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ABSTRACT

ORDER PICKING PROBLEM: ITS VARIATIONS AND INTEGRATION

Saylam, Serhat
Ph.D., Department of Industrial Engineering
Supervisor: Prof. Dr. Haldun Siiral
Co-Supervisor: Assoc. Prof. Dr. Melih Celik

December 2022, 147 pages

Order picking is the most costly and labour-intensive warehouse activity. The objec-
tive of order picking problem is to collect the items on the pick list in a sequence to
ensure a route that minimizes the travel time. In both manual and automated ware-
houses, a combination of efficient zoning, batching and picker routing plays an im-
portant role in improving travel time, congestion, workload balancing and system

throughput.

In this thesis, we study single-picker and multi-picker order picking problems on
single-block, two-block and multi-block warehouse layouts by also considering syn-
chronised dynamic zone-picking and batch-picking decisions. For this end, we present
(1) mathematical models for the optimal solutions of some of these problems, (2) ex-
act dynamic programming approaches to find the optimal solution for some other

cases, and (3) simple but effective heuristics for the remaining more complex forms.

Computational experiments on randomly generated instances in line with those in the
literature show that the proposed approaches can find optimal and near-optimal solu-

tions in negligible computational times. The comparisons of the resulting objective



function values with the ones in the related literature also show that our approaches
perform at least as strongly as the models in the state-of-the-art literature. We also
contribute to the literature by introducing the arc routing perspective into the solu-
tion methodologies of order picking problems, by also introducing disconnectivity
elimination constraints instead of sub-tour elimination constraints and by studying
zone-picking and batch-picking decisions as operational level problems integrated

with picker routing and workload balancing problems.

Keywords: routing, warehouse management, order picking, zone picking, picker rout-

ing, arc routing
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SIPARIS TOPLAMA PROBLEMI: VARYASYONLARI VE
ENTEGRASYONU

Saylam, Serhat
Doktora, Endiistri Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Haldun Siral

Ortak Tez Yoneticisi: Dog. Dr. Melih Celik

Aralik 2022 , 147 sayfa

Siparis toplama, en maliyetli ve emek yogun depo faaliyetidir. Siparis toplama prob-
leminin amaci, toplama listesindeki malzemeleri olabilecek en kisa siirede toplayan
bir rota olusturmaktir. Hem manuel hem de otomatiklestirilmis depolarda; bolgeleme,
gruplama ve toplayici rotalama kararlarinin birlikte ele alinmasi toplama siiresini, ti-
kaniklig1, is yiikii dengesini ve sistem verimini iyilestirmede énemli bir rol oynamak-

tadir.

Bu tezde, tek bloklu, iki bloklu ve ¢ok bloklu depo yerlesimleri iizerinde tek topla-
yicili ve ¢ok toplayicili siparis toplama problemlerini, senkronize dinamik bolgesel
toplama ve grup toplama kararlarin1 da dikkate alarak incelemekteyiz. Bu amacla, (1)
bu problemlerin bazilarinin optimal ¢dziimleri icin matematiksel modeller, (2) diger
bazi durumlar i¢in en uygun ¢oziimii bulmak amaciyla kesin dinamik programlama
yaklagimlar1 ve (3) daha karmagik problemler i¢in de basit ama etkili sezgisel yon-

temler onermekteyiz.

Literatiirdekilerle uyumlu olarak rastgele olusturulmus ornekler iizerinde yapilan he-
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saplama deneyleri, 6nerilen yaklagimlarin ihmal edilebilir hesaplama siirelerinde op-
timal veya optimale yakin ¢oziimler bulabilecegini gostermektedir. Sonug¢larin amag
fonksiyonu degerlerinin ilgili literatiirdekilerle karsilastirilmalart da yaklagimlarimi-
zin en az literatiirde sunulan en yeni modeller kadar giiclii performans gosterdigini
gostermektedir. Ayrica, hat rotalama perspektifini siparis toplama problemlerinin ¢o-
ziim metodolojilerine dahil ederek, alt tur eleme kisitlamalar1 yerine baglantisizlik
eleme kisitlamalarini getirerek ve bolgesel toplama ve grup toplama kararlarini top-
layici rotalama ve is yiikii dengeleme problemleri ile tiimlesik sekilde ve operasyonel

seviye problemleri olarak inceleyerek literatiire katkida bulunmaktayiz.

Anahtar Kelimeler: rotalama, depo yonetimi, siparis toplama, bolgesel siparis top-

lama, toplayici rotlama, hat rotalama
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CHAPTER 1

INTRODUCTION

In this thesis, we aim to present compact mathematical models and exact/heuristic al-
gorithms for various order picking problems, which cover the most costly and labor-
intensive warehouse activities. In order picking operations, items must be collected
from the warehouse in order to satisfy the customer demand while aiming a cost
and/or service-related objective (De Koster et al. 2007, van Gils et al. 2018b, Masae
et al. 2020a). The objective of order picking problem (OPP) is to collect the items on
a pick list in a sequence to ensure a route that minimizes the travel time, which can
be formulated as a special case of the travelling salesperson problem (T'SP) or Steiner
TSP (Theys et al. 2010, Scholz et al. 2016, Pansart et al. 2018). Moreover, a growing
competition with limited time windows puts extra pressure on order picking opera-
tions. Reducing traffic congestion through one-way routing approaches, zone-picking
and workload balancing are some ways of dealing with such problems. Domination of
online retailing has resulted in many relatively small-size orders with promised time
windows. Hence, increasingly tight time windows make it necessary to give effective
zone picking, workload balancing and picker routing decisions in short computing
times. Orders, online or in-store, arrive continuously. However, decision makers re-
lease a large group of orders in a wave in order to take advantage of economies of
scale in order picking operations (Ceven & Gue 2017). Besides the economic in-
terpretation of order picking operations, in times of economic crises or pandemics,
managers should be able to see a better operational picture under constraints such as
limited order pickers, personal space of pickers, etc. Thus, given a number of order
pickers, the decision makers should make efficient decisions for operational activities
regarding these order pickers. In this study, we present solution methodologies for

such enabling problems.
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Figure 1.1: A parallel-aisle warehouse layout with 3 blocks, 8 picking aisles and 25
pick locations, Celik & Stiral (2019)

The parallel-aisle warehouses considered throughout the thesis is given in Figure 1.1,
which consists of narrow picking aisles parallel to one another. It contains cross-
aisles at the front and back ends of picking aisles and may also contain middle cross-
aisles, which perpendicularly divide the picking aisles into equal-length picking sub-
aisles. We assume narrow picking aisles so that a picker spends no time when making
horizontal movements within a picking sub-aisle. A picker starts the tour from the
depot (also known as the pickup-and-deposit or P&D point), collects all the items in
the pick list and returns to the depot. Without loss of generality, the depot is assumed
to be located at the left front corner. Figure 1.2 shows the graph representation of the
warehouse along with the pick locations using nodes v, where ¢ € N while vy is the
depot. a; and b; nodes represent the back and the front intersection points of picking
aisle j € M. Node m,, represents the intersection point between picking aisle j € M
and middle cross-aisle £ € C'. Also we note that a back cross-aisle of a block is the

front cross-aisle for the next block.
In general, the OPP is modelled as a variant of standard TSP problem, which is N'P-

2
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Figure 1.2: The graph representation of Figure 1.1, Celik & Siiral (2019)

hard (Karp 1972), and the data consisting of the pick locations is pre-processed into
a standard TSP distance matrix format. In such a case, the complexity of calculat-
ing the minimum order picker route exponentially increases with the number of pick
locations. The lack of formulations which take into account the special properties
of parallel-aisle warehouse layout in the literature motivates us to study the different
variants of the OPP by exploiting the properties of a parallel-aisle warehouse layout.
Making use of these specific properties and generating aisle-specific distance matrices
make it possible to solve the OPP more efficiently. This approach is mostly ignored
for the case of mathematical models or such constraints are developed upon a TSP-
based formulation. Since travel time is a function of distance, keeping the walking
speed fixed and minimizing the walking distance is proposed by many authors as the
main factor to optimize the total picking time (e.g., Hall 1993, Vaughan & Petersen
1999, Roodbergen & De Koster 2001a, De Santis et al. 2018, Celik & Siiral 2019). In
this regard, we continue with time-units instead of distance-units in the computational

experiments throughout the thesis.



1.1 The Outline of the Thesis

In this thesis, we study single-picker and multi-picker OPP on single-block and multi-
block warehouse layouts by also considering zone-picking and batch-picking deci-
sions. We present mathematical models, exact dynamic programming approaches,
and heuristics. Afterwards, we test the performance of the proposed approaches and
explain their strengths and aspects that are open to development. The comparisons of
the results with the ones in the related literature also show that our approaches perform
at least as strong as the models in the state-of-the-art literature. We also contribute
to the literature by introducing the arc routing perspective into the solution method-
ologies of OPP, by also introducing disconnectivity elimination constraints instead
of sub-tour elimination constraints and by studying zone-picking and batch-picking
decisions as operational level problems integrated with picker routing and workload

balancing problems. Table 1.3 depicts the scope and distribution of this thesis.

In Chapter 3, we study the single-picker OPP in single-block layouts as a variant of
the arc routing problem. For this end, we present a binary integer programming (BIP)
formulation which exploits the special properties of a parallel-aisle warehouse layout.
This formulation only depends on the number of aisles, as opposed to the number of
pick locations, which is generally the case of its counterparts in the literature. The
OPP can be modelled as an arc routing problem since we search for a strongly con-
nected closed walk of minimum length. The focus of our approach is to clear all
picking aisles in the shortest time possible. To do that, we assign the best combina-
tion of intra-aisle movements and complementing cross-aisle movements such that it
results in the minimum length strongly connected closed walk. Afterwards, we test
the performance of the formulation by comparing it with the ones of recent literature.
In this formulation, we introduce the disconnectivity elimination constraints into the
literature instead of TSP sub-tour elimination constraints, where we can ensure a fea-
sible order picking tour with a much smaller number constraints, which significantly

increase the computing time performance.

In Chapter 4, we show that the proposed arc routing-based formulation can be straight-
forwardly extended to the layouts with a middle cross-aisle. In this regard, we focus

on two-block layouts and propose a mathematical model which forces a strongly con-

4
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nected closed walk using the disconnectivity elimination constraints approach pre-
sented in the preceding chapter. In both formulations, we mainly apply three differ-
ent classes of constraints. Firstly, we assign a movement to each aisle in a feasible
sequence, then we ensure that each vertex has in-degree equal to out-degree. Lastly
and most importantly, we eliminate the disconnectivities. In warehouse layouts with
more than two blocks, the first two classes of constraints still apply similarly. How-
ever, one should focus on how to modify the disconnectivity elimination constraints
as such occurrences increase exponentially with the number of cross-aisles. Hence,
for more than two-block layouts, we have introduced a simple and effective picker
routing heuristic and leave the development of a multi-block OPP formulation as a

future research.

In Chapter 5, we focus on the multi-picker OPP and solve an integrated zone-picking,
picker routing and workforce allocation problem by minimizing the lead time of the
pick wave. We focus on zone-picking since there is a clear gap in integrated OPP
literature in terms of zone picking operations. Although recent literature regarding
multiple order pickers has increased significantly, the advantages of zone picking
are ignored as zone picking combinations have not been given any particular atten-
tion. Minimizing the lead time of the pick wave forces workload balancing over the
zones so that workforce allocation is also achieved. It has the advantages of zone-
picking such as assignment of a smaller area for each order picker, reduced traffic
congestion, reduced idle times of the pickers, and familiarization with products. It is
dynamic in the sense that the assigned zones differ continuously at each order pick-
ing activity. Also, it is important to note that waiting times due to congestion can
strongly decrease by considering dynamic zone-picking. The study in this chapter is
divided into four parts. We first present mixed integer linear programming (MILP)
formulations for the multi-picker OPP with a min-max objective including zoning
constraints. Following this, we focus on the min-max OPP with two-pickers. We aim
to find the shortest travel distances in order to minimize the lead time of two-picker
picking process by assigning adjacent aisles to pickers using a dynamic programming
algorithm. Then, applying a difference minimization algorithm, we reduce optimal-
ity gap at the expense of zone integrity. The study, without applying the difference

minimization algorithm, is an example of dynamic zone-picking where each of two



pickers is assigned to a specific zone of aisles. Lastly, we focus on the min-max OPP
with multiple pickers under synchronized dynamic zone-picking systems. Here, we
generalize the dynamic zone-picking approach for multiple order pickers by applying
a variant of VRP formulation with introducing the aisle-zone related constraints and
a novel dynamic programming approach. Using a dynamic zone-picking approach,
we present an exact algorithm extending two-picker OPP to more order pickers by as-
signing multiple pickers to dynamic zones and minimize the arrival time of the latest
picker, i.e., pick wave. Contrary to traditional parallel zone-picking approach, there
are no dedicated zones assigned to pickers. Pickers collect items in zones assigned to
them at each pick wave. Hence, the zone-picking problem, which is largely studied at
tactical level, is reduced to an operational level decision integrated with picker routing
and workforce allocation problems. In this way, we solve an integrated zone-picking,
picker routing and workforce allocation problem where each zone consists of a cer-
tain number of aisles. While the presented mathematical model solves the problem
for a given number of pickers, the proposed algorithm solves the problem for each
picker and gives a faster picking scheme to the decision makers. As an alternative
to zone-picking, in Section 5.6, we consider the min-max OPP under batch-picking
policy and present a saving algorithm. Finally, we consider examples to illustrate the
algorithms and compare the performance of the solution methodologies in different

computational experiments.

1.2 Contributions of this Thesis

As discussed in the literature review section, the OPP literature mainly focuses on
polynomially-solvable algorithms since it is assumed that the OPP is closely related
to the NP-hard TSP. One of the main contributions of this study arises at this point.
Since the picker routing problem in a single-block parallel-aisle warehouse can be
solved in polynomial time using dynamic programming approach, then there could be
a way to formulate it in a compact way by taking advantage of the movement types
introduced by Ratliff & Rosenthal (1983). This is also important in the sense that
the mathematical formulations can accommodate side constraints or feasible routes,
which can be a part of a combined formulation while these modifications are less

likely over the algorithms. The computing time performances of the formulations are
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significantly short thanks to the one of our main contribution, which is the use of dis-
connectivity elimination constraints. We also contribute to the literature by introduc-
ing the arc routing perspective into the solution methodologies of the OPP. Another
contribution of our BIP formulations into the literature is that a feasible order picking
tour without disconnectivity elimination constraints is rarely disconnected, hence the
use of lazy constraints significantly increases the computing time performance of the
formulation. As a result, the OPP turns out to be an appropriate research area for lazy
constraints applications. The work in Chapter 4 is especially important in the sense
that it paves the way for an arc-routing based OPP formulation for a general number

of blocks by induction on the construction of disconnectivity elimination constraints.

The main difference of our work in Chapter 5 from the literature is that while the
previous studies consider a static zoning environment, our study focuses on dynamic
zoning environment. To the best of our knowledge, there are very few studies consid-
ering dynamic zoning strategy (Bartholdi & Eisenstein 1996, Bartholdi et al. 2001,
Ho & Liao 2009, Lamballais et al. 2022) where zoning decisions are handled at oper-
ational level. The main contributions of this chapter can be stated in four dimensions.
First, we define and solve an integrated zone-picking, picker routing and workload
balancing problem by minimizing the lead time of the picking wave and applying the
policy of synchronized dynamic zone-picking where each picker is assigned to a zone
of aisles at each picking wave. For this end, we present an exact polynomial-time DP
algorithm, which may be implemented in many real-world warehousing environments
and significantly improve performance. Second, for the first time in the literature, the
zone-picking approach is studied at operational level under a synchronized dynamic
zone-picking policy. Third, this study is one of the few studies which investigate the
multi-picker multi-block OPP. Last contribution of our study is that it examines the

optimal dynamic zone sizes to increase the system throughput.

We also contribute to the warehouse operations in practice as our solution method-
ologies help reduce the congestion on the cross-aisles by resulting to one-way move-
ments, avoid congestion within the picking aisles, ensure familiarity of pick locations
and spontaneously lead to the balanced partition of the pickers’ workload thus reduce

the management supervision.



CHAPTER 2

LITERATURE REVIEW

In this section, the most relevant OPP literature is reviewed. There exists extensive
literature on warehouse management problems. In the first section, we give brief ex-
planations of existing literature reviews on warehouse operations. Then, we focus
on each of these operations which are mostly related with our study. To do that, we
aim to highlight the contributions of the studies, focusing especially on picker rout-
ing, batching, and zone-picking problems. Finally, we review the literature regarding
integrated order picking operations, which focuses on the combinations of different

warehouse operation problems.

2.1 Existing Reviews on Warehouse Operations

There is an extensive literature on warehouse problems covering strategic, tactical,
operational levels. Reviews classifying warehouse problems include Rouwenhorst
et al. (2000), De Koster et al. (2007), Gu et al. (2007), van Gils et al. (2018b), Masae
et al. (2020a), and Vanheusden et al. (2022b).

Rouwenhorst et al. (2000) review the existing literature on design and control prob-
lems. It is suggested that a joint analysis of various design methodologies is largely
required since strategic level problems are highly interrelated. Hence, the literature
should focus on clustering the relevant strategic level problems that are possible to
solve simultaneously. The authors also claim that the integrated modelling is re-
quired at a lesser extent in tactical level problems while the operational level ware-
house problems can be handled independently. This is because of the fact that the
constraints for the operational level problems are set at strategic or tactical levels and

interactions between different processes are typically handled during these levels.
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Therefore, the authors suggest that operational level policies would not be required to
interact with other same-level policies as long as it is considered at a higher level. As

a result, they recommend a more design-oriented research approach.

For another detailed review of warehouse order picking operations, the reader is re-
ferred to De Koster et al. (2007). This study gives a literature overview on typical de-
cision problems in design and control of manual order-picking processes focusing on
the literature on layout design, storage assignment methods, batching/zone-picking,
and routing methods. It is the most comprehensive review regarding order picking ob-
jectives and their improvements through various zone-picking, batching and storage
assignment approaches. Another literature review focusing on warehouse operations
covering functions from receiving to shipping is the study of Gu et al. (2007). Espe-
cially batching literature in order-picking activities are explained clearly in this study

while it is concluded that zoning accounts for less than 6% in the surveyed literature.

van Gils et al. (2018b) review and classify the most recent literature regarding the
integration and interaction of the tactical and operational warehouse problems (e.g.,
order batching, picker routing, storage assignment, zoning). Authors also note that
75% of the articles on integrated problems have been published in the last decade. The
scope is limited with the combinations of storage assignment and batching, storage
assignment and routing, batching, and routing, workforce level and batching, work-
force level and routing, job assignment and batching, job assignment and routing, job
assignment and zone picking, and batching and sorting. The authors mention that
zoning and workforce related problems are the ones that have drawn the least atten-
tion in the literature. The reader is referred to the appendix of van Gils et al. (2018b),
which depicts a brief description for each of the activities related to order picking

operations.

Different from the other literature reviews, Masae et al. (2020a) specifically and ex-
tensively focus on reviews only regarding the picker routing problems. The solution
methodologies are categorized and examined based on the warehouse types (conven-
tional or non-conventional), the number of blocks (single-block or multi-block), and
the type of the algorithms (exact, heuristics or meta-heuristics). More recently, Van-

heusden et al. (2022b) review the literature to highlight the main practical factors in
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the order picking operations to fill the gap between the research and practice as the

practitioners hardly implement the findings from the researches.

2.2 Picker Routing

Our study is mostly relevant to the routing and zone-picking literature. Picker routing
or order picking problem is the mostly studied warehouse operation problem. Due to
the importance of order picking on the overall warehouse performance, there exists
a vast amount of literature on order picking. van Gils et al. (2018b), in their review,
conclude that a significant portion of the warehouse order picking literature addresses
picker routing as the main problem or as a subproblem of an integrated problem. The
significance of picker routing in order picking operations underlines the importance

of formulating an efficient integer programming model for the OPP.

Regarded as the seminal work in the order picking literature, Ratliff & Rosenthal
(1983) introduce an exact dynamic programming (DP) algorithm (further referred to
as the RR algorithm) for the single-picker single-block OPP that runs in O(|M|+|N])
time, where M is the set of picking aisles and NV is the set of pick locations. In this
algorithm, The depot is assumed to be at the very left front corner and the aisles
constitute the stages. Each aisle has two sub-stages denoted by L; and Lj. Sub-
stage L, contains the nodes a; and b; together with all nodes and minimum tour
construction edges at the left of the graph. Sub-stage Lj+ additionally contains all
pick locations and minimum tour construction edges in aisle j. The possible con-
nections within and between the picking aisles form the seven different states, called
equivalence classes. These states are denoted by their (i) degree parity at a;, (ii)
degree parity at b;, and (iii) the state of connectivity. Possible degree parities are
zero (0), even (E) or odd (U), while the state of connectivity can be 0C, 1C' or
2C. Then, any graph in a sub-stage L; can be represented by an equivalence classes
denoted by (U, U, 1C), (F,0,1C), (0, E,1C), (E, E,1C),(E, E,2C) and (0,0, 1C).
These states are updated through stages using the possible connections between states
called connection types. Ratliff & Rosenthal (1983) show that (i) there are six pos-
sible connection types within an aisle (aisle ; — 1) which connect the states at stage
L, with the states at stage L;il and (ii) there are five possible connection types

between two neighboring aisles (aisles ;7 — 1 and 7) which connect the states at stage
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Figure 2.1: The visual representation of the RR algorithm.

L;r_l with the states at stage L. The pick locations and the intersection points be-
tween the picking aisles and the cross-aisles determine the length of these possible
connections at each stage. The RR algorithm works by forming these states up to the
last stage and choosing the shortest travel time solution among the final states satisfy-
ing the minimum length completion requirement. The flow of the algorithm in terms

of connections among the states at each stage is depicted in Figure 2.1.

Due to the importance of order picking on the overall warehouse performance, the
OPP is widely studied. The RR algorithm forms the baseline for the exact solution
algorithms of different OPP extensions, including multiple blocks (Roodbergen & De
Koster 2001b, Pansart et al. 2018), non-traditional warehouse layouts (Celik & Siiral
2014, Masae et al. 2020c), turn penalties (Celik & Siiral 2016), with multiple pickers
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using pick waves (Saylam et al. 2022), or with various side constraints (Chabot et al.

2017, Zulj et al. 2018).

Roodbergen & De Koster (2001b) extend the RR algorithm and propose an exact DP
approach for the two-block case by increasing the size of the equivalence classes to
25. This substantial increase is due to the fact that the number of possible configura-
tions between two consecutive picking aisles increases from four to fourteen for the
layouts where a middle cross-aisle exists. It is also concluded that further extending
this algorithm for more than two-block case is difficult. Pansart et al. (2018) propose
a DP approach that can exactly solve instances up to five blocks by directly applying
the rectilinear TSP algorithm proposed by Cambazard & Catusse (2018) to the case
of multi-block OPP. For fish-bone layouts, Celik & Siiral (2014) introduce an exact
linear-time algorithm making use of transformation from a graph of a fish-bone layout
to a graph of two-block parallel identical aisle warehouse as proposed by Roodbergen
& De Koster (2001b). For chevron warehouses, an optimal DP routing algorithm is
proposed by Masae et al. (2020c) based on the concept of the graph theory. However,
it is also concluded that original two-block picker routing outperforms the chevron
warehouse-routing, especially for large number of picking items. As an extension,
Celik & Siiral (2016) study the effect of turns on the travel time calculations and
show that graph-based heuristics can be modified to take the number of turns into
account to travel time minimization including turn penalties. For different layouts,

the authors introduce several solution approaches.

The relevant literature also contains several simple heuristics such as the S-shape,
largest gap, return, and composite heuristics due to the complicated nature of the
optimal picker routes and the difficulty of their implementation. The S-shape and
largest gap heuristics are proposed and analysed by Hall (1993) for the single-block
layout. Similarly, return and composite heuristics are put forward by Petersen (1997).
Heuristic methods are also proposed for the multi-block layout case (Vaughan & Pe-
tersen 1999, Roodbergen & De Koster 2001a, Theys et al. 2010, Celik & Siiral 2019),
and the OPP in conjunction with storage replenishment (Celik et al. 2022) or energy
minimization (Atashi Khoei et al. 2022).

Vaughan & Petersen (1999) develop an aisle-by-aisle heuristic for multi-block lay-
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outs, where the picker visits every aisle exactly once. In this heuristic, the order
picker starts from the depot, which is located at the very left bottom corner, and
reaches the leftmost picking aisle with a pick location (filled picking aisle). In the
DP algorithm, there are | M | stages where M is the set of picking aisles starting from
the leftmost filled picking aisle. Each stage has | B| 4 1 states where B is the set of
picking blocks. There are | B| + 1 different cross-aisles, thus states, to clear pick loca-
tions in the leftmost filled picking aisle and to move to the next picking aisle. Each of
| B| + 1 cross-aisles in the current picking aisle connects to other |B| + 1 cross-aisles
of the following picking aisle. Using the cross-aisles leading to the minimum travel
distance, the order picker clears all the picking aisles and moves to the front cross-
aisle of the rightmost picking aisle. In this way, the order picker actually visits every

picking aisle exactly once. Finally, the order picker returns to the depot.

Roodbergen & De Koster (2001a) extend the S-shape and largest gap heuristics to
multi-block layouts. In S-shape heuristic, the order picker starts from the depot, firstly
enters into the leftmost filled picking aisle in order to reach the front cross-aisle of
farthest block. Then, the order picker traverses each filled picking sub-aisle of the
farthest block with a possibility of a return movement for the last picking sub-aisle if
the number of filled picking sub-aisles for the current block is odd. The order picker
then clears the next block through S-shape traverses starting from the closest filled
picking sub-aisle either the rightmost or the leftmost filled picking sub-aisle (except
the leftmost picking aisle). Finally, the order picker returns to the depot after clearing
the closest block to the depot. In the largest gap heuristic, the order picker, again,
starts from the depot, enters into the leftmost filled picking aisle and reach the front
cross-aisle of farthest block. Then, the order picker traverses the first filled picking
sub-aisle and reach the back cross-aisle. In this heuristic, using the largest gap policy,
all the filled picking sub-aisles are divided into back and front halves. According to
the best largest gap movement, the order picker firstly clears all back halves of the
farthest block then traverses to the front cross-aisle of the farthest block using the
very last filled picking sub-aisle and clears the remaining pick locations through the
front halves. Then, the order picker moves to the closest filled picking sub-aisle of
the next block, either the rightmost or the leftmost filled picking sub-aisle, and clears

this block using the same largest gap strategy. Finally, the order picker returns to the
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depot after clearing the closest block. We note that, in the largest gap heuristic, the

picker travels the middle cross-aisles twice.

In addition to the extensions of S-shape and largest gap heuristics to multi-block lay-
outs, Roodbergen & De Koster (2001a) also introduce the combined and combined+
heuristics, and propose some improvements which are also applicable to S-shape and
largest gap heuristics. In these heuristics, the order picker starts from the depot, en-
ters into the leftmost filled picking aisle and reach the front cross-aisle of the farthest
block. Then starts the DP algorithm. For the farthest block, the number of stages
is equal to the number of picking sub-aisles starting from the leftmost filled picking
sub-aisle. For the remaining blocks, the number of stages is equal to the number of
picking sub-aisles starting (or ending) after the leftmost filled picking aisle. At each
stage, there are two states, the one ending at the back cross-aisle and the one ending
at the front cross-aisle. The connection types connecting the stages and forming the
states are the same as the ones in RR algorithm except the largest gap type move-
ment. For example, a front cross-aisle ending state is formed either via a traversal
movement (cross-aisle shifting movement) connecting the previous back cross-aisle
ending state or a return movement (cross-aisle keeping movement) connecting the
previous front cross-aisle ending state. At the last picking aisle of each block, the
order picker should be at the front cross-aisle which would yield to the minimum tour
length for the current block. At the end point of each block, the order picker moves to
the closest filled picking sub-aisle of the next block, either the rightmost or the left-
most filled picking sub-aisle, and clears this block using the DP algorithm. Finally,
the order picker returns to the depot after clearing the closest block. This combined
heuristic is improved with two simple rules to form combined+ heuristic. The first
improvement is that the entering picking aisle for the closest block should be the
rightmost filled picking sub-aisle. It is to reduce the size of return movement back to
the depot. The second one is that the farthest block should not necessarily be reached
through the leftmost filled picking aisle. Roodbergen & De Koster (2001a) also note
that these improvements could be added to the S-shape and largest gap heuristics as

well. In Figure 2.2, we give some heuristic solutions for the instance in Figure 1.1.

Celik & Siiral (2019) propose a merge-and-reach heuristic for multi-block layouts

by taking advantage of the parallel-aisle property of the rectangular warehouses and
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show that their heuristic outperform the above-mentioned heuristics in terms of solu-
tion quality. Different than the heuristics above, which make use of the parallel-aisle
properties of a warehouse layout, Theys et al. (2010) suggest the direct use of the
Lin—Kernighan—Helsgaun (LKH) TSP heuristic (Helsgaun 2000) to solve the OPP
which results in more efficient solutions than previous heuristics. In this algorithm,
the authors pre-process the data, omit Steiner points, and then directly apply the LKH
heuristic. There are also several metaheuristic approaches that involve the OPP as a
direct problem or a subproblem of a combination of multiple order picking planning
problems (Tsai et al. 2008, Chen et al. 2013, 2015, Lin et al. 2016, Chen et al. 2016,
De Santis et al. 2018, Chen et al. 2019, Ardjmand et al. 2019).

In the OPP, the objective is to visit each of the pick locations on the pick list at least
once and in a sequence that minimizes the travel time. Hence, the OPP is indeed a
special case of the TSP on a specific graph structure. The OPP is also a special case
of the Steiner TSP, where a subset of vertices (Steiner vertices) are not necessarily
required to be visited in the tour. Such a parallel-aisle warehouse is depicted in Figure
2.3. The Steiner vertices (white vertices) in the case of the OPP correspond to the a;,
b; and m, vertices. The vertices required to be visited (black vertices) are the pick
locations and the depot. Consequently, the TSP formulations (e.g., Miller et al. 1960,
Gavish & Graves 1978, Claus 1984) and the Steiner TSP formulations Letchford et al.
(2013) can be directly used to model the OPP, albeit inefficiently.

A number of studies work on modifying the TSP and Steiner TSP formulations by
taking advantage of the properties of parallel-aisle warehouse layouts in order to ob-
tain a more efficient formulation. To our best knowledge, the first such work is by
Scholz et al. (2016) for the parallel-aisle single-block warehouse. In this work, the
warehouse graph is modified by redefining the vertex set, so that the formulation is in-
dependent of the number of pick locations. Next, a modified Steiner TSP formulation
of Letchford et al. (2013) is applied by using the subtour elimination constraints of
Gavish & Graves (1978) as the basis and adding new constraints to reflect the specific
properties of the parallel-aisle warehouse layout. The size of the model depends only
on the number of picking aisles. The authors show that this formulation leads to faster
computing times than the corresponding TSP formulations. The formulation consists

of new constraints added onto a TSP-based formulation, which take into account the
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Figure 2.3: Illustration of the OPP as a Steiner TSP

special properties of parallel-aisle warehouse layout.

Similar TSP-based formulations exist for the two and three-block layouts (Ruberg &
Scholz 2016, Scholz 2016) or a more general number of blocks (Pansart et al. 2018,
Su et al. 2022). Ruberg & Scholz (2016) and Scholz (2016) both extend the single-
block formulation introduced in Scholz et al. (2016) to the case of multiple blocks.
Pansart et al. (2018) propose a TSP-based MILP formulation for the multi-block OPP
where the model is developed by preprocessing the TSP graph in order to reduce
the number of vertices and edges and including additional constraints into the single
commodity flow formulation of Gavish & Graves (1978), which are resulted from
the specific properties of a parallel-aisle warehouse. Su et al. (2022) propose another
multi-block formulation built on the single commodity flow formulation proposed by
Gavish & Graves (1978) where the authors consider the picking aisles as units. The
authors conclude that their approach proves optimality in shorter computing times

than the previous studies in the multi-block OPP literature.

To the best of our knowledge, there is only a single study in literature formulating
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the compact OPP formulation with no use of TSP formulation as the basis. Directly
exploiting the properties in RR algorithm, Goeke & Schneider (2021) propose a com-
pact formulation by stipulating that (1) a feasible OPP tour has no more than two
connected components, (2) the isolated subtours are prevented as long as a single
component is forced at the end of the completion of a tour, and (3) two consecutive
picking aisles can only be connected using four possible configurations. The authors
show that the proposed approach outperforms its counterparts in the literature and
solves large instances within short computing times. Despite its computational effi-
ciency, the formulation by Goeke & Schneider (2021) makes use of the number of
possible moves between two consecutive picking aisles, which increases exponen-
tially with the number of blocks. As this would lead to a substantial increase in the
number of variables, an extension of this formulation to multiple blocks would not
be straightforward or computationally efficient. In other words, the extension of this
formulation to more blocks would be difficult if not impossible because of the fact
that the number of possible configurations between two consecutive picking aisles,
which are defined as decision variables in their study, increases from 4 to 14 for the
layouts where a middle cross-aisle exists Roodbergen & De Koster (2001b). This
would make it intractable to ensure connectivity through constraints on a progressive

OPP tour, hence lead to a more complicated model formulation.

Masae et al. (2022) analyse the impacts of order size, depot location, picker-routing
heuristic and storage assignment policies in the order picking time through simula-
tion. Hence, we also note that the performance of the solution approaches for the
OPP is largely dependent on tactical level decisions such as storage assignment poli-
cies such as random or turnover-based storage decisions. Some of the turnover-based
storage policies are shown on Figure 2.4. Since it is beyond the scope of this study,
we do not go into details. To the best of our knowledge, there is not an exact solution

methodology that solves the OPP with an arbitrary number of blocks.

2.3 Batching

To improve time performance of order picking operations, batching and zone-picking
methods are necessary to be considered. If the number of ordered items is relatively

small and the number of orders is large, it is inevitable to partition orders into batches
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Figure 2.4: Examples of turnover-based storage location assignment policies for a

single block warehouse

in picking operations. Similarly, if the number of ordered items is relatively large, it
is again inevitable to group items of orders with respect to their zones. Most of the
time, orders are not allowed to split into batches while zone-picking requires order
split since most of the orders are spread around the picking area. If necessary, batch-
ing can also be introduced within zones to more improve the performance, however
order integrity would no longer hold, therefore, would not be a constraint. But it is
important to note that partitioning a given set of orders into batches more complicates
the problem since partition itself is known to be NP-complete (Gademann et al.
2001). Parikh & Meller (2008) study the batch versus zone problem by analyzing
their impacts on picking rates, aisle-blocking, workload balancing goals and consoli-
dation/sorting requirements. For this end, the authors propose a cost model, observe
the estimated costs on a real-world example and conclude that workload balancing is

more ensured by batch picking systems.

The order batching problem is to determine a set of orders to be partitioned into
batches such that a specific objective is optimized (Gu et al. 2007, Henn & Wischer
2012, Scholz et al. 2017). In batching operations, sorting is assumed to be completed
on the way using sort-while-pick strategy hence there is no need to sort items after-

wards. Batching can be applied using mostly proximity batching where the objective
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is to minimize the distance travelled or time-window batching where the objective
is to maximize the due date performance (Gademann et al. 2001). A batch-picking,
on the other hand, is an order picking operation in which the orders are grouped into
batches and those batches are picked simultaneously, therefore, forming a wave. The
common objective in wave picking operations is to minimize the lead time of a wave,
i.e., the maximum travel time of any batch. Partitioning is the main factor of the
complexity in batching operations where orders cannot be split into more than one
batch. In the literature, several linear-time heuristics, such as rule-based algorithms,
seed algorithms, savings algorithms and meta-heuristics are introduced. Koster et al.
(1999) compare several batching seed and time-savings batching heuristics combined
with largest gap and S-shape routing heuristics in order to come up with fast, robust
and user-friendly solutions. Henn & Wischer (2012) introduce two efficient meta-
heuristic approaches, an iterated local search algorithm, and an ant colony optimiza-
tion algorithm. Gademann et al. (2001) present a branch and bound algorithm where
the objective is to minimize the maximum lead time of the batches in a wave picking
environment given the number of orders and the number of batches. The model build-
ing starts with a basic algorithm, and a preprocessed data. Then a two-opt heuristic is
proposed to build a significantly tight upper bound and analyze several lower bounds.
The performance of the algorithm significantly decreases with the increase in the
number of batches and orders. Gademann & Velde (2005) consider order batching
problem using a branch-and-price algorithm with the objective of minimizing the to-
tal travel time. To construct the branch-and-price algorithm, the problem is modeled
as a generalized set partitioning problem, and then, a column generation algorithm is
presented to solve its linear relaxation. Recently, Bayram et al. (2022) consider the
order batching problem from a data-centric point of view. They introduce the robust
order batching problem, which is defined as the order batching problem subject to
uncertainties due to congestion in the picker routes and behavior of the pickers. The
authors develop a branch-and-price algorithm integrated with prediction models an-
alyzing the data and predict the batch processing times to improve the overall order
processing. For a detailed review of batching operations, the reader is referred to De

Koster et al. (2007) and Henn et al. (2012).
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2.4 Zone-Picking

In order to reduce travel time, avoid congestion within aisles, and increase the fa-
miliarity of pick locations, the picking area could be divided into picking zones. Fa-
miliarity of pick locations in a zone has a positive impact if the storage strategy is
not random along the order picking area. On the other hand, zone-picking, which
is also called picking area zoning, reduces picking time at the expense of order in-
tegrity. When zone-picking operation is applied, sorting and consolidation (order
assembly) are required at the end of the picking process since the items should be
sorted and consolidated according to customer order. This is the main disadvantage
of the zone-picking approach. The zone-picking literature can be classified as (i)
sequential zone-picking, where the pickers pick the items in a zone and pass to the
picker in the next zone, and (ii) synchronized zone-picking, where the pickers pick

the items simultaneously in different zones.

The literature regarding sequential zone-picking systems mostly consists of queuing
network studies. De Koster (1994) analyses such a system as a Jackson queuing net-
work where the order inter-arrival times and the zone service times are exponentially
distributed. Yu & De Koster (2008) generalize the distribution of order inter-arrival
and zone service times, and Yu & De Koster (2009) consider the general queuing
network to analyse the impact of batching and zone-picking on throughput times.
According to this study, since pick density varies across the zones, it leads to im-
balance on workload among zones no matter which zone-picking policy is applied.
Then, a queuing network model is presented to analyze the impact of batching and
zone-picking on throughput times under a sequential zone-picking policy. Melacini
et al. (2011) extend the above-mentioned queuing literature by considering the num-
ber of zones and the number of pickers for each zone as variables. van Der Gaast
et al. (2020) estimate the performance of such systems by also including the buffer

capacities at each zone.

In the literature regarding synchronized zone-picking systems, Jane & Laih (2005)
present a heuristic algorithm balancing the workloads of pickers at different zones
to increase the utilization of a picking wave and reduce the lead time of the wave.

First, a similarity measurement approach is presented based on customer order in-
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formation, then using this measurement, a cluster model with a heuristic solution
approach is presented. One of the assumptions is that zone-picking is a strategic level
decision, thus zones are known, fixed, and dedicated to pickers before giving opera-
tional level decisions. Fixed zone-picking is a common assumption in zone-picking
literature. If the items were distributed and stored uniformly among zones in the
picking area, then each zone had the same demand data for each wave and workload
balance would be perfectly fine. However, items are stored largely according to a
turnover-based storage strategy thus fixed zone-picking would not be solely advan-
tageous when workload balancing objective is considered. De Koster et al. (2012)
focus on balancing workload over zones and include sorting/consolidation time as a
part of wave zone-picking operation. Larger number of zones leads to less picking
times but more sorting/consolidation times. It is assumed that all aisles are identical,
and all zones consist an equal number of aisles, so that the zone partitioning problem
becomes the problem of determining the optimal number of aisles constituting a zone.
A model is presented to determine the optimal number of zones which minimizes the
system throughput time consisting of picking and sorting/consolidation times. In the
model, the number of zones is determined first at the strategic level and then item-
to-route assignment problem is solved at the operation level under the constraint of
the strategic decision regarding the number of zones. The assumption of fixed zones
exists here as well, but it is further noted that the zone-picking problem can also be
considered as a short-term problem. Roy et al. (2012) develop a queuing network
model and investigate the impact of the number of zones on response time and total
travel time. Roy et al. (2019) model a queuing network of movable storage systems

and investigate the performance zone-picker assignment strategies.

The above-mentioned zoning studies consider the zoning environment as static, while
there are a few studies considering zoning environment as dynamic. To the best of
our knowledge, there are only a couple of studies considering dynamic zoning strat-
egy. Bartholdi & Eisenstein (1996) and Bartholdi et al. (2001) introduce the bucket
brigades concept and model a sequential zone-picking process in a dynamic way
where there are no fixed zones since the pickers pick the items in a picking list and
pass to the downstream picker, and walk back and fetch the items of the next pick-

ing list from the upstream picker. Such systems dynamically balance the workload
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among pickers without the need of additional operational control. Similarly, Ho &
Liao (2009) propose a dynamic zoning strategy where an initial zone partition is de-
signed by distance and flow relationships, then a metaheuristic is developed to help
achieving better workload balance and finally a dynamic zone control method is ap-
plied for observation. Lamballais et al. (2022) study an order picking process where
robots are used instead of conveyor-like fixed systems to reduce pickers’ non-value-
added travel times. The picker focuses only on picking process while accompanying
robot travels between the picker and the depot. The authors compare no-zoning and
sequential zoning strategies where, in the sequential zoning case, there exists some
fixed zones. In such a collaborative environment, robots are allowed to travel beyond
the zones while pickers are not. They develop a Markov Decision Process model
together with a closed queuing network and analyse the performance of dynamic
switching between zoning and no zoning strategies since there is a trade-off between
high robot waiting time in the zoning strategy and high picker travel time in the no
zoning strategy. The authors also conclude that it would be significant to examine
the optimal dynamic zone sizes to increase the system throughput which is another

contribution of our study.

More recently, van der Gaast & Weidinger (2022) introduce a deep learning approach
into OPP literature and develop a deep neural networks-based modelling for order
picking system selection. The authors apply their model by considering three differ-
ent static order picking systems; sequential zone-picking, synchronized zone-picking,
and bucket brigade picking. The authors conclude that synchronized static zone-
picking systems leads to long idle times especially for large order arrivals and long-
time pick waves. However, they also conclude that synchronized static zone-picking
system is the best when the number of ordered items are small with moderate arrival
rates. As the synchronized zone-picking system changes to dynamic, as we propose
in Chapter 5, the disadvantages of synchronized static zone-picking systems (e.g.,
workload-imbalancing, long idle times) also disappear. Similarly, Zhang et al. (2023)
analyze the batch and zone-picking integration by comparing the performances of
batch-picking and batch-synchronized zone picking, where the batches simultane-
ously collected in multiple zones. The authors model this problem by considering

the pickers’ learning effects as this is more possible for the case of zone-picking and
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propose heuristics for the solution of the models.

2.5 Integrated Order Picking Problems

In the early literature, operational warehouse problems are solved one after another.
For example, orders are firstly assigned to batches based on proximity or time-window
policy and then routings are calculated. However, in the last decade, literature has
started dealing with integrated warehouse operation problems since solving such
problems sequentially and independently yields to sub-optimal solutions. Integrated
OPP refers to joint analysis of more than one operational warehouse problem (Scholz
& Waischer 2017, van Gils et al. 2018b). Scholz & Wischer (2017) analyse how
to increase the solution quality of the approaches in the literature by jointly studying
the exact/heuristic routing algorithms and an iterated local search order batching algo-
rithm. (van Gils et al. 2018b) review and classified the most recent literature regarding
the integration and interaction of the tactical and operational warehouse problems and
conclude that combining multiple order picking planning problems would results in
significant gain on overall order picking operation performance. It is also shown that
the most popular integrated problems in literature include picker routing, batching

and storage assignment problems.

In the recent literature, there has been a number of studies with solution approaches
consisting of mathematical programming problems and meta-heuristics due to com-
plex nature of such problems. Since batching, picker-routing and workload balancing
problems are within the operational order picking planning problems, their integration
is relatively easy when it is compared to an integration with a tactical level problem
such as zoning. For example, Hong et al. (2012) propose an integrated order batch-
ing and sequencing model and a simulated annealing algorithm for multiple pickers
for single block case with an objective of minimizing the total retrieval time. In this
study, congestion caused by order pickers assigned to the same aisle at the same time
are also considered. Henn & Schmid (2013) introduce another mathematical opti-
mization model for the order batching and sequencing problem and also presented
an iterated local search algorithm. Valle et al. (2017) present a formulation for joint
order batching and picker routing problem by introducing several valid inequalities

including optimality cuts and symmetry breaking constraints by taking advantage of
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the graph representation of order picking area and the authors claim that the compu-
tational performance is improved significantly. Scholz et al. (2017) propose an in-
tegrated solution approach for the order batching and picker routing problem, called
joint order batching and picker routing problem. Then, the authors introduce a math-
ematical model and a variable neighborhood descent algorithm which consider not
only batching and routing but also batch assignment and sequencing of batches in-
between. This approach is called joint order batching, assignment and sequencing,

and routing problem.

van Gils et al. (2018a) statistically analyze the relations among order picking oper-
ations and examine the best simultaneously performing policy combinations among
storage, batching, zoning, and routing operations. The results indicate that simultane-
ous order picking operations with four zones, within-aisle storage, seed batching, and
traversal routing would achieve the best combination. Later, van Gils et al. (2019b) in-
vestigate the effects of real-life constraints in a warehouse such as safety rules, picker
blocking, and high-level storage locations on integrated order picking operations dis-
cussed on van Gils et al. (2018a) and conclude that the real-life constraints change
the nature of the problem and result in totally different best combination. In this case,
the best combination includes a single pick zone, perimeter storage, seed batching,
and traversal routing. This reveals the statistically significant impact of real-life con-
straints on integrated order picking operations especially when the picker density is
large. van Gils et al. (2019a) present a mathematical formulation for the integrated
batching, routing, and picker scheduling problem with the objective of minimizing the
total order picking time while satisfying a customer service level by including order
due times as constraints. An efficient iterated local search algorithm is also presented
since the model depends on the number of picking items, thus creating exponential

number of sub-tour elimination constraints.

Different considerations are also studied in the literature regarding integrated OPP.
Vanheusden et al. (2020) present a mathematical model, and an iterated local search
algorithm to efficiently solve pickers’ workload balancing problem. Vanheusden et al.
(2022a) analyse the impact of several workload balancing measures in order pick-
ing operations in order to reveal the significant factors ensuring workload balancing.

Srinivas & Yu (2022) analyze another integrated OPP by considering human-robot

26



collaboration in order picking systems. The authors assume that humans picks the
items and autonomous mobile robots handle the transportation. They propose a for-
mulation as well as a simulated annealing algorithm for the large instances for the
joint order batching, batch-assignment/sequencing and routing problem with the ob-
jective of minimizing the total tardiness. Guo et al. (2022) takes the COVID-19
pandemic into account and propose a formulation for the zone-wave-batch picking
problem under scattered storage policy. Pinto & Nagano (2022) review the literature
regarding the joint order batching, assignment and sequencing, and routing problem
as it is the mostly studied combination in the integrated OPP literature. D’Haen et al.
(2022) extend the joint order batching, assignment and sequencing, and routing prob-
lem by also taking into account the online, dynamic order arrivals, which is more
realistic in an e-commerce era. To the best of our knowledge, zone-picking oper-
ations have received no attention in integrated order picking literature. Finally, we
note that scattered storage policy and human-robot collaborations are two trending

topics in the order picking literature.
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CHAPTER 3

AN ARC ROUTING-BASED COMPACT FORMULATION FOR PICKER
ROUTING IN SINGLE-BLOCK PARALLEL-AISLE WAREHOUSES

3.1 Introduction

Warehouses play an increasingly important role in competitive supply chains, and or-
der picking is the core operation in a warehouse, accounting for an estimated 55% of
the warehouse operating costs (Tompkins et al. 2010, Bartholdi & Hackman 2019).
Among the operations performed within a warehouse, order picking is also the most
time-consuming and labor-intensive activity. In order picking operations, items must
be collected from the warehouse in order to satisfy the customer demand while a cost
and/or service-related objective is to be met (De Koster et al. 2007, van Gils et al.
2018b, Masae et al. 2020a). While the literature has generally modeled the OPP as a
special case of the TSP (Burkard et al. 1998, Scholz et al. 2016, Masae et al. 2020a),
this study presents an arc routing-based binary integer programming formulation for
the OPP in single-block parallel-aisle warehouses, by taking into account the special
properties of the graph corresponding to both warehouse layouts. This formulation
depends on replacing the subtour elimination constraints with a much smaller number
of disconnectivity elimination constraints, which significantly reduces the integrality
gap. Our computational experiments show that the proposed formulations are ei-
ther comparable to or outperform their counterparts in the literature for single-block
parallel-aisle warehouses. The efficiency of these formulations implies that not only
can they be used to solve the OPP in a timely manner, but they can also be incorpo-
rated into integrated models that consider multiple warehouse decision problems at

the operational level.

Due to the importance of order picking on the overall warehouse performance, there
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exists a vast amount of literature on order picking. van Gils et al. (2018b), in their
review, conclude that a significant portion of the warehouse order picking literature
addresses picker routing as the main problem or as a subproblem of an integrated
problem. The significance of picker routing in order picking operations underlines

the importance of formulating an efficient integer programming model for the OPP.

Although the OPP is a special case of the NP-hard TSP, it has been shown to be poly-
nomially solvable on single-block warehouse layouts using a dynamic programming
algorithm (Ratliff & Rosenthal 1983). It has been also shown that the RR algorithm
can be extended to two-block warehouse layouts (Roodbergen & De Koster 2001b).
However, the enumerative nature of these algorithms has rendered their extension to
more than two blocks impractical. The OPP can also be modeled using the well-
known integer programming formulations for the TSP (Miller et al. 1960, Gavish &
Graves 1978, Claus 1984) or the Steiner TSP (Letchford et al. 2013). However, these
formulations lead to large computing times since they are dependent on the num-
ber of pick locations and require computationally expensive subtour elimination con-
straints. Furthermore, the linear relaxations of these formulations are weak (Pansart
et al. 2018). Hence, research focusing on formulating an integer programming model
for the OPP has made use of modifying these TSP-based formulations (especially the
subtour elimination constraints) by incorporating specific properties of the OPP and
its corresponding graph structure (e.g., Theys et al. 2010, Scholz et al. 2016, Pansart
et al. 2018).

Existing integer programming approaches for the OPP are relatively inefficient com-
pared to DP-based algorithms, as they depend substantially on the TSP-based for-
mulations, with the exception of Goeke & Schneider (2021), which formulates an
integer programming model by taking into account the structural properties of the
optimal OPP tours by Ratliff & Rosenthal (1983). While this formulation works ef-
ficiently for the single-block case, its reliance on the RR algorithm makes it difficult
to extend to multiple blocks in a straightforward way. To bridge this gap, this chap-
ter develops an alternative formulation for the single-block OPP that employs an arc
routing-based approach. Based on our computational experiments, the efficiency of
the proposed formulation is comparable to that of Goeke & Schneider (2021) and

exceeds that of all its remaining counterparts in the literature.
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Arc routing problems consist of determining a least cost traversal of some arcs or
edges of a graph, subject to side constraints (Eiselt & Laporte 2000) while node rout-
ing problems focus on the vertices (nodes). From general routing perspective, the
relationship is as follows. Given a connected and undirected graph G with vertex set
V and edge set E, a cost ¢;; for each edge ij € E, aset Vi C V of required vertices
and a set ' C E of required edges, the general routing problem (GRP) is the prob-
lem of finding the least cost tour traversing through each v € Vi and each ij € Ey at
least once. When Er = (), the GRP reduces to the node routing problem of Steiner
TSP. When both Vi = V and ER = (), the GRP is the node routing problem of TSP.
When Vi = (), the GRP reduces to the arc routing problem of Rural Postman Prob-
lem. When both Er = E and Vi = (), the GRP is the arc routing problem of Chinese
Postman Problem (Eglese & Letchford 2000).

The OPP consists of determining a least cost traversal of some edges of a graph,
subject to side constraints. In this regard, the OPP can be defined as an arc routing
problem as follows: The picking aisles and the cross-aisles constitute the edges while
the intersection points between picking aisles and cross-aisles form the vertices. For
a feasible order picking tour, the picker should traverse all non-empty picking aisles
(and possibly some of the cross-aisles) in order to maintain a connected closed walk
starting and ending at the depot. As we show in the following sections, using an
arc routing-based approach for the OPP, as opposed to a TSP-based one, results in
two main advantages. First, the formulation does not depend on the number of pick
locations. Second, it eliminates subtours by means of a significantly smaller num-
ber of more efficient constraints. Our experiments on randomly-generated instances
and those from the literature test the performance of the proposed models in terms
of computation time and integrality gap of the linear programming relaxation. The
results show that the proposed models solve the instances efficiently. For the single-
block case, we either outperform or obtain comparable results to the studies in the
literature. Furthermore, the linear programming relaxation of our formulation leads
to particularly stronger lower bounds when number of aisles and pick locations is

relatively large compared to the number of items to be picked.

In this context, taking into account the special properties of parallel-aisle warehouse

design, we firstly redefine the parameters based on the movement types introduced by
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Ratliff & Rosenthal (1983) and then formulate a compact mathematical model, which
is dependent only on the number of aisles. Our integer programming formulation for
the single-block OPP includes three main classes of constraints: (i) assignment and
sequencing constraints, (i1) degree constraints and (iii) disconnectivity elimination
constraints. The first set of constraints ensure that all items are picked, whereas the
second and third set of constraints are required for a feasible closed walk on the

connected graph corresponding to the warehouse.

The remainder of this chapter is organised as follows. Section 3.2 describes the OPP
studied in this chapter. In Section 3.3, we present the formulation for the single-block
OPP. Computational experiments and the performance of the models are tested in

Section 3.4, and the chapter is concluded in Section 3.5.

3.2 Problem Description

Order picking is the most expensive and labor-intensive warehouse activity. The OPP
can be defined as one of sequencing the visits of a picker to item locations on the
pick list, so that total travel time is minimized. The OPP is a special case of the TSP
arising in warehouse operations. The objective of the OPP is to collect the items on

the pick list in a sequence that minimizes the total travel time.

In this chapter, we consider the OPP in a parallel-aisle single-block warehouse layout.
An example for such a layout is given in Figure 3.1, which consists of narrow picking
aisles parallel to one another. It also contains cross-aisles at the front and back ends

of the picking aisles as in Figure 3.1.

Figure 3.2 shows the graph representations of the OPP instances in Figure 3.1, where
v refers to the depot, v;, ¢ > 1 denote the pick locations and vertices a; and b;
represent the intersection points between the back/front cross-aisle and the picking
aisle 7, respectively. In line with the literature, we assume narrow picking aisles so
that a picker spends negligible time when making horizontal movements within a
picking aisle. A picker starts the picking tour from the depot, collects all the items in
the pick list and returns to the depot. Without loss of generality, the depot is assumed

to be at the left corner of the front cross-aisle.
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Unlike the studies in the relevant literature, this chapter formulates an arc routing-
based mathematical model for the OPP that enforces a strongly connected closed
walk using disconnectivity elimination constraints which can be extended to the case
of multi-blocks. These constraints provide a significant contribution to the literature
because while enforcing a strongly connected closed walk without the need for sub-
tour elimination constraints, these constraints also result in tight linear relaxations for
the model, even when the number of pick locations and/or aisles increases signifi-
cantly. More importantly, these constraints can be extended to incorporate multiple

blocks. We leave such an extension for more than two blocks for future research.

To the best of our knowledge, this is the first study in the literature to study the OPP
as a variant of the arc routing problem. Our computational results show that our
formulation produces results that are either comparable to or better than the existing

approaches for the single-block OPP.

3.3 A Binary Integer Programming Formulation for the Single-Block OPP

In this section, we first describe the notation and the useful properties of a parallel-
aisle layout for the single-block formulation together with the binary integer program-

ming model.

To obtain an arc routing-based formulation for the OPP, we make use of a number
of structural properties of the OPP and redefine the graph so that the set of vertices
consists only of the intersection points between the picking aisles and cross-aisles.
In this regard, we define M as the set for the picking aisles and the resulting set
for the cross-aisles is formed as C' = {0, 1} referring to front and back cross-aisles,

respectively.

Next, we define the six possible intra-aisle movement types for a feasible OPP tour,

which are shown in Figure 3.3(a).

(0) The order picker enters the picking aisle using the front intersection point, visits

all pick locations and leaves the picking aisle using the back intersection point.

(1) The order picker enters the picking aisle using the back intersection point, visits

all pick locations and leaves the picking aisle using the front intersection point.
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(b) Three possible cross-aisle movement types.

(2) The order picker enters the picking aisle using the back intersection point, visits

all pick locations, returns after the last pick location, and leaves the picking aisle

using the back intersection point.

(3) The order picker enters the picking aisle using the front intersection point, visits

all pick locations, returns after the last pick location, and leaves the picking aisle

using the front intersection point.

(4) The order picker enters the picking aisle twice, once using the front intersection
point and once using the back intersection point. At each time, picker leaves
using the same intersection point. The pick locations to make the returns are
decided based on the largest gap between any two pick locations or intersection

points within the aisle.

(5)

(5) The order picker does not enter the aisle when no pick location exists.

We can further classify the intra-aisle movements according to whether they cause a
cross-aisle change during the tour. Type (0) and type (1) intra-aisle movements are

cross-aisle shifting movements since the picker moves from a cross-aisle to the other
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one with such a move. The remainder of the intra-aisle movements are classified as
cross-aisle keeping movements since the picker stays at the same cross-aisle after such
a move. Moreover, among cross-aisle keeping movements, type (2) is further defined
as back cross-aisle keeping movement, type (3) is further defined as front cross-aisle
keeping movement and type (4) is further defined as both back and front cross-aisle
keeping movement. Finally, type (5) movement is also a cross-aisle keeping move-

ment since the picker continues at the same cross-aisle with such a movement.

We define R as the set of intra-aisle movements in Figure 3.3(a). Furthermore, instead
of measuring travel times using those between pick locations (as would be in a TSP-
based formulation), we define parameter c;; as the time travelled to clear picking aisle
¢ € M by making intra-aisle movement ;7 € R. We also note that ¢;5 is set as zero
if the picking aisle j does not include a pick location whereas it is set as a very large
value otherwise. For the second aisle of Figure 3.1, ¢y and cy; values would be 16
time units since these movements would traverse the whole picking aisle. The travel
time parameters for the back and front cross-aisle keeping movements, ¢y and co3,
are 12 and 24 time units, respectively. In the same manner, cy4, would be 12 time
units. Finally, cy5 would be a very large value since the aisle is not empty. Defining
the parameters in an aisle-dependent way also reduces the size of the data especially
when a turnover-based storage policy is applied since the possibility of having a pick

location in the further aisles would be relatively small.
The decision variables to represent the intra-aisle movements are defined as follows.

1, 1if picker clears aisle : € M by making intra-aisle movement j € I
Yij =
0, otherwise

Similarly, the three possible cross-aisle movement types, also shown in Figure 3.3(b),
are as follows:

(x1) The order picker leaves the picking aisle j and enters the picking aisle j + 1.
(z0) The order picker enters the picking aisle j after leaving the picking aisle j + 1.

(z) The order picker leaves the picking aisle j and enters the picking aisle j + 1,

and comes back to the picking aisle 7 using the same cross-aisle after leaving
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the picking aisle 7 + 1.

To define decision variables corresponding to the cross-aisle movements, we firstly
introduce set M' = M U {0}, where aisle O represents the dummy picking aisle. The
parameter h is defined as the travel time between two neighboring aisles. Now we

define the binary variables for the cross-aisle movements.

1, if picker makes an x1-type movement from aisle i € M’
xly = to i+ 1 € M’ on cross-aisle k € C

0, otherwise

1, if picker makes an x0-type movement to aisle i € M’
0y = from i+ 1 € M’ on cross-aisle k € C

0, otherwise

1, if picker makes a z-type movement from/to aisle 1 € M’

Zik = on cross-aisle k € C

0, otherwise

A feasible picking tour on a parallel-aisle warehouse is a strongly connected closed
walk starting from the depot, picking all items on all picking aisles by making intra-
aisle movements and returning to the depot. We note that a strongly connected closed
walk required here does not necessarily have to be an Eulerian circuit, which is a
circuit that uses every edge, but rather only some edges need to be traversed, as in the
Rural Postman Problem. Hence, all picking aisles are required to be assigned an intra-
aisle movement, whereas some of the cross-aisles can be traversed (at most twice) to

ensure a closed walk and that all intra-aisle movements are strongly connected.

For each cross-aisle, the total degree of the vertices due to intra-aisle movement types
should be even to complete a closed walk on a parallel aisle warehouse. A return to
depot requires equal number of type (0) and (1) intra-aisle movements in total for
the single-block picking area. Since other movement types add even degrees on each
vertex representing the front and back intersection of a picking aisle, the total degree

of vertices due to intra-aisle movement types at each cross-aisle would be even for a
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strongly connected closed walk.

In this regard, the necessary and sufficient conditions to form a feasible OPP tour,
which are also direct implications of being a feasible tour by Ratliff & Rosenthal

(1983), are as follows:

(i) One of the intra-aisle movement types in each picking aisle and in a feasible

order,

(i) Even degrees for each of the vertices corresponding to the intersection points

between the picking aisles and the cross-aisles, and
(ii1) A single connected component for the whole tour.

We constitute the feasible region based on these conditions respectively. The first set
of constraints, which we further call the assignment constraints, corresponds to the
first part of condition (i), where an intra-aisle movement should be assigned to each

of the picking aisles to conduct the picking activity.

D =1 Vie M (3.1)
jJER
To ensure that the picker starts and ends the tour at the depot (which is on a cross-
aisle), there needs to be an equal total number of cross-aisle shifting intra-aisle move-
ments. This implies an equal number of type (0) and (1) intra-aisle movements.

Constraint (3.2) guarantees this condition.

Z Yio = Z Yi1 (3.2)

ieM €M

The cross-aisle shifting movements also need to be performed in a specific sequence
to guarantee feasibility at any part of the closed walk. Given that the walk starts from
the left corner of the front cross-aisle, there are two possible cases. If the picker is at
the front intersection point of a picking aisle, the number of type (1) movements to
the left of and including that picking aisle should be equal to that of type (0) move-
ments. Similarly, if the picker is at the back intersection point, the number of type
(1) movements to the left of and including the picking aisle should be one fewer than
that of type (0) movements. In this sense, a type (0) movement occurs before a type

(1) movement and do not occur again before the occurrence of a type (1) movement.
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Figure 3.4: A set of intra-aisle movements satisfying Constraints (3.1)-(3.4)

Constraints (3.3) and (3.4) guarantee this logical sequencing as follows:

S 00>y Vie M (3.3)
p=1 p=1

v <1+ Vie M (3.4)
p=1 p=1

Altogether, we refer to Constraints (3.2)-(3.4) as the sequencing constraints. Apply-
ing only the assignment and sequencing constraints may result in the degree parities to
be non-even for the vertices where the corresponding aisles are assigned by a cross-
aisle shifting type of movement. Furthermore, each cross-aisle keeping movement
may lead to a one-aisle disconnected closed walk. An example with both of these

issues is depicted in Figure 3.4.

Before proceeding further, we further classify type (0) and type (1) intra-aisle move-
ments as well as x1 and x0-type cross-aisle movements as the odd-degree movements
as they increase the degree of their corresponding vertices by an odd number. In this
regard, due to Constraints (3.3) and (3.4), an z1-type cross-aisle movement only oc-
curs at the back cross-aisle since type (0) intra-aisle movement occurs before type
(1) intra-aisle movement. Similarly, all x0-type cross-aisle movements only occur at
the front cross-aisle. This is because if an order picker walks to the back cross-aisle
using a type (0) intra-aisle movement, there are two possibilities: The picker may (1)
continue to the next aisle by making an x1-type cross-aisle movement or (2) continue
to the previous cross-aisle and come back, thus making a z-type cross-aisle move-

ment. The remaining possibilities would violate the sequencing Constraints (3.3) and
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Figure 3.5: Visual representation of all possible odd-degree movements involving

aisle 7 in a single-block layout

(3.4). A similar reasoning applies at the front cross-aisle for an z0-type cross-aisle
movement. Hence, using odd-degree movements while establishing a sequential rela-
tionship between type (0) and type (1) movements breaks the symmetry and halves the
number of feasible order picking tours. Moreover enforcing intra-aisle movements in
this way is also advantageous in practice as it reduces the congestion on the front
and back cross-aisles by leading to one-way movements. All possible odd-degree
movements in single-block layouts resulting from above observations are depicted in

Figure 3.5.

Addition of Constraints (3.5) and (3.6), defined as degree constraints, prevents the
occurrence of odd-degree vertices on the front and back intersection points, respec-
tively. Here, each constraint forces the corresponding vertices to be even degree by
ensuring equal number of incoming and outgoing odd-degree movements as in Fig-
ure 3.5. To formulate such even degree vertex constraints, there is no need to force
the right-hand side of the constraints to be even by using dummy integer variables as
modelled in Goeke & Schneider (2021). It is possible by equalizing the number of
incoming and outgoing odd-degree movements. In other words, there is no need to
include any even-degree movements into degree constraints as they don’t change the

even-degree status of a vertex.
20¢i—1)0 + Yio = 20i0 + yi1 Vie M (3.5)
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With the assignment, sequencing and degree constraints, a disconnected closed walk
could still exist, as exemplified in Figure 3.6. Here, each aisle is assigned to a move-
ment with the sequential relations satisfied, and each vertex is of even degree. How-
ever, each cross-aisle keeping movement generates disconnected closed walks (sub-
tours) by itself. Moreover, an even number of cross-aisle shifting movements connect
with each other, hence they also form disconnected closed walks. To explain in which

condition such disconnectivities occur, we use the following definition.

Definition 1. When the picker is on the front cross-aisle, the state of the tour is called
state 0. Otherwise, the state is called state /. In other words, when the total number
of type (0) movement equals to the total number of type (1) movement, the picker is
on the front cross-aisle and it is called state 0. On the contrary, when the picker is on
the back cross-aisle, i.e. when the total number of type (0) movement is one greater

than the total number of type (1) movement, it is called state 1.

We note that the assignment, sequencing and degree constraints are sufficient to pre-
vent disconnectivity on an ongoing OPP tour as long as the state is 1. This is because
when the state is 1, the picker is on the back cross-aisle, hence at least one of the
vertices would be an odd-degree vertex. At this point, degree constraints would force
each of the vertices to be of even degree, thus enforce connectivity, until the state of

the tour turns to state 0.
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We also note that, for a feasible order picking tour, only a z-type cross-aisle move-
ment can occur when the state of the tour is 0 (and x1 and x0-type cross-aisle move-
ments can occur when the state of the tour is 1) to maintain the degrees of vertices to

be even on an ongoing OPP tour until the state of the tour changes to 1.

In Figure 3.6, the state becomes 0 at the second aisle. At this point, all vertices are
even degree but disconnected closed walks exist. Hence, as long as the state is 0,
the assignment, sequencing and degree constraints will not be sufficient to prevent
disconnectivity. Before we formulate the constraints to break such disconnectivities,
we define the possible cases of disconnectivities that might occur in the single-block

layouts.

Definition 2. For a single-block layout, three possible types of disconnectivities can

occur.

(1) Vertical disconnectivity occurs when there is neither front nor back cross-aisle
movement between two adjacent aisles. In other words, one can draw a vertical
line which does not cut any cross-aisle movements. Such a vertical line is shown

on the third picking aisle in Figure 3.6 above.

(i) Horizontal disconnectivity occurs when either adjacent front or adjacent back
cross-aisle keeping movements horizontally connect among themselves to sat-
isfy the degree constraints but remain disconnected from the remainder of the

tour. Such a disconnected closed walk can be seen in Figure 3.7.

(ii1) Diagonal disconnectivity occurs when both a front and a back cross-aisle move-
ment are missing, and thus one can draw a diagonal line which does not cut any
intra-aisle or cross-aisle movements. An example of such a disconnectivity is

given in Figure 3.8.

As we define when and how the disconnectivities occur, we now begin formulation of
disconnectivity elimination constraints starting with Constraint (3.7), which prevents
the vertical disconnectivity by stipulating that each picking aisle must be connected

to the next aisle through the back and/or front cross-aisle no matter what the state of
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Figure 3.7: Disconnected closed walks resulting due to horizontal disconnectivities

the tour is.
xly + 200 + 2251 + 220 > 2 Vie M\ {|M|} (3.7)

Since disconnectivities occur when the state of the tour is 0 and only z-type cross-
aisle movements can occur at this state, the remaining disconnectivity constraints are
formulated using only z-type decision variables. Moreover, the last part of the right
hand side of the disconnectivity constraints ensures that the following constraints are
binding as long as the state of the picker is 0. In this regard, Constraints (3.8) to (3.9)

eliminate possible horizontal disconnectivities on the back cross-aisle.

Z(i—1)1 T Zi1 > Uiz + Yia — |M| Z(ypO - ypl) Vie M (3.8)

p=1

u—1 u+l i—1+q
U<Z(i—1)1 + Z(i+u)1> > Z(i+p)1 — |M| Z ( Z (ypo - ypl))
p=0 q=0 p=1

(3.9)

we{l,... M| —1},ie{l,....|M|—u}

Constraint (3.8) eliminates the one-aisle disconnected closed walks formed by a back
cross-aisle keeping movement (e.g., aisles 4, 5 and 6 in Figure 3.6). Constraint (3.9)
eliminates the multi-aisle disconnected closed walks formed by z-type cross-aisle
movements. Such disconnectivities contain at least one and at most |M/| — 1 adjacent

z-type cross-aisle movements as exemplified in Figure 3.7. The number of adjacent
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z-type cross-aisles in a disconnected closed walk is represented by the parameter w.
Here, the constraint firstly checks if the state is 0 throughout from aisle ¢ to 7 4-u. If so,
it means that u adjacent z-type cross-aisles may form a disconnected closed walk. To
prevent this, Constraint (3.9) forces either a back z-type cross-aisle movement before
aisle < and/or a back z-type cross-aisle movement after aisle ¢+ + u. For example,
Constraint (3.9) with ¢ = 4 and v = 2 eliminates the disconnectivity depicted in
Figure 3.7. Here, the constraint firstly checks if the state is O throughout from aisle 4
to 6. Since the state is O and there are 2 adjacent back z-type cross-aisle movements,

it forces either z3; and/or zg; to exist.

In the same manner, Constraints (3.10) and (3.11) eliminate the horizontal disconnec-

tivities possible on the front cross-aisle.

Z(i—1)0 + Zio = Yiz + Yia — | M]| Z(ypﬂ — Yp1) Vie M (3.10)
p=1
u—1 u+l 1—1+4q
U(Z(H)o + Z<i+u>o> >z — [M] ) ( > W0 - yp1)>
p=0 q=0 p=1
(.11)

we{l,.. M| —1Yie{l,...,|M|—u}

Diagonal disconnectivities are prevented in a similar fashion by applying Constraints
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(3.12) and (3.13).

u+1 i—1+gq

Zimnt + Zirwo = 1= [M]Y ( > (o — yp1)> u€{0,...,[M| -5},
q=0 p=1
ie {3 M| —u—2)
(3.12)
ut+l i—1+4q

2(i—1)0 + 24w = 1 — | M| Z ( Z (Ypo — yp1)> ue{0,...,|M| -5},
q=0 p=1
i€{3,...,|M|—u-—2}
(3.13)

Constraints (3.12) and (3.13) firstly check if the state is 0 throughout from aisle ¢ to
1 + u using the right hand side of the equations. If so, Constraint (3.12) forces either
a back z-type cross-aisle movement before aisle ¢ and/or a front z-type cross-aisle
movement after aisle ¢ + u. At the same time, Constraint (3.13) forces either a front
z-type cross-aisle movement before aisle ¢ and/or a back z-type cross-aisle movement
after aisle ¢ + u. For example, in Figure 3.8, Constraint (3.12) with¢ =5and u =1

is violated since neither z4; nor zgg exists in the solution.

We also observe that, in the first and last picking aisles, diagonal disconnectivity
cannot occur because it requires at least one couple of type (0) and type (1) intra-aisle
movements, otherwise it would be a horizontal disconnectivity. Hence, the above

constraints do not include the first and last picking-aisles.

Since they increase the problem size significantly, but are only required when the state

is 0, we implement Constraints (3.9), (3.11), (3.12) and (3.13) as lazy constraints.

Lazy constraints are the constraints that solvers do not initially put into the problem
being solved. Only the ones that are violated are included into the problem. Lazy
constraints are considered to be significantly useful when (1) the lazy constraints are
out of the problem, the most of the instances would still be solved to optimality and
also even when they are violated only a small portion of instances are violated, (2)
the lazy constraints are out of the problem the computing time would significantly
improved since there are too many lazy constraints. For a detailed review of lazy

constraints, the reader is referred to Pearce (2019).
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Lazy constraint approach is especially important for the computing time performances
of our models. This is because of the fact that disconnectivities occur when the state
is 0 and the disconnectivity elimination constraints are the most time consuming con-
straints. For this end, we can formulate these constraints as lazy constraints since,
most of the time these constraints will not be required for the optimal OPP tour. In
the computational experiment section we will show how significantly the performance
of our models are increased with the use of disconnectivity elimination constraints as

lazy constraints.

Constraint (3.14) includes the depot into the tour, which is at the very left front corner,
without loss of generality. This can be updated in the same manner for different depot

locations.
Z10 .Tolo =1 (314)

The remaining constraints define the domains of the decision variables.

[Elgk,$1|M|k,l‘00k,lL‘0|M‘k, 20k, 2| M|k = 0 Vk e C (3.15)
yi; € 10,1} Vie M,j € R, (3.16)
w1ik, 204, 2z € 10,1} Vie M. keC 3.17)

Finally, we present the objective function which minimizes the total time travelled
to complete the order picking tour. The first part gives the total travel time of intra-
aisle movements, and the remaining part gives the total travel time of cross-aisle
movements.

min Z Z CijYij +h Z Z(xlzk + 204 + 22i1) (3.18)

JERiEM keC ieM

Objective function (3.18), subject to Constraints (3.1)- (3.17), defines a complete
binary integer programming formulation for the single-block OPP. To increase the

efficiency of the formulation, we propose a set of valid inequalities in Section 3.3.1.
3.3.1 Valid Inequalities for the Single-Block OPP in Parallel-Aisle Warehouse
Layouts

Although the proposed formulation is sufficient to constitute a complete binary inte-

ger programming model for the OPP, one can significantly increase the efficiency of
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computing time performance through valid inequalities by taking advantage of (i) the
special properties of the parallel-aisle warehouse layout, (ii) the sequential relation
between the odd-degree movements, and (iii) the starting and ending aisles of the

states of the blocks. Such valid inequalities are presented as follows.

210,20;1 =0 Vie M’ (3.19)
Yis > 1 — icij Vie M (3.20)
j—2
20+ i < 1 Wie M\ {|M][} 3.21)
Zi + Yio < 1 Vie M\ {|Ml} (3.22)
2010 + y < 1 vie M\ {|M|} (3.23)
ol +yn < 1 ie M\ {|M][} (3.24)
Zi—1yo Fya <1 Vie M\ {1} (3.25)
Zi—in Fya <1 Vie M\ {1} (3.26)
20610 + Yo < 1 vie M\ {1} (3.27)
2l + 0 < 1 Vie M\ {1} (3.28)
20i0 + 21 < 1 vie M\ {|M|} (3.29)
2l 4 20 < 1 Vie M\ {|M]} (3.30)
2010 = 2151 vie M\ {|M|} (3.31)
(|M]—2) Zyio > Z(yiQ + Yia) (3.32)

i€M €M
Constraint (3.19) forces one-way cross-aisle movements, since x1-type cross-aisle
movement only occurs at the back and x0-type cross-aisle movement only occurs at
the front cross-aisles. Constraint (3.20) ensures that no intra-aisle movement other

than a type (5) movement can occur in an empty aisle.

Constraints (3.21) through (3.28) regulate the occurrence of cross-aisle movements
when they are adjacent to cross-aisle shifting intra-aisle movements. In this regard,
Constraints (3.21) and (3.22) prevent the simultaneous occurrences of both a type (0)
intra-aisle movement and a z-type cross-aisle movement for an aisle as the state would
change to 1 with a type (0) intra-aisle movement. In the same manner, Constraints
(3.23) and (3.24) prevent the simultaneous occurrences of both a type (1) intra-aisle

movement and an z-type cross-aisle movement for an aisle as the state would change
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to 0 with a type (1) intra-aisle movement. Moreover, Constraints (3.25) and (3.26)
prevent the simultaneous occurrences of both a type (1) intra-aisle movement for aisle
1 and a z-type cross-aisle movement for aisle 7 — 1 as both cannot occur at the same
time. Similarly, Constraints (3.27) and (3.28) prevent the simultaneous occurrences
of both a type (0) intra-aisle movement for aisle 7 and an z-type cross-aisle movement

for aisle + — 1, which is not possible in an order picking tour.

Constraints (3.29) and (3.30) limit occurrences of the number of cross-aisle move-
ments corresponding to a specific aisle as an x-type cross-aisle movement cannot
occur with a z-type cross-aisle movement at the same time. Constraint (3.31) ensures
the simultaneous occurrences of two z-type cross-aisle movements as one occurs, the
other naturally occurs. Finally, Constraint (3.32) ensures that the back cross-aisle
movements can only occur if a type (0) intra-aisle movement is occurred, i.e., the

picker should visit the back cross-aisle at least once.

3.4 Computational Experiments

In this section, we present the computational experiments conducted on various in-
stance sets which are generated in line with those in the literature (Scholz et al. 2016).
All instances assume uniform demand, in that the pick locations are assumed to be
distributed independently and uniformly over the order picking area. We firstly anal-
yse the computing time performance of the single-block model and compare it with
the mathematical models studied in the single-block OPP literature on the instance
set generated in line with Scholz et al. (2016). This analysis also assesses the num-
ber of constraints/variables as well as our LP relaxation integrality gaps. Note that,
henceforth, we refer to our basic single-block model as SCS and the model where lazy
constraints are applied as SCS+. We implement the models using CPLEX 20.1.0.0
in AMPL modelling language on a personal computer with AMD Ryzen 7 4.2 GHz
processor and 8 GB dedicated RAM.

First, we compare the computing time performance of our single-block formulation
with the state-of-the-art formulations in the literature. The instance set for single-
block OPP is generated in line with Scholz et al. (2016) where the number of picking
aisles is set as M € {5,10, 15,20, 25,30}, the aisle-length is set to 46 time units,
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Table 3.1: Comparison of computing times (in seconds) on Scholz et al. (2016)’s

instances
Aisles  Items LNT SHSW PCC GS SCS SCS+
5 30 2.84 0.09 0.03 0.02 0.03 0.02
5 45 8.71 0.09 0.05 0.02 0.03 0.02
5 60 25.66 0.09 0.08 0.02 0.04 0.03
5 75 63.22 0.09 0.08 0.02 0.03 0.03
5 90 146.31 0.10 0.08 0.03 0.03 0.03
10 30 4.57 1.60 0.05 0.03 0.04 0.03
10 45 14.66 1.03  0.09 0.03 0.04 0.03
10 60 37.09 1.42 0.13 0.02 0.04 0.03
10 75 156.22 1.36  0.09 0.02 0.04 0.03
10 90 303.68 0.62 0.09 0.02 0.04 0.03
15 30 7.45 229  0.06 0.04 0.08 0.04
15 45 24.85 528 0.11 0.04 0.08 0.05
15 60 90.30 10.64  0.12 0.05 0.08 0.05
15 75 357.27 15.10 0.13 0.04 0.08 0.04
15 90 811.61 19.41 0.40 0.05 0.08 0.04
20 30 9.47 10.57  0.09 0.06 0.12 0.06
20 45 41.30 2732  0.09 0.07 0.14 0.07
20 60 147.52 114.33 0.26 0.06 0.15 0.07
20 75 614.11 216.63 0.24 0.07 0.16 0.07
20 90 1627.68 485.71 0.82 0.09 0.16 0.07
25 30 15.07 54.46  0.10 0.05 0.21 0.07
25 45 41.55 8546  0.22 0.06 0.26 0.09
25 60 173.87 25892  0.37 0.08 0.30 0.10
25 75 858.44  527.39 0.58 0.09 0.31 0.11
25 90 1764.21  646.59 1.10 0.09 0.32 0.11
30 30 14.00 204.18 0.08 0.06 0.33 0.08
30 45 43.01 406.19 0.19 0.08 0.45 0.11
30 60 293.87  508.80 0.54 0.10 0.54 0.13
30 75 1102.47 638.89  0.72 0.11 0.61 0.14
30 90 1800.00 786.29 1.63 0.15 0.62 0.15
Average 353.37 16770  0.29 0.06 0.18 0.06

Variable Size ~ O(IN2[M|) O(M|) O(M|) O(N||M|) o(M]) O(M])
Constraint Size  O(|NP|M|) O(M|) O(M]) O(N||M|) O(M}) O(M})
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and the number of pick locations is set as N € {30, 45,60, 75,90}. Table 3.1 depicts
the average computing times and sizes of the Steiner TSP formulation given by LNT
(Letchford et al. 2013), the TSP-based formulations, SHSW (Scholz et al. 2016) and
PCC (Pansart et al. 2018), the formulation of GS (Goeke & Schneider 2021) and our
formulations, SCS ad SCS+ for the single-block OPP. As the instances for these stud-
ies are not publicly available, we generate 2000 instances for each of the 30 classes
of settings for SCS and SCS+, and compare it with the results of LNT, SHSW, PCC

and GS which are the results of 30, 30, 10 and 10 instances per setting, respectively.

From Table 3.1 we firstly observe that both SCS and SCS+ significantly outperform
the Steiner TSP formulation proposed by Letchford et al. (2013), and the formulation
of Scholz et al. (2016). The proposed formulation also outperforms that of Pansart
et al. (2018) especially when the ratio of the number of pick locations to the number of
aisles gets larger. Furthermore, significant contribution of the use of lazy constraints
can be observed more clearly as there is an increasing performance of SCS+ compared
to SCS especially with a larger number of items and aisles. More importantly, the
performance of SCS+ is comparable to that of Goeke & Schneider (2021) as both

approaches have an average computing time of 0.06 seconds.

The single-block OPP comparison and the significant contribution of the use of lazy
constraints can be observed more clearly in Figure 3.9. Here, one can also observe
that computing times required for the solution of SCS increase with an increase in
the number of pick locations, even though the size of the model is not dependent on
the number of pick locations. This discrepancy is more significant for the results of
Scholz et al. (2016) and Pansart et al. (2018). As Scholz et al. (2016) also point out,
this seems largely due to the fact that a large number of pick locations results in many

good solutions, hence it becomes more time-consuming to prove optimality.

Although the need for disconnectivity elimination constraint increases polynomially
with the increase in the number of picking aisles these constraints are applied as
lazy constraints and also there is a trade off such that the number of constraints in-
crease while the lower bound obtained by solving the LP relaxation gets stronger.
Figure 3.10 depicts the size of the formulations in terms of the number of variables

and the number of constraints. The Y-axis represents the relative sizes (in terms of
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Figure 3.10: Comparison of model size with Scholz et al. (2016)

variables and constraints) of Scholz et al. (2016) and our formulations. In Figure
3.10, we observe that the formulation of Scholz et al. (2016) has O(|M|) variables
and O(|M|) constraints while our formulation has O(|M|) variables and O(|M |?)
constraints. Moreover in Table 3.1 we observe that the SCS and SCS+ formulations
both involve O(|M|) decision variables, as do SHSW and PCC. The formulation by
GS, on the other hand, includes O(|N||M|) variables and hence also depends on the
number of items. This dependency on the number of pick locations is due to the fact
that GS keeps a more general formulation than the assumptions made by Ratliff &
Rosenthal (1983). SCS and SCS+ require O(|M |?) constraints, which is higher than
that of SHSW, PCC and GS when |M| > |N|. However, the use of lazy constraints
implies that the actual number of constraints is much fewer in our formulation than

the worst-case.

On the other hand, relatively good performance of SCS is not only correlated with
its compact size but also with its tight lower bounds obtained from its linear relax-
ation solutions. For this end, we evaluate the performance of the proposed model in
terms of percentage integrality gap, which is the difference between the lower bound

given by the LP relaxation solution and the value of the true binary integer optimum,
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Figure 3.11: Percentage integrality gaps for SCS formulation

expressed as a percentage of the latter:

Zopt — ZLP
)
Zopt

where 2, p denotes the LP relaxation solution and z,,, refers to the optimal OPP time.
Figure 3.11 depicts the percentage integrality gaps of our formulation for Scholz et al.
(2016) instances. This reveals how effective the disconnectivity elimination con-
straints are in reducing the integrality gap. We first observe that when the number
of aisles is 5, the integrality gap is relatively large and increases significantly with
the number of pick locations. This is due to the fact that there is only a single dis-
connectivity elimination constraint in effect (for ¢ = 3 and v = 0). However, for
larger numbers of aisles (and therefore more realistic warehouse layouts), disconnec-
tivity elimination constraints, which polynomially increase with the number of aisles,
reduce this gap considerably. Moreover we also observe a reduction below 1% in
the gap with the increase in the number of pick locations as more disconnectivity

elimination constraints are in effect.

3.5 Concluding Remarks

This chapter presents a compact arc routing-based formulation for the single-block

OPP in parallel-aisle warehouses, taking into account the graph structure of the ware-
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house and the properties of a feasible order picking tour. Our approach is important
in the sense that it is an arc routing-based formulation making use of specifics of
the graph structure corresponding to the warehouse layout. Since it is also a com-
pact formulation, it can be a base picker routing model for more complex integrated

operational warehouse problems or OPPs with multiple blocks or multiple pickers.

Our computational experiments show that the performance of the proposed formula-
tion for single-block layout outperforms all TSP-based formulations while it is com-
parable to that of Goeke & Schneider (2021). Other noteworthy findings obtained
from our computational experiments include: (i) although the number of constraints
is in quadratic order of the number of aisles, applying the multi-aisle disconnectivity
elimination constraints as lazy constraints keeps the constraint size linear for the most
of the instances and also significantly decreases the actual number of constraints and
the computing times, (ii) the integrality gap of the LP relaxation is particularly lower
as the size of the instance increases, due to an increase in the number of disconnec-
tivity elimination constraints, and (iii) the computing times are significantly shorter

as the ratio of the number of pick locations to the number of aisles is larger.
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CHAPTER 4

EXTENSION OF THE SINGLE-BLOCK PICKER ROUTING
FORMULATION TO THE CASE OF TWO-BLOCK LAYOUTS

4.1 Introduction

It is noteworthy that our proposed mathematical model for the single-picker OPP can
be extended for different variants of the OPP, where each of these variations could
yield a significant contribution to the OPP literature. In general, the OPP is defined as
the problem of collecting the items on a given pick list in the minimum-time picking
tour. From an arc routing perspective, the OPP is the problem of clearing all picking
aisles in the minimum-time while assuring a strongly connected closed order picking
walk. In this chapter, we aim to extend the arc routing-based single-picker formula-
tion to two-block warehouse layouts. Following the model building phase, we analyze
the performance of the model in terms of computing time. Our computational experi-
ments show that our formulation performs better than any alternatives in the literature
for the case of two block parallel-aisle warehouses. Finally, for parallel-aisle ware-
houses with more than two blocks, we propose a simple and effective heuristic, which

has an increasing performance with more blocks and larger size of aisle lengths.

Two-block OPP is of concern since having middle cross-aisles further shortens the
unnecessary travel time in order picking. In the previous study we have focused on a
warehouse with parallel picking aisles that are perpendicular to the two cross-aisles
at both ends of the picking aisles. We, again, consider an OPP in a parallel-aisle
warehouse layout in this chapter, but it also includes a middle cross-aisle, which
perpendicularly divides the warehouse into blocks, and thereby divide the aisles into
picking sub-aisles. Order pickers can change aisles at the ends of every picking aisle

or at the middle cross-aisle halfway along the picking aisles. An example for such a
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Figure 4.1: A two-block warehouse with 8 picking aisles and 15 items to be picked.

layout is given in Figure 4.1, which consists of narrow picking aisles parallel to one

another.

The remainder of this chapter is organised as follows. Section 4.2 describes the OPP
in two-block layouts. In Section 4.3, we discuss the properties and arc routing-based
observations regarding two-block parallel-aisle warehouse layout and present an ex-
tended formulation for the OPP when a middle cross-aisle exists. In the Section 4.4,
we present a heuristic for layouts with multiple blocks. Computational experiments
and the performance of the approaches are tested in Section 4.5, and the chapter is

concluded in Section 4.6.

4.2 Problem Description

Figure 4.2 shows the graph representations of the OPP instances in Figure 4.1, where
vp refers to the depot, v;, © > 1 denote the pick locations and vertices a; and b;
represent the intersection points between the back/front cross-aisle and the picking
sub-aisle j, respectively. Vertex m;; represents the intersection point of picking-aisle
J and the middle cross-aisle. In line with the literature, we assume narrow picking
sub-aisles so that a picker spends negligible time when making horizontal movements

within a picking sub-aisle. The middle cross-aisle is the back cross-aisle of the first
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block and the front cross-aisle for the second block. In general, a picker starts the
picking tour from the depot, collects all the items in the pick list and returns to the
depot. Without loss of generality, the depot is assumed to be at the left corner of the

front cross-aisle.

Single-picker OPP with two blocks have been studied in the literature since it has been
acknowledged as a steppingstone for the multi-block layout studies. The solution
approaches in the related literature includes algorithms (Roodbergen & De Koster
2001b, Jang & Sun 2012, Masae et al. 2020b) or TSP-based formulations (Ruberg
& Scholz 2016, Scholz 2016, Pansart et al. 2018, Su et al. 2022). Although very
efficient for single-block layouts, the formulation proposed by Goeke & Schneider
(2021), which is different than the TSP-based formulations and directly exploiting
the properties in Ratliff & Rosenthal (1983), is not practically extensible to multiple
blocks.

Unlike the studies in the relevant literature, this chapter extends the mathematical
model for the single-block OPP especially by focusing on the disconnectivity elimi-

nation constraints which extended to the case of two-blocks in a relatively straight-
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forward manner. We consider how such an extension is possible for two blocks in
this chapter. This work is also important in the sense that it paves the way for an
arc-routing based multi-block OPP formulation by induction on the construction of
disconnectivity elimination constraints. Our computational results show that our for-
mulation produces results that outperforms the best-known approaches for the two-

block OPP to date (e.g., Pansart et al. 2018, Su et al. 2022).

4.3 A Binary Integer Programming Formulation for the Two-Block OPP

This section extends the binary integer programming formulation in the preceding
chapter to the two-block OPP. We first discuss how the index sets and parameters are
modified to incorporate the existence of multiple blocks in the formulation. Follow-
ing this, we present the additional changes in cross-aisle movements in the existence
of multiple blocks, and provide the modified assignment, sequencing and degree con-
straints, which are straightforward extensions of their counterparts in the single-block
model. The main difference of the two-block model arises from the disconnectivity
elimination constraints. We provide a detailed discussion of how such disconnectivi-

ties occur and present the constraints to eliminate them.

In this regard, we define the new index set B = {0, 1} as the set for the blocks, thus
the resulting set for the cross-aisles is updated as C' = {0, 1,2} referring to front,
middle and back cross-aisles, respectively. We define M as the set for the picking
sub-aisles for each block as in Chapter 3. Due to multiple blocks, we present c;j;, as
the unit time travelled to clear picking sub-aisle ¢ € M at block b € B by making

intra-aisle movement j € R.

The six possible intra-aisle movement types in Figure 3.3(a) still occur in the same
way for the two-block case. As in the single-block case, type (0) and type (1) intra-
aisle movements are classified as cross-aisle shifting movements, type (2) is further
classified as back cross-aisle keeping movement, type (3) is further classified front
cross-aisle keeping movement, type (4) and type (5) movements are further defined
as both back and front cross-aisle keeping movements. By also considering the block
index, we update the respective binary variable corresponding to these movements in

each block as follows.
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1, if picker clears sub-aisle ¢« € M by making intra-aisle movement j € R

Yijb = at block b € B

0, otherwise

Additionally, we use the same cross-aisle movements as in Figure 3.3(b) and their

corresponding decision variables as in the single-block case as follows.

(
1, if picker makes an x1-type movement from aisle i € M’

xly = toi+ 1 € M’ on cross-aisle k € C'

0, otherwise

1, if picker makes an z0-type movement to aisle i € M’
{UTIES from i + 1 € M’ on cross-aisle k € C

0, otherwise

1, if picker makes a z-type movement from/to aisle 1 € M’
Zik = on cross-aisle k € C

0, otherwise

Next, we introduce Constraints (4.1)-(4.4) as straightforward extensions of the as-

signment and sequencing constraints in the single-block case.

> yip=1 Vie M,be B
JER

Z Yiob = Z Yitb Vbe B

€M €M

S w0 > D v Vie M,be B
p=1 p=1

S v <1+ v Vie M,be B
p=1 p=1

4.1)

(4.2)

4.3)

4.4)

Constraint 4.1 ensures each sub-aisle is cleared by a movement type. Constraint 4.2

implies an equal number of type (0) and (1) intra-aisle movements at each block

to guarantee a return to the depot. Constraints 4.3 and 4.4 guarantee that type (0)
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Figure 4.3: Visual representation of possible odd-degree movements involving sub-

aisle 7 in a two-block layout

movement occurs before type (1) movement and cannot occur again before type (1)

movement for each block.

This group of constraints ensure the assignment of a movement to each sub-aisle and
the sequential relation between the movements. Applying only these sets of con-
straints would lead to non-even degree parity for the vertices connected with cross-
aisle shifting movements and sub-tours for the vertices connected with cross-aisle

keeping movements.

The definition odd-degree movements also applies in two-block case for type (0) and
type (1) intra-aisle movements as well as x1 and x0-type cross-aisle movements. For
the two-block layouts, it is still valid that x1-type cross-aisle movement only occurs
at the back cross-aisle and z0-type cross-aisle movement only occurs at the front
cross-aisle. Additionally, at the middle cross-aisles, the occurrence of one of these
two odd-degree cross-aisle movements is possible. In this respect, the possible odd-

degree movements involving an aisle in two-block layouts would be as in Figure 4.3.

Addition of degree constraints (4.5)-(4.7) prevents the occurrence of odd-degree ver-

tices on the front, middle and back cross-aisles, respectively, by ensuring equal num-
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ber of incoming and outgoing odd-degree movements shown in Figure 4.3.

20-1)0 + Yior = 200 + yin Vie M, (4.5)
xli_1y1 + 20i1 + yior + vz = 20¢-1)1 + 2 lin + yin1 + Yio2 Vie M (4.6)
xli-12 + Yio2 = 12 + yir2 Vie M (4.7)

Addition of degree constraints prevents the odd-degree vertices however subtours

could still occur due to disconnected closed walks.

We also note that definitions of horizontal, vertical and diagonal disconnectivities
hold for the case of two-blocks as well. Constraint (4.8) prevents the vertical dis-
connectivity in the same manner as in the single-block case by ensuring that each
picking aisle must be connected to the next aisle through back, middle and/or front

cross-aisle.

D (@l + 20 + 224) > 2 vie M\ {|M|} (4.8)
keC

For two-block layouts, we define the state of the tour for each block separately, further
referred to as state of the block. When the picker is on the front cross-aisle, the state
of both first and second blocks are 0 as the number of cross-aisle shifting movements
are equal. When the picker is on the middle cross-aisle, the state of the tour is 1 for
the first block but it is still O for the second block since the middle cross-aisle is the
front cross-aisle of the second block. In the same manner, when the picker is on the

back cross-aisle, the state of tour is 1 for both first and second blocks.

From our observations for the single-block layouts, horizontal and diagonal discon-
nectivities may only occur when the state is 0. This also applies for the two-block
case. In this sense, no horizontal and diagonal disconnectivity constraints would be
required if the states of both blocks are 1. For example, when the picker is on the
middle cross-aisle, such a disconnectivity is only possible at the second block since
only its state is 0. This is also still valid for two-block layouts that only z-type cross-
aisle movement can occur when the state of the block is 0 to maintain the degrees of
vertices to be even on an ongoing OPP tour until the state of the corresponding block

changes to 1.

In this regard, constraints (4.9) to (4.12) are the straightforward extensions of single-
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block horizontal disconnectivty elimination constraints (3.8)-(3.11).

Z(i—1)2 + Zi2 > Yizo + Yiaz — | M| Z(ypoz — Ypi2) Vie M 4.9)

p=1

1—1+q

u(zu 12+ Z(i 1) ) Zzwp — | M| Z ( Z Ypo2 — yp12)>

(4.10)
we {l,... |M| -1},
ie{l,... |M|—u}
Zi—1y0 + Zio = Yis1 + Yiar — | M| Z(yp01 — Yp11) Vie M (4.11)
p=1
u+l i—1+gq
U(Z(i—l)o + Z(i—i—u)()) =z Z Z(ip)o — |M] Z < Z (Ypo1 — Yp11 ) @.12)

we{l,... M| —1},ie{l,... |M|—u}

Constraint (4.9) eliminates the one-aisle disconnected closed walks formed by a back
cross-aisle keeping movement. Constraint (4.10) eliminates the multi-aisle discon-
nected closed walks formed by z-type cross-aisle movements. In the same manner,
Constraints (4.11) and (4.12) eliminate the horizontal one-aisle and multi-aisle dis-

connectivities possible on the front cross-aisle exemplified in Figure 3.7.

Additionally, a horizontal disconnectivity may occur not only by cutting through a
picking sub-aisle as in the single-block case, but it can also cover a whole picking
sub-aisle for the two-block case as exemplified in Figure 4.4. Constraints (4.13) and

(4.14) eliminate such disconnectivities covering the picking sub-aisles entirely.

2

2u Z(l’l(iq)k + 21wk + 206—1)k + 03wk + 26—k + Z@tu)k)
k=1
u—1

> Yioz + Y(iruyiz — | M] Z(l — Z(i+p)0)

p=0

we{l,.. M| —1}y,ie{l,....[M|—u}

(4.13)
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Figure 4.4: A horizontal disconnectivity covering a whole picking sub-aisle

1
2u Z(vﬂ(z‘—l)k + 21 (igupk + 206-1)k + 204wk + 26—k + Z(itu)k)

k=0
u—1

> Yior + Y(iruyn — M| Z(l — Z(i+p)2)

p=0

wefl,.. M| —1}ie{l,... |M|—u}

(4.14)

With Constraints (4.13) and (4.14), the connection to the remainder of the tour is
ensured not only through a z-type cross-aisle movement both also using both x1 and
z0-type cross-aisle movements. This is because of the fact that such a disconnected
closed walk covering the entire block can be connected to the remainder of the tour
not only through front and/or back z-type movements but also through front and back

20 and z1-type movements related to the corresponding block.

In single block layouts, diagonal disconnectivities occur when there is an absence
on both front and back cross-aisle movements while the state of the tour is 0. In
the two-block layout case, the middle cross-aisle should also be absent to observe
a diagonal disconnecitivity. As in the single-block case, diagonal disconnectivities

do not occur in the first and last picking sub-aisles. As a result, we can infer that
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the simultaneous absence of the front, middle and back cross-aisle movements can
take place in (|M| — 3)I¢! different ways where |C| = 3 in a two-block layout. As
an example, Figure 4.5 shows all possible diagonal disconnectivity occurrences for
a six-aisle two-block warehouse. Fortunately, they occur only when the state of the
blocks are 0, and thus can be modeled as lazy constraints, so they do not result in

substantial computational challenges.

The diagonal disconnectivities may only occur when the states of both blocks are
0. Constraints (4.15) through (4.22) eliminate diagonal disconnectivities. To bet-
ter explain these diagonal disconnectivity elimination constraints, we decompose the

constraints according to the starting and ending blocks of these states.

Assume that the state of the second block is O and the state of the first block is turned

to O at aisle ;.

(1) While the state of the first block is 0, the state of the second block cannot turn
to 1 at aisle ¢ 4+ u unless there is a z-type middle cross-aisle connection, which
includes u adjacent z-type cross-aisle movements between these aisles. Con-

straint (4.15) ensures such connectivity.

u—1

1

a E Z(i+p)1) = Yill T Y(itu)02
p=

[y

u—

e we .. M| =1}, (415
—|M]| (Z Ypo1 + Ypo2 — Yp11 — yp12)> ie{l,...,|M]—u}
p=1

q

Il
=)

(i1) While the state of the second block is 0, the state of the first block cannot turn to
1 at aisle i+ unless there is a z-type front and/or middle cross-aisle connection.

This is ensured by Constraint (4.16).

u—1
1
5 Z(i+p)0 T Z(itp)1) 2> Yir1 + Y(iruyor
p:O
u—1 i+q uE{l,...,]M|—1},

—|M) (Z(ypm + Ypo2 — Yp11 — yp12)> ie{l,...,|M|-u}
q=0 p=1

(4.16)

Assume that the state of the first block is 0 and the state of the second block is turned

to O at aisle 7.
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(1) While the state of the first block is 0O, the state of the second block cannot turn to
1 at aisle :+w unless there is a z-type middle and/or back cross-aisle connection,
which includes u adjacent z-type cross-aisle movements between these aisles.

This is stipulated by Constraint (4.17).

-1

Q

§I+~

Z(i4-p)2 + Z(i4-p)1 ) > Y2 + Y(itu)02
=0

3

- we {1, M| -1},
—\M\Z<Z yp01+yp02—yp11—3/p12)> ie{l,... |M|—u}
q=0 p=1

4.17)

(i1) While the state of the second block is 0, the state of the first block cannot turn to
1 at aisle ¢ + u unless there is a z-type middle cross-aisle connection. Constraint

(4.18) ensures such connectivity,

i
L

Sl

L+ (=) ) (24p)1) 2 Yir2 + Yo

3
I
=)

it well, .. |M|—1}, 4.18)
—|MY <Z(yp01 + Ypo2 — Yp11 — yp12)> ie{l,...,|M|—u}

=0 p=1

Finally, the uninterrupted continuity of u adjacent z-type cross-aisle movements, as
long as the state of the blocks are 0, is ensured by Constraint (4.19) for the front cross-
aisle, by Constraint (4.20) and (4.21) for the middle cross-aisle and by Constraint
(4.22) for the back cross-aisle.

u—1 i+q

2+ Z(i4u—1)0 > 2(3)0 + Yi11 + Y(i+u)o1 — |M| Z <Z ypOI + Yp02 — Yp11 — yp12)>
qg=0 p=1

we{l,...,|M|—1}ie{l,....| M| —u}

(4.19)
u—1 i+q

24+ Z(itu—1)1 = 2@ + Y1 + Yaruwpor — | M| Z (Z Ypo1 + Ypo2 — Ypi1 — yp12>>
qg=0 p=1

wed{l,....,|M|—-1},ie {1,...,|M|—u}

(4.20)
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Figure 4.6: One-aisle and multi-aisle inner disconnectivities

u—1 i+q
2+ Z(iru—1)1 = 21+ Yir2 T Yatrupo2 — | M| Z (Z(yp01 + Ypo2 — Yp11 — yp12)>
q=0 p=1
we{l,...,|M|—=1}ie{l,...,|M|—u}
(4.21)
u—1 i+q
2+ Z(itu—1)2 = 22 + Y2 + Yutruyo2 — | M| Z (Z(ypOI + Ypo2 — Yp11 — yp12)>
q=0 p=1
we{l,..., M| -1} ie{l,...,|M|—u}
(4.22)

Apart from the disconnectivities defined above, there exists an additional type of dis-
connectivity, referred to as the inner disconnectivity where a closed walk can oc-
cur on the intersection points between the middle cross-aisle and the picking aisle

i€ M\ {1,|M|} isolated from the remainder of the tour as shown in Figure 4.6.

Unlike other disconnectivity types, inner disconnectivity occurs only when both blocks
are at the same state, i.e., the state of both blocks are 0 or 1. For example, Figure 4.6
shows the instances of inner disconnectivities while the states of both blocks are 1.

Constraints (4.23) through (4.26) prevent this occurence by forcing a middle z-type
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cross-aisle movement before aisle ¢ and/or after aisle ¢ + w.

Constraints (4.23) and (4.24) eliminate the one-aisle inner disconnectivities formed
by cross-aisle keeping movements as exemplified in Figure 4.6 aisle 3. Constraint
(4.23) is binding when the state of both blocks are 0 while Constraint (4.24) is binding
(e.g., Figure 4.6) when the state of both blocks are 1.

2(2(2‘71)1 + 2i1) > Yior + Yiar + Yis2 + Yo

N (4.23)
—|M]| Z ( Z Ypo1 + Ypo2 — Yp11 — yp12)) Vie M

2(2(—1)1 + 2i1) = Yio1 + Yiar + Yis2 + Yiao

= (4.24)
—|M] Z (2 - Z Ypo1 T Ypo2 — Yp11 — yp12)> Vi e M

q=0 p=1

Similarly, Constraints (4.25) and (4.26), binding when the state of both blocks are 0
or 1 respectively, eliminate the multi-aisle inner disconnectivities formed by z-type

cross-aisle movements as exemplified in aisles 6 and 7 in Figure 4.6.

u—1 u+l i—1+q

u(z(i-1)1 + 2(iuy) > Z Z(itpn — | M| Z ( Z (Ypo1 + Ypo2 — Yp11 — yp12)>
p=0 q=0 p=1
we{l,...,|M|—-1},ie{1,...,|M| —u}
(4.25)
u—1 u+1 i—14q
u(2i-1)1 + Z(ituy) > ZZ (itp)1 — | M Z (2 - Z (Ypo1 + Ypo2 — Yp11 — ypIZ))
p=0 q=0 p=1

wedl,..., M| =1} ie{l,...,|M| —u}
(4.26)
Constraint (4.27) includes the depot into the tour, while the remaining constraints

define the domains of the decision variables.

210 + 2019 =1 4.27)
Lok, 1 (ks 00k, TO a1 (ks Z0ks 2| 0ajk = 0 Vk e C (4.28)
yijp € 10,1} Vie M,je R,be B  (4.29)
21k, 204, 21, € {0, 1} Vie M' ke C (4.30)

The function (4.31), along with constraints (4.1)- (4.30), constitutes a complete binary

integer programming model for the two-block OPP, which minimizes the total time
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travelled to complete the order picking tour.

min Y > ey +h Y Y (@l + 20 + 224) (4.31)

beB jeR ieM keCieM’

The set of valid inequalities in Section 3.3.1 are also applicable to the two-block lay-
outs and significantly increase the efficiency of the formulation by taking advantage
of the special properties of parallel-aisle warehouse layout. Next, we present these
valid inequalities, which are enriched by some additional constraints and inclusion of
the block index. We note that these constraints can be implemented for single-block

warehouses by ignoring the block index.

4.3.1 Valid Inequalities for the Two-Block OPP in Parallel-Aisle Warehouse
Layouts

Although the SCS and SCS+ formulations are sufficient to constitute a complete bi-
nary integer programming model for the OPP, one can significantly increase the effi-
ciency of computing time performance through valid inequalities by taking advantage
of (i) the special properties of the parallel-aisle warehouse layout, (ii) the sequential
relation between the odd-degree movements, and (iii) the starting and ending aisles

of the states of the blocks. Such valid inequalities are presented as follows.

l’li(),l'oig =0 \4) € M, (432)
5
yis2 > 1= cijo Vie M (4.33)
j=2
Zi0 <1 =) (o1 — Ypn1) Vie M\ {|M|} (4.34)
p=1
22 1= (Y02 — Yp12) Vie M\ {|M|} (4.35)
p=1
z0i0 < Z(yp(]l — Yp11) Vie M\ {|M|} (4.36)
p=1
212 <> (Ypo2 — Ypr2) Vie M\ {|M|} (4.37)
p=1
zio + Yior < 1 Vie M\ {|M]} (4.38)
Zio + Yoo < 1 Vie M \ {|M|} (4.39)
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20;0 +yinn <1 Vie M\ {|M|} (4.40)

Z(i—1)0 + Vi1l <1 Vie M \ {1} (442)
Z(i—1)2 + Yi12 <1 Vie M \ {1} (443)
20¢-1)0 + Yio1 < 1 Vie M\ {1} (4.44)

1
D a0y <1 Vie M\ {|M|} (4.48)
k=0

2
D aly <1 Vie M\ {|M]|} (4.49)
k=1

1 2
> w20 =Y ly Vie M\ {|M]|} (4.50)
k=0 k=1

1 2
> 20w+ Yz <2 Vie M\ {|M|} (4.51)
k=0 k=0

2 2
S wlu+ Yz <2 Vie M\ {|M|} (4.52)
k=1 k=0
2l 4 205, + 2 < 1 Vie M\ {|{M|},keC (4.53)
(M| =2)> wion > > (yion +yi)  VbEB (4.54)

€M ieM

Constraint (4.32) forces one-way cross-aisle movements, since x1-type cross-aisle
movement only occurs at the back and x0-type cross-aisle movement only occurs at
the front cross-aisles. Constraint (4.33) ensures that a type (5) intra-aisle movement
should occur on the back-most block if no pick location exists in the corresponding
aisle. This is only applicable for the back-most block as the picker has a possibility
to make a cross-aisle shifting travel on an empty picking aisle in the previous blocks
in order to reach to the back-most block. Constraints (4.34)-(4.37) arrange the cross-
aisles movement occurrences by checking the state of the blocks. For example, a
front cross-aisle z-type movement cannot occur during the state of the first block is

0, as ensured by Constraint (4.34).
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Constraints (4.38)-(4.45) regulate the occurrence of cross-aisle movements when they
are followed by cross-aisle shifting intra-aisle movements. In this regard, Constraints
(4.38) and (4.39) prevent the simultaneous occurrences of both a type (0) intra-aisle
movement and a z-type cross-aisle movement at an aisle as the state would change to
1 with a type (0) intra-aisle movement. In the same manner, Constraints (4.40) and
(4.41) prevent the simultaneous occurrences of both a type (1) intra-aisle movement
and an x-type cross-aisle movement at an aisle as the state would change to 0 with
a type (1) intra-aisle movement. Moreover, Constraints (4.42) and (4.43) prevent
the simultaneous occurrences of both a type (1) intra-aisle movement at aisle ¢ and
a z-type cross-aisle movement at aisle ¢ — 1 as both cannot occur at the same time.
Similarly, Constraints (4.44) and (4.45) prevent the simultaneous occurrences of both
a type (0) intra-aisle movement at aisle 7 and an x-type cross-aisle movement at aisle

¢ — 1, which is not possible in an order picking tour.

Constraints (4.46) and (4.53) limit occurrences of the number of cross-aisle move-
ments corresponding to a specific aisle. Constraint (4.46) ensures that both a middle
x0-type cross-aisle movement and a back z-type cross-aisle movement cannot occur
at the same time since a front z1-type cross-aisle movement is not possible. In the
same manner, Constraint (4.47) prevents the simultaneous occurrences of both a mid-
dle z1-type cross-aisle movement and a front z-type cross-aisle movement since a
back z0-type cross-aisle movement is not possible. Constraints (4.48) ensures that
at most one z0-type cross-aisle movement can occur at an aisle. Similarly, Con-
straints (4.49) ensures that at most one x1-type cross-aisle movement can occur at an
aisle. Constraint (4.50) ensures the simultaneous occurrences of two x-type cross-
aisle movements as one occurs, the other naturally occurs. Constraints (4.51) and
(4.52) limit the simultaneous occurrences of x and z types movements to at most two.
Constraints (4.53) states that only one of the cross-aisle movements can appear on a
cross-aisle. Finally, Constraint (4.54) ensures that the back cross-aisle movements of
a block can only occur if type (0) intra-aisle movement is occurred, i.e., the picker

should visit the back cross-aisle at least once.
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4.4 Z-Shape Heuristic: A Modified Largest Gap Picker Routing Algorithm for
the Multi-Block OPP

In this section we present a simple, easy to remember and effective picker routing
algorithm for routing heuristic for the OPP in parallel-aisle warehouses with multiple
block layouts, called the Z-shape heuristic, which is a modified version of the largest

gap picker routing heuristic.

The main motivation in this section is to present a heuristic by (i) decreasing the
unnecessary cross-aisle movements developed by the largest gap heuristics and (ii)
reducing the travel time in picking aisles with large aisle lengths where large gaps are
highly likely. This is not taken into account by the Combined+ heuristics proposed
by Roodbergen & De Koster (2001a). In largest gap heuristics, the picker travels each
cross-aisle almost twice. The contribution of this study is to avoid this duplication in
the cross-aisle movements while keep the picker routing still easy to remember. The
parallel aisle multi-block warehouse considered in this study is given in Figure 1.1.
It contains cross-aisles at front and back of the picking-aisles and contains middle
cross-aisles, which perpendicularly divide the warehouse into blocks, and thereby

divide the aisles into sub-aisles.

It a user-friendly cross-aisle-oriented algorithm. At each middle cross-aisle, the
picker follows the cross-aisle and collects the items in the upper and lower sub-aisles
according to largest gap routing policy by making the shortest cross-aisle keeping
movement from Figure 3.3(a). Only exceptions are the left-most and right-most filled
sub-aisles as the picker reaches to another block with a cross-aisle shifting movement.
What we aim to develop with our algorithm is exemplified in Figure 4.7(a). In this

regard we explain the steps of the algorithm as follows.

As in line with the literature, the depot is assumed to be at the left bottom corner. The
picker route starts by going all the way up to the back cross-aisle from the leftmost
filled picking sub-aisles by making the type (0) cross-aisle shifting movement. Af-
terwards, the back cross-aisle is travelled while the pick locations close to the back
cross-aisle is collected. The collection decision is given by comparing and choosing
the minimum of cross-aisle keeping movements. In this regard, at the beginning of the

algorithm, all the necessary intra-aisle movements are determined firstly by determin-
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Figure 4.7: (a) Z-shape heuristic solution and (b) the solution of largest gap heuristic

proposed by Roodbergen & De Koster (2001a)

ing the cross-aisle shifting movements to change blocks and secondly by determining
the minimum of cross-aisle keeping movements for the remaining picking sub-aisles

to conduct the picking activity.

After travelling the back cross-aisle and visiting the necessary pick locations, the
picker travels to the next cross-aisle by making type (0) cross-aisle shifting move-
ment. On this cross-aisle, the picker visits the necessary pick locations by visiting
both adjacent blocks to the corresponding cross-aisle by making cross-aisle keeping
movements. The picker keeps going at the same cross-aisle until the last filled pick-
ing sub-aisle and makes type (0) cross-aisle shifting movement to enter into the next
cross-aisle. In this manner, the picker reaches to the front cross-aisle and returns to
the depot by clearing the pick locations close to the front cross-aisle. A disadvantage
of this heuristic is that the picker makes a double-cross-aisle movement if the number
of blocks is even. It is to say that the picker travels the front or back cross-aisle twice

to continue with the Z-shape heuristics route.

By introducing this algorithm, we hypothesize that, for large size of aisle lengths and
large number of blocks, Z-Shape heuristics performs better than all simple heuris-
tics for all cases including the Combined+ heuristics, which is the most sophisticated

one among the simple-heuristic literature. This is firstly because of the fact that Z-
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shape heuristic cross-aisle movements are single per cross-aisle when compared to
the largest gap heuristic, which has double cross-aisle movements per cross-aisle (see
Figure 4.7 (b). Moreover we know from the literature that the largest gap heuristic
performs better than the remaining simple heuristics except the Combined+ heuris-
tic. Secondly, Combined+ heuristic never makes largest gap movements. Hence,
for the cases with large gaps between pick locations in an aisle, the performance of
Combined+ heuristic is expected to lag behind even largest gap heuristics. We espe-
cially expect good performance for the layouts with odd number of blocks as Z-Shape
heuristic makes single cross-aisle movements on each cross-aisle. So, we expect that
Z-Shape heuristic to outperform all its counterparts for the layouts with large number
of blocks and large size of aisle lengths. We recommend practitioners to apply this
algorithm for picker routing in parallel-warehouse layouts with large size aisles and

large number of blocks.

4.5 Computational Experiments

In this section, we present the computational experiments conducted on various in-
stance sets which are generated in line with those in the literature (Scholz 2016, Theys
et al. 2010, Roodbergen & De Koster 2001a). All instances assume uniform demand,
in that the pick locations are assumed to be distributed independently and uniformly
over the order picking area. Firstly, we present the computing time performance of
the single- and two-block formulations and compare them with the TSP formulation
by Miller et al. (1960) on randomly generated instance sets. Secondly, we compare
the computing time performance of the two-block formulation with the formulations
of Scholz et al. (2016) and Scholz (2016) on instance set generated in line with Scholz
(2016). Thirdly, we test the performance of the two-block formulation with the for-
mulations of Pansart et al. (2018) and Su et al. (2022) on the instance set generated
by Theys et al. (2010). Lastly, we compare the performance of our Z-Shape algo-
rithm with the ones in the literature as presented in Figure 2.2. We refer to our basic
single- and two-block models as SCS and the models where lazy constraints are ap-
plied as SCS+. We implement the models using CPLEX 20.1.0.0 in AMPL modelling
language on a personal computer with AMD Ryzen 7 4.2 GHz processor and 8 GB
dedicated RAM.
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Table 4.1: Computing times (in seconds) of the solved instances within 60 seconds

(and the number of solved instances out of 50 instances) on newly generated instances

Aisles Items Single-Block Two-Block
TSP-MTZ  SCS SCS+ TSP-MTZ SCS SCS+

10 10 0.33 (50/50) 0.07  0.02 0.27 (50/50) 0.13  0.06
10 20  10.87 (49/50) 0.07 0.03 11.16 (45/50) 0.15  0.10
10 30 43.03(25/50) 0.07 0.03 23.47 (35/50) 0.19  0.12
20 10 0.53 (50/50) 0.10 0.03 0.56 (50/50) 0.58  0.15
20 20 2274 (34/50) 0.10 0.04 18.87 (42/50) 1.10  0.23
20 30 53.65 (9/50) 0.12  0.07 36.71 (26/50) 1.72  0.30
30 10 0.48 (50/50) 0.14 0.03 0.41 (50/50) 196 0.18
30 20 41.80(24/50) 0.23  0.05 29.84 (29/50) 455  0.45
30 30 59.08 (2/50) 032  0.08 43.23 (21/50) 10.20 0.81

In our first set of experiments, we compare the computing time performances of the
single- and two-block versions of SCS and SCS+ to each other, and as well as to those
of the TSP-MTZ. Here we generate instances with 10, 20 or 30 aisles and 10, 20 or 30
pick items for both single- and two-block warehouses. We set a time limit of 60 sec-
onds for the computing time comparison, as the OPP needs to be solved repetitively
in short intervals for each pick list. Table 4.1 shows the average computing times and
the number of solved instances within 60 seconds. We leave out the latter for SCS
and SCS+ as they solve all instances within the time limit. The results show that the
SCS+ formulation solves all instances for the single- and two-block warehouses to

optimality in less than a second on average.

Comparing our formulations to TSP-MTZ, the proposed single- and two-block for-
mulations outperform the corresponding TSP-MTZ formulations at all instances. TSP-
MTZ is unable to solve part of the instances when the pick list size exceeds 20. Com-
paring single- to two-block formulation, we note that there is an increasing differ-
ence between computing times with the increase in the number of aisles large due to
the need of more disconnectivity elimination constraints for the two-block layouts.

Nevertheless, the computing time of SCS+ for two-block layouts is still under 0.80
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seconds on average even for the largest set of instances. Comparing SCS+ to SCS,
we continue to note the significant contribution of the use of lazy constraints when

applied for the two-block layouts.

With our second set of experiments, we compare the computing time performances
of SCS+ for the two-block layout with the performance of the TSP-based formula-
tions, SHSW (Scholz et al. 2016) and S (Scholz 2016). For this end, we generate
two-block OPP instance sets in line with Scholz (2016) where we set the number of
picking aisles as 5, 10, 15, 20, 25 or 30, aisles, the picking sub-aisle-length as 26 time
units, and the number of pick items as 30, 45, 60, 75 or 90. This experiment is the
two-block version of the experiment in Chapter 3. In line with Scholz et al. (2016)
and Scholz (2016), we generate 30 instances for each setting. Table 4.2 presents the
average computing times and the number of solved instances of SHSW, S and SCS+
within a time limit of 30 minutes. We again leave out the number of solved instances
for SCS+ as they solve all instances within the time limit. SHSW is able to solve
all instances to optimality within the time limit for the setting with 5 and 10 aisles,
however the number of solved instances decreases quickly for the settings with 15
aisles and more. Formulation S performs relatively better and solves all instances to
optimality except part of those with 30 aisles. The results show that the performance
of SCS+ significantly outperforms TSP-based formulations, Scholz et al. (2016) and
Scholz (2016) as it solves even the largest set of instances to optimality in 2.21 sec-
onds on average. We also note that unlike the previous experiments, the computing
times only grows moderately as the number of pick locations increases. Moreover,
the computing times start decreasing as the ratio of the number of pick items to that
of aisles increases, particularly for the settings with 90 pick locations and less than

25 aisles.

Our third experiments compare the two-block formulation with those of Pansart et al.
(2018) and Su et al. (2022), denoted as PCC+ and SZ+ respectively, on the two-
block random instance settings in Theys et al. (2010). As in Pansart et al. (2018)
and Su et al. (2022), we generate instance sets with 5, 15 or 60 aisles; 15, 60 or
240 pick locations, 11 time units for the aisle length, and 10 instances in each set.
Although this settings are far from applicability, it can better compare the computing

time performance of the state-of-the-art formulations Table 4.3 depicts the average
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Table 4.2: Comparison of computing times (in seconds) and the proportions of solved

instances on Scholz (2016)’s two-block instances with 30-minute time limit

Aisles Items SHSW S SCS+
5 30 0.78 (30/30) 0.44 (30/30)  0.05
5 45 0.71 (30/30) 0.47 (30/30)  0.05
5 60 0.67 (30/30) 0.46 (30/30)  0.04
5 75 0.74 (30/30) 0.52 (30/30)  0.04
5 90 0.78 (30/30) 0.55 (30/30)  0.03
10 30 14.29 (30/30) 1.03 (30/30) 0.10
10 45 12.17 (30/30) 1.42 (30/30) 0.13
10 60 13.69 (30/30) 1.38 (30/30) 0.14
10 75 10.85 (30/30) 1.58 (30/30)  0.10
10 90 10.03 (30/30) 1.42 (30/30)  0.09
15 30 428.07 (27/30) 6.08 (30/30)  0.23
15 45 351.52 (29/30) 6.54 (30/30)  0.25
15 60 355.98 (29/30)  19.50 (30/30)  0.25
15 75 271.85(30/30)  13.10 (30/30) 0.24
15 90 478.34 (27/30)  47.94 (30/30)  0.22
20 30  1000.09 (17/30) 6.91 (30/30) 0.34
20 45  1010.82 (16/30)  16.44 (30/30) 0.39
20 60  1010.61 (15/30)  53.12(30/30) 0.55
20 75  1111.41 (17/30) 113.47 (30/30) 0.52
20 90  1015.24 (17/30) 168.85(30/30) 0.49
25 30 1695.72 (2/30)  20.02 (30/30)  0.65
25 45 1727.68 (2/30)  44.54 (30/30) 0.72
25 60 1517.52 (7/30) 162.40 (30/30) 1.27
25 75 1654.45 (5/30) 270.24 (30/30) 1.12
25 90 1529.55 (8/30) 317.64 (28/30) 1.24
30 30 1800.00 (0/30)  59.00 (30/30)  0.90
30 45 1752.28 (1/30) 184.08 (29/30) 1.77
30 60 1800.00 (0/30) 330.98 (27/30) 2.11
30 75 1800.00 (0/30) 581.39 (25/30) 2.13
30 90 1800.00 (0/30) 904.34 (20/30) 2.21
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Table 4.3: Computing times (in seconds) of the solved instances within 30 minutes

on Theys et al. (2010) two-block instances

Aisles Items PCC+ SZ+ SCS SCS+

5 15 0.15 0.53 0.05 0.03
5 60 1.46 1.32 0.05 0.03
5 240 32.15 291 0.05 0.04
15 15 0.20 0.67 034 0.13

15 60 55.92 9.59 095 0.22
15 240  1800.00  976.00 048  0.09
60 15 0.81 1.07 38249 1.38
60 60  1800.00 86.59 934.60 12.01
60 240  1800.00 1800.00 1553.03 18.44

computing times for PCC+, SZ+, SCS and SCS+ with a time limit of 30 minutes.
PCC+ solves all intances to optimality in 6 out of 9 settings in less than a minute on
average, however it is not able to solve any of the instances within the 30 minute-time
limit for the settings with 15 aisles, 240 pick locations, and 60 aisles, 60 and 240 pick
locations. SZ+ performs relatively better as it solves all the instances within the limits
except the case of 60 aisles and 240 pick locations. Of our proposed formulations,
SCS+ solves all instances in all settings within the time limit (under 20 seconds on
average for the largest set of instances) while SCS also solves all instances except
5 out of 10 instances with 60 aisles and 240 pick items. More importantly, SCS+
significantly outperforms its counterparts in all except one set of instances, where
its average difference from the best result is half a second. Moreover, the average
of 0.09 seconds for the setting of 15 aisles and 240 pick locations shows that the
computing times are particularly shorter as the ratio of the number of pick locations

to the number of aisles is larger.

As the last experiment, we analyze the performance of the Z-shape heuristic on multi-
block layouts by comparing it with four well-known simple heuristics explained in
the literature section on a set of instances with up to 5 blocks where there are 7 or 15

aisles, each with a length of 10 or 30 time units, and 10 or 15 pick items in the picking
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list, as in line with those in the literature (Roodbergen & De Koster 2001a). During
the analysis, we only focus on the easy-to-memorize heuristics hence the heuristics
which results in relatively more complex routes are left out of consideration (e.g.,

Theys et al. 2010, Celik & Siiral 2019).

Following Roodbergen & De Koster (2001a), we use a set of 2,000 instances for each
combination. In all settings, the horizontal length between two adjacent aisles set to
2 time units. The end of a sub-aisle (length) of a block also refers to the center of the
back cross-aisle of that block and the front cross-aisle of the next block. Table 4.4
gives the average travel times of the heuristics for the multi-block OPP instances. For

each combination, the best heuristic is indicated in bold-underlined.

Table 4.4 shows that the Z-Shape heuristic outperforms all other heuristics for large
size of aisle lengths and large number of blocks. It performs worse only when there is
a two-block layout or when the picking aisle is short. As the picking aisles are deeper
in practice, we conclude that Z-Shape algorithm performs the best in real-world sce-
narios. It performs poorly for two-block layouts because of the unnecessary double
cross-aisle movement on the front cross-aisle to reach to the depot. The negative ef-
fect of these unnecessary movements disappears quickly when the number of blocks
is more than two. We also observe that the combined heuristic outperforms other
heuristics when the picking aisles are short. In numbers, the combined heuristic has
the best performance in 24 of the 40 settings, the largest gap strategy has the best
performance in 1 setting, and Z-Shape algorithm has the best performance in 15 of

the 40 settings.

4.6 Concluding Remarks

This chapter extends the arc routing-based formulation for the single-block layouts
to two-block OPP in parallel-aisle warehouses. Based on similar observations on the
states of the blocks, the occurrences of disconnectivities and the possible movements
we have modified the index sets and the parameters to incorporate the existence of
a middle aisle in the formulation. Then, we present the assignment, sequencing and
degree constraints, which are straightforward extensions of their counterparts in the

single-block model. More importantly, we have analyzed change in the ways and
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Table 4.4: Average travel time for picker routing heuristics (in seconds) for multi-

block layout settings

Method Aisles Items Length Number of Blocks
1 2 3 4 5
10 10 747 102.0 1143 1327 150.8
7 10 30 163.0 2209 258.6 3044 3534
15 10 10 1142 1560 1654 188.0 207.1

g 15 10 30 219.0 2862 3181 367.0 4153

27 15 10§74 1257 1408 1630 1783

15 30 1969 2756 3187 3672 4130

IS 15 10 1366 1921 2027 2359 2515

IS 15 30 2739 3626 3982 4544 4958

710 10 792 1004 1226 1410 1595

710 30 1919 2559 309.1 3544 4034

IS 10 10 1273 1435 1742 1941 2172

& 15 10 30 2780 3250 3810 4253 47638

2 I5 10 885 1215 1543 1743 1953

T 7 15 30 2185 3188 3933 4457 4995

IS 15 10 1513 1780 2235 2430 2677

IS 15 30 3454 4259 5053 5504 6032

710 10 760 958 1142 1328 1520

10 30 1641 2188 2683 3174 369.1

o 15 10 10 1237 1460 1687 1889 2117

S 15 10 30 2282 280.8 3326 3820 4367

& 7 15 10 885 1163 1409 1612 1810

S 7 15 30 1975 269.0 3292 3825 4356

15 15 10 1468 1793 2129 237 260.3

IS 15 30 2840 3533 4199 4741 5277

10 10 708 971 1265 1574 1882

710 30 1635 2446 3337 4249 5179

2 15 10 10 1112 1378 1701 2041 2384

<15 10 30 2266 307.3 4030 5059 6100

T 7 15 10 807 1167 1540 1929 2315

% IS5 30 1930 3016 4153 5281 65038

IS5 15 10 1323 1689 2113 2568 303.1

IS 15 30 2838 3946 5253 6588 7954

7 10 10 708 888 111.3 130.6 150.6

710 30 1635 2188 2721 3213 3733

15 10 10 1112 1269 1587 1807 2055

T 15 10 30 2266 2721 3324 3819 4380

£ IS 10 807 107.1 1374 1576 1785
@)

7 15 30 193.0 2714 3389 391.7 445.1
15 15 10 1323 1542 198.8 219.8 246.1
15 15 30 283.8 348.1 4254 4755 5304
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types of occurences of the disconnectivities for two-block case, and formulated the
disconnectivity elimination constraints accordingly. The main difference of the two-
block model arises from these disconnectivity elimination constraints. Finally, we
propose a simple and effective heuristic for multiple block layouts, which increases

its performance with more blocks and deeper aisles.

Our findings in computational experiments section show that refraining from imple-
menting TSP subtour elimination constraints increases the efficiency of the OPP for-
mulations significantly as the performance of the proposed formulation for the two-
block layout outperforms the best-known approaches for the two-block OPP to date.
Other noteworthy findings obtained from our computational experiments continues to
support (i) the significant contribution of the use of lazy constraints, (ii) the shorter
computing times when the number of items to number of aisles ratio is large. More-
over, (iii) we observe that the difference between computing times of single- and
two-block formulations increases with a larger number of aisles as the need of more
disconnectivity elimination constraints also increases. Finally we observe that (iv) our
proposed multi-block heuristic outperforms all its simple counterparts for the layouts

with large number of blocks and large size of aisle lengths.
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CHAPTER 5

THE MIN-MAX ORDER PICKING PROBLEM IN SYNCHRONIZED
DYNAMIC ZONE-PICKING SYSTEMS

5.1 Introduction

In order picking operations, items must be collected from the warehouse to satisfy
the customer demand while aiming to optimize a cost or/and service-related objective
(e.g., De Koster et al. 2007, Scholz et al. 2016, van Gils et al. 2018b, Celik & Siiral
2019, Masae et al. 2020a). In the last decades, a growing competition with limited
time windows has put extra pressure on order picking operations. Furthermore, the in-
creasing demands from online retailing have resulted in many relatively small-size or-
ders with promised time windows, which make effective order picking and workload
balancing necessary (Ardjmand et al. 2018, Vanheusden et al. 2020). Consequently,
warehouse managers are under increased pressure to make use of their order picking
resources in an efficient manner. The literature clearly reveals the gap in integrated
operational level warehouse problems considering zone picking operations. Although
recent literature regarding multiple order pickers has increased significantly, the ad-
vantages of zone picking are ignored, thus, zone picking combinations have not been

given any particular attention.

One way of ensuring a more efficient order picking process in terms of response time
is the use of zone-picking. Zone-picking is a method of order picking where the
picking area is divided into a number of zones so that the picking activity is being
conducted at each zone by a different picker, sequentially or synchronously. Zone-
picking also has other advantages including reduction of the travel time, achieving
better workload balance, avoiding congestion within aisles, and ensuring familiarity

of pick locations.
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Although zone-picking and batch-picking are the two main factors influencing the
performance of order picking processes at tactical and operational levels, zone-picking
has received less attention in the literature among all order picking operations (Yu
& De Koster 2009). Synchronized zone-picking refers to the zone-picking process
where all pickers work on the same order simultaneously, thus creating a picking
wave, whereas dynamic zone-picking refers to the zone-picking decisions made at
the operational level, since it is possible to arrange the zone sizes and re-assign the
pickers to zones at each picking wave. A dynamic zoning environment is especially
important when synchronized zone-picking is considered, as fixed zones would lead
to significant idle times where the pickers wait until all the pickers complete the pick-
ing activity. Hence, as opposed to static zoning, dynamic zoning is considered as an
operational level decision problem and can be simultaneously addressed with other

operational level problems, including picker routing and workload balancing.

In most picker routing problems, the main objective is to minimize the total travel
time of the order pickers, as it constitutes more than half of the order picking time
(Bartholdi & Hackman 2019). On the other hand, in synchronized zone-picking, the
lead time of an order picking is determined by the longest time taken by any of the
order pickers in each zone. Therefore, a min-max approach where the objective is to
minimize the latest travel time of any of the pickers is not only a good way of synchro-
nizing zone-picking operations, but it also helps ensure fairness among pickers. This
is also a common objective for other wave-picking operations such as batch-picking
(Ardjmand et al. 2018). For this end, in this chapter we make use of a min-max ob-
jective for the OPP in a parallel-aisle warehouse with a synchronized dynamic zone-
picking system. Such zone-picking systems with a makespan minimization objective
dynamically balance the workload among pickers without the need of additional op-
erational control. To the best of our knowledge, this is the first study that defines
the OPP in a synchronized zone-picking system with a min-max objective, while also
simultaneously considering the picker routing, zone assignment, and workload bal-
ancing decisions. The findings of this research should be helpful in warehouses where

multiple pickers are employed, and lead time requirements are stringent.

Throughout this chapter, we first present the min-max OPP without zoning and give

the VRP min-max formulation. Afterwards, we discuss the OPP with dynamic zon-
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ing under the assumption that each zone of adjacent aisles is assigned to a single
picker and present the relevant zoning constraints. For the min-max VRP without
zoning, we then propose a heuristic approach for the two-picker case based on the
exact picker routing algorithm and the knapsack problem. This approach also consti-
tutes a baseline for our exact DP approach for the min-max VRP with zoning, which
is presented afterwards. As the last approach, we present a batch-picking algorithm
with a min-max objective where we similarly minimize the make-span of a wave-
picking operation. Finally, we work on randomly-generated order picking instances
where the pick locations in a picking list are independently and uniformly distributed
over the order picking area to illustrate the algorithms and compare the performance

of the solution methodologies in various computational experiments.

The remainder of this chapter is organised as follows. Section 5.2 describes the ware-
house corresponding to the OPP. In Section 5.3, we develop the min-max VRP for-
mulations for multi-picker OPP with and without zoning constraints. In Section 5.4,
we present the heuristic approach for the two-picker OPP without zoning. In Sec-
tion 5.5, we develop an exact approach for the min-max OPP under synchronized
dynamic zone-picking policy. Finally, in Section 5.6 we present a modified Clarke &
Wright saving heuristic for min-max OPP under batch-picking policy. Computational

experiments are presented in Section 5.7, and the chapter is concluded in Section 5.8.

5.2 Problem Description

In both manual and automated warehouses, a combination of efficient zoning and
picker routing plays an important role in improving travel time, congestion, and sys-
tem throughput. This chapter considers the order picker routing problem in a dy-
namic and synchronized zoning environment, where the items corresponding to each
customer order are picked simultaneously in multiple zones, and zones may change
between different orders. The objective is to minimize the maximum time of com-
pleting the picking activities in any zone. Using a min-max type of objective not only
minimizes the makespan of an order picking wave, but it also helps balance the work-
load of the order pickers more effectively. We present a mathematical model for the
optimal solution of this problem, as well as a DP approach to find the optimal solu-

tion for the case where a zone is a set of adjacent aisles. Computational experiments
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on randomly generated instances show that the DP approach is able to find optimal

solutions in negligible computational times.

The parallel-aisle warehouse considered in this chapter is given in Figure 5.1. It
contains cross-aisles at front and back of the picking-aisles as in Figure 5.1(a) and
may contain middle cross-aisles, which perpendicularly divide the warehouse into

blocks, and thereby divide the aisles into sub-aisles, as shown on Figure 5.1 (b).

Figure 5.2 shows the graph representations of the warehouses in Figure 5.1(a) and
(b), where each pick location is represented by node v,, p > 1 while v, represents the
depot, and the edge (p, q) represents the path providing direct access between node
v, and v,. The nodes a; and b; represent the back and front intersection points of
picking-aisle 4, respectively. Nodes m;; represent the intersection point of picking-
aisles 7 and middle cross-aisle 7. A back cross-aisle of a block is the front cross-aisle
of the next block. A picker starts a feasible picking route from the depot, collects
all the items in the picking list and returns to the depot. The OPP is to find such a

feasible route that can be completed in the minimum time.

5.3 Min-Max OPP with Dynamic and Synchronized Zone-Picking

In this section, we propose a min-max VRP formulation to minimize the lead time of
the multi-picker wave-picking process, after which we introduce zoning constraints

into the formulation. The following assumptions are made to model the problem:

e A zone is a set of contiguous identical aisles. An aisle cannot belong to more
than one zone. The aisles are narrow enough so that order picking can be per-

formed simultaneously from both sides of an aisle in negligible time.

e The warehouse performs wave-picking with a min-max type objective, and we
focus on one wave at a time by applying synchronized dynamic zone-picking

policy to operationally control the zone sizes and therefore picker workloads.

e Each order picking tour starts and ends at the same point (the depot), and all

the items in the wave are picked in one picking tour (of each picker).
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5.3.1 VRP Formulation for the Min-Max OPP

Minimum total time travelled in a multi-picker OPP can be obtained by applying a
two-index VRP variant of commodity flow formulation by Gavish & Graves (1978)
(VRP-MINSUM). However, in our case, using a two-index formulation would not
help to balance the workload of pickers, since these indices refer only to the pick
locations (vertex and edge sets), not to the pickers. To consider balancing, we require
a three-index formulation, where the additional index k£ is introduced for pickers to

clarify which picker traverses the edge (p, q):

1, if k™ picker traverses edge (p, q)
Lpgk =
0, otherwise

Let us define N as the set of all pick locations including the depot vy, and K as the
set of all pickers. Also let ¢, be the distance of edge (p, ¢) and g, be the number of
units of the commodity passed onto pick location ¢ € N directly from pick location
p € N by picker k € K. The following single commodity flow formulation aims to
minimize the maximum time travelled by any one of the pickers (VRP-MINMAX).

min L (5.1
st Y ) apg =1 qge N\ {0} (5.2)
keKpe N
p#q
DD T =1 peN\{0} (53)
keKqe N
a#p
> zog =1 ke K (5.4)
qeN\{0}
> oz =1 ke K (5.5)
pEN\{0}
> B =D Ty ge N\ {0}, ke K (5.6)
peN peEN
P #q P #q
D2 k=) D =1 a€N\{0} (5.7)
keKpe N k€eKpe N\ {0}
p#q P #q
gquS(|N|_|K|)quk pENaqu\{O}aP%%kGK
(5.8)
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DD ot < L ke K (5.9)

peEN qeN
Tpgk € {07 1} p,q € N>p 7£ Q7k EK (510)
Ipgk = 0 p,g € Np#q ke K (5.11)

In this formulation, the objective function 5.1 minimizes the time travelled by the
latest picker. Constraints 5.2 and 5.3 state that each pick location should be visited
exactly once by a picker. Constraints 5.4 and 5.5 state that exactly | K| pickers should
leave and return to the depot. Constraint 5.6 guarantees a tour for each picker. Con-
straint 5.7 ensures that exactly one unit of commodity is left to each pick location
and constraint 5.8 states that no commodity is passed through the arcs that are not in-
cluded in the picker tour. The main constraints leading to weakness of the formulation
is the big-M constraint 5.8. (|N| — |K) is used as the big-M, since there are | V| pick
locations including the depot, and there are | K| pickers, each of whom requires visit-
ing at least one pick location. So, each picker can deliver at most (| N| — | K|) units of
the commodity. Constraint 5.9 ensures that the time travelled by each picker cannot
be more than the longest tour, L, which is to be minimized in the objective function.

Finally Constraints 5.10 and 5.11 define the domains of the decision variables.

5.3.2 VRP-MINMAX Formulation with Zone-Picking Constraints

To incorporate zone-picking constraints into the formulation in the preceding section,
we assume the warehouse follows a synchronized zone-picking policy where all pick-
ers start simultaneously to better control throughput times. When pickers complete
the picking tour, they wait for the completion of the overall picking wave at the de-
pot. A zone is defined as a set of adjacent aisles and zones do not necessarily have the
same number of aisles. A picker can be assigned at most one zone and an aisle cannot
belong to more than one zone. We focus on minimizing the lead time of a picking

wave; hence, workload balancing is also achieved.

In such a case, another decision variable is required to introduce aisles and zones into
the model. Let M be the set of all aisles and parameter e, be the aisle on which the

item p € N is located. Then define:
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1, if k™ picker is assigned to aisle i € M
Yik =
0, otherwise

Now we can use the min-max formulation presented in the previous section as a basis
to come up with the VRP formulation with zone-picking constraints. The following
formulation (referred to as VRP-Z), together with Constraints 5.2 - 5.11, aims to

minimize the maximum travel time subject to zoning constraints.

min L (5.12)
st. yu + YK = 2 (5.13)
> =1 ieM (5.14)
keK
>y =1 ke kK (5.15)
ieM
22pgk < Ye)k) T Yer)y P aEN\{0},p# g ke K (5.16)
Yir < Yarok + Yarnery 1€ MAN{|M[}E e K\A{|K]} (5.17)
Yik + Yary-1) < 1 i€ M\{|M|},ke K\ {1} (5.18)
yir € 10,1} i€ M ke K (5.19)

Constraint 5.13 guarantees that the first picker is assigned to the first aisle and the last
picker is assigned to the last aisle. Constraint 5.14 ensures that each aisle is assigned
to exactly one picker. Constraint 5.15 guarantees that each picker is assigned to at
least one aisle. Constraint 5.16 is the linking constraint and guarantees that if k"
picker is traversing the edge (p, q), then the aisles, in which items p and ¢ are located,
are assigned to picker k. Constraints 5.17 and 5.18 ensure that a zone is a set of
adjacent aisles such that if picker £ is assigned to aisle ¢, then the next aisle is assigned
either to picker k or picker k£ + 1 and no further aisle can be assigned to the previous

pickers.

5.4 A Dynamic Programming-Based Heuristic for the Min-Max OPP with Two

Pickers

The integer programming formulations in Section 5.3 are computationally challeng-

ing to solve for larger instances, as will become apparent in Section 5.7. We first con-
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Figure 5.3: (a) Possible intra-aisle connection types, (b) Possible inter-aisle connec-

tion types, (Ratliff & Rosenthal 1983)

sider the case with two pickers and propose a heuristic approach for VRP-MINMAX,
which also serves as the baseline for the exact approach for VRP-Z with a general
number of pickers. The heuristic introduces a simple but effective DP algorithm for
the min-max OPP without zoning. Although the heuristic tackles the problem with-
out zoning, it uses the idea of assigning pickers to aisles, which may be considered
as constituting temporary zones. This is followed by an improvement scheme (the
travel time balancing algorithm) derived from the knapsack problem, to reduce the

optimality gap at the expense of aisle-zone integrity.

For the single-picker OPP, Ratliff & Rosenthal (1983) provide an exact algorithm, the
RR algorithm, consisting of | M| stages where |M]| is the number of aisles. In this
algorithm, there are two sub-stages for each aisle. Each stage has a number of states
called equivalence classes represented by: (i) degree parity at the back of an aisle,
(1) degree parity at the front of an aisle, and (iii) number of connected components.
Degree parities can be zero (0), even (F) or odd (U), while connectivity can be 0C,
1C or 2C'. A partial tour can be represented by one of the six equivalence classes.
These states are updated along the stages using two classes of connection types: intra-
aisle and inter-aisle, as shown in Figure 5.3. At each stage, minimum tour lengths for
each state are found by adding the related possible connection types to the minimum
tour lengths of previous sub-stage. At the last aisle, the partial tour with the minimum

length sum is determined, which yields the optimal solution for the single-picker OPP.

Before developing the proposed algorithms at this and following sections, we primar-
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Table 5.1: Notation used in the proposed algorithms

M Set for the aisles; M = {1,2,...,{|M|}

RR(i,7) Minimum tour length solution of the RR algorithm starting from depot,
entering the zone starting with aisle ¢ and exiting to return to the depot
from aisle j

minL}!  Minimum tour length for picker 1 when aisle i is set as the stopping aisle
i.e., when first ¢ aisles are assigned to picker 1.

minL?  Minimum tour length for picker 2 when aisle i is set as the stopping aisle
i.e., when last | M| — i aisles are assigned to picker 2.

F(i,k)  Cost-to-go function, which returns the lead time of the picking wave, i.e.,
the travel time of the latest picker, in Section 5.5, for optimally assigning

k € K pickers to i € M aisles

ily summarize the notation in Table 5.1.

5.4.1 Construction of Temporary Zones

In the first phase of the heuristic, we apply R(i, j) repeatedly for each picker after
assigning their starting and ending aisles. Initially, the first aisle is assigned to picker
1 and the last |M| — 1 aisles are assigned to picker 2, thus aisle 1 is set as the stop-
ping aisle. Then, minimum tour lengths are calculated for RR(1,1) and RR(2,|M|),
and called minL{ and minL? respectively. Subsequently, aisle 2 is set as the stop-
ping aisle and minimum tour lengths, min L} and minL3, are calculated again. The
stopping aisle 7 is increased in this manner until the minimum tour length for picker
1 exceeds the one for picker 2, i.e., mmL} > mmLZ2 At this final stage, the first ¢
aisles are assigned to picker 1 and the remaining | M | — i aisles are assigned to picker
2 where picker 1 travels at least as many time units as picker 2. Note that, at (i — 1)
stopping aisle stage, minL} | < minL? |. Atthis previous stage, the first i — 1 aisles
are assigned to picker 1 and the remaining |M| — i + 1 aisles are assigned to picker 2

where picker 1 travels at most as many time units as picker 2.

The aim of the two-picker algorithm is to return the smaller wave time, i.e., smaller

maximum time travelled, at the final and the previous stages. Before concluding
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the two-picker algorithm, we introduce an improvement algorithm in the following
subsection as the second phase, which further reduces the wave time by minimizing
the absolute travel time difference between the two pickers by focusing on the final

and the previous stages.

5.4.2 Travel Time Balancing Algorithm

In the first phase of the heuristic, there is an aisle-zone integration and also one of the
pickers will travel more than the other picker. The difference, if any, could be further
reduced to more balance the time travelled by each of two pickers at the expense of
aisle-zone integration. Reassignment of moves from one picker to the other is likely
to improve the workload balance at the expense of zone integrity. We observe that,
at the final stage, picker 1 travels at least as many time units as picker 2 where some
possible front movements made by picker 1 can be assigned to picker 2. There is
also a similar case for the previous stage. Some movements made by picker 2 can be
assigned to picker 1. For this end, we develop an exact DP algorithm called travel

time balancing algorithm.

Reassignment of moves from one picker to the other is described as follows. Since
picker 2 starts from depot and uses the front cross-aisle to reach the starting aisle
point, i.e., b;+1), picker 2 is only allowed to make additional connection type 3 intra-
aisle movements in aisles assigned to picker 1 where j = {1,2,...,i}. Moreover,
picker 2’s connection type 3 movement in aisle 7 is only possible as long as the
optimum movement made by picker 1 in aisle j at the final stage is a connection
type 3 or connection type 4 movement, because otherwise the connectivity of picker
I’s tour will be lost. Finally we note that if the optimum movement of picker 1 is a
connection type 4 movement, the front part of the movement should be considered as

a candidate connection type 3 movement taken from picker 1 and given to picker 2.

The problem stated here can be described as a variant of the knapsack problem that
fills the travel time difference between two pickers as much as possible. Suppose we
solve a 0-1 knapsack problem having capacity W with ¢ items each with weight w;

and value v; with the additional notation in Table 5.2.

Then, the objective for the 0-1 knapsack problem is to select a subset of items to
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Table 5.2: Additional notation used in travel time balancing algorithm

%74 Twice the size of the difference between pickers’ travel times,
2(minL; — minL?)

w; =v; Connection type 3 movement length for aisle j € {1,2,...,}

w Travel time difference index between the two pickers;
we{l,2,..., W}

K;(j,w) The maximal movement obtainable when filling a knapsack of capacity
w time units using reassignable movements among aisles from 1 to j.

K5(j,w) The minimum difference between pickers obtainable when filling a
knapsack of capacity w time units using reassignable movements

among aisles from 1 to j

maximize the total value while satisfying the capacity constraint. K; value function
stated as the following recursive formula refers to the knapsack DP algorithm. If it
were just a knapsack problem, the optimal value would be stored at K (i, W) where

1 refers to the last aisle for picker 1:

Ki(j—1,w), W(j—1) = W

Kl(j> w) = B
max(Kl(j —1Lw), Ki(j —1,w—2w;_) + wj_1>, otherwise

(5.20)

where the base cases are K;(0,w) = 0 forw € {1,2,..., W} and K;(j,0) = 0 for
Jj € {1,2,...,i}. However, our objective is not to maximize the value. We would
like to reach as close as possible to half of the knapsack capacity, (minL} — minL?),
either above or below. Hence, we aim to choose a subset of connection type 3 intra-
aisle movements from first ¢ aisles, take it from picker 1 and give it to picker 2 to
minimize the difference between two pickers. To solve this problem, we use another
value function storing the actual difference. Such values can be stored at K5 value

function as:
Ks(j,w) = |minL; — minL; — 2K,(j,w) (5.21)

The optimal subset of movements, K;(j, W), is the one which minimizes the dif-

ference K5 (i, W). Thus, this subset can be taken from picker 1 and given to picker
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1. We note that K,(j,w) is found by subtracting the twice of the optimal subset of
movements from the difference between pickers. This can be explained by the fact
that K (j, w) value is taken from picker 1 and given to picker 2, thus multiplied by 2.

A pseudocode of the travel time balancing algorithm is depicted in Algorithm 1.

Algorithm 1: Travel Time Balancing Algorithm

for aisle j = 1to ¢ do
for difference w = 0 to W do

if 7 =1 or w = 0 then
‘ Kl(]vw) =0

else if 2w;_; < w then
Ki(j,w) = max(Kl(j —Lw), Ki(j — 1,w—2w;_1) + wj,1>

else
| Ki(jw) = K1 — 1w)
end
Ky(j,w) = |minL} — minL? — 2K, (j, w)|
end

end
for aisle j = 1to ¢ do
for difference w = 0 to W do

if temp > K, (j, w) then
temp « K»(j, w)

A = Ki(j,w)

end

end

end
minL} = minL} — A;

minL? = minL? — A,

By applying Algorithm 1, we have further strengthen the results for the final stage.
A similar method can be applied to the previous stage to reduce the difference by
assigning possible movements made by picker 2 to picker 1. Finally, the maximum

time travelled at the final stage and the previous stage are compared and the smaller
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of these two maximums is found.
minmaxy = min (max(mz’nLg, minL?), max(minL;_,, mmL?fl)) (5.22)

In consequence, the heuristic returns minmax;, the best split between two pickers
that has the smallest wave time. Here, we find a near optimal min-max solution for the
two-picker min-max OPP as we also balance the workload of the pickers and use the
minimum-time routes. The pseudocode of the two-picker min-max OPP algorithm is

depicted in Algorithm 2.

Algorithm 2: The Two-Picker Min-Max OPP Algorithm

for aisle i = 1to | M| do
minL; < RR(1,17)

minL? + RR(i +1,|M])

if minL] > minL? then
Apply Algorithm 1 for stage ¢

Apply a simpler reassignment for stage (7 — 1)
minmaxy,
min (max(mng, minL?), max(minL;_,, mz’an_l)>

break
end

end

5.4.3 Numerical Example

For the example given in Figure 5.1(a), we demonstrate the solutions of MINSUM,
MINMAX and minmazy, and the first phase of the two-picker OPP algorithm in
Figures 5.4(a), (b) and (c), respectively.

The VRP-MINSUM model minimizes the total time travelled at 112 time units, with
a maximum travel time of 92 units. The VRP-MINMAX model minimizes the max-
imum time travelled at 58 units. Moreover, the difference between pickers is only
2 units. The first phase of the proposed heuristic yields an approximate solution for
the VRP-MINMAX problem with 62 units. The difference between the travel times
of the pickers is 10 units. Finally, this difference is further reduced by the balanc-

ing heuristic at the expense of aisle-zone integrity using the travel time balancing
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Figure 5.4: The minimum time solutions for the example in Figure 1(a). (a) VRP-

MINSUM, (b) VRP-MINMAX and the two-picker OPP algorithm, (c) initial phase

of the two-picker OPP algorithm

Table 5.3: The solution approach of the two-picker min-max OPP algorithm

Picker 1 Picker 2

Aisles Lead Time Aisles Lead Time Abs.Dif. Remarks
{} 0 {1,2,3,4,5,6} 104 104 1P-OPP
{1} 20 {2,3,4,5,6} 92 72

{1,2} 36 {3,4,5,6} 76 40

{1,2,3} 52 {4,5,6} 62 10 Phase-1
{1,2,3,4} 66 {5,6} 52 14

{1,2,3,4} 58 {4,5,6} 56 2 Phase-2

algorithm, which yields the same solution of the VRP-MINMAX formulation. The

solution approach of the complete two-picker algorithm is shown on Table 5.3.

In the following section, we extend the temporary zoning approach of this section to

develop an exact approach for the min-max OPP under dynamic zoning and a general

number of pickers. This would be tedious by extending the algorithm suggested for

two-picker case. Thus, we propose an exact and more efficient DP algorithm based

on the graph representation of Pascal’s Triangle.
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5.5 An Exact Algorithm for the Min-Max OPP under Synchronized Dynamic
Zone-Picking

In this section, we propose an exact and efficient DP approach for the min-max OPP in
synchronized dynamic zone-picking systems. For this end, we use Pascal’s Triangle

and develop an exact algorithm which runs in polynomial time.

Contrary to tactical level zone-picking policy, there are no dedicated zones assigned
to pickers at the operational level. Zones are assigned to pickers at each picking
wave. Thus, the zone-picking problem is reduced to an operational level decision
integrated with routing and workload balancing problems. In this way, we solve an
integrated zone-picking, picker routing and workload balancing problem where each

zone consists of a certain number of aisles.

In the proposed algorithm for the min-max OPP in synchronized dynamic zone-
picking systems, we first determine all minimum tour lengths for each possible zone
configuration. Based on this information, we recursively look at the optimal combi-
nation of zone assignments that minimizes the longest-time tour length for a given

number of pickers.

Proposition 1 states the required number of minimum tour length information prior to

zone assignment.

Proposition 1. RR algorithm can be calculated for WD%& different zone config-

urations for an |M|-aisle picking area in polynomial time.

Proof. This arises from the assumption that a zone is a set of adjacent aisles. There
is only a single possibility for a zone consisting of | M| aisles. RR algorithm runs in
O(|M|). There are two possibilities to construct a zone consisting of (| M| — 1) aisles
with O(|M| — 1) running time for each. There are (|M| — 1) different ways to form
zones consisting of 2 aisles with O(2) running time for each. Finally, there are |M |
different ways to form a 1-aisle zone configuration with O(1) running time for each.
Then, for the total number of routing calculation, the proof is the same as the one
of sum of finite arithmetic series formula by induction, thus “MD(Q& When the

running times are also included in the summation, the overall running time ends up
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with:

= MM+ (M| =1) +... + (M| = 1)(2) + (IM])(1)
=Y r(IM|+1-7)

= (M| +1 Zr—Zr
_ (‘M’+1)(|M|)(|§4|+1) _ (M| +61)(2\M|+1)
_ (MD{(M] + 1D)(IM] +2)
6

]

Proposition 2 states the number of possible zones for picker £ and implies that zone-

assignment problem can be studied using combinational calculations.

Proposition 2. There are (‘M - 1) different zone configurations to assign k pickers to

| M| aisles in an | M |-aisle picking area.

Proof. This can be shown by the "Stars and Bars" technique by Feller (2008). Sup-
pose | M| aisles (stars) are fixed and (| M| — 1) gaps between aisles, in each of which

there may or may not be a “bar”. A zone configuration is obtained by ‘bar’ing (k — 1)

of these (|M| — 1) gaps. O

As an example, a visual representation on which k pickers are assigned to 6 aisles

where k € {1,2,...,} is shown on Figure 5.5.
Next, we present two corollaries to better define the later DP recursion.

Corollary 1. The (‘M - 1) possible zone configurations can be represented in a Bino-
mial Expansion where each row represents the number of aisles and each “top-right
to bottom-left diagonal line” represents the number of pickers as shown on Figure
5.6. This can be coded down where each row represents the number of aisles and

each column represents the number of pickers.

The coefficients in the Binomial Expansion also correspond to the entries of Pascal’s
Triangle such that the (li)th coefficient in the Binomial expansion is equal to the entry

at aisle ¢, picker k in the Pascal’s Triangle.
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Figure 5.6: Binomial expansion of 6-aisle picking area zone-assignment

101



Corollary 2. We can track the pathways of (“,\ﬁ*ll) possible zone configurations to

assign k pickers to | M| aisles using Pascal’s Triangle graph representation.

For example, there are (g) different pathways to go to the entry at aisle 6, picker 3 in

the Pascal’s Triangle as shown on Figure 5.7.

We can now state the main theorem of this study and Algorithm 3. With this algo-
rithm, we can track the optimal combination of zone assignments that minimizes the

longest-time tour length for a given number of pickers.

Theorem 1. The min-max OPP in synchronized dynamic zone-picking systems can

be solved in polynomial time using DP.

Proof. F(i, k) is the cost-to-go function which is equal to the lead time of the picking
wave that optimally assigns & pickers to ¢ aisles, where ¢ > k; ¢ € M. As the initial
step, for the single picker case where k = 1, it is clear that F'(:,1) = RR(1,1).
Moreover, when the number of pickers equals to the number of aisles where k = 1,
the cost-to-go function returns F'(i,i) = max (RR( JsJ )) Then, the general DP

recursion can be formalized as follows:

j=k—1..0—1

F(i,k)= min (max (F(j, k—1),RR(j +1, z))) (5.23)

Here, the problem of finding the optimal combination of zone assignment for | M|
aisles and k pickers is broken down into the subproblem of introducing the k*" picker
and combining it with memorized optimal zone assignment subproblem solutions for
k — 1 pickers. In total, we have (k — 1) (|M\ — (k- 1)> subproblems to assign k
pickers to | M| aisles where each of them has a constant running time thanks to the
memoization . This implies that the recursion has an overall computational complex-

ity of O(k|M]). O

As an example, Figure 5.8 depicts a visual representation of Algorithm 3 to find the
minimum lead time of a picking wave among (g) possible zone configurations with 3

pickers and 6 aisles, i.e., F'(6, 3).
A pseudocode of the algorithm is given in Algorithm 3.

By this solution methodology, we not only minimize the lead time of the picking wave
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min(max(F(5,2),RR(6,6), max(F(4,2),RR(5,6), max(F(3,2),RR(4,6), max(F(2,2),RR(3,6)))

F(6,3)

Visual representation of Algorithm 3

Figure 5.8



Algorithm 3: Dynamic Zone-Picking Algorithm for Multiple Order Pickers

for aisle i = 1to | M| do

for aisle j =i to | M| do
| return RR(i, j)

end
end

for aisle i = 1 to |M| do
| F(i,1) = RR(1,1)

end
for aisle i = 2to | M| do

if F(i —1,i—1) > RR(i,i) then
| F(i,i))=F(Gi—1,i—1)

else
\ F(i,i) = RR(i,1)

end

end
for aisle i = 3to | M| do
for picker k =2to (i — 1) do
forj=(k—1)to (i—1) do
if temp > max <F(j, k—1),RR(j + 1, z)) then
temp < max (F(j, k—1),RR(j+1, z)>
end
end

F(i, k) = temp

end

end

for each number of pickers, but we also balance the pickers’ travel times.

Proposition 1 allows us to calculate the minimum tour length for each possible zone
configuration. Given that there are multiple blocks, heuristic approaches (e.g., S-
shape, largest gap, aisle-by-aisle, or combined) can be applied to calculate the routes
for each possible zone configuration instead of the RR algorithm. In this way, the

multi-picker dynamic zone-picking algorithm can be heuristically solved for a multi-
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block layout. For the multi-block OPP instance in Figure 5.1(b), Figure 5.9 depicts
the resulting 3-picker routes for S-shape, largest gap, aisle-by-aisle, and combined
heuristic solutions, with minimum wave-picking lead times of 78, 76, 88, and 76 time

units, respectively.

[TTT
T

LT
[TT7T

[TTTTTT]

HHHY

[T

EEEE N

_______________

[HEE | (TTTT T | H_EEN
- HHH

| ———
]

BIEELI

[TTTTTT1

!
[TTTTTT]

o

HHH B N HHH HMH 5

A
LT
[TTTTTT]
[TTTTTT]

LTI
NN
[ 1]

(c)

Figure 5.9: Resulting 3-picker heuristic solutions for the instance in Figure 5.1(b).
(a) S-shape heuristic solution. (b) Largest gap heuristic solution. (c) Aisle-by-aisle

heuristic solution. (d) Combined heuristic solution

5.6 A Batch-Picking Heuristic: The Modified Clarke & Wright Saving Algo-
rithm with a Min-Max Objective

As discussed at the beginning of the chapter, the other factor increasing the perfor-

mance of order picking processes is batch-picking. If the number of ordered items
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is relatively small and the number of orders is large, it is inevitable to partition or-
ders into batches in picking operations. A batch-picking is an order picking operation
in which the orders are grouped into batches and those batches are picked simul-
taneously, therefore, forming a wave. In this section, we present a batch-picking
algorithm. In batch-picking problems, we try to partition a given set of orders, not
the aisles as in the case of zone-picking, into batches such that a specific objective is
optimized. The main difficulty for this problem is to find the optimum routes at each
partitioning of the customer order into batches since at each combination we need to
solve another picker routing sub-problem. In this sense it is an integrated OPP. For
this end, we introduce a modified Clarke & Wright saving algorithm with a min-max
objective where we aim to minimize the lead time of an order picking, which is de-
termined by the longest time taken by any of the order pickers collecting each batch.
A min-max approach is also a common objective for this type of wave-picking oper-
ation as it also balances the workload among pickers while sorting and consolidation

processes are not required at the end.

The classical Clarke & Wright saving algorithm, which is widely applied for the ve-
hicle routing problem, computes the savings by merging the locations, hence it is not
necessary to solve another optimization problem in the travel time calculation phase
of the algorithm. However, to apply Clarke & Wright saving algorithm in the batch-
picking OPP, one also needs to solve a picker routing problem at each batch combina-
tion to calculate the travel times of the order pickers. Here, orders are not allowed to
split into batches. Hence, partitioning a given set of orders into batches complicates
the problem more since partition itself is known to be NP-complete (Gademann et al.

2001).

In this regard, we firstly present the formulation of batch-picking OPP with a min-
max objective. Let x be a binary variable equal to 1 if the batch s € S is created
where S is the set of all possible order-batch combinations. Also let parameter a;,; be
the binary entry stating whether order ¢« € () is included in batch s € .S where () is
the set of all customer orders. Then, the BIP formulation for the batch-picking OPP

1s as follows.
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min Z (5.24)

st Y apr,=1 i€Q (5.25)
sSES
dexs < Z se S (5.26)
z,€{0,1} se&8 (5.27)

In this formulation, Constraint 5.25 ensures order ¢ € () cannot be split into more
than one batch. Additionally, Constraint 5.26 states that the time travelled by each
batch-picker cannot be more than the longest tour, Z, which is to be minimized in the
objective function. Finally, capacity consideration can be included into the model.
The batch configurations which satisfy the capacity constraint 5.28 would constitute
the set S. This inequality limits the total order size of the batch s € S below a
specified capacity.

Y ax<c seS (5.28)

i€Q
We observe that d is assumed to be a parameter although it is an OPP tour required
to be solved by itself. Moreover, the possible batch set, .S increases exponentially
which makes the problem difficult to solve to optimality for instances with large even
moderate number of orders. Also, the parameter a;s; should be predetermined, but
could also be a decision variable in an integrated formulation, which would make the
formulation non-linear. For this end, we introduce a modified Clarke & Wright saving
algorithm with min-max objective. The objective in this batch-picking problem is to
minimize the time travelled by the latest picker for each number of batches starting
from the largest number of batch to a single batch. The steps of the algorithm are as

given in Algorithm 4.

5.6.1 Numerical Example

Next, we illustrate how the algorithm works for a 5-customer order instance. Initially,
the algorithm assigns each customer order to a different batch. For each batch, a

different picker starts picking. RR algorithm solves the OPP for each batch and the
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Algorithm 4: Batch-Picking Algorithm for Multiple Order Pickers
e Initialization. Assuming each customer order ¢ € () is distributed to a

different batch. Here, the number of batches is equal to the number of
customer orders. Solve the picker routing problem for each batch using
the RR algorithm and record the time travelled by the latest picker as
“z5” where S represents the index set for the created batches.

o Iterations.

— Step 1. Combine each batch in pairs and solve the picker routing
problem using the RR algorithm for each batch combination.

— Step 2. Merge the minimum time travelled batch combination and
record the min-max value, “z|5/”. Now, we have one less number of
batches.

— Step 3. Return to Step 1 until we have a single batch OR
the capacity of the pickers are consumed.

e Termination. Draw the Pareto diagram which shows the latest time

travelled for each number of batches.

order pickers arrive in 62, 84, 90, 112, 42 time-units, respectively. The 112 time-units,

which is the time travelled by the latest picker, is recorded as zs.

As the first iteration, the order picking times of all possible batch combinations are
solved using the RR algorithm. The 1! and 2" batches, which gave the shortest
time among the candidates, are combined. This new batch is named as batch 1. The
order picking time resulting from this combination is 90 time-units. In this case, z,
remained the same as z5, which is 112. We note that batch 1 includes the orders of

customers 1 and 2.

As the second iteration, the order picking times of all possible batch combinations are
solved using the RR algorithm. The 3"¢ and 5" batches, which gave the shortest time
among the candidates, are combined. This new batch is named as batch 3. The order
picking time resulting from this combination is 106 time-units. Also in this case, 23
remained the same as z5, which is 112. We note that batch 3 includes the orders of

customers 3 and 5.

As the third iteration, the order picking times of all possible batch combinations are
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CUSTOMER ORDER 1 = 62
CUSTOMER ORDER 2 = 84
CUSTOMER ORDER 3 = 9@
CUSTOMER ORDER 4 = 112
CUSTOMER ORDER 5 = 42

MIN-MAX BATCH = 112

CUSTOMER ORDER 1 and 2 = 9@

CUSTOMER ORDER 1 and 3 = 118
CUSTOMER ORDER 1 and 4 = 148
CUSTOMER ORDER 1 and 5 = 94

CUSTOMER ORDER 2 and 3 = 116
CUSTOMER ORDER 2 and 4 = 118
CUSTOMER ORDER 2 and 5 = 9@

CUSTOMER ORDER 3 and 4 = 144
CUSTOMER ORDER 3 and 5 = 186
CUSTOMER ORDER 4 and 5 = 112

MERGED CELLS = 1-2, MERGED BATCH = 9@, MIN-MAX BATCH = 112

CUSTOMER ORDER 1 and 3 = 132
CUSTOMER ORDER 1 and 4 = 146
CUSTOMER ORDER 1 and 5 = 116
CUSTOMER ORDER 3 and 4 = 144
CUSTOMER ORDER 3 and 5 = 126
CUSTOMER ORDER 4 and 5 = 112

MERGED CELLS = 3-5, MERGED BATCH = 186, MIN-MAX BATCH = 112
CUSTOMER ORDER 1 and 3 = 158
CUSTOMER ORDER 1 and 4 = 146
CUSTOMER ORDER 3 and 4 = 144
MERGED CELLS = 3-4, MERGED BATCH = 144, MIN-MAX BATCH = 144
CUSTOMER ORDER 1 and 3 = 168
MERGED CELLS = 1-3, MERGED BATCH = 168, MIN-MAX BATCH = 168

Figure 5.10: The solution of the batch-picking algorithm for the numerical example

solved using the RR algorithm. The 3" and 4" batches, which gave the shortest time
among the candidates, are combined. This new batch is named as batch 3. The order
picking time resulting from this combination is 144 time-units, which is z,. We note

that batch 3 includes the orders of customers 3, 4 and 5.

Finally, as the fourth iteration, remaining two batches, the batches 1 and 3, are com-
bined and the time travelled is solved using the RR algorithm. The order picking time
resulting from this last combination is 168 time-units, which is z;. We note that there
is only a single picker exists and the algorithm terminates. The solution flow of the
algorithm is given in Figure 5.10. The number of pickers and order picking times

obtained in each iteration are visually depicted in Figure 5.11.

So, the decision maker here can decide to go with 3 batches since it is not possible to

reduce the wave-picking time further with an increase in the number of pickers.
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Figure 5.11: Travel times of the latest picker for each number of batches

5.7 Computational Experiments

In this section, we present the computational experiments conducted to test the perfor-
mance of the algorithms. Experiments are conducted in five parts and the instances
are generated in line with those in the literature (Roodbergen & De Koster 2001a,
Scholz et al. 2016). First, we test the performance of the two-picker min-max OPP
algorithm by analysing the optimality gaps and computational times. Secondly, we
aim to observe the impact of the number of pickers on lead time savings. Thirdly,
we study the impact of zone-picking on the lead time by comparing the results of
zone-picking and no zone-picking policies. As the fourth experiment, we test the
performance of the algorithm on multi-block layouts by considering four well-known
routing heuristics. Lastly, we compare the performances of zone-picking and batch-

picking policies with a min-max objective.

Following Roodbergen & De Koster (2001a), we use a set of 2,000 instances for
each combination. We implement the models in AMPL modelling language and the
algorithms in C++ in Microsoft Visual Studio 2019. Average run times of algorithms
are below 0.1 seconds, hence are not reported. In all settings, the horizontal length

between two adjacent aisles set to 2 time units. The end of a sub-aisle (length) of
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Table 5.4: Summary of the computational experiments
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= £ A4 S S =858 Z 32 28 E
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> =2 Al = S =

< 5 2 < £ S g0

> = <
7 10 10 9090 0.51 1.75 3441 34.09 0 100.0 0.27
7 10 30 6950 1.59 3.01 3940 3847 12 100.0 0.26

15 10 10 9220 0.28 1.05 29.46 29.27 4 100.0 2.14
15 10 30 66.55 1.25 227 37.77 37.01 6 100.0 2.09
7 15 10 87.10 0.64 1.81 38.23 37.84 6 100.0 2.19
7 15 30 60.75 170 2.67 44.05 43.10 4 100.0 2.14
15 15 10 89.85 0.28 0.90 33.99 33.80 2 54.0 34.73
15 IS5 30 6030 1.14 1.80 4237 41.71 10 60.3 33.34

a block also refers to the centre of the back cross-aisle of that block and the front

cross-aisle of the next block.

5.7.1 Performance of the Algorithms

In the first experiments, the performance of the two-picker min-max OPP algorithm
is analysed using optimality gaps. We use the first set of instances where there are 7
or 15 aisles, each with a length of 10 or 30 time units, and 10 or 15 pick items in the

picking list. The summary of the results is given on Table 5.4.

In Table 5.4, Optimal % refers to the percentage of the number of optimal instances
out of 2000 instances for each setting. For each instance, the gap is calculated as
GAP = % where 23,y 4x Tepresents the optimal travel time for VRP-
MINMAX problem and Zj represents the travel time of the latest picker calculated
by the two-picker OPP algorithm. The results show that the algorithm leads to either
optimal solutions or very small gaps from the VRP-MINMAX model. Even though

the algorithm is not exact, optimal solutions are produced with a significantly high

frequency. Over all settings, a maximum of 92.2% and an average of 77.1% of the
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solutions are optimal, and the average gap remains below 1.7%. Average Savings
represent the average percent time savings when two pickers are used instead of a
single picker. We can conclude that using two pickers reduces the order picking time
at least about one-third with the best improvement of 44% for the VRP-MINMAX
model and 43% for the heuristic. Furthermore, it can be inferred from Table 5.4
that the larger the number of items and the longer the length of an aisle, the more

significant is the assigning of a second picker.

For each instance or picking wave, both pickers start collecting the orders together.
When a picker arrives back to the depot earlier, s/he is assigned to the longer route
for the next picking wave to keep the workload balanced in the long run. The average
time difference between the pickers is shown on the next column of Table 5.4. On
average, the average time difference between the two pickers is as small as 5.5 units,

which shows that the algorithm can balance the workload substantially.

In the last two columns of Table 5.4, we present the average computational times of
the VRP-Z formulation to compare its performance with the one of the proposed exact
algorithm for the min-max OPP under synchronized dynamic zone-picking. We test
the VRP-Z formulation using the same instance set with up to 6 pickers by setting a
time limit of 60 seconds. VRP-Z formulation results in significantly large number of
unsolved instances when the number of pick locations and the number of aisles is even
slightly larger. The results show that there are a maximum of 45% unsolved instances
when the number of pick locations is increased from 10 to 15 and the number of
aisles is increased from 7 to 15. Hence, we can conclude that the proposed VRP-Z
formulation leads to large computing times when the ratio of number of pick locations
to the number of aisles is large. On the other hand, the proposed algorithm solves all
instances in these settting almost instantly (<0.01 seconds). Even, using the second
set of instances (Scholz et al. 2016), as the number of pick locations is increased to 90
and the number of aisles is set as 30, the maximum computation time remains below

0.1 seconds.
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Figure 5.12: Impact of pickers on lead time reduction

5.7.2 Impact of Multiple Pickers on Lead Time of the Picking Wave for the
Single Block Layout

To analyse the impact of the multiple pickers on lead time savings, we use the exact
algorithm presented in Section 5.5 to find the optimal solutions for the min-max OPP
under synchronized dynamic zoning, as it finds the same solutions as the VRP-Z for-
mulation in significantly shorter times. We conduct our experiments on two different
sets of randomly generated instances. The first is the same as the one presented in
Section 5.7.1, whereas the second set of instances is the subset of the instance set
designed by Scholz et al. (2016), where we set the number of aisles as 10, 20 or 30,

aisle length as 10, 30 or 50 time units, and number of pick items as 30, 60 or 90.

Results for the first set of instances are summarized on Figure 5.12. Results depict
the averages of percentage reductions on the travel time gained by introducing each
additional picker for 7-aisle and 15-aisle cases out of 2000 instances for each setting.
As a baseline, we set the value of single-picker lead time as 100%. We clearly observe
that assigning additional pickers significantly decreases the lead time of a picking
wave, but to a certain extent and in a decreasing rate. In other words, the law of

diminishing marginal returns applies.

According to the findings from the first set, there is an average of 35% reduction with
the introduction of the second picker. However, the impact of reduction decreases to
9% with the 3" and to 3% with the 4" picker. Although there is still some decrease
with the introduction of a new picker, this difference reduces to below 1% for the 6

picker. As Figure 5.12 also shows, relatively larger aisle lengths (triangle markers
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on the plot) result in more savings with each additional picker. This is also the case
when we examine the straight vs. dotted lines, the former of which represent more
pick items in the list. The results also suggest that if the number of pick locations
is relatively larger, additional pickers yield more savings. The last important find-
ing from Figure 5.12 is that an additional picker brings slightly more benefits if the

number of aisles is relatively smaller.

We gain the same insights with the settings by Scholz et al. (2016). The findings are
depicted on Figure 5.13, which shows the averages of reductions gained by introduc-
ing a new picker for the 10-aisle, 20-aisle, and 30-aisle cases out of 2000 instances

for each setting.

From Figure 5.13, there is an average of 43% reduction with the introduction of the
second picker. The impact of reduction decreases to 13.5% with the 3" and to 6.5%
with the 4™ picker. This difference drops below 1% after the 9" picker for the most
extreme test instance. We also notice that assigning 9 pickers yields 82% savings
in the most extreme case. Moreover, larger aisle length results in more savings with
each additional picker. Figure 5.13 also shows that the most significant impact fac-
tors are the aisle length and the number of pick items. Another interesting result is
that although the size of the instance set is more than doubled in the most extreme
case when it is compared to the most extreme case of the previous instance set, the
threshold number of pickers, beyond which no more significant saving is gained, is

only increased by half.

To sum up, our overall finding regarding the impact of the multiple pickers is that
the length of aisle and the number of pick items have a significantly positive impact
on savings gained by assigning more pickers. The savings are more significant if the
aisle-number is relatively small as long as the length of an aisle is relatively short.
Moreover, there is a threshold value of additional picker beyond which no more sav-
ing is received. Thus, it is noteworthy to remind the fact of the law of diminishing

marginal returns.

It will be inaccurate if we try to give a balanced configuration between the size of
the warehouse and the number of pickers due to significant impact of the number of

pick items. In terms of finding a balanced configuration between the warehouse size
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and number of pickers, we observe that the number of aisles is not a significant fac-
tor. However, the length of aisle is significant in the sense that the deeper the aisles,
the more significant is the assigning of an additional picker. Consequently, managers
should consider assigning each additional picker more carefully due to decreasing
pace in the lead time reduction. As a rule of thumb, managers can keep in my that,
for relatively large aisles, assigning the 2™ picker results in about 45% reduction in
lead time of a pick wave, independent of the warehouse size. A 3™ picker would lead
to 15% reduction in average beyond which it will never reach 10% under synchro-
nized zone-picking systems. So, under strict cost considerations, decision makers
can continue with two pickers as it will give the largest reduction in lead time. As we
suggested in Subsection 5.4.2, one can further reduce the lead time at the expense of

aisle-zone integrity by applying the travel time balancing algorithm.

5.7.3 Comparison of Zone-Picking and No Zone-Picking Cases

Next, we aim to assess the impact of zone-picking on travel time by comparing the gap
between the results of the min-max OPP with those without zone-picking. We include
6 pickers in the first set of instances beyond which no value is added by additional
pickers. Table 5.5 shows a summary of these gaps. For each of these combinations,
best results are indicated in bold. Equal Results % refers to the percentage of the
number of instances with the same results out of 2000 instances for each setting.
The first inference that can be drawn from Table 5.5 is that the percentage of equal
results increases significantly with each additional picker as it increases from 60.9%

in average while there are 2 pickers to 99.8% in average with 6 pickers.

Results also show that the average gap between the zone-picking and no zone-picking,
i,e, the extent of suboptimality from imposing zone picking decreases significantly
with each introduced picker (decrease from 1.86% with 2 pickers to 0.11% with 6
pickers). This can be explained by the fact that the possible movements become more

limited when fewer aisles are assigned to each picker.

From Table 5.5, it can also be inferred that aisle-length is also a significant, but neg-
atively associated factor since an increase in the aisle-length leads to a reduction in
the number of equal results (from 89.33% to 69.52% in average, p-value < 0.01) and

a rise in the average (from 0.50% to 1.53% in average, p-value < 0.01) and standard
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Table 5.5: Gap analysis between zone-picking and no zone-picking cases

Aisles Items Length No. of Pickers
2 3 4 5 6

Equal Results %
7 10 10 79.70  84.00 96.80 99.75 100.00
7 10 30 56.65 66.00 82.60 95.80 99.95
15 10 10 77.05 78.80 95.15 99.70 100.00
15 10 30 48.65 4875 65.25 86.70 97.15
7 15 10 73.55 79.80 96.15 99.65 100.00
7 15 30 4480 60.45 73.80 92.60 99.65
15 15 10 68.50 73.65 86.65 97.80 99.85
15 15 30 38.05 38.60 43.60 66.00 85.40

Average Gap %
7 10 10 1.26 1.11 022 0.02 0.00
7 10 30 269 206 1.05 026 0.00
15 10 10 092 0.87 0.19 0.01 0.00
15 10 30 233 255 170 0.65 0.11
7 15 10 142  1.19 027 003 0.00
7 15 30 295 206 136 037 0.02
15 15 10 092 1.03 050 0.09 0.01
15 15 30 241 292 269 155 077

Standard Deviation of Gap %
7 10 10 285 278 124 038 0.00
7 10 30 407 360 3.65 147 0.11
15 10 10 193 184 0.89 028 0.00
15 10 30 313 341 291 197 071
7 15 10 266 252 145 042  0.00
7 15 30 349 318 277 160 0.33
15 15 10 1.51 194 141 066 0.15
15 15 30 260 335 307 266 213
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deviation of gaps (from 1.25% to 2.50% in average, p-value < 0.01).

5.7.4 Multiple Order Pickers for Multi-Block Layout and a Comparison of

Heuristics

As the fourth experiment, we would like to analyse the performance of the multi-
picker dynamic zone-picking algorithm on multi-block layouts by applying four well-
known heuristics on the first set of instances with up to 5 blocks and 7 pickers. The
S-shape, largest gap, and combined heuristics are improved at the same extent by
forcing that the entering aisle for the closest block to the depot should be the right-
most filled picking sub-aisle (Roodbergen & De Koster 2001a). For each random
instance, dynamic zone-picking algorithm is solved using S-shape, largest gap, aisle-
by-aisle and combined heuristics for multi-block layout. Table 5.6 and Table 5.7 are

the products of this experiment.

Table 5.6 gives the average minimum lead times of the picking waves out of 2000
instances for each setting. For each combination, the best heuristic is indicated in
bold-underlined. Table 5.6 shows that the combined heuristic significantly outper-
forms other heuristics for multi-block layouts and the performance of the heuristics

converges with the increase in the number of pickers.

The combined heuristic has the best performance in 259 of the 280 settings and is
only outperformed where the aisle-length/aisle-number ratio is large. Moreover, per-
formance of the aisle-by-aisle heuristic quickly approaches the combined heuristic
with the increase of the number of pickers. Table 5.6 also shows that the S-shape
heuristic never has the best performance alone. The largest gap strategy solely has the
best performance in 14 settings, each of which emerges when the aisle-length/aisle-
number ratio is large. The aisle-by-aisle heuristic solely has the best performance in
seven settings and performs the same as combined for the single block layout as in
line with the literature (Roodbergen & De Koster 2001a). Moreover, it behaves in-
creasingly poorly with the increase in the number of blocks, even worse than S-shape
heuristic. However, employing more pickers quickly improves the performance of

these heuristics.

Finally, we examine the impact of each additional picker on savings. Table 5.7 shows
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Table 5.6: Minimum wave-picking lead times with each additional picker for multi-

block layout settings

3 » = Number of Blocks
v % § 2
_g < = Q 1 2
5 05 05
S © S =z No. of Pickers No. of Pickers
=} o—
z A < 2 3 4 5 6 7 1 2 3 4 5 6 7
7 10 10 792 492 400 369 364 36.6 372 1004 633 548 529 527 529 535

7 10 30 1919 1126 809 73.6 704 69.7 70.2 2559 152.6 1295 1239 122.8 122.8 123.3
15 10 10 1273 832 699 653 640 639 639 1435 944 827 796 79.0 79.0 79.0

& 15 10 30 2780 1619 1235 1058 986 95.6 947 3250 1955 1592 1486 1455 1450 144.9
i 7 15 10 885 542 427 388 378 378 381 1215 731 591 554 548 548 550
7 15 30 2185 1273 900 773 735 724 726 3188 1841 1399 130.6 127.6 1269 1271
15 15 10 1513 948 774 700 671 665 664 1780 110.6 907 843 826 822 822
15 15 30 3454 1959 147.6 1217 1084 1023 994 4259 2440 185.1 1623 154.1 1514 150.7
7 10 10 760 467 394 368 364 366 372 958 616 546 529 527 529 535
7 10 30 1641 988 800 73.6 704 697 702 2188 1451 129.1 1238 1228 1228 1233
o 15 10 10 1237 798 692 650 640 639 639 1460 922 822 795 790 790 79.0
]
S 15 10 30 2282 1410 1141 1039 982 955 94. 280.8 180.6 156.6 1482 1455 1450 144.9
?D 7 15 10 885 522 421 386 378 378 381 1163 697 585 554 548 548 550
S 7 15 30 1975 1133 856 772 735 724 726 2690 1655 138.1 1304 1276 1269 127.1
15 15 10 1468 911 751 692 669 664 664 1793 1069 89.2 840 825 822 822
15 15 30 2840 1678 1299 1134 1058 1015 992 3533 2143 1738 1595 1535 1513 150.7
7 10 10 708 455 385 366 364 366 372 971 629 544 528 527 529 535
7 10 30 1635 97.6 773 7L6 697 69.6 702 2446 1515 1274 1232 1227 1228 1233
g 15 10 10 1112 765 672 644 640 639 639 1378 940 824 795 790 790 790
< 15 10 30 2266 139.6 110.8 100.1 959 948 94.6 3073 1946 157.8 1474 1453 1449 1449
% 7 15 10 807 505 413 383 378 378 381 1167 725 585 552 547 548 550
Z 7 15 30 1930 1139 845 759 730 724 726 3016 1817 1375 1289 127.1 1269 1271
15 15 10 1323 867 732 682 666 664 664 1689 109.1 904 84.1 825 822 822
15 15 30 2838 167.5 1294 1109 1031 99.6 984 3946 237.5 1843 1603 1528 151.0 150.7
7 10 10 708 455 385 366 364 36.6 37.2 888 60.1 540 528 527 529 535
7 10 30 1635 97.6 773 7L6 697 69.6 702 2188 1417 1265 1231 1227 1228 1233
15 10 10 1112 765 672 644 64.0 639 63.9 1269 89.6 812 793 790 790 79.0
EIS 10 30 2266 139.6 1108 1001 959 948 946 2721 1769 153.0 1465 1452 1449 144.9
'é 7 15 10 807 505 413 383 378 378 381 1071 678 575 551 547 548 550
© 7 15 30 1930 1139 845 759 730 724 T2.6 2714 1656 1351 1286 1270 1269 1271

15 15 10 1323 86.7 73.2 8.2 6.6
15 15 30 2838 167.5 1294 1109 103.1
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Table 5.6 (Continued)

Number of Blocks

. 5 & %
S e S 2 No. of Pickers No. of Pickers
z Zz < 2 3 4 5 6 7 1 2 3 4 5 7
7 10 10 1226 798 719 703 701 703 709 141.0 975 894 878 877 878 882
7 10 30 309.1 199.8 180.8 177.4 176.8 176.8 177.3 3544 249.7 233.6 2312 231.0 2312 2314
15 10 10 1742 1113 985 951 946 945 945 194.1 129.0 1149 111.7 1111 111.0 111.0
§. 15 10 30 381.0 2392 207.1 199.1 197.6 197.5 1974 4253 2869 2582 251.8 250.8 250.7 250.7
i 7 15 10 1543 910 764 73.1 725 725 728 1743 1088 944 91.1 905 90.5 90.8
7 15 30 3933 231.1 192.1 1846 1828 182.5 182.7 4457 281.0 2457 2393 238.1 238.0 238.2
15 15 10 2235 1299 107.6 1009 99.2 98.8 98.8 243.0 1479 1247 117.7 1160 1157 115.7
15 15 30 5053 290.5 231.6 212.0 2063 204.8 204.6 5504 336.1 2809 2642 2599 259.2 259.2
7 10 10 1142 784 718 703 701 703 709 1328 963 892 878 877 87.8 882
7 10 30 2683 1945 1805 1773 176.8 176.8 177.3 3174 2460 2333 231.1 231.0 231.2 2314
o 15 10 10 1687 1091 979 950 946 945 945 188.9 127.0 114.6 111.6 1111 111.0 111.0
<
g 15 10 30 3326 2279 2055 199.0 197.6 197.5 1974 382.0 2784 2572 251.7 250.8 250.7 250.7
;é?o 7 15 10 1409 871 760 73.1 725 725 728 1612 1054 941 91.1 905 90.5 908
S 7 15 30 3292 2157 191.1 1845 1828 182.5 182.7 382.5 267.7 244.8 2392 238.1 238.0 238.2
15 15 10 2129 1245 106.1 100.6 99.1 98.8 98.8 237.1 1425 1234 1174 1160 1157 115.7
15 15 30 4199 2635 223.8 2104 206.0 204.8 204.6 474.1 3127 2753 263.1 259.8 259.2 2592
7 10 10 1265 819 716 702 701 703 709 1574 1016 88.8 877 877 878 882
7 10 30 3337 2092 179.7 177.0 176.8 176.8 177.3 4249 267.6 233.1 231.0 230.9 2312 2314
2 15 10 10 170.1 1144 988 951 94.6 945 945 204.1 1357 1157 111.6 111.1 111.0 111.0
< 15 10 30 403.0 2563 2094 1989 197.5 1974 1974 505.9 323.1 262.1 2519 250.7 250.7 250.7
% 7 15 10 1540 962 761 729 725 725 728 1929 1204 944 907 905 90.5 908
E 7 15 30 4153 2532 1915 1834 182.6 182.5 182.7 528.1 3240 2472 238.6 238.1 238.0 238.2
15 15 10 2113 1349 1099 1013 99.1 988 98.8 256.8 1622 1305 1185 1160 1157 115.7
15 15 30 5253 3197 2456 2139 206.1 204.7 204.6 658.8 4009 309.0 268.5 2599 259.2 259.1
7 10 10 1.3 775 714 702 701 703 709 @ 1306 955 889 877 877 878 882
7 10 30 2721 1921 179.0 177.0 176.8 176.8 177.3 321.3 2439 232.6 231.0 2309 2312 2314
15 10 10 158.7 1074 972 948 946 945 945 180.7 1258 114.1 1115 1111 111.0 111.0
E’ 15 10 30 3324 225.8 2034 1982 197.5 1974 1974 3819 276.6 255.7 251.3 250.7 250.7 250.7
§ 7 15 10 1374 861 753 729 725 725 728 @ 157.6 1045 935 909 905 905 90.8
© 7 15 30 3389 214.8 188.2 1834 182.6 182.5 182.7 391.7 266.8 242.8 238.6 238.1 238.0 238.2
I5 15 10 1988 121.9 1049 1001 99.0 988 988  219.8 1409 1225 117.0 1159 1157 1157
15 15 30 4254 2633 220.9 208.5 2053 204.7 204.6 4755 3124 2729 2619 259.5 259.2 259.1
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Table 5.6 (Continued)

2 @ = Number of Blocks
v = g B
£ 2 £ 3 >
§ Z ; Lé No. of Pickers
z 7 < 2 3 4 5 6 7
7 10 10 159.5 1153 106.8 105.3 1052 1054 106.0
7 10 30 4034 3019 2874 2855 2854 285.5 285.8
15 10 10 217.2 1477 132.6 129.1 1285 1284 1284
% 15 10 30 476.8 3385 311.2 305.6 305.0 305.0 305.0
i 7 15 10 1953 127.0 1127 1094 108.8 108.8 109.1
7 15 30 499.5 333.1 301.4 2955 294.6 294.6 294.7
15 15 10  267.7 166.8 1429 135.6 133.7 1334 1334
15 15 30 6032 3859 3325 318.3 314.8 3143 3143
7 10 10 152.0 1143 106.8 1053 105.2 1054 106.0
7 10 30 369.1 299.2 287.3 2855 2854 285.5 285.8
a 15 10 10 211.7 1458 1323 129.0 128.5 1284 1284
]
(2 15 10 30 436.7 331.6 3104 305.6 305.0 305.0 305.0
% 7 15 10 181.0 1239 1124 109.3 108.8 108.8 109.1
~ 7 15 30 435.6 3223 3004 2954 294.6 294.6 294.7
15 15 10 2603 162.1 141.7 1353 133.7 1334 1334
15 15 30 527.7 365.3 3283 317.5 314.7 3143 3143
7 10 10 188.2 121.3 106.2 105.2 105.2 1054 106.0
7 10 30 5179 327.0 287.0 2854 2854 285.5 285.8
< 15 10 10 2384 1575 1333 1289 1284 1284 1284
% 15 10 30 610.0 3884 317.2 305.7 305.0 305.0 305.0
'%: 7 15 10 231.5 1445 1128 109.0 108.8 108.8 109.1
% 7 15 30 650.8 400.0 3039 2949 294.6 294.6 294.7
15 15 10 303.1 190.1 151.3 136.6 133.7 1334 1334
15 15 30 7954 4852 3719 323.8 315.1 3143 3143
7 10 10 150.6 113.6 106.5 1053 105.2 1054 106.0
7 10 30 3733 297.3 286.6 2854 2854 285.5 285.8
15 10 10 205.5 1451 1319 1289 1285 1284 1284
E 15 10 30 438.0 330.3 309.3 3054 305.0 305.0 305.0
% 7 15 10 1785 1233 112.0 109.2 108.8 108.8 109.1
© 7 15 30 445.1 320.7 298.9 295.0 294.6 294.6 294.7
15 15 10 246.1 160.8 141.0 135.1 133.6 1334 1334
15 15 30 5304 3655 326.6 316.6 314.5 3143 314.2
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the average percentage savings with each additional picker out of 2000 instances for
each setting where the best heuristic is indicated in bold-underlined. For the sin-
gle block layout, average percentage savings are slightly higher when compared to
the optimal cases resulted from the RR algorithm in Section 5.7.2. When we com-
pare the heuristics, additional pickers yield better savings for S-shape and largest gap
heuristics at single block layouts. With the increase on the number of blocks, each ad-
ditional picker results in more savings for the aisle-by-aisle heuristic. The largest gap
strategy performs poorly in terms of percentage savings with each additional picker.
The combined heuristic never has the best performance alone for the percentage sav-
ings, although it still maintains its overall best performance on the minimum lead
times. This can be explained by the fact that underperforming heuristics lead to more
savings with each additional picker since the performance of the heuristics converges
with the increase in the number of pickers. Overall, we observe that the combined
heuristic performs relatively the best for the multi-picker multi-block dynamic zone-
picking problem, while the performance of largest gap heuristic increases with the
number of blocks and that of aisle-by-aisle heuristics increases with the number of

pickers.

5.7.5 Comparison of Zone-Picking and Batch-Picking Policies

Lastly, we analyse the performances of the zone-picking and batch-picking policies
and also present the average percentage gaps using the first set of instances where
there are 7 or 15 aisles, each with a length of 10 or 30 time units, and 10 or 15 pick
items in the picking list and up to 5 groups of zones or batches. Table 5.8 summarizes
the average minimum lead times of the picking waves and the average percentage
gaps between them out of 2000 instances for each setting resulted using the proposed
approaches. For each setting, the better policy and also the best setting in terms of

average percentage gaps are indicated in bold.

The table shows that the zone-picking policy produces lower lead times. However,
zone-picking policy requires sorting/consolidation after completion while batch pick-
ing policy returns undivided customer orders at the depot. The average gap in per-
centage is below 0.5% in average for the worst case and this gaps seems to be quickly

closed at the sorting/consolidation process although zone-picking still have the advan-
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Table 5.7: Percentage savings with each additional picker for multi-block layout set-

tings
3 @ < Number of Blocks
T Z g @
£ 2 £ 3 : 2
g g z :“—Zf No. of Pickers No. of Pickers
z A < 3 4 5 6 7 2 3 4 5 6 7
7 10 10 3788 1870 7.75 136 0.00 0.00 3695 1343 347 0.38 0.00 0.00
7 10 30 41.32 2815 9.02 435 099 000 4037 1514 432 0.89 0.00 0.00
15 10 10 3464 1599 6.58 199 0.16 0.00 3422 1239 375 0.75 0.00 0.00
& 15 10 30 4176 2372 1433 681 3.04 094 3985 1857 6.66 209 034 0.07
=
B 7 15 10 3876 2122 913 258 0.00 0.00 3984 1915 626 1.08 0.00 0.00
20 5 30 4 2930 1411 4.92 150 0.00 4225 2401 6.65 230 055 0.00
15 15 10 3734 1835 9.56 4.14 0.89 0.15 37.87 1799 7.06 2.02 048 0.00
15 15 30 4328 24.66 17.55 1093 5.63 2.83 42.71 24.14 1232 5.05 1.75 0.46
7 10 10 3855 1563 6.60 1.09 0.00 0.00 35.70 11.36 3.11 0.38 0.00 0.00
7 10 30 39.79 19.03 8.00 435 0.99 0.00 33.68 11.03 4.11 0.81 0.00 0.00
o 15 10 10 3549 1328 607 154 016 000 3685 1085 328 063 0.00 000
9 15 10 30 3821 19.08 894 549 275 0.84 35.68 1329 536 1.82 034 0.07
?0 7 15 10 41.02 1935 831 2.07 0.00 0.00 40.07 16.07 530 1.08 0.00 0.00
= 7 15 30 42.63 2445 981 479 1.50 0.00 3848 1656 5.58 2.15 0.55 0.00
15 15 10 3794 1756 7.86 332 0.75 0.00 40.38 16.56 583 1.79 036 0.00
15 15 30 4092 2259 1270 6.70 4.06 227 39.34 1890 823 3.76 143 040
7 10 10 3573 1538 494 055 0.00 0.00 3522 13.51 294 0.9 0.00 0.00
7 10 30 4031 2080 7.37 265 0.14 0.00 38.06 1591 3.30 0.41 0.00 0.00
> 15 10 10 3121 12.16 4.17 0.62 0.16 0.00 31.79 1234 3,52 0.63 0.00 0.00
.% 15 10 30 3839 2063 966 420 1.15 021 36.67 1891 6.59 142 0.28 0.00
% 7 15 10 3742 1822 726 131 0.00 0.00 37.87 1931 5.64 091 0.00 0.00
E) 7 15 30 4098 25.81 10.18 3.82 0.82 0.00 39.75 2433 6.25 140 0.16 0.00
15 15 10 3447 1557 6.83 235 030 0.00 3541 17.14 697 190 036 0.00
15 15 30 4098 2275 1430 7.03 339 120 39.81 2240 13.02 4.68 1.18 0.20
7 10 10 3573 1538 494 055 0.00 0.00 32.32 10.15 222 0.19 0.00 0.00
7 10 30 4031 2080 7.37 265 0.14 0.00 3524 1073 2.69 0.32 0.00 0.00
15 10 10 31.21 12.16 4.17 0.62 0.16 0.00 29.39 937 234 038 0.00 0.00
E 15 10 30 3839 20.63 9.66 420 1.15 0.21 3499 1351 425 0.89 021 0.00
%3 7 15 10 3742 1822 726 131 0.00 0.00 36.69 15.19 4.17 0.73 0.00 0.00
© 7 15 30 4098 25.81 10.18 3.82 0.82 0.00 38.98 1842 4.81 124 0.08 0.00
15 15 10 3447 1557 6.83 235 030 0.00 34.05 14.06 4.69 120 0.12 0.00

15 15 30 4098 2275 1430 7.03 339 1.20 3878 19.76 854 288 0.72 0.07
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Table 5.7 (Continued)

2 ©» < Number of Blocks
e iz E e
g < = 35 3 4
5 5 5
s © G 2 No. of Pickers No. of Pickers
e} o
Zz Z < 3 4 5 6 7 2 3 4 5 7
0 0 3491 990 223 0.28 0.00 0.00 30.85 8.31 1.79 0.11 0.00 0.00

Aisle-by-Aisle Largest Gap S-Shape

Combined

3536 9.51 1.88 0.34 0.00 0.00 2954 645 1.03 0.09
3611 1150 345 053 011 0.00 3354 1093 279 0.54
3722 1342 386 075 005 0.05 3254 1000 248 0.40
41.02 1604 432 082 0.00 0.00 3758 1324 350 0.66
4124 16838 390 098 0.6 0.00 3695 1256 2.60 0.50

41.88 17.17 623 1.68 040 0.00 39.14 1569 561 144
42.51 2028 846 269 0.73 010 3894 1642 595 1.63
3135 842 209 028 0.00 0.00 2748 737 157 0.1
2751 720 177 028 0.0 0.0 2250 5.16 094 0.04
3533 1027 296 042 011 0.00 3277 976 262 045
3148 9.83 3.6 070 005 0.05 27.12 7.61 2.14 0.36
38.18 1274 382 0.82 0.00 0.00 3462 1072 3.19 0.66
3448 1140 345 092 016 0.00 3001 855 229 046
4152 1478 518 149 030 0.00 3990 1340 486 1.19
3725 1507 599 209 058 010 3404 1196 443 125
3526 1258 196 0.4 0.00 0.00 3545 12.60 124 0.00
3731 1410 150 0.1 0.00 0.00 37.02 12.89 090 0.04
3275 13.64 374 053 011 0.00 3351 1474 354 045
3640 18.30 501 070 0.05 000 36.13 18.88 3.89 0.48
3753 20.89 420 055 0.00 0.00 37.58 21.59 3.92 022
39.03 2437 423 044 005 0.00 38.65 2370 348 021
36.16 18.53 7.83 217 030 0.00 3684 19.54 920 2.11
39.14 2318 1291 3.65 0.68 005 39.15 2292 13.11 3.20
3037 7.87 168 0.4 0.00 0.00 2688 691 135 0.00
2940 682 1.12 011 0.00 000 2409 463 0.69 0.04
3233 950 247 021 011 0.00 3038 930 228 0.36
3207 992 256 035 0.05 000 2757 756 172 024
3734 1254 319 055 0.00 0.00 3369 1053 278 044
36.62 1238 255 044 005 0.00 3189 900 173 021
38.68 1395 458 1.10 020 0.00 3590 13.06 4.49 0.94
38.11 16.10 5.61 153 029 005 3430 12.64 4.03 092
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Table 5.7 (Continued)

2 « = Number of Blocks
B Z 5 2 5
T o5 B - :
S o e 2 No. of Pickers
z 4 < 3 4 5 6 1
7 10 10 2771 737 140 0.9 0.00 0.00
7 10 30 2516 480 0.66 0.04 0.00 0.00
15 10 10 3200 1022 2.64 046 0.08 0.00
2 15 10 30 2901 806 1.80 020 0.00 0.00
% 7 15 10 3497 1126 293 055 0.00 0.00
? 7 s 30 3331 952 196 0.30 0.00 0.00
15 15 10 37.69 1433 511 140 022 0.00
15 15 30 3602 1384 427 110 0.16 0.00
7 10 10 2480 656 140 0.09 0.00 0.00
7 10 30 1894 398 063 0.04 0.00 0.00
. 15 10 10 3113 926 249 039 0.08 0.00
g
O 15 10 30 2407 639 155 020 0.00 0.00
% 7 15 10 3155 928 276 046 0.00 0.00
= 7 15 30 2601 679 166 027 0.0 0.00
15 15 10 3773 1258 452 1.18 022 0.00
1S 15 30 3078 10.13 329 0.88 0.13 0.00
7 10 10 3555 1245 094 000 0.00 0.00
7 10 30 3686 1223 056 000 0.00 0.00
g 15 10 10 3393 1537 330 039 000 0.0
< 15 10 30 3633 1833 3.63 023 0.00 0.00
f 15 10 37.58 21.94 337 0.8 0.00 0.00
% 7 15 30 3854 24.03 296 0.0 0.00 0.00
15 15 10 3728 2041 972 212 022 0.00
15 15 30 39.00 2335 1293 2.69 0.25 0.00
7 10 10 2457 625 113 0.09 0.00 0.00
7 10 30 2036 3.60 042 000 0.0 0.00
15 10 10 2939 9.10 227 031 0.08 0.00
E 15 10 30 2459 636 126 0.13 0.0 0.00
% 7 15 10 3092 9.16 250 037 0.0 0.00
© 15 30 2795 680 130 0.14 0.0 0.00
15 15 10 3466 1231 418 111 015 0.00
15 15 30 3109 1064 3.06 066 006 0.03

126



tages in terms of congestion in the aisles and familiarity of pick locations. Further-
more, the results shows that the gap gets larger with more number of picking items
and less number of aisles while the length of an aisle does not seem to be significant
factor regarding the use of zone- or batch-picking policy. Finally, needless to say, we

get the same results when there is only one zone or batch to pick.

5.8 Concluding Remarks

In this chapter, we have focused on the multi-picker OPP in parallel-aisle warehouses
under a synchronized dynamic zone-picking policy, with the objective of minimizing
order lead time by minimizing the maximum travel time of each picker, while aiming
to ensure the balance among pickers. This problem is important in the sense of mak-
ing practical and effective use of resources while fulfilling the customer orders within

increasingly competitive due dates.

After proposing integer programming formulations for the cases without and with
zoning policies, we have introduced a knapsack-based DP heuristic for the two-picker
min-max OPP without zoning, as well as a novel polynomial-time exact algorithm
for the min-max OPP in synchronized dynamic zone-picking systems. This DP algo-
rithm assigns pickers for zone-picking and returns the optimal combination of zone
assignments for multiple pickers. Lastly, we focus on the multi-picker OPP from
a batch-picking perspective. Throughout the extensive computational experiments,
we have tested the performance of the algorithms, analysed the impact of zoning
to understand the extent of the suboptimality from imposing zone picking, analysed
the impact of multiple pickers on lead time savings and showed how the DP can be

adapted to multiple blocks.
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Table 5.8: Performance comparison of zone-picking and batch-picking policies

Aisles Items Length No. of zones/batches
1 2 3 4 5

Zone-picking lead times (in seconds)
7 10 10 70.58 4597 39.12 36.65 36.24
7 10 30 148.90 93.20 78.57 7237 70.04
15 10 10 11051 77.07 67.89 64.73 64.19
15 10 30 205.25 12995 108.99 99.84 95.76
7 15 10 82.11 51.04 4224 38.44 37.64
7 15 30 180.32 105.61 84.18 76.92 73.38
15 15 10 131.53 86.40 73.79 68.59 66.82
15 15 30 258.61 154.35 12276 109.63 102.99

Batch-picking lead times (in seconds)
7 10 10 70.58 53.86 49.27 4846 47.46
7 10 30 14890 108.70 97.46 9530 92.72
15 10 10 110.51 86.20 7894 77.58  76.02
15 10 30 205.25 148.23 130.11 126.34 122.27
7 15 10 82.11 6397 57.17 55.67 55.07
7 15 30 180.32 132.66 11534 111.39 109.71
15 15 10 131.53 101.84 90.00 87.15 86.21
15 15 30 258.61 184.96 155.68 147.49 144.94

Average Gap %
7 10 10 0.00 0.17 0.26 0.32 0.31
7 10 30 0.00 0.17 0.24 0.32 0.32
15 10 10 0.00 0.12 0.16 0.20 0.18
15 10 30 0.00 0.14 0.19 0.27 0.28
7 15 10 0.00 0.25 0.35 0.45 0.46
7 15 30 0.00 0.26 0.37 0.45 0.50
15 15 10 0.00 0.18 0.22 0.27 0.29
15 15 30 0.00 0.20 0.27 0.35 0.41
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CHAPTER 6

CONCLUSION

Order picking is the most expensive and labor-intensive warehouse activity. In this
thesis, we present compact mathematical models and exact/heuristic algorithms for

various order picking problems.

In Chapters 3 and 4, we have approached the OPP from an arc routing perspective.
The OPP formulations in the literature depend on the famous TSP and its derivatives,
including Scholz et al. (2016) and Pansart et al. (2018). However, taking the TSP as
a base case and developing new constraints exploiting the special properties of the
parallel-aisle warehouse not only make the formulations more difficult to harness for
the researchers but also it prevents to extend the OPP to different variants. In this
thesis, we present compact arc routing-based formulations for the single- and two-
block OPP in parallel-aisle warehouses. Our approach is important in the sense that
it is an arc routing-based approach making use of specifics of the graph structure
corresponding to the warehouse layout. The disconnectivity elimination constraints
proposed in our studies are the direct implications of the observations we made on
this special structure. Since it is also a compact formulation, it can be a base picker
routing model for more complex integrated operational warehouse problems or OPPs

with multiple blocks or multiple pickers.

Throughout these chapters, we firstly describe the problem in the single- and two-
block parallel-aisle warehouse layouts and present the related literature. Afterwards,
we constitute the single-block OPP formulation. Here, we define and classify the
intra-aisle and cross-aisle movement types, mention how a sequential relation be-
tween these movements can also halves the feasible region, and we explain how to

formulate the degree constraints by only using the odd-degree movements. At the
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same time, we present the assignment, sequencing and degree constraints. After-
wards, we introduce the disconnectivity elimination constraints by defining when and
how such disconnectivities can occur. Also, we present a lazy constraint approach
for the constraints which polynomially increase the size of the problem. Later, in
the experiments section, we show the significant contribution of the lazy constraint
approach. Next, we extend the binary integer programming formulation in the pre-
ceding chapter to the two-block OPP by also explaining how to modify the index sets
and parameters, the additional formations in cross-aisle movements and disconnectiv-
ities. Lastly, for layouts with more than two blocks, we present an easy-to-implement
picker routing heuristic which performs relatively good for the layouts with longer
aisle lengths. Finally, we test the efficiency of the proposed models in terms of com-
putation times and integrality gap. In both single- and two-block warehouses, our
formulations consist of assignment, sequencing, degree and disconnectivity elimina-
tion constraints. while the first three types of constraints occur similarly in both cases,
additional disconnectivities, and therefore disconnectivity elimination constraints, are
defined for the two-block case. These constraints are formulated as lazy constraints,
substantially improving the efficiency of the formulations. The solution approaches
and the results of the computational experiments in these two chapters are submitted

and are under review in a peer-reviewed journal.

In Chapter 5, we consider the multi-picker OPP under a parallel dynamic zone-
picking policy where each picker is assigned to a dedicated zone of aisles at each
pick wave. We balance the workload among pickers by minimizing the maximum
distance traveled by the latest picker and make them use the minimum-time routes.
Considering the balance of the workload distributed among pickers and tight due
dates promised to customers, we present mathematical models, and propose exact
and heuristic algorithms which minimize the lead time of the wave zone-picking pro-
cess for a given the number of aisles and a given number of pickers. Firstly, we
present VRP-MINMAX formulations by extending compact VRP formulations for
cases with and without zoning. However, these formulations perform poorly with the
increase in the number of picking items. Thus, we focus on approximate and exact
dynamic programming algorithms. In this regard, we consider two-picker OPP as a

preliminary step, and then generalize it to multi-picker OPP in parallel-aisle single-
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block/multi-block warehouses under a zone-picking policy. Thanks to the properties
of Pascal’s Triangle, the proposed algorithm on dynamic zone-picking for multiple
pickers performs significantly quickly and exactly. To the best of our knowledge,
this study fills two important gaps regarding the order picking operations. It is the
first study dealing with multiple-picker OPP on multi-block layouts. Also, there is
a clear gap in integrated OPP literature considering zone picking since it is mostly
considered as a tactical level decision. This study fills this gap since it is an inte-
grated zone-picking, picker routing and workforce allocation problem. The solution
approaches and the results of the computational experiments of this chapter have been

published in a peer-reviewed journal (Saylam et al. 2022).

6.1 Major Findings

In general, computational experiments on randomly generated instances in line with
those in the literature show that (1) the arc-routing based formulations perform at least
as good as the ones in the literature in terms of computing times, and (ii) the proposed
algorithms can find optimal and near-optimal solutions in negligible computational

times.

Our computational experiments from Chapters 3 and 4 show that the performance
of the proposed formulation for single-block layout outperforms all TSP-based for-
mulations while it is comparable to that of Goeke & Schneider (2021), and also its
straightforward extension to the two-block layout outperforms the best-known ap-
proaches for the two-block OPP to date. Other noteworthy findings obtained from
our computational experiments include: (i) although the number of constraints is in
quadratic order of the number of aisles, applying the multi-aisle disconnectivity elim-
ination constraints as lazy constraints keeps the constraint size linear for the most of
the instances and also significantly decreases the actual number of constraints and the
computing times, (ii) the integrality gap of the LP relaxation is particularly lower as
the size of the instance increases, due to an increase in the number of disconnectivity
elimination constraints, (iii) the computing times are significantly shorter as the ratio
of the number of pick locations to the number of aisles is larger, (iv) the difference be-
tween computing times of single- and two-block formulations increases with a larger

number of aisles as the need of more disconnectivity elimination constraints also in-
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creases, and (v) the proposed multi-block heuristic outperforms all its counterparts

for the layouts with large number of blocks and large size of aisle lengths.

Important findings obtained from our computational experiments in Chapter 5 are that
(1) the proposed algorithm for the min-max OPP with two pickers generates efficient
solutions very quickly as the optimality gap averages and the standard deviations are
low, (ii) for relatively large aisles, assigning a second picker reduces the order picking
time around 45% in average while this impact exponentially diminishes with each ad-
ditional picker, (iii) the proposed synchronized dynamic zone-picking approach with
a min-max objective spontaneously leads to the balanced partition of the pickers’
workload thus reduces management supervision, and (iv) the travel time gap between
“no zoning” and “zoning” strategies quickly disappears with the introduction of ad-
ditional pickers. It is important to note that we have worked on uniformly distributed
pick locations. That is no demand frequency is taken into account. If a class-based
storage policy, where fast moving class products are stored in the closest aisles, is
applied, the advantage of dynamic zoning policy would be more significant. This is
because the possibility of having a pick location in the further aisles would be rela-

tively small. For the same reason, the proposed algorithm will terminate faster.

6.2 Future Research Directions

For further research, it is noteworthy that the proposed arc routing-based models can
be embedded as the routing subproblem into the integrated/combined order picking
operation problems or can be extended for different variants of the OPP, where each
of these variations could yield a significant contribution to the literature. In this re-
gard, one can aim to extend the compact model to such different variants and still
keep it compact and efficient with polynomial number of variables and constraints.
The proposed formulation can be extended to a general number of blocks. In such
a formulation, assignment, sequencing and degree constraints would be straightfor-
ward, whereas the increase in the number of disconnectivity elimination constraints
would pose the main challenge. But first, one should analyse the solution of the in-
stances in order to better generalize how and when such disconnectivities occur for

multi-block layouts.
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It is also possible to use the proposed formulations in a matheuristic for the multi-
block OPP as the assignment, sequencing and degree constraints in this chapter could
lead to a very tight lower bound. The formulation can also be extended to turn restric-
tions and delays at intersections. In problems with turn penalties, turn costs could
be added during pre-processing for cross-aisle keeping movements according to their
number of turns. For example, type (2) cross-aisle keeping movement has one turn
while type (4) cross-aisle keeping movement has two turns at an aisle. In the same
sense, intersection delay costs could be added during pre-processing for each move-
ment according to their number of intersection visits. An optimal route, then, min-
imizes the sum of the travel time and the turn/intersection delay penalties. Last but
not least, a modified RR algorithm can be studied using the directed movements in-

troduced in this thesis.

On the other hand, the integrated work regarding the min-max OPP under synchro-
nized dynamic zone-picking system can also be further improved by considering joint
zone- and batch-picking approach. The cost factor is not considered in this study and
can be a future research direction. Since each additional picker reduces the zone-
picking lead time in a decreasing pace, the optimal configuration of zoning and the
number of pickers can be further explored with consideration of the cost and ser-
vice level objectives. Moreover, a cost-related study should also consider other cost
factors that vary with the number of zones. For example, as dynamic zones create
a more challenging environment for the pickers, a successful operation requires an
intact communication and coordination with the help of supporting systems such as
pick-by-voice systems. Also, unique features of warehouses, such as intersection
points between picking aisles and cross-aisles, intra-aisle and inter-aisle movement
types, can be included in the OPP formulations. Such an extension could strengthen
the formulation for the multi-picker OPP. The integer programming model can be
adapted to a matheuristic to improve the algorithm. The proposed travel time bal-
ancing algorithm could also be embedded into various heuristics for further improve-
ment purposes. Finally, the introduced exact dynamic programming approach for
the optimal single-block zone assignment can be further studied for an extension to

multiple-block layouts.
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