of the maximum possible pixel

value of the image (R) and MSE:

PSNR = 10 log10

(
R2

MSE

)
(3)

MSE is defined as the difference between a noise-free m×n image I and its processed

version K:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (4)

SSIM is a well-known quality metric used to measure the similarity between two

images. Instead of using traditional error summation methods, it is based on modeling

any image distortion as a combination of three factors that are loss of correlation,

luminance distortion, and contrast distortion. The better the quality, the higher the

SSIM.

Further, to evaluate the perceptual quality of restoration, three no-reference Image

Quality Assessment (IQA) metrics have been used:

• Naturalness Image Quality Evaluator (NIQE) ([129]),

• Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) ([130]), and

• BLind Image Integrity Notator using discrete cosine transform (DCT) statistics

(BLIINDS-II) ([131]).

The NIQE and BRISQUE algorithms employ natural scene statistics (NSS). The NSS

is helpful for specifying an ideal observer’s behavior in a natural task, generally by

using signal detection theory, information theory, or estimation theory. NSS features

42

are used by different algorithms in different ways. For example, the NIQE algorithm

extracts the NSS features from statistically significant blocks in the distorted image

and then fits a multivariate Gaussian distribution to the image NSS features. Finally,

the distance between the Gaussian distributions is used to calculate the quality score,

as shown in Figure 22.

Figure 22: NIQE workflow diagram.

Also, the BRISQUE algorithm extracts the NSS features from the distorted image and

predicts a quality score using support vector regression (SVR), as shown in Figure 23.

Figure 23: BRISQUE workflow diagram.

While NIQE compares the image to a default model computed from images of natural

scenes, BRISQUE compares the image to a default model computed from images of

natural scenes with similar distortions. Lower BRISQUE and NIQE scores indicate

better perceptual quality. Because BRISQUE and NIQE results show how far from

according to the viewers.

The BLIINDS-II relies on a Bayesian inference model to predict image quality scores

given certain extracted features. The features are based on a natural scene statistic

model of the image DCT coefficients. In ([131]) and ([132]), a smaller BLIINDS-

II score indicates better perceptual quality, but to be consistent with full-reference

metrics and compared with other studies [125, 100]. The bigger the value, the better

the perceptual quality.

43

Figure 24: BLIINDS-II workflow diagram.

To test the object detection performance, we used the TensorFlow Object Detection

API with the SSD MobileNet pre-trained model (on COCO) ([133]) and calculated

the mean average precision (mAP) averaged over IOU thresholds in [0.3: 0.05: 0.99].

If the score of a detected object is higher than a threshold of 0.3, its label and bounding

box coordinates are recorded and used in the performance evaluation.

4.1.4 Results

Table 1 summarizes the experimental results in terms of two full-reference metrics

(PSNR, SSIM), three no-reference metrics (NIQE, BRISQUE, BLIINDS2), and a

task-driven object detection metric (mAP).

Table 1: Average full- and no-reference evaluation results on raindrop added real-life
images and object detection measure mAP results.

PSNR SSIM NIQE BRISQUE BLIINDS-II mAP

Original images - - 4.40 22.79 66.52 63.73%
Images with
raindrops

24.19 0.89 4.07 23.82 69.37 60.40%

DeRaindrop 25.47 0.89 4.30 17.88 64.63 65.22%
1-shift CS (test) 26.09 0.90 4.44 18.26 66.39 68.68%
2-shift CS (test) 26.01 0.90 4.45 18.19 65.58 67.17%
2-shift CS (train) 26.12 0.91 4.29 18.40 66.20 69.05%

With regards to the full-reference metrics, images obtained with the baseline DeRain-

drop algorithm ([4]) have higher PSNR results compared to the images with rain-

drops, i.e. average PSNR through the test set increases from 24.19 to 25.47. On the

other hand, SSIM results exhibit no change and both have an SSIM value of 0.89.

The proposed method has higher PSNR and SSIM results compared to DeRaindrop.

In the one-shift testing only, PSNR increases to 26.09, and SSIM increases to 0.90.

44

When CS is applied during the training, both PSNR and SSIM values became higher;

PSNR increases to 26.12 and SSIM to 0.91.

With regards to no-reference IQA metrics, it is interesting to see that the original

images without raindrops have worse NIQE and BLIINDS-II scores than their coun-

terpart images with raindrops. Application of CS does not result in any improvement

compared to the original DeRaindrop algorithm in terms of NIQE and BRISQUE

scores, while it has a better BLIINDS-II score. By their design, IQA metrics are

dependent on the reference image databases. It is reported in the literature that the

no-reference metric scores are not consistent with the subjective human-judgment

evaluations [125]. These observations make use of no-reference metrics in assessing

raindrop removal performance questionable.

(a) Ground truth image (b) Corresponding image with raindrops

(c) Result obtained using DeRaindrop (d) 1-shift cycle-spinning

Figure 25: Demonstration of a test image, raindrop applied version, and raindrop
removal results. (a): The original door image. (b): The input image is degraded by
raindrops. (c): The base algorithm result. (d): The CS method applied model results,
where most raindrops are removed and structural details are restored.

45

Degradation of visibility inevitably affects the subsequent vision algorithms in intel-

ligent transport and outdoor video surveillance systems [134]. The performance of

object detection, which is an important element in these systems, deteriorates in the

presence of raindrops and is thus largely affected by the quality of image enhance-

ment. For this purpose, mAP, which is an indicator of object detection performance,

has been used as a task-driven metric. According to the results, in line with the expec-

tations, DeRaindrop algorithm results in an increase in object detection performance

65.22% vs 60.40%. The proposed method further increases the performance and the

best results are obtained when it is applied at the training stage increasing the mAP

up to 69.05%.

According to the experimental results, use of the CS method increases the perfor-

mance of object detection and the image quality in terms of full-reference image as-

sessment metrics (PSNR, SSIM). While no-reference metric results are inconclusive,

it can be claimed that they are not suitable for use in this particular context due to the

reasons described above.

Figures 25, 26 and 27 show some sample ground truth images, corresponding images

with raindrops as well as results obtained with DeRaindrop and 1-shift cycle spin-

ning applied at a test only. It can be observed that the images generated using the

CS method have sharper characteristics compared to DeRaindrop results and exhibit

fewer artefacts and blur.

Figure 28 shows the object detection results for some sample images. The object

detection confidence scores are shown next to the bounding boxes. It can be seen that

the confidence scores are lower when the images have raindrops and in some cases,

the raindrops cause missed detections (for ex. missing the traffic light in the first row)

or incorrect labeling (labeling the car incorrectly as broccoli in the third-row) of some

objects. While DeRaindrop algorithm increases the detection confidence scores, the

proposed method further increases these scores for many objects. A higher mAP

score than the original images indicates the potential of the method for improving the

object recognition performance for clean images and images with raindrops as well.

46

(a) Ground truth image (b) Corresponding image with raindrops

(c) Result obtained using DeRaindrop (d) 1-shift cycle-spinning

Figure 26: Demonstration of a natural scene test image, raindrop applied version, and
raindrop removal results. (a): The original image. (b): The input image is degraded
by raindrops. (c): The base algorithm result. (d): The CS method applied model
results, where most raindrops are removed and structural details are restored.

To enhance the final algorithm performance, the CS method can be applied to both

the training and testing phases of the network.

We demonstrated that the proposed method works successfully for GAN models on

1 and 2 shifts. Visual results and objective evaluation metrics confirm the success

of the proposed method. Extension of the method to work with a higher number of

conditions is trivial, however, this also increases the training time of the model.

The work presented in this chapter has led to a publication with the title "Cycle-

Spinning GAN for Raindrop Removal from Images" at 16th IEEE International Con-

ference on Advanced Video and Signal-Based Surveillance, AVSS 2019, Taipei, Tai-

wan, September 18-21, 2019.

47

(a) Ground truth image (b) Corresponding image with rain-
drops

(c) Result obtained using DeRain-
drop

(d) 1-shift cycle-spinning

Figure 27: Demonstration of a test image, raindrop applied version, and raindrop
removal results. (a): The original natural scene image. (b): The input image is
degraded by raindrops. (c): The base algorithm result. (d): The CS method applied
model results, where most raindrops are removed and structural details are restored.

Figure 28: Object detection scores of (a) ground truth images, (b) images with rain-
drops, (c) DeRaindrop algorithm output, (d) 1-shift CS output.

48

CHAPTER 5

INTEGRATING CS INTO CNN-BASED MODELS FOR IMAGE

CLASSIFICATION

CNN-based models have been successfully used in a wide range of classification ap-

plications. The main components of these models are, convolution layers, pooling

layers, and fully connected layers. In addition, some layers have an activation func-

tion and a normalization step. One of the issues of modern CNNs is that they have

no invariance to (small amounts of) translations, scale, or geometric distortion of the

inputs [7, 8]. Because mainly used layers such as max-pooling, average pooling, and

strided-convolution ignore the sampling theorem. A well-known solution against this

is using an anti-aliasing mechanism. To enable anti-aliasing for CNNs, it has been

proposed to include a content-aware anti-aliasing module before each downsampling

operation in the network [7]. The mentioned method is a combination of two phases:

the first phase is generating low-pass filters for different spatial locations and channel

groups and the second phase is applying the generated filters to the input features. But

applying the same filter to the whole image is problematic. This is because of the fact

that other maps’ spatial positions and channels would be different [135]. It has been

shown that these filter-based approaches only achieve partial shift-invariance [16].

Local correlations are the reasons for the well-known advantages of extracting and

combining local features before recognizing spatial or temporal objects. This is be-

cause configurations of neighboring variables can be classified into a small number

of relevant categories (e.g. edges, corners). Convolutional Networks enforce the ex-

traction of local features by restricting the receptive fields of hidden units to be local.

49

All these observations suggest that the integration of the CS method into CNNs has

the potential to positively contribute to their performances. As already mentioned in

section 3.2, the CS method protects local information in images, while emphasizing

the edge information and decreasing the noise.

To experimentally test our approach, we have used three different classification archi-

tectures: AlexNet, DenseNet, and ResNet. We conducted experiments by applying

the CS method to the channel-wise and element-wise approaches in order to analyze

their effectiveness. In particular, [7] demonstrates that AlexNet is significantly less

shift-invariant than the other architectures in practice. We have started the compari-

son of AlexNet’s accuracy to that of the CS method applied at the beginning of this

section. To understand the effect of the CS method on channel-wise concatenation we

have employed the DenseNet algorithm and for the element-wise ones we have used

the ResNet algorithm.

5.1 AlexNet

AlexNet is an image classification network where the input is an image of one of 1000

different classes such as cats, dogs, elephants, etc. It was the winner of the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC)-2012. The model consists of

deep learning techniques such as strided convolution, pooling, augmentation, and

dropout. In our study, we applied the CS method to AlexNet with the aim to analyze

the effect of the CS method in the classification of a basic convolutional network.

5.1.1 Datasets

CIFAR-10 has been used as a starting point for practicing how to develop and evaluate

convolutional deep learning neural networks for image classification. This dataset

served as a well-established, widely used image classification dataset [136]. CIFAR-

10 dataset consists of 32 × 32 sized 60,000 color images in 10 classes, with 6,000

50

images per class. These classes are completely mutually exclusive. There are 50,000

training images and 10,000 test images.

5.1.2 Architecture

AlexNet model is a deep learning model designed based on CNN architecture. The

architecture of AlexNet consists of five convolutional layers, three max-pooling lay-

ers, two normalization layers, two fully connected layers, and one softmax layer in its

architecture. AlexNet has some important features such as ReLU nonlinearity, over-

lapping pooling, data augmentation, and dropout [46]. ReLU is applied after every

convolutional and fully connected layer. Dropout is applied before the first and the

second fully connected layers. Main reason that we used this model is the fact that it

includes different strided convolution layers, max, and average poolings. These lay-

ers are eligible for improvement with CS and allow us to evaluate the results of our

experiments. We integrated the CS method into the first convolutional layer of this

model.

5.1.3 Evaluation Metrics

The most often used metric for classification is accuracy. It is the ratio of the number

of correct predictions to the total number of input samples. In addition to the classi-

fication accuracy, the loss function is also used for our test purpose. The difference

between the prediction and the actual value is calculated as a loss value and it also

indicates how well an algorithm is training.

5.1.4 Results

Firstly, we trained the AlexNet model for 1000 epochs and visualized it on Tensor-

board. Accuracy, as well as loss, flattened out after 200 epochs. Because of this

reason, it is suitable to run up to 200 epoch training for a 0.001 learning rate, 200

51

epochs for each run-through, 500 batches for each training epoch, 100 batches for

each validating epoch, and 100 images for each training and validating batch.

We have integrated the CS method into the first layer of AlexNet using different

padding techniques, different shifting steps, different aggregate functions, and differ-

ent augmentation alternatives. We have observed that applying the CS method to the

AlexNet algorithm gets better accuracy in all cases, as seen in Table 2, summarizing

the results without augmentation, and Table 3, with augmentation.

Table 2: AlexNet Accuracy Results for CIFAR10 Dataset Without Augmentation.

Reflect padding Constant padding Replicate padding Circular padding

Inside a neuron, the weights and the inputs are aggregated into a single value. For

this purpose, fixed aggregation functions like sum or maximum are used to compute

representations over data in deep learning algorithms. Also, in the original CS method

studies mean is used as an aggregation function for combining different shift results

[1]. There are many aggregation functions but we focused on a few important ones:

Mean, median, and maximum. While mean and median measure the central tendency,

the maximum shows extremum. The median and mean will be the same if the data

sample is perfectly symmetrical and distributed. If the data is skewed, it may be more

useful to calculate the median, which is less sensitive to outliers and extreme values.

Results in Tables 2 and 3 show the results vary in relation to the amount of CS shift,

padding method, and aggregation strategy. It can be seen that the mean aggregation

52

function results are more consistent and mostly higher than the others. For this reason,

we used the mean aggregation function in our other experiments.

Table 3: AlexNet Accuracy Results for CIFAR10 Dataset With Augmentation.

Reflect padding Constant padding Replicate padding Circular padding

The other two factors that can affect the CS method’s employment are padding and

shifting, which are explained in section 3.2 in detail. The experimental results of

reflect, constant, replicate, and circular padding types applied on the CS method are

also shown in Tables 2 and 3. Although there are differences between the padding

methods, it has been seen that the CS method is not highly sensitive to the padding

type. We have applied the CS method with 1,2,3,4-pixel shifts and also recursive

versions such as 1+2 and 1+2+3. The notation 1+2 means 1-pixel shift and 2-pixel

shift applied image’s convolution results are used. Similarly, 1+2+3 means 1, 2, and

3-pixel shifts applied to the convolution results of the images are used for the CS

method.

All these experiments of classification algorithm trained on CIFAR-10 data set in

AlexNet revealed that there are no big differences between the different padding

methods, and we observed that small shift operations are more successful with the

CS method, and this is up to 2 shifts maximum. This was expected, as in [1], it

had been reported that the CS method results are highly dependent on the num-

ber of shifts, and 2-shift yields the best result. We have also seen that the inte-

gration of the CS method into the AlexNet algorithm with augmentation or with-

53

out augmentation generally produces higher accuracy. Code is publicly available at

https://github.com/UlkuUZUN/cs-alexnet-pytorch.

5.2 DenseNet

The DenseNet (Dense Convolutional Network) is another important attended deep

learning classification algorithm [137] used in 2017 CVPR and received the Best

Paper Award. Similar to AlexNet, in the DenseNet model we have also chosen the

CIFAR-10 dataset on the DenseNet Python codes [136]. Code is publicly available at

https://github.com/UlkuUZUN/cs-densenet-pytorch.

5.2.1 Architecture

In DenseNet, concatenation is used, i.e., for each layer, the feature maps of all the

preceding layers are used as inputs. As a result of this architecture, the vanishing-

gradient problem is alleviated, feature propagation is empowered, feature reuse is

increased and the number of parameters is reduced [138].

As seen in Figure 29, in DenseNet architecture, convolution and pooling operations

are done by downsampling the exterior of the dense block, and feature concatenation

(collective knowledge) is done in the interior of the dense block [138]. The transition

blocks used in the DenseNet architecture consist of a batch-norm layer, 1× 1 convo-

lution followed by a 2× 2 average pooling layer. We have integrated the CS method

into the first convolution layer.

Figure 29: Block diagram of DenseNet classification algorithm.

54

https://github.com/UlkuUZUN/cs-alexnet-pytorch
https://github.com/UlkuUZUN/cs-densenet-pytorch

5.2.2 Results

In this experiment, the original and different amounts of shift-applied versions of the

DenseNet model have been trained up to 300 epochs. Similar to the AlexNet exper-

iment, we have applied the CS method with 1,2,3,4-pixel shifts and also recursive

versions such as 1+2 and 1+2+3 to the DenseNet model. The notation 1+2 means

that the 1-pixel shift and 2-pixel shift applied image’s convolution results are used.

Similarly, 1+2+3 means 1, 2, and 3-pixel shifts have been used for the CS method.

Additionally, augmented and without augmented versions of the model are evaluated

separately. Again similar to the AlexNet experiment different padding alternatives

(reflect, constant, replicate, circular) have been tried for the DenseNet algorithm.

Testing has been done on CIFAR-10 to compare the accuracy of results.

Table 4: DenseNet Accuracy Results for CIFAR10 Dataset Without Augmentation.

Reflect padding Constant padding Replicate padding Circular padding

Tables 4 and 5 show that integration of the CS method to DenseNet model, provides

better results than the baseline model (though with a more limited amount compared

to the AlexNet). This is a positive prospect for the CS method when we consider the

different and more complex architecture of the DenseNet with its "collective knowl-

edge" topology. We have shown that the CS method does not distort the algorithm

with collective knowledge characteristics (dense blocks) and dropouts.

55

Table 5: DenseNet Accuracy Results for CIFAR10 Dataset With Augmentation.

Reflect padding Constant padding Replicate padding Circular padding

5.3 ResNet

Another popular classification algorithm is ResNet [139]. We have chosen this al-

gorithm, on the grounds that adding layers together will not increase the network

depth. Deep networks are difficult to train due to the well-known vanishing gradi-

ent problem. As the network grows larger, its performance becomes saturated, if not

drastically degraded [50]. But, ResNet allows training of hundreds or even thousands

of layers while still achieving excellent results [42].

5.3.1 Dataset

The ImageNet dataset [76] has more than 14 million images, hand-labeled across

20,000 categories. Also, unlike the CIFAR-10 dataset, the images in ImageNet are

of decent resolution (224 x 224) and that’s what poses a challenge for us: 14 million

images, each 224 by 224 pixels. Processing a dataset of this size requires a great

amount of computing power in terms of CPU, GPU, and RAM.

The CS method is a well-known denoising method. Because of this reason for the

ResNet algorithm testing process, we have used ImageNet-C, which contains system-

atically corrupted ImageNet images. ImageNet-C contains impulse noise, defocus

56

and glass blur, simulated frost and fog, and various digital alterations of contrast,

elastic transformation, pixelation, and jpeg compression [139]. Examples from dif-

ferent datasets of ImageNet-C. Our choice was the "contrast" dataset of ImageNet-C.

This was chosen thinking that the application of CS to this dataset will give us a good

understanding of its performance of corruption robustness.

5.3.2 Architecture

The ResNet architecture has got many variants such as ResNet-18, ResNet-34, ResNet-

50, ResNet-101, ResNet-110, ResNet-152, ResNet-164 and ResNet-1202. Each of

these has the same foundation but with a different number of layers. In this study,

we have used ResNet-101 which performs the initial convolutions with 7 × 7 ker-

nel sizes. Afterward, “conv2x” first includes one 3 × 3 pooling, and then contains 3

building blocks. Therefore, “conv2x” contains 3*3=9 convolutional layers. Similarly,

“conv3x” contains 4 residual modules, which means that it contains 3*4=12 convolu-

tional layers. “conv4x” contains 3*23=69 convolutional layers and “conv5x” contains

3*3=9 convolutional layers. The last part of ResNet-101 architecture contains a fully

connected layer. We have integrated the CS method to the first convolution layer.

In [7], the authors aim to achieve an anti-aliasing effect by adding different filters

before the downsampling process in deep-learning algorithms. They applied filters –

Rect-2, Tri-3, Bin-5. In our experiments, it is observed that adding low-pass filtering

to ResNet101 increases the performance by +0.6%. Because of this reason we also

compared classification accuracy results with this work. Accuracy of ResNet-101

with Rect-2 filter named as low-pass filter-2 (lpf2), with Tri-3 filter named as low-

pass filter-3 (lpf3) and with Bin-5 filter named as low-pass filter-5 named as lpf5.

5.3.3 Results

We evaluated the classifier performance using the Imagenet-C dataset. We have also

run experiments using the low-pass filter solution in [26] to comparatively evaluate

57

the results. Because of this reason, we trained on the same Python codes 1. All results

are summarized in Table 6.

In our experiments for all model types in question, i.e. AlexNet, DenseNet, and

ResNet, an increase has been observed in the results for mean, max, and median

aggregation functions up to a 3.0 increase in accuracy.

The results of mean, max, and median aggregation are not conclusive and do not show

that any of them stands out in general terms. However, we preferred to continue our

experiments with the mean aggregation method, as it gives more consistent results in

general.

Similarly, we evaluated CS results with/without augmentation settings and observed

improvements in both. With the application of augmentation and the CS method

together, an increase of up to 2.3 was observed in the results.

Table 6: Accuracy Results of ResNet101 trained for ImageNet-Contrast 50000.

Original Lpf2 filter Lpf3 filter Lpf5 filter 1-shifted CS

Resnet-101 accuracy 83.69 83.60 83.70 83.66 83.78

According to our experiments, the application of CS has improved the classification

results for a variety of network models. Because of this reason we have also worked

on integrating it into the object-detection algorithms.

1 Source: GitHub - adobe/antialiased-cnns

58

CHAPTER 6

INTEGRATING CS INTO CNN-BASED MODELS FOR OBJECT

DETECTION

In this chapter, we describe integration of the CS method into object detection al-

gorithms and provide experimental results. Based on our literature survey, we have

chosen YOLOv5, EfficientDet, and CenterNet algorithms to adapt the CS method.

These algorithms have 3 main sections: Backbone, neck, and head. We have adapted

the CS method on the first convolution layer and we presented results for widely used

datasets such as Cheetah-Human, MS COCO2017, Dataset for Object Detection in

Aerial images (DOTA), and Visdrone2019. PyTorch has been used in all our imple-

mentations as an open-source deep learning library [140].

6.1 YOLOv5

YOLO (You Only Look Once) family of models is widely used in object detection.

In this dissertation, we experimented with YOLOv5 on many datasets with differ-

ent structures. In each experiment, we adapted the CS method in the same way and

analyzed the results by changing the datasets without changing the algorithm and pa-

rameters. The scope of the 4 datasets we are working on is explained in the “Datasets”

section, and the details of the YOLOv5 algorithm are explained in more detail in the

“Architecture” section. After the measurement techniques, we use for object detec-

tion are explained in the “Evaluation metrics” section, the results we obtained for

each dataset are explained in the “Results” section. Code is publicly available at

https://github.com/UlkuUZUN/cs-yolov5.

59

https://github.com/UlkuUZUN/cs-yolov5

6.1.1 Datasets

6.1.1.1 Cheetah-Human thermal dataset

The cheetah-Human dataset is a small-scale dataset for cataloging animals with a

trail camera, gathering statistics on wildlife behavior, or experimenting with other

thermal and infrared imagery. The dataset was obtained from trail camera videos and

it consists of 640× 640 images.

We adopted the Cheetah-Human dataset’s own splitting schema (90 train, 25 vali-

dation, and 14 test images) of 129 images with 231 annotations (186 cheetahs, 45

humans) [141]. This is because of the fact that subset data to train, validate, and test

is extremely critical to ensure the prevention of overfitting, and to be able to have

accurate evaluation results. The images in this dataset show continuity because they

are obtained from video images and each image in the dataset is not densely packed

with objects. Since it only focuses on two objects and the dataset size is small (only

90 images for training), it allows running experiments quickly. Because of this, we

focused on this dataset to run our initial experiments.

6.1.1.2 COCO (COmmon Objects in Context) dataset

COCO is large-scale object detection, segmentation, and captioning dataset [123].

COCO-2017 object detection dataset with 80 object classes (116408 images for train-

ing and 5000 images for validation) consists of images with a size of 640× 640.

We used the COCO-2017 dataset in our CS method experiments which will be ex-

plained in further sections because the COCO dataset is commonly used for bench-

marking in publications and contains a considerable number of small objects in the

dataset. Small objects make up 41.43% percent of all objects in the COCO-2017

dataset, and they occur in 51.82% of all images. Medium-sized objects are 34.32% of

all objects, 70.07% of all images are medium-sized, again 24.24% of all objects, and

82.28% of all objects are large-sized. In addition to the small objects being dense, the

60

small objects occupying only 1.23% of the area also make the COCO-2017 dataset

challenging ([142]).

The COCO-2017 dataset was used, again adhering to the splitting ratio of Roboflow

[143], both because it is a widely studied dataset and to evaluate CS in challenging

situations.

6.1.1.3 Dataset for Object Detection in Aerial Images (DOTA)

Because object detection in natural scenery only considers the scale, direction, and

form of object samples on the earth’s surface, to have a complementary analysis,

aerial imaging datasets have also been used. Images in DOTA dataset were collected

from the Google Earth, GF-2, and JL-1 satellites. These are provided by China Centre

for Resources Satellite Data and Application and other aerial images are provided by

CycloMedia B.V. DOTA [144].

DOTA-v1.0 contains 15 common categories, 2806 large-size images, and 188282

instances, including planes, ships, storage tanks, baseball diamonds, tennis courts,

swimming pools, ground track fields, harbors, bridges, large vehicles, small vehicles,

helicopters, roundabouts, soccer ball field and basketball court. Objects in differ-

ent orientations occur in the images. In the dataset, each object is annotated by an

oriented bounding box (OBB). In this annotation, vertices are arranged in clockwise

order and apart from OBB, each instance is also labeled with a category and a diffi-

culty index which indicates whether the instance is difficult to be detected or not (1

for difficult, 0 for not difficult).

In addition, there are a lot of small object instances. The aspect ratio and size of

objects vary greatly, and extreme objects, such as bridges with extreme aspect ratios,

can be discovered. The dataset is made more difficult by the huge disparities across

items.

Since it is a challenging dataset that includes small, and large images with different

orientations and aspect ratios, we also conducted experiments on the DOTA dataset.

61

Images in DOTA are so large (4000 x 4000 pixels) that they cannot be directly sent

to CNN-based detectors [144]. Therefore, we crop a series of 1024 × 1024 pixel

patches from the original images. So, some complete objects may be cut into two

parts during the cropping process. In order to ensure that the training data and test data

distributions approximately match, we randomly select 15749 images as the training

set, 5297 images as the validation set, and 937 images as the testing set.

6.1.2 Architecture

YOLOv5 has four variants (YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5xl). Among

these, we used the YOLOv5s, as there are no big differences between them except

for the model layers/architecture and a number of parameters, and YOLOv5s can be

trained relatively faster.

The YOLOv5 network consists of three main parts: Backbone, Neck, and Head.

Backbone is a convolutional neural network that aggregates and forms image fea-

tures. The neck is a set of layers that mix and combine image features to feed them to

the prediction. The head takes the features from the neck and performs the box and

class prediction steps.

6.1.3 Evaluation metrics

The performance metrics that have been used are Intersection over Union (IoU), Pre-

cision, Recall, F1 score, Average Precision (AP), and mean Average Precision (mAP).

Details of these metrics are provided below.

6.1.3.1 Intersection Over Union (IOU)

Intersection over Union (IoU) is a ratio of the area of overlap between the predicted

bounding box and the ground-truth bounding box over the area of union.

62

The predicted bounding boxes are compared with the ground truth bounding boxes

by the detector according to IoU. The prediction is true when the IoU is larger than a

set threshold. In other terms, true positive (correct detection) or false positive (wrong

detection) are determined.

6.1.3.2 Precision and Recall

‘True Positive (TP)’, ‘False Negative (FN)’, and ‘False Positive (FN)’ detections are

used in the calculation of precision and recall which in turn are used in the calculation

of the F1 score. A confusion matrix is a table that is often used to describe the

performance of a classifier on a set of test data for which the true values are known.

Precision shows how many of the values we estimated as positive are actually positive.

Precision, which is calculated as P = TP/ (TP +FP), is a good measure to determine

especially when the costs of FPs are high.

Recall, which is calculated as R = TP/ (TP + FN), is a metric that shows how much of

the operations we need to estimate as positive. A recall is a good measure to measure

when there is a high cost associated with a False Negative.

6.1.3.3 F1-Score

F1-score is the harmonic mean of the precision and recall. The highest possible value

of an F1-score is 1.0, indicating perfect precision and recall, and the lowest possible

value is 0 if either the precision or the recall is zero. F1-Score is needed when a

balance between Precision (P) and Recall (P) is sought for. F1 = 2*P*R / (P + R).

The reason why it is a harmonic mean instead of a simple mean is that we should

not ignore the extreme cases. If it was a simple average calculation, a model with

a precision value of 1 and a recall value of 0 would have an F1 Score of 0.5, which

would be misleading. The main reason for using the F1 Score value instead of accu-

racy is not to make an incorrect model selection in unevenly distributed data sets. In

addition, the F1 Score is very important for us as we need a measurement metric that

will include not only FP or FN but also all error costs.

63

Evaluating a model at different confidence levels also offers useful information about

how the model is doing and what values improve model performance according to the

design characteristics.

6.1.3.4 Mean Average Precision (mAP)

Average Precision is the mean of the precision scores after each relevant document

is retrieved. The general definition for Average Precision is finding the area under

the precision-recall curve. Precision and recall are always between 0 and 1. There-

fore, AP falls within 0 and 1 accordingly. In addition to average precision and F1

score, the metric mean Average Precision (mAP) is extensively used in conventional

object detection, which provides a performance evaluation in terms of regression and

classification accuracies [145].

6.1.3.5 MS-COCO Method

Also, to calculate the results for the COCO dataset, a 101-point interpolated AP defi-

nition is used in the calculation. AP@ [.5:.95] corresponds to the average AP for IoU

from 0.5 to 0.95 with a step size of 0.05. For the COCO competition, AP is the aver-

age over 10 IoU levels on 80 categories. Some other metrics collected for the COCO

dataset are also calculated for evaluation. Additionally, using the pycocotools library

(Official APIs for the MS-COCO Dataset, 2021) COCO individually evaluates AP at

0.5 and 0.75 IoU thresholds, this is denoted by AP@ 0.50 and AP@ 0.75 respectively.

The performance is evaluated on AP in distinct object dimensions where AP (small)

for small objects of area less than or equal to 32 pixels, AP (medium) for the medium

object of area 32 < area < 96 pixels, AP (large) for large objects with an area greater

than 96 pixels. COCO evaluates the algorithms on AR across scales with AR (small),

AR (medium), and AR (large). Furthermore, COCO uses an additional metric that

bases the AR evaluation on the number of detections per image number, specifically

AR (max Dets=1) given 1 detection per image, AR (max Dets=10) for 10 detections

per image, and AR (max Dets=100) for 100 detections per image.

64

6.1.4 Results

Firstly, YOLOv5 has been trained on each dataset without any modification as a

baseline. Then, under the same conditions, YOLOv5s has been trained with the CS

method integrated into the model’s first convolution process. Then, the test set of each

dataset has been used for evaluation and all results of experiments have been reported

in the following subsections.

6.1.4.1 Yolov5 Cheetah-Human dataset results

The object boundaries in the Cheetah-Human dataset are not very clear and as such,

evaluation of this dataset allows investigation of the CS method on objects with rel-

atively indistinct boundaries. An object detection model’s performance at different

levels of confidence may be usefully measured using precision and recall. The F1

score is also useful in identifying the level of confidence that best balances the pre-

cision and recall values for a specific model. As shown in Table 7, integration of the

CS method into YOLOv5 provides better and more confident results.

Table 7: The detection performance of the CS integrated YOLOv5s on the Cheetah-
Human dataset using different shift amounts.

P R PR F1 at Conf.
Base 94.2 94.0 85.4 82.0 at 33.1
CS1 96.2 99.0 93.2 87.0 at 46.9
CS2 96.9 99.0 93.2 88.0 at 43.3
CS1+2 94.6 99.0 89.3 82.0 at 34.4

It can be seen in Table 7 that the CS method applied version of the model, YOLOv5s-

CS, performs better than the original YOLOv5s model in terms of the validation re-

sults. Without any extra parameters, YOLOv5s-CS yields better mAP results for the

model. Also, the precision (P) and recall (R) improve against the baseline. Especially,

the 1-shift CS method increases PR value by 7.8 percentage points, against the base

algorithm. It is noteworthy that the PR increase mainly due to an increase in recall.

65

Especially, according to the validation results, the cheetah mAP@.5 value increased

from 0.939 to 0.941, while the mAP@.5 value for the human object increased from

0.779 to 0.858. In general, the average mAP@.5 results for all objects in the dataset

increased from 0.859 to 0.900. It shows that the CS method makes the model more ac-

curate in its detection. The CS method application increases both precision and recall

values and it is seen that the difference between these two values also decreases. So,

the CS method makes the model more confident. The precision-recall curve makes it

easy to show the point where both the precision and recall are high.

(a) Original (b) 1 shift CS

Figure 30: Precision-Recall (PR) graphs of the Cheetah-Human validation dataset.

Figure 30 shows precision-recall graphs of the original YOLOv5s and YOLOv5s-CS.

It is clear from the graphs of the CS method applied version precision-recall values

increases in balance and with each step of the training this balance is preserved. To

support our result, we also show Cheetah-Human dataset training F1 score graphs.

F1-confidence graph which is shown in Figure 31 is used in the YOLOv5 evaluation.

In this graph, the vertical axis shows the F1-score and the horizontal axis shows the

confidence value of the training results. The F1-confidence graph shown here, differ-

ent from the previously recorded metrics, includes F1 scores for different confidence

values. To show the stability of the results during training, different epoch stages are

66

plotted and shown in Figure 31. In Figure 31 it is seen that there have been increases

in the CS method applied versions. For example, when we compare the training re-

sults of average scores, which are shown dark blue colored plot, the original model is

far behind in each plot, with values of 0.85 at 0.081 while the YOLOv5 model with 1

shifted CS (the right- hand side graph) values have reached 0.83 at 0.137 confidence.

(a) Original (b) 1 shift CS

Figure 31: F1 graphs of the Cheetah-Human validation dataset.

Samples of the Cheetah-Human dataset are shown in Figure 32. As seen in the upper

part of Figure 32, the mAP value increases, or as in the example in the bottom part

of Figure 32, it is seen that the objects (4 humans, 1 cheetah) labeled as in Figure 33

that could not be detected in the original model are detected after the CS adaptation.

As seen in Figure 33, the format and detail of the dataset have been preserved in all

experiments.

Because the Cheetah-Human dataset is so specific, small, and sparse dataset, we made

experiments on some other datasets such as COCO, and DOTA.

67

Figure 32: Object detection results on the Cheetah-Human test set using baseline
YOLOv5s (left) and YOLOv5s-CS1 (right).

Figure 33: The Cheetah-Human test image class label detail. In the first column, 1
represents cheetah and zero is the human class label. The second and third columns
are the xy coordinates of the bounding box. The fourth and fifth columns are the
width and the height of the bounding box.

6.1.4.2 YOLOv5 COCO dataset results

We have trained the YOLOv5s model on the COCO2017 dataset with 929 targets on

an NVIDIA Gigabyte GeForce GTX 1080. Our work investigates the CS method

68

application’s impact on object detection algorithms. For this reason, before the sub-

sampling, we have adapted the one and two-shift CS method just around the first

convolution of the YOLOv5s model. After training, COCO val2017 dataset (1GB

- 5000 images) has been evaluated with the pycocotools library. Table 8 shows the

evaluation results of YOLOv5s on the COCO validation set in terms of Precision (P),

Recall (R), Precision-Recall (PR), and F1-Confidence (Conf), metrics.

Table 8: Detection performance of Yolov5s-CS on COCO validation set using differ-
ent shift amounts.

P R PR F1 at Conf.
Base 67.9 49.0 55.3 56.0 at 30.1
CS1 67.1 49.0 55.4 56.0 at 32.3
CS2 66.5 49.0 54.1 56.0 at 30.1
CS1+2 69.2 49.0 55.7 56.0 at 34.0
CS3 66.2 49.0 55.6 56.0 at 30.3

It is assumed that there is a direct relationship between the confidence threshold and

the precision. If the threshold is increased, the precision is also expected to increase

while recall is expected to decrease. From the F1 curve, the confidence value that

optimizes the precision and recall is represented as Conf. in this table. According to

these results, CS1 has better results than the base method, and CS1+2 has the overall

best results. CS3 does not offer any improvements over the baseline and comes with

a higher computational cost so it is excluded in the remainder of the experiments. The

difference between the baseline and CS method applied version is shown in Figure

34. In the results we obtained, an increase in the detection of objects is observed.

Table 9: Detection performance of YOLOv5s, YOLOv5s-CS1, CS2, CS1+2 on
COCO validation set.

YOLOv5s YOLOv5s-
CS1

YOLOv5s-
CS2

YOLOv5s-
CS1+2

AP@0.50:0.95 37.2 37.3 37.2 37.3
AP@0.50 56.0 56.1 56.0 56.3
AP@0.75 40.5 40.5 40.5 40.6
AP@small 21.9 22.0 22.0 22.0
AP@medium 42.6 42.6 42.6 42.7
AP@large 47.3 47.3 47.2 48.4

69

Figure 34: COCO test set results using base YOLOv5s model (left) and YOLOv5s-
CS1 (right).

As shown in Table 9, the proposed model improves over the baseline by 0.1, 0.3, and

0.1 percentage points on AP for small, medium, and large objects. The improvements

in AR for small, medium and large objects are 0.1, 0.1, and 1.1, respectively. Due to

the strong multi-scale ability, the model can cover a large range of receptive fields,

boosting the performance on objects of different sizes. The highest increase in pre-

cision result of the CS method addition is seen on small objects. It is also important

that this increase is obtained without decreasing the recall result of the small objects.

As seen from the representative examples in Figure 34 and the results in Table 8, Table

9, the CS method is effective for detecting small objects such as baseball gloves in

the COCO dataset.

6.1.4.3 Yolov5 DOTA dataset results

In this section, we set groups of ablation experiments to evaluate the CS method ap-

plication to the YOLOv5s model. We first show the impact of the CS method with

70

1-unit shift employment to the first convolution of the YOLOv5s model trained on

the DOTA dataset and mAP results are presented. mAP scores for different object

classes using baseline YOLOv5s and CS1 variant, along with differential improve-

ments in mAP are presented in Figure 35. The figure shows that the application of

the CS method into YOLOv5 gives better results for detecting multiple categories.

The results reveal that employing CS-convolution in YOLOv5 results in increasing

performance throughout all object classes except small-vehicle, for which there is a

negligible difference in performance.

In addition to mAP scores, the difference between the baseline and the CS method

applied version is shown in Figure 35. This performance is important because DOTA

dataset contains small, multi-scale objects in dense-targets scenes. We have evaluated

the CS method on the DOTA dataset, to further analyze its performance in small

object detection. The DOTA dataset has a wide range of image sizes, although the

majority of the images are concentrated around the 1000–2500-pixel range.

For the measurement of object detection accuracy, we have compared the mAP results

of the original and the CS-adapted versions of the model. CS integrated version of the

model has an mAP (0.5) measure of 68.3 on the validation set, compared to 63.5 on

the base model. In addition, compared with the original model, the overall precision

of the original model increases by at least 4.8%.

We have trained the YOLOv5s model and CS variants on the DOTA dataset. Overall

evaluation results are shown in Table 10 and Table 11.

Table 10: Detection performance of CS integrated YOLOv5s on DOTA validation set
using different shift amounts.

P R PR F1 at Conf.
Base 93.1 85.0 63.5 65.0 at 39.1
1-shift CS 93.4 88.0 68.3 68.0 at 47.7
2-shift CS 93.2 82.0 60.8 62.0 at 45.3
1+2-shift CS 94.0 85.0 65.7 66.0 at 49.7

In Figure 36, the original YOLOv5 model and YOLOv5s-CS results on the DOTA

dataset are shown. In order to provide visual evidence, Figure 36 reports the re-

71

Figure 35: Comparison of the original YOLOv5s and YOLOv5s-CS1 version
(mAP@0.5) on the DOTA test dataset.

Table 11: Detection performance of YOLOv5s, YOLOv5s-CS1, CS2, CS1+2 on
DOTA validation set.

YOLOv5s YOLOv5s-
CS1

YOLOv5s-
CS2

YOLOv5s-
CS1+2

AP@0.50:0.95 36.7 41.4 36.2 39.5
AP@0.50 63.5 68.3 60.8 65.7
AP@0.75 46.0 51.5 44.9 49.2

sults of object detection on the DOTA dataset after testing. It is possible to notice

that the proposed approach permits identifying several objects in the images which

suggests that producing higher-resolution feature maps simultaneously utilizing low-

level features and high-level features is very critical to enable us to detect small re-

mote sensing objects. At the same time, the CS method applied version of the model

prevents disturbances that will cause false alarms on the detector, as shown in Figure

72

36. These scenes often contain objects with similar geometric construction, such as a

long straight line.

Figure 36: DOTA test set results using base YOLOv5s model and YOLOv5s-CS1.

73

Figure 38 shows the F1 scores vs. confidence values for different classes as well

as combined results for all classes (bold blue curve). The results indicate that CS

integrated version has better performance and there is an improvement of 3% in

terms of the F1 score of all classes and a 9% improvement in confidence values.

F1-consistence graphs denote a much more stable result for the CS method applied

version of YOLOv5. Overall F1-score results also increased from 0.416 to 0.482.

(a) Original

(b) 1 shift CS

Figure 37: Precission-Recall (PR) graph of the YOLOv5s (top) and YOLOv5s-CS1

trained on the DOTA dataset.

74

Also when we look at the precision-recall graphs in Figure 37, we see that the values

remain stable in general or that the overall average increases in small increments.

Figure 37 shows accuracy (mAP) results for the models on the validation set. It

is observed that the CS method applied version of the YOLOv5 model performed

better than the original model. Applying the CS method helps to achieve much better

validation accuracy with an up to 8% increase. The results show that a higher number

of objects are detected by the CS-integrated version.

(a) Original

(b) 1 shift CS

Figure 38: F1 graph of the YOLOv5s (top) and YOLOv5s-CS1 trained on the DOTA
dataset.

75

6.2 EfficientDet

After working on the YOLOv5 object detection model, we also experimented with

the EfficientDet object detection model [69] which builds on scaling neural networks

(EfficientNet) and incorporates a novel bi-directional feature network (BiFPN) and

new scaling rules. In this dissertation, we experimented with an improved model

EfficientDet on many datasets. In each experiment, we adapted the CS method in

the same way and analyzed the results by changing the datasets without changing

the algorithm and parameters. The scope of the COCO dataset we are working on

is explained in the “Dataset Selection” section, and the details of the EfficientDet

algorithm are explained in more detail in the “Architecture” section. After the mea-

surement techniques, we use for object detection are explained in the “Evaluation

metrics” section, the results we obtained for each dataset are explained in the “Re-

sults” section.

6.2.1 Dataset selection

The COCO dataset is well-understood by state-of-the-art neural networks for object

identification applications. Its adaptability and multi-purpose picture variety make it

ideal for training and benchmarking computer vision models. Therefore, the COCO

dataset, which we explained in detail in the YOLOv5 model, is also trained for the

EfficienDet model.

6.2.2 Architecture

The EfficientDet is made up of three main parts: A framework for extracting features

from an image. A feature network that takes multiple levels of features as input from

the backbone and outputs a combined list of features representing the basic features

of the image. And the last is a class/box network that uses the combined function to

predict the class and location of each object [69].

76

Most of the previous detectors simply used top-down pyramid networks (FPNs), but

top-down FPNs are inherently limited to one-way traffic. Alternative FPNs such as

PANet add extra upstream at an extra computational cost. Recent attempts to use

Neural Architecture Search (NAS) have uncovered a more sophisticated NASFPN

architecture.

6.2.3 Results

6.2.3.1 EfficientDet COCO Dataset results

We evaluate the performance of CS method adaptation to object detection algorithms

EfficientDet on COCO2017 datasets. We have integrated the CS method before sub-

sampling at the first convolution of the EfficientDet model. After 300 epoch training,

the COCO val2017 dataset has been evaluated with pycocotools library. Evaluation

results are shown in Table 12.

Table 12: Detection performance of EfficientDet, EfficientDet-CS1, CS2, CS1+2 on
COCO validation set.

EfficientDet EfficientDet-
CS1

EfficientDet-
CS2

EfficientDet-
CS1+2

AP@0.50:0.95 26.4 27.9 28.1 28.1
AP@0.50 43.6 44.8 44.9 44.9
AP@0.75 27.7 29.3 29.7 29.6
AP@small 3.1 3.5 3.5 3.5
AP@medium 25.5 27.3 27.0 27.1
AP@large 43.2 45.1 45.9 45.9

The model performance improves over its original version by 0.4, 1.8, and 2.7 per-

centage points on AP for small, medium, and large objects. Due to the strong multi-

scale ability, the model can cover a large range of receptive fields, boosting the per-

formance on objects of different sizes. The highest increase in precision result of the

CS method addition is seen on small objects. It is also important that this increase is

obtained without decreasing the recall result of the small objects.

77

Sample visual results on the test set can be seen in Figure 39. When the two images

on the top are compared, it is seen that the base model detects the bus with 95%

confidence, while CS integrated model has 97% confidence. Likewise, while it was

40% in the truck base model, it increased to 47% with the application of CS, and it

is also seen that the person on the motorcycle, which was not detected using the base

model, was detected with 47% confidence by the CS integrated model. When the

images at the bottom are compared, although the confidence values of some objects

have decreased, it is a remarkable improvement that small objects such as books

are detected by the CS integrated version. Code is publicly available at https:

//github.com/UlkuUZUN/cs-efficientdet.

Figure 39: COCO test dataset results using EfficientDet base model and EfficientDet-
CS1.

78

https://github.com/UlkuUZUN/cs-efficientdet
https://github.com/UlkuUZUN/cs-efficientdet

6.3 CenterNet

6.3.1 Dataset selection

VisDrone2019 dataset has been used to analyze the performance of CS method on

drone images. The benchmark dataset consists of 288 video clips made up of 261908

frames and 10209 static images that were taken by various drone-mounted cameras.

These clips cover a variety of topics such as location (they were taken from 14 dif-

ferent cities in China that are thousands of kilometers apart), environment (urban and

rural), objects (pedestrians, vehicles, bicycles, etc.), density, and environment (urban

and rural) (sparse and crowded scenes)[146].

6.3.2 Architecture

CenterNet is an anchorless object detection model and does not require application

of NMS (Non Maximum Suppression) at the post-processing stage. The majority

of detectors encode their predictions using anchors and the generated feature map

predicts many boxes for each spatial cell. Each box prediction is represented by x, y,

width, and height offsets with respect to the appropriate anchor and the center of the

cell, respectively. The idea that box predictions may be ordered for relevance based

on where their centers are rather than where they overlap the object is the foundation

for this method.

The CenterNet has two basic prediction heads: for confidence heat map, and for

regression values. The confidence heat map is used to remove irrelevant predictions.

The other head works to estimate the regression values for the box sizes and offsets

that refer to the box center estimated using the heat map. So the heat map plays an

important role in detecting an object.

The CenterNet provides different backbone models such as ResNet-18, DLA-34, and

Hourglass-104. We have used the ResNet-18 backbone in our experiments. Because

the ResNet-18 enables us to achieve fast results in accordance with our technical

79

infrastructure. In CenterNet model three transposed convolutional networks are added

to the standard ResNet modules.

6.3.3 Results

6.3.3.1 CenterNet Visdrone Dataset results

Lastly, we have integrated the CS method into CenterNet with ResNet-18 backbone

and trained on VisDrone2019-DET to evaluate the effect of CS on anchor-free algo-

rithms.

The visDrone2019-Det dataset contains crowded and sparse small objects and the

occlusion rate is higher than the other datasets we experimented with. In addition to

mAP scores, the difference between the baseline and the CS method applied version

is shown in Figure 40.

Figure 40: Comparison of the original and CS1+2 YOLOv5s in terms of mAP@0.5
values of objects in the VisDrone2019-DET validation dataset.

80

Table 13: Detection performance of CenterNet, CenterNet-CS1, CS2,CS1+2 on
VISDRONE2019-DET validation set.

CenterNet CenterNet-
CS1

CenterNet-
CS2

CenterNet-
CS1+2

AP@0.50:0.95 24.2 24.3 24.2 24.5
AP@0.50 48.5 48.6 48.2 48.8
AP@0.75 20.7 21.1 21.0 21.1

In these results, it is seen that the detection of objects of different sizes such as buses,

vans, and bicycles is positively affected by the CS convolution. On the other hand, it

is slightly negatively affected by occlusion.

6.4 Discussion

Evaluations of different datasets show that the selection of the CS shift parameter is

dependent on the dataset and the size of the objects in the dataset. If the objects are

small, CS1 is expected to have better performance, while for datasets having larger

objects, CS2 or CS1+2 are preferable. Specifically, the best results for DOTA which

contains smaller objects work the best with CS1 while the best results for COCO are

obtained with CS1+2.

CS requires the calculation of convolution for various shifted inputs and, as such, it

increases the computational complexity. On the other hand, this increase is limited

as we integrate CS into the first convolutional layer only and the remainder of the

network is unchanged. In order to compare the computational effect of CS method

adaptation in the models, the GFLOPs values were calculated using a FLOPS counter

tool [147].

As seen in Table 14, while the number of operations in the first convolution layer of

YOLOv5s, EfficientDet-D0, and CenterNet are approximately 0.46, 0.11, and 1.24

GFLOPS respectively, these numbers increase by a factor of 9 with CS1 (8 more con-

volutions corresponding to different shifts in addition to the standard convolution) and

this results in overall computational complexity of 14.28, 5.58 and 112.98 GFLOPS

81

Table 14: Computational complexity results at 512x512 input resolution.

Model Params
(M)

First
Conv2D

(GFLOPs)

Overall
(GFLOPs)

Yolov5s
Base

7.2
0.46 10.58

CS1 4.16 14.28
CS1+2 7.86 17.98

EfficientDet-D0
Base

3.9
0.11 4.66

CS1 1.02 5.58
CS1+2 1.94 6.48

CenterNet-ResNet-18
Base

15.82
1.24 103.10

CS1 11.16 112.98
CS1+2 21.08 122.90

respectively, corresponding to 35%, 20%, and 10% higher computational complex-

ity compared to their respective baselines. For CS1+2, the computational complexity

of the first convolutional layer increases by a factor of 17 and this results in overall

computational complexity of 14.28, 5.58, and 112.98 GFLOPS respectively, corre-

sponding to 70%, 39%, and 19% higher computational complexity compared to their

respective baselines. According to the results, integration of the CS method to differ-

ent network model types has different effects on the computational complexity and

while applying multiple shifts imposes a certain computational complexity on the

system, small shift steps can be tolerated, especially in CenterNet and EfficentDet

networks.

In our experiments, although it has been seen that the employment of the CS method

has been more successful in detecting small objects, we also noted that factors such as

object size distribution (i.e. availability of both large and small objects in the scene)

and kernel size have been affecting the success rates. In general, it has been observed

that the success of the CS method decreased for shift amounts higher than 2 pix-

els, and the 1-shift CS method remained more stable in the algorithms and datasets

tested. One of the frequent issues of deep learning algorithms is that sometimes the

same model gives varied results [148]. The response surface across which the min-

imization occurs is nonconvex, and many CNN estimate approaches are sensitive to

the optimizer’s starting point, among other factors. Because of this reason, although

82

experiments are completed in the same environment and with the same parameters, it

is observed that the results are unstable. One of the solutions to this problem prob-

ably is using mean and variance values of the experiment results. However, this is

prohibitively expensive due to high computational requirements we reported the most

stable result values in our dissertation and as such obtained consistent results as ap-

plied to different datasets and networks.

83

84

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work, we have investigated the adaptation of the cycle-spinning (CS) method

into different deep-learning algorithms.

First, we have adapted the cycle-spinning (CS) method [1] to Generative Adversarial

Network (GAN) for removal of raindrops from images for enhancing most of the

adverse weather images and increase the quality of scenes in real-time [27]. The

CS method has been shown to increase perceptual quality in terms of full-reference

metrics. It also increases object detection performance, justifying its usefulness when

used as a pre-processing operation under adverse weather conditions in intelligent

transportation systems and outdoor surveillance systems. In addition, higher mAP

scores indicate the potential of using the CS method for better object detection in

other application areas [27]. The proposed method is generic in the sense that it can

be integrated into a variety of image enhancement algorithms that use CNNs.

Second, the integration of the CS method into different CNN classification algo-

rithms, namely, AlexNet, DenseNet, ResNet has been investigated. The experimental

results have shown that the employment of the CS method results in increased con-

sistency and accuracy.

Lastly, we have adapted the CS method to CNN-based object detection algorithms,

namely, YOLOv5, EfficientDet, CenterNet. The CS method has been shown to in-

crease object detection performance by emphasizing edges and smoothing noises,

justifying its usefulness with easy adaptation into algorithms and without the need

85

for extra learnable parameters. The higher mAP scores clearly indicate the potential

of using the CS method for better object detection in many other applications.

We have shown that the CS method is a useful tool especially when it is employed

before downsampling layers in CNN-based algorithms. This is because it reduces

signal degradation during sampling. As the proposed method is generic, it can be

easily adapted to other image processing and computer vision problems.

Additionally, we investigated whether the CS method could be employed for the lay-

ers rather than for the whole algorithm as we did in the GAN study. We have exper-

imented with raindrop degradation in GAN but this dataset also is trained for object

detection. Furthermore, artifact types can be diversified with other artifacts such as

rain streaks, fog, and random noises.

With these experiments, we have shown that the CS method can be adapted to differ-

ent layers in different algorithm architectures and proved the flexibility of this method

for adapting to different components of deep learning. Our tests also revealed the ef-

fects of different padding approaches used in the CS method.

This dissertation has opened the door to many new research topics. Investigation of

whether the CS method can be added to the other layers or not, and whether different

shift methods are effective or not on different datasets are prospective for future work.

This study has aimed to adapt the CS method while keeping the general architectures

of the models and their total number of learnable parameters. Because of this reason,

it is not trained for fine-tuning and transfer learning.

In our studies, we have observed that CS method-adapted algorithms converge faster.

Although we have shown that the employment of the CS method increases computa-

tional complexity, the fact that they are faster to converge has the potential to alleviate

this limitation. In addition, smaller CS-enabled models have the potential to provide

on-par performance against larger models, hence it may allow using smaller models,

which is especially desired in deployment in low-power devices.

86

In addition, the issue of small input shifts is closely related to adversarial attacks.

CNNs are vulnerable to such adversarial attacks [149]. Measuring the robustness of

CS-enabled models against adversarial attacks is also a prospective topic.

87

88

REFERENCES

[1] A. Temizel and T. Vlachos, “Wavelet domain image resolution enhancement
using cycle spinning and edge modelling,” 13th European Signal Processing
Conference, EUSIPCO 2005, vol. 41, no. 3, pp. 177–180, 2005.

[2] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,”
ArXiv, vol. abs/1905.05055, 2019.

[3] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra,
“Grad-cam: Why did you say that? visual explanations from deep networks
via gradient-based localization,” CoRR, vol. abs/1610.02391, 2016.

[4] R. Qian, R. T. Tan, W. Yang, J. Su, and J. Liu, “Attentive Generative Adversar-
ial Network for Raindrop Removal from A Single Image,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pp. 2482–2491, 2018.

[5] T. S. Nazaré, G. B. P. da Costa, W. A. Contato, and M. Ponti, “Deep convolu-
tional neural networks and noisy images,” in Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications (M. Mendoza and S. Ve-
lastín, eds.), (Cham), pp. 416–424, Springer International Publishing, 2018.

[6] J. Lee, J. Yang, and Z. Wang, “What does cnn shift invariance look like? a
visualization study,” in Computer Vision – ECCV 2020 Workshops (A. Bartoli
and A. Fusiello, eds.), (Cham), pp. 196–210, Springer International Publishing,
2020.

[7] R. Zhang, “Making Convolutional Networks Shift-Invariant Again,” in Inter-
national conference on machine learning, pp. 7324–7334, 2019.

[8] A. Azulay and Y. Weiss, “Why do deep convolutional networks generalize so
poorly to small image transformations?,” Journal of Machine Learning Re-
search, vol. 20, pp. 1–25, 2019.

[9] S. Dodge and L. Karam, “Understanding how image quality affects deep neural
networks,” in 2016 Eighth International Conference on Quality of Multimedia
Experience (QoMEX), pp. 1–6, 2016.

[10] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring the
landscape of spatial robustness,” 36th International Conference on Machine
Learning, ICML 2019, vol. 2019-June, pp. 3218–3238, 2019.

[11] Y. Zheng, Y. Chen, and M. Sarem, “Group-Teaching: Learning Robust CNNs
from Extremely Noisy Labels,” IEEE Access, vol. 8, pp. 34868–34879, 2020.

89

[12] C. Kanbak, S. M. Moosavi-Dezfooli, and P. Frossard, “Geometric Robustness
of Deep Networks: Analysis and Improvement,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 4441–4449, 2018.

[13] S. Gulshad and A. W. M. Smeulders, “Natural perturbed training for general
robustness of neural network classifiers,” ArXiv, vol. abs/2103.11372, 2021.

[14] A. Kumar and E. Amid, “Constrained instance and class reweighting for robust
learning under label noise,” CoRR, vol. abs/2111.05428, 2021.

[15] N. Li, Y. Chen, Z. Ding, and D. Zhao, “Shift-invariant convolutional network
search,” in 2020 International Joint Conference on Neural Networks (IJCNN),
pp. 1–7, 2020.

[16] A. Chaman and I. Dokmanić, “Truly shift-invariant convolutional neural net-
works,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3772–3782, 2021.

[17] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially transformed
adversarial examples,” in International Conference on Learning Representa-
tions, 2018.

[18] A. Aydin, D. Sen, B. T. Karli, O. Hanoglu, and A. Temizel, “Imperceptible
adversarial examples by spatial chroma-shift,” in Proceedings of the 1st In-
ternational Workshop on Adversarial Learning for Multimedia, ADVM ’21,
(New York, NY, USA), p. 8–14, Association for Computing Machinery, 2021.

[19] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 764–773, 2017.

[20] Z. Lin, Z. He, S. Xie, X. Wang, J. Tan, J. Lu, and B. Tan, “Aanet: Adaptive at-
tention network for covid-19 detection from chest x-ray images,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 32, no. 11, pp. 4781–
4792, 2021.

[21] J. Chen, X. Wang, Z. Guo, X. Zhang, and J. Sun, “Dynamic region-aware
convolution,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), (Los Alamitos, CA, USA), pp. 8060–8069, IEEE Com-
puter Society, jun 2021.

[22] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, pp. 379–423, 1948.

[23] C. Vasconcelos, H. Larochelle, V. Dumoulin, R. Romijnders, N. L. Roux,
and R. Goroshin, “Impact of Aliasing on Generalization in Deep Convolu-
tional Networks,” IEEE/CVF International Conference on Computer Vision,
pp. 10529–10538, 8 2021.

[24] R. C. Gonzalez and R. E. Woods, 4TH EDITION Digital image processing.
2018.

90

[25] R. R. Coifman and D. L. Donoho, Translation-Invariant De-Noising, pp. 125–
150. New York, NY: Springer New York, 1995.

[26] H. Zhang, V. Sindagi, and V. M. Patel, “Image De-raining Using a Conditional
Generative Adversarial Network,” IEEE Transactions on Circuits and Systems
for Video Technology, pp. 1–13, 1 2019.

[27] U. Uzun and A. Temizel, “Cycle-Spinning GAN for Raindrop Removal from
Images,” in 2019 16th IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS), no. September, pp. 1–6, IEEE, 9 2019.

[28] U. Uzun and A. Temizel, “Cycle-spinning convolution for object detection,”
IEEE Access, vol. 10, pp. 76340–76350, 2022.

[29] M. A. Rodriguez-Hernandez, “Shift selection influence in partial cycle spin-
ning denoising of biomedical signals,” Biomedical Signal Processing and Con-
trol, vol. 26, pp. 64–68, 2016.

[30] I. V. Florinsky, “Chapter 5 - errors and accuracy,” in Digital Terrain Analysis in
Soil Science and Geology (Second Edition) (I. V. Florinsky, ed.), pp. 149–187,
Academic Press, second edition ed., 2016.

[31] A. Nosratinia, “Denoising JPEG images by re-application of JPEG,” 1998
IEEE 2nd Workshop on Multimedia Signal Processing, vol. 1998-Decem,
no. Figure 1, pp. 611–615, 1998.

[32] Coifman R.R. and Donoho, “Translation-Invariant Denoising,” in Lecture
Notes in Statistics, pp. 125–150, 1995.

[33] A. K. Fletcher, V. K. Goyal, and K. Ramchandran, “Wavelet Denoising by
Recursive Cycle Spinning,” ICIP(2), pp. 873–876, 2002.

[34] P. Chen and D. Suter, “Shift-invariant wavelet denoising using interscale de-
pendency,” in Proceedings - International Conference on Image Processing,
ICIP, vol. 5, pp. 1005–1008, 2004.

[35] A. Nosratinia, “Postprocessing of JPEG-2000 images to remove compression
artifacts,” IEEE Signal Processing Letters, vol. 10, no. 10, pp. 296–299, 2003.

[36] A. Nosratinia, “Enhancement of jpeg-compressed images by re-application of
jpeg,” Journal of Vlsi Signal Processing Systems for Signal Image and Video
Technology - J VLSI SIGNAL PROCESS SYST S, vol. 27, pp. 69–79, 02 2001.

[37] A. Temizel and T. Vlachos, “Wavelet domain image resolution enhancement
using cycle-spinning,” IET Electronics Letters, vol. 41, no. 3, pp. 119–121,
2005.

[38] A. Temizel and T. Vlachos, “Wavelet domain image resolution enhancement,”
IEE Proceedings: Vision, Image and Signal Processing, vol. 153, no. 1, pp. 25–
30, 2006.

91

[39] A. Temizel and T. Vlachos, “Image resolution upscaling in the wavelet domain
using directional cycle spinning,” Journal of Electronic Imaging, vol. 14, no. 4,
2006.

[40] B. N. Aravind and K. V. Suresh, “Multispinning for image denoising,” Journal
of Intelligent Systems, vol. 21, no. 3, pp. 271–291, 2012.

[41] E. Grossi and M. Buscema, “Introduction to artificial neural networks,” Euro-
pean Journal of Gastroenterology and Hepatology, vol. 19, no. 12, pp. 1046–
1054, 2007.

[42] K. He, “Deep Residual Learning for Image Recognition,” 2015.

[43] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,
J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, Review of deep
learning: concepts, CNN architectures, challenges, applications, future direc-
tions, vol. 8. Springer International Publishing, 2021.

[44] M. J. M. Mazack, “Algorithms for Handwritten Digit Recognition,” Interna-
tional Conference on Artificial Neural Networks (Paris)., no. July, pp. 53–60,
1995.

[45] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual trans-
formations for deep neural networks,” Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua,
pp. 5987–5995, 2017.

[46] B. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2012.

[47] M. Amer and T. Maul, “A review of modularization techniques in artificial
neural networks,” Artificial Intelligence Review, vol. 52, no. 1, pp. 527–561,
2019.

[48] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, “Spatial trans-
former networks,” in Advances in Neural Information Processing Systems
(C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28,
Curran Associates, Inc., 2015.

[49] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” Artificial Intelligence Re-
view, vol. 53, no. 8, pp. 5455–5516, 2020.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” 3rd International Conference on Learning Represen-
tations, ICLR 2015 - Conference Track Proceedings, pp. 1–14, 2015.

[51] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 32nd International Conference
on Machine Learning, ICML 2015, vol. 1, pp. 448–456, 2015.

92

[52] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” pp. 1–18, 2012.

[53] S. Gulshad and A. Smeulders, “Natural Perturbed Training for General Ro-
bustness of Neural Network Classifiers,” 2021.

[54] A. Azulay, “Why do deep convolutional networks generalize so poorly to small
image transformations ? arXiv : 1805 . 12177v2 [cs . CV] 18 Feb 2019,” 2017.

[55] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “A Rotation and
a Translation Suffice: Fooling CNNs with Simple Transformations,” pp. 1–20,
2017.

[56] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The Unrea-
sonable Effectiveness of Deep Features as a Perceptual Metric,” Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, no. 1, pp. 586–595, 2018.

[57] C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the
IRE, vol. 37, no. 1, pp. 10–21, 1949.

[58] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 580–587, 2014.

[59] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks,” in Advances in Neural Informa-
tion Processing Systems (C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, eds.), vol. 28, Curran Associates, Inc., 2015.

[60] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386–
397, 2020.

[61] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg,
“SSD: Single shot multibox detector,” Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9905 LNCS, pp. 21–37, 2016.

[62] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem,
pp. 779–788, 2016.

[63] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings
- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, vol. 2017-Janua, pp. 6517–6525, 2017.

[64] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018.

93

[65] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal Speed
and Accuracy of Object Detection,” arXiv, 2020.

[66] G. Jocher, A. Stoken, J. Borovec, NanoCode012, ChristopherSTAN,
L. Changyu, Laughing, tkianai, A. Hogan, lorenzomammana, yxNONG,
AlexWang1900, L. Diaconu, Marc, wanghaoyang0106, ml5ah, Doug, F. In-
gham, Frederik, Guilhen, Hatovix, J. Poznanski, J. Fang, L. Yu, changyu98,
M. Wang, N. Gupta, O. Akhtar, PetrDvoracek, and P. Rai, “ultralytics/yolov5:
v3.1 - Bug Fixes and Performance Improvements,” 10 2020.

[67] E. Ur Rahman, Y. Zhang, S. Ahmad, H. I. Ahmad, and S. Jobaer, “Autonomous
vision-based primary distribution systems porcelain insulators inspection using
UAVs,” Sensors (Switzerland), vol. 21, no. 3, pp. 1–24, 2021.

[68] M. Mehdi Özel, “Drone Dataset (UAV).”
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-
uav?select=drone_dataset_yolo. [Online; accessed 2021-12-18].

[69] M. Tan, R. Pang, and Q. V. Le, “EfficientDet,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 10778–10787, 2020.

[70] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolu-
tional neural networks,” 36th International Conference on Machine Learning,
ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.

[71] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,”
in Proceedings of the European Conference on Computer Vision (ECCV),
pp. 734–750, 2018.

[72] X. Zhou, J. Zhuo, and P. Krähenbühl, “Bottom-up object detection by grouping
extreme and center points,” in CVPR, 2019.

[73] M. Manfredi and Y. Wang, “Shift Equivariance in Object Detection,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 12540 LNCS, pp. 32–45,
2020.

[74] I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, and D. Warde-farley,
“Generative Adversarial Nets,” pp. 1–9, 2014.

[75] J. Cheng, Y. Yang, X. Tang, N. Xiong, Y. Zhang, and F. Lei, “Generative Ad-
versarial Networks : A Literature Review,” vol. 14, no. 12, pp. 4625–4647,
2020.

[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
pp. 84–90, 5 2017.

[77] T. Salimans, I. Goodfellow, V. Cheung, A. Radford, and X. Chen, “Improved
Techniques for Training GANs,” pp. 1–10, 2016.

94

[78] Y. J. Cao, L. L. Jia, Y. X. Chen, N. Lin, C. Yang, B. Zhang, Z. Liu, X. X.
Li, and H. H. Dai, “Recent Advances of Generative Adversarial Networks in
Computer Vision,” IEEE Access, vol. 7, no. c, pp. 14985–15006, 2019.

[79] L. Jin, F. Tan, and S. Jiang, “Generative Adversarial Network Technologies
and Applications in Computer Vision,” Computational Intelligence and Neu-
roscience, vol. 2020, no. 1, 2020.

[80] R. Wu, G. Zhang, S. Lu, and T. Chen, “Cascade EF-GAN: Progressive Fa-
cial Expression Editing with Local Focuses,” The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5021–5030, 2020.

[81] A. D.Donahue, “Adversarial Text Generation Without Reinforcement Learn-
ing,” 2019.

[82] Y. Zhu, Y. Zhang, H. Yang, and F. Wang, “Gancoder: An automatic natu-
ral language-to-programming language translation approach based on GAN,”
CoRR, vol. abs/1912.00609, 2019.

[83] E. Brophy, Z. Wang, and T. E. Ward, “Quick and Easy Time Series Generation
with Established Image-based GANs,” pp. 1–8, 2019.

[84] D. Li, D. Chen, L. Shi, B. Jin, J. Goh, and S.-k. Ng, “MAD-GAN : Multi-
variate Anomaly Detection for Time Series Data with Generative Adversarial
Networks,” pp. 1–17, 2019.

[85] J. Yoon and D. Jarrett, “Time-series Generative Adversarial Networks,”
no. NeurIPS, pp. 1–11, 2019.

[86] Q. H. Le, K. Youcef-toumi, D. Tsetserukou, and A. Jahanian, “GAN Mask
R-CNN: Instance semantic segmentation benefits from generative adversarial
adversarial networks,” 2020.

[87] P. Luc, C. Couprie, J. Verbeek, and L. J. Kuntzmann, “Semantic Segmentation
using Adversarial Networks,” 2016.

[88] Z. Zhao, Y. Wang, and K. Liu, “Semantic Segmentation by Improved Genera-
tive Adversarial Networks,” pp. 1–18, 2021.

[89] Q. Yan and W. Wang, “DCGANs for image super-resolution , denoising and
debluring,” 2017.

[90] H. Zhang and V. M. Patel, “Convolutional sparse & low-rank coding-based rain
streak removal,” Proceedings - 2017 IEEE Winter Conference on Applications
of Computer Vision, WACV 2017, pp. 1259–1267, 2017.

[91] E. Ward, Z. Wang, and Q. She, “Generative Adversarial Networks in Computer
Vision : A Survey and Taxonomy,” no. November, pp. 1–41, 2020.

[92] S. H. Sun, S. P. Fan, and Y. C. F. Wang, “Exploiting image structural similarity
for single image rain removal,” 2014 IEEE International Conference on Image
Processing, ICIP 2014, pp. 4482–4486, 2014.

95

[93] P. C. Barnum, S. Narasimhan, and T. Kanade, “Analysis of rain and snow in
frequency space,” International Journal of Computer Vision, vol. 86, no. 2-3,
pp. 256–274, 2010.

[94] D. A. Huang, L. W. Kang, Y. C. F. Wang, and C. W. Lin, “Self-learning
based image decomposition with applications to single image denoising,” IEEE
Transactions on Multimedia, vol. 16, no. 1, pp. 83–93, 2014.

[95] Y. Luo, Y. Xu, and H. Ji, “Removing rain from a single image via discrimi-
native sparse coding,” Proceedings of the IEEE International Conference on
Computer Vision, vol. 2015 Inter, pp. 3397–3405, 2015.

[96] X. Zheng, Y. Liao, W. Guo, X. Fu, and X. Ding, “Single-image-based rain and
snow removal using multi-guided filter,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 8228 LNCS, no. PART 3, pp. 258–265, 2013.

[97] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan, “Deep Joint Rain
Detection and Removal from a Single Image,” pp. 1685–1694, 2017.

[98] X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, “Clearing the skies: A deep
network architecture for single-image rain removal,” IEEE Transactions on
Image Processing, vol. 26, no. 6, pp. 2944–2956, 2017.

[99] H. Zhang and V. M. Patel, “Density-Aware Single Image De-raining Using
a Multi-stream Dense Network,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 695–704, 2018.

[100] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Benchmarking
Single-Image Dehazing and beyond,” IEEE Transactions on Image Processing,
vol. 28, no. 1, pp. 492–505, 2019.

[101] T. X. Jiang, T. Z. Huang, X. L. Zhao, L. J. Deng, and Y. Wang, “A novel
tensor-based video rain streaks removal approach via utilizing discriminatively
intrinsic priors,” Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2818–2827, 2017.

[102] J. H. Kim, J. Y. Sim, and C. S. Kim, “Video deraining and desnowing using
temporal correlation and low-rank matrix completion,” IEEE Transactions on
Image Processing, vol. 24, no. 9, pp. 2658–2670, 2015.

[103] W. Ren, J. Tian, Z. Han, A. Chan, and Y. Tang, “Video desnowing and de-
raining based on matrix decomposition,” Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua,
pp. 2838–2847, 2017.

[104] V. Santhaseelan and V. K. Asari, “Utilizing Local Phase Information to Re-
move Rain from Video,” International Journal of Computer Vision, vol. 112,
no. 1, pp. 71–89, 2015.

[105] A. K. Tripathi and S. Mukhopadhyay, “Removal of rain from videos: a review,”
Signal, Image and Video Processing, vol. 8, no. 8, pp. 1421–1430, 2012.

96

[106] S. You, R. T. Tan, R. Kawakami, Y. Mukaigawa, and K. Ikeuchi, “Adherent
Raindrop Modeling, Detection and Removal in Video,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, pp. 1721–1733, 9 2016.

[107] Li-Wei Kang, Chia-Wen Lin, and Yu-Hsiang Fu, “Automatic Single-Image-
Based Rain Streaks Removal via Image Decomposition,” IEEE Transactions
on Image Processing, vol. 21, no. 4, pp. 1742–1755, 2011.

[108] V. N. Bharath Raj N., “Single Image Haze Removal using a Generative Adver-
sarial Network,” CoRR, vol. abs/1810.0, 10 2018.

[109] C. O. Ancuti, M.-h. Yang, Y. Chen, B. Chanda, Y.-g. Kim, R. Schettini, J.-p.
Tarel, and C. Wang, “NTIRE 2019 Image Dehazing Challenge Report,” 2019.

[110] H. Zhang, V. Sindagi, and V. M. Patel, “Image De-raining Using a Conditional
Generative Adversarial Network,” CoRR, vol. abs/1701.0, pp. 1–13, 2017.

[111] T. Alt and J. Weickert, “Learning a generic adaptive wavelet shrinkage function
for denoising,” ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings, vol. 2020-May, no. May 2020, pp. 2018–
2022, 2020.

[112] K. Aziz and Y. Himeur, “A Simple and Fast Algorithm for Image Denoising
Using the DCT A Simple and Fast Algorithm for Image Denoising Using the
DCT,” no. October 2020, 2012.

[113] Y. Hel-Or and G. Ben-Artzi, “The role of redundant bases and shrinkage func-
tions in image denoising,” IEEE Transactions on Image Processing, vol. 30,
pp. 3778–3792, 2021.

[114] U. Kamilov, E. Bostan, and M. Unser, “Wavelet shrinkage with consistent cy-
cle spinning generalizes total variation denoising,” IEEE Signal Processing
Letters, vol. 19, no. 4, pp. 187–190, 2012.

[115] A. Azulay and Y. Weiss, “Why do deep convolutional networks generalize so
poorly to small image transformations?,” 2018.

[116] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, J. Kautz, and
U. Amherst, “Pixel-Adaptive Convolutional Neural Networks,” tech. rep.,
2020.

[117] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convo-
lutional neural network,” Proceedings of 2017 International Conference on
Engineering and Technology, ICET 2017, vol. 2018-Janua, pp. 1–6, 2018.

[118] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning book,” Nature,
vol. 29, no. 7553, pp. 1–73, 2019.

[119] Q. Wang, H. Fan, L. Zhu, and Y. Tang, “Deeply supervised face completion
with multi-context generative adversarial network,” IEEE Signal Processing
Letters, vol. 26, no. 3, pp. 400–404, 2019.

97

[120] Cody Marie Wild, “Convolution: an exploration of a familiar operator’s deeper
roots,” 2018.

[121] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-
works,” 34th International Conference on Machine Learning, ICML 2017,
vol. 7, pp. 5109–5118, 2017.

[122] N. K. Reblitz-Richardson, V. Miglani, M. Martin, E. Wang, B. Alsallakh,
J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan, and Orion, “Cap-
tum: A unified and generic model interpretability library for PyTorch,” 2020.

[123] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 8693 LNCS, no. PART 5,
pp. 740–755, 2014.

[124] B. Alsallakh, N. Kokhlikyan, V. Miglani, J. Yuan, and O. Reblitz-Richardson,
“Mind the Pad – CNNs can Develop Blind Spots,” pp. 1–15, 2020.

[125] S. Li, I. B. Araujo, W. Ren, Z. Wang, E. K. Tokuda, R. H. Junior, R. Cesar-
Junior, J. Zhang, X. Guo, and X. Cao, “Single Image Deraining: A Compre-
hensive Benchmark Analysis,” arXiv preprint arXiv:1903.08558, 2019.

[126] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 2016-Decem, pp. 770–778, 2016.

[127] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo, “Con-
volutional lstm network: A machine learning approach for precipitation now-
casting,” in Proceedings of the 28th International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’15, (Cambridge, MA, USA),
p. 802–810, MIT Press, 2015.

[128] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE Transactions on Image Pro-
cessing, vol. 13, no. 4, pp. 600–612, 2004.

[129] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ’completely blind’
image quality analyzer,” IEEE Signal Processing Letters, vol. 20, no. 3,
pp. 209–212, 2013.

[130] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality as-
sessment in the spatial domain.,” IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society, vol. 21, no. 12, pp. 4695–
708, 2012.

[131] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image quality assessment: A
natural scene statistics approach in the DCT domain,” IEEE Transactions on
Image Processing, vol. 21, no. 8, pp. 3339–3352, 2012.

98

[132] L. Liu, B. Liu, H. Huang, and A. C. Bovik, “No-reference image quality as-
sessment based on spatial and spectral entropies,” Signal Processing: Image
Communication, vol. 29, no. 8, pp. 856–863, 2014.

[133] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs
for modern convolutional object detectors,” Proceedings - 30th IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-
Janua, pp. 3296–3305, 2017.

[134] C. H. Bahnsen and T. B. Moeslund, “Rain Removal in Traffic Surveillance :
Does it Matter ?,” vol. 20, no. 8, pp. 2802–2819, 2020.

[135] X. Zou, F. Xiao, Z. Yu, Y. Li, and Y. J. Lee, “Delving deeper into anti-aliasing
in convnets,” International Journal of Computer Vision, Oct 2022.

[136] Z. Luo, “Alexnet pytorch cifar10.” Available at https://github.
com/soapisnotfat/pytorch-cifar10/blob/master/models/
AlexNet.py (2017/12/20).

[137] G. Huang and K. Q. Weinberger, “Densely Connected Convolutional Net-
works,” 2018.

[138] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger, “Con-
volutional Networks with Dense Connectivity,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8828, no. c, pp. 1–1, 2019.

[139] D. Hendrycks, K. Lee, and M. Mazeika, “Using Pre-Training Can Improve
Model Robustness and Uncertainty,” no. 2018, 2019.

[140] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “Pytorch: An imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems 32, pp. 8024–8035,
Curran Associates, Inc., 2019.

[141] B. Dwyer, “Thermal cheetah computer vision project.” Available at https:
//universe.roboflow.com/brad-dwyer/thermal-cheetah
(2020/11/12).

[142] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho, “Augmentation
for small object detection,” vol. 2017, pp. 119–133, 2019.

[143] J. Solawetz, “Roboflow coco-2017.” Available at https://blog.
roboflow.com/coco-dataset/ (2020/10/18).

[144] G. S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo,
and L. Zhang, “DOTA: A Large-Scale Dataset for Object Detection in Aerial
Images,” Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 3974–3983, 2018.

99

https://github.com/soapisnotfat/pytorch-cifar10/blob/master/models/AlexNet.py
https://github.com/soapisnotfat/pytorch-cifar10/blob/master/models/AlexNet.py
https://github.com/soapisnotfat/pytorch-cifar10/blob/master/models/AlexNet.py
https://universe.roboflow.com/brad-dwyer/thermal-cheetah
https://universe.roboflow.com/brad-dwyer/thermal-cheetah
https://blog.roboflow.com/coco-dataset/
https://blog.roboflow.com/coco-dataset/

[145] H. Zhu, H. Wei, B. Li, X. Yuan, and N. Kehtarnavaz, “A review of video object
detection: Datasets, metrics and methods,” Applied Sciences (Switzerland),
vol. 10, no. 21, pp. 1–24, 2020.

[146] D. Du et al., “Visdrone-det2019: The vision meets drone object detection
in image challenge results,” in 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pp. 213–226, 2019.

[147] V. Sovrasov, “Sovrasov/flops-counter pytorch: Flops counter for convolutional
networks in pytorch framework.” Available at https://github.com/
sovrasov/flops-counter.pytorch (2021/06/12).

[148] I. Sarker, “Deep learning: A comprehensive overview on techniques, taxon-
omy, applications and research directions,” SN Computer Science, vol. 2, 08
2021.

[149] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5,
pp. 828–841, 2019.

100

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch

CURRICULUM VITAE

Ülkü UZUN
https://github.com/UlkuUZUN

ulku.uzun@metu.edu.tr

Education

METU, Graduate School of Informatics 2012 – Present
Ph.D. Ankara, Türkiye

Selcuk University, Department of Mathematics 2003 – 2004
M.Sc. Konya, Türkiye

Hacettepe University, Department of Mathematics 1998 – 2003
B.Sc. Ankara, Türkiye

Work Experience

Software Developer December, 2008 – Present
Turkish General Commandership of Gendarmerie Ankara, Türkiye

Awards & Honors

Outstanding Achievement Award
Republic of Türkiye Ministry of National Defence Turkish General Staff 2014

Publications

[1] Ü. Uzun and A. Temizel, "Cycle-Spinning GAN for Raindrop Removal from Images", 16th
IEEE Int. Conf. Advanced Video and Signal Based Surveillance (AVSS), 2019, pp. 1-6, doi:
10.1109/AVSS.2019.8909824

[2] Ü. Uzun and A. Temizel, "Cycle-Spinning Convolution for Object Detection", IEEE
Access, vol. 10, pp. 76340-76350, 2022, doi: 10.1109/ACCESS.2022.3192022

Specialized Skills

Programming Languages: Python, R, MatLab, Java, C♯

TEZ İZİN FORMU / THESIS PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences

Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics

Enformatik Enstitüsü / Graduate School of Informatics

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadı / Surname : Uzun
Adı / Name : Ülkü
Bölümü / Department : Bilişim Sistemleri/Information Systems

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : DERİN ÖGRENMEDE DÖNGÜLÜ
ÇEVİRİM YÖNTEMİNİN KULLANIMI/ EMPLOYMENT OF CYCLE-SPINNING IN DEEP LEARNING

TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master Doktora / PhD

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately

for access worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or
proprietary purposes for a period of two year. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six

months. *

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye teslim edilecektir.
 A copy of the Decision of the Institute Administrative Committee will be delivered to the
library together with the printed thesis.

Yazarın imzası / Signature Tarih / Date 29.11.2022

X

X

X

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Definition
	Contributions of the Study
	Organization of the Thesis

	Related Work
	Cycle-spinning (CS) method
	Deep learning algorithms
	Convolutional Neural Networks (CNNs)
	Image classification using CNNs
	Object detection using CNNs

	Generative Adversarial Networks (GANs)
	Image enhancement using GANs

	Methodology
	Cycle-spinning (CS) method
	Integrating CS into GAN-based models
	Integrating CS into the convolutional layer of CNN-based models

	Shifting

	Integrating CS into GAN-based Models for RainDrop Removal
	DeRaindrop algorithm
	Datasets
	Architecture
	Evaluation metrics
	Results

	Integrating CS into CNN-based Models for Image Classification
	AlexNet
	Datasets
	Architecture
	Evaluation Metrics
	Results

	DenseNet
	Architecture
	Results

	ResNet
	Dataset
	Architecture
	Results

	Integrating CS into CNN-based Models for Object Detection
	YOLOv5
	Datasets
	Cheetah-Human thermal dataset
	COCO (COmmon Objects in Context) dataset
	Dataset for Object Detection in Aerial Images (DOTA)

	Architecture
	Evaluation metrics
	Intersection Over Union (IOU)
	Precision and Recall
	F1-Score
	Mean Average Precision (mAP)
	MS-COCO Method

	Results
	Yolov5 Cheetah-Human dataset results
	YOLOv5 COCO dataset results
	Yolov5 DOTA dataset results

	EfficientDet
	Dataset selection
	Architecture
	Results
	EfficientDet COCO Dataset results

	CenterNet
	Dataset selection
	Architecture
	Results
	CenterNet Visdrone Dataset results

	Discussion

	Conclusion and Future Work
	REFERENCES

