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ABSTRACT 
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The heterogeneous nature and the mixture rules of concrete result in complex 

behavior at different domain levels as micro, meso and macro scales. Cracks evolve 

randomly from the micro to the macro level and result in nonlinear response of 

structures. Predicting the nonlinear response of concrete is directly related to the 

performance assessment of reinforced concrete (RC) structures, which is becoming 

more important, given the observed of aging infrastructure and the need for 

sustainability. Strength and deformation capacity estimations along with crack width 

predictions appear to play a key role for structural engineers in the design and 

assessment of structures. Another quasi-static material mostly used in structures after 

the concrete is the masonry elements. Masonry walls consist of different materials 

and exhibit complex responses similar to concrete. A combination of walls and 

reinforced concrete (RC) frames create infill walls. Significant infill wall damage in 

RC frame buildings was observed in past earthquakes. Collapse of these walls may 

cause loss of life. Still, understanding RC frame-infilled wall interaction is 
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challenging, while the nonlinear behavior has been investigated in different scales 

by many researchers. 

Despite significant developments, the computational modeling of concrete and 

masonry fracture initiation and propagation is still under development. Many 

different numerical approaches have been used in the past. Recent studies in the last 

decade in this field have focused on using particle-based simulation methods (such 

as the discrete element method, lattice-based methods, smoothed particle 

hydrodynamics, etc.) to capture the local character of the fracture phenomenon. The 

advantages of these tools are the relative ease of modeling and the simulation of 

crack propagation using a few key parameters with the ability to bridge various 

scales from micro to macro levels. 

In this work, a practical two-dimensional lattice approach at the mesoscale level is 

proposed, where the continuum is discretized using truss elements extending over a 

predefined horizon, similar to the concept used in peridynamics with static and 

dynamic solution techniques for nonlinear problems. The compression response of 

concrete is critically reviewed and explained as an indirect tension failure by using 

the proposed lattice approach with a novel calibration technique that employs the 

magnitude of grid perturbation. Promising numerical results show that compression 

failure can be estimated with lattice models with tension-only failure envelopes. 

Simulation results of RC beams, columns, walls, and frame tests with different 

failure types focusing on the influence of the mesh size, horizon, and softening 

functions on the sensitivity of results are in good agreement with the experimental 

results based on estimating crack patterns, spacings, and overall monotonic load-

deflection response. An explicit time integration technique with a novel 

proportional-integral-derivative control is used to efficiently simulate the response 

under monotonic loading in quasi-static manner. The proposed approach is then 

applied to simulate the response of unreinforced aerated autoclaved concrete (AAC) 

masonry-infilled RC frames. Two AAC-infilled walls were tested to have a 

benchmark for comparison purposes. The wall components used in these tests were 



 

 

vii 

 

used for characterization tests of AAC masonries in order to determine the 

mechanical properties of such behavior. The results were used to calibrate the model. 

In addition to the tests conducted, two other tests from the literature were used for 

further validation. The proposed lattice model was capable of estimating crack 

propagation in the infill walls with reasonable accuracy. The frame-infill wall 

interaction was successfully simulated by providing a realistic representation of strut 

formation. Finally, a parametric study was conducted to examine contact length and 

strut width as a function of lateral deformation. The results show that the infill wall-

frame contact length is significantly dependent on the lateral deformation demand 

levels and properties of the interaction region. It can be stated that all simulation 

results demonstrate the ability of accurately predicting the direction of crack 

propagation and the flowing force over the structure with the proposed modeling 

approach, with a rather simple and intuitive method. 
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Betonun farklı bileşenlerden oluşan doğası ve karışım kuralları, mikro, mezo ve 

makro ölçekler gibi farklı etki alanı seviyelerinde karmaşık davranışlara neden olur. 

Çatlaklar, mikro seviyeden makro seviyeye rastgele gelişir ve yapıların doğrusal 

olmayan tepkisine neden olur. Betonun bu tepkisini tahmin etmek, yaşlanan altyapı 

ve sürdürebilirlik ihtiyacı göz önüne alındığında daha önemli hale gelen betonarme 

yapıların performans değerlendirmesi ile doğrudan ilgilidir. Mukavemet ve 

deformasyon kapasitesi ile çatlak genişliği tahminleri, yapıların tasarımında ve 

değerlendirilmesinde yapı mühendisleri için önemli bir rol oynamaktadır. Yapılarda 

betondan sonra en çok kullanılan diğer bir yarı statik malzeme ise yığma 

elemanlardır. Yığma duvarlar farklı malzemelerden oluşur ve betona benzer 

karmaşık tepkiler sergiler. Duvarlar ve betonarme çerçevelerin kombinasyonu ise 

dolgu duvarları oluşturur. Geçmişteki depremlerde betonarme çerçeveli binalarda 

önemli dolgu duvar hasarı gözlemlenmiştir. Bu duvarların çökmesi can kaybına 

neden olabilir. Yine de, betonarme çerçeve ve dolgu duvar etkileşimini anlamak 
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zordur, ancak doğrusal olmayan davranış birçok araştırmacı tarafından farklı 

ölçeklerde araştırılmıştır. 

Önemli gelişmelere rağmen, beton ve yığma çatlağın başlaması ve yayılmasının 

sayısal modellemesi hala gelişme aşamasındadır. Geçmişte birçok farklı hesaplama 

yaklaşımı kullanılmıştır. Bu alanda son on yılda yapılan çalışmalar, kırılma 

olgusunun lokal karakterini modelleyebilmek için parçacık tabanlı simülasyon 

yöntemlerinin (ayrık elemanlar yöntemi, kafes tabanlı yöntemler, düzleştirilmiş 

parçacık hidrodinamiği, vb.) kullanmaya odaklanmıştır. Bu araçların avantajları, 

göreceli modelleme kolaylığı ve mikrodan makro seviyelere kadar çeşitli ölçekleri 

bağlama yeteneği ile birkaç önemli parametre kullanarak çatlak yayılımının 

simülasyonudur. 

Bu çalışmada, doğrusal olmayan problemler için statik ve dinamik çözüm teknikleri 

ile peridinamikte kullanılan kavrama benzer şekilde, sürekliliğin önceden 

tanımlanmış bir ufuk boyunca uzanan kafes elemanları kullanılarak parçalandığı, 

orta ölçekli düzeyde pratik bir iki boyutlu kafes yaklaşımı önerilmiştir. Betonun 

sıkışma davranışı, kafes sistemi örgüsü karıştırmasını kullanan yeni bir kalibrasyon 

tekniği ile önerilen kafes yaklaşımı kullanılarak dolaylı bir çekme gerilim kırılması 

olarak ciddi derecede gözden geçirilir ve açıklanır. Umut verici sayısal sonuçlar, 

yalnızca gerilim kırılma özeliğine sahip kafes modelleri ile sıkışma çatlağının tahmin 

edilebileceğini göstermektedir. Ağ boyutu, ufuk ve yumuşama fonksiyonlarının 

sonuçların duyarlılığı üzerindeki etkisine odaklanan farklı göçme tiplerine sahip 

betonarme kirişler, kolonlar, duvarlar ve çerçeve testlerinin simülasyon sonuçları, 

çatlak dağılımları, aralıkları ve genel monotonik davranışı tahmini açısından 

deneysel sonuçlarla iyi bir uyum içindedir. Monotonik yükleme altındaki statik 

davranışı doğru bir şekilde simüle etmek için yeni bir orantılı-integral-türev 

kontrolüne sahip açık zaman entegrasyon tekniği kullanılmıştır. Önerilen yaklaşım 

daha sonra, donatısı otoklavlanmış gazbeton duvar dolgulu betonarme çerçevelerin 

tepkisini modellemek için kullanılır. İki gazbeton dolgulu duvar, karşılaştırma 

amacıyla test edilmiştir. Bu tür davranışların mekanik özelliklerini belirtmek için 
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otoklavlanmış gazbeton duvarların karakterizasyon testleri için bu testlerde 

kullanılan duvar bileşenleri kullanılmıştır. Sonuçlar modeli kalibre etmek için 

kullanılmıştır. Yapılan testlere ek olarak, daha fazla doğrulama için literatürden iki 

test daha kullanıldı. Önerilen kafes modeli, dolgu duvarlarda çatlak yayılımını makul 

bir doğrulukla tahmin edebilmiştir. Çerçeve-dolgu duvar etkileşimi, basma bölgesi 

oluşumunu gerçekçi bir temsili sağlanarak başarılı bir şekilde simüle edilmiştir. Son 

olarak, yanal deformasyonun bir fonksiyonu olarak temas uzunluğu ve basınç 

bölgesi genişliğini incelemek için parametrik bir çalışma yapılmıştır. Sonuçlar, 

dolgu duvar-çerçeve temas uzunluğunun, etkileşim bölgesinin yanal deformasyon 

talep seviyelerine ve özelliklerine önemli ölçüde bağlı olduğunu göstermektedir. 

Tüm simülasyon sonuçlarının, oldukça basit ve sezgisel bir yöntemle, önerilen 

modelleme yaklaşımı ile yapı üzerindeki çatlak ilerleme yönünü ve akan kuvveti 

doğru bir şekilde tahmin etme yeteneğini gösterdiği ifade edilebilir. 

 

Anahtar Kelimeler: Beton, Yığma, Dolgu Duvar, Çatlama, Modelleme  
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CHAPTER 1  

1 INTRODUCTION  

1.1 General 

Structures are essential parts of a nation’s economy. People are usually not aware of 

structures as a live environment until there is a problem in structural performance. 

Structures are the key elements of modern civilized life. Problems on infrastructures 

have significant effects on modern economies. For example, 2 trillion dollars is 

allocated for the USA nation’s infrastructure upgrade (New York Times 2021). On 

the other hand, earthquake can lead to significant damage on poor infrastructure that 

is hard to recover psychologically and economically. According to Word Bank, the 

cost of the 1999 earthquake in Turkey was in the order of 12-17 billion dollars, most 

of which was spent to repair the damaged structures. Thus, sustainable structures and 

performance assessment of existing buildings become more and more important for 

urban life. 

Decision on the performance of moderately damaged structures, whether the 

structure has been heavily damaged or should be strengthened, is a very challenging 

issue. For reinforced concrete structures, the issue is related to understanding the 

fracture and nonlinear concepts of materials and structures. Since a significant 

portion of the built environment is made from concrete, the behavior of concrete 

under extreme loading requires special attention. However, understanding the 

fracture and load response of concrete is a challenging task due to its highly nonlinear 

quasi-brittle behavior. Due to its heterogeneous nature (Mehta 1993), concrete 

exhibits complex behavior at the micro, meso, and macro scales (Wittmann, 1983). 

Cracks evolve from the micro level to the macro level randomly and cause nonlinear 

response of structure. On the other hand, after concrete, the other mostly used 

component in the built environment is masonry elements. Masonry walls exhibit 
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complex responses similar to concrete due to consisting of a variety of materials, 

such as brick and mortar. Previous earthquakes have caused significant damage on 

masonry-infilled walls of RC frame buildings. The collapse of these infilled walls 

may cause loss of life in buildings. Understanding RC frame-infilled wall interaction 

plays a crucial role in assessing the inter-story response of a building and is still 

challenging. 

The performance assessment of reinforced concrete structures which is becoming 

more important due to the aforementioned reasons is directly related to prediction 

nonlinear response of concrete and masonry walls. Strength and deformation 

capacity estimations along with crack width predictions appear to play a key role for 

structural engineers in the design and assessment of structures. Many researchers 

have investigated the nonlinear behavior of these materials in different scales. In this 

context, robust modeling techniques that can exhibit good engineering accuracy with 

minimum number of input parameters are still needed. 

This work has been conducted to develop a practical and efficient approach to 

describe the nonlinear behavior of the heterogeneous cementitious nature of concrete 

material for RC members and structures, autoclaved aerated concrete (AAC) 

masonry and infill walls. In this chapter, a detailed explanation of concrete and 

masonry-infilled walls and the literature review of numerical approaches are 

presented. After briefly explaining nonlinear solution schemes and research 

motivation, objectives and scope are given. 

1.2 Literature Review 

In this section, firstly, the literature on the complex behavior of concrete is explained. 

Extensive work on corresponding the modeling approaches in different scales, from 

macro to micro-scale, is summarized. While explaining these topics, concrete 

material models in compression are briefly reviewed. Then, masonry-infilled walls 

and numerical approaches for them are mentioned. In order to solve nonlinear 
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behavior, used nonlinear solutions schemes were introduced by emphasizing 

sequentially linear analysis and dynamic solution schemes. Finally, research 

motivation is stated.  

1.2.1 Concrete Material 

Understanding cracking in concrete is a challenging task due to its heterogonous 

nature. It is a mixture of cement, sand and aggregate. The material should be 

investigated at from the micro and to the macro level in order to understand crack 

propagation in concrete (Figure 1.1). Concrete media is composed of three 

constituents at the mesoscale: cement as the binder, aggregate as the filler and ITZ 

as the interfacial transition zone from cement to aggregate (Figure 1.1). The weakest 

micro parts of concrete can be exhibited as the region surrounded the aggregates 

(Interfacial Transition Zone) and matrix filled between them. Cracks tend to bridge 

and local failure generally occurs in these zones. The cracks affect the global load-

deflection response of concrete. The nonlinearity is obtained due to the crack 

propagations usually along ITZ and cement paste for normal strength concrete. 

Concrete, when subjected to tension, has a nearly elastic response until cracking and 

exhibits softening after cracking (Figure 1.2a) (Chen and Han, 2007). The pioneering 

works of Hillerborg et al. (1976), Bazant and Oh (1983), Hordjik et al. (1991) led to 

a better understanding toward modeling concrete in tension by incorporating tensile 

fracture energy as a material parameter. On the other hand, concrete exhibits a very 

complex response in compression. Failure in uniaxial uniform compression for 

concrete was explained with different theories on different aspects. Many cylindrical 

test specimens with different aspect ratios were compressed uniformly by Jansen and 

Shah (1997) (Figure 1.2b), concluding crushing is a localized failure in experiments, 

and the required energy to exhibit compression failure is independent of length 

scales. However, the specimens were not lubricated at the ends, so the boundaries 

affecting the compression response were laterally restrained in these tests. On the 

other hand, damage zones were separated as splitting micro and macro cracks by 
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Markeset and Hillerborg (1995). Bazant and Xiang (1997) explained the failure with 

the buckling of the portion between two cracking regions (Figure 1.2c). In short, the 

uniaxial compression behavior of concrete is nonlinear beyond about 40% of the 

ultimate strength, and follows a softening regime beyond ultimate strength due to 

micro and macro cracking. Although named as the compressive strength, several 

researchers have argued that compression is merely an indirect tensile failure, 

followed by material instability (Kendall, 1978; Willam et al., 1989; Bazant et al., 

1993; Fantilli et al., 2002; Birck et al., 2016).  Modeling of the compression response 

of concrete is covered in detail in subsequent sections of this work.  

 

Figure 1.1. Concrete at Different Scales 

Concrete at Mesoscale 

Concrete Material at Different Scales  
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Figure 1.2. Concrete Response 

1.2.2 Numerical Approaches for Concrete Materials 

Although explaining the complex behavior of concrete in tension and compression 

is challenging, many numerical approaches have been proposed for simulating the 

behavior of concrete and reinforced concrete members at different scales with mesh 

or mesh-free methods in order to define typical response. Homogeneous material 

modeling is used for macro-scale simulations, whereas inhomogeneity is 

incorporated at micro-scale and mesoscale level, which are more involved but less 

practical (Figure 1.1). While the elements used in the microscale simulations are in 

the few millimeters order, macroscale models are employed with larger element 

sizes.  

(c) Compression Response (a) Tension Response 

(b) Jansen and Shah (1997) 
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1.2.2.1 Macro-models 

Lumped and spread of plasticity over the length of a macro-element (Figure 1.3a,b, 

respectively) with beam-type formulations were studied by many researchers 

(Clough and Johnston 1966; Giberson 1969; Li and Jirsa 1998; Lee and Elnashai 

2001; Elwood 2004; Mostafaei and Vecchio 2008; Scott and Fenves 2006). In these 

models, nonlinearity was defined at the specific sections in the element. In general, 

these sections are called the plastic hinge regions at the reinforced concrete (RC) 

members. While easy to implement and formulate, micro behavior of concrete 

cannot be obtained with such scale models. For example, these models are incapable 

of capturing strain-softening response of concrete despite some efforts for 

regularization (Coleman and Spacone 2001).  

Distributed nonlinearity with multi-fiber models is another macro-scale approach for 

modeling concrete (Figure 1.3c)(Takayanagi and Schnobrich 1979; Taucer et al. 

1991; Neuenhofer and Filippou 1997; Guner and Vecchio 2011; Limkatanyu and 

Spacone 2002; Spacone et al. 1996; Mazars et al. 2006). It should be noted that this 

model is different from distributed plasticity. In these models, the element has 

sections with multiple fibers, representing the cross-section of RC member. The 

nonlinear stress-strain responses of these fibers are defined according to their 

material response. These sections are compatible with the rotation of element with 

the assumption of plane sections remaining plane. Thus, the softening response can 

be simulated with special techniques. The main disadvantage of the model is the 

incapability of representing shear-related effects. Although some existing techniques 

were proposed to handle this problem, such as using ASFI (Mostafaei and Vecchio, 

2008; Saritas and Filippou, 2009), they are either hard to implement or limited in 

their application. 

One of the most popular and practical macro-model approach is the strut and tie 

model (STM) (Figure 1.3d). The model enables the representation of the complex 

stress distribution in the structure in a simple way by discretizing with struts, ties, 

and nodes. These elements are based on the truss analogy. The strut and tie model 
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becomes a very useful approach for modeling shear critical structures after Schlaich 

et al. (1987). Many researches used the method to design different types of members, 

such as deep beams, inverted-T beams, shear walls, bridges, etc. (Brown et al. 2002-

2006, Birrcher et al. 2006-2009, Williams et al. 2009-2012, Larson et al. 2009-2013, 

Wing and Gustavo 2003, Liang et al. 2002). The method was introduced into ASCE-

ACI (1998), AASHTO LRFD (1994 2016), (FIP 1996) and ACI 318-02 (2002) 

provisions. While it offers to explain complex behavior in a simple manner, there is 

no common consensus about the mechanical properties to be used for STM 

nodes/elements. Stiffness and strength properties are especially hard to define if the 

goal is to obtain the load-deformation response (Leu et al. 2006; Yun 2000; Tjhin 

and Kuchma 2002).  

 

Figure 1.3. Macro-scale Numerical Methods 
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1.2.2.2 Micro and Meso Scale Models 

Although macro models are computationally efficient and reasonable for large 

structural estimations, estimating the properties of the macro elements is challenging 

as the response parameters are hard to predict. Micro and meso scale elements are 

capable of simulating the crack pattern and widths, reinforcement response and its 

interaction with concrete with bond response and the force flow over the members. 

In this section, numerical studies in micro and meso scale conducted to explain 

concrete response are summarized under two main headings as finite element models 

and particle-based and lattice models. The effect of micro and meso structural 

modeling on macroscopical behavior is discussed.  

1.2.2.2.1 Finite Element Models 

Since the 1960s, the finite element method (FEM) has been the preferred choice to 

simulate the concrete fracture and response of reinforced concrete members. Starting 

with Ngo and Scordelis (1967) and Rashid (1968), discrete crack and smeared crack 

models and approaches as two mainstream directions were often employed within 

the finite element framework (Figure 1.4a,b). Continuum-based smeared crack finite 

element modeling represents crack opening with strain localization (Carol et al. 

1997; Rots et al. 2008; Slobbe et al. 2014). The main drawback of continuum-based 

finite element modeling is the difficulty of employing the actual separation due to 

cracking. On the other hand, discrete crack finite element approaches require 

identifying crack locations à priori, and remeshing. Pre- and post-processing 

difficulty, and necessitate different constitutive models for the cracks and continuum 

part are the other disadvantages. 

One-dimensional frame element models (Clough and Johnston, 1966; Roufaiel and 

Meyer, 1987; Spacone et al., 1996; Lee and Elnashai, 2001; Elwood, 2004; Scott and 

Fenves, 2006), two and three-dimensional shell or solid elements (Balan et al., 1997; 

Lura et al., 2002; Tan et al., 2005; Cervenka and Papanikolaou, 2008; Koutromanos 
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and Shing, 2012; Najafian et al., 2013) have been adapted to modeling of members 

and structures (Figure 1.4c,d).  The application of FEM in mesoscale for concrete, 

as given by Roelfstra et al. (1985), represented mortar with finite elements, which 

were in turn connected to aggregate elements. More recently, the classical approach 

of modeling concrete ingredients separately was attempted by using the FEM (Wang 

et al., 1999; Kwan et al., 1999; Caballero et al., 2006; Wriggers and Moftah, 2006; 

Lopez et al., 2008a;b). Moreover, the heterogeneous nature of concrete was modeled 

with a uniform grid in previous studies (Zohdi and Wriggle, 2001; Hafner et al., 

2006; Lee and Park, 2008). All the aforementioned studies are important toward 

understanding the behavior of concrete and developing numerical models. However, 

these results have found limited application in practice.  

 

Figure 1.4. Finite Element Methods with Maximum Principal Strains and Cracks 

1.2.2.2.2 Particle-based and Lattice Models 

In 1821, Navier proposed a theory based on dynamic equilibrium for analyzing 

objects using forces according to Isaac Newton’s second law. The theory claimed 

(c) Two-dimensional (Najafian 

et al. (2013) 

(a) Discrete Cracking  

(Ngo and Scordelis, 1967) (b) Smeared Cracking (Rashid, 1968) 

(d) Three-dimensional (Carvenka 

and Papanikolaou, 2008) 
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summation of the forces should always be considered at a point since the concept of 

stress was not known yet. About ten years later, the concept of stress was proposed 

(Cauchy 1828). The particle-based methods (PBM) focus on the equilibrium in the 

points. The increase in computational power led to the development of modern 

particle-based methods for the simulation of fracture at the micro and meso scales. 

There has been an increasing interest in employing particle-based simulation 

techniques for fracture simulations of concrete as mesoscale PBMs are very 

attractive to represent the individual behavior of the ingredients of concrete, namely, 

mortar, aggregates, and the interfacial transition zone. For this purpose, Stankowski 

(1990) proposed the model in which the elastic aggregates are connected with 

inelastic mortar phase (Figure 1.5a). Such small-scale models may overcome the 

drawbacks of the FEM approaches, such as the need for remeshing upon fracture and 

simulating the crack opening explicitly.  Moreover, the particle models were further 

used to simulate the behavior of different concrete types, such as fiber-reinforced 

concrete (Figure 1.5b) (Schauffert and Cusatis, 2012; Schauffert et al., 2012; Ceccato 

et al., 2017 etc.).   

The particle-based method of Silling (2000), the so-called peridynamics (PD) and 

smoothed particle hydrodynamics (Lucy 1977) with similar mathematical 

backgrounds (Ganzenmüller et al. 2015) are two of the attractive methods due to the 

ease of model definition and implementation. The bond-based PD allows each point 

to interact with neighboring points with a pairwise force function, while the damage 

is incorporated by defining a nonlinear function for the force-elongation response 

(Figure 1.5c) (Silling 2000; Gerstle and Sau 2004). It is well known that this 

approach has a limitation on matching arbitrary Poisson’s ratios in the linear elastic 

range (Nayfeh and Hefzy 1978; Beale and Strolovitz 1988; Donze et al. 1995). In 

order to overcome this restriction, different solution techniques were implemented. 

The state-based peridynamics approach of Silling et al. (2007) can address all 

possible Poisson’s ratios by considering the states of the connected points to a node 

instead of just two node interactions. With this modification, it is not necessary to 

obtain an equal magnitude of the interaction between two material nodes and the 
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interaction depends on the state of connected nodes in volume (dVi and dVj in Figure 

1.5c). The state-based peridynamics was applied successfully to simulating crack 

nucleation (Silling et al. 2010; Littlewood 2011), impact damage (Seleson and Parks 

2011, Tupek et al. 2013), polycrystal fracture (Askari et al. 2008), crystal plasticity 

(Sun and Sundararaghavan 2014), concrete fracture (Gerstle 2015, Nikravesh and 

Gerstle 2018), geomaterial fragmentation (Lai et al. 2015), and dynamic blast 

loading (Littlewood 2010). However, due to its conceptual simplicity, the use of few 

input parameters,  and the success in modeling fracture (and the complexity of state-

based models), the bond-based model is still commonly preferred for nonlinear 

simulations (Figure 1.5d) (Kilic et al. 2009; Ha and Bobaru 2010, 2011; Hu et al. 

2012; Oterkus et al. 2012; Bobaru et al. 2012; Shen et al. 2013; Ghajari et al. 2014). 

Summarily, bond-based peridynamics simulate the interaction of nodes with axial 

forces in connections in a specified horizon region, while volumetric interaction is 

obtained in state-based peridynamics. 

Another popular particle method similar to the bond-based peridynamics is the lattice 

approach in which the continuum is discretized with nodes connected to each other 

by means of structural elements such as springs, trusses or beams (Figure 1.6). In 

order to induce heterogeneity, mechanical properties such as stiffness or strength of 

the elements are randomized (Hrennikoff, 1941; Schlangen and van Mier, 1992; 

Schlangen 1993; Lilliu and van Mier, 2003; Cusatis and Pelessone, 2006; Grassl and 

Jirasek, 2010). Truss-based lattice models were used owing to the advantage of 

computational efficiency and ease of calibration (Burt and Dougill, 1977; Bazant et 

al., 1990; Bazant and Planas, 1997; Schlangen and Garboczi, 1997; van Mier, 2013; 

Birck et al., 2016). The greatest disadvantage of the truss-based lattice network is the 

limitation on the Poisson ratio similar to the bond-based PD (1/3 in 2D and 1/4 in 

3D) (Silling et al., 2007). The limitation on the Poisson ratio was overcome by using 

shear springs (Kawai, 1978; Zubelewicz and Bazant, 1987; Griffiths and Mustoe, 

2001; Cusatis et al., 2003), beam elements (Lilliu and van Mier, 2003; Karihaloo et 

al., 2003; Liu et al., 2007; Gerstle et al., 2013; Aziz, 2014), spring birth (Caldarelli 

et al., 1999; Parisi and Caldarelli, 2000), Kirkwood–Keating springs (Monette and 
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Anderson, 1994; Ostoja-Starzewski et al., 1996) and the artificial force concept 

(Baudet et al., 2007). It should be reminded that while the use of beam elements was 

criticized by Cusatis et al. (2006), the spring-based models were found insufficient 

by Schlangen and van Mier (1992). As no consensus is available with the particle-

based approaches, and the choice of modeling often depends on which engineering 

parameter should be estimated accurately (elasticity or plasticity parameters, 

deflection/vibration calculations, visuals of crack patterns, crack widths). The 

literature shows that it is quite acceptable to choose a modeling approach to 

accurately simulate certain engineering demand parameters while accepting model 

limitations for go accurate simulation of other parameters.  

 

Figure 1.5. Particle Based Modeling 

(b) Schauffert and Cusatis (2011) (a) Stankovski (1990) 

(d) Shen et al. (2013) (c) Kinematic of peridynamics 
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Figure 1.6. Lattice Modeling 

Schlangen and Qian (2009) introduced a beam network with a brittle response. The 

model was used to simulate the uniaxial tension tests of cylinder specimens (Figure 

Hrrenikoff (1941) 

Griffiths and Mustoe (2001) 

Parisi and Caldarelli (2000) 

Kinematics and statics of a beam 

Liu et al. (2007) 
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1.7). Spherical particles with the different material models were embedded into the 

homogeneous material model (mortar) to create “model concrete”. Also, random 

material models distributed over the lattice domain were simulated for comparison. 

It should be pointed out that tensile fracture energy was not a parameter in that 

model, and even though it was considered at the local level later, the model could 

not capture the global tensile fracture energy value for direct tension simulations 

(Figure 1.7).  

 

Figure 1.7. Crack Pattern for Direct Tension Simulations (Schlangen and Qian, 2009) 

Model concrete Homogeneous 

material (mortar) 

Random Material 
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The nonlinear constitutive models have been employed for truss members in recent 

lattice models (Bažant et al. 1990; Schlangen and van Mier 1992; Jirásek and Bažant 

1995) (Figure 1.8a). The approach of Cusatis et al. (2003) added a confinement-

sensitive shear element in addition to the axial element and explicitly modeled 

aggregates, cement paste and interfacial transition zones separately with different 

material constants. Cusatis et al. (2006) later extended this approach to mixed-mode 

crack propagation in concrete. The developed model accounts for fracture and 

cohesion at the mesoscale. More recently, Cusatis et al. (2011a, b) proposed the 

Lattice Discrete Particle Model (LDPM) which basically integrates the confinement 

shear lattice and discrete particle models to replicate the connection of the coarse 

aggregate particles distributed all over the domain with mortar lattice elements 

(Figure 1.8b,c). Lu and Panagiotou (2013) developed a three-dimensional cyclic 

model for nonplanar reinforced concrete walls in which nonlinear Euler-Bernoulli 

fiber-section beam elements were used to represent steel and concrete in the vertical 

direction, and nonlinear truss elements were used to represent the steel and concrete 

in the horizontal direction and the concrete in the diagonal directions. A similar 

approach was followed by Moharrami et al. (2015) who presented a nonlinear truss 

model for the analysis of shear-dominated reinforced concrete columns subjected to 

cyclic loading. Most lattice models defined at the mesoscale use uniform spatial 

node/element distribution. Yip et al. (2005) developed a methodology that allows 

irregular lattice distribution and applied it to load balancing of prestressed concrete 

beam. Nagai et al. (2014) simulated the failure of anchorage bars using a three-

dimensional lattice model using irregular lattice distribution. Although their model 

was defined at the mesoscale, the full geometry of steel bars was considered in the 

simulations. An application of lattice model to glass fiber-reinforced polymer beams 

was presented by Fascetti et al. (2016), who used a random lattice model to predict 

cracks pattern. It was claimed that random lattice models are less dependent on the 

mesh.  
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Figure 1.8. Nonlinear Lattice Modeling (Bazant et al. 1990) and Lattice Discrete 

Particle Model (Cusatis et al. 2011) 

The recent work by Aydin et al. (2018) combined the horizon concept of PD with a 

classical lattice approach as a mesoscale concrete fracture simulation tool. In that 

study, the continuum was discretized with the overlapping lattices by employing 

simple rules for the force deformation response of the truss elements (Figure 1.9). 

However, the end result is dictated by the complicated connectivity and damage 

sequence of the truss elements. Being a mesoscale approach (i.e. an element size of 

the order of a few millimeters), the force-displacement responses of the concrete 

ingredients are needed to relate the meso- and macro-scale response. It is possible to 

model the mesoscale response of cement-paste, aggregates, and interfacial transition 

zone by using the overlapping lattice model (OLM). Despite its potential of capturing 

the crack propagation better within the cement paste, such an approach requires 

many parameters to be able to describe the geometry and mesoscale ingredients. 

Instead of attempting to link the mesoscale response to the concrete medium, an 

engineering approach was preferred, where the truss elements were assumed to have 

similar force-deformation response curves representing a homogenized continuum. 

(c) LDPM for L11x30 Specimen 

(b) Lattice Discrete Particle 

Model (LDPM) 

(a) Truss Lattice Model (Bazant et al. 1990) 
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In this way, a more practical modeling approach capable of simulating concrete 

fracture with reasonable engineering accuracy was achieved for plain concrete 

members. Thus, homogeneous material properties were assumed to imitate 

heterogeneous material, i.e., concrete, so as to preserve practicality. Tensile 

softening parameters of the concrete lattice elements and bond elements were used 

to simulate plain concrete fracture. Tension calibration of lattice elements was 

conducted by matching the average response within characteristic length. The crack 

opening can be represented with strain-localization in this model similar to smeared 

crack model of FEM. The compression model is assumed as elastic. In short, the 

lattice model of Aydin et al. (2018) with a nonlinear tension and elastic compression 

model is shown to be a practical engineering tool to simulate direct and indirect 

tension failure under bending for concrete. Figure 1.9 shows the topology of the 

overlapping approach created by Aydin et al. (2018). However, the performance of 

this approach in compression remains unclear. Moreover, the validation problems 

were conducted for plain concrete and limited reinforced concrete members with no 

emphasis on reinforced concrete in detail. The approach will be reviewed in detail in 

the next chapter. 

 

Figure 1.9. Lattice Approach Proposed by Aydin et al. (2018) with Different 

Horizons 

In this literature section, the modeling approaches in different scales to describe the 

concrete response, their advantages and disadvantages were discussed. In addition to 

the element types used in these approaches, different constitutive models used in 

(a)  = 1.5d (b)  = 3.01d 
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these elements were also mentioned to describe the heterogeneous nature of concrete. 

The concrete material models in compression emphasizing the relation with the 

tensile response are discussed in the next section. 

1.2.2.3 Concrete Material Models in Compression 

All these explained models in different scales were used by many researchers to 

define complex response of concrete in compression, as explained based on 

experimental observation before. According to Iskander and Shrive (2018), the 

concrete compression models can be categorized into three groups: 1- Energy based 

fracture models (Kaplan, 1961; Glucklich, 1963; Hsu et al., 1963; Kendall, 1978; 

Sih, 1974; Wang and Shrive, 1995), 2- Stress based fracture models (Griffith, 1924; 

Lajtai, 1971; Dzik and Lajtai, 1996), 3- phenomenological compressive behavior 

models (Hognestad, 1951; Mirza and Hsu, 1969; Popovics, 1973; Collins and 

Mitchell, 1991). The third approach is the most popular choice for modeling concrete 

in compression for macro-scale engineering simulations due to its practicality. 

Reinforced concrete design guidelines (for example TEC, 2019; Eurocode 2, 2002) 

provide simple empirical relations between the tensile and compressive strengths of 

concrete. Hence, it is well-accepted that compressive failure is merely related to 

tension failure. However, this phenomenon has not been simulated successfully as 

few researchers attempted to simulate the compressive strength by using tension-

only mesoscale material models (Schlangen and Qian, 2009; Qian, 2012, Roth et al., 

2015; Wang and Waisman, 2016; Birck et al., 2016). For example, the beam 

elements in the network conducted by Schlangen and Qian (2009) have brittle 

behavior, and when the only tensile stress exceeds its strength, the elements break. 

However, a compressive failure for the interface elements was defined to obtain 

reasonable simulation results in compression for fiber concrete. The compressive 

capacity of the specimen would be considered an elemental strength in the later 

development of their model. Thus, it can be concluded that clear success has not been 

achieved in this regard.  
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1.2.3 Masonry Infilled Walls 

Masonry walls are primary components of many historical buildings while the 

combination of walls made of masonry components such as aerated autoclaved 

concrete (AAC) is used worldwide to separate spaces in reinforced concrete frames 

in many structures and these components have similar mechanical characteristic 

behavior with cementitious materials. Infill walls are considered as non-structural 

elements in structural design; however, they improve the rigidity and lateral strength 

of the structural system. Past earthquakes (Van, Kocaeli, Bingol, Messina, 

Carlentini, L’Aquila, Wenchuan, Abruzzo, Northridge, Emilia Earthquakes) have 

shown infill walls may sustain considerable damage under moderate to severe 

ground motions. Nevertheless, the collapse of infill walls may create asymmetry in 

structures, might trigger heavy-damage and may cause loss of life. Significant 

degradation in structures’ performance has been noted due to the infill wall damage 

(Penna et al. 2014; Braga et al. 2011; Vicente et al. 2012; Ricci et al. 2011; Binici et 

al. 2012). Hence, the performance limit states of infill walls should be predicted 

accurately. 

Infill walls are generally not included in the analysis and design of frame buildings. 

This practical approach ignores the interaction between the infill walls and the frame. 

The observed damage on the infill walls after the earthquakes indicates that the 

energy absorption and the contribution of the infill walls to the lateral load-carrying 

capacity can be significant. Understanding the frame-infill interaction has been the 

subject of numerous studies since the 1950s (Polyakov 1950), including 

experimental studies (Klingner and Bertero 1976; Smith 1966; Asteris et al. 2011; 

Alwashali 2019) and analytical investigations (Asteris 2003; Papia et al. 2003; 

Cavaleri et al. 2009; Mohebkhah and Tasnimi 2012). However, the interaction could 

not be fully understood due to the dearth of detailed simulations and the presence of 

several parameters, such as the mechanical properties of mortar, the wall geometry, 

and the space between the frame and infill affecting the prediction of the response 
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(Tarque et al. 2015). Hence, explaining the force flow over the infill walls is 

necessary in order to define the effect of walls on global response.  

1.2.4 Numerical Modeling for Infill Walls 

Macroscale, mesoscale and microscale models were also used to model the infill wall 

behavior. The generally used macroscale model is placing one or more struts for the 

walls (Polyakov 1960; Chrysostomou et al. 2002; El-Dakhakhni et al. 2003; Galli 

2006; Amato et al. 2008; Kadysiewski and Mosalam 2009; FEMA 356 2000) (Figure 

1.10a). The contact regions between the frames and the infill walls are assumed 

stationary at the corners in most of these models. The key disadvantage of these 

models is the difficulty of estimating strut properties. The existing strut models in 

American (MSJC 2011) and Canadian (CCMPA 2009) codes cannot accurately 

predict the rigidity, strength, and ductility properties of infill walls, as shown by 

Turgay et al. (2014). Furthermore, strut behavior becomes unpredictable when 

openings in the wall. The strut-based macro models do not provide information on 

the local behavior, interface opening and cracking.  

In order to overcome these deficiencies, finite element models (FEM) were 

employed by many researchers in micro and mesoscales (Mehrabi and Shing 1997; 

Mosalam et al. 1997; Sutcliffe et al. 2001; Asteris et al. 2013; Milanesi et al. 2018; 

Fenerci et al. 2016) (Figure 1.10b). Two different finite element approaches were 

employed, in which the wall units (brick, autoclaved aerated concrete (AAC) and 

mortar) were either modeled separately (microscale) or homogenized (mesoscale) 

(Lotfi and Shing 1994; Giambanco and Di Gati 1997; Gambarotta and Lagomarsino 

1997; Oliveira Lourenço 2004; Alfano and Sacco 2006; Fouchal et al. 2009; Pari et 

al. 2021). While they can provide a more realistic response estimation for crack 

propagation and damage patterns, the pre- and post- processing difficulties due to 

the interface elements between individual bricks, computational inefficiencies and 

limited applications in practice are major drawbacks (UDEC 2004). Calibration of 

the mesoscale constitutive models involving a combination of different elements and 
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description of the interaction region are significant challenges for these classes of 

models (Negro and Colombo 1997). Also, the finite element methods are incapable 

of representing the response of different parts together after loading (Mohebkhah et 

al. 2008). Although the interface elements are used to handle a few discontinuities 

in the FEM at micro-scale, the model is not able to model a large number of them.  

Discrete element method (DEM) is another micro-scale approach to modeling the 

infill walls (Figure 1.10c). The model, firstly proposed by Cundall (1971) as UDEC 

(Universal Distinct Element Code) software, was used in rock mechanics 

(Chrysostomou and Asteris 2012) and masonry structures (Barbosa and Ghaboussi 

1990; Dialer 1992; Lemos 2007; Sarhosis and Shen 2014). In this method, the blocks 

are connected with mortars and interfaces. Thus, DEM has a similar conceptual 

structure to the micro-scale FEM concept with small differences. However, the 

model is capable of changing contact size and contact mapping, unlike FEM. Hence, 

larger number of discontinuities can be modeled with the mortar and interface 

elements. 

Particle-based and lattice simulations were proposed in the last few decades to 

overcome the disadvantages of FEM to estimate the fracturing and damage for 

concrete and RC structures in micro and mesoscale, as mentioned. The application 

of LDPM developed by Cusatis and co-workers (Cusatis et al. 2011a,b) for concrete 

and RC members was explained before. They also utilized the model to simulate 

mortar (Pathirage et al. 2019; Han et al. 2021), masonry and masonry interaction 

with mortar (Angiolilli et al. 2020; 2021; Mercuri et al. 2020) with a good accuracy 

in order to simulate multi-materials and multi-material domains (i.e., masonry) as a 

particle-based model. On the other hand, the application of lattice models for multi-

material domains is very limited (Rizvi et al. 2018). Modeling the anisotropic 

behavior of masonry units and multi-material media with a lattice network is the key 

difficulty in these models. 
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Figure 1.10. Numerical Modeling for Masonry Elements 

The aforementioned models are generally used for brick-type walls by introducing 

anisotropic or isotropic behavior since such walls are widely used. On the other hand, 

AAC is used increasingly for both structural and nonstructural purposes due to the 

insulation, fire resistance and its light weight. The glue used to contact the AAC units 

is generally stronger than the AAC blocks so the AAC masonry walls exhibit strong 

continuity. None of the lattice models mentioned above was utilized for the 

application of AAC masonry and infilled walls in the literature, considering the 

inherent strong continuity due to the strength of glue. More experimental studies and 

numerical simulations should be implemented to exhibit the characteristic properties 

of the materials used in AAC walls for such a new infill material due to limited 

experimental and numerical results.  

(a) Macro Models (STM) (c) Discrete Element Model 

(b) Different Models for FEM 
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1.2.5 Nonlinear Solution Schemes 

Prediction of limit states due to cracking requires complex nonlinear analysis. The 

solution is required for static and dynamic loads. Newton-Raphson and arc length 

methods in addition to many different types of static solutions are commonly used 

to aid with the convergence problems for quasi-brittle materials in static loading. On 

the other hand, convergence problems can be overcome by using techniques like 

sequentially linear analysis (SLA) (Rots 2001) always yielding positive stiffness. 

This technique (Rots 2001, Rots et al. 2006, 2008) was employed with the PD 

methodology to simulate plain concrete fracture by Aydin et al. (2018). As the 

technique uses the ratio of the strength and governing force to find the multiplier of 

the applied external unit load, it is not able to simulate non-proportional loading, the 

general case of loading in structures, efficiently (Pari et al. 2020). Almost every 

loading patterns are non-proportional in real life. The most famous one is the dead 

load which is obtained for every structure. Extensive work was proposed by many 

researchers to handle this restriction (Dejong et al. 2008; Yu et al. 2016; Alfaiate et 

al. 2018), however, it is still an open issue. 

For prescribing dynamic loads’ equilibrium, explicit and implicit time integration 

can be used. With a very slow loading rate to vanish inertial forces, these techniques 

can be used to solve the nonlinearity in static load cases. The performance of these 

two time integration methodologies is different for specific problems, with different 

computational costs and stability issues. Although the critical time step limitation is 

the most important disadvantage of the explicit time integration technique, it 

generally provides a fast solution. For many different cases, explicit solution scheme 

was recommended for the solution of nonlinear material properties for quasi-brittle 

materials due to its advantage of no instep iterations (Yang 2019). 
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1.2.6 Motivation of Research 

The current state of the art has a large number of sophisticated models (such as finite 

element modeling with smeared or discrete cracking, particle-based and lattice 

approaches with aggregate-cement paste-ITZ modeling or wall units, mortar, 

interface modeling) and simpler design oriented approaches (i.e strut and tie models) 

to replicate the behavior of concrete and masonry wall members and structures as 

explained above. Lattice models are well suited for simulating nonlinearity; 

however, their use was very limited in the modeling of fracture of plain concrete and 

infill structures. In this sense, a simple modeling technique based on latttice model, 

that can exhibit good engineering accuracy with minimum number of input 

parameters, is still needed.  

In addition, while the inter-story drift limits are given in the codes to examine 

performance limit states of infill walls, the damage limit states are not detailed for 

both fragile and deformable components. Thus, estimating damage limit state of 

infill walls at different deformation levels is essential. In this context, the lattice 

model should be improved to simulate such responses.  

In the light of information from many research studies, the outcomes demonstrate 

that the main focus to represent the damage for quasi-brittle materials is shifting to 

particle and lattice-based models. The lattice model proposed by Aydin et al. (2018) 

is an effective and efficient approach, with a good prediction of the actual crack 

patterns and response for plain concrete with tension-only modeling strategy. The 

model has not been tested for reinforced concrete members, structures, masonry and 

masonry-infilled wall applications; the performance of the model in compression is 

limited. As the solution technique is based on SLA method, it cannot be used for 

non-proportional loading. Thus, a robust solution methodology should include 

solution of nonlinearity for quasi-brittle materials for the lattice model in this study. 
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1.3 Objective and Scope 

The main goal of this study is to propose an effective but relatively simple 

methodology to simulate non-linear response of RC and AAC-infilled frame 

structures under monotonic loading. The objectives of the study are given as follows:  

 To propose a simple lattice model for simulating nonlinear behavior of 

concrete and AAC masonry walls with calibrated constitutive models 

 To implement novel proportional-integral-derivative (PID) algorithm instead 

of SLA method into explicit time integration methodology 

 To demonstrate the compression failure in lattice approach as local material 

instability induced by splitting due to indirect tensile failure  

 To show compression failure with tension-only behavior for concrete and 

AAC masonry walls 

 To validate the proposed model for prediction of crack propagation and 

response in RC members and structures with different horizon sizes. 

 To validate the robustness of the model by investigating the uncertainties in 

the model 

 To investigate the effect of interaction behavior and wall openings on the 

global response of two AAC infilled frames tests 

 To validate the model for crack propagation and response in AAC-infilled 

frames (bi-material) 

 To study the contact behavior for different aspect ratios of infilled frames as 

a function of lateral deformation 

The two-dimensional (2D) mesoscale truss-based lattice approach to simulate the 

plain concrete, RC, AAC masonry members, and structures and AAC masonry 

infilled frames (bi-material) response by using an explicit time integration analysis 

scheme with proportional-integral-derivative (PID) control tailored for monotonic 

loading excluding any cyclic damage rules is employed.  Explicit time integration 

methodology with novel proportional-integral-derivative (PID) algorithm instead of 

SLA method has not been implemented into the lattice framework by any researcher. 
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One of the important goals of the present research is to explain the concrete and 

masonry compression response as an indirect tension failure by using tension-only 

plasticity with mesh randomization. The length scale and grid dependency of the 

model are investigated numerically. The accuracy of the hypothesis is validated with 

the compression strut and over-reinforced concrete beam experimental results. 

The validation studies on RC structures presented herein include three columns, two 

beams, two walls, and two RC portal frames tested previously by other researchers. 

Upon presenting the results on the comparisons of simulation and test results, a 

parametric study including deterministic sensitivity analysis, loading rate and grid 

rotation effects were conducted in order to present the feasibility of the model for 

RC simulations. It is aimed that the truss-based lattice approach with the extensive 

calibration techniques is introduced to estimate flexural and shear crack propagation, 

crack widths and spacing, unconfined compression failure with tension-only 

modeling, load-deflection response and capacity demands for such members and 

structures as a practical simulation platform. 

The proposed lattice network has a great potential to simulate AAC infilled wall 

structures as well as a practical and easy-to-implement, enabling modelling of the 

strong continuity exhibited by the AAC masonry walls. The lattice models of four 

unreinforced AAC masonry-infilled RC frames was developed. A consistent 

modelling approach employing bi-material idealization in the lattice models for 

AAC and concrete with a special emphasis on the interface between these materials 

was used. Two single-bay and single-story half-scaled AAC-infilled portal frames 

were tested in Middle East Technical University's structural laboratory to investigate 

the effect of interaction behavior and wall openings on the global response by 

comparing the lattice simulation results and to validate the proposed approach along 

with the two additional frames taken from the literature (Binici et al. 2019; Penna 

and Calvi 2006). 

The scope of the study is limited to simulating the monotonic response and load-

deformation characteristics of RC and infill structures by using a lattice model in 
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two-dimensional domain. In this context, the goal was to develop a two-dimensional 

practical modeling tool that can be used by practicing engineers interested in 

obtaining the response of structures under distress.  

The study is organized as follows. After this introductory section, the details of the 

lattice model are explained in Chapter 2. Concrete, RC and bi-material modeling are 

discussed in detail. A demonstration of compression failure as an indirect tensile 

failure and validation of these findings is presented. In Chapter 3, the validation of 

the lattice model for several structural experiments in literature for both RC members 

and structures is presented. In Chapter 4, details and results of two AAC-infilled 

frame tests are shown followed by contact length estimations for different aspect 

ratios compared with the existing analytical formulations. Then, the corresponding 

lattice model is presented. Finally, in chapter 5, conclusions are drawn. 
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CHAPTER 2  

2 MATERIAL MODELING WITH LATTICE NETWORKS 

In this chapter, the lattice approach used in this study is explained in detail along 

with the constitutive model calibrations. The model for tension by using a multilinear 

piecewise softening function is introduced. The perturbation of the mesh to model 

the compressive response with tension-only failure is discussed. The failure 

approach is validated with simple material tests. The model is described in this 

section in terms of its geometric and elastic properties, nonlinear tension and 

compression modeling constitutive models and definition of its parameters utilized 

with calibration, validation studies of compression modeling, bond and 

reinforcement implementation and bi-material behavior and static and dynamic 

loading solution scheme. 

2.1 Lattice Topology and Nodal Interaction 

Nonlocal theories consider the effects of long-range interactions in solid materials. 

Their applications to problems of solid and fracture mechanics have been studied in 

depth by Kröner (1967), Eringen (1992), and Kunin (1982). It is a challenging issue 

to define fracturing for the classical continuum theory which evolves from partial 

differential equations, resulting in singularity at crack surfaces. Instead, constitutive 

relations are typically written in an integral form which can be expanded in a series 

of spatial derivatives of strain accounting for gradients and higher gradients of strain. 

The term ‘nonlocal’ indicates that stress at a point depends on strain as well as 

gradients of strain at the same point. In order to acquire nonlocality for particle and 

lattice-based models, peridynamics theorem proposed an interaction pattern in the 

domain called as horizon concept which allows accounting for the nonlocal effects 

in the medium, i.e., the effect on a point from the immediate surrounding points. A 
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similar concept is employed for the presented lattice model in this study. Each node 

interacts with the points within a predetermined distance called the horizon (𝛿). In 

the two-dimensional lattice model, a structured grid is created with uniformly 

distributed nodes separated by a certain grid size (𝑑) in the two directions (Figure 

2.1). The connected points are those within a circle for a selected horizon distance 

(𝛿) as shown in Figure 2.1. For example, a node located away from the boundaries 

is connected to 8 and 28 nodes for horizon values of 1.5𝑑 and 3.01𝑑, respectively 

for the two-dimensional models. The lattice with a horizon of 1.5𝑑 corresponds to 

the classical lattice geometry of Hrennikoff (1941).  

 

Figure 2.1. Lattice Model for (a) 𝛿 = 1.5𝑑 and (b) 𝛿= 3.01𝑑 

In the model used in this study, unstructured grid distribution was also used to 

perturb the lattice grid by 𝑅 between zero and 𝑅𝑚𝑎𝑥 at a random angle of 𝜃 (Figure 

2.2b) between zero and 360 degrees both with uniform probability distributions in 

order to exhibit compression failure, which is explained in Section 2.5 in detail. The 

perturbation of the mesh is employed only for the 𝛿=1.5𝑑 in this study. 

(a) Horizon (𝛿) = 1.5𝑑 (b) Horizon (𝛿) = 3.01𝑑 
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Figure 2.2. Topology of Lattice Model for (a) Boundary Conditions and (b) Grid 

Types  

The interaction type of the nodes in the horizon region is the main concern in 

peridynamics such that bond-based peridynamics are related to node-to-node 

interaction instead of volume-to-volume as opposed to state-based, as mentioned 

before. In bond-based peridynamics, the force between two nodes is acting axially, 

and nodal equilibrium is considered. In fact, classical two-node truss elements are 

employed in the lattice model between the nodes to treat the interaction forces as a 

classical structural analysis similar to the bond-based peridynamics of Macek and 

Silling (2007). Each point is initially connected to all points within its horizon via 

truss elements which can only transfer axial load. In other words, only translational 

degrees of freedom at the nodes were utilized since the presented lattice model is 

composed of a truss network, which means the elements in the model are only able 

to transfer load effect via axial deformation. The shear transmission and rotation in 

a region is available for a lattice unit rather than a single element. While the diagonal 

elements provide the shear resistance, rotation is represented within the mesoscale 

translational motions. The shear and rotational degrees of freedoms are mimicked 

with only translational motions thanks to the topology of the lattice unit. In short, 

Structured Grid 

Unstructured Grid 

(a) Boundary Conditions 

NR 

LR 

(b) Grid Types 
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only translational motion is utilized for each element while shear transmission and 

rotation in a region are available for a lattice unit rather than element-wise. At the 

boundaries, the lattice does not have the same mesh density as the inside region when 

the horizon is greater than 1.5𝑑. However, one should not expect the same stiffness 

at the boundaries due to local weaknesses. Each node with a lumped mass is 

connected to the neighboring nodes within its horizon via truss elements. 

2.2 Elastic Properties 

In order to obtain the elastic properties of the lattice model, the total elastic energy 

of the system subjected to a uniform strain field is equated to the total elastic energy 

of the lattice model and the modulus of elasticity times the cross-sectional area of 

truss elements (𝐸𝑡𝐴𝑡) is determined. Further detail was explained in Aydin et al. 

(2018). For different horizons, 𝐸𝑡𝐴𝑡  values can be obtained in closed form. For this 

purpose, first strain fields in both regions (i.e. 휀𝑥  and 휀𝑦) are introduced. Following 

Hooke’s Law and assuming same stresses in both directions strains can be found as: 

휀𝑥 = 휀𝑦 = 휀 = 𝜎 (
1 − 𝜈

𝐸𝑡
) (2. 1) 

Then the energy stored in the region can be written as: 

∫
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) 𝑤𝐴 (2. 2) 

where 𝑤 is thickness and 𝐴 is the volume per unit thickness area with 𝑤𝐴 being the 

volume. This total elastic energy must equal to the total strain energy stored by the 

considered lattice elements as given below: 
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Where 𝑁 is axial force in the element, 𝐿 is the length of the element and 𝑛 is the 

number of element in the region. Equating Eqs. (2.2) and (2.3), one may find the 

elastic properties of the lattice elements. 

𝐸𝑡𝐴𝑡 =
4𝐸𝑡𝐴𝑤

(1 − 𝜈) ∑ 𝐿𝑖
𝑛
𝑖=1

= 𝐶 𝐸𝑡𝑑𝑤 (2. 4) 

It is noted that 𝜈 is 1/3 for 2D lattice mesh (Hrennikoff 1941) and 𝐴 can be taken as 

𝑑2. The difference in 𝐸𝑡𝐴𝑡 values for lattice models with different horizon values 

between the horizon sizes results from the summation term in Eq. (2.4). For a horizon 

value of 3.01𝑑, 28 elements are connected at a node with the lengths of 𝑑, 𝑑√2, 2𝑑, 

𝑑√8, 3𝑑 (4 elements each) and 8 elements with the length of 𝑑√5. For a horizon 

value of 1.5𝑑, a node has 8 elements consisting of 4 elements with the length of 𝑑 

and 𝑑√2. By using these lengths, the 𝐶 values are observed as 0.102 and 0.621 for 

3.01𝑑 and 1.5𝑑 horizons, respectively. Thus, for horizon values of 3.01𝑑 and 1.5𝑑, 

it can be shown that 𝐸𝑡𝐴𝑡 can be obtained in closed form as 0.102𝐸𝑡𝑑𝑤 and 

0.621𝐸𝑡𝑑𝑤, respectively. In addition, it should be clarified that the same elasticity 

modulus for tension and compression was used to preserve isotropy. 

The Poisson’s Ratio values were computed for two different horizons (1.5𝛿 and 

3.01𝛿) of the square grid and hexagonal grid (honeycomb) in order to investigate the 

change of Poisson’s Ratio based on the axis of rotation (Figure 2.3). It can be seen 

that the rectangular grid with a horizon of 1.5𝑑 does not produce a constant Poisson’s 

Ratio upon rotation of the deformation axis. The Poisson’s ratio of a truss-based 

square lattice mesh with 1.5𝑑 horizon changes between 0.26 and 0.42 depending on 

the rotation of the loading axis. The axis of rotation versus the computed Poisson’s 

Ratio plot is shown in Figure 2.3. It should be noted that despite the possible change 

in the Poisson’s ratio, the change in shear modulus is only in the order of 10%.  Upon 

increasing the horizon to 3.01𝑑, the Poisson’s ratio varies between 0.31 and 0.35 

and it can be considered as about 0.33 irrespective of the direction. Choosing the 

horizon value as 1.5𝑑 significantly decreases the number of truss elements and 

speeds up the computations at the expense of creating directional dependency. As 
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shown by Gerstle (2015), the truss-based hexagonal lattice model performs as 

expected yielding a Poisson’s Ratio of 0.33 irrespective of axis rotation (Figure 2.3). 

In addition, varying Poisson’s ratio can be obtained, as shown by Rahman (2012) 

and Aziz (2014), and Gerstle (2015), by using the beam elements. However, using 

beam elements results in much more computational effort in addition to the other 

disadvantages. The reason for selecting only axial interaction in this study instead of 

employing rotational behavior in mesoscale with square mesh is discussed in detail 

in section 2.3. 

 

Figure 2.3. Poisson’s Ratio Variations 

2.3 Justification of the Approach 

A square truss network with different horizon distances were employed throughout 

the study because of the following reasons: i- A square grid truss network is easily 

applied from the point of view of mesh generation, programming, and runtime. ii- 

The increasing of the horizon distance allows approaching the theoretical Poisson’s 

Ratio of 0.33 for the lattice models. iii- There is vast amount of experience in 

modeling reinforced concrete members with strut and tie models with a rectangular 

truss network at macro scale (Schlaich et al. 1987; Liang et al. 2000; Scott et al. 

2012). Hence engineers are used to defining load transfer with truss elements. iv- 

Horizontal 

Angle 
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Upon using a rectangular lattice grid, reinforcement definition is simplified, since 

the reinforcement is usually placed vertically or horizontally in RC simulations. v- 

Lattice mesh structures with number of edges more than four (such as hexagonal 

mesh) would contain unequal number of horizontal and vertical lattice elements that 

may introduce direction bias in the nonlinear compression regime. vi- With a square 

grid, mesh boundary zigzags can be avoided naturally and it allows modeling of the 

straight boundaries with ease.  

It should be clarified that although the mesh density decreases at the boundaries 

when the horizon size is greater than 1.5𝑑, thanks to the square grid and availability 

of adjusting the horizon distance, this effect could be reduced and consequently, it 

does not have any unexpected deformation effects at the boundaries. 

Estimating the linear elastic behavior accurately in an objective manner is quite 

important from a mechanics point of view and such an estimation plays a crucial role 

in predicting the response of structures under serviceability conditions. However, it 

is of secondary importance while estimating the near collapse state (i.e., strength and 

deformation capacity) of structural elements in the nonlinear regime. The Poisson’s 

ratio of concrete, although initially starts from about 0.2, rapidly changes upon 

cracking and damage accumulation. The variable nature of Poisson’s ratio in the 

nonlinear response beyond about 30% of its compressive strength was shown 

experimentally by Kupfer et al. (1969) and Mirmiran and Shahawy (1997), among 

others. In this regard, a number of variable Possion’s ratio models were proposed in 

the literature (Blacklock and Richard 1969; Binici 2005; Lim and Ozbakkaloglu 

2015). Based on these studies, although important (Rahman 2012), adherence elastic 

Poisson’s ratio is not treated as a prerequisite to simulate concrete fracture and 

damage state at high deformation demands in this study. The following arguments 

could be put forward to justify the simple lattice approach of this thesis; 

i- With this perspective, the proposed lattice approach can be placed in the class of 

simple models (i.e. strut and tie, truss, bond-based peridynamics, spring network 

models) that are widely used in structural engineering. These models have seen wide 

acceptance in the engineering community and they cannot match the Poisson’s Ratio.  
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ii- Increasing the model complexity to match the Poisson’s Ratio may hinder the 

wide spread use of the model by the engineers. This argument is supported by the 

following statements from Cusatis (2011) and Nikravesh and Gerstle (2018): 

“The full Poisson’s ratio range can be obtained by introducing the 

volumetric/deviatoric decomposition of the normal component. The same approach 

could be used for Lattice Discrete Particle Model (LDPM)-type formulation; 

however in this way, the LDPM capability of correctly simulating splitting failure 

under compression (this being one of the unique features of LDPM) would be 

completely lost.” (Cusatis 2011) 

“While we recognize that the State-Based Peridynamic Lattice Model (SPLM) is not 

absolutely objective in the sense of tensor mathematics and continuum mechanics, 

the SPLM approach “exploits an engineer’s tolerance for imprecision” (to paraphrase 

a quote by Zadeh [Zadeh (1973)]. It is reasonably objective, is physically realistic, 

and is more computationally efficient than other computational models presented in 

the literature of which we are aware” (Nikravesh and Gerstle 2018). 

It is well known that simpler strut and tie models, which have common properties 

with the presented lattice model, are in design codes, however state-based 

peridynamic models are still not used by practicing structural engineers.  

iii- The proposed model, although not matching the Poisson’s Ratio in the linear 

elastic range, is robust and insensitive to modeling in the nonlinear range as shown 

in Section 3.1.4.1.  

iv- Despite significant change in Poisson’s Ratio, the change in shear modulus is 

only in the order of 10%, as mentioned. 

In short, the proposed model is not claimed to be perfectly valid within the range of 

linear elastic behavior until collapse; but rather a simple engineering approach that 

can approximate the response with reasonable accuracy is devised. In addition, 

simulating the nonlinear response of reinforced concrete elements with the lattice 

approach, which will be shown to be one of the key topic of the paper, is insensitive 

to estimating the Poisson’s Ratio with a high degree of accuracy as shown by the 

case studies in the study. 
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Each mathematical model should be evaluated with its accuracy and complexity. The 

lattice model developed in this study is simple with few parameters, not capable of 

perfectly matching the Poisson’s Ratio perfectly however it can simulate the 

nonlinear response with a reasonable degree of accuracy. On the other hand, the 

state-based approach is more complicated: it can match the Poisson’s Ratio and 

depending on the choice of numerous parameters it is capable of simulating the 

nonlinear response with the appropriate choice of many non-linear response 

parameters (i.e., shear, tension, compression and combined loadings). The 

peridynamic literature has constantly been growing in the last decade and a major 

part of it is still employing bond-based models, as mentioned before. It can be stated 

that the application area of bond-based models is not likely to disappear in the near 

future as its applications for polymers, glass and other brittle materials grow.  

2.4 Tension Modeling 

The force in the truss elements is assumed to behave linear elastically until the 

critical strain 휀𝑐𝑟  is reached. The complicated connectivity of the lattice network 

along with the computed damage sequence enables the simulation of crack 

propagation with few parameters. As concrete exhibits tension softening, beyond a 

critical strain, the element can transfer further tension by a piecewise linear softening 

function as shown in Figure 2.4. Although an exponential softening function seems 

to be more practical, a trilinear force-displacement function was preferred owing to 

the flexibility offered by it while matching the “exact” force-displacement 

relationship in tension by adjusting the tension softening parameters. Detailed 

comparisons of the lattice model with experimental data were presented in and earlier 

publication based on the master thesis of Aydin (2018). The unloading rules are 

origin oriented for the tension model as shown in Figure 2.4. The stress-displacement 

model of Hordijk (Cornelissen et al. 1986) is employed as the “representative” test 

result for the softening part. The parameters, 𝑎1, 𝑎2 and 𝑎3 of the uniaxial tensile 

behavior are free parameters and found such that lattice simulation matches the 
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uniaxial stress-average displacement response of the Hordijk Model. The Hordijk’s 

Model directly provides the stress (𝜎(𝛿)) - crack opening displacement (𝛿) 

relationship and the tensile fracture energy as a function of maximum crack opening 

displacement (𝛿𝑚𝑎𝑥) and tensile strength (𝑓𝑡) with the equations given below: 

𝜎(𝛿) = 𝑓𝑡 (1 + 3 (
𝛿

𝛿𝑚𝑎𝑥
)

3

exp (−6.93 (
𝛿

𝛿𝑚𝑎𝑥
))) ,  𝛿𝑚𝑎𝑥 = 5.136𝐺𝑓/𝑓𝑡          (2. 5) 

While using the Hordijk Model, the tensile fracture energy and tensile strength were 

used to compute the ultimate crack opening displacement. In order to use the Hordijk 

Model as a benchmark result for the average stress-displacement relation measured 

over a gauge length (𝑙𝑜) with given tensile strength and tensile fracture energy and 

tensile strength, first 𝛿𝑚𝑎𝑥 was computed from the above equation from the tensile 

fracture energy 𝐺𝑓, and tensile strength 𝑓𝑡  (Aydin et al. 2018). Afterward, the 

average displacement was computed by adding the 𝛿 to the elastic displacement 

occurring over 𝑙𝑜 i.e. 𝛿𝑒 =
𝜎(𝛿)

𝐸
𝑙𝑜, which means the crack opening displacement was 

added to the elastic displacement occurring over the selected gauge length to obtain 

the benchmark stress-average displacement curve. In this way, a general solution for 

any gauge length could be obtained. This inverse method of finding the model 

parameters was preferred over the approach of assigning the Hordijk model directly 

to the lattice elements. Because the computed crack could be spanning more than 

one lattice element at different orientations and the dissipated energy is not known 

as a priori. The flowchart of the concrete tensile constitutive model calibration, a sort 

of inverse analysis, is shown in Figure 2.5. In the process of softening parameter 

calibration, the tension test of a specimen is simulated and the parameters are 

adjusted until the energy error is reduced below a threshold value. This calibration 

procedure for concrete lattice elements was conducted prior to all simulations 

described in this study. Then, simulations of the test specimens as can be seen in 

validation sections were conducted as blind predictions with the calibrated 

parameters rather than post-dictation.  
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The energy under the stress-strain diagram is regularized by using the element size 

and the fracture energy concept (Bažant and Oh 1983). Isotropic behavior on tensile 

fracture energy was obtained by utilizing constitutive models of elements based on 

their lengths. Thus, the crack propagation in any direction can be obtained 

objectively. The softening parameters are based on the displacement instead of strain 

values so that the necessary energy to open a unit area of crack of all elements is kept 

constant. This means that the area under the stress displacement curve should be the 

same for all elements over the domain. This tensile fracture energy regularization 

approximately enables the model mesh independent and robust as can be seen at 

validation problems. 

AAC masonry walls indicate uniform behavior because of their strong glue so that 

strong continuity is obtained. Thus, an isotropic response can be simulated in the 

same manner as the concrete element. In this study, AAC stress-strain behavior is 

similar to concrete elements obviously employing its own material properties. 

Detailed discussion is in section 2.8. 

 

Figure 2.4. Assumed Material Behavior Force-Strain Diagram for Concrete 

Elements 
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Figure 2.5. Workflow for Constitutive Model Calibration for Only Tension (Test 

Specimen Drawn Using Data from Cornelissen et al. 1986)  

2.5 Compression Modeling 

Concrete compressive strength is a key material parameter for the design and 

analysis of reinforced concrete structures. Past research and current practice usually 

consider the modeling of concrete behavior in uniaxial compression empirically 

based on test results. In this section, a lattice modeling approach with only nonlinear 

tension-softening and linear elastic compression behavior was developed to 

demonstrate that the compressive failure (strength) is merely an indirect tensile 

failure followed by material instability. Perturbation of the grid distribution is 
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described to overcome compressive locking problem of structured grid topology. 

Finally, the validity of such a modeling was tested in the comparisons of simulations 

with concrete and AAC masonry test results. Uniaxial compression simulations were 

performed to investigate the relationship between tensile and compressive strengths. 

2.5.1 Compression Response 

It is very challenging issue to understand the reason of nonlinearity in the 

compression of quasi-brittle material such as concrete. Nonlinearity is associated 

with fracturing behavior, rather than compressive crushing (Schlangen and van Mier 

1992). This fracturing was explained in different aspects by many researchers so that 

splitting cracks and cover spalling due to compression can be considered as a result 

of instability of local area (Kendall 1978; Bažant et al. 1993; Bažant and Xiang 

1997). The focus of the current research is not only the fact that compressive strength 

is merely an indirect tensile failure followed by material instability, but also this 

phenomenon was simulated by using only nonlinear tensile modeling while the 

compressive response is modeled as a linear elastic material. There exist no defined 

compressive constitutive model of elements but linear, as mentioned. Although there 

are many studies stating this fact, only a few numerical simulation studies were able 

to simulate compression failure without using a phenomenological model for the 

compression response.  

It is important to understand the regions of the uniaxial load-deflection curve of 

concrete in compression (Figure 2.6a). Linear elastic response up to 30-40% of 𝑓𝑐, 

where stiffness does not change, implies that there exists no cracks or very micro-

cracks formed at the weakest parts such as ITZ. Elastic rigidity begins to change 

when the micro-cracks start to occur. At the beginning of the nonlinearity of the 

stress-strain relationship, since the number and width of micro cracks are few and 

small, a stable cracked system exists. After cracks are observed in the matrix and the 

micro-cracks join with each other to form macro cracks, and the specimen becomes 

rather unstable. Failure is obtained due to rapid propagation of the cracks in the 
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matrix and transition zones, rapid increase in the strain and unstable crack system. 

While the splitting cracking is observed with increasing uniaxial compressive 

loading in the first stage, the major cracks are obtained at the end.  

The failure in compression is usually named as crushing at the macro level but it is 

actually a splitting induced failure mode in the micro-scale Figure 2.6c,d. Vertical 

cracks resulting from splitting motion are obtained due to radial stresses in uniaxial 

compression response. Thus, the compression capacity is connected with the loss of 

the stability. Also, the softening can be attributed to the lateral instability of the 

specimen. This complex behavior can be related to the tensile response indirectly. 

The cracking response in uniaxial compression tests is highly affected with end zone 

conditions. While the vertical cracks are observed if the end zone effect is eliminated, 

the lateral load due to restrained condition at the ends causes the diagonal cracks. 

Also, the end condition influences the load-deflection response. Van Vliet and van 

Mier (1996) stated that the compression response especially softening behavior in 

compression is directly related with the boundary condition of the specimen. The 

more softened response is observed for the higher restrained conditions. Thus, the 

softening in compression is obtained as resulting from the restrained condition in 

concrete Figure 2.6b. This is the close idea with that the confinement of concrete 

increase the softening. Even the compressive strength of the same concrete batch is 

influenced with the boundary conditions. The representative cracking pattern in two 

extreme boundary conditions are shown in Figure 2.6c, and d. 

The area under the stress-displacement curve is an indicator of the energy required 

for the final major cracks. It is usually called as “compressive fracture energy” 

similar to the concept with the tensile fracture energy. However, while the required 

energy to completely open the cracks does not change with the lateral restriction in 

tension, the compressive fracture energy can change with end conditions. It is a 

difficult question, in which boundary condition should be considered to determine 

the compressive fracture energy. This is the same question that compressive fracture 

energy is determined by diagonal cracks or splitting cracks.  
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Figure 2.6. Compression Response for Two Boundary Conditions (van Vliet and van 

Mier 1996) 

In the light of this information, the compression behavior is explained with only 

tension response in this study. Such a vision was previously stated by Bazant et al. 

(1993) and Kendall (1978). After calibrated tensile fracture energy of the lattice 

network, the cracking and failure in compression is an outcome of the indirect 

tension failure and loss of the local and global stability of the lattice system.  

2.5.2 Methodology 

The lattice approach presented herein does not use any nonlinear constitutive model 

in compression (Figure 2.7a). It is postulated that lattice elements are capable of 

(a) Compression Response (b) Two boundary 

(c) High Friction (d) Low Friction 
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modeling tension and compression as an indirect tensile failure due to the local 

instability of lattice elements. This chapter explains the direct relationship between 

tensile and compressive strengths for lattice model for only 1.5𝑑 horizon sizes. An 

explicit time integration method for all simulations mentioned for compression 

validation studies was used and explained in section 2.9 in detail. 

 

Figure 2.7. Uniaxial Material Behavior of Lattice Member in Compression 

The uniaxial compression response of the lattice model with structured grid and 

linear compressive response was studied by simulating the compression testing of a 

100 mm x 100 mm x 100 mm cube specimen (Figure 2.2). The compressive strength 

(𝑓𝑐) and the tensile fracture energy (𝐺𝑓) of the specimen were chosen as 20 MPa and 

50 N/m, respectively. The tensile strength (𝑓𝑡) and modulus of elasticity (𝐸𝑐) were 

calculated from the equations given in ACI 318-19 (2019) by using the uniaxial 

compressive strength. The tension test was simulated and the softening parameters 

of the tension model were calibrated by matching the numerical tension test result to 

the Hordijk model (Cornelisssen et al. 1986) as described in the previous section. 

Uniaxial compression simulations were conducted with a regular grid size of 10 mm. 

The effect of boundary conditions on a uniaxial test was studied by van Mier (1997) 

following that two different boundary conditions: i-laterally restrained (LR) by using 

pin supports at the bottom nodes, and roller support at the top nodes, ii- no lateral 

restraint (NR) by placing only roller supports at bottom nodes and leaving the top 

nodes free (Figure 2.2.a). Uniform displacement was imposed on the uppermost 

𝑭 

𝜺 

𝑭 

𝜺 
-𝑎휀𝑐𝑜 

-𝑎𝐹𝑐 

(a) Linear Model (b) Reduced Stiffness Model (RSM) 



 

 

45 

nodes at a sufficiently slow speed to simulate a quasi-static test with the dynamic 

explicit integration solution scheme. The simulation results are presented in Figure 

2.8. For the specimen with NR boundary conditions, the first splitting cracks (i.e. 

tensile strains in the softening region) were observed in the horizontal elements 

resulting in a stiffness reduction of around 3.5 MPa. After this point, the vertical 

elements transferred the forces from the top to the base. With increasing load, the 

splitting cracks completely opened in the horizontal elements. The analysis was 

conducted until a compressive stress of 45 MPa and no strength decrease was 

observed, since the vertical lattice elements could carry axial forces due to their 

linear elastic compressive behavior. 

 

Figure 2.8. Compression Test Results of a Cube Specimen with Dimensions of 100 

mm for Uniform Mesh 

For the LR boundary condition, cracking was observed along the two diagonals due 

to the lateral restraint along the boundaries. Although the vertical lattice elements 

carried the axial forces, instability occurred due to the shear force imposed along the 

crack directions resulting in a compressive strength of 43 MPa, which was about two 

times the compressive strength of the selected concrete grade. These results show 

that the end conditions significantly affect the compressive strength (Choi et al., 

1996) simulations, and uniform grid lattice simulations are incapable of simulating 

the compression response.  

(b) Crack Pattern (a) Stress-Displacement Curve 
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The compression test conducted by Kupfer (1969) on a rectangular specimen was 

simulated in order to discuss this problem of vertical locking, as shown in Figure 

2.9a. The specimen size was 20 x 20 x 5 cm. An initial crookedness was assigned to 

the vertical truss elements in the compression test specimen to initiate instability. 

Initial crookedness with the value of %7 (7 mm in the middle) was placed at the mid-

vertical line, as can be seen in the Figure 2.9b. The grid size was taken as 10 mm. 

The top boundary moved downward at a velocity of 0.001 m/s (this velocity was 

found to be sufficiently small so that computational results were independent of 

inertial effects). Two different boundary condition sets were used: no friction (shown 

as ‘no restrain’ in the figure) and perfect contact (shown as ‘restrain’ in the figure). 

𝐸𝑡 and 𝑓𝑡 were taken as 31870 MPa and 2.78 MPa, respectively. By using the 

maximum aggregate size and the compressive strength which were reported as 15 

mm and 30 MPa, respectively, 𝐺𝑓 was found as 75 N/m. Then, the corresponding 

softening parameters were calibrated using the methodology presented in the 

previous section. Displacement was measured from the middle point of the top of 

the specimen. The amplification factor for the displacements is shown in the same 

figure. The results presented below show that the lattice modeling approach can 

provide a reasonable approximation of the average stress-strain curve in compression 

by using an only tension modeling approach for the lattice elements Figure 2.9c-e. 

However, if the uniform mesh was used, compressive strength could not be 

determined due to the elastic response. Although this result can be estimated as the 

evidence of that the compression capacity can be handled with a random mesh 

model, assigning the crookedness in the loading axis is not a practical solution. 

This problem of vertical locking can be circumvented by inducing grid 

heterogeneity, which has been done by using Voronin diagrams or Fuller curve based 

mesh generations to incorporate aggregate distributions (Bolander and Sukumar, 

2005; van Mier et al., 2002; Wriggers and Moftah, 2006). Since the model herein is 

a homogenous media model (i.e. the differentiation between paste and aggregate is 

not made during mesh generation for the purposes of practicality), it was preferred 

to perturb the lattice grid by 𝑅 at a random angle of 𝜃 (Figure 2.2.b) as a practical 
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method. 𝑅𝑚𝑎𝑥 was selected to be 0.6 mm and 0.75 mm for the NR and LR boundary 

conditions for cube specimen, respectively. A detailed discussion on how to select 

the values of 𝑅𝑚𝑎𝑥 is given later in this section.  

 

Figure 2.9. Simulation of Rectangular Specimens Tested by Kupfer (1969) with 

Initial Crookedness (%7) 

The simulation results of the cube specimen with dimensions of 100 mm in a 

disturbance sample are shown in Figure 2.10a. It is observed that the strength of the 

specimen is captured with this simple grid modification. The loss of stability in the 
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vertical elements occurred for specimen NR at 20 MPa with a sharp decrease in the 

load carrying capacity. For the case of the LR specimen, after the formation of 

diagonal cracks, loss of stability of vertical load resisting elements took place slightly 

below the desired compressive strength level, exhibiting some softening. Although 

the simulations captured the strength values, these simulations did not provide a good 

match of the post-cracking stiffness and ultimate strain at peak stress. These two 

problems are related to the stiffness of the compressive load carrying lattice 

members. It is well known that, upon lateral cracking, the stiffness of concrete in 

compression reduces (Vecchio and Collins, 1982; 1986; Hsu and Mo, 2010 etc.). 

This phenomenon is introduced for the laterally cracked lattice nodes carrying 

compressive forces by using the reduced stiffness model (RSM) in compression as 

shown in Figure 2.7b. Parameters 𝛼  and 𝛽 were taken as 0.4 and 1/3 based on the 

assumption of 40% stiffness reduction at a strain of 1/3 of concrete strain at peak 

stress, 휀𝑐𝑜 (i.e. 휀𝑐𝑜 = 2𝑓𝑐/𝐸𝑐) . The revised simulation results with this compressive 

model are shown in Figure 2.10a. It can be observed that this model captures the pre-

peak compressive behavior with good accuracy while underestimating the softening 

region slightly. For these two boundary conditions, the crack patterns are consistent 

with experimental results obtained by van Mier (1997), as can be seen in Figure 

2.6c,d for rectangular prism and Figure 2.10b for cube with dimensions of 10 cm. As 

stated before, boundary conditions affect the softening regime of compression 

behavior significantly. Steeper softening is observed with decreasing friction at the 

boundaries. In the case of NR, the specimen exhibited a sharp drop after reaching the 

peak strength as observed with a beam lattice simulation by Chang et al. (2019). In 

the case of LR, the softening response is more likely to be obtained, as the diagonal 

cracks mostly control the post-peak behavior. Orthogonal elements to force flow 

direction in a lattice unit provide the internal friction with calibrated model for the 

tensile fracture energy and mesh perturbation, which allows triggering of the 

instability initiated by internal cracking thanks to the topology of the used 

rectangular lattice unit. In short, Figure 2.10 shows that models without the reduced 

compressive stiffness approach cannot predict the failure displacements. However, 
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the failure displacement was captured with sufficient accuracy upon using the 

reduced compressive stiffness approach, while the post-cracking response up to peak 

strength was underestimated. This underestimation could be overcome by gradually 

reducing the compressive stiffness as a function of lateral strain (Vecchio and 

Collins, 1982; 1986; Hsu and Mo, 2010 etc.). However, such fine tuning was not 

attempted in order to preserve the practicality of the model. 

 

Figure 2.10. Compression Test Simulation and Experimental Results of a Cube 

Specimen with Dimensions of 100 mm for Random Mesh (van Mier 1997) 

(a) Simulation Results 

(b) van Mier (1997) 
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2.5.2.1 Selection of Mesh Disturbance Parameters 

The key parameter to simulate the compressive strength in a tension-only lattice 

model is the grid perturbance magnitude, 𝑅𝑚𝑎𝑥. It is assumed that upon selecting the 

concrete tensile strength (𝑓𝑡) and tensile fracture energy (𝐺𝑓), the concrete 

compressive strength (𝑓𝑐) and modulus of elasticity (𝐸𝑐) can be computed from 

empirical equations such as those given in TS 500 (2000) and ACI 318-19 (2019). 

Afterwards, the work-flow discussed for tension calibration in Section 2.4 is 

extended by employing the iterative procedure outlined in Figure 2.11 to determine 

the model parameters (𝑎1,𝑎2,𝑎3,𝑏1,𝑏2, 𝑅𝑚𝑎𝑥/𝑑). It should be noted that 𝑅𝑚𝑎𝑥/𝑑 is 

not used in the calibration of the tension model parameters, as tension behavior is 

found to be insensitive to this parameter. It should also be noted that the tension 

model parameter calibration procedure is similar to that explained in the previous 

section and the compression model parameter calibration is the new feature that 

converges with five simulations for concrete to the correct 𝑅𝑚𝑎𝑥 until the desired 

compressive strength is achieved. It is well known that concrete compressive 

strength may show significant variations (Wight 2016) and its mean strength 

estimation depends on the number of tested specimens. Based on engineering 

judgement and relative importance of the compressive strength in member strength 

estimations, it was decided to employ 10% error margin for mean strength to be a 

reasonable computational efficiency. 

Furthermore, the reduced stiffness parameters 𝛼 (0.4) and 𝛽 (0.33) were kept 

constant throughout the study in order to obtain objective results while using RSM 

in the simulations. Due to the inherent randomness of the modeling approach, 

successive simulation results are different. This is similar to the uncertainty one 

would obtain from testing and requires a statistically meaningful number of 

simulations must be conducted. 
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Figure 2.11. Model Parameter Calibration for Both Tension and Compression 

The flowchart for both tension and compression was employed for 100 mm x 100 

mm x 100 mm test specimens modeled with a grid size of 10 mm and subjected to 

uniaxial compression for 𝑓𝑐 values of 20 MPa, 50 MPa, and 100 MPa along with 

three different 𝐺𝑓 values of 50, 80, and 150 N/m for each 𝑓𝑡. These fracture energy 

values were chosen since they are close to the values obtained from CEB-FIB Model 

Code 1990 (1993) by assuming the maximum aggregate size value of 12 mm. For 

each parameter set, five different simulation sets were performed until convergence 

of the model parameters was achieved. The results are plotted in Figure 2.12.a and b 

for two different boundary conditions. The trend lines shown in Figure 2.12.a and b 

are plotted based on the average of five simulations. These curves can be thought of 

as a guide in selecting the 𝑅𝑚𝑎𝑥 value for a given tensile strength, fracture energy 

and desired boundary condition. It can be observed that for the selected parameters, 

a uniaxial concrete compressive strength of 20 to 100 MPa can be simulated for the 

LR boundary conditions. Compressive strength values above 100 MPa would require 

a tensile strength larger than 3.5 MPa, irrespective of the tensile fracture energy. 
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Larger 𝑅𝑚𝑎𝑥 values are needed for NR simulations in order to achieve a similar 

compressive strength compared to LR. Another interesting result is the fact that 

compressive strength appears to be more sensitive to 𝐺𝑓 for LR than NR conditions. 

As expected, larger 𝑅𝑚𝑎𝑥 results in lower compressive strength for both boundary 

conditions. Moreover, the curve of 𝐺𝑓 value of 80 N/m for two different boundary 

conditions until 50 MPa indicates that  𝑅𝑚𝑎𝑥 values are not so different than each 

other (Figure 2.12.c). 

 

Figure 2.12. Compressive Strength from Simulations 

The calibration of the 𝑅𝑚𝑎𝑥/𝑑 values were slightly modified for AAC masonry walls 

(Figure 2.13). The 𝑅𝑚𝑎𝑥/𝑑 value was calibrated by comparing the average 

compression strength of 100 compression simulations, with 100 different grid 

perturbation instances, with the mean value of the compressive strength from 

uniaxial compression AAC masonry tests with an acceptable error of 10% based on 

engineering judgement and computational efficiency. Furthermore, the effect of the 

number of simulations was studied, as shown in Figure 2.14. Simulations were 

(a) LR (b) NR 

(c) 𝐺𝑓=80 N/m 
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employed for the uniaxial and diagonal compression experiments tested by 

Todorovic et al. (2019) and for this study as described in section 2.5.3.2. It can be 

observed that uniaxial compression tests converge at about 50 iterations, whereas 

diagonal compression tests require about 100 simulations to achieve accurate results. 

Standard deviations of related simulation results are listed in Table 2.5. Hence, based 

on preliminary simulations, it was found that 100 cases should be simulated in order 

to obtain accurate results for material strength estimations for AAC masonry 

calibration simulations. Thus, 100 simulations were selected for all calibration 

studies for AAC masonry. However, for any other compressive strength level, the 

simulations should be repeated to find the optimal 𝑅𝑚𝑎𝑥/𝑑. Therefore, 100 

simulations act as a calibration simulation rather than a validation study for AAC 

masonry calibration.  

 

Figure 2.13. Work-Flow for Compression Calibration of AAC Masonry Structures 
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Figure 2.14. Convergence Results for (a) Batch 1 (METU) and (b) Batch 2 (Pavia) 

On the other hand, for concrete, it can be noted that five simulations were used to 

determine 𝑅𝑚𝑎𝑥/𝑑 value. The same study was conducted for concrete to obtain the 

effect of iteration number. The simulation results which can be shown in Figure 2.12 

were used to create the curves in Figure 2.15 for some different 𝑓𝑐, 𝐺𝑓 and boundary 

conditions. It can be concluded that the alteration in compressive strength of concrete 

Uniaxial compression test simulation in this 

study 

Uniaxial compression test simulation 

(Todorovic et al. 2019) 

Diagonal compression test simulation 

(a) 

Uniaxial compression test simulation with 

𝐺𝑓=56.7 N/m, 
𝑅𝑚𝑎𝑥

𝑑
=0.067 

Uniaxial compression test simulation with 

𝐺𝑓=56.7 N/m, 
𝑅𝑚𝑎𝑥

𝑑
=0.05 

Diagonal compression test simulation 

(b) 
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is much lower than AAC masonry, since the 𝑅𝑚𝑎𝑥/𝑑 value is much smaller, and the 

error margin is acceptable according to Wight’s (2016) observation. 

 

Figure 2.15. Convergence Results for Different Concrete Materials and Boundary 

Conditions 

𝑓𝑐=20 MPa; 𝐺𝑓=80 N/m; LR 

𝑓𝑐=20 MPa; 𝐺𝑓 =150 N/m; LR 

𝑓𝑐=20 MPa; 𝐺𝑓 =80 N/m; NR 

𝑓𝑐=50 MPa; 𝐺𝑓=80 N/m; LR 

𝑓𝑐=50 MPa; 𝐺𝑓=150 N/m; NR 

𝑓𝑐=100 MPa; 𝐺𝑓=150 N/m; NR 
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2.5.2.2 Sensitivity Analysis of Mesh Disturbance 

The sensitivity of the results to grid size and orientation were studied by performing 

analyses of the cube compression tests with two different grid sizes and two different 

grid orientations. For the grid density study, 5 mm and 10 mm grid spacings were 

used for the simulations, whereas an orthogonal grid and a grid rotated 45 degrees 

were selected for the purposes of investigating the grid isotropy by using a 10 mm 

grid spacing. Simulation results are shown in Figure 2.16.a. It can be observed that 

results are not sensitive to the grid refinement based on general pattern of the load 

displacement response owing to the regularization achieved with the use of tensile 

fracture energy. Despite some slight variation upon applying the stress with a rotated 

coordinate system, one can say that rotation effects are not critical for simulating the 

compression behavior with a lattice model.  

In order to understand the behavior of the lattice model’s size effect, the same 

specimen is simulated with different H:D ratios without introducing any reduced 

stiffness model (RSM) for compression. For this purpose, values for H:D are chosen 

as 2 and 3 in addition to 1. The strength values were obtained for LR and NR. The 

average values of 5 simulations were determined as 21, 18, and 15 MPa for H:D 

values of 1, 2, and 3 of LR, respectively. The strength values decrease with higher 

H:D values, which is in line with the observations from tests due to slenderness 

effects, as shown in Figure 2.16.b (Choi et al., 1996 ). On the other hand, there is no 

observed decreasing trend for peak stresses by increasing H:D values for NR as 

suggested by Choi et al. (1996) (Figure 2.16.c). A similar response is observed for 

the 5 mm grid size, meaning that the 𝑅𝑚𝑎𝑥 /𝑑 value is nearly constant (Figure 

2.16.d). Although decreasing stiffness in the elemental level results in better 

representation at the global level for the simulation of the uniaxial compression test, 

for the rest of the simulations, RSM was not used to preserve the practicality since 

the main aim is to capture compressive strength and failure as an indirect tension 

failure rather than the complete response in compression. 
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Figure 2.16. Mesh Objectivity and Size Effect Results  

2.5.3 Validation of Perturbed Mesh for Concrete and Masonry 

The perturbation of the grid leads to desired instability in local regions of the domain. 

Thus, creating a weak zone through the strut affects the compressive strength of 

concrete. In this part, this effect is used for simulating the behavior of both concrete 

and AAC masonry. Uniaxial compression and compression strut tests were used to 

validate the proposed lattice model in compression response for concrete members 

in this section. In context, simulation results of the over-reinforced beam is explained 

in Section 3.1.2.  Furthermore, the performance of the model for AAC wall tests was 

investigated. Thus, the model was calibrated for compression to use in the simulation 

of AAC infill walls in this study. 

(a) LR (b) LR 

(d) LR and NR (c) NR 
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2.5.3.1 Concrete 

As the first validation study, the experiments conducted by Jansen and Shah (1997) 

were simulated using the proposed lattice model. The tests were conducted on 

cylinders; however, the simulations were conducted on prisms with the same aspect 

ratio and same cross-sectional area (Figure 2.17.a). The ends of the specimen were 

not lubricated in the tests, so they were assumed to be LR specimens. The cylindrical 

compressive strength was reported as 45 MPa, and the maximum aggregate size 

(𝑑𝑚𝑎𝑥) was 9 mm, resulting in a 𝐺𝑓 of 80 N/m. The proposed algorithm to estimate 

the required 𝑅𝑚𝑎𝑥  value was determined by applying the procedure in Figure 2.11. 

The properties of the specimens that are used for simulation can be seen in Table 2.1.  

Table 2.1. Specimen Properties for Compression Simulations 

Properties 

Specimens 

Jansen and Shah 

(1997) 

Laughery and Pujol 

(2015) 

Brown et al. 

(2006) 

H:D=4.5 & 2.0 B1 & B3 Specimens 

Thickness (mm) 79 200 102 

𝑓𝑏 (MPa) 45.0 30.0 26.4 

𝑓𝑐 (MPa) 53a 37a 31a 

𝑓𝑡 (MPa) 2.55b 2.13b 1.95b 

𝐸𝑐 (MPa) 34217c 28589c 26211c 

𝑑𝑚𝑎𝑥 (mm) 9 25 - 

𝐺𝑓 (N/m) 80d 86d 50 

𝑎1 1.5 1.5 1.5 

𝑎2 60 70 40 

𝑎3 300 440 270 

𝑣 (mm/s) 0.1 0.1 0.4 

𝑑 (mm) 10 

𝑅𝑚𝑎𝑥/𝑑 for LR 0.040 0.055 0.050 

𝑅𝑚𝑎𝑥/𝑑 for NR - 0.050 - 
aThese values are found by using ACI 318-11(American Concrete Institute 2011). 

bThese values are found by using TS 500 (TSE 2000) (i.e. 𝑓𝑡 = 0.35√𝑓𝑐) 

c These values are found by using ACI 318-11(American Concrete Institute 2011)(i.e. 𝐸𝑐 = 4700√𝑓𝑐) 

dThese values are found by using CEB-FIP model code 1990 (1993). 
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The specimens with H:D of 1.0, 2.0, and 4.5 were simulated and the results are 

presented in Figure 2.17.b. The estimated damage patterns at the end of the 

simulations by showing strain distribution (positive is tensile values) can be seen in 

Figure 2.17.c. The uniaxial compressive strength from the experiments (an average 

of 3 and 2 specimens for H:D of 2.0 and 4.5, respectively) was 49.1 MPa and 47.2 

MPa, whereas the average compressive strengths from 5 simulations were 43.45 

MPa and 43.05 for H:D of 2.0 and 4.5, respectively. (Table 2.2). The initial stiffness 

of the load-deflection curve was in perfect agreement with the test results, whereas 

the softening regime of the deformation response was slightly underestimated. This 

can be attributed to the difference between the cylinder and prism response in 

addition to the lack of direct compression softening control in the tension-only lattice 

modeling. The estimated strength values are consistent with the results observed 

from the tests. 

A number of researchers have studied the strength of compression struts in the 

literature. The key difference in the strut behavior is the fact that the force flows from 

the loaded points to the supports as a prismatic or bottle-shaped strut depending on 

the loaded area to specimen width. In order to examine this behavior, tests on plain 

concrete struts loaded in uniaxial compression were simulated by the lattice model. 

Table 2.2. Jansen and Shah (1997) Results 

Trial 

Strength (𝒇𝒄) [MPa] 

H:D=4.5 H:D=2.0 H:D=1.0 

Experiment LR Experiment LR Experiment LR 

1 46.7 47.35 42.8 43.74 

- 

51.80 

2 47.7 41.42 55.6 47.78 54.99 

3  45.67 49.0 43.69 57.08 

4  40.14  35.18 66.23 

5  40.68  46.87 42.92 

Average 47.2 43.05 49.1 43.45 - 54.60 
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Figure 2.17. Comparisons with Test Results (Jansen and Shah 1997) for (a) Test 

Specimens (Dimensions in mm); (b) Relative Stress-Strain Curve And (c) Crack 

Patterns 

(a) Test Specimens 

 

(b) Stress-Strain Curve 

(c) Crack Patterns 
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The first validation study was conducted by simulating the specimens tested by 

Laughery and Pujol (2015). The dimensions (width W and length H), of the 

simulated specimens B1 and B3 were 200x600 mm and 600x600 mm, respectively 

(Figure 2.18.a). The plate widths and thickness of the loaded platens were 200 mm 

so that the loading was applied at the full width of specimen for B1 and 1/3 width of 

specimen B3. The cylindrical strength (𝑓𝑏) for the B series was about 30 MPa. The 

parameters used in the simulations are shown in Table 2.1. The grid size was chosen 

as 10 mm for simulations. The 𝑅𝑚𝑎𝑥/𝑑 value computed based on the flowchart in 

Figure 2.11 was 0.055 and 0.050 for LR and NR, respectively. Laughery and Pujol 

(2015) did not report any load-deflection curves; however, the strut efficiency was 

determined as shown in Table 2.3. Furthermore, the restraining effects along the 

loaded end plates were not reported. Hence simulations were conducted for both the 

LR and NR cases. Computed and reported strut efficiency factors are presented in 

Table 2.3, and the crack patterns are given in Figure 2.18.b. The estimated strut 

efficiency factors were within about 10% of the test results. The highest strut 

efficiency differences are observed from the B1 specimen experiment and NR. This 

can be attributed to the tensile strength value that was not reported for this specimen. 

In addition, the reduction of strength was observed in the simulations due to a 

decrease in the H:W ratio. In all simulations, diagonal cracks first appeared, followed 

by splitting cracks and shear cracking. The only picture from the test is shown in 

Figure 2.18.c. It can be observed that vertical cracking followed by the loss of 

stability of the disintegrated parts is similar to the results obtained from the 

simulations.  

Similar tests were conducted by Brown et al. (2006) to examine the strut efficiency 

factors. A square prism with dimensions of 900x900 mm was tested. The bearing 

area was 1/3 of the width of the specimens. The properties are shown in Table 2.1. 

There is no reported data for 𝑑𝑚𝑎𝑥 so 𝐺𝑓 was taken as 50 N/m. The grid size was 

chosen as 10 mm. The same procedure as explained for the specimens of Laughery 

and Pujol (2015) was conducted. Only the LR condition was considered since the 
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same failure type, at the interface between the node and strut of the model, was 

reported even though extra confinement was implemented.  

 

Figure 2.18. Simulation Results of Compression Strut Tests (Brown et al. 2006; 

Laughery and Pujol 2015) (a) Typical Specimen Dimensions; (b)Simulation 

Results; and (c) Experimental Cracking of Laughery and Pujol (2015); (d) Brown 

et al. (2006) and (e) All Results 

The crack pattern is given in Figure 2.18.d, and the efficiency factors from both 

experimental and lattice-based simulations are shown in Table 2.3 and Figure 2.18.e. 

The estimated efficiency factor is consistent with the experimental result. In 

particular, the results from the two experiment series were the same as each other, 

but the boundary conditions affected the results. In other words, it is more likely that 

boundary conditions of Laughery and Pujol (2015) were NR, whereas the boundary 

(a) Specimen 

Laughery and Pujol (2015) 

(c) Cracking 

(d) Brown et al. (2006) (e) Results 

(b) Simulation Results 
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conditions of Brown et al. (2006) were LR based on the closeness of the estimated 

results to the experimental ones. This result indicates the importance of boundary 

conditions while investigating the strength of struts when using strut and tie 

modeling. 

Table 2.3. Strut Efficiency Factor for Laughery and Pujol (2015) and Brown et al. 

(2006) 

Strut Efficiency Factor=𝑓𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑/0.85𝑓𝑏 

Trial 

Laughery and Pujol (2015) Brown et al. (2006) 

B1  

[H=600, W=200, B=200 mm] 

B3 

[H=600, W=600, B=200 mm] 

Specimens 

[H=900, W=900, B=300] 

Experiment LR NR Experiment LR NR Experiment  LR 

1 1.06 1.00 1.06 1.03 0.84 0.97 1.01 0.87 

2 1.02 0.98 1.15 1.02 0.90 0.97 0.76 0.80 

3 1.07 1.04 1.14 1.09 0.91 0.86  0.84 

4  0.98 1.25  0.89 0.94  0.91 

5  1.03 1.12  0.86 0.92  0.78 

Average 1.05 1.01 1.14 1.05 0.88 0.93 0.89 0.84 

2.5.3.2 AAC Masonry 

After the validation studies on tests from the literature on concrete, laboratory 

experiments were performed in the METU Structural Laboratory for the application 

of the model for AAC. Three AAC masonry wallettes have been tested to obtain 

uniaxial compression response in order to calibrate the models in this section. Later, 

the calibration of the proposed model for AAC wallettes from different experimental 

campaign performed by Costa (2007) additional to these tests to use calibrated values 

to use for infill wall simulations as shown in chapter 4. Also, the simulation results 

are presented with the use of different 𝑅𝑚𝑎𝑥/𝑑 and 𝐺𝑓 values. 

Firstly, uniaxial compression tests of three AAC masonry wallettes with a thickness 

of 10 cm, sampled from the infill wall specimens tested in this study, are explained 

in this part. The wallettes were performed in METU Structural Laboratory. It should 
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be mentioned that “batch” term refers to a set of one AAC wall and one RC frame in 

this study, as described in detail in Section 4.1. The specimens were prepared 

according to TS EN 1052-1 (2000). The dimensions and installed instrumentations 

are shown in Figure 2.19a. It should be mentioned that additional three AAC 

masonry wallettes with the width value of 450 mm and the same dimensions for 

height and thickness were tested by fixing the plates at the upper side. It results in 

undesired rotation to the specimen. Thus, ball joints providing to rotate the end plates 

at the top of the upper side were used to avoid undesired moments. AAC units used 

in this study were the same as the units used in Todorovic et al. (2019) (Figure 2.19b).  

Digital image correlation (DIC) was conducted to observe the local strain 

concentrations during all tests conducted for this study. For this purpose, small black 

points were created randomly on a single face of the specimens. The average 

diameter of the black dots is around 0.6 mm. The spacing of these points ranges from 

1.5 mm to 3.5 mm for DIC results in this study. The photographs were taken with a 

24-megapixel camera. A single camera was used to obtain in-plane cracking 

response for the tests conducted in-plane load, which is the scope of this study. 

Accurate results were obtained by using only one camera for in-plane infill 

experiments by many researchers (Ramos et al. 2015; Korswagen et al. 2019; 

Furtado et al. 2015; Kumar et al. 2019). However, according to Mojsilovic and 

Salmanpour (2016), error can be introduced by out-of-plane motion of the specimen 

in 2D DIC, and this error is proportional to the ratio of the out-of-plane motion to 

the distance of the camera from the specimen. For this purpose, the camera was 

placed at the closest distance. Also, it was ensured that the rods were placed at the 

top of the infill wall specimens in order to prevent out-of-plane deformation or 

distortion. Moreover, it should be noted that the main aim was to visualize cracking 

patterns with DIC since a relatively large area was photographed. Thus, crack width 

and strain measurements were beyond the limitation of the camera resolution.  

Test setup and DIC results are shown in Figure 2.19c. Color contours represent the 

displacement of the points in lateral direction and major strain distribution obtained 

from DIC, overlapping with the crack patterns on the same image. Compressive 
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strength values of the specimens with fixed plate are 1.74, 1.60, and 1.14 MPa. A 

higher strength was noticed in those specimens, probably since the specimens were 

exposed to an undesired moment as a result of the boundary conditions. Thus, they 

are not taken into account in the calculations. The compressive strength results of 

three tests with rotated plates were determined as 1.20 MPa, 0.90 MPa, and 0.87 

MPa. Todorovic et al. (2019) found that the mean compressive strength of five 

masonry prisms with dimensions (width x thickness) of 300 x 100 mm was 0.97 

MPa, while the average value obtained from our tests was 0.99 MPa. Compressive 

stress and average displacement measured from left and right Linear Variable 

Differential Transformers (LVDT), and the crack pattern at the end of the experiment 

for specimen 2 are shown in Figure 2.19d and e. A brittle response with sudden drop 

after peak load and higher capacity than the other two specimens was exhibited by 

Test 1. The softening portion of that specimen could not be obtained due to the 

malfunctioning of LVDT controlling the induced displacement. The maximum 

compressive strength in that test was also obtained in this experiment among 8 tests, 

including specimens tested by Todorovic et al. (2019) additional to our tests. 

Furthermore, it should be noted that the compression calibration of the model is 

conducted according to the mean strength of 8 tests, including those tested in this 

study and Todorovic et al. (2019).  

Uniaxial and diagonal compression experiments for two AAC masonry batches are 

simulated for different 𝐺𝑓 and 𝑅𝑚𝑎𝑥/𝑑 values and capacity results are summarized 

in Table 2.5. While the brittle response in tension was assumed for the METU 

experiments, a tensile fracture energy of 56.7 N/m was used for batch 2, the Pavia 

experiments, as suggested by Milanesi et al. (2018). The tension softening 

parameters were found by executing the flow-chart using provided tensile fracture 

energy (𝐺𝑓) values, as explained in previous. All mechanical properties of AAC 

masonries and corresponding tension softening parameters determined based on the 

procedure explained in Section 2.4 are listed in Table 2.4.  
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Figure 2.19. Compression and Diagonal Test Experiments and Simulations of 

Batch 1, METU Experiments 

The randomness values were found by matching the uniaxial compression strength 

of masonry with the test results (Figure 2.13). The compression calibration procedure 

was applied and 𝑅𝑚𝑎𝑥/𝑑 was found as 0.125 for the AAC walls for both tests of 

batch 1. The range and mean of load-deflection responses of 100 simulations, the 
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comparisons of experimental and numerical results, and crack patterns from 

experiments and simulations are summarized in Figure 2.19d, Table 2.5, and Figure 

2.20. In Figure 2.20, color contours denote the strain values of the lattice elements, 

and lines on the specimen represent the cracking observed in experiments. The 

experimental results appear to be in the range of 100 simulation results. 

On the other hand, Costa (2007) performed six uniaxial compression tests for the 

AAC wallettes for batch 2, Pavia experiments. Three of each were tested in different 

orientations (vertical and horizontal, with 90o rotated). The dimensions (length x 

width) of these two specimens were 940x1250 mm and 1000x940mm for vertical 

and horizontal specimens. The mean compressive strength of AAC masonries was 

reported as about 2.07 MPa. The same calibration procedure was performed, and 

𝑅𝑚𝑎𝑥 value was found as 2.0 mm for the grid size (𝑑) of 30 mm.  

 

Figure 2.20. Cracks in Simulations and Experiments for Uniaxial and Diagonal 

Compression Tests of Batch 1  

The performance of the calibrated model (i.e., for 𝑅𝑚𝑎𝑥/𝑑 and 𝐺𝑓) was first 

examined with the diagonal tests. Two and seven specimens with the dimensions 

(a) Cracking of Uniaxial Compression Test (b) Cracking of Diagonal Test 
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(length x width x thickness) of 750x750x150 mm (Figure 2.20b) and 630x750x300 

mm were compressed diagonally for batch 1 and batch 2, respectively (Costa 2007; 

Demirel et al. 2015). According to ASTM E519-10 (2010), two steel loading shoes 

were used, and the length and height of the bearing of the loading head were 

determined to be about 150 mm and 100 mm, respectively. Thus, the top and bottom 

boundary nodes are restrained in both directions. The determined capacities from 

simulations and experiment results, and crack patterns can be found in Table 2.5 and 

Figure 2.20b.  

Table 2.4. Material Properties of AAC Masonries 

Properties (AAC) Batch 1 

(METU) 

Batch 2 

(Pavia)a 

Thickness (mm) 10 30 

Modulus of Elasticity 

(MPa) 

1000 1498 

Density (kg/m3) 350 484 

Tension Strength (MPa) 0.300b 0.278 

Compression Strength 

(MPa) 

0.9 2.0 

Tensile fracture energy 

(N/m) 

(Brittle)b 56.7 

𝑎1
c 1.50 1.50 

𝑎2 1.51 140.00 

𝑎3 1.52 600.00 

𝑅𝑚𝑎𝑥/𝑑 0.125 0.067 
a Values were taken from Milanesi et al. (2018) 

b Calibrated values from tests 

c Tensile fracture energy parameters were found for d=5 mm 

While the capacity estimation for 𝐺𝑓 and 𝑅𝑚𝑎𝑥/𝑑 values of 56.7 N/m and 0.067, 

respectively, agrees with the test results for batch 2, capacity results were found to 

be slightly lower than expected for batch 1. The reason may be partly attributed to 

the limited (two) number of experiments. Using a lower randomness value and a 

higher tension softening increases the uniaxial and diagonal compression capacity. 

The unique combination of 𝑅𝑚𝑎𝑥/𝑑 and 𝐺𝑓 should be determined to employ 
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sufficiently accurate capacity estimations for both diagonal and uniaxial tests. Thus, 

in the case 𝐺𝑓 value is not available, diagonal test results additional to uniaxial 

compression test results can be used to calibrate both values. Based on these 

calibrations and validations at the material level, the 𝐺𝑓, 𝑎1, 𝑎2 𝑎3 and 𝑅𝑚𝑎𝑥/𝑑 

values were established for AAC masonry, as shown in Table 2.4.  

Table 2.5. Results for AAC Masonry Diagonal and Uniaxial Compression 

Experiments and Simulations 

Results 

(MPa) 

Batch 1 (METU) Batch 2 (Pavia) 

Uniaxial Compression Test 

Exp 

Simulation  

( d = 25 mm) 

Exp 

Simulation 

(d = 30 mm) 

Brittle, 
𝑹𝒎𝒂𝒙

𝒅
=0.125 

Gf=56.7 
𝑹𝒎𝒂𝒙

𝒅
=0.067 

Brittle 
𝑹𝒎𝒂𝒙

𝒅
=0.05 

Gf=56.7 
𝑹𝒎𝒂𝒙

𝒅
=0.05 

Todorovic 

et al. 

(2019) 

In this 

Study 

Number 8 100 100 6 100 100 100 

Min. 0.87 0.65 0.70 1.98 1.70 1.39 1.93 

Max. 1.20 1.20 1.13 2.25 2.50 2.21 2.88 

Mean 0.98 0.92 0.90 2.07 2.04 1.84 2.29 

Standard 

Deviation 0.10 0.11 0.09 0.10 0.16 0.15 0.16 

Results 

(kN) 

Diagonal Test 

Exp 

Simulation  

( d = 20 mm) Exp Simulation (d = 30 mm) 

Number 2 100 7 100 100 100 

Min. 33.11 23.94 91.06 90.48 54.83 103.76 

Max. 48.85 32.80 146.47 150.36 107.58 162.05 

Mean 40.98 25.47 114.56 111.32 71.88 131.74 

Standard 

Deviation - 1.18 18.98 12.97 13.09 13.65 

2.5.3.3 Discussion of Results for Compression Validations 

The problem of locking is overcome by inducing grid perturbation with a novel 

calibration technique that allows one to select the magnitude of grid perturbation as 
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a function of the compressive strength and tensile fracture energy. The following 

conclusions can be drawn based on the results: 

 The compressive strength was estimated with a reasonable accuracy by using 

mesoscale lattice models without a predefined nonlinear compression 

behavior.  

 Compressive strength is dependent on the boundary conditions (LR and NR) 

even when the same perturbed grid is used in the simulations. This is in line 

with experimental evidence in the literature. 

 While the use of tensile fracture energy approximately handles mesh 

sensitivity, it is observed that results are slightly dependent on grid 

orientation for uniaxial compression simulations.  

 The model is able to capture the compressive behavior, including the 

slenderness effect for specimens subjected to pure compression. 

 A mild softening in the uniaxial compression test is obtained. However, as 

the softening depends on boundary conditions in experiments, more tests are 

required to understand tensile fracture energy for compression, boundary 

conditions and compressive strength relations. 

With the feature of representing compressive behavior with indirect tension 

response, the proposed modeling approach differs significantly from the available 

body of models, in which tension response was calibrated for material constitutive 

models to match the average response within the characteristic length and 

compression behavior was simulated with a phenomenological approach. It is 

demonstrated that compressive behavior can be estimated by using appropriate 

cracking models leading to compression failure as and indirect tension failure due to 

material instability rather than a plasticity-based constitutive model. This 

fundamental finding has the potential to offer new frontiers in modeling concrete 

structures under loading to failure. 

In short, one of the important novelty of the present research is to simulate the 

concrete and masonry uniaxial compression response as an indirect tension failure 
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by using a homogenized lattice model modeling only the tensile behavior of concrete 

and AAC masonry and mesh randomization. Concrete in compression is assumed to 

be elastic. However, due to the mesoscale nature of modeling, splitting cracks and 

cover spalling due to compression are simulated as indirect tensile failures followed 

by lattice in the proposed lattice approach making it an attractive model with few 

parameters with the perturbation of the grid distribution. 

2.6 Reinforced Concrete Modeling 

Two additional element types for reinforced concrete (RC) simulations are needed 

in addition the concrete lattice network; the steel and bond elements. Thus for the 

reinforced concrete modeling, three element types are utilized as concrete, steel and 

the bond connecting concrete and steel nodes in the lattice network. The element 

representations for the simulation of a column specimen tested by Acun and 

Sucuoglu (2010) are shown in Figure 2.21.  

 

Figure 2.21. Representation of Three Types of Lattice Elements (Dimensions in 

Millimeter) (Acun and Sucuoglu 2010) 

Steel reinforcing bars are represented with lattice elements at their centroid and they 

are assumed to have an elastic perfectly plastic load-strain response (Figure 2.22a). 
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In RC member simulations, two different horizon values, 1.5𝑑 and 3.01𝑑, were 

chosen. Within the horizon of the reinforcement lattice nodes, bond elements are 

used to connect steel nodes to concrete nodes. For the bond an elastic brittle response 

with a residual strength is used as shown in Figure 2.22b. The bond-slip constitutive 

models, e.g., the one by Murcia Delso and Shing (2015), divides the bond-slip 

resistance into two components, bearing and friction. The residual is equal to the 

frictional bond which is about 0.25 of maximum bond strength. However, the 

frictional bond coefficient should be thought within the scope of the modeling 

approach. With the two-dimensional lattice modeling, the number of lattice members 

acting as bond links should be thought together with the bond strength. The 

preliminary studies on the beam simulation were conducted by Aydin et al. (2018) 

for the constitutive model of bond elements. In that study, the bond strength was 

varied from 40% to 130% of the tensile strength of concrete elements. For smaller 

residual bond coefficient, premature bond failure was observed. Bond strength 

values higher than 70% were found to be successful in reflecting the slip behavior in 

RC simulations of different type of experimental, such as tension stiffening 

experiments. Thus, it can be concluded that 0.7 appears to be the optimum value of 

the bond coefficient. Therefore, the residual bond strength parameter (𝒂) is chosen 

as 0.7 for RC member simulations to ensure that the deformed bar residual bond 

strength is reflected accurately. On the other hand, it should be noted that the number 

and lengths of bond elements increase as the horizon is increased. If the 𝑑 value is 

large, for 𝛿 = 3.01𝑑, bond elements connecting steel nodes to concrete nodes are 

physically too far (increasing both stiffness and strength), hence, a slight strength 

enhancement due to increased bond is observed in all the conducted simulations, 

although the more isotropic response is conducted as shown in Section 2.1.  This can 

be remedied by reducing the bond strength for 3.01𝑑 horizon, and adjusting 

constitutive law for the bond elements as a function of the horizon and minimum 

distance between nodes. 

While the constant 𝜶 value is practical to define the overall interaction behavior of 

deformed bars with concrete for simulations, the actual bond behavior is affected by 
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rebar diameter and concrete mechanical properties. In this context, 𝜶 can be defined 

by considering that the ultimate bond force by calculating residual bond strength 

should be equal to the bond forces obtained by bond elements in the lattice network. 

Thus, the residual bond strength parameter (𝜶) can be defined with the following 

formulation;  

𝜶 =
𝜏𝑏𝜋𝑑𝑏

0.621𝑤𝑓𝑡√2
(2. 6) 

Where 𝜏𝑏 is the residual bond strength, 𝑑𝑏 is longitudinal bar diameter, 𝑓𝑡 is the 

tensile strength of concrete, 𝑤 is the member thickness. The free-body-diagram and 

the deriving formulations are shown in Appendix A. The 𝜶 value obtained from the 

equation was used for only the RC frame and AAC infilled frame simulations, as 

explained in Section 3.2 and Chapter 4 in order to exhibit the effect of bond strength 

on the simulation results.  

The bond element unloading branch, origin-oriented, is the same with concrete 

elements. On the other hand, residual force after unloading with the initial stiffness 

of steel is introduced for the steel elements. However, it should be pointed out that 

all elements are monitored during the simulations whether unloading behavior is 

obtained. While none of the steel elements is unloaded, unloading responses for some 

of the concrete and bond elements can be obtained rarely in the stress localization 

zones due to redistribution of loading during the simulation. These parts become the 

non-load bearing zones, which means there would be no reloading on these elements 

that would have no contribution to the global response. Also, it can be concluded 

that there exist no unloading branch in the elements at the functional parts since the 

element responses were monitored during the simulations. 
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Figure 2.22. Assumed Material Constitutive Models for (a) Steel and (b) Bond 

elements  

2.7 Discussion of the Model 

FEM-based approach is conducted in two mainstream directions as smeared and 

discrete models, as mentioned before. The main drawback of the smeared finite 

element modeling is the inability of demonstrating the actual separation due to 

cracking and having to operate with average strains across a gauge length rather than 

with actual crack openings. On the other hand, the issues on identifying crack 

locations as à priori, remeshing, pre- and post-processing, and the necessity of 

defining different constitutive models for the cracks and continuum parts are the key 

disadvantages of discrete crack models. In the defined approach in this study, the 

disadvantages in the discrete model such as remeshing are handled with the 

continuum approach as a single-phase medium. The crack propagation is presented 

directly and easily with calibrated truss network compared with the FEM-based 

damage plasticity. Cracking was modeled directly without conducting average 

approaches as in FEM. Also, the compression response was utilized as linear while 

the compression capacity was determined by perturbing mesh, which results in no 

need for nonlinear response in compression. Although there are a number of 

proposed macroscopic constitutive models to successfully simulate concrete 

(b) Bond (a) Steel 
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behavior with the FE methods (Balan et al., 1997; Lura et al., 2002; Tan et al., 2005; 

Cervenka and Papanikolaou, 2008; Koutromanos and Shing, 2012; Najafian et al., 

2013), as mentioned before, these approaches require calibration of tension, 

compression, softening, hardening and failure surface evolution parameters. Thus, 

while great effort and careful implementation are needed for successful applications 

in FE methods, the lattice approach requires less parameters, easier implementation, 

and post-processing since cracking is represented with lattice elements, cracks are 

simulated in a discrete manner, which is an advantage over the continuum-based 

approaches. 

The key differences of the lattice model in this study from the approaches of Cusatis 

(2011a) Bolander and Sukumar (2005) and Elias et al. (2013) are: 

1) Calibration of lattice material properties to match the average response within the 

characteristic length rather than assigning standard material properties. This allows 

a much more practical lattice approach removing the need of modeling aggregate 

distributions and cement pastes. 

2) assumption of homogeneous media for discrete lattice elements by providing 

calibrated multilinear softening parameters and randomization through mesh 

perturbation controlled with 𝑅𝑚𝑎𝑥/𝑑 in compression for the treatment of 

inhomogeneity so as to preserve practicality. This allows using simple 1D 

constitutive models. 

3) Compression failure is treated as an indirect tension failure in this study, whereas 

other aforementioned works employed a plasticity-based constitutive model for 

concrete in compression. 

The proposed lattice model and the strut and tie modeling share the common basis 

of using truss members to express the force flow; the strut and tie modeling is a 

macro model, whereas the lattice simulation is a mesoscale approach. Accordingly, 

struts in the nonlinear strut and tie models employ an average nonlinear stress-strain 

curve for concrete in compression. On the other hand, lattice simulation handles the 
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compression response with mesoscale lattice members that can simulate micro 

cracks leading to compression failure. 

Recently, Moharrami et al. (2015) proposed a nonlinear strut and tie model to 

estimate the response of reinforced concrete columns. In their approach, ties are 

represented by nonlinear tension softening uniaxial models, whereas struts are 

modeled as nonlinear compression elements. In addition, the angles of the diagonal 

elements were arranged by considering aggregate interlock for shear induced failure 

of RC columns to overcome the restriction. The lattice approach in this thesis differs 

from classical nonlinear strut and tie models as the compression response is modeled 

with a tension-only model by using a mesoscale unstructured grid. In this way, it was 

possible to capture compression failure in the shape of an indirect tensile failure, 

which is a key novelty of the proposed approach. Nonlinear strut and tie models may 

provide practical methods to simulate the complicated response of reinforced 

concrete at the macro-scale level. However, the proposed lattice-based approach may 

provide further insight into concrete cracking and crushing with simpler uniaxial 

tensile constitutive models while requiring more computational effort. 

Gerstle et al. (2013) used an alternating node connection scheme for the rebars to 

define reinforcement connection to a grid. On the other hand, the lattice model 

created for this study is a mesoscale approach where the grid size is kept in the 

millimeter scale. The grid spacing is small enough to represent the reinforcement at 

their correct locations, as a result of the square grid selection in this study. Owing to 

the mesoscale nature of the proposed lattice model with grid size in the order of 

several millimeters, such a match came naturally with the approach. Hence, a 

reinforcement decoupling as applied by Gerstle et al. (2013) was not deemed 

necessary. However, if the approach is extended as a macro model with lattice grids 

spaced at several centimeters, decoupling the reinforcing bar configuration from the 

lattice grid layout should be employed.  

It should be noted that reinforcement running in the direction of the lattice and spaced 

at multiples of the lattice spacing can be modeled. Reinforcement locations should 
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be carefully selected while choosing the grid sizes. Also, reinforced concrete 

elements are conventionally reinforced with horizontal and vertical bars. Hence, the 

proposed lattice approach, without loss of generality, can handle almost all practical 

problems. For inclined reinforcement, one must use stepped reinforcing bars in the 

lattice model. 

No special confinement model was employed. The confinement effect was due to 

the lateral restraining effect of the stirrups. It is completely related with indirect 

expansion of the beam and column. The model gives so close results with each other 

even mesh is rotated as 45 degrees, as discussed further in section 3.1.4.3. However, 

the two-dimensional lattice approach has obviously limited capability in modeling 

confinement imposed by the stirrups. For a more accurate representation of the 

column confinement and capturing confinement efficiency (Saatcioglu and Razvi, 

1992), completely, a three-dimensional lattice approach is needed, which is beyond 

the scope of the study.  

The crack directions did not align with the lattice directions, the principle direction 

of the mesh, for plain concrete simulations in a previous study by Aydin et al. (2018). 

Reinforcement patterns used in the experimental studies create a number of high 

stiffness and high strength lines in the proposed two-dimensional computational 

domain. In addition, although the problem is inherently three-dimensional, in order 

to remain practical within the scope of the thesis, the model is kept two-dimensional. 

The bond elements that connect steel and concrete nodes have a residual strength 

value, as discussed earlier. As a consequence of this, the computational results in the 

next chapter show inelastic strains concentrating around the reinforcement lines. 

Basically, due to the presence of reinforcement and bond elements, a more 

significant concentration of cracks was observed around the reinforcement regions. 

This may appear as a disadvantage of the lattice model to clearly present the crack 

locations; however, such micro-cracking, usually not visually observed in the tests, 

may actually exist at small scales. In fact, although we are not able to observe it 

directly in experimental studies, there is high degree of damage around the 

reinforcing bars due to bond transfer. As the results obtained from the simulations 
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can be seen as width-averaged quantities which are not the same as cracks observed 

in the experiments; hence, naturally, reinforcement pattern is reflected in damage 

patterns. 

Two-dimensional mathematical modeling, as opposed to a three-dimensional model, 

is proposed since all the test cases presented in the study (except cylindrical 

specimens) have an axis of symmetry along the loading direction and were subjected 

to in-plane loading only and there is no out-of-plane load in any of the simulated 

cases. These limitations allow 2D modeling of the problem as opposed to more 

computationally demanding 3D models. Thus, two-dimensional modeling is 

conducted instead of using three-dimensional models for the sake of computational 

efficiency. This study can be thought as an extension of those 2D-oriented models 

with a different approach in terms of material modeling. 

The lattice modeling approach in this study establishes a balance between model 

complexity and engineering accuracy for damage estimations. The model keeps a 

good balance between the simplicity of implementation/calibration with the 

sophistication of its behavior and capabilities. It was not preferred to use complicated 

plasticity, damage or frictional slip concepts within the scope of the study such that 

practicing engineers interested in obtaining the response of RC elements under 

distress could employ the approach by using any standard finite element software 

platform. 

The simple lattice modeling approach herein is easy to implement in the available 

engineering software or research-oriented analysis platforms by conducting the 

exhibited calibration procedures with the basic two force elements. This is a feature 

expected to increase the impact of the proposed of the approach both in research and 

practice. While it would be ineffective for the analysis of the entire structure with a 

mesoscale lattice network by using very long elements, which is the nature of 

mesoscale approaches, a more realistic response is obtained, and detailed 

understanding of the nature of nonlinearity is provided. Instead, the nonlinear part of 
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the structures can be conducted such as plastic hinge region of columns, anchorage, 

bond, etc.  

2.8 Bi-material (Reinforced Concrete+AAC) Modeling 

For infill walls subjected to combine in-plane and out-of-plane loadings, 3D 

approach is a must for modeling. Meso-scale models can indeed be two-dimensional 

and they are capable of simulating AAC masonry and masonry infilled wall behavior 

as presented past studies (Milanesi et al. 2018, Dolatshahi and Aref 2011, Khojasteh 

2017). The lattice approach in this study was used by introducing bi-material 

modeling to simulate AAC masonry-infilled RC frame simulations. Two additional 

element types, in addition to the reinforced concrete model, were defined. The first 

one represents the AAC masonry elements, which also adopts the concept of a 

piecewise linear softening diagram for the tensile regime as same with the concrete 

elements. The softening parameters, 𝑎1, 𝑎2, 𝑎3 of the tensile behavior of AAC 

elements were found to be similar to the concrete elements such that lattice 

simulation result of global tensile stress deflection curve, area of which is tensile 

fracture energy, matches the uniaxial stress-average displacement response of the 

tension test result within a specific gauge length. In the absence of reliable test data, 

the model of Cornelissen et al. (1986) is employed as the “correct” test result to 

calibrate the input parameters for softening part. Secondly, a special interface 

element, called “foam element”, was introduced to simulate the interaction regions 

filled with foam between the wall and reinforced concrete frame members. The 

behavior of the interface elements connecting the AAC wall and concrete elements 

with foam material is selected as hyperelastic in compression, while the capacity is 

assumed as zero in tension (top left in Figure 2.23). The compressive modulus of 

elasticity multiplied by the cross-sectional area of foam elements is formulated as; 

𝐸𝐴(휀) = (𝐸𝐴)𝑖 + (𝐸𝐴)𝑖(𝑚𝑡 − 1)(−휀)𝑛−1 for 휀 ≤ 0 (2. 7) 
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Where 휀 is the strain, (𝐸𝐴)𝑖 is the initially defined modulus of elasticity multiplied 

by the cross-sectional area, 𝑛 is the parameter adjusting the polynomial degree and 

𝑚𝑡 is the multiplication value of initial (𝐸𝐴)𝑖 at strain value of -1. The same 

formulation is applicable for the unloading branch so that no energy dissipation can 

occur. In the interface region, the diagonal elements of the lattice framework were 

removed due to the very low shear resistance of the foam or leveling mortar. 

Geometric nonlinearity was incorporated for all the elements except the interface 

elements so that only interaction in the normal direction was considered. 

 

Figure 2.23. Overview of the modeling approach: element types and corresponding 

constitutive models  

All element types that are used in this study and their respective constitutive models 

are shown in Figure 2.23. It seems that the nature of both concrete and AAC is 

inhomogeneous. However, treatment of such inhomogeneity at the mesoscale level 

requires modeling of components such as aggregates, cement pastes, and pores. This 

would further complicate the computational approach and make the calibration 

process very challenging due to the uncertainty in material parameters. Hence, 

homogeneous material properties were assumed by calibrating multilinear softening 
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curve in tension to represent the behavior within characteristic length and applying 

randomness through mesh perturbation controlled with 𝑅𝑚𝑎𝑥/𝑑 in compression for 

the treatment of inhomogeneity due to preserving practicality.  

2.9 Solution Procedures 

In this study, two different solution schemes were used. Firstly, Sequentially Linear 

Analysis (SLA) (Rots 2001, Rots et al. 2006, 2008) was employed for the material 

calibration of the model in tension. The procedure evolves a saw-tooth curve, and 

the sequence of the analysis is determined by the damage of the elements instead of 

force or displacement increments. Basically, after applying unit load to the defined 

places, linear elastic analysis is employed, and then the internal forces obtained in 

all elements are determined. According to the critical element closest to its capacity, 

the scale factor is captured and applied to the discretized system. Thanks to a series 

of linear elastic solutions inherently, SLA is a simple solution algorithm to solve 

nonlinear problems with obtained any convergence problems even if snapback 

behavior is desired during the nonlinearity. Using always positive stiffness enables 

to simulate a constitutive model, which is steep function like a multi-linear softening 

curve, easily. Aydin et al. (2018) used this solution algorithm successfully by 

emphasizing its simplicity and functionality. The application of the SLA for the 

constitutive response of concrete elements can be seen in Figure 2.24. However, the 

main disadvantage of using saw-tooth curve is the difficulties when conducting non-

proportional loading (Pari et al. 2020). This type of loading is obtained in almost 

every structure. For this reason, this solution methodology was conducted for only 

tension calibration.  

Secondly, explicit time integration methods have the advantage of being non-

iterative, suitable for parallel programming, and simulating large deformations and 

local instabilities without any convergence problems, which are very crucial for the 

nature of the model with the way of capturing compression failure. Therefore, an 
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explicit time integration method was used to solve the equation of motion for the 

lattice models. 

 

Figure 2.24. Application of the SLA for Tension Response of Lattice Elements 

An explicit numerical integration is used to solve the equation of motion given in 

Eq. (2.8), where a lumped diagonal mass matrix, 𝒎, along with a mass proportional 

damping matrix, 𝒄 are employed.  

𝒎 𝒂𝒊 + 𝒄 𝒗𝒊 + 𝒓𝒊 = 𝑭𝒊 (2. 8) 

Above 𝒓𝒊 is the restoring force vector, 𝒂𝒊, 𝒗𝒊 are the acceleration and velocity 

vectors, respectively, and 𝑭𝒊 is the forcing function vector at time i. Damping matrix 

was approximated using Rayleigh damping (5%) in all the simulations. The velocity 

of all the simulations conducted in this study was sufficiently small to vanish inertial 

effects, which means the damping matrices were always multiplied with very small 

values. The equation of motion was solved by using the method of Chung and Lee 

(1994) with the steps summarized below: 

1) Read the restoring force (𝒓𝒊) and current displacements (𝒖𝒊).  

2) Compute the acceleration at time i+1: 𝒂𝒊+𝟏 = 𝒎−1(𝑭𝒊 − 𝒄 𝒗𝒊 − 𝒓𝒊)  
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3) Compute the displacements at time step i+1: 𝒖𝒊+𝟏 = 𝒖𝒊 + ∆𝑡𝒗𝒊 + 𝛽1𝒂𝒊 +

𝛽2𝒂𝒊+𝟏  

4) Compute the velocities at time step i+1: 𝒗𝒊+𝟏 = 𝒗𝒊 + 𝛾1𝒂𝒊 + 𝛾2𝒂𝒊+𝟏  

5) Repeat all steps for the incremental time steps. 

Above 𝛽1, 𝛽2, 𝛾1, 𝛾2 are the coefficients of integration and ∆𝑡 is time step. In order to 

calculate the coefficients of integration, integration parameter, 𝛽, is chosen as 1.01 

such that it is between 1 and 28/27 (Chung and Lee 1994). Coefficients 𝛽1, 𝛽2, 𝛾1, 

and 𝛾2 used in the time stepping are a function of the time increment as given below: 

𝛽1 = ∆𝑡2(
1

2
− 𝛽), 𝛽2 = ∆𝑡2𝛽, 𝛾1 = −∆𝑡/2, 𝛾2 = 3∆𝑡/2 (2. 9) 

An explicit dynamic finite element analysis program was prepared by using truss 

elements that are capable of undergoing large deformation using an updated 

Lagrangian scheme. P-delta effect (from geometric nonlinearity) can also be 

simulated with this way. The loading durations were kept sufficiently small to 

simulate quasi-static loading conditions and to eliminate dynamic amplification 

effects and minimize the kinetic energy. 

In order to extend the capability of the explicit dynamic analysis platform to perform 

inelastic static analysis, a PID control algorithm was implemented. Most of the 

simulations in this study were tested by using a displacement-controlled approach 

using the feedback from a Linear Variable Differential Transducer (LVDT). In order 

to simulate such specimens with an explicit time integration a PID control scheme is 

used inspired from mechanical control systems. In fact, most of the testing equipment 

uses the PID algorithm to control the hydraulic equipment. By adapting the PID 

control in the explicit time integration we were able to exactly simulate the testing 

conditions. If explicit integration were used without any control algorithm, it would 

not be possible to obtain the softening region of the specimens tested in a 

displacement-controlled manner. Furthermore, if dynamic tests are simulated, using 

just explicit dynamics analysis would be more physically realistic. In general, a PID 
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controller is a loop feedback controller used in various industrial control systems. 

The algorithm can be expressed as: 

�̇�(𝑡)  = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑𝑒

𝑑𝑡
(2. 10)                 

Above, 𝑒(𝑡) represents the tracking error, 𝐾𝑝 is the proportional gain coefficient, 𝐾𝑖 

is the integral gain coefficient and 𝐾𝑑 is the derivative gain coefficient. Since the 

formulation is used for displacement or load control in structural analysis in this 

study, while the left-hand side of the equation is assumed as the rate of the forcing 

function 𝐹(𝑡), the right-hand side is the function of the error function 𝑒(𝑡). In our 

problem, assuming the control variable be 𝑢(𝑡) which is the desired displacement 

value at time t and the displacement from the computational model be 𝑢𝑝(𝑡), the 

error function can be defined as 𝑒(𝑡) = 𝑢(𝑡) − 𝑢𝑝(𝑡). On the other hand, the same 

manner should be implemented for the derivative component of the equation by 

using differences for desired and calculated velocity values at time t. Desired 

velocity value at time t is calculated with the user-defined desired displacement value 

at time t. Since acceleration is not desired at any t value, the integrated part of 𝑒(𝑡) 

is a function of acceleration calculated from the computational model. Thus, the rate 

of 𝐹(𝑡) is defined by the integro-differential equation as a function of 𝑒(𝑡) as in Eq. 

(2.7). Eq. (2.7) was solved at each step of the explicit integration to update the value 

of 𝐹(𝑡). For an arbitrary system shown in Figure 2.25(a), the rate of 𝐹(𝑡) can be 

controlled in multiple ways. Some examples of control are displacement rate at point 

A, relative displacement rate between points A and B, crack width rate of change at 

C, rate of stress or strain change at D. Control target can easily be changed during 

the history of loading. Upon transition from elastic to an inelastic state �̇�(𝑡) assumes 

negative values resulting in the ability of capturing the softening response with 

sufficient accuracy. PID constants were selected based on the classical work of 

Ziegler and Nichols (1942). Selected parameters and control scheme for each 

simulation are presented later. This PID control scheme was implemented within the 

lattice simulation platform and employed in the solution of the problems presented 

in the next sections. The example of control method is shown in Figure 2.25(b) for 
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the beam tested by Walraven (1978) which is also the example provided in the next 

section with 12.5 mm grid size and 3.01 horizon. The point which is controlled by 

the PID is the velocity of the bottom point of the midspan section of the beam. The 

errors are calculated as (computed-desired)/desired x100. The numerical solutions 

show that PID has good accuracy in controlling the velocity and the corresponding 

displacement of the chosen location. In short, an explicit dynamic numerical 

integration is used; and PID feedback is implemented to solve a quasi-static problem 

with a dynamic solver. Lattice models in this study were solved by using this solution 

methodology instead of SLA except direct tension test to calibrate softening 

parameters. 

 

Figure 2.25. PID Control Kinematic Representation and Example 

2.10 Summary of Calibration of Modeling 

Tensile softening parameters of the concrete and AAC lattice elements, bond 

elements, interface elements in the mesh, and perturbation of nodes are the key 

parameters of the model. First, with the input parameters of concrete as 𝑓𝑡, 𝐺𝑓 and 

𝐸𝑡, tension curve of corresponding material with softening parameters should be 

created by using the flowchart in Figure 2.5. Then, with using 𝑓𝑐 value addition the 

other parameters, 𝑅𝑚𝑎𝑥/𝑑 value is determined with 5 and 100 simulation results by 

(a) Arbitrary System (b) Beam Test (Walraven 1978) 
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applying compression calibration, explained in Figure 2.11 for concrete and Figure 

2.13 for AAC masonry, respectively, to handle compressive failure in the system. In 

short, for concrete and AAC masonry members, the model has only 3 input 

parameters (𝑓𝑡, 𝐺𝑓 and 𝐸𝑡) in tension to calibrate tension softening function 

parameters and 1 input parameter (𝑓𝑐) in compression to determine the perturbation 

value of the nodes for concrete and AAC masonry members, although it does not 

match Poisson’s Ratio in the linear elastic range. For RC simulations, steel elements 

are placed in the appropriate location at the discretized domain, and steel nodes are 

connected to the nearest concrete nodes by using bond elements. 𝐹𝑦𝑖𝑒𝑙𝑑, 휀𝑦𝑖𝑒𝑙𝑑 and 

휀𝑢𝑙𝑡 values are used to construct the constitutive model of steel elements as shown 

in Figure 2.22a. For bond elements, the material model is assumed as shown in 

Figure 2.22b. Finally, AAC masonry walls and RC frames can be connected with 

special interface elements, as mentioned in Section 2.8. An overview of all element 

types and corresponding constitutive models can be seen in Figure 2.23. The stand-

alone computational framework of the presented lattice approach capable of all 

mentioned properties of the model was prepared scratch in Fortran programming 

language. 
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CHAPTER 3  

3 REINFORCED CONCRETE AND MASONRY STRUCTURE MODELING AND 

VALIDATION 

Seven reinforced concrete member and two portal frame simulations were conducted 

to validate the accuracy of the lattice modeling for RC members and structures within 

the scope of this study. Reinforced concrete column, beam, wall, and portal frame 

tests conducted by different researchers were compiled for this purpose. Specimens 

failing in shear and/or flexure were selected to test the ability of the lattice analysis 

in capturing the member load-deformation response. Also, over-reinforced beams 

were simulated in order to investigate the performance of the model on the concrete 

crushing response so that it is in the same manner with the uniaxial compression 

response. A discussion of the results and their comparisons are presented below for 

the three groups of members. After validation problems for the RC concrete 

members, two RC portal frame tests were simulated.  

3.1 Reinforced Concrete Members 

In this part, the lattice truss model is validated for numerous RC members, i.e., 

columns, beams and walls failing under different modes. The presented results 

compare the experimental cyclic and monotonic force-displacement response of RC 

beams, columns and walls, with the monotonic backbone response obtained using 

the proposed lattice model. The summary of the test specimens, material properties, 

constitutive model, and solution control parameters for members are presented in 

Table 3.1. Tests were selected based on their failure modes and acceptance of the 

results in the engineering community. The column studies are already in the well-

recognized PEER Database. In these column tests, compressive strength was always 

reported, while the tensile strength was not since it has little bearing for the column 
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behavior. In fact, the influence of tensile strength was studied with deterministic 

sensitivity studies later in this chapter. Material properties, whenever available, were 

taken from reported values and they were based on relevant standards if not given.  

Table 3.1. Properties of the Test Specimens of Reinforced Concrete Members 

P
a

ra
m

et
er

s Column Beam  Wall 

Acun  

and 

Sucuoglu 

(2010) 

Ozcebe 

and 

Saatcioglu 

(1987) 

Foster 

and 

Gilbert 

(1998) 

Walraven 

(1978) 

Belgin and Sener 

(2008) Thomsen 

and Wallace 

(1995, 2004) 

Aldemir 

et al. 

(2017) 

Grid 

1 

Grid 

2 S5x7 L11x30 

𝒇𝒕 

(MPa) 
1.78b 1.917b 6.2 2.5 1.57 1.72 2.03 1.85b 

𝒇𝒄 

(MPa) 
25.9 30 80 - 20 24 42.8 28 

𝑬𝒕 

(GPa) 
23.92c 25.743c 47.7 25.0 21.019 23.025 31.03 24.87c 

𝑮𝒇 

(N/m) 
75 81d 117d 60 50d 75 75 

𝒇𝒚 

(MPa) 
454 448 460 440 530 514 414 360 

𝑬𝒔 

(GPa) 
200 210 200 

𝑵 (kN) 632 600 - - - 378 - 

𝒅 (mm) 
17.5 

35 
25 

10 

20 
12.5 25 5 20 19 20 

𝑲𝒑x109 1.0 1.0 6.00 1.0 

𝑲𝒊x107 10 1.0 3.00 10 

𝑲𝒅x104 1.0 1.0 1.35 1.0 

𝒂𝟏
a 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

𝒂𝟐 80 70 20 30 60 60 80 70 

𝒂𝟑 350 350 100 200 320 300 350 360 

𝑹𝒎𝒂𝒙/𝒅 - 0.080 0.075 - 
aThese values are for =1.5d and d=5 mm. For =3.01d, a1 is taken as 3.01.  

bThese values are found by using TS 500 (TSE 2000). 

c These values are found by using ACI 318-11(American Concrete Institute 2011)(i.e. 𝐸𝑐 = 4700√𝑓𝑐) 

dThese values are found by using CEB-FIP model code 1990 (CEB-FIP 1993). 

Tensile softening parameters (𝑎1, 𝑎2, 𝑎3) were calibrated by using the workflow for 

all concrete specimens explained in Section 2.4. One can expect the value of “𝑎2” to 
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be increased while 𝐺𝑓 increases from left to right for the column specimens in the 

table. Parameter 𝑎2 is not the only parameter to control 𝐺𝑓. In fact 𝑎3 plays a crucial 

role in this regard. It is observed that parameter 𝑎2 mainly controls the softening 

region just beyond the peak strength. Simulation data for column, beam and wall 

simulations are presented in Table 3.2. The velocity of the lateral loading point was 

taken as about 0.025 m/s for all the simulations. 

Table 3.2. Information regarding Time Step, CPU Time, and Lattice data for the 

Results Presented in This Study 

Simulations 
𝒅 

(mm) 
𝜹 

Time 

Steps 

(sec.) 

Durations 

Per 10000 

Steps (sec.) 

Number 

of 

Particles 

Number 

of 

Elements 

Max. 

Disp. 

(mm) 

Column 

Acun and 

Sucuoglu 

(2010) 

17.5 
1.5 2.5 x 

10-8 

8.78 

2667 
10226 

105 3.01 24.94 33096 

35 1.5 
1.0 x 

10-7 
2.28 704 2593 

Ozcebe and 

Saatcioglu 

(1987) 

25 
1.5 8.0 x 

10-8 

2.14 
675 

2522 
110 

3.01 6.42 8388 

Foster and 

Gilbert 

(1998) 

10 
1.5 5.0 x 

10-8 

69.04 
20841 

82100 

11 
3.01 214.22 284202 

20 1.5 
1.0 x 

10-8 
16.82 5301 20570 

Beam 

Walraven 

(1978) 

12.5 

1.5 
1.0 x 

10-8 
7.45 

2405 

9028 

11.5 

3.01 
4.0 x 

10-8 
23.04 30124 

25 

1.5 
2.5 x 

10-8 
2.00 

651 

2306 

3.01 
2.5 x 

10-7 
5.72 7332 

Wall 
Thomsen and 

Wallace (1995, 

2004) 
19 

1.5 1.0 x 

10-8 

41.72 
12998 

51211 
72 

3.01 120.21 162903 

Aldemir et al. 

(2017) 
20 

1.5 5.0 x 

10-8 

66.88 
20385 

80684 
20 

3.01 208.09 280260 
Note: The computer has Intel(R) Core(TM) i5-4590 Processor and 8 GB Installed Memory (RAM) 
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An effort was made to distinguish the cracks based on their strain values in the strain 

distribution figures. In order to clearly demonstrate the crack patterns, the following 

steps were used to post-process crack locations: i- The highest elongation location in 

a crack region of the lattice network was determined. ii- The crack direction was 

calculated based on the crack width-weighted average of lattice element directions. 

iii- The neighboring lattice with the largest average elongation was selected as the 

next crack location. iv- Process was continued until an uncracked location was 

reached. Thus, the lines on the estimated strain distribution images in the figures are 

compared to the observed cracks during the tests.  

3.1.1 Column Simulations 

Lattice models were constructed by using different grid sizes (i.e., 17.5 mm and 35 

mm) and horizons (1.5𝑑 and 3.01𝑑) to test their effect on the response (Figure 2.21). 

In these models, three types of elements, as described in the Section 2.6, were used 

to model concrete, steel reinforcement, and bond. Bond elements were connected 

from the steel nodes to concrete nodes within the prescribed horizon. First, a full-

scale reinforced concrete column tested by Acun and Sucuoglu (2010) was simulated 

(Figure 3.1a). The purpose of these series of tests was to observe the energy 

dissipation capacity of well-detailed RC columns subjected to different loading 

histories.   

The column test specimen was first subjected to a constant axial load (632 kN) and 

then increasing cyclic lateral displacement excursions were applied. The specimen 

exhibited a ductile flexural failure mode with steel yielding followed by cover 

spalling. The grid sizes were taken as the integer dividers of the stirrup spacing in 

order to provide a uniform mesh size while placing the reinforcement at their exact 

locations. The foundation of the specimens and the strong floor were not modeled, 

and fixed supports were placed at the bottom boundary of the column. Lateral load 

and top displacement results and damage patterns from the simulations and the 



 

 

91 

experiment are shown in Figure 3.1 and Figure 3.2, respectively. In Figure 3.2, 

contours denote the strain values of the lattice elements.  

In the figures presented strain distribution in simulations, several close-up views are 

provided to clearly show concrete spalling. Also, it can be observed that there are 

multiple shear cracks in the test result. Similarly, the numerical simulation exhibits 

many inclined shear and flexural cracks. It was observed that the lateral load carrying 

capacity estimations from the simulation with the largest grid size had the largest 

error. Upon decreasing the grid size, a better agreement with the test result was 

observed. The lateral load carrying capacity of the test specimen was overestimated 

by about 10% for the 1.5𝑑 horizon with 17.5 mm grid spacing. The absence of cyclic 

modeling appeared to be the reason of the observed overestimation of the lateral load 

carrying capacity. The strength degradation after the peak was found to be more 

severe in the simulation than that observed in the test. Crack developments were not 

visually reported by Acun and Sucuoglu (2010) and Acun (2010). However, it was 

reported that flexural cracking extended 60 cm from the base of the column. Crack 

development and rebar strains at about 2.5% interstory drift ratio for the 1.5𝑑 horizon 

with 17.5 mm grid spacing model are shown in Figure 3.1d. It can be observed that 

the flexural cracking zone is approximately 60 cm from the base agreeing well with 

the experimental observation. The flexural crack spacing was approximately equal 

to the stirrup spacing. The computational rebar strains show significant yielding of 

both longitudinal and transverse rebars. The estimated flexural crack spacing of 

about 10 cm from the lattice simulation was similar to the flexural crack spacing 

from the experimental observations.  

It should be noted that crack spacing was observed clearly for the 1.5𝑑 horizon with 

17.5 mm grid spacing model, which gave the closest estimate of the capacity. The 

17.5 mm with the 3.01𝑑 horizon lattice model estimated slightly higher lateral load 

carrying capacity compared to the 1.5𝑑 horizon case. Compression induced cover 

spalling was captured as a result of the local instability in the compressed lattice 
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elements. These results show the ability of the lattice modeling in capturing the 

response of a reinforced concrete member failing in a flexural mode.  

 

Figure 3.1. Full Scale Reinforced Concrete Column Simulation: (a) Dimensions 

and Details of Test Specimen (Dimensions are given in mm); (b) Observed Crack 

Pattern; (c) Load-Deflection Comparison (Acun and Sucuoglu 2010). 

(a) Test Specimen (b) Cracking in Experiment 

(c) Load-Deflection Curves 

Column Base  

Cover 

Spalling 
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Figure 3.2. Full Scale Reinforced Concrete Column Simulation: (d) Cracking and 

Rebar Strains at about 2.5% Drift Ratio for 𝑑=17.5 mm, 𝛿 = 1.5𝑑; (e) 𝑑=17.5 mm, 

𝛿 = 1.5𝑑; (f) 𝑑=35 mm, 𝛿 = 1.5𝑑; (g) 𝑑=17.5 mm, 𝛿 = 3.01𝑑 (Amplification 

Factor = 10 for (d)-(g)) (Acun and Sucuoglu 2010). 

The full scale reinforced concrete column specimen (U4) from Ozcebe and 

Saatcioglu (1987), which exhibited a flexural-shear failure mode, was simulated by 

using the lattice modeling approach in a quasi-static monotonic manner. The lattice 

models and the details of the specimen and are shown in Figure 3.3 and Figure 3.4a, 

respectively. The lattice model was constructed by using a 25 mm grid size with 1.5𝑑 

and 3.01𝑑 horizon sizes.  A similar loading strategy to Acun and Sucuoglu (2010) 

test simulation was used (Figure 3.1a) i.e. first the axial load of 600 kN was applied 

and then lateral displacement with velocity control was induced at the top nodes. 

Lateral load and top displacement comparisons and the damage patterns from the 

experiment and simulations are shown in Figure 3.4b-e. It can be observed that the 

overall load-deformation response was simulated with a reasonable accuracy for the 

(d) Cracking and Rebar Strains (e) d=17.5 mm, δ=1.5d 

(f) d=35 mm, δ=1.5d (f) d=17.5 mm, δ=3.01d 
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1.5𝑑 horizon lattice model. The strength degradation with increasing displacement 

demands was successfully duplicated with this model. The 3.01𝑑 horizon model 

over-estimated the lateral strength and the ductility of the column. The key reason 

could be attributed to the strengthening effect of the increased horizon in the regions 

of tensile stressed concrete and bond elements. The higher horizon size enabled 

slightly higher capacity estimation because residual forces at the bond regions for 

3.01𝑑 are higher than the 1.5𝑑 horizon size since bond elements were connected the 

steel nodes to very far concrete nodes with same residual force for all elements 

individually, as mentioned in Section 2.6. On the other hand, the ductility of the 

column was related with the progressive compressive failure as indirect tension 

response with uniform mesh distribution. The perturbation effect of the higher 

horizon sizes is not the scope of this study. Similar to the result from the previous 

simulation, the cover spalling was captured by the lattice model in the form of lateral 

splitting followed by the lattice instability. In short, it can be stated that the classical 

lattice model (i.e. the 1.5𝑑 horizon case) was more successful compared to a larger 

horizon model in simulating the reinforced concrete shear response. 

 

Figure 3.3. Representation of Lattice Model (Dimensions in millimeter) (Ozcebe 

and Saatcioglu 1987) 
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Figure 3.4. Column Specimen (U4) Simulation: (a) Dimensions and Details of Test 

Specimen (Dimensions are Given in mm); (b) Load-Deflection Comparison; (c) 

Observed Crack Pattern; (d) 𝛿 = 1.5𝑑; (e) 𝛿 = 3.01𝑑 (Amplification Factor = 3 for 

(d) and (e)) (Ozcebe and Saatcioglu 1987). 

3.1.2 Beam Simulations 

The reinforced high strength reinforced concrete deep beam tested by Foster and 

Gilbert (1998) shown in Figure 3.5a was simulated by using the lattice approach. 

The test specimen sustained damage first by flexural cracking followed by inclined 

shear cracking and compressive failure.  Three lattice models were prepared with 

two uniform grid sizes (10 mm and 20 mm) and two horizons (1.5𝑑, 3.01𝑑) as 

presented in Figure 3.5 and Figure 3.6. Load and midspan displacement results were 

obtained by plotting the total load versus the midspan deflection obtained by 

subtracting the average support displacements from the computed midspan 

(a) Test Specimen (b) Load-Deflection 

(c) Cracking in Experiment (d) Cracking for 1.5𝑑 (e) Cracking for 3.01𝑑 
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deflection (Figure 3.5b). The damage patterns mapped from the test specimen are 

shown along with the computed damage patterns from the three lattice analyses 

(Figure 3.5c-f). It can be observed that the lattice model with the 3.01𝑑 horizon 

significantly overestimated the response beyond a midspan deflection of about 4 mm. 

The larger horizon used in the lattice elements was thought to be the reason of the 

over-strength in the 3.01𝑑 horizon lattice model, similar to the column simulations. 

One reason is that a higher horizon size provides more connection between steel and 

concrete nodes by introducing higher residual bond strength, which means higher 

capacity estimation. Secondly, compression locking for the simulations with 3.01𝑑 

horizon size results in higher load carrying capacity at the struts due to the uniform 

mesh distribution. On the other hand, the lattice models with 1.5𝑑 horizons provided 

a better estimate, where the ultimate strength of the model with the smaller grid size 

was only 5% different than the test result. The sequence of cracking is marked in 

Figure 3.5d-f. First, flexural cracking in the tension zone was observed followed by 

inclined shear cracks extending from the support to the loading plate. Finally, 

horizontal cracks appeared in the compression zone resembling a splitting failure. 

Flexural cracking followed by shear cracking and splitting of the compressed zone 

was captured in a reasonable manner by all the models. Foster and Gilbert (1996, 

1998) reported only the final crack pattern and indicated that failure occurred when 

the shear cracks penetrated into the compression zone in a sudden manner. This 

observation agrees well with the simulation results.  

For the second beam validation study, the reinforced concrete beam test (with no 

shear reinforcement) of Walraven (1978) shown in Figure 3.7a was simulated. The 

failed pictures of the specimen were not available for this test. The load carrying 

capacities based on flexural yielding of the reinforcement and shear strength of the 

section according to ACI 318-11 (American Concrete Institute 2011) were found as 

56.48 kN and 46.56 kN, respectively. Based on this calculation and the observed 

ductility of the load-deformation response, flexural cracking followed by shear 

failure appears to be the failure mode of the specimen. 
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Figure 3.5. Deep Beam Simulation: (a) Dimensions and Details of Test Specimen 

(Dimensions are given in mm); (b) Load-Deflection Comparison; (c) Observed 

Crack Pattern; (d) 𝑑=10 mm, 𝛿 = 3.01𝑑; (e) 𝑑=10 mm, 𝛿 = 1.5𝑑; (f) 𝑑=20 mm, 

𝛿 = 1.5𝑑 (Amplification Factor = 10 for (d)-(f)) (Foster and Gilbert 1998). 

Four lattice models using 25 mm and 12.5 mm grid sizes with 1.5𝑑 and 3.01𝑑 

horizon sizes were employed (Figure 3.8).  Load and midspan displacement results 

along with the obtained damage patterns and strain plots are shown in Figure 3.7b-

d. 

(a) Test Specimen 

(c) Cracking in Experiment 

(b) Load-Deflection Curves 

(d) d=10 mm, 𝛿 = 3.01𝑑 

(e) d=10 mm, 𝛿 = 1.5𝑑 (f) d=20 mm, 𝛿 = 1.5𝑑 
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Figure 3.6. Representation of Lattice Model (Dimensions in millimeter) (Foster and 

Gilbert 1998) 

The estimated crack spacing ranged between 80 to 100 mm, which appears to be 

reasonable based on engineering judgement. In the simulations, the beam 

experienced flexural yielding followed by shear failure. The three simulation results 

except 25 mm 1.5𝑑 horizon are quite similar to each other. Hence, it is not possible 

to claim the less mesh dependency or better results with increasing horizon values. 

The 25 mm 1.5𝑑 horizon simulation for Walraven (1978) test experience a combined 

bond and shear failure. This was not observed in the other simulations and there is 

no experimental evidence reported by Walraven (1978) on a possible bond failure. 

The slightly lower capacity observed in the 25 mm 1.5𝑑 horizon simulation can be 

attributed to the inability of transferring tensile stresses to the reinforcement upon 

shear cracking. It can be seen that shear failure took place in the support region and 

flexural cracking was observed in the middle region. In this regard, damage pattern 

is realistic as it is a combination of flexure and shear. The strength and load-

deformation response of the beam was estimated almost perfectly along with the 

deformation capacity. 
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Figure 3.7. Reinforced Beam Simulation: (a) Dimensions and Details; (b) Load-

Deflection Comparison; (c) 𝑑 = 25 mm; (d) 𝑑 = 12.5 mm (Walraven 1978). 

(a) Test Specimen (Dimensions in mm) 

(b) Load-Deflection Curves 

(c) d=25 mm 

(d) d=12.5 mm 

Amplification 

Factor=10 
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Figure 3.8. Representation of Lattice Model (Dimensions in millimeter) (Walraven 

1978). 

Four-point bending beam tests having only tension reinforcement (Belgin and Sener, 

2008) were also simulated to test the ability of the lattice model in estimating 

concrete crushing response in structural members. Only 1.5𝑑 horizon size was used. 

The specimen details can be seen in Figure 3.9.a. Owing to symmetry, half of the 

specimens were modeled with a grid size of 5 mm and 20 mm for S5x7 and L11x30, 

respectively. It should be noted that both specimens were scaled versions of each 

other with a similar reinforcement ratio, 𝜌=3%. The damage results are presented for 

both tested beams to show the possible differences. The lattice simulations were 

conducted for a uniform grid and a perturbed grid with selected 𝑅𝑚𝑎𝑥 based on the 

flowchart in Figure 2.11. The capacities of the experiments and simulations and also 

the ACI 318-14 (2016) and Lattice Discrete Particle Model (LDPM) (Alnaggar et 

al., 2019) are given in Table 3.3. The simulation results of estimated damage for both 

beams are shown in Figure 3.9.a. In the damage pattern, the elements with strain 

values higher than 0.003 are removed for better cracking representation. The crack 

pattern for uniform grid and load deflection curve along with the experimental results 
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for the three L11x30 specimens, are shown in Figure 3.9.b and c. The load carrying 

capacity was not obtained accurately upon using a structured grid, due to 

compression locking (Figure 3.9.b). The upper horizontal concrete elements are 

carry so much of the compression that the capacity is determined by the yielding of 

the tension steel. Similar behavior is observed for the uniaxial compression 

simulations as mentioned. On the other hand, the estimated strength of the specimen 

was very close to the experimental result when an unstructured grid was used. The 

estimated cracking was in good agreement with the test results. First, flexural 

cracking was observed as was the case in the experiment. Then, the capacity was 

reached with the crushing of concrete, showing quite accurate simulation. 

 

Figure 3.9. Simulation Results of Overreinforced Beams (Belgin and Sener, 2008): 

(a) Test Specimens and Crack Patterns; (b) Uniform Mesh (L11x30); (c) L11x30. 

(a) Test Specimen and Cracking 

(c) Load-Deflection Curves (b) Uniform Mesh 
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Table 3.3. Belgin and Sener (2007) Results 

Capacity [kN] 

Trial 
S5x7 L11x30 

Experiment Simulation LDPM ACI318 Experiment Simulation LDPM ACI318 

1 2.452 2.298 

3.05 2.8 

25.961 18.037 

19.5 21.8 

2 3.032 2.997 24.376 19.083 

3 2.877 2.186 25.807 21.247 

4  3.025  21.292 

5  2.330 
 

 
19.208 

Average 2.787 2.567 3.05 2.8 25.381 19.773 19.5 21.8 

3.1.3 Wall Simulations 

A slender reinforced concrete wall (i.e. aspect ratio 1: 3) tested by Thomsen and 

Wallace (1995, 2004) under constant axial load and increasing cyclic lateral 

displacement excursions was simulated by using the lattice approach in a static 

monotonic manner (Figure 3.10a). Grid size was used as 19 mm with the 1.5𝑑 and 

3.01𝑑 horizons (Figure 3.11). Estimated lateral load and top displacement result 

along with the experimental one are shown in Figure 3.10b. Damage patterns of the 

test and the numerical results corresponding to the end of the simulations are also 

shown in the same figure. It can be observed that the simulation result closely follows 

the envelope of the response with slight over-predictions of the post-cracking 

stiffness and strength. Although the initial stiffness and the ultimate strength of this 

specimen was accurately simulated an overestimation of the response in the post 

yielding region was noted. The horizon change did not significantly influence the 

response of the lattice model, while the larger horizon provided a clearer 

representation of the crack spacing. Based on the estimations from this model and 

that from Acun and Sucuoglu (2010) simulation result, one can state that the 

proposed lattice model appears to perform reasonably for members failing under 

flexural failure modes.  
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Figure 3.10. Slender Reinforced Concrete Wall (i.e. aspect ratio 1:3) Simulation: 

(a) Dimensions and Details of Test Specimen (Dimensions are given in mm); (b) 

Load-Deflection Comparison; (c) Observed Crack Pattern; (d) 𝛿 = 1.5𝑑; (e) 𝛿 =

3.01𝑑 (Amplification Factor = 10 for (d) and (e)) (Thomsen and Wallace 

1995,2004). 

(a) Test Specimen 

(c) Cracking in 

Experiment 

(b) Load-Deflection Curves 

(d) 𝛿 = 1.5𝑑 

(e) 𝛿 = 3.01𝑑 
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Figure 3.11. Representation of Lattice Model (Dimensions in millimeter) (Thomsen 

and Wallace 1995,2004). 

The last test case was the simulation of a reinforced concrete wall tested by Aldemir 

et al. (2017) failing in a flexural-shear mode. The specimen was tested to observe the 

deformation capacity of a squat reinforced concrete wall designed to yield in shear. 

The specimen was tested up to about 1% drift ratio and did not sustain any strength 

degradation despite the severe inclined cracking. The details of the specimen and 

instrumentations on the specimen are shown in Figure 3.12a. Two lattice models 

were constructed by using 20 mm grid spacing and 1.5𝑑 and 3.01𝑑 horizon sizes 

(Figure 3.13). The response estimations and damage pattern observed in experiment 

and simulation are presented in Figure 3.12b-e. It can be observed that the ultimate 

strength and the deformation capacity of the model were simulated with a reasonable 

accuracy. The ultimate strength of the 1.5𝑑 horizon model was closer to the 

experimental result, whereas the larger horizon provided more lateral load carrying 

capacity. This result is consistent with the previous discussions on the effect of 

increasing horizon in increasing the lateral strength. In this simulation, the bond 
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effect for higher horizon was more dominant. The damage patterns show that the 

combined flexural and shear cracking was captured by the numerical model. It can 

be concluded that the failure of the specimen was due to flexural-shear cracking for 

the last simulation whereas flexural failure mode was the dominant one for the test 

of Thomsen and Wallace (1995, 2004). 

 

Figure 3.12. Reinforced Concrete Wall Simulation: (a) Dimensions and Details of 

Test Specimen (Dimensions are given in mm); (b) Load-Deflection Comparison; 

(c) Observed Crack Pattern; (d) 𝛿 = 1.5𝑑; (e) 𝛿 = 3.01𝑑 (Amplification Factor = 

10 for (d) and (e)) (Aldemir et al. 2017). 

(a) Test Specimen 

(c) Cracking in Experiment 

(b) Load-Deflection Curves 

(d) δ=1.5d 

(e) δ=3.01d 
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Figure 3.13. Representation of Lattice Model (Dimensions in millimeter) (Aldemir 

et al. 2017)  

3.1.4 Parametric Studies 

In this section, several parametric studies are conducted. First, the sensitivity of the 

results to the change in all parameters were examined with deterministic sensitivity 

analysis in order to propose the robustness of the model. Then, the effect of loading 

velocity on global response is discussed. Finally, the results with 45 rotated grids are 

presented and compared with the results obtained from no rotation.  

3.1.4.1 Sensitivity Analysis 

In order to understand the effect of uncertainty on the ultimate strength and energy 

absorption capacity estimations of the lattice results, a deterministic sensitivity study 

was conducted. For this purpose, the tornado diagram commonly used in decision 
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analysis (Clemen 1996), was used. The tornado diagram consists of a set of 

horizontal bars, referred to as swings, for each variable. The extreme values of the 

swings are computed by using the predefined upper and lower bounds of the variable 

(e.g. mean ±  standard deviation as used in this study) while the other input variables 

are set to their best estimates such as their mean values. The length of each swing 

represents the variation in the output due to the variation in the respective random 

variable. Therefore, a variable with larger effect on the output has larger swing than 

those with smaller effects. In a tornado diagram, swings are displayed in the 

descending order of the swing size from top to bottom resembling a tornado to 

display clearly the most influential parameters.  

The selected demand parameters were the ultimate strength and energy absorption 

capacity (i.e. area under the load-deflection curve). On the other hand, input 

parameters with possible uncertainties were selected as 𝐸𝑡, 𝑓𝑡 , 𝐺𝑓 , 𝑓𝑦, 𝒂 and the 

loading velocity (𝑣). Two validation cases, namely the Acun and Sucuoglu (2010) 

column test and Foster and Gilbert (1998) beam test were reanalyzed for the purposes 

of developing the tornado diagrams. The mean values of the variables were selected 

same as those values used in the simulations. The coefficient of variation of 

𝐸𝑡, 𝑓𝑡, 𝐺𝑓 , 𝑓𝑦 were taken from Mirza and MacGregor (1979) and Mirza et al. (1979) 

whereas the coefficient of variation for 𝒂 and the loading velocity were selected as 

0.2 based on engineering judgement (Table 3.4).  

Tornado diagrams for the analyzed cases are presented in Figure 3.14. It is interesting 

to note that none of input parameters (𝐸𝑡, 𝑓𝑡, 𝐺𝑓 , 𝑓𝑦 , 𝒂 and the loading velocity (𝑣)) 

considered in the parametric studies affected the strength or stiffness of the 

reinforced concrete element more than 8 %. This result showed the robust nature of 

the lattice approach and its ability of predictions without significant dependence on 

the uncertainty of the input parameters. It can be observed the parameters with the 

outmost importance were the concrete tensile strength and reinforcement yield 

strength for the strength estimation of RC members failing in flexure (Acun and 

Sucuoglu, 2010) and shear (Foster and Gilbert, 1998), respectively. On the other 
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hand, 𝐸𝑡 , 𝑓𝑡 and 𝒂 were the most important parameters effecting the estimation of 

normalized energy for both cases. The least important parameter appeared to be 𝐺𝑓. 

It should be noted that upon changing 𝐺𝑓, the softening parameters of the tension 

model Figure 2.4 were calibrated separately for each simulation. This situation does 

not allow observing the influence of softening parameters on the demands. Hence a 

separate sensitivity study to examine the influence of variability in the softening 

parameters, namely 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, was conducted. 

Table 3.4. Parameters Values for Sensitivity Analysis 

Parameters 

Mean Values for 

Acun and Sucuoglu, 

2010 Test 

Mean Values for 

Foster and Gilbert, 

1998 Test 

Coefficient of 

variation 

𝑬𝒕 (GPa) 23.92 47.7 0.12 

𝒇𝒕 (MPa) 1.78 6.20 0.20 

𝑮𝒇 (N/m) 75 117 0.20 

𝒇𝒚 (MPa) 454 460 0.05 

𝒗 (m/s) 0.25 0.025 0.20 

𝒂 0.7 0.7 0.20 

 

For this study, the coefficient of variation was chosen uniformly as 0.10 for all the 

parameters. The resulting tornado diagrams are shown in Figure 3.15. It can be 

observed that the maximum change in the demand parameters was up to 2% upon 

considering the uncertainty of the softening parameters. This result shows that the 

softening parameters that are calibrated consistently with the procedure given in 

Figure 2.11 can result in rational estimations with small uncertainties. Parameters 

𝑎1, 𝑎3 and 𝑏1 appear to be more influential on the uncertainity compared to the other 

parameters. In other words, the first point on the descending portion of the piece-

wise linear softening function and the ultimate strain are the important parameters 

for the sensitivity. However, it should be reiterated that the uncertainties in the 

parameters are reflected in the outcomes in a much smaller manner, showing the 

robustness of the lattice approach. 
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Figure 3.14. Deterministic Sensitivity Analysis Results for Model Parameters 

 
Figure 3.15. Deterministic Sensitivity Analysis Results for Concrete Constitutive 

Material Parameters 

(a) Foster and Gilbert (1998) (b) Acun and Sucuoglu (2010) 

(d) Acun and Sucuoglu (2010) (c) Foster and Gilbert (1998) 

(a) Foster and Gilbert (1998) (b) Acun and Sucuoglu (2010) 

(d) Acun and Sucuoglu (2010) (c) Foster and Gilbert (1998) 



 

 

110 

3.1.4.2 Loading Rates 

The column specimen tested by Acun and Sucuoglu (2010) presented in “Column 

Simulations” section was simulated with different 𝑑 and loading velocities (Figure 

3.16). The change of loading rate for Acun and Sucuoglu (2010) test did not change 

the response estimations as shown in the figure. In all simulations, the loading rate 

was checked in terms of if smaller velocity changed the results. The results of RC 

member simulations, columns, beams and walls, are presented with a similar loading 

rate of 0.025 m/s.  

 

Figure 3.16. Lateral Load – Top Displacement Curves in Different Loading Rates  

3.1.4.3 Grid Rotation 

The effect of lattice rotation was studied by solving one of the example problems 

using two different lattice angles in order to ensure the objectivity of the model with 

respect to lattice rotation. Acun and Sucuoglu (2010) column test presented in the 

“Column Simulations” section was solved with the 0 and 45-degree lattice angles. 

The results are shown in the Figure 3.17. It can be seen that the load-deflection 

response and the crack patterns are almost unaffected by the lattice rotation. Also, 

Poisson’s Ratio change for different lattice angles is shown in Figure 2.3. 
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Figure 3.17. Simulation Comparisons With Respect To Lattice Rotation 

3.1.5 Discussion of Results 

A summary of the results is shown in Table 3.5. Initial stiffness and ultimate strength 

estimations are close to the experimental observation for all the analyzed cases. It 

can be stated that the overall load-deformation response, crack patterns and spacing 

estimations are in reasonable agreement. Reducing the grid size of the model 

appeared to result in more accurate estimations of strength and deformation capacity. 

Furthermore, smaller horizon is faster, but it is not perfectly isotropic as explained 

in Section 2.2 (also shown in Table 3.2). On the other hand, simulation results 
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pointed out that 1.5d horizon size seems to be the better choice for the response 

estimation of the RC members as opposed to 3.01d for brittle homogeneous materials 

(Silling and Askari, 2005). The absence of a compression model did not adversely 

affect the response estimations for the simulations conducted in these simulations. 

In most of the reinforced concrete tests, the failure was determined by concrete 

cracking in flexure or shear, and steel yielding. It should also be noted that the model 

was proven with the accurate estimation of the concrete cover spalling and rebar 

buckling failure in column and beam experiments due to instability in some of the 

simulations with only tension and compression calibration procedures. As can be 

seen in Figure 3.3 and Figure 3.4, lattice elements in the compressed portion of the 

columns undergo large later deformation indicating cover spalling. Moreover, 

validation study for over-reinforced beams (Belgin and Sener, 2008) shows that the 

proposed lattice model captures the compression failure as a local stability loss. 

Calculated load-deflection curves are in good agreement with the experimental 

results. Compression softening is observed, but it is slightly underestimated. This 

can be attributed to the absence of cohesion in the proposed lattice approach. 

Furthermore, there is a close relationship between tensile and compression softening 

behaviors. The results of the deterministic sensitivity analyses confirmed the 

robustness of the model. It was found that the expected uncertainty in the input 

parameters affected the response estimations by no more than about 10%. The most 

influential parameters related with strength and strain energy capacities are 

determined as concrete tensile strength and steel yield strength. Interestingly, the 

variation of the tensile fracture energy and tensile softening parameters appeared to 

exhibit insignificant differences for strength and energy absorption estimations in the 

reinforced concrete simulations. One of the most important reason of this robustness 

is the tensile fracture energy regularization of the model. In the light of information 

on mesh sensitivity in works conducted for concrete and RC members, it can be 

stated that tensile fracture energy regularization enables mesh independence in 

mesoscale. Thus, different grid sizes could be utilized with mesh objectivity. Mesh 

independency is also proven with the simulation results.  
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Furthermore, a simpler model such as beam elements with fiber section could be 

employed while use of fiber modeling approach is perfectly suitable for flexural 

failure modes; however, it is difficult to obtain shear response, crack width 

estimations and damage patterns. Finally, it can be stated that the simulation of 

various failure types including flexural, shear, tensile, compressive failures, and 

combination of them obtained in the experiments were exhibited with sufficiently 

accurate results by using proposed model.  

Table 3.5. Summary of the Comparison between the Computed and Experimental 

Results 

Simulations 
𝒅 

(mm) 
𝜹 

Initial Stiffness (kN/mm) Maximum Force (kN) 

Experiment Simulation Experiment Simulation 

Column 

Acun and 

Sucuoglu (2010) 

17.5 
1.5 

9.45 

9.47 

79.862 

88.565 

3.01 9.48 89.748 

35 1.5 9.33 98.411 

Ozcebe and 

Saatcioglu (1987) 
25 

1.5 
87.47 

85.81 
324.614 

337.053 

3.01 93.68 366.531 
Beam 

Foster and 

Gilbert (1998) 
10 

1.5 

553.90 

553.14 

1019 

942.207 

3.01 578.10 1298.582 

20 1.5 598.06 1162.548 

Walraven (1978) 

12.5 
1.5 

23.91 

21.91 

60.38 

62.303 

3.01 23.80 63.453 

25 
1.5 23.00 59.386 

3.01 25.64 67.947 
Belgin 

and 

Sener 

(2008) 

S5x7 5 

1.5 

0.85 0.94 2.787 2.567 

L11x30 20 1.54 1.60 25.381 19.773 

Wall 

Thomsen and 

Wallace 

(1995,2004) 
19 

1.5 
35.19 

32.26 
163.284 

169.834 

3.01 38.38 174.544 

Aldemir et al. 

(2017) 
20 

1.5 
1038.44 

943.16 
963.592 

1164.413 

3.01 1052.37 1325.675 
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3.2 Reinforced Concrete Structures (Portal Frame Simulations) 

Two single-bay and single-story portal bare frames with planar dimensions of 

2750x4200 and 2500x1500 tested by Calvi and Bolognini (2001) and Binici et al. 

(2019) were compiled for reinforced concrete structure validation problems of the 

proposed lattice model within the scope of this study. The mechanical properties of 

concrete and rebar of portal frame specimens and dimensions and the details of the 

reinforcement used in test specimens are presented in Table 3.6 and Figure 3.18.  

Table 3.6. Material Properties of Concrete and Steel for Portal Frames 

Properties 
Batch 1 

(METU) 

Batch 2 

(Pavia)a 

Concrete  Column Beam 

Compression Strength 

[MPa] 

27.94b 

25.00c 29.32 34.56 

Tension Strength [MPa] 1.85d 2.31 2.67 

Density [kg/m3] 2400 2500 

Modulus of Elasticity 

[GPa] 
24.5e 24.3 25.5 

Tensile fracture energy 

[N/m] 
70f 94 97 

𝑎1
g 1.5 

𝑎2 80.5 50.0 40.0 

𝑎3 350.0 300.0 270.0 

Long. Reinforcement   

Modulus of Elasticity 

[MPa] 
200000 

Yield Strength [MPa] 
448b 

456c 558 

Ultimate Strength [MPa] 535 649 

Ultimate Strain 0.1 0.023 

𝜏𝑏[MPa]h 3.9 4.2 
a Values were taken from Milanesi et al. (2018); 

b Binici et al. (2019); c In this study; d TS500 (2000) 

e ACI 318 (2011); f CEB FIP Model Code 2010 (2012) 

g Tensile fracture energy parameters were found for grid size (d)=5 mm 

h Calculated as 0.78√𝑓𝑐 
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Figure 3.18. Dimensions of Portal Frames for (a) METU Frame (Batch 1) (Binici et 

al. 2019) and (b) Pavia Frame (Batch 2) (Calvi and Bolognini 2001) 

Reported values, if available, were used for the simulation, while corresponding 

standards were used for the parameters that were not reported. In the models, three 

types of elements were used for steel, concrete, and bond, as mentioned in 

Reinforced Concrete Modeling section. The bottom of both columns was fixed. The 

lateral load was applied as a uniformly distributed load by using proportional integral 

derivative control to avoid stress localization after applying axial load on the related 

(a) METU Frame 

(b) Pavia Frame 
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top nodes. The grid sizes were adjusted in order to place the longitudinal 

reinforcements at their exact locations. Only 1.5𝑑 horizon size was used for these 

simulations for the sake of simplicity and also, better results are obtained for 1.5𝑑 

horizon size compared with the higher horizon sizes as discussed for RC member 

simulations. 

The bare frame tested in Middle East Technical University's structural laboratory by 

Binici et al. (2019) was a half-scale frame. The load-deflection curve from the 

simulations is shown in Figure 3.19a. Grid size (𝑑) was chosen as 20 mm. Two 

different 𝜶 values, 0.7 and the value found by Eq. (2.8) as 0.3 as mentioned in Section 

2.6, were chosen to investigate the effect of residual bond strength value on the 

global response. The initial stiffness from the simulation and experiments were close 

to each other for the 𝜶 value of 0.7. Also, the base shear simulation resembled the 

envelop of the experimental response until the displacement value of about 10 mm. 

However, the capacity was overestimated; the simulated lateral load-carrying 

capacity was 100 kN, versus an experimental capacity of 83 kN. Spalling was 

observed during the experiment after a 3% drift ratio at the column base (Binici et 

al. 2019) (Figure 3.19b). Figure 3.19b represents the strain values of concrete and 

steel elements near the end of the simulation. With a uniform surface grid, the 

concrete element on the outer part of the compression edge of the column sustained 

high forces due to linear response in compression. On the other hand, with an 𝜶 value 

of 0.3, as found by Eq. (2.8), the experimental load-deflection curve is sufficiently 

accurately duplicated (Figure 3.19c). Moreover, cover spalling following by rebar 

buckling was exhibited. The figure is enhanced by enlarging images and the region 

related with the cover spalling and rebar buckling is indicated in order to better 

representation. After sufficient relative displacement was reached on the bottom 

region of columns, elements at the cover region became unstable due to large 

deformations. The model incorporates the instability due to the updated-lagrangian 

approach. We refer to cover spalling and bar buckling when the stress drops to zero 

and stability is triggered. 
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From the simulations, it was observed that there is a unique relationship for the lattice 

unit due to tensile fracture energy and the randomness concept. While the maximum 

strain concept can be stated as the failure point for tensile response, material stability 

problem is the main subject in compression failure in the form of spalling or 

crushing.  

 

Figure 3.19. Reinforced Concrete Portal Frame Simulations: (a) Load-Deflection 

Comparison; Observed Crack Pattern for the Residual Bond Parameter (𝒂) Values 

of (b) 0.7 and (c) 0.3 (Binici et al. 2019). 

A full-scale frame conducted by Calvi and Bolognini (2001) (Pavia Frame) and used 

for AAC masonry infilled wall conducted by Penna and Calvi (2006) was subjected 

to an axial load of 400 kN on each column. The compressive strengths of concrete 

used in columns and beam were different. Lattice modeling with a grid size value of 

30 mm was performed. 𝜶 value is determined by using Eq. (2.8). Lateral load and 

top displacement comparisons and damage patterns from the simulation are shown 

(a) Base Shear – Lateral Displacement 

Curve (b) Cracking for 𝒂=0.7 

(c) Cracking for 𝒂=0.3 
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in Figure 3.20. Initial stiffness was accurately simulated. Although the lateral load-

carrying capacity was estimated sufficiently accurate, the displacement demand at 

the capacity was obtained slightly lower in simulation. The reason for this higher 

rigidity can be attributed to the monotonic simulation instead of cyclic modeling. 

Also, strength degradation after the peak was captured with the lattice model. Crack 

developments were not visually reported in the experimental work. First, flexural 

cracking near the end of columns and beam was observed in the simulation. Then, 

splitting between steel and concrete occurred at high displacement demands.   

 

Figure 3.20. Reinforced Concrete Portal Frame Simulations: (a) Load-Deflection 

Comparison; (b) Observed Crack Pattern (Calvi and Bolognini 2001). 

 

 

 

(a) Base Shear – Lateral 

Displacement Curve 

(b) Cracking in Simulation 
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CHAPTER 4  

4 AAC INFILLED FRAME TESTS AND VALIDATIONS 

In this chapter, the experimental results of two AAC infilled frames tested for the 

purposes of this study are presented. The results of these two tests are discussed with 

the previous AAC infill wall specimen tested by Binici et al. (2019). Later, four AAC 

masonry infilled walls, including two specimens in this study, Binici et al. (2019) 

and Penna and Calvi (2006) were simulate with the proposed lattice model. Finally, 

a parametric study to estimate the contact length of the walls with different aspect 

ratios and properties of the interaction region was conducted.  

4.1 AAC Infilled Frames Experiments 

In this section, first, the specimens for two unreinforced AAC masonry infilled 

frames tested in METU Structural Laboratory within the scope of this study are 

described and test results are presented. Then, AAC-infilled frames tested by Binici 

et al. (2019) and Penna and Calvi (2006) are introduced  

4.1.1 New Tests in This Study 

Two single-bay and single-story half-scaled AAC-infilled portal frames were tested 

in the course of this experimental program. The presence of the opening in the infill 

wall and its effect on the compression strut in the wall were studied with these 

specimens. The details and dimensions of the specimens named SP1 and SP2 are 

shown in Figure 4.1a and b. The dimensions and reinforcement detailing of the test 

frame, used for SP1 and SP2, were previously shown in Figure 3.18a. The 

mechanical properties of concrete and rebar used for the frames are provided in Table 

3.6. The water/cement ratio, cement type and the maximum aggregate size of the 
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concrete used in the experiments was as 0.65, CEM1 42,5R and 11.2, respectively, 

with a target cylindrical compressive strength of 25 MPa. Three uniaxial 

compression tests were conducted on 150 mm x 300 mm cylinders (ASTM C192 

2002) on the test days to determine compressive strength of concrete. According to 

ASTM C617 (ASTM C617 2012), sulfur caps were placed at the both ends to achieve 

plane surface. The RC frames were designed following the Turkish Earthquake 

Design Code (2018) requirements. While the SP1 specimen had no opening, a 

window opening was placed in the wall for the SP2 specimen. The upper gap 

between the beam and the infill wall was adjusted as 1 cm and filled with foam for 

both specimens. On the other hand, leveling mortar was placed at the left and right 

interaction regions. Concentrated axial forces with a magnitude of 180 kN (0.18 × 

compressive strength (𝑓𝑐) × gross section of columns) were applied on the columns 

with hydraulic actuators to simulate the axial forces from upper stories. Also, a 

distributed load was performed by placing steel blocks representing the dead plus 

reduced live loads (10.25 kN/m) on the slabs. The lateral load was then applied with 

a displacement control feedback. Lateral displacement reached positive and negative 

target drift ratios twice and drifts were increased by 0.5% at each cycle. The same 

loading procedure was applied for both infill wall specimens, SP1 and SP2.  

Digital Image Correlation (DIC) was performed for the walls as similar to procedure 

explained in Section 2.5.3.2. The spacing of the dots to identify the locations was 

from 2.5 mm to 4.0 mm. The main aim of DIC procedure was just to visualize 

cracking pattern, as mentioned in Section 2.5.3.2. The lateral load and displacement 

responses, the local response measured with LVDTs (labels are shown in Figure 

4.1a), and crack patterns at various drift ratios, 1.0% and 3.0% for positive and 3.0% 

for negative directions, are shown in Figure 4.2 and Figure 4.3 for SP1 and SP2. The 

plastic hinging of members is illustrated in the same figure by using the measured 

curvature values from the LVDTs located at the end sections. The lateral load 

carrying capacity of SP1 was found as 96.4 kN for positive and 105.4 kN for negative 

loading directions, respectively. The yield load carrying capacity was found at a 

lateral displacement value of about 16 mm, and no capacity drop was observed until 
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the 3.0% drift ratio, at which the experiment was finished for SP1. On the other hand, 

for SP2 a maximum load which was about 25% less than that observe in SP1 

occurred at a displacement of about 50 mm until the end of the experiment (at a 4% 

drift ratio). Thus, strength degradation was not found for either of the specimens. 

The maximum crack width at the wall was measured as 0.75 mm and 1.5mm at the 

0.35% drift ratio at which the first cracking was experienced for SP1 and SP2. First, 

cracks on the columns were observed for a drift ratio of 0.5%. The main crack was a 

diagonal crack with a shear sliding mode at the mid-region for SP1. With increasing 

deformation demands, additional cracks were observed, as shown in Figure 4.2. For 

specimen SP2, inclined cracks were observed on both sides of the opening, indicating 

the lack of formation of the diagonal compression strut (Figure 4.3).  

 

Figure 4.1. Specimen Dimensions and Installed Instrumentations of the AAC Infilled 

Frames 

(a) SP1 (Batch 1) (b) SP2 (Batch 1) 

(c) Binici et al. (2019) 

(Batch 1) 

(d) Penna and Calvi 

(2006) (Batch 2) 
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Figure 4.2. Global and Local Response Curves and Cracking of Specimens SP1, 

Cracks at Different Drift Ratios and (b) Lateral Displacement-Base Shear and 

Interface Opening Responses for Corresponding LVDT Labels for the Specimen 

SP1 

(a) Cracks at different drift ratios (b) Global and local responses 
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Figure 4.3. Global and Local Response Curves and Cracking of Specimens SP2, 

Cracks at Different Drift Ratios and (b) Lateral Displacement-Base Shear and 

Interface Opening Responses for Corresponding LVDT Labels for the Specimen SP2 

and (c) Drift-Base Shear Curve Comparisons for Bare Frame and Infill Walls as 

Binici et al. (2019), SP1, SP2 

(a) Cracks at different drift ratios (b) Global and local responses 

(c) Drift-base shear comparisons 
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4.1.2 Tests in Literature 

In addition to tests conducted within the scope of this study, two additional 

unreinforced AAC masonry infilled frames tested respectively, by Binici et al. 

(2019) and Penna and Calvi (2006) (Figure 4.1c,d) were used to compare the global 

responses for different types of interactions and to validate the models. The 

dimensions of the test frame used in our experiments are the same as those used by 

Binici et al. (2019), labeled as METU specimens (Figure 3.18a). The same loading 

protocol was employed, i.e. axial forces on the columns and distributed load on the 

slabs were performed with a magnitude of 180 kN and 10.25 kN/m, respectively. 

The only difference with respect to specimens SP1 and SP2 was observed in the 

region between the wall and frame. In Binici et al. (2019), foam was placed on all 

three sides instead of only on the upper side as in the experiments conducted in this 

study. Also, the gap between the beam and the infill wall, which was 2 cm in the 

study by Binici et al. (2019), was twice the thickness of the gap in SP1 and SP2. On 

the contrary, the test specimen proposed by Penna and Calvi (2006), using the same 

RC frame of the research by Calvi and Bolognini (2001) (Figure 3.18b), had no gap 

between the concrete and wall. In their study, single-bay and single-story full-scaled 

AAC infilled wall was subjected to in-plane tests under constant axial load and 

increasing cyclic lateral displacement excursions. While the axial load applied on the 

columns was 400 kN, the beam had no distributed load. 

In summary, four different AAC-infilled wall specimens were used for the 

simulations in this study. Two experimental campaigns composed of two different 

types of AAC masonries and bare frames were used. The first batch was the 

experiments tested at the Middle East Technical University (METU), while the 

second batch was carried out at the University of Pavia (Pavia). Material properties 

of used AAC masonries are given in Table 2.4. It should be noted that “batch” term 

refers to a set of one AAC wall and one RC frame in this study. 

Envelope curves of three cyclic experiments, SP1, SP2, Binici et al. (2019) and 

corresponding bare frame capacity results, are provided in Figure 4.3c in order to 
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discuss wall contributions for batch 1. Different types of frame-infill interaction 

properties affect the contributions as expected. For example, using leveling mortar 

at the vertical interaction regions enabled a stiffer response at the drift ratio value of 

about 0.5% than the specimen with foam interfaces despite the similar initial 

stiffness. The reason for obtaining a lower capacity of SP1 than the specimen tested 

by Binici et al. (2019) can be attributed to different concrete strengths on the day of 

the experiments or the mechanical properties of steel. The softer response of SP2 

was observed as expected since the same frame was used after using for SP1. 

Moreover, the contribution of the wall with the opening on global response was 

negligibly small. This can be attributed to the opening in the wall of SP2, which 

prevents the development of a proper strut formation. The results of the Pavia tests 

are provided in the numerical validation section. 

4.2 AAC Infilled Frames Simulations 

In this section, simulations of four AAC-infilled portal frames, discussed in the 

previous section, labeled as Pavia Test and METU Tests, consisting of the tests 

Binici et al. (2019), SP1, SP2 and Penna and Calvi (2006) were conducted with the 

lattice models described in Section 2.8. Based on the calibrations and validations at 

the material level in Section 2.5.3, the 𝐺𝑓, 𝑎1, 𝑎2 𝑎3 and 𝑅𝑚𝑎𝑥/𝑑 values were 

established for concrete and masonry, as shown in Table 2.4 and Table 3.6. 

Dimensions of infill specimens and mechanical properties are given in Figure 4.1, 

Figure 3.18, Table 2.4, and Table 3.6. Used frames in the infill walls are described 

in the previous section, and their properties are discussed in Section 3.2. The same 

lattice model used in Section 3.2 for the frames was employed in these four infill 

walls. Various interaction types of frames and walls, such that 1 cm and 2 cm gaps 

with foam or leveling mortar, were modeled with special interaction elements 

explained in Section 2.8. 𝐸𝑖, 𝑚𝑡 and 𝑛 values for foam elements were selected as 2, 

50 and 10, respectively. The bottoms of both columns were fixed. On the other hand, 

the bottom of the wall was released in the lateral direction due to the low shear 
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resistance of mortar in that place. The lateral load was applied as a uniformly 

distributed load by using PID control to avoid stress localization after applying axial 

load on the related top nodes. The imposed lateral displacement was increased 

monotonically. The grid sizes were utilized the same as in the portal bare frame 

simulations. The lines on the estimated cracking images of infill walls at the end of 

the simulation in the figures represent the observed cracks during the tests. 

4.2.1 Infilled Frame (Binici et al. 2019) 

The grid sizes for infilled frame specimens tested at METU were selected as 20 mm. 

The foam elements were placed on all interaction regions between columns, beam, 

and wall. The lateral load-deflection curve with the axial load of 180 kN on the 

columns is shown in Figure 4.4a. Initial stiffness and capacity were estimated with 

sufficient accuracy. The capacity was reached at a smaller displacement demand than 

the experimental measurement. Also, the capacity loss was simulated earlier than 

observed experimentally. The reason can be attributed to the absence of the cyclic 

loading in the simulation and improper strut formation in the positive direction in the 

experiment. However, the residual strength capacity was estimated close to the 

experimental result at the displacement value of about 55 mm and also, the global 

response in the simulation was in between the positive and negative responses of the 

experiment.  

The cracks in the experiment at positive and negative drift ratio values of 3.0% and 

3.5%, respectively and in the simulation at 1.32% and 4.00% lateral drift ratios are 

compared in Figure 4.4b,c. Diagonal struts and corresponding splitting cracks were 

visible in the experiment and also observed in the simulations. The corner cracks 

reported in the test were also simulated by correctly representing the contact 

behavior. 
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Figure 4.4. Experiment and Simulations Results of Infill Test (Binici et al. 2019):  

(a) Base Shear – Top Displacement Responses, and Cracks (b) in Experiment at 

Positive (3.0% Drift Ratio) and Negative (3.5% Drift Ratio) Directions, (C) in 

Simulation at 1.32% and 4.00% Lateral Drift Ratios with Observed Experimental 

Cracks 

4.2.2 Infilled Frames in This Study 

SP1 and SP2 explained in Section 4.1 were simulated with the proposed lattice 

model. The grid sizes for specimens were chosen as 20 mm. The foam elements were 

(a) Base Shear – Top Displacement Curve 

(b) Cracking in Experiment (c) Cracking in Simulation 
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placed at only the top of the wall. Brittle AAC elements were placed at the left and 

right interaction regions.  

Lateral load-deflection curves from the simulation and experiment of SP1 are shown 

in Figure 4.5a. Initial stiffness, strength, and load-deformation response were 

estimated with reasonable agreement, along with the deformation capacity, when the 

simulation results were compared with the envelope response of the experiment. 

Moreover, interface responses at the ends of the beam from the simulation and 

experiment are shown in Figure 4.5b. LVDT numbering corresponds to the 

measurement regions proposed in Figure 4.1a. The results proposed from the 

simulation at the related location of LVDTs are in good agreement with the 

experimental results based on the estimation of interaction response. Major strain 

distribution, in addition to the displacements in the lateral direction of nodes 

observed in DIC from the experiment and cracks in simulation at 1.39% and 2.92% 

lateral drift ratios are shown in Figure 4.5c. In the figure, cracks observed in the 

experiment, as shown in Figure 4.2a, are sketched on the simulation result at 42 mm 

lateral displacement. The estimated crack locations were in good agreement with the 

test results. The DIC results indicated the partitioning of horizontal wall segments. 

The lateral movements between segments were successfully captured with the 

proposed lattice model. 

It should be clarified that after using the undamaged frame for SP1 until a 3.0% drift 

ratio, the same but the damaged frame was used for SP2, as mentioned in Section 

4.1. After the SP1 experiment was conducted, the wall was removed, and a new AAC 

wall with an opening was placed in the damaged frame to prepare the SP2. In order 

to simulate the damaged frame, the simulated cumulated damage after unloading 

specimen SP1 was recorded and input as a pre-damage of the frame of specimen 

SP2. Fully elastic AAC elements were assigned at the region of the lintel. The load-

deflection curve of SP2 is shown in Figure 4.6a. Simulations of the initial stiffness 

and subsequent softening of the specimen with the damaged frame were accurate. 

The lateral strength was slightly overestimated, beyond the peak displacement of 

about 40 mm.  
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Figure 4.5. Experiment and Simulation Results of SP1: (a) Base Shear – Top 

Displacement Responses and (b) Interface Openings of Corresponding Lvdts and 

(c) Cracks in Simulation at 1.39% And 2.92% Lateral Drift Ratios with Observed 

Experimental Cracks at Different Drift Ratios and DIC Results 

(c) Cracking from Simulation and DIC 

1 

(a) Global Load-Deflections (b) Local Load-Deflections 

2 
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Figure 4.6. Experiment and Simulation Results of SP2: (a) Base Shear – Top 

Displacement Responses and Interface Openings of Corresponding Lvdts and (b) 

Cracks in Simulation at 1.60% and 4.00% Lateral Drift Ratios with Observed 

Experimental Cracks at Different Drift Ratios 

Furthermore, comparisons of the interaction region are shown in Figure 4.6b, which 

shows an accurate interface response. The cracks in simulation at 1.60% and 4.00% 

lateral drift ratios are shown in Figure 4.6c, with representative experimental 

(b) Local Load-Deflections 

(b) Cracking in Simulation 

1 

2 

(a) Global Load-Deflections 
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cracking lines corresponding to the results proposed in Figure 4.3a. There is a 

reasonable agreement in the main crack directions, while additional micro-cracks 

were noted in the simulation. Two struts in the wall around the opening were 

simulated. The same observation was also found in the experiments, as shown in 

Figure 4.3a. 

4.2.3 Pavia Test 

Finally, the AAC infilled wall tested by Penna and Calvi (2006) was simulated with 

a grid size value of 30 mm. In this specimen, no gaps between the concrete and wall 

are present, as mentioned in section 4.1. The interface mortar was modeled with the 

same mechanical properties of the brittle AAC elements with the reported and 

calibrated tensile strength value of 0.1 MPa by Milanesi et al. (2018). Lateral load-

top deflection curve comparisons of two different grid perturbation instances with 

calibrated 𝑅𝑚𝑎𝑥/𝑑 values and experiment results are provided in Figure 4.7a. The 

initial stiffness was in perfect agreement with the test results. The first softening 

region at the displacement value of about 5 mm was captured in the simulation with 

a slight strength degradation. A higher capacity was simulated after a displacement 

of about 10 mm in the positive direction. At 20 mm, a considerable strength 

degradation was observed in the simulation, and the capacity was close to the test 

results. Besides, the effect of using a two different realization of node perturbation 

with the same 𝑅𝑚𝑎𝑥/𝑑, was insignificant.  

The crack pattern estimation with the lattice model is shown in Figure 4.7. In the 

figure, lines on images of strain distribution in the simulation represent the cracks 

observed at the near end of the experiment at positive and negative lateral directions. 

The two simulation results generally agreed with the observation of Penna and Calvi 

(2006). Diagonal struts were observed to be starting from the left top corner 

extending towards the right bottom of the wall. The splitting cracks were also 

captured in the simulations. Although the two simulations resulted in marginal 
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differences in the load-deflection responses, minor differences in the crack 

predictions were observed.  

 

Figure 4.7. Experiment and Simulation Results of Pavia Infill Test (Penna and 

Calvi 2006): (a) Base Shear – Top Displacement Curve and (b) Cracks for Two 

Simulations at 0.66% and 1.11% Lateral Drift Ratios with Observed Experimental 

Cracks at Directions 

(a) Global Response 

Simulation 1 

1 

Strain 

2 

Amplification Factor=2 

2 1 

Simulation 2 Positive Direction Negative Direction 

(b) Cracking in simulations 



 

 

133 

4.2.4 Discussion of Results 

The envelope curves shown in Figure 4.4-Figure 4.7 are within 5% in terms of 

strength estimations except for the Pavia test. In the Pavia test, the strength was 

overestimated by 25 to 35% in the positive and 6 to 13% in the negative direction. 

This result can be attributed to the variation of material strength in the test or small 

deviations of longitudinal bar placement. In order to obtain fully conservative results, 

the use of characteristic strength values instead of mean strength can be a viable 

approach, as usually used in the design. 

Overall, load-deflection responses and crack patterns of masonry simulations were 

in reasonable agreement with the test results. Simulations with different residual 

bond strengths showed that the effect of the residual bond strength on the lateral 

load-top displacement response was significant. Residual bond strength was 

selected, which also led to reasonable crack predictions. Also, cover spalling and 

rebar buckling, as reported by Binici et al. (2019), were simulated at a drift ratio of 

about 3%. Results from the simulations using different realizations of the same node 

perturbance 𝑅𝑚𝑎𝑥/𝑑 was relatively close as shown in Pavia test. Diagonal struts and 

corresponding splitting cracks, and two struts due to an opening in the wall, were 

simulated with the proposed model. Using special interface truss elements, the 

interaction between walls and frames was simulated realistically. 

It is well known that such computational demanding mesoscale models are not 

employed in full building design due to high computational effort. However, there 

are two possible ways to employ our approach in design. The damage limit states of 

infill walls can be predicted by using the lattice approach in infilled walls of RC 

frame buildings. For this purpose, a substructure lattice model composed of one bay 

one-story frame can be constructed, and building demands can be imposed on this 

model for the performance check of the infill walls. The other approach is resorting 

to classical truss-based strut models by using the contact lengths given in the later 

section.  
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4.3 Parametric Study 

The local behavior affects the global response of the infilled frames, such as the 

reduction of clear high of the column, resulting from partial contact with masonry 

infill, or increasing shear demands with diagonal struts in full contact with the frame. 

The contact length represents the connection length of the diagonal strut at the 

column part (Figure 4.8). Considerable analytical formulations have been provided 

for the estimation the contact length and strut width, by many researchers and 

corresponding codes. Asteris et al. (2013) and Morandi et al. (2018) proposed further 

details about the simplified approaches. In this study, contact length results estimated 

with the proposed lattice model were compared with results found with formulations 

proposed by FEMA-306 (1998) as popular formulation and Pauley and Priestley 

(1992) conservative approach, for the infill walls with different length scale (L/H) 

values and interface properties. FEMA-306 estimates the width on the basis of 

experimental and analytical data by including the slenderness of the infill (𝜆). The 

effective width of the strut (𝑏𝑤) is found with the following equation;  

𝑏𝑤  = 0.175𝑑𝑤(𝜆ℎ)−0.4 (3.1) 

Where 𝑑𝑤 is diagonal length of infill wall, and ℎ is column centerline height of the 

columns (Figure 4.8). 

 

Figure 4.8. Masonry Infilled Wall and RC Frame Assemblage 
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On the other hand, Pauley and Priestley (1992) assumes one-quarter of diagonal 

length of infill wall (𝑑𝑤) as the strut width (𝑏𝑤). In both approaches, strut thickness 

is assumed same as the wall thickness. L/H values were chosen as 1.00, 1.57 (Pavia 

Test), 1.79 (SP1), and 3.00, and interface properties were similar to infill walls of 

SP1 (only upper side foam), Pavia Test (2006) (no foam) and Binici et al. (2019) (all 

sides foam). Contact length was assumed as the vertical component of equivalent 

strut width. The variation of contact lengths through the lateral displacement 

demands is shown in Figure 4.9.  

The compression regions were observed from the top of the loaded column and from 

the bottom of the pulled column, as shown in the previous section. The contact length 

was calculated by monitoring the relative distance of the element nodes in the 

interaction region. As can be seen from the figure, the results of the two simplified 

approaches were so close to each other.  

Contact ratios (contact length/column height) at the two columns were different from 

each other, especially with more foam regions, as expected, even though the bottom 

of the pulled and top of the pushed column are related to the front and end of the 

same strut. Minimum differences were obtained from the lowest aspect ratio of the 

infill wall with no foam since the differences increased with more foam regions, as 

expected. 

It can be realized from the curves that there existed no dominant trend for all infill 

wall types about the connection of drift ratio and contact ratio, but individual 

differences can be obtained from the simulations. For example, for low inter-story 

drift ratios, the average contact ratio results were close to the results of both 

simplified approaches for the infill walls with no foam. Complicated behavior was 

obtained for higher drift demand ratios. 
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Figure 4.9. Contact Length in Columns and Drift Ratio Curves for Different Length 

Scales (L/H) And Interface Properties of (a) SP1 (Only Upper Side Foam), (b) 

Binici et al. (2019) (All Sides Foam), (c) Pavia Test (2006) (No Foam) 

L/H=1.79 (SP1) L/H=1.00 L/H=3.00 L/H=1.57 

(a) Only Upper Side Foam 

L/H=1.00 L/H=3.00 L/H=1.79 (Binici et al. 2019) L/H=1.57 

(b) All Sides Foam 

L/H=1.57  
(Pavia Test 2006) 

L/H=1.00 L/H=3.00 L/H=1.79 

(c) No Foam 
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On the other hand, for all sides of foam infill walls, contact ratio estimation at the 

bottom of the strut was similar to simplified methods for small aspect ratios while 

higher contact length was desired from the loaded column as expected since there 

was no resistance for low inter-story drift ratios. The contact ratio at the bottom of 

the strut remained almost constant with increasing drift ratios. In addition, the 

average strut width ratio obtained from the front and end contact ratio was close to 

the simplified approaches for L/H=3.00.  

For the infill walls with only upper-side foam, the combined response of the other 

two types of infill walls was obtained. While the contact length estimation of the 

model at both sides of the strut was close to the results calculated from simplified 

methods for L/H=3.00, smaller length scales walls needed much more contact 

demands. The contact length estimation of the bottom part of the pulled column for 

the SP1 specimen was approximately the same results with the two approaches. 

To sum up, complicated behavior was obtained after cracking, and the contact length 

at the loaded column increased, although not monotonically, with an increasing drift 

ratio. Different types of interface regions and length scales of the walls affected the 

contact length behavior significantly, and it also depended on the drift demand 

values. This phenomenon is not addressed in the existing simple strut models. It can 

be observed that as the aspect ratio of the infill wall increased the estimation of the 

models tend to be closer to the simplified strut widths. The estimated contact lengths 

in the strut top and bottom were different.
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CHAPTER 5  

5 CONCLUSION 

5.1 Summary 

In this study, the two-dimensional mesoscale truss-based lattice modeling approach 

solved with sequentially linear analysis in static and an explicit time integration 

technique in a dynamic manner was proposed. Tension-only modeling with few 

parameters and ease of implementation are the novel features of the proposed lattice 

models. Moreover, the compressive behavior of a truss-based lattice model was 

investigated numerically. In such models where there is only tension failure, for 

structured grids with uniformly distributed nodes, it is known that locking 

mechanisms arise, resulting in an overestimation of strength. This locking problem 

was handled by introducing grid perturbation. Thus, a compression calibration 

methodology was proposed for concrete and AAC wall elements by using uniaxial 

compression tests. The methodology was validated for concrete elements by using 

uniaxial compression and compression strut tests on plain concrete struts loaded in 

uniaxial compression from two experimental campaign. Different uniaxial 

compression test specimens with different length/width ratio were also simulated. 

Three AAC masonry wallettes have been tested for uniaxial compression response 

by using DIC monitoring and these results were used to calibrate and validate the 

proposed lattice model to use the model for AAC infill walls. Diagonal compression 

tests for AAC walls were also simulated. Properties of special bond and foam 

elements connecting concrete nodes with steel and wall nodes were defined for RC 

and infill wall simulations, respectively. Explicit time integration scheme to solve all 

simulations presented in this study was enhanced by implementing a PID control 

algorithm. 
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In Chapter 3, calibrated lattice model was used to estimate the nonlinear response of 

RC specimens and members. Numerous validation studies were conducted for RC 

members, i.e. columns, beams and walls tested by many researchers with various 

failure modes including flexural, shear, tensile, compressive failures and 

combination of them. Two single-bay and single-story RC frames were chosen to 

validate the model within the scope of this study. Estimated crack patterns and force-

displacement responses with different grid and horizon sizes were compared with 

experimental results. The sensitivity of the model was investigated with many 

different aspects including the effect of input variables, loading rates, and mesh 

rotation.  

In Chapter 4, two single-bay, single-story half-scaled AAC-infilled portal frames 

experiments were carried out to investigate the interaction of AAC wall and frame 

with and without opening in the wall. Local behavior and global response of the 

specimens was observed by using LVDT and DIC measurements. Two additional 

AAC-infilled frame tests were used from the literature to achieve validation 

benchmarks for the proposed model. Thus, the four AAC masonry infilled RC 

frames, which are a combination of RC and masonry (bi-material), with different 

interaction region properties between RC frame and AAC wall were modeled to 

validate the proposed numerical approach for the first time in the literature to the 

best of author’ knowledge. Furthermore, in a parametric study the evolution of the 

contact length was simulated for different aspect ratios of the walls. The results were 

presented and compared with simplified approaches.  

5.2 Concluding Remarks 

The following key conclusions can be drawn based on properties and compression 

response of the proposed lattice model: 
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 The uniaxial compressive response is imitated with indirect tension behavior 

with sufficient accuracy by using meso-scale lattice model without using 

non-linear compression behavior.  

 The proposed lattice approach is capable of modeling uniaxial compression 

tests with different boundary conditions affecting significantly the strength 

and softening regime of concrete. 

 Uniaxial compression behavior simulations indicate that there is a unique 

grid perturbance magnitude for a target compressive strength value. A 

calibration methodology that allows one to select 𝑅𝑚𝑎𝑥/𝑑 value for a given 

compressive strength and tensile fracture energy has been developed. Thus, 

it was concluded that compressive strength within a specific tensile fracture 

energy value corresponds to a specific magnitude of the perturbation. This 

aspect of the proposed modeling approach is one of the key novelty of the 

current research. 

 The novel calibration technique for tension and compression at the meso-

scale enables to successfully match the macro-scale response. The tension-

only modeling with few parameters has the ability to simulate the macro-

scale behavior. 

 Sensitivities of the model to grid orientation and size effect in compression 

were investigated numerically. Tensile fracture energy enables the model to 

be insensitive to the grid refinement, but grid orientation affects the results 

slightly as can be seen at uniaxial compression simulations. 

 The proposed model has the ability to capture the slenderness effect. 

 The softening in compression is underestimated as same with other types of 

lattice models. The reason can be the cohesionless behavior of the model. 

However, compression softening behavior is directly related with tensile 

softening behavior. 

 The load-deflection and crack pattern of uniaxial and diagonal compression 

AAC masonry and of uniaxial compression concrete tests are estimated as 

sufficiently reasonable. 
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 The proposed lattice simulation employs less number of parameters 

compared to continuum-based finite element models with nonlinear concrete 

constitutive models. The fact that cracks are represented with the fracture of 

lattice elements is a further important advantage over existing nonlinear finite 

element models.  

 An explicit time integration is enhanced with a novel PID-controlled 

algorithm to make the system stabilize under monotonic loading. 

Based on RC simulation results: 

 It can be stated from the simulation results of RC members and frames that 

the overall load-deformation response, crack patterns and spacing 

estimations are in reasonable agreement.  

 Reducing the grid size of the model appeared to result in more accurate 

estimations of strength and deformation capacity for RC simulations. 

 Using smaller horizon sizes seems to be the better choice for the overall 

estimation of the experiments based on computational expense and load-

deflection response.  

 In additional to sufficiently accurate results for predicting compressive 

strength, the compression failure as a local instability is obtained in validation 

studies for over-reinforced beams by using the proposed lattice model.  

 The robustness of the proposed model was shown by deterministic sensitivity 

analysis. The response estimations are affected no more than 10% by the 

expected uncertainty in the input parameters of the model thanks to the tensile 

fracture energy regularization. 

 Mesh objectivity is proven by comparing the simulation results with 

numerous experiments having different failure types with different grid sizes. 

 Residual bond strength affects the force-top displacement response of the 

portal frame significantly. However, the analytical formulation works well in 

terms of load-displacement response and crack prediction, cover spalling and 

rebar buckling.  
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Based on AAC-infilled frame experimental and numerical results: 

 The AAC-infilled frame experiment results show that interaction properties 

affect the global response based on the rigidity and strength of infill walls.  

 Load deflection and crack propagation gave close simulations of the 

experimental results. The maximum difference between the simulated and 

experimental lateral load capacity was found for the Pavia test (13%). Also, 

using different distributions of the same node perturbance 𝑅𝑚𝑎𝑥/𝑑 does not 

affect the simulation results. 

 The infill wall-frame contact length depends on lateral deformation demands. 

It can be achieved with the proposed lattice approach. 

In conclusion, the lattice approach appears to be a viable and easy to implement an 

alternative to simulate the response of concrete, AAC masonry, RC members and 

frame structures, and AAC-infilled frames, in which load-deformation or crack 

spacing estimations are needed with engineering accuracy. In other words, it appears 

that the lattice approach provides a practical and efficient model to simulate infill 

walls and their components. Both global and local behavior are simulated sufficiently 

accurate. The modeling approach, including an extended calibration procedure, can 

be consistently applied for a range of experiments. In addition, the model is robust 

from a computational view, insensitive to modeling parameters (Sensitivity Analysis 

Section) and can simulate the nonlinear response of concrete, RC structures, and 

their combination (bi-material) with reasonable accuracy (Validation Sections).  

5.3 Future Works 

The findings of the study point out that the increasing computation power allowing 

large-scale particle-based simulations may be used in the future to simulate the 

response of structures for which estimation of cracking and crushing deformations 

are crucial for design. In the near future, as the model has the ability to estimate 

cracking behavior and global response of structural members sufficiently accurately, 
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the lattice model has great potential to be used for parts of structures to describe 

nonlinearity in plastic regions.  Infrastructures such as concrete dams, bridges, and 

tunnels are potential application areas for lattice simulations to describe the response 

of plasticity in specific regions on them, which require simpler tension-only models. 

Application of the lattice models in building design is a challenging issue due to high 

computational efforts. However, lattice models can be employed within a 

substructure framework where the building inter-story demands can be imposed on 

the one bay one-story infilled RC frame to estimate the damage limit state of infill 

walls. The research outcome from this work can help in estimating damage limit 

state of infill walls at different deformation levels. For this purpose, a substructure 

lattice model composed of one bay one-story infilled RC frame can be constructed 

and inter-story deformations can be imposed on this model to estimate the damage 

limit state of the infill walls. A complete crack formation in an infill wall estimated 

with the lattice model can be considered as high damage whereas limited cracking 

can be considered as low damage. Alternatively, the findings on infill wall frame 

contact length can be used to create classical truss based compression only strut 

models. Further work is needed for establishing design oriented lattice-based 

approaches. 

The work presented herein was limited to two-dimensional modeling without loss of 

generality. One important outcome of this study is establishing a novel calibration 

methodology for lattice models in tension and compression. A similar approach can 

be followed for the three-dimensional modeling of concrete and AAC masonry 

behavior, which is the scope of future work. For tension calibration, simulation of 

direct tension tests can be conducted in a three-dimensional domain to find the 

softening parameters while the nodes would be disturbed in a sphere instead of a 

circle to determine the perturbation value under compression loading.  
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APPENDICES 

A. Residual Bond Strength Parameter 

The residual bond strength parameter (𝒂) can be obtained in closed form by 

equating ultimate bond force to bond elements. For this purpose, first displacement 

field in x direction is introduced to the middle steel node while keeping clamped 

for the other nodes in the Figure A1. The resistant force obtained from the bond 

behavior for the interaction between rebar and concrete at interface for deformed 

bar can be calculated as; 

𝐹𝑏 = 𝜏𝑏𝜋𝑑𝑏𝑑     (A1) 

Where 𝜏𝑏 is the residual bond strength, 𝑑𝑏 is longitudinal bar diameter, 𝑑 is grid 

size. 𝜏𝑏 value is calculated as 0.78√𝑓𝑐 where 𝑓𝑐 is compressive strength of 

concrete. 

This force should equal the force employed by bond lattice elements as;  

𝐹 = 𝒂𝐸𝑡𝐴𝑡휀𝑐𝑟     (A2) 

Where 𝐸𝑡𝐴𝑡 can be obtained in closed form as 0.621𝐸𝑑𝑤 for 1.5𝑑 horizon size 

from eq. 2.4.  

Equating Eqns. A1 and A2, the 𝒂 value is obtained as follows; 

  𝒂 =
𝜏𝑏𝜋𝑑𝑏

0.621𝑤𝑓𝑡√2
=

𝜋𝑑𝑏√0.39𝑓𝑐

0.621𝑤𝑓𝑡
    (A3) 

Where 𝑓𝑡 is tensile strength of concrete, 𝑤 is the member thickness. It should be 

pointed out that, the formulation does not depend on grid size.  
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Figure A1. Interaction of Rebar and Concrete and Kinematics of the Lattice Model 

for Bond Behavior 
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