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ABSTRACT

ORDER PICKING PROBLEM: ITS VARIATIONS AND INTEGRATION

Saylam, Serhat

Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Haldun Süral

Co-Supervisor: Assoc. Prof. Dr. Melih Çelik

December 2022, 147 pages

Order picking is the most costly and labour-intensive warehouse activity. The objec-

tive of order picking problem is to collect the items on the pick list in a sequence to

ensure a route that minimizes the travel time. In both manual and automated ware-

houses, a combination of efficient zoning, batching and picker routing plays an im-

portant role in improving travel time, congestion, workload balancing and system

throughput.

In this thesis, we study single-picker and multi-picker order picking problems on

single-block, two-block and multi-block warehouse layouts by also considering syn-

chronised dynamic zone-picking and batch-picking decisions. For this end, we present

(1) mathematical models for the optimal solutions of some of these problems, (2) ex-

act dynamic programming approaches to find the optimal solution for some other

cases, and (3) simple but effective heuristics for the remaining more complex forms.

Computational experiments on randomly generated instances in line with those in the

literature show that the proposed approaches can find optimal and near-optimal solu-

tions in negligible computational times. The comparisons of the resulting objective

v



function values with the ones in the related literature also show that our approaches

perform at least as strongly as the models in the state-of-the-art literature. We also

contribute to the literature by introducing the arc routing perspective into the solu-

tion methodologies of order picking problems, by also introducing disconnectivity

elimination constraints instead of sub-tour elimination constraints and by studying

zone-picking and batch-picking decisions as operational level problems integrated

with picker routing and workload balancing problems.

Keywords: routing, warehouse management, order picking, zone picking, picker rout-

ing, arc routing
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ÖZ

SİPARİŞ TOPLAMA PROBLEMİ: VARYASYONLARI VE
ENTEGRASYONU

Saylam, Serhat

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Haldun Süral

Ortak Tez Yöneticisi: Doç. Dr. Melih Çelik

Aralık 2022 , 147 sayfa

Sipariş toplama, en maliyetli ve emek yoğun depo faaliyetidir. Sipariş toplama prob-

leminin amacı, toplama listesindeki malzemeleri olabilecek en kısa sürede toplayan

bir rota oluşturmaktır. Hem manuel hem de otomatikleştirilmiş depolarda; bölgeleme,

gruplama ve toplayıcı rotalama kararlarının birlikte ele alınması toplama süresini, tı-

kanıklığı, iş yükü dengesini ve sistem verimini iyileştirmede önemli bir rol oynamak-

tadır.

Bu tezde, tek bloklu, iki bloklu ve çok bloklu depo yerleşimleri üzerinde tek topla-

yıcılı ve çok toplayıcılı sipariş toplama problemlerini, senkronize dinamik bölgesel

toplama ve grup toplama kararlarını da dikkate alarak incelemekteyiz. Bu amaçla, (1)

bu problemlerin bazılarının optimal çözümleri için matematiksel modeller, (2) diğer

bazı durumlar için en uygun çözümü bulmak amacıyla kesin dinamik programlama

yaklaşımları ve (3) daha karmaşık problemler için de basit ama etkili sezgisel yön-

temler önermekteyiz.

Literatürdekilerle uyumlu olarak rastgele oluşturulmuş örnekler üzerinde yapılan he-
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saplama deneyleri, önerilen yaklaşımların ihmal edilebilir hesaplama sürelerinde op-

timal veya optimale yakın çözümler bulabileceğini göstermektedir. Sonuçların amaç

fonksiyonu değerlerinin ilgili literatürdekilerle karşılaştırılmaları da yaklaşımlarımı-

zın en az literatürde sunulan en yeni modeller kadar güçlü performans gösterdiğini

göstermektedir. Ayrıca, hat rotalama perspektifini sipariş toplama problemlerinin çö-

züm metodolojilerine dahil ederek, alt tur eleme kısıtlamaları yerine bağlantısızlık

eleme kısıtlamalarını getirerek ve bölgesel toplama ve grup toplama kararlarını top-

layıcı rotalama ve iş yükü dengeleme problemleri ile tümleşik şekilde ve operasyonel

seviye problemleri olarak inceleyerek literatüre katkıda bulunmaktayız.

Anahtar Kelimeler: rotalama, depo yönetimi, sipariş toplama, bölgesel sipariş top-

lama, toplayıcı rotlama, hat rotalama
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CHAPTER 1

INTRODUCTION

In this thesis, we aim to present compact mathematical models and exact/heuristic al-

gorithms for various order picking problems, which cover the most costly and labor-

intensive warehouse activities. In order picking operations, items must be collected

from the warehouse in order to satisfy the customer demand while aiming a cost

and/or service-related objective (De Koster et al. 2007, van Gils et al. 2018b, Masae

et al. 2020a). The objective of order picking problem (OPP) is to collect the items on

a pick list in a sequence to ensure a route that minimizes the travel time, which can

be formulated as a special case of the travelling salesperson problem (TSP) or Steiner

TSP (Theys et al. 2010, Scholz et al. 2016, Pansart et al. 2018). Moreover, a growing

competition with limited time windows puts extra pressure on order picking opera-

tions. Reducing traffic congestion through one-way routing approaches, zone-picking

and workload balancing are some ways of dealing with such problems. Domination of

online retailing has resulted in many relatively small-size orders with promised time

windows. Hence, increasingly tight time windows make it necessary to give effective

zone picking, workload balancing and picker routing decisions in short computing

times. Orders, online or in-store, arrive continuously. However, decision makers re-

lease a large group of orders in a wave in order to take advantage of economies of

scale in order picking operations (Çeven & Gue 2017). Besides the economic in-

terpretation of order picking operations, in times of economic crises or pandemics,

managers should be able to see a better operational picture under constraints such as

limited order pickers, personal space of pickers, etc. Thus, given a number of order

pickers, the decision makers should make efficient decisions for operational activities

regarding these order pickers. In this study, we present solution methodologies for

such enabling problems.

1



Figure 1.1: A parallel-aisle warehouse layout with 3 blocks, 8 picking aisles and 25

pick locations, Çelik & Süral (2019)

The parallel-aisle warehouses considered throughout the thesis is given in Figure 1.1,

which consists of narrow picking aisles parallel to one another. It contains cross-

aisles at the front and back ends of picking aisles and may also contain middle cross-

aisles, which perpendicularly divide the picking aisles into equal-length picking sub-

aisles. We assume narrow picking aisles so that a picker spends no time when making

horizontal movements within a picking sub-aisle. A picker starts the tour from the

depot (also known as the pickup-and-deposit or P&D point), collects all the items in

the pick list and returns to the depot. Without loss of generality, the depot is assumed

to be located at the left front corner. Figure 1.2 shows the graph representation of the

warehouse along with the pick locations using nodes vq where q ∈ N while v0 is the

depot. aj and bj nodes represent the back and the front intersection points of picking

aisle j ∈M . Node mjk represents the intersection point between picking aisle j ∈M

and middle cross-aisle k ∈ C. Also we note that a back cross-aisle of a block is the

front cross-aisle for the next block.

In general, the OPP is modelled as a variant of standard TSP problem, which isNP-

2



Figure 1.2: The graph representation of Figure 1.1, Çelik & Süral (2019)

hard (Karp 1972), and the data consisting of the pick locations is pre-processed into

a standard TSP distance matrix format. In such a case, the complexity of calculat-

ing the minimum order picker route exponentially increases with the number of pick

locations. The lack of formulations which take into account the special properties

of parallel-aisle warehouse layout in the literature motivates us to study the different

variants of the OPP by exploiting the properties of a parallel-aisle warehouse layout.

Making use of these specific properties and generating aisle-specific distance matrices

make it possible to solve the OPP more efficiently. This approach is mostly ignored

for the case of mathematical models or such constraints are developed upon a TSP-

based formulation. Since travel time is a function of distance, keeping the walking

speed fixed and minimizing the walking distance is proposed by many authors as the

main factor to optimize the total picking time (e.g., Hall 1993, Vaughan & Petersen

1999, Roodbergen & De Koster 2001a, De Santis et al. 2018, Çelik & Süral 2019). In

this regard, we continue with time-units instead of distance-units in the computational

experiments throughout the thesis.
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1.1 The Outline of the Thesis

In this thesis, we study single-picker and multi-picker OPP on single-block and multi-

block warehouse layouts by also considering zone-picking and batch-picking deci-

sions. We present mathematical models, exact dynamic programming approaches,

and heuristics. Afterwards, we test the performance of the proposed approaches and

explain their strengths and aspects that are open to development. The comparisons of

the results with the ones in the related literature also show that our approaches perform

at least as strong as the models in the state-of-the-art literature. We also contribute

to the literature by introducing the arc routing perspective into the solution method-

ologies of OPP, by also introducing disconnectivity elimination constraints instead

of sub-tour elimination constraints and by studying zone-picking and batch-picking

decisions as operational level problems integrated with picker routing and workload

balancing problems. Table 1.3 depicts the scope and distribution of this thesis.

In Chapter 3, we study the single-picker OPP in single-block layouts as a variant of

the arc routing problem. For this end, we present a binary integer programming (BIP)

formulation which exploits the special properties of a parallel-aisle warehouse layout.

This formulation only depends on the number of aisles, as opposed to the number of

pick locations, which is generally the case of its counterparts in the literature. The

OPP can be modelled as an arc routing problem since we search for a strongly con-

nected closed walk of minimum length. The focus of our approach is to clear all

picking aisles in the shortest time possible. To do that, we assign the best combina-

tion of intra-aisle movements and complementing cross-aisle movements such that it

results in the minimum length strongly connected closed walk. Afterwards, we test

the performance of the formulation by comparing it with the ones of recent literature.

In this formulation, we introduce the disconnectivity elimination constraints into the

literature instead of TSP sub-tour elimination constraints, where we can ensure a fea-

sible order picking tour with a much smaller number constraints, which significantly

increase the computing time performance.

In Chapter 4, we show that the proposed arc routing-based formulation can be straight-

forwardly extended to the layouts with a middle cross-aisle. In this regard, we focus

on two-block layouts and propose a mathematical model which forces a strongly con-
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nected closed walk using the disconnectivity elimination constraints approach pre-

sented in the preceding chapter. In both formulations, we mainly apply three differ-

ent classes of constraints. Firstly, we assign a movement to each aisle in a feasible

sequence, then we ensure that each vertex has in-degree equal to out-degree. Lastly

and most importantly, we eliminate the disconnectivities. In warehouse layouts with

more than two blocks, the first two classes of constraints still apply similarly. How-

ever, one should focus on how to modify the disconnectivity elimination constraints

as such occurrences increase exponentially with the number of cross-aisles. Hence,

for more than two-block layouts, we have introduced a simple and effective picker

routing heuristic and leave the development of a multi-block OPP formulation as a

future research.

In Chapter 5, we focus on the multi-picker OPP and solve an integrated zone-picking,

picker routing and workforce allocation problem by minimizing the lead time of the

pick wave. We focus on zone-picking since there is a clear gap in integrated OPP

literature in terms of zone picking operations. Although recent literature regarding

multiple order pickers has increased significantly, the advantages of zone picking

are ignored as zone picking combinations have not been given any particular atten-

tion. Minimizing the lead time of the pick wave forces workload balancing over the

zones so that workforce allocation is also achieved. It has the advantages of zone-

picking such as assignment of a smaller area for each order picker, reduced traffic

congestion, reduced idle times of the pickers, and familiarization with products. It is

dynamic in the sense that the assigned zones differ continuously at each order pick-

ing activity. Also, it is important to note that waiting times due to congestion can

strongly decrease by considering dynamic zone-picking. The study in this chapter is

divided into four parts. We first present mixed integer linear programming (MILP)

formulations for the multi-picker OPP with a min-max objective including zoning

constraints. Following this, we focus on the min-max OPP with two-pickers. We aim

to find the shortest travel distances in order to minimize the lead time of two-picker

picking process by assigning adjacent aisles to pickers using a dynamic programming

algorithm. Then, applying a difference minimization algorithm, we reduce optimal-

ity gap at the expense of zone integrity. The study, without applying the difference

minimization algorithm, is an example of dynamic zone-picking where each of two
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pickers is assigned to a specific zone of aisles. Lastly, we focus on the min-max OPP

with multiple pickers under synchronized dynamic zone-picking systems. Here, we

generalize the dynamic zone-picking approach for multiple order pickers by applying

a variant of VRP formulation with introducing the aisle-zone related constraints and

a novel dynamic programming approach. Using a dynamic zone-picking approach,

we present an exact algorithm extending two-picker OPP to more order pickers by as-

signing multiple pickers to dynamic zones and minimize the arrival time of the latest

picker, i.e., pick wave. Contrary to traditional parallel zone-picking approach, there

are no dedicated zones assigned to pickers. Pickers collect items in zones assigned to

them at each pick wave. Hence, the zone-picking problem, which is largely studied at

tactical level, is reduced to an operational level decision integrated with picker routing

and workforce allocation problems. In this way, we solve an integrated zone-picking,

picker routing and workforce allocation problem where each zone consists of a cer-

tain number of aisles. While the presented mathematical model solves the problem

for a given number of pickers, the proposed algorithm solves the problem for each

picker and gives a faster picking scheme to the decision makers. As an alternative

to zone-picking, in Section 5.6, we consider the min-max OPP under batch-picking

policy and present a saving algorithm. Finally, we consider examples to illustrate the

algorithms and compare the performance of the solution methodologies in different

computational experiments.

1.2 Contributions of this Thesis

As discussed in the literature review section, the OPP literature mainly focuses on

polynomially-solvable algorithms since it is assumed that the OPP is closely related

to the NP-hard TSP. One of the main contributions of this study arises at this point.

Since the picker routing problem in a single-block parallel-aisle warehouse can be

solved in polynomial time using dynamic programming approach, then there could be

a way to formulate it in a compact way by taking advantage of the movement types

introduced by Ratliff & Rosenthal (1983). This is also important in the sense that

the mathematical formulations can accommodate side constraints or feasible routes,

which can be a part of a combined formulation while these modifications are less

likely over the algorithms. The computing time performances of the formulations are
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significantly short thanks to the one of our main contribution, which is the use of dis-

connectivity elimination constraints. We also contribute to the literature by introduc-

ing the arc routing perspective into the solution methodologies of the OPP. Another

contribution of our BIP formulations into the literature is that a feasible order picking

tour without disconnectivity elimination constraints is rarely disconnected, hence the

use of lazy constraints significantly increases the computing time performance of the

formulation. As a result, the OPP turns out to be an appropriate research area for lazy

constraints applications. The work in Chapter 4 is especially important in the sense

that it paves the way for an arc-routing based OPP formulation for a general number

of blocks by induction on the construction of disconnectivity elimination constraints.

The main difference of our work in Chapter 5 from the literature is that while the

previous studies consider a static zoning environment, our study focuses on dynamic

zoning environment. To the best of our knowledge, there are very few studies consid-

ering dynamic zoning strategy (Bartholdi & Eisenstein 1996, Bartholdi et al. 2001,

Ho & Liao 2009, Lamballais et al. 2022) where zoning decisions are handled at oper-

ational level. The main contributions of this chapter can be stated in four dimensions.

First, we define and solve an integrated zone-picking, picker routing and workload

balancing problem by minimizing the lead time of the picking wave and applying the

policy of synchronized dynamic zone-picking where each picker is assigned to a zone

of aisles at each picking wave. For this end, we present an exact polynomial-time DP

algorithm, which may be implemented in many real-world warehousing environments

and significantly improve performance. Second, for the first time in the literature, the

zone-picking approach is studied at operational level under a synchronized dynamic

zone-picking policy. Third, this study is one of the few studies which investigate the

multi-picker multi-block OPP. Last contribution of our study is that it examines the

optimal dynamic zone sizes to increase the system throughput.

We also contribute to the warehouse operations in practice as our solution method-

ologies help reduce the congestion on the cross-aisles by resulting to one-way move-

ments, avoid congestion within the picking aisles, ensure familiarity of pick locations

and spontaneously lead to the balanced partition of the pickers’ workload thus reduce

the management supervision.
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CHAPTER 2

LITERATURE REVIEW

In this section, the most relevant OPP literature is reviewed. There exists extensive

literature on warehouse management problems. In the first section, we give brief ex-

planations of existing literature reviews on warehouse operations. Then, we focus

on each of these operations which are mostly related with our study. To do that, we

aim to highlight the contributions of the studies, focusing especially on picker rout-

ing, batching, and zone-picking problems. Finally, we review the literature regarding

integrated order picking operations, which focuses on the combinations of different

warehouse operation problems.

2.1 Existing Reviews on Warehouse Operations

There is an extensive literature on warehouse problems covering strategic, tactical,

operational levels. Reviews classifying warehouse problems include Rouwenhorst

et al. (2000), De Koster et al. (2007), Gu et al. (2007), van Gils et al. (2018b), Masae

et al. (2020a), and Vanheusden et al. (2022b).

Rouwenhorst et al. (2000) review the existing literature on design and control prob-

lems. It is suggested that a joint analysis of various design methodologies is largely

required since strategic level problems are highly interrelated. Hence, the literature

should focus on clustering the relevant strategic level problems that are possible to

solve simultaneously. The authors also claim that the integrated modelling is re-

quired at a lesser extent in tactical level problems while the operational level ware-

house problems can be handled independently. This is because of the fact that the

constraints for the operational level problems are set at strategic or tactical levels and

interactions between different processes are typically handled during these levels.
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Therefore, the authors suggest that operational level policies would not be required to

interact with other same-level policies as long as it is considered at a higher level. As

a result, they recommend a more design-oriented research approach.

For another detailed review of warehouse order picking operations, the reader is re-

ferred to De Koster et al. (2007). This study gives a literature overview on typical de-

cision problems in design and control of manual order-picking processes focusing on

the literature on layout design, storage assignment methods, batching/zone-picking,

and routing methods. It is the most comprehensive review regarding order picking ob-

jectives and their improvements through various zone-picking, batching and storage

assignment approaches. Another literature review focusing on warehouse operations

covering functions from receiving to shipping is the study of Gu et al. (2007). Espe-

cially batching literature in order-picking activities are explained clearly in this study

while it is concluded that zoning accounts for less than 6% in the surveyed literature.

van Gils et al. (2018b) review and classify the most recent literature regarding the

integration and interaction of the tactical and operational warehouse problems (e.g.,

order batching, picker routing, storage assignment, zoning). Authors also note that

75% of the articles on integrated problems have been published in the last decade. The

scope is limited with the combinations of storage assignment and batching, storage

assignment and routing, batching, and routing, workforce level and batching, work-

force level and routing, job assignment and batching, job assignment and routing, job

assignment and zone picking, and batching and sorting. The authors mention that

zoning and workforce related problems are the ones that have drawn the least atten-

tion in the literature. The reader is referred to the appendix of van Gils et al. (2018b),

which depicts a brief description for each of the activities related to order picking

operations.

Different from the other literature reviews, Masae et al. (2020a) specifically and ex-

tensively focus on reviews only regarding the picker routing problems. The solution

methodologies are categorized and examined based on the warehouse types (conven-

tional or non-conventional), the number of blocks (single-block or multi-block), and

the type of the algorithms (exact, heuristics or meta-heuristics). More recently, Van-

heusden et al. (2022b) review the literature to highlight the main practical factors in
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the order picking operations to fill the gap between the research and practice as the

practitioners hardly implement the findings from the researches.

2.2 Picker Routing

Our study is mostly relevant to the routing and zone-picking literature. Picker routing

or order picking problem is the mostly studied warehouse operation problem. Due to

the importance of order picking on the overall warehouse performance, there exists

a vast amount of literature on order picking. van Gils et al. (2018b), in their review,

conclude that a significant portion of the warehouse order picking literature addresses

picker routing as the main problem or as a subproblem of an integrated problem. The

significance of picker routing in order picking operations underlines the importance

of formulating an efficient integer programming model for the OPP.

Regarded as the seminal work in the order picking literature, Ratliff & Rosenthal

(1983) introduce an exact dynamic programming (DP) algorithm (further referred to

as the RR algorithm) for the single-picker single-block OPP that runs inO(|M |+|N |)
time, where M is the set of picking aisles and N is the set of pick locations. In this

algorithm, The depot is assumed to be at the very left front corner and the aisles

constitute the stages. Each aisle has two sub-stages denoted by L−
j and L+

j . Sub-

stage L−
j contains the nodes aj and bj together with all nodes and minimum tour

construction edges at the left of the graph. Sub-stage L+
j additionally contains all

pick locations and minimum tour construction edges in aisle j. The possible con-

nections within and between the picking aisles form the seven different states, called

equivalence classes. These states are denoted by their (i) degree parity at aj , (ii)

degree parity at bj , and (iii) the state of connectivity. Possible degree parities are

zero (0), even (E) or odd (U), while the state of connectivity can be 0C, 1C or

2C. Then, any graph in a sub-stage Lj can be represented by an equivalence classes

denoted by (U,U, 1C), (E, 0, 1C), (0, E, 1C), (E,E, 1C), (E,E, 2C) and (0, 0, 1C).

These states are updated through stages using the possible connections between states

called connection types. Ratliff & Rosenthal (1983) show that (i) there are six pos-

sible connection types within an aisle (aisle j − 1) which connect the states at stage

L−
j−1 with the states at stage L+

j−1 and (ii) there are five possible connection types

between two neighboring aisles (aisles j − 1 and j) which connect the states at stage
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Figure 2.1: The visual representation of the RR algorithm.

L+
j−1 with the states at stage L−

j . The pick locations and the intersection points be-

tween the picking aisles and the cross-aisles determine the length of these possible

connections at each stage. The RR algorithm works by forming these states up to the

last stage and choosing the shortest travel time solution among the final states satisfy-

ing the minimum length completion requirement. The flow of the algorithm in terms

of connections among the states at each stage is depicted in Figure 2.1.

Due to the importance of order picking on the overall warehouse performance, the

OPP is widely studied. The RR algorithm forms the baseline for the exact solution

algorithms of different OPP extensions, including multiple blocks (Roodbergen & De

Koster 2001b, Pansart et al. 2018), non-traditional warehouse layouts (Çelik & Süral

2014, Masae et al. 2020c), turn penalties (Çelik & Süral 2016), with multiple pickers
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using pick waves (Saylam et al. 2022), or with various side constraints (Chabot et al.

2017, Zulj et al. 2018).

Roodbergen & De Koster (2001b) extend the RR algorithm and propose an exact DP

approach for the two-block case by increasing the size of the equivalence classes to

25. This substantial increase is due to the fact that the number of possible configura-

tions between two consecutive picking aisles increases from four to fourteen for the

layouts where a middle cross-aisle exists. It is also concluded that further extending

this algorithm for more than two-block case is difficult. Pansart et al. (2018) propose

a DP approach that can exactly solve instances up to five blocks by directly applying

the rectilinear TSP algorithm proposed by Cambazard & Catusse (2018) to the case

of multi-block OPP. For fish-bone layouts, Çelik & Süral (2014) introduce an exact

linear-time algorithm making use of transformation from a graph of a fish-bone layout

to a graph of two-block parallel identical aisle warehouse as proposed by Roodbergen

& De Koster (2001b). For chevron warehouses, an optimal DP routing algorithm is

proposed by Masae et al. (2020c) based on the concept of the graph theory. However,

it is also concluded that original two-block picker routing outperforms the chevron

warehouse-routing, especially for large number of picking items. As an extension,

Çelik & Süral (2016) study the effect of turns on the travel time calculations and

show that graph-based heuristics can be modified to take the number of turns into

account to travel time minimization including turn penalties. For different layouts,

the authors introduce several solution approaches.

The relevant literature also contains several simple heuristics such as the S-shape,

largest gap, return, and composite heuristics due to the complicated nature of the

optimal picker routes and the difficulty of their implementation. The S-shape and

largest gap heuristics are proposed and analysed by Hall (1993) for the single-block

layout. Similarly, return and composite heuristics are put forward by Petersen (1997).

Heuristic methods are also proposed for the multi-block layout case (Vaughan & Pe-

tersen 1999, Roodbergen & De Koster 2001a, Theys et al. 2010, Çelik & Süral 2019),

and the OPP in conjunction with storage replenishment (Çelik et al. 2022) or energy

minimization (Atashi Khoei et al. 2022).

Vaughan & Petersen (1999) develop an aisle-by-aisle heuristic for multi-block lay-
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outs, where the picker visits every aisle exactly once. In this heuristic, the order

picker starts from the depot, which is located at the very left bottom corner, and

reaches the leftmost picking aisle with a pick location (filled picking aisle). In the

DP algorithm, there are |M | stages where M is the set of picking aisles starting from

the leftmost filled picking aisle. Each stage has |B| + 1 states where B is the set of

picking blocks. There are |B|+1 different cross-aisles, thus states, to clear pick loca-

tions in the leftmost filled picking aisle and to move to the next picking aisle. Each of

|B|+ 1 cross-aisles in the current picking aisle connects to other |B|+ 1 cross-aisles

of the following picking aisle. Using the cross-aisles leading to the minimum travel

distance, the order picker clears all the picking aisles and moves to the front cross-

aisle of the rightmost picking aisle. In this way, the order picker actually visits every

picking aisle exactly once. Finally, the order picker returns to the depot.

Roodbergen & De Koster (2001a) extend the S-shape and largest gap heuristics to

multi-block layouts. In S-shape heuristic, the order picker starts from the depot, firstly

enters into the leftmost filled picking aisle in order to reach the front cross-aisle of

farthest block. Then, the order picker traverses each filled picking sub-aisle of the

farthest block with a possibility of a return movement for the last picking sub-aisle if

the number of filled picking sub-aisles for the current block is odd. The order picker

then clears the next block through S-shape traverses starting from the closest filled

picking sub-aisle either the rightmost or the leftmost filled picking sub-aisle (except

the leftmost picking aisle). Finally, the order picker returns to the depot after clearing

the closest block to the depot. In the largest gap heuristic, the order picker, again,

starts from the depot, enters into the leftmost filled picking aisle and reach the front

cross-aisle of farthest block. Then, the order picker traverses the first filled picking

sub-aisle and reach the back cross-aisle. In this heuristic, using the largest gap policy,

all the filled picking sub-aisles are divided into back and front halves. According to

the best largest gap movement, the order picker firstly clears all back halves of the

farthest block then traverses to the front cross-aisle of the farthest block using the

very last filled picking sub-aisle and clears the remaining pick locations through the

front halves. Then, the order picker moves to the closest filled picking sub-aisle of

the next block, either the rightmost or the leftmost filled picking sub-aisle, and clears

this block using the same largest gap strategy. Finally, the order picker returns to the
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depot after clearing the closest block. We note that, in the largest gap heuristic, the

picker travels the middle cross-aisles twice.

In addition to the extensions of S-shape and largest gap heuristics to multi-block lay-

outs, Roodbergen & De Koster (2001a) also introduce the combined and combined+

heuristics, and propose some improvements which are also applicable to S-shape and

largest gap heuristics. In these heuristics, the order picker starts from the depot, en-

ters into the leftmost filled picking aisle and reach the front cross-aisle of the farthest

block. Then starts the DP algorithm. For the farthest block, the number of stages

is equal to the number of picking sub-aisles starting from the leftmost filled picking

sub-aisle. For the remaining blocks, the number of stages is equal to the number of

picking sub-aisles starting (or ending) after the leftmost filled picking aisle. At each

stage, there are two states, the one ending at the back cross-aisle and the one ending

at the front cross-aisle. The connection types connecting the stages and forming the

states are the same as the ones in RR algorithm except the largest gap type move-

ment. For example, a front cross-aisle ending state is formed either via a traversal

movement (cross-aisle shifting movement) connecting the previous back cross-aisle

ending state or a return movement (cross-aisle keeping movement) connecting the

previous front cross-aisle ending state. At the last picking aisle of each block, the

order picker should be at the front cross-aisle which would yield to the minimum tour

length for the current block. At the end point of each block, the order picker moves to

the closest filled picking sub-aisle of the next block, either the rightmost or the left-

most filled picking sub-aisle, and clears this block using the DP algorithm. Finally,

the order picker returns to the depot after clearing the closest block. This combined

heuristic is improved with two simple rules to form combined+ heuristic. The first

improvement is that the entering picking aisle for the closest block should be the

rightmost filled picking sub-aisle. It is to reduce the size of return movement back to

the depot. The second one is that the farthest block should not necessarily be reached

through the leftmost filled picking aisle. Roodbergen & De Koster (2001a) also note

that these improvements could be added to the S-shape and largest gap heuristics as

well. In Figure 2.2, we give some heuristic solutions for the instance in Figure 1.1.

Çelik & Süral (2019) propose a merge-and-reach heuristic for multi-block layouts

by taking advantage of the parallel-aisle property of the rectangular warehouses and
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Figure 2.2: Single-picker heuristic solutions for the instance in Figure 1.1. (a) S-shape

heuristic solution. (b) Largest gap heuristic solution. (c) Aisle-by-aisle heuristic

solution. (d) Combined heuristic solution (adapted from Çelik & Süral (2019))
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show that their heuristic outperform the above-mentioned heuristics in terms of solu-

tion quality. Different than the heuristics above, which make use of the parallel-aisle

properties of a warehouse layout, Theys et al. (2010) suggest the direct use of the

Lin–Kernighan–Helsgaun (LKH) TSP heuristic (Helsgaun 2000) to solve the OPP

which results in more efficient solutions than previous heuristics. In this algorithm,

the authors pre-process the data, omit Steiner points, and then directly apply the LKH

heuristic. There are also several metaheuristic approaches that involve the OPP as a

direct problem or a subproblem of a combination of multiple order picking planning

problems (Tsai et al. 2008, Chen et al. 2013, 2015, Lin et al. 2016, Chen et al. 2016,

De Santis et al. 2018, Chen et al. 2019, Ardjmand et al. 2019).

In the OPP, the objective is to visit each of the pick locations on the pick list at least

once and in a sequence that minimizes the travel time. Hence, the OPP is indeed a

special case of the TSP on a specific graph structure. The OPP is also a special case

of the Steiner TSP, where a subset of vertices (Steiner vertices) are not necessarily

required to be visited in the tour. Such a parallel-aisle warehouse is depicted in Figure

2.3. The Steiner vertices (white vertices) in the case of the OPP correspond to the aj ,

bj and mjk vertices. The vertices required to be visited (black vertices) are the pick

locations and the depot. Consequently, the TSP formulations (e.g., Miller et al. 1960,

Gavish & Graves 1978, Claus 1984) and the Steiner TSP formulations Letchford et al.

(2013) can be directly used to model the OPP, albeit inefficiently.

A number of studies work on modifying the TSP and Steiner TSP formulations by

taking advantage of the properties of parallel-aisle warehouse layouts in order to ob-

tain a more efficient formulation. To our best knowledge, the first such work is by

Scholz et al. (2016) for the parallel-aisle single-block warehouse. In this work, the

warehouse graph is modified by redefining the vertex set, so that the formulation is in-

dependent of the number of pick locations. Next, a modified Steiner TSP formulation

of Letchford et al. (2013) is applied by using the subtour elimination constraints of

Gavish & Graves (1978) as the basis and adding new constraints to reflect the specific

properties of the parallel-aisle warehouse layout. The size of the model depends only

on the number of picking aisles. The authors show that this formulation leads to faster

computing times than the corresponding TSP formulations. The formulation consists

of new constraints added onto a TSP-based formulation, which take into account the
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Figure 2.3: Illustration of the OPP as a Steiner TSP

special properties of parallel-aisle warehouse layout.

Similar TSP-based formulations exist for the two and three-block layouts (Ruberg &

Scholz 2016, Scholz 2016) or a more general number of blocks (Pansart et al. 2018,

Su et al. 2022). Ruberg & Scholz (2016) and Scholz (2016) both extend the single-

block formulation introduced in Scholz et al. (2016) to the case of multiple blocks.

Pansart et al. (2018) propose a TSP-based MILP formulation for the multi-block OPP

where the model is developed by preprocessing the TSP graph in order to reduce

the number of vertices and edges and including additional constraints into the single

commodity flow formulation of Gavish & Graves (1978), which are resulted from

the specific properties of a parallel-aisle warehouse. Su et al. (2022) propose another

multi-block formulation built on the single commodity flow formulation proposed by

Gavish & Graves (1978) where the authors consider the picking aisles as units. The

authors conclude that their approach proves optimality in shorter computing times

than the previous studies in the multi-block OPP literature.

To the best of our knowledge, there is only a single study in literature formulating
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the compact OPP formulation with no use of TSP formulation as the basis. Directly

exploiting the properties in RR algorithm, Goeke & Schneider (2021) propose a com-

pact formulation by stipulating that (1) a feasible OPP tour has no more than two

connected components, (2) the isolated subtours are prevented as long as a single

component is forced at the end of the completion of a tour, and (3) two consecutive

picking aisles can only be connected using four possible configurations. The authors

show that the proposed approach outperforms its counterparts in the literature and

solves large instances within short computing times. Despite its computational effi-

ciency, the formulation by Goeke & Schneider (2021) makes use of the number of

possible moves between two consecutive picking aisles, which increases exponen-

tially with the number of blocks. As this would lead to a substantial increase in the

number of variables, an extension of this formulation to multiple blocks would not

be straightforward or computationally efficient. In other words, the extension of this

formulation to more blocks would be difficult if not impossible because of the fact

that the number of possible configurations between two consecutive picking aisles,

which are defined as decision variables in their study, increases from 4 to 14 for the

layouts where a middle cross-aisle exists Roodbergen & De Koster (2001b). This

would make it intractable to ensure connectivity through constraints on a progressive

OPP tour, hence lead to a more complicated model formulation.

Masae et al. (2022) analyse the impacts of order size, depot location, picker-routing

heuristic and storage assignment policies in the order picking time through simula-

tion. Hence, we also note that the performance of the solution approaches for the

OPP is largely dependent on tactical level decisions such as storage assignment poli-

cies such as random or turnover-based storage decisions. Some of the turnover-based

storage policies are shown on Figure 2.4. Since it is beyond the scope of this study,

we do not go into details. To the best of our knowledge, there is not an exact solution

methodology that solves the OPP with an arbitrary number of blocks.

2.3 Batching

To improve time performance of order picking operations, batching and zone-picking

methods are necessary to be considered. If the number of ordered items is relatively

small and the number of orders is large, it is inevitable to partition orders into batches
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Figure 2.4: Examples of turnover-based storage location assignment policies for a

single block warehouse

in picking operations. Similarly, if the number of ordered items is relatively large, it

is again inevitable to group items of orders with respect to their zones. Most of the

time, orders are not allowed to split into batches while zone-picking requires order

split since most of the orders are spread around the picking area. If necessary, batch-

ing can also be introduced within zones to more improve the performance, however

order integrity would no longer hold, therefore, would not be a constraint. But it is

important to note that partitioning a given set of orders into batches more complicates

the problem since partition itself is known to be NP-complete (Gademann et al.

2001). Parikh & Meller (2008) study the batch versus zone problem by analyzing

their impacts on picking rates, aisle-blocking, workload balancing goals and consoli-

dation/sorting requirements. For this end, the authors propose a cost model, observe

the estimated costs on a real-world example and conclude that workload balancing is

more ensured by batch picking systems.

The order batching problem is to determine a set of orders to be partitioned into

batches such that a specific objective is optimized (Gu et al. 2007, Henn & Wäscher

2012, Scholz et al. 2017). In batching operations, sorting is assumed to be completed

on the way using sort-while-pick strategy hence there is no need to sort items after-

wards. Batching can be applied using mostly proximity batching where the objective

20



is to minimize the distance travelled or time-window batching where the objective

is to maximize the due date performance (Gademann et al. 2001). A batch-picking,

on the other hand, is an order picking operation in which the orders are grouped into

batches and those batches are picked simultaneously, therefore, forming a wave. The

common objective in wave picking operations is to minimize the lead time of a wave,

i.e., the maximum travel time of any batch. Partitioning is the main factor of the

complexity in batching operations where orders cannot be split into more than one

batch. In the literature, several linear-time heuristics, such as rule-based algorithms,

seed algorithms, savings algorithms and meta-heuristics are introduced. Koster et al.

(1999) compare several batching seed and time-savings batching heuristics combined

with largest gap and S-shape routing heuristics in order to come up with fast, robust

and user-friendly solutions. Henn & Wäscher (2012) introduce two efficient meta-

heuristic approaches, an iterated local search algorithm, and an ant colony optimiza-

tion algorithm. Gademann et al. (2001) present a branch and bound algorithm where

the objective is to minimize the maximum lead time of the batches in a wave picking

environment given the number of orders and the number of batches. The model build-

ing starts with a basic algorithm, and a preprocessed data. Then a two-opt heuristic is

proposed to build a significantly tight upper bound and analyze several lower bounds.

The performance of the algorithm significantly decreases with the increase in the

number of batches and orders. Gademann & Velde (2005) consider order batching

problem using a branch-and-price algorithm with the objective of minimizing the to-

tal travel time. To construct the branch-and-price algorithm, the problem is modeled

as a generalized set partitioning problem, and then, a column generation algorithm is

presented to solve its linear relaxation. Recently, Bayram et al. (2022) consider the

order batching problem from a data-centric point of view. They introduce the robust

order batching problem, which is defined as the order batching problem subject to

uncertainties due to congestion in the picker routes and behavior of the pickers. The

authors develop a branch-and-price algorithm integrated with prediction models an-

alyzing the data and predict the batch processing times to improve the overall order

processing. For a detailed review of batching operations, the reader is referred to De

Koster et al. (2007) and Henn et al. (2012).
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2.4 Zone-Picking

In order to reduce travel time, avoid congestion within aisles, and increase the fa-

miliarity of pick locations, the picking area could be divided into picking zones. Fa-

miliarity of pick locations in a zone has a positive impact if the storage strategy is

not random along the order picking area. On the other hand, zone-picking, which

is also called picking area zoning, reduces picking time at the expense of order in-

tegrity. When zone-picking operation is applied, sorting and consolidation (order

assembly) are required at the end of the picking process since the items should be

sorted and consolidated according to customer order. This is the main disadvantage

of the zone-picking approach. The zone-picking literature can be classified as (i)

sequential zone-picking, where the pickers pick the items in a zone and pass to the

picker in the next zone, and (ii) synchronized zone-picking, where the pickers pick

the items simultaneously in different zones.

The literature regarding sequential zone-picking systems mostly consists of queuing

network studies. De Koster (1994) analyses such a system as a Jackson queuing net-

work where the order inter-arrival times and the zone service times are exponentially

distributed. Yu & De Koster (2008) generalize the distribution of order inter-arrival

and zone service times, and Yu & De Koster (2009) consider the general queuing

network to analyse the impact of batching and zone-picking on throughput times.

According to this study, since pick density varies across the zones, it leads to im-

balance on workload among zones no matter which zone-picking policy is applied.

Then, a queuing network model is presented to analyze the impact of batching and

zone-picking on throughput times under a sequential zone-picking policy. Melacini

et al. (2011) extend the above-mentioned queuing literature by considering the num-

ber of zones and the number of pickers for each zone as variables. van Der Gaast

et al. (2020) estimate the performance of such systems by also including the buffer

capacities at each zone.

In the literature regarding synchronized zone-picking systems, Jane & Laih (2005)

present a heuristic algorithm balancing the workloads of pickers at different zones

to increase the utilization of a picking wave and reduce the lead time of the wave.

First, a similarity measurement approach is presented based on customer order in-
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formation, then using this measurement, a cluster model with a heuristic solution

approach is presented. One of the assumptions is that zone-picking is a strategic level

decision, thus zones are known, fixed, and dedicated to pickers before giving opera-

tional level decisions. Fixed zone-picking is a common assumption in zone-picking

literature. If the items were distributed and stored uniformly among zones in the

picking area, then each zone had the same demand data for each wave and workload

balance would be perfectly fine. However, items are stored largely according to a

turnover-based storage strategy thus fixed zone-picking would not be solely advan-

tageous when workload balancing objective is considered. De Koster et al. (2012)

focus on balancing workload over zones and include sorting/consolidation time as a

part of wave zone-picking operation. Larger number of zones leads to less picking

times but more sorting/consolidation times. It is assumed that all aisles are identical,

and all zones consist an equal number of aisles, so that the zone partitioning problem

becomes the problem of determining the optimal number of aisles constituting a zone.

A model is presented to determine the optimal number of zones which minimizes the

system throughput time consisting of picking and sorting/consolidation times. In the

model, the number of zones is determined first at the strategic level and then item-

to-route assignment problem is solved at the operation level under the constraint of

the strategic decision regarding the number of zones. The assumption of fixed zones

exists here as well, but it is further noted that the zone-picking problem can also be

considered as a short-term problem. Roy et al. (2012) develop a queuing network

model and investigate the impact of the number of zones on response time and total

travel time. Roy et al. (2019) model a queuing network of movable storage systems

and investigate the performance zone-picker assignment strategies.

The above-mentioned zoning studies consider the zoning environment as static, while

there are a few studies considering zoning environment as dynamic. To the best of

our knowledge, there are only a couple of studies considering dynamic zoning strat-

egy. Bartholdi & Eisenstein (1996) and Bartholdi et al. (2001) introduce the bucket

brigades concept and model a sequential zone-picking process in a dynamic way

where there are no fixed zones since the pickers pick the items in a picking list and

pass to the downstream picker, and walk back and fetch the items of the next pick-

ing list from the upstream picker. Such systems dynamically balance the workload
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among pickers without the need of additional operational control. Similarly, Ho &

Liao (2009) propose a dynamic zoning strategy where an initial zone partition is de-

signed by distance and flow relationships, then a metaheuristic is developed to help

achieving better workload balance and finally a dynamic zone control method is ap-

plied for observation. Lamballais et al. (2022) study an order picking process where

robots are used instead of conveyor-like fixed systems to reduce pickers’ non-value-

added travel times. The picker focuses only on picking process while accompanying

robot travels between the picker and the depot. The authors compare no-zoning and

sequential zoning strategies where, in the sequential zoning case, there exists some

fixed zones. In such a collaborative environment, robots are allowed to travel beyond

the zones while pickers are not. They develop a Markov Decision Process model

together with a closed queuing network and analyse the performance of dynamic

switching between zoning and no zoning strategies since there is a trade-off between

high robot waiting time in the zoning strategy and high picker travel time in the no

zoning strategy. The authors also conclude that it would be significant to examine

the optimal dynamic zone sizes to increase the system throughput which is another

contribution of our study.

More recently, van der Gaast & Weidinger (2022) introduce a deep learning approach

into OPP literature and develop a deep neural networks-based modelling for order

picking system selection. The authors apply their model by considering three differ-

ent static order picking systems; sequential zone-picking, synchronized zone-picking,

and bucket brigade picking. The authors conclude that synchronized static zone-

picking systems leads to long idle times especially for large order arrivals and long-

time pick waves. However, they also conclude that synchronized static zone-picking

system is the best when the number of ordered items are small with moderate arrival

rates. As the synchronized zone-picking system changes to dynamic, as we propose

in Chapter 5, the disadvantages of synchronized static zone-picking systems (e.g.,

workload-imbalancing, long idle times) also disappear. Similarly, Zhang et al. (2023)

analyze the batch and zone-picking integration by comparing the performances of

batch-picking and batch-synchronized zone picking, where the batches simultane-

ously collected in multiple zones. The authors model this problem by considering

the pickers’ learning effects as this is more possible for the case of zone-picking and
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propose heuristics for the solution of the models.

2.5 Integrated Order Picking Problems

In the early literature, operational warehouse problems are solved one after another.

For example, orders are firstly assigned to batches based on proximity or time-window

policy and then routings are calculated. However, in the last decade, literature has

started dealing with integrated warehouse operation problems since solving such

problems sequentially and independently yields to sub-optimal solutions. Integrated

OPP refers to joint analysis of more than one operational warehouse problem (Scholz

& Wäscher 2017, van Gils et al. 2018b). Scholz & Wäscher (2017) analyse how

to increase the solution quality of the approaches in the literature by jointly studying

the exact/heuristic routing algorithms and an iterated local search order batching algo-

rithm. (van Gils et al. 2018b) review and classified the most recent literature regarding

the integration and interaction of the tactical and operational warehouse problems and

conclude that combining multiple order picking planning problems would results in

significant gain on overall order picking operation performance. It is also shown that

the most popular integrated problems in literature include picker routing, batching

and storage assignment problems.

In the recent literature, there has been a number of studies with solution approaches

consisting of mathematical programming problems and meta-heuristics due to com-

plex nature of such problems. Since batching, picker-routing and workload balancing

problems are within the operational order picking planning problems, their integration

is relatively easy when it is compared to an integration with a tactical level problem

such as zoning. For example, Hong et al. (2012) propose an integrated order batch-

ing and sequencing model and a simulated annealing algorithm for multiple pickers

for single block case with an objective of minimizing the total retrieval time. In this

study, congestion caused by order pickers assigned to the same aisle at the same time

are also considered. Henn & Schmid (2013) introduce another mathematical opti-

mization model for the order batching and sequencing problem and also presented

an iterated local search algorithm. Valle et al. (2017) present a formulation for joint

order batching and picker routing problem by introducing several valid inequalities

including optimality cuts and symmetry breaking constraints by taking advantage of
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the graph representation of order picking area and the authors claim that the compu-

tational performance is improved significantly. Scholz et al. (2017) propose an in-

tegrated solution approach for the order batching and picker routing problem, called

joint order batching and picker routing problem. Then, the authors introduce a math-

ematical model and a variable neighborhood descent algorithm which consider not

only batching and routing but also batch assignment and sequencing of batches in-

between. This approach is called joint order batching, assignment and sequencing,

and routing problem.

van Gils et al. (2018a) statistically analyze the relations among order picking oper-

ations and examine the best simultaneously performing policy combinations among

storage, batching, zoning, and routing operations. The results indicate that simultane-

ous order picking operations with four zones, within-aisle storage, seed batching, and

traversal routing would achieve the best combination. Later, van Gils et al. (2019b) in-

vestigate the effects of real-life constraints in a warehouse such as safety rules, picker

blocking, and high-level storage locations on integrated order picking operations dis-

cussed on van Gils et al. (2018a) and conclude that the real-life constraints change

the nature of the problem and result in totally different best combination. In this case,

the best combination includes a single pick zone, perimeter storage, seed batching,

and traversal routing. This reveals the statistically significant impact of real-life con-

straints on integrated order picking operations especially when the picker density is

large. van Gils et al. (2019a) present a mathematical formulation for the integrated

batching, routing, and picker scheduling problem with the objective of minimizing the

total order picking time while satisfying a customer service level by including order

due times as constraints. An efficient iterated local search algorithm is also presented

since the model depends on the number of picking items, thus creating exponential

number of sub-tour elimination constraints.

Different considerations are also studied in the literature regarding integrated OPP.

Vanheusden et al. (2020) present a mathematical model, and an iterated local search

algorithm to efficiently solve pickers’ workload balancing problem. Vanheusden et al.

(2022a) analyse the impact of several workload balancing measures in order pick-

ing operations in order to reveal the significant factors ensuring workload balancing.

Srinivas & Yu (2022) analyze another integrated OPP by considering human-robot
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collaboration in order picking systems. The authors assume that humans picks the

items and autonomous mobile robots handle the transportation. They propose a for-

mulation as well as a simulated annealing algorithm for the large instances for the

joint order batching, batch-assignment/sequencing and routing problem with the ob-

jective of minimizing the total tardiness. Guo et al. (2022) takes the COVID-19

pandemic into account and propose a formulation for the zone-wave-batch picking

problem under scattered storage policy. Pinto & Nagano (2022) review the literature

regarding the joint order batching, assignment and sequencing, and routing problem

as it is the mostly studied combination in the integrated OPP literature. D’Haen et al.

(2022) extend the joint order batching, assignment and sequencing, and routing prob-

lem by also taking into account the online, dynamic order arrivals, which is more

realistic in an e-commerce era. To the best of our knowledge, zone-picking oper-

ations have received no attention in integrated order picking literature. Finally, we

note that scattered storage policy and human-robot collaborations are two trending

topics in the order picking literature.
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CHAPTER 3

AN ARC ROUTING-BASED COMPACT FORMULATION FOR PICKER

ROUTING IN SINGLE-BLOCK PARALLEL-AISLE WAREHOUSES

3.1 Introduction

Warehouses play an increasingly important role in competitive supply chains, and or-

der picking is the core operation in a warehouse, accounting for an estimated 55% of

the warehouse operating costs (Tompkins et al. 2010, Bartholdi & Hackman 2019).

Among the operations performed within a warehouse, order picking is also the most

time-consuming and labor-intensive activity. In order picking operations, items must

be collected from the warehouse in order to satisfy the customer demand while a cost

and/or service-related objective is to be met (De Koster et al. 2007, van Gils et al.

2018b, Masae et al. 2020a). While the literature has generally modeled the OPP as a

special case of the TSP (Burkard et al. 1998, Scholz et al. 2016, Masae et al. 2020a),

this study presents an arc routing-based binary integer programming formulation for

the OPP in single-block parallel-aisle warehouses, by taking into account the special

properties of the graph corresponding to both warehouse layouts. This formulation

depends on replacing the subtour elimination constraints with a much smaller number

of disconnectivity elimination constraints, which significantly reduces the integrality

gap. Our computational experiments show that the proposed formulations are ei-

ther comparable to or outperform their counterparts in the literature for single-block

parallel-aisle warehouses. The efficiency of these formulations implies that not only

can they be used to solve the OPP in a timely manner, but they can also be incorpo-

rated into integrated models that consider multiple warehouse decision problems at

the operational level.

Due to the importance of order picking on the overall warehouse performance, there
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exists a vast amount of literature on order picking. van Gils et al. (2018b), in their

review, conclude that a significant portion of the warehouse order picking literature

addresses picker routing as the main problem or as a subproblem of an integrated

problem. The significance of picker routing in order picking operations underlines

the importance of formulating an efficient integer programming model for the OPP.

Although the OPP is a special case of theNP-hard TSP, it has been shown to be poly-

nomially solvable on single-block warehouse layouts using a dynamic programming

algorithm (Ratliff & Rosenthal 1983). It has been also shown that the RR algorithm

can be extended to two-block warehouse layouts (Roodbergen & De Koster 2001b).

However, the enumerative nature of these algorithms has rendered their extension to

more than two blocks impractical. The OPP can also be modeled using the well-

known integer programming formulations for the TSP (Miller et al. 1960, Gavish &

Graves 1978, Claus 1984) or the Steiner TSP (Letchford et al. 2013). However, these

formulations lead to large computing times since they are dependent on the num-

ber of pick locations and require computationally expensive subtour elimination con-

straints. Furthermore, the linear relaxations of these formulations are weak (Pansart

et al. 2018). Hence, research focusing on formulating an integer programming model

for the OPP has made use of modifying these TSP-based formulations (especially the

subtour elimination constraints) by incorporating specific properties of the OPP and

its corresponding graph structure (e.g., Theys et al. 2010, Scholz et al. 2016, Pansart

et al. 2018).

Existing integer programming approaches for the OPP are relatively inefficient com-

pared to DP-based algorithms, as they depend substantially on the TSP-based for-

mulations, with the exception of Goeke & Schneider (2021), which formulates an

integer programming model by taking into account the structural properties of the

optimal OPP tours by Ratliff & Rosenthal (1983). While this formulation works ef-

ficiently for the single-block case, its reliance on the RR algorithm makes it difficult

to extend to multiple blocks in a straightforward way. To bridge this gap, this chap-

ter develops an alternative formulation for the single-block OPP that employs an arc

routing-based approach. Based on our computational experiments, the efficiency of

the proposed formulation is comparable to that of Goeke & Schneider (2021) and

exceeds that of all its remaining counterparts in the literature.
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Arc routing problems consist of determining a least cost traversal of some arcs or

edges of a graph, subject to side constraints (Eiselt & Laporte 2000) while node rout-

ing problems focus on the vertices (nodes). From general routing perspective, the

relationship is as follows. Given a connected and undirected graph G with vertex set

V and edge set E, a cost cij for each edge ij ∈ E, a set VR ⊆ V of required vertices

and a set ER ⊆ E of required edges, the general routing problem (GRP) is the prob-

lem of finding the least cost tour traversing through each v ∈ VR and each ij ∈ ER at

least once. When ER = ∅, the GRP reduces to the node routing problem of Steiner

TSP. When both VR = V and ER = ∅, the GRP is the node routing problem of TSP.

When VR = ∅, the GRP reduces to the arc routing problem of Rural Postman Prob-

lem. When both ER = E and VR = ∅, the GRP is the arc routing problem of Chinese

Postman Problem (Eglese & Letchford 2000).

The OPP consists of determining a least cost traversal of some edges of a graph,

subject to side constraints. In this regard, the OPP can be defined as an arc routing

problem as follows: The picking aisles and the cross-aisles constitute the edges while

the intersection points between picking aisles and cross-aisles form the vertices. For

a feasible order picking tour, the picker should traverse all non-empty picking aisles

(and possibly some of the cross-aisles) in order to maintain a connected closed walk

starting and ending at the depot. As we show in the following sections, using an

arc routing-based approach for the OPP, as opposed to a TSP-based one, results in

two main advantages. First, the formulation does not depend on the number of pick

locations. Second, it eliminates subtours by means of a significantly smaller num-

ber of more efficient constraints. Our experiments on randomly-generated instances

and those from the literature test the performance of the proposed models in terms

of computation time and integrality gap of the linear programming relaxation. The

results show that the proposed models solve the instances efficiently. For the single-

block case, we either outperform or obtain comparable results to the studies in the

literature. Furthermore, the linear programming relaxation of our formulation leads

to particularly stronger lower bounds when number of aisles and pick locations is

relatively large compared to the number of items to be picked.

In this context, taking into account the special properties of parallel-aisle warehouse

design, we firstly redefine the parameters based on the movement types introduced by
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Ratliff & Rosenthal (1983) and then formulate a compact mathematical model, which

is dependent only on the number of aisles. Our integer programming formulation for

the single-block OPP includes three main classes of constraints: (i) assignment and

sequencing constraints, (ii) degree constraints and (iii) disconnectivity elimination

constraints. The first set of constraints ensure that all items are picked, whereas the

second and third set of constraints are required for a feasible closed walk on the

connected graph corresponding to the warehouse.

The remainder of this chapter is organised as follows. Section 3.2 describes the OPP

studied in this chapter. In Section 3.3, we present the formulation for the single-block

OPP. Computational experiments and the performance of the models are tested in

Section 3.4, and the chapter is concluded in Section 3.5.

3.2 Problem Description

Order picking is the most expensive and labor-intensive warehouse activity. The OPP

can be defined as one of sequencing the visits of a picker to item locations on the

pick list, so that total travel time is minimized. The OPP is a special case of the TSP

arising in warehouse operations. The objective of the OPP is to collect the items on

the pick list in a sequence that minimizes the total travel time.

In this chapter, we consider the OPP in a parallel-aisle single-block warehouse layout.

An example for such a layout is given in Figure 3.1, which consists of narrow picking

aisles parallel to one another. It also contains cross-aisles at the front and back ends

of the picking aisles as in Figure 3.1.

Figure 3.2 shows the graph representations of the OPP instances in Figure 3.1, where

v0 refers to the depot, vi, i ≥ 1 denote the pick locations and vertices aj and bj

represent the intersection points between the back/front cross-aisle and the picking

aisle j, respectively. In line with the literature, we assume narrow picking aisles so

that a picker spends negligible time when making horizontal movements within a

picking aisle. A picker starts the picking tour from the depot, collects all the items in

the pick list and returns to the depot. Without loss of generality, the depot is assumed

to be at the left corner of the front cross-aisle.
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Figure 3.1: A single-block parallel-aisle warehouse 6 picking aisles and 11 items to

be picked.

Figure 3.2: The graph representations of Figure 3.1.
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Unlike the studies in the relevant literature, this chapter formulates an arc routing-

based mathematical model for the OPP that enforces a strongly connected closed

walk using disconnectivity elimination constraints which can be extended to the case

of multi-blocks. These constraints provide a significant contribution to the literature

because while enforcing a strongly connected closed walk without the need for sub-

tour elimination constraints, these constraints also result in tight linear relaxations for

the model, even when the number of pick locations and/or aisles increases signifi-

cantly. More importantly, these constraints can be extended to incorporate multiple

blocks. We leave such an extension for more than two blocks for future research.

To the best of our knowledge, this is the first study in the literature to study the OPP

as a variant of the arc routing problem. Our computational results show that our

formulation produces results that are either comparable to or better than the existing

approaches for the single-block OPP.

3.3 A Binary Integer Programming Formulation for the Single-Block OPP

In this section, we first describe the notation and the useful properties of a parallel-

aisle layout for the single-block formulation together with the binary integer program-

ming model.

To obtain an arc routing-based formulation for the OPP, we make use of a number

of structural properties of the OPP and redefine the graph so that the set of vertices

consists only of the intersection points between the picking aisles and cross-aisles.

In this regard, we define M as the set for the picking aisles and the resulting set

for the cross-aisles is formed as C = {0, 1} referring to front and back cross-aisles,

respectively.

Next, we define the six possible intra-aisle movement types for a feasible OPP tour,

which are shown in Figure 3.3(a).

(0) The order picker enters the picking aisle using the front intersection point, visits

all pick locations and leaves the picking aisle using the back intersection point.

(1) The order picker enters the picking aisle using the back intersection point, visits

all pick locations and leaves the picking aisle using the front intersection point.
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Figure 3.3: Possible movement types. (a) Six possible intra-aisle movement types.

(b) Three possible cross-aisle movement types.

(2) The order picker enters the picking aisle using the back intersection point, visits

all pick locations, returns after the last pick location, and leaves the picking aisle

using the back intersection point.

(3) The order picker enters the picking aisle using the front intersection point, visits

all pick locations, returns after the last pick location, and leaves the picking aisle

using the front intersection point.

(4) The order picker enters the picking aisle twice, once using the front intersection

point and once using the back intersection point. At each time, picker leaves

using the same intersection point. The pick locations to make the returns are

decided based on the largest gap between any two pick locations or intersection

points within the aisle.

(5) The order picker does not enter the aisle when no pick location exists.

We can further classify the intra-aisle movements according to whether they cause a

cross-aisle change during the tour. Type (0) and type (1) intra-aisle movements are

cross-aisle shifting movements since the picker moves from a cross-aisle to the other
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one with such a move. The remainder of the intra-aisle movements are classified as

cross-aisle keeping movements since the picker stays at the same cross-aisle after such

a move. Moreover, among cross-aisle keeping movements, type (2) is further defined

as back cross-aisle keeping movement, type (3) is further defined as front cross-aisle

keeping movement and type (4) is further defined as both back and front cross-aisle

keeping movement. Finally, type (5) movement is also a cross-aisle keeping move-

ment since the picker continues at the same cross-aisle with such a movement.

We define R as the set of intra-aisle movements in Figure 3.3(a). Furthermore, instead

of measuring travel times using those between pick locations (as would be in a TSP-

based formulation), we define parameter cij as the time travelled to clear picking aisle

i ∈ M by making intra-aisle movement j ∈ R. We also note that ci5 is set as zero

if the picking aisle j does not include a pick location whereas it is set as a very large

value otherwise. For the second aisle of Figure 3.1, c20 and c21 values would be 16

time units since these movements would traverse the whole picking aisle. The travel

time parameters for the back and front cross-aisle keeping movements, c22 and c23,

are 12 and 24 time units, respectively. In the same manner, c24, would be 12 time

units. Finally, c25 would be a very large value since the aisle is not empty. Defining

the parameters in an aisle-dependent way also reduces the size of the data especially

when a turnover-based storage policy is applied since the possibility of having a pick

location in the further aisles would be relatively small.

The decision variables to represent the intra-aisle movements are defined as follows.

yij =

1, if picker clears aisle i ∈M by making intra-aisle movement j ∈ R

0, otherwise

Similarly, the three possible cross-aisle movement types, also shown in Figure 3.3(b),

are as follows:

(x1) The order picker leaves the picking aisle j and enters the picking aisle j + 1.

(x0) The order picker enters the picking aisle j after leaving the picking aisle j + 1.

(z)2 The order picker leaves the picking aisle j and enters the picking aisle j + 1,

and comes back to the picking aisle j using the same cross-aisle after leaving
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the picking aisle j + 1.

To define decision variables corresponding to the cross-aisle movements, we firstly

introduce set M ′ = M ∪ {0}, where aisle 0 represents the dummy picking aisle. The

parameter h is defined as the travel time between two neighboring aisles. Now we

define the binary variables for the cross-aisle movements.

x1ik =


1, if picker makes an x1-type movement from aisle i ∈M ′

to i+ 1 ∈M ′ on cross-aisle k ∈ C

0, otherwise

x0ik =


1, if picker makes an x0-type movement to aisle i ∈M ′

from i+ 1 ∈M ′ on cross-aisle k ∈ C

0, otherwise

zik =


1, if picker makes a z-type movement from/to aisle i ∈M ′

on cross-aisle k ∈ C

0, otherwise

A feasible picking tour on a parallel-aisle warehouse is a strongly connected closed

walk starting from the depot, picking all items on all picking aisles by making intra-

aisle movements and returning to the depot. We note that a strongly connected closed

walk required here does not necessarily have to be an Eulerian circuit, which is a

circuit that uses every edge, but rather only some edges need to be traversed, as in the

Rural Postman Problem. Hence, all picking aisles are required to be assigned an intra-

aisle movement, whereas some of the cross-aisles can be traversed (at most twice) to

ensure a closed walk and that all intra-aisle movements are strongly connected.

For each cross-aisle, the total degree of the vertices due to intra-aisle movement types

should be even to complete a closed walk on a parallel aisle warehouse. A return to

depot requires equal number of type (0) and (1) intra-aisle movements in total for

the single-block picking area. Since other movement types add even degrees on each

vertex representing the front and back intersection of a picking aisle, the total degree

of vertices due to intra-aisle movement types at each cross-aisle would be even for a
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strongly connected closed walk.

In this regard, the necessary and sufficient conditions to form a feasible OPP tour,

which are also direct implications of being a feasible tour by Ratliff & Rosenthal

(1983), are as follows:

(i) One of the intra-aisle movement types in each picking aisle and in a feasible

order,

(ii) Even degrees for each of the vertices corresponding to the intersection points

between the picking aisles and the cross-aisles, and

(iii) A single connected component for the whole tour.

We constitute the feasible region based on these conditions respectively. The first set

of constraints, which we further call the assignment constraints, corresponds to the

first part of condition (i), where an intra-aisle movement should be assigned to each

of the picking aisles to conduct the picking activity.∑
j∈R

yij = 1 ∀i ∈M (3.1)

To ensure that the picker starts and ends the tour at the depot (which is on a cross-

aisle), there needs to be an equal total number of cross-aisle shifting intra-aisle move-

ments. This implies an equal number of type (0) and (1) intra-aisle movements.

Constraint (3.2) guarantees this condition.∑
i∈M

yi0 =
∑
i∈M

yi1 (3.2)

The cross-aisle shifting movements also need to be performed in a specific sequence

to guarantee feasibility at any part of the closed walk. Given that the walk starts from

the left corner of the front cross-aisle, there are two possible cases. If the picker is at

the front intersection point of a picking aisle, the number of type (1) movements to

the left of and including that picking aisle should be equal to that of type (0) move-

ments. Similarly, if the picker is at the back intersection point, the number of type

(1) movements to the left of and including the picking aisle should be one fewer than

that of type (0) movements. In this sense, a type (0) movement occurs before a type

(1) movement and do not occur again before the occurrence of a type (1) movement.
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Figure 3.4: A set of intra-aisle movements satisfying Constraints (3.1)-(3.4)

Constraints (3.3) and (3.4) guarantee this logical sequencing as follows:

i∑
p=1

yp0 ≥
i∑

p=1

yp1 ∀i ∈M (3.3)

i∑
p=1

yp0 ≤ 1 +
i∑

p=1

yp1 ∀i ∈M (3.4)

Altogether, we refer to Constraints (3.2)-(3.4) as the sequencing constraints. Apply-

ing only the assignment and sequencing constraints may result in the degree parities to

be non-even for the vertices where the corresponding aisles are assigned by a cross-

aisle shifting type of movement. Furthermore, each cross-aisle keeping movement

may lead to a one-aisle disconnected closed walk. An example with both of these

issues is depicted in Figure 3.4.

Before proceeding further, we further classify type (0) and type (1) intra-aisle move-

ments as well as x1 and x0-type cross-aisle movements as the odd-degree movements

as they increase the degree of their corresponding vertices by an odd number. In this

regard, due to Constraints (3.3) and (3.4), an x1-type cross-aisle movement only oc-

curs at the back cross-aisle since type (0) intra-aisle movement occurs before type

(1) intra-aisle movement. Similarly, all x0-type cross-aisle movements only occur at

the front cross-aisle. This is because if an order picker walks to the back cross-aisle

using a type (0) intra-aisle movement, there are two possibilities: The picker may (1)

continue to the next aisle by making an x1-type cross-aisle movement or (2) continue

to the previous cross-aisle and come back, thus making a z-type cross-aisle move-

ment. The remaining possibilities would violate the sequencing Constraints (3.3) and
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Figure 3.5: Visual representation of all possible odd-degree movements involving

aisle i in a single-block layout

(3.4). A similar reasoning applies at the front cross-aisle for an x0-type cross-aisle

movement. Hence, using odd-degree movements while establishing a sequential rela-

tionship between type (0) and type (1) movements breaks the symmetry and halves the

number of feasible order picking tours. Moreover enforcing intra-aisle movements in

this way is also advantageous in practice as it reduces the congestion on the front

and back cross-aisles by leading to one-way movements. All possible odd-degree

movements in single-block layouts resulting from above observations are depicted in

Figure 3.5.

Addition of Constraints (3.5) and (3.6), defined as degree constraints, prevents the

occurrence of odd-degree vertices on the front and back intersection points, respec-

tively. Here, each constraint forces the corresponding vertices to be even degree by

ensuring equal number of incoming and outgoing odd-degree movements as in Fig-

ure 3.5. To formulate such even degree vertex constraints, there is no need to force

the right-hand side of the constraints to be even by using dummy integer variables as

modelled in Goeke & Schneider (2021). It is possible by equalizing the number of

incoming and outgoing odd-degree movements. In other words, there is no need to

include any even-degree movements into degree constraints as they don’t change the

even-degree status of a vertex.

x0(i−1)0 + yi0 = x0i0 + yi1 ∀i ∈M (3.5)
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Figure 3.6: A set of intra-aisle and cross-aisle movements satisfying the assignment,

sequencing and degree constraints

x1(i−1)1 + yi0 = x1i1 + yi1 ∀i ∈M (3.6)

With the assignment, sequencing and degree constraints, a disconnected closed walk

could still exist, as exemplified in Figure 3.6. Here, each aisle is assigned to a move-

ment with the sequential relations satisfied, and each vertex is of even degree. How-

ever, each cross-aisle keeping movement generates disconnected closed walks (sub-

tours) by itself. Moreover, an even number of cross-aisle shifting movements connect

with each other, hence they also form disconnected closed walks. To explain in which

condition such disconnectivities occur, we use the following definition.

Definition 1. When the picker is on the front cross-aisle, the state of the tour is called

state 0. Otherwise, the state is called state 1. In other words, when the total number

of type (0) movement equals to the total number of type (1) movement, the picker is

on the front cross-aisle and it is called state 0. On the contrary, when the picker is on

the back cross-aisle, i.e. when the total number of type (0) movement is one greater

than the total number of type (1) movement, it is called state 1.

We note that the assignment, sequencing and degree constraints are sufficient to pre-

vent disconnectivity on an ongoing OPP tour as long as the state is 1. This is because

when the state is 1, the picker is on the back cross-aisle, hence at least one of the

vertices would be an odd-degree vertex. At this point, degree constraints would force

each of the vertices to be of even degree, thus enforce connectivity, until the state of

the tour turns to state 0.
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We also note that, for a feasible order picking tour, only a z-type cross-aisle move-

ment can occur when the state of the tour is 0 (and x1 and x0-type cross-aisle move-

ments can occur when the state of the tour is 1) to maintain the degrees of vertices to

be even on an ongoing OPP tour until the state of the tour changes to 1.

In Figure 3.6, the state becomes 0 at the second aisle. At this point, all vertices are

even degree but disconnected closed walks exist. Hence, as long as the state is 0,

the assignment, sequencing and degree constraints will not be sufficient to prevent

disconnectivity. Before we formulate the constraints to break such disconnectivities,

we define the possible cases of disconnectivities that might occur in the single-block

layouts.

Definition 2. For a single-block layout, three possible types of disconnectivities can

occur.

(i) Vertical disconnectivity occurs when there is neither front nor back cross-aisle

movement between two adjacent aisles. In other words, one can draw a vertical

line which does not cut any cross-aisle movements. Such a vertical line is shown

on the third picking aisle in Figure 3.6 above.

(ii) Horizontal disconnectivity occurs when either adjacent front or adjacent back

cross-aisle keeping movements horizontally connect among themselves to sat-

isfy the degree constraints but remain disconnected from the remainder of the

tour. Such a disconnected closed walk can be seen in Figure 3.7.

(iii) Diagonal disconnectivity occurs when both a front and a back cross-aisle move-

ment are missing, and thus one can draw a diagonal line which does not cut any

intra-aisle or cross-aisle movements. An example of such a disconnectivity is

given in Figure 3.8.

As we define when and how the disconnectivities occur, we now begin formulation of

disconnectivity elimination constraints starting with Constraint (3.7), which prevents

the vertical disconnectivity by stipulating that each picking aisle must be connected

to the next aisle through the back and/or front cross-aisle no matter what the state of
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Figure 3.7: Disconnected closed walks resulting due to horizontal disconnectivities

the tour is.

x1i1 + x0i0 + 2zi1 + 2zi0 ≥ 2 ∀i ∈M \ {|M |} (3.7)

Since disconnectivities occur when the state of the tour is 0 and only z-type cross-

aisle movements can occur at this state, the remaining disconnectivity constraints are

formulated using only z-type decision variables. Moreover, the last part of the right

hand side of the disconnectivity constraints ensures that the following constraints are

binding as long as the state of the picker is 0. In this regard, Constraints (3.8) to (3.9)

eliminate possible horizontal disconnectivities on the back cross-aisle.

z(i−1)1 + zi1 ≥ yi2 + yi4 − |M |
i∑

p=1

(yp0 − yp1) ∀i ∈M (3.8)

u
(
z(i−1)1 + z(i+u)1

)
≥

u−1∑
p=0

z(i+p)1 − |M |
u+1∑
q=0

( i−1+q∑
p=1

(yp0 − yp1)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(3.9)

Constraint (3.8) eliminates the one-aisle disconnected closed walks formed by a back

cross-aisle keeping movement (e.g., aisles 4, 5 and 6 in Figure 3.6). Constraint (3.9)

eliminates the multi-aisle disconnected closed walks formed by z-type cross-aisle

movements. Such disconnectivities contain at least one and at most |M | − 1 adjacent

z-type cross-aisle movements as exemplified in Figure 3.7. The number of adjacent
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Figure 3.8: Disconnected closed walks resulting due to diagonal disconnectivities

z-type cross-aisles in a disconnected closed walk is represented by the parameter u.

Here, the constraint firstly checks if the state is 0 throughout from aisle i to i+u. If so,

it means that u adjacent z-type cross-aisles may form a disconnected closed walk. To

prevent this, Constraint (3.9) forces either a back z-type cross-aisle movement before

aisle i and/or a back z-type cross-aisle movement after aisle i + u. For example,

Constraint (3.9) with i = 4 and u = 2 eliminates the disconnectivity depicted in

Figure 3.7. Here, the constraint firstly checks if the state is 0 throughout from aisle 4

to 6. Since the state is 0 and there are 2 adjacent back z-type cross-aisle movements,

it forces either z31 and/or z61 to exist.

In the same manner, Constraints (3.10) and (3.11) eliminate the horizontal disconnec-

tivities possible on the front cross-aisle.

z(i−1)0 + zi0 ≥ yi3 + yi4 − |M |
i∑

p=1

(yp0 − yp1) ∀i ∈M (3.10)

u
(
z(i−1)0 + z(i+u)0

)
≥

u−1∑
p=0

z(i+p)0 − |M |
u+1∑
q=0

( i−1+q∑
p=1

(yp0 − yp1)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(3.11)

Diagonal disconnectivities are prevented in a similar fashion by applying Constraints
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(3.12) and (3.13).

z(i−1)1 + z(i+u)0 ≥ 1− |M |
u+1∑
q=0

( i−1+q∑
p=1

(yp0 − yp1)
)

u ∈ {0, . . . , |M | − 5},

i ∈ {3, . . . , |M | − u− 2}

(3.12)

z(i−1)0 + z(i+u)1 ≥ 1− |M |
u+1∑
q=0

( i−1+q∑
p=1

(yp0 − yp1)
)

u ∈ {0, . . . , |M | − 5},

i ∈ {3, . . . , |M | − u− 2}

(3.13)

Constraints (3.12) and (3.13) firstly check if the state is 0 throughout from aisle i to

i + u using the right hand side of the equations. If so, Constraint (3.12) forces either

a back z-type cross-aisle movement before aisle i and/or a front z-type cross-aisle

movement after aisle i + u. At the same time, Constraint (3.13) forces either a front

z-type cross-aisle movement before aisle i and/or a back z-type cross-aisle movement

after aisle i + u. For example, in Figure 3.8, Constraint (3.12) with i = 5 and u = 1

is violated since neither z41 nor z60 exists in the solution.

We also observe that, in the first and last picking aisles, diagonal disconnectivity

cannot occur because it requires at least one couple of type (0) and type (1) intra-aisle

movements, otherwise it would be a horizontal disconnectivity. Hence, the above

constraints do not include the first and last picking-aisles.

Since they increase the problem size significantly, but are only required when the state

is 0, we implement Constraints (3.9), (3.11), (3.12) and (3.13) as lazy constraints.

Lazy constraints are the constraints that solvers do not initially put into the problem

being solved. Only the ones that are violated are included into the problem. Lazy

constraints are considered to be significantly useful when (1) the lazy constraints are

out of the problem, the most of the instances would still be solved to optimality and

also even when they are violated only a small portion of instances are violated, (2)

the lazy constraints are out of the problem the computing time would significantly

improved since there are too many lazy constraints. For a detailed review of lazy

constraints, the reader is referred to Pearce (2019).
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Lazy constraint approach is especially important for the computing time performances

of our models. This is because of the fact that disconnectivities occur when the state

is 0 and the disconnectivity elimination constraints are the most time consuming con-

straints. For this end, we can formulate these constraints as lazy constraints since,

most of the time these constraints will not be required for the optimal OPP tour. In

the computational experiment section we will show how significantly the performance

of our models are increased with the use of disconnectivity elimination constraints as

lazy constraints.

Constraint (3.14) includes the depot into the tour, which is at the very left front corner,

without loss of generality. This can be updated in the same manner for different depot

locations.

z10 + x010 = 1 (3.14)

The remaining constraints define the domains of the decision variables.

x10k, x1|M |k, x00k, x0|M |k, z0k, z|M |k = 0 ∀k ∈ C (3.15)

yij ∈ {0, 1} ∀i ∈M, j ∈ R, (3.16)

x1ik, x0ik, zik ∈ {0, 1} ∀i ∈M ′, k ∈ C (3.17)

Finally, we present the objective function which minimizes the total time travelled

to complete the order picking tour. The first part gives the total travel time of intra-

aisle movements, and the remaining part gives the total travel time of cross-aisle

movements.

min
∑
j∈R

∑
i∈M

cijyij + h
∑
k∈C

∑
i∈M

(x1ik + x0ik + 2zik) (3.18)

Objective function (3.18), subject to Constraints (3.1)- (3.17), defines a complete

binary integer programming formulation for the single-block OPP. To increase the

efficiency of the formulation, we propose a set of valid inequalities in Section 3.3.1.

3.3.1 Valid Inequalities for the Single-Block OPP in Parallel-Aisle Warehouse

Layouts

Although the proposed formulation is sufficient to constitute a complete binary inte-

ger programming model for the OPP, one can significantly increase the efficiency of

46



computing time performance through valid inequalities by taking advantage of (i) the

special properties of the parallel-aisle warehouse layout, (ii) the sequential relation

between the odd-degree movements, and (iii) the starting and ending aisles of the

states of the blocks. Such valid inequalities are presented as follows.

x1i0, x0i1 = 0 ∀i ∈M ′ (3.19)

yi5 ≥ 1−
5∑

j=2

cij ∀i ∈M (3.20)

zi0 + yi0 ≤ 1 ∀i ∈M \ {|M |} (3.21)

zi1 + yi0 ≤ 1 ∀i ∈M \ {|M |} (3.22)

x0i0 + yi1 ≤ 1 ∀i ∈M \ {|M |} (3.23)

x1i1 + yi1 ≤ 1 ∀i ∈M \ {|M |} (3.24)

z(i−1)0 + yi1 ≤ 1 ∀i ∈M \ {1} (3.25)

z(i−1)1 + yi1 ≤ 1 ∀i ∈M \ {1} (3.26)

x0(i−1)0 + yi0 ≤ 1 ∀i ∈M \ {1} (3.27)

x1(i−1)1 + yi0 ≤ 1 ∀i ∈M \ {1} (3.28)

x0i0 + zi1 ≤ 1 ∀i ∈M \ {|M |} (3.29)

x1i1 + zi0 ≤ 1 ∀i ∈M \ {|M |} (3.30)

x0i0 = x1i1 ∀i ∈M \ {|M |} (3.31)

(|M | − 2)
∑
i∈M

yi0 ≥
∑
i∈M

(yi2 + yi4) (3.32)

Constraint (3.19) forces one-way cross-aisle movements, since x1-type cross-aisle

movement only occurs at the back and x0-type cross-aisle movement only occurs at

the front cross-aisles. Constraint (3.20) ensures that no intra-aisle movement other

than a type (5) movement can occur in an empty aisle.

Constraints (3.21) through (3.28) regulate the occurrence of cross-aisle movements

when they are adjacent to cross-aisle shifting intra-aisle movements. In this regard,

Constraints (3.21) and (3.22) prevent the simultaneous occurrences of both a type (0)

intra-aisle movement and a z-type cross-aisle movement for an aisle as the state would

change to 1 with a type (0) intra-aisle movement. In the same manner, Constraints

(3.23) and (3.24) prevent the simultaneous occurrences of both a type (1) intra-aisle

movement and an x-type cross-aisle movement for an aisle as the state would change
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to 0 with a type (1) intra-aisle movement. Moreover, Constraints (3.25) and (3.26)

prevent the simultaneous occurrences of both a type (1) intra-aisle movement for aisle

i and a z-type cross-aisle movement for aisle i − 1 as both cannot occur at the same

time. Similarly, Constraints (3.27) and (3.28) prevent the simultaneous occurrences

of both a type (0) intra-aisle movement for aisle i and an x-type cross-aisle movement

for aisle i− 1, which is not possible in an order picking tour.

Constraints (3.29) and (3.30) limit occurrences of the number of cross-aisle move-

ments corresponding to a specific aisle as an x-type cross-aisle movement cannot

occur with a z-type cross-aisle movement at the same time. Constraint (3.31) ensures

the simultaneous occurrences of two x-type cross-aisle movements as one occurs, the

other naturally occurs. Finally, Constraint (3.32) ensures that the back cross-aisle

movements can only occur if a type (0) intra-aisle movement is occurred, i.e., the

picker should visit the back cross-aisle at least once.

3.4 Computational Experiments

In this section, we present the computational experiments conducted on various in-

stance sets which are generated in line with those in the literature (Scholz et al. 2016).

All instances assume uniform demand, in that the pick locations are assumed to be

distributed independently and uniformly over the order picking area. We firstly anal-

yse the computing time performance of the single-block model and compare it with

the mathematical models studied in the single-block OPP literature on the instance

set generated in line with Scholz et al. (2016). This analysis also assesses the num-

ber of constraints/variables as well as our LP relaxation integrality gaps. Note that,

henceforth, we refer to our basic single-block model as SCS and the model where lazy

constraints are applied as SCS+. We implement the models using CPLEX 20.1.0.0

in AMPL modelling language on a personal computer with AMD Ryzen 7 4.2 GHz

processor and 8 GB dedicated RAM.

First, we compare the computing time performance of our single-block formulation

with the state-of-the-art formulations in the literature. The instance set for single-

block OPP is generated in line with Scholz et al. (2016) where the number of picking

aisles is set as M ∈ {5, 10, 15, 20, 25, 30}, the aisle-length is set to 46 time units,
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Table 3.1: Comparison of computing times (in seconds) on Scholz et al. (2016)’s

instances

Aisles Items LNT SHSW PCC GS SCS SCS+

5 30 2.84 0.09 0.03 0.02 0.03 0.02

5 45 8.71 0.09 0.05 0.02 0.03 0.02

5 60 25.66 0.09 0.08 0.02 0.04 0.03

5 75 63.22 0.09 0.08 0.02 0.03 0.03

5 90 146.31 0.10 0.08 0.03 0.03 0.03

10 30 4.57 1.60 0.05 0.03 0.04 0.03

10 45 14.66 1.03 0.09 0.03 0.04 0.03

10 60 37.09 1.42 0.13 0.02 0.04 0.03

10 75 156.22 1.36 0.09 0.02 0.04 0.03

10 90 303.68 0.62 0.09 0.02 0.04 0.03

15 30 7.45 2.29 0.06 0.04 0.08 0.04

15 45 24.85 5.28 0.11 0.04 0.08 0.05

15 60 90.30 10.64 0.12 0.05 0.08 0.05

15 75 357.27 15.10 0.13 0.04 0.08 0.04

15 90 811.61 19.41 0.40 0.05 0.08 0.04

20 30 9.47 10.57 0.09 0.06 0.12 0.06

20 45 41.30 27.32 0.09 0.07 0.14 0.07

20 60 147.52 114.33 0.26 0.06 0.15 0.07

20 75 614.11 216.63 0.24 0.07 0.16 0.07

20 90 1627.68 485.71 0.82 0.09 0.16 0.07

25 30 15.07 54.46 0.10 0.05 0.21 0.07

25 45 41.55 85.46 0.22 0.06 0.26 0.09

25 60 173.87 258.92 0.37 0.08 0.30 0.10

25 75 858.44 527.39 0.58 0.09 0.31 0.11

25 90 1764.21 646.59 1.10 0.09 0.32 0.11

30 30 14.00 204.18 0.08 0.06 0.33 0.08

30 45 43.01 406.19 0.19 0.08 0.45 0.11

30 60 293.87 508.80 0.54 0.10 0.54 0.13

30 75 1102.47 638.89 0.72 0.11 0.61 0.14

30 90 1800.00 786.29 1.63 0.15 0.62 0.15

Average 353.37 167.70 0.29 0.06 0.18 0.06

Variable Size O(|N |2|M |) O(|M |) O(|M |) O(|N ||M |) O(|M |) O(|M |)
Constraint Size O(|N |2|M |) O(|M |) O(|M |) O(|N ||M |) O(|M |2) O(|M |2)
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and the number of pick locations is set as N ∈ {30, 45, 60, 75, 90}. Table 3.1 depicts

the average computing times and sizes of the Steiner TSP formulation given by LNT

(Letchford et al. 2013), the TSP-based formulations, SHSW (Scholz et al. 2016) and

PCC (Pansart et al. 2018), the formulation of GS (Goeke & Schneider 2021) and our

formulations, SCS ad SCS+ for the single-block OPP. As the instances for these stud-

ies are not publicly available, we generate 2000 instances for each of the 30 classes

of settings for SCS and SCS+, and compare it with the results of LNT, SHSW, PCC

and GS which are the results of 30, 30, 10 and 10 instances per setting, respectively.

From Table 3.1 we firstly observe that both SCS and SCS+ significantly outperform

the Steiner TSP formulation proposed by Letchford et al. (2013), and the formulation

of Scholz et al. (2016). The proposed formulation also outperforms that of Pansart

et al. (2018) especially when the ratio of the number of pick locations to the number of

aisles gets larger. Furthermore, significant contribution of the use of lazy constraints

can be observed more clearly as there is an increasing performance of SCS+ compared

to SCS especially with a larger number of items and aisles. More importantly, the

performance of SCS+ is comparable to that of Goeke & Schneider (2021) as both

approaches have an average computing time of 0.06 seconds.

The single-block OPP comparison and the significant contribution of the use of lazy

constraints can be observed more clearly in Figure 3.9. Here, one can also observe

that computing times required for the solution of SCS increase with an increase in

the number of pick locations, even though the size of the model is not dependent on

the number of pick locations. This discrepancy is more significant for the results of

Scholz et al. (2016) and Pansart et al. (2018). As Scholz et al. (2016) also point out,

this seems largely due to the fact that a large number of pick locations results in many

good solutions, hence it becomes more time-consuming to prove optimality.

Although the need for disconnectivity elimination constraint increases polynomially

with the increase in the number of picking aisles these constraints are applied as

lazy constraints and also there is a trade off such that the number of constraints in-

crease while the lower bound obtained by solving the LP relaxation gets stronger.

Figure 3.10 depicts the size of the formulations in terms of the number of variables

and the number of constraints. The Y-axis represents the relative sizes (in terms of
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Figure 3.10: Comparison of model size with Scholz et al. (2016)

variables and constraints) of Scholz et al. (2016) and our formulations. In Figure

3.10, we observe that the formulation of Scholz et al. (2016) has O(|M |) variables

and O(|M |) constraints while our formulation has O(|M |) variables and O(|M |2)
constraints. Moreover in Table 3.1 we observe that the SCS and SCS+ formulations

both involve O(|M |) decision variables, as do SHSW and PCC. The formulation by

GS, on the other hand, includes O(|N ||M |) variables and hence also depends on the

number of items. This dependency on the number of pick locations is due to the fact

that GS keeps a more general formulation than the assumptions made by Ratliff &

Rosenthal (1983). SCS and SCS+ require O(|M |2) constraints, which is higher than

that of SHSW, PCC and GS when |M | > |N |. However, the use of lazy constraints

implies that the actual number of constraints is much fewer in our formulation than

the worst-case.

On the other hand, relatively good performance of SCS is not only correlated with

its compact size but also with its tight lower bounds obtained from its linear relax-

ation solutions. For this end, we evaluate the performance of the proposed model in

terms of percentage integrality gap, which is the difference between the lower bound

given by the LP relaxation solution and the value of the true binary integer optimum,
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Figure 3.11: Percentage integrality gaps for SCS formulation

expressed as a percentage of the latter:

zopt − zLP
zopt

,

where zLP denotes the LP relaxation solution and zopt refers to the optimal OPP time.

Figure 3.11 depicts the percentage integrality gaps of our formulation for Scholz et al.

(2016) instances. This reveals how effective the disconnectivity elimination con-

straints are in reducing the integrality gap. We first observe that when the number

of aisles is 5, the integrality gap is relatively large and increases significantly with

the number of pick locations. This is due to the fact that there is only a single dis-

connectivity elimination constraint in effect (for i = 3 and u = 0). However, for

larger numbers of aisles (and therefore more realistic warehouse layouts), disconnec-

tivity elimination constraints, which polynomially increase with the number of aisles,

reduce this gap considerably. Moreover we also observe a reduction below 1% in

the gap with the increase in the number of pick locations as more disconnectivity

elimination constraints are in effect.

3.5 Concluding Remarks

This chapter presents a compact arc routing-based formulation for the single-block

OPP in parallel-aisle warehouses, taking into account the graph structure of the ware-
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house and the properties of a feasible order picking tour. Our approach is important

in the sense that it is an arc routing-based formulation making use of specifics of

the graph structure corresponding to the warehouse layout. Since it is also a com-

pact formulation, it can be a base picker routing model for more complex integrated

operational warehouse problems or OPPs with multiple blocks or multiple pickers.

Our computational experiments show that the performance of the proposed formula-

tion for single-block layout outperforms all TSP-based formulations while it is com-

parable to that of Goeke & Schneider (2021). Other noteworthy findings obtained

from our computational experiments include: (i) although the number of constraints

is in quadratic order of the number of aisles, applying the multi-aisle disconnectivity

elimination constraints as lazy constraints keeps the constraint size linear for the most

of the instances and also significantly decreases the actual number of constraints and

the computing times, (ii) the integrality gap of the LP relaxation is particularly lower

as the size of the instance increases, due to an increase in the number of disconnec-

tivity elimination constraints, and (iii) the computing times are significantly shorter

as the ratio of the number of pick locations to the number of aisles is larger.
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CHAPTER 4

EXTENSION OF THE SINGLE-BLOCK PICKER ROUTING

FORMULATION TO THE CASE OF TWO-BLOCK LAYOUTS

4.1 Introduction

It is noteworthy that our proposed mathematical model for the single-picker OPP can

be extended for different variants of the OPP, where each of these variations could

yield a significant contribution to the OPP literature. In general, the OPP is defined as

the problem of collecting the items on a given pick list in the minimum-time picking

tour. From an arc routing perspective, the OPP is the problem of clearing all picking

aisles in the minimum-time while assuring a strongly connected closed order picking

walk. In this chapter, we aim to extend the arc routing-based single-picker formula-

tion to two-block warehouse layouts. Following the model building phase, we analyze

the performance of the model in terms of computing time. Our computational experi-

ments show that our formulation performs better than any alternatives in the literature

for the case of two block parallel-aisle warehouses. Finally, for parallel-aisle ware-

houses with more than two blocks, we propose a simple and effective heuristic, which

has an increasing performance with more blocks and larger size of aisle lengths.

Two-block OPP is of concern since having middle cross-aisles further shortens the

unnecessary travel time in order picking. In the previous study we have focused on a

warehouse with parallel picking aisles that are perpendicular to the two cross-aisles

at both ends of the picking aisles. We, again, consider an OPP in a parallel-aisle

warehouse layout in this chapter, but it also includes a middle cross-aisle, which

perpendicularly divides the warehouse into blocks, and thereby divide the aisles into

picking sub-aisles. Order pickers can change aisles at the ends of every picking aisle

or at the middle cross-aisle halfway along the picking aisles. An example for such a
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Figure 4.1: A two-block warehouse with 8 picking aisles and 15 items to be picked.

layout is given in Figure 4.1, which consists of narrow picking aisles parallel to one

another.

The remainder of this chapter is organised as follows. Section 4.2 describes the OPP

in two-block layouts. In Section 4.3, we discuss the properties and arc routing-based

observations regarding two-block parallel-aisle warehouse layout and present an ex-

tended formulation for the OPP when a middle cross-aisle exists. In the Section 4.4,

we present a heuristic for layouts with multiple blocks. Computational experiments

and the performance of the approaches are tested in Section 4.5, and the chapter is

concluded in Section 4.6.

4.2 Problem Description

Figure 4.2 shows the graph representations of the OPP instances in Figure 4.1, where

v0 refers to the depot, vi, i ≥ 1 denote the pick locations and vertices aj and bj

represent the intersection points between the back/front cross-aisle and the picking

sub-aisle j, respectively. Vertex mj1 represents the intersection point of picking-aisle

j and the middle cross-aisle. In line with the literature, we assume narrow picking

sub-aisles so that a picker spends negligible time when making horizontal movements

within a picking sub-aisle. The middle cross-aisle is the back cross-aisle of the first
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Figure 4.2: The graph representations of Figure 4.1.

block and the front cross-aisle for the second block. In general, a picker starts the

picking tour from the depot, collects all the items in the pick list and returns to the

depot. Without loss of generality, the depot is assumed to be at the left corner of the

front cross-aisle.

Single-picker OPP with two blocks have been studied in the literature since it has been

acknowledged as a steppingstone for the multi-block layout studies. The solution

approaches in the related literature includes algorithms (Roodbergen & De Koster

2001b, Jang & Sun 2012, Masae et al. 2020b) or TSP-based formulations (Ruberg

& Scholz 2016, Scholz 2016, Pansart et al. 2018, Su et al. 2022). Although very

efficient for single-block layouts, the formulation proposed by Goeke & Schneider

(2021), which is different than the TSP-based formulations and directly exploiting

the properties in Ratliff & Rosenthal (1983), is not practically extensible to multiple

blocks.

Unlike the studies in the relevant literature, this chapter extends the mathematical

model for the single-block OPP especially by focusing on the disconnectivity elimi-

nation constraints which extended to the case of two-blocks in a relatively straight-
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forward manner. We consider how such an extension is possible for two blocks in

this chapter. This work is also important in the sense that it paves the way for an

arc-routing based multi-block OPP formulation by induction on the construction of

disconnectivity elimination constraints. Our computational results show that our for-

mulation produces results that outperforms the best-known approaches for the two-

block OPP to date (e.g., Pansart et al. 2018, Su et al. 2022).

4.3 A Binary Integer Programming Formulation for the Two-Block OPP

This section extends the binary integer programming formulation in the preceding

chapter to the two-block OPP. We first discuss how the index sets and parameters are

modified to incorporate the existence of multiple blocks in the formulation. Follow-

ing this, we present the additional changes in cross-aisle movements in the existence

of multiple blocks, and provide the modified assignment, sequencing and degree con-

straints, which are straightforward extensions of their counterparts in the single-block

model. The main difference of the two-block model arises from the disconnectivity

elimination constraints. We provide a detailed discussion of how such disconnectivi-

ties occur and present the constraints to eliminate them.

In this regard, we define the new index set B = {0, 1} as the set for the blocks, thus

the resulting set for the cross-aisles is updated as C = {0, 1, 2} referring to front,

middle and back cross-aisles, respectively. We define M as the set for the picking

sub-aisles for each block as in Chapter 3. Due to multiple blocks, we present cijb as

the unit time travelled to clear picking sub-aisle i ∈ M at block b ∈ B by making

intra-aisle movement j ∈ R.

The six possible intra-aisle movement types in Figure 3.3(a) still occur in the same

way for the two-block case. As in the single-block case, type (0) and type (1) intra-

aisle movements are classified as cross-aisle shifting movements, type (2) is further

classified as back cross-aisle keeping movement, type (3) is further classified front

cross-aisle keeping movement, type (4) and type (5) movements are further defined

as both back and front cross-aisle keeping movements. By also considering the block

index, we update the respective binary variable corresponding to these movements in

each block as follows.
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yijb =


1, if picker clears sub-aisle i ∈M by making intra-aisle movement j ∈ R

at block b ∈ B

0, otherwise

Additionally, we use the same cross-aisle movements as in Figure 3.3(b) and their

corresponding decision variables as in the single-block case as follows.

x1ik =


1, if picker makes an x1-type movement from aisle i ∈M ′

to i+ 1 ∈M ′ on cross-aisle k ∈ C

0, otherwise

x0ik =


1, if picker makes an x0-type movement to aisle i ∈M ′

from i+ 1 ∈M ′ on cross-aisle k ∈ C

0, otherwise

zik =


1, if picker makes a z-type movement from/to aisle i ∈M ′

on cross-aisle k ∈ C

0, otherwise

Next, we introduce Constraints (4.1)-(4.4) as straightforward extensions of the as-

signment and sequencing constraints in the single-block case.∑
j∈R

yijb = 1 ∀i ∈M, b ∈ B (4.1)

∑
i∈M

yi0b =
∑
i∈M

yi1b ∀b ∈ B (4.2)

i∑
p=1

yp0b ≥
i∑

p=1

yp1b ∀i ∈M, b ∈ B (4.3)

i∑
p=1

yp0b ≤ 1 +
i∑

p=1

yp1b ∀i ∈M, b ∈ B (4.4)

Constraint 4.1 ensures each sub-aisle is cleared by a movement type. Constraint 4.2

implies an equal number of type (0) and (1) intra-aisle movements at each block

to guarantee a return to the depot. Constraints 4.3 and 4.4 guarantee that type (0)
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Figure 4.3: Visual representation of possible odd-degree movements involving sub-

aisle i in a two-block layout

movement occurs before type (1) movement and cannot occur again before type (1)

movement for each block.

This group of constraints ensure the assignment of a movement to each sub-aisle and

the sequential relation between the movements. Applying only these sets of con-

straints would lead to non-even degree parity for the vertices connected with cross-

aisle shifting movements and sub-tours for the vertices connected with cross-aisle

keeping movements.

The definition odd-degree movements also applies in two-block case for type (0) and

type (1) intra-aisle movements as well as x1 and x0-type cross-aisle movements. For

the two-block layouts, it is still valid that x1-type cross-aisle movement only occurs

at the back cross-aisle and x0-type cross-aisle movement only occurs at the front

cross-aisle. Additionally, at the middle cross-aisles, the occurrence of one of these

two odd-degree cross-aisle movements is possible. In this respect, the possible odd-

degree movements involving an aisle in two-block layouts would be as in Figure 4.3.

Addition of degree constraints (4.5)-(4.7) prevents the occurrence of odd-degree ver-

tices on the front, middle and back cross-aisles, respectively, by ensuring equal num-
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ber of incoming and outgoing odd-degree movements shown in Figure 4.3.

x0(i−1)0 + yi01 = x0i0 + yi11 ∀i ∈M, (4.5)

x1(i−1)1 + x0i1 + yi01 + yi12 = x0(i−1)1 + x1i1 + yi11 + yi02 ∀i ∈M (4.6)

x1(i−1)2 + yi02 = x1i2 + yi12 ∀i ∈M (4.7)

Addition of degree constraints prevents the odd-degree vertices however subtours

could still occur due to disconnected closed walks.

We also note that definitions of horizontal, vertical and diagonal disconnectivities

hold for the case of two-blocks as well. Constraint (4.8) prevents the vertical dis-

connectivity in the same manner as in the single-block case by ensuring that each

picking aisle must be connected to the next aisle through back, middle and/or front

cross-aisle. ∑
k∈C

(x1ik + x0ik + 2zik) ≥ 2 ∀i ∈M \ {|M |} (4.8)

For two-block layouts, we define the state of the tour for each block separately, further

referred to as state of the block. When the picker is on the front cross-aisle, the state

of both first and second blocks are 0 as the number of cross-aisle shifting movements

are equal. When the picker is on the middle cross-aisle, the state of the tour is 1 for

the first block but it is still 0 for the second block since the middle cross-aisle is the

front cross-aisle of the second block. In the same manner, when the picker is on the

back cross-aisle, the state of tour is 1 for both first and second blocks.

From our observations for the single-block layouts, horizontal and diagonal discon-

nectivities may only occur when the state is 0. This also applies for the two-block

case. In this sense, no horizontal and diagonal disconnectivity constraints would be

required if the states of both blocks are 1. For example, when the picker is on the

middle cross-aisle, such a disconnectivity is only possible at the second block since

only its state is 0. This is also still valid for two-block layouts that only z-type cross-

aisle movement can occur when the state of the block is 0 to maintain the degrees of

vertices to be even on an ongoing OPP tour until the state of the corresponding block

changes to 1.

In this regard, constraints (4.9) to (4.12) are the straightforward extensions of single-
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block horizontal disconnectivty elimination constraints (3.8)-(3.11).

z(i−1)2 + zi2 ≥ yi22 + yi42 − |M |
i∑

p=1

(yp02 − yp12) ∀i ∈M (4.9)

u
(
z(i−1)2 + z(i+u)2

)
≥

u−1∑
p=0

z(i+p)2 − |M |
1∑

q=0

( i−1+q∑
p=1

(yp02 − yp12)
)

u ∈ {1, . . . , |M | − 1},

i ∈ {1, . . . , |M | − u}

(4.10)

z(i−1)0 + zi0 ≥ yi31 + yi41 − |M |
i∑

p=1

(yp01 − yp11) ∀i ∈M (4.11)

u
(
z(i−1)0 + z(i+u)0

)
≥

u−1∑
p=0

z(i+p)0 − |M |
u+1∑
q=0

( i−1+q∑
p=1

(yp01 − yp11)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.12)

Constraint (4.9) eliminates the one-aisle disconnected closed walks formed by a back

cross-aisle keeping movement. Constraint (4.10) eliminates the multi-aisle discon-

nected closed walks formed by z-type cross-aisle movements. In the same manner,

Constraints (4.11) and (4.12) eliminate the horizontal one-aisle and multi-aisle dis-

connectivities possible on the front cross-aisle exemplified in Figure 3.7.

Additionally, a horizontal disconnectivity may occur not only by cutting through a

picking sub-aisle as in the single-block case, but it can also cover a whole picking

sub-aisle for the two-block case as exemplified in Figure 4.4. Constraints (4.13) and

(4.14) eliminate such disconnectivities covering the picking sub-aisles entirely.

2u
2∑

k=1

(x1(i−1)k + x1(i+u)k + x0(i−1)k + x0(i+u)k + z(i−1)k + z(i+u)k)

≥ yi02 + y(i+u)12 − |M |
u−1∑
p=0

(1− z(i+p)0)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.13)
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Figure 4.4: A horizontal disconnectivity covering a whole picking sub-aisle

2u
1∑

k=0

(x1(i−1)k + x1(i+u)k + x0(i−1)k + x0(i+u)k + z(i−1)k + z(i+u)k)

≥ yi01 + y(i+u)11 − |M |
u−1∑
p=0

(1− z(i+p)2)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.14)

With Constraints (4.13) and (4.14), the connection to the remainder of the tour is

ensured not only through a z-type cross-aisle movement both also using both x1 and

x0-type cross-aisle movements. This is because of the fact that such a disconnected

closed walk covering the entire block can be connected to the remainder of the tour

not only through front and/or back z-type movements but also through front and back

x0 and x1-type movements related to the corresponding block.

In single block layouts, diagonal disconnectivities occur when there is an absence

on both front and back cross-aisle movements while the state of the tour is 0. In

the two-block layout case, the middle cross-aisle should also be absent to observe

a diagonal disconnecitivity. As in the single-block case, diagonal disconnectivities

do not occur in the first and last picking sub-aisles. As a result, we can infer that
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the simultaneous absence of the front, middle and back cross-aisle movements can

take place in (|M | − 3)|C| different ways where |C| = 3 in a two-block layout. As

an example, Figure 4.5 shows all possible diagonal disconnectivity occurrences for

a six-aisle two-block warehouse. Fortunately, they occur only when the state of the

blocks are 0, and thus can be modeled as lazy constraints, so they do not result in

substantial computational challenges.

The diagonal disconnectivities may only occur when the states of both blocks are

0. Constraints (4.15) through (4.22) eliminate diagonal disconnectivities. To bet-

ter explain these diagonal disconnectivity elimination constraints, we decompose the

constraints according to the starting and ending blocks of these states.

Assume that the state of the second block is 0 and the state of the first block is turned

to 0 at aisle i.

(i) While the state of the first block is 0, the state of the second block cannot turn

to 1 at aisle i + u unless there is a z-type middle cross-aisle connection, which

includes u adjacent z-type cross-aisle movements between these aisles. Con-

straint (4.15) ensures such connectivity.

1 + (
1

u
)
u−1∑
p=0

(z(i+p)1) ≥ yi11 + y(i+u)02

−|M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
) u ∈ {1, . . . , |M | − 1},

i ∈ {1, . . . , |M | − u}

(4.15)

(ii) While the state of the second block is 0, the state of the first block cannot turn to

1 at aisle i+u unless there is a z-type front and/or middle cross-aisle connection.

This is ensured by Constraint (4.16).

1 + (
1

u
)
u−1∑
p=0

(z(i+p)0 + z(i+p)1) ≥ yi11 + y(i+u)01

−|M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
) u ∈ {1, . . . , |M | − 1},

i ∈ {1, . . . , |M | − u}

(4.16)

Assume that the state of the first block is 0 and the state of the second block is turned

to 0 at aisle i.
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(i) While the state of the first block is 0, the state of the second block cannot turn to

1 at aisle i+u unless there is a z-type middle and/or back cross-aisle connection,

which includes u adjacent z-type cross-aisle movements between these aisles.

This is stipulated by Constraint (4.17).

1 + (
1

u
)
u−1∑
p=0

(z(i+p)2 + z(i+p)1) ≥ yi12 + y(i+u)02

−|M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
) u ∈ {1, . . . , |M | − 1},

i ∈ {1, . . . , |M | − u}

(4.17)

(ii) While the state of the second block is 0, the state of the first block cannot turn to

1 at aisle i+u unless there is a z-type middle cross-aisle connection. Constraint

(4.18) ensures such connectivity,

1 + (
1

u
)
u−1∑
p=0

(z(i+p)1) ≥ yi12 + y(i+u)01

−|M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
) u ∈ {1, . . . , |M | − 1},

i ∈ {1, . . . , |M | − u}

(4.18)

Finally, the uninterrupted continuity of u adjacent z-type cross-aisle movements, as

long as the state of the blocks are 0, is ensured by Constraint (4.19) for the front cross-

aisle, by Constraint (4.20) and (4.21) for the middle cross-aisle and by Constraint

(4.22) for the back cross-aisle.

2 + z(i+u−1)0 ≥ z(i)0 + yi11 + y(i+u)01 − |M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.19)

2 + z(i+u−1)1 ≥ z(i)1 + yi11 + y(i+u)01 − |M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.20)
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Figure 4.6: One-aisle and multi-aisle inner disconnectivities

2 + z(i+u−1)1 ≥ z(i)1 + yi12 + y(i+u)02 − |M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.21)

2 + z(i+u−1)2 ≥ z(i)2 + yi12 + y(i+u)02 − |M |
u−1∑
q=0

( i+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.22)

Apart from the disconnectivities defined above, there exists an additional type of dis-

connectivity, referred to as the inner disconnectivity where a closed walk can oc-

cur on the intersection points between the middle cross-aisle and the picking aisle

i ∈M \ {1, |M |} isolated from the remainder of the tour as shown in Figure 4.6.

Unlike other disconnectivity types, inner disconnectivity occurs only when both blocks

are at the same state, i.e., the state of both blocks are 0 or 1. For example, Figure 4.6

shows the instances of inner disconnectivities while the states of both blocks are 1.

Constraints (4.23) through (4.26) prevent this occurence by forcing a middle z-type
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cross-aisle movement before aisle i and/or after aisle i+ u.

Constraints (4.23) and (4.24) eliminate the one-aisle inner disconnectivities formed

by cross-aisle keeping movements as exemplified in Figure 4.6 aisle 3. Constraint

(4.23) is binding when the state of both blocks are 0 while Constraint (4.24) is binding

(e.g., Figure 4.6) when the state of both blocks are 1.

2(z(i−1)1 + zi1) ≥ yi21 + yi41 + yi32 + yi42

−|M |
1∑

q=0

( i−1+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)
∀i ∈M

(4.23)

2(z(i−1)1 + zi1) ≥ yi21 + yi41 + yi32 + yi42

−|M |
1∑

q=0

(
2−

i−1+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)
∀i ∈M

(4.24)

Similarly, Constraints (4.25) and (4.26), binding when the state of both blocks are 0

or 1 respectively, eliminate the multi-aisle inner disconnectivities formed by z-type

cross-aisle movements as exemplified in aisles 6 and 7 in Figure 4.6.

u(z(i−1)1 + z(i+u)1) ≥
u−1∑
p=0

z(i+p)1 − |M |
u+1∑
q=0

( i−1+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.25)

u(z(i−1)1 + z(i+u)1) ≥
u−1∑
p=0

z(i+p)1 − |M |
u+1∑
q=0

(
2−

i−1+q∑
p=1

(yp01 + yp02 − yp11 − yp12)
)

u ∈ {1, . . . , |M | − 1}, i ∈ {1, . . . , |M | − u}

(4.26)

Constraint (4.27) includes the depot into the tour, while the remaining constraints

define the domains of the decision variables.

z10 + x010 = 1 (4.27)

x10k, x1|M |k, x00k, x0|M |k, z0k, z|M |k = 0 ∀k ∈ C (4.28)

yijb ∈ {0, 1} ∀i ∈M, j ∈ R, b ∈ B (4.29)

x1ik, x0ik, zik ∈ {0, 1} ∀i ∈M ′, k ∈ C (4.30)

The function (4.31), along with constraints (4.1)- (4.30), constitutes a complete binary

integer programming model for the two-block OPP, which minimizes the total time
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travelled to complete the order picking tour.

min
∑
b∈B

∑
j∈R

∑
i∈M

cijbyijb + h
∑
k∈C

∑
i∈M ′

(x1ik + x0ik + 2zik) (4.31)

The set of valid inequalities in Section 3.3.1 are also applicable to the two-block lay-

outs and significantly increase the efficiency of the formulation by taking advantage

of the special properties of parallel-aisle warehouse layout. Next, we present these

valid inequalities, which are enriched by some additional constraints and inclusion of

the block index. We note that these constraints can be implemented for single-block

warehouses by ignoring the block index.

4.3.1 Valid Inequalities for the Two-Block OPP in Parallel-Aisle Warehouse

Layouts

Although the SCS and SCS+ formulations are sufficient to constitute a complete bi-

nary integer programming model for the OPP, one can significantly increase the effi-

ciency of computing time performance through valid inequalities by taking advantage

of (i) the special properties of the parallel-aisle warehouse layout, (ii) the sequential

relation between the odd-degree movements, and (iii) the starting and ending aisles

of the states of the blocks. Such valid inequalities are presented as follows.

x1i0, x0i2 = 0 ∀i ∈M ′ (4.32)

yi52 ≥ 1−
5∑

j=2

cij2 ∀i ∈M (4.33)

zi0 ≤ 1−
i∑

p=1

(yp01 − yp11) ∀i ∈M \ {|M |} (4.34)

zi2 ≤ 1−
i∑

p=1

(yp02 − yp12) ∀i ∈M \ {|M |} (4.35)

x0i0 ≤
i∑

p=1

(yp01 − yp11) ∀i ∈M \ {|M |} (4.36)

x1i2 ≤
i∑

p=1

(yp02 − yp12) ∀i ∈M \ {|M |} (4.37)

zi0 + yi01 ≤ 1 ∀i ∈M \ {|M |} (4.38)

zi2 + yi02 ≤ 1 ∀i ∈M \ {|M |} (4.39)
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x0i0 + yi11 ≤ 1 ∀i ∈M \ {|M |} (4.40)

x1i2 + yi12 ≤ 1 ∀i ∈M \ {|M |} (4.41)

z(i−1)0 + yi11 ≤ 1 ∀i ∈M \ {1} (4.42)

z(i−1)2 + yi12 ≤ 1 ∀i ∈M \ {1} (4.43)

x0(i−1)0 + yi01 ≤ 1 ∀i ∈M \ {1} (4.44)

x1(i−1)2 + yi02 ≤ 1 ∀i ∈M \ {1} (4.45)

x0i1 + zi2 ≤ 1 ∀i ∈M \ {|M |} (4.46)

x1i1 + zi0 ≤ 1 ∀i ∈M \ {|M |} (4.47)
1∑

k=0

x0ik ≤ 1 ∀i ∈M \ {|M |} (4.48)

2∑
k=1

x1ik ≤ 1 ∀i ∈M \ {|M |} (4.49)

1∑
k=0

x0ik =
2∑

k=1

x1ik ∀i ∈M \ {|M |} (4.50)

1∑
k=0

x0ik +
2∑

k=0

zik ≤ 2 ∀i ∈M \ {|M |} (4.51)

2∑
k=1

x1ik +
2∑

k=0

zik ≤ 2 ∀i ∈M \ {|M |} (4.52)

x1ik + x0ik + zik ≤ 1 ∀i ∈M \ {|M |}, k ∈ C (4.53)

(|M | − 2)
∑
i∈M

yi0b ≥
∑
i∈M

(yi2b + yi4b) ∀b ∈ B (4.54)

Constraint (4.32) forces one-way cross-aisle movements, since x1-type cross-aisle

movement only occurs at the back and x0-type cross-aisle movement only occurs at

the front cross-aisles. Constraint (4.33) ensures that a type (5) intra-aisle movement

should occur on the back-most block if no pick location exists in the corresponding

aisle. This is only applicable for the back-most block as the picker has a possibility

to make a cross-aisle shifting travel on an empty picking aisle in the previous blocks

in order to reach to the back-most block. Constraints (4.34)-(4.37) arrange the cross-

aisles movement occurrences by checking the state of the blocks. For example, a

front cross-aisle z-type movement cannot occur during the state of the first block is

0, as ensured by Constraint (4.34).
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Constraints (4.38)-(4.45) regulate the occurrence of cross-aisle movements when they

are followed by cross-aisle shifting intra-aisle movements. In this regard, Constraints

(4.38) and (4.39) prevent the simultaneous occurrences of both a type (0) intra-aisle

movement and a z-type cross-aisle movement at an aisle as the state would change to

1 with a type (0) intra-aisle movement. In the same manner, Constraints (4.40) and

(4.41) prevent the simultaneous occurrences of both a type (1) intra-aisle movement

and an x-type cross-aisle movement at an aisle as the state would change to 0 with

a type (1) intra-aisle movement. Moreover, Constraints (4.42) and (4.43) prevent

the simultaneous occurrences of both a type (1) intra-aisle movement at aisle i and

a z-type cross-aisle movement at aisle i − 1 as both cannot occur at the same time.

Similarly, Constraints (4.44) and (4.45) prevent the simultaneous occurrences of both

a type (0) intra-aisle movement at aisle i and an x-type cross-aisle movement at aisle

i− 1, which is not possible in an order picking tour.

Constraints (4.46) and (4.53) limit occurrences of the number of cross-aisle move-

ments corresponding to a specific aisle. Constraint (4.46) ensures that both a middle

x0-type cross-aisle movement and a back z-type cross-aisle movement cannot occur

at the same time since a front x1-type cross-aisle movement is not possible. In the

same manner, Constraint (4.47) prevents the simultaneous occurrences of both a mid-

dle x1-type cross-aisle movement and a front z-type cross-aisle movement since a

back x0-type cross-aisle movement is not possible. Constraints (4.48) ensures that

at most one x0-type cross-aisle movement can occur at an aisle. Similarly, Con-

straints (4.49) ensures that at most one x1-type cross-aisle movement can occur at an

aisle. Constraint (4.50) ensures the simultaneous occurrences of two x-type cross-

aisle movements as one occurs, the other naturally occurs. Constraints (4.51) and

(4.52) limit the simultaneous occurrences of x and z types movements to at most two.

Constraints (4.53) states that only one of the cross-aisle movements can appear on a

cross-aisle. Finally, Constraint (4.54) ensures that the back cross-aisle movements of

a block can only occur if type (0) intra-aisle movement is occurred, i.e., the picker

should visit the back cross-aisle at least once.
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4.4 Z-Shape Heuristic: A Modified Largest Gap Picker Routing Algorithm for

the Multi-Block OPP

In this section we present a simple, easy to remember and effective picker routing

algorithm for routing heuristic for the OPP in parallel-aisle warehouses with multiple

block layouts, called the Z-shape heuristic, which is a modified version of the largest

gap picker routing heuristic.

The main motivation in this section is to present a heuristic by (i) decreasing the

unnecessary cross-aisle movements developed by the largest gap heuristics and (ii)

reducing the travel time in picking aisles with large aisle lengths where large gaps are

highly likely. This is not taken into account by the Combined+ heuristics proposed

by Roodbergen & De Koster (2001a). In largest gap heuristics, the picker travels each

cross-aisle almost twice. The contribution of this study is to avoid this duplication in

the cross-aisle movements while keep the picker routing still easy to remember. The

parallel aisle multi-block warehouse considered in this study is given in Figure 1.1.

It contains cross-aisles at front and back of the picking-aisles and contains middle

cross-aisles, which perpendicularly divide the warehouse into blocks, and thereby

divide the aisles into sub-aisles.

It a user-friendly cross-aisle-oriented algorithm. At each middle cross-aisle, the

picker follows the cross-aisle and collects the items in the upper and lower sub-aisles

according to largest gap routing policy by making the shortest cross-aisle keeping

movement from Figure 3.3(a). Only exceptions are the left-most and right-most filled

sub-aisles as the picker reaches to another block with a cross-aisle shifting movement.

What we aim to develop with our algorithm is exemplified in Figure 4.7(a). In this

regard we explain the steps of the algorithm as follows.

As in line with the literature, the depot is assumed to be at the left bottom corner. The

picker route starts by going all the way up to the back cross-aisle from the leftmost

filled picking sub-aisles by making the type (0) cross-aisle shifting movement. Af-

terwards, the back cross-aisle is travelled while the pick locations close to the back

cross-aisle is collected. The collection decision is given by comparing and choosing

the minimum of cross-aisle keeping movements. In this regard, at the beginning of the

algorithm, all the necessary intra-aisle movements are determined firstly by determin-
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Figure 4.7: (a) Z-shape heuristic solution and (b) the solution of largest gap heuristic

proposed by Roodbergen & De Koster (2001a)

ing the cross-aisle shifting movements to change blocks and secondly by determining

the minimum of cross-aisle keeping movements for the remaining picking sub-aisles

to conduct the picking activity.

After travelling the back cross-aisle and visiting the necessary pick locations, the

picker travels to the next cross-aisle by making type (0) cross-aisle shifting move-

ment. On this cross-aisle, the picker visits the necessary pick locations by visiting

both adjacent blocks to the corresponding cross-aisle by making cross-aisle keeping

movements. The picker keeps going at the same cross-aisle until the last filled pick-

ing sub-aisle and makes type (0) cross-aisle shifting movement to enter into the next

cross-aisle. In this manner, the picker reaches to the front cross-aisle and returns to

the depot by clearing the pick locations close to the front cross-aisle. A disadvantage

of this heuristic is that the picker makes a double-cross-aisle movement if the number

of blocks is even. It is to say that the picker travels the front or back cross-aisle twice

to continue with the Z-shape heuristics route.

By introducing this algorithm, we hypothesize that, for large size of aisle lengths and

large number of blocks, Z-Shape heuristics performs better than all simple heuris-

tics for all cases including the Combined+ heuristics, which is the most sophisticated

one among the simple-heuristic literature. This is firstly because of the fact that Z-
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shape heuristic cross-aisle movements are single per cross-aisle when compared to

the largest gap heuristic, which has double cross-aisle movements per cross-aisle (see

Figure 4.7 (b). Moreover we know from the literature that the largest gap heuristic

performs better than the remaining simple heuristics except the Combined+ heuris-

tic. Secondly, Combined+ heuristic never makes largest gap movements. Hence,

for the cases with large gaps between pick locations in an aisle, the performance of

Combined+ heuristic is expected to lag behind even largest gap heuristics. We espe-

cially expect good performance for the layouts with odd number of blocks as Z-Shape

heuristic makes single cross-aisle movements on each cross-aisle. So, we expect that

Z-Shape heuristic to outperform all its counterparts for the layouts with large number

of blocks and large size of aisle lengths. We recommend practitioners to apply this

algorithm for picker routing in parallel-warehouse layouts with large size aisles and

large number of blocks.

4.5 Computational Experiments

In this section, we present the computational experiments conducted on various in-

stance sets which are generated in line with those in the literature (Scholz 2016, Theys

et al. 2010, Roodbergen & De Koster 2001a). All instances assume uniform demand,

in that the pick locations are assumed to be distributed independently and uniformly

over the order picking area. Firstly, we present the computing time performance of

the single- and two-block formulations and compare them with the TSP formulation

by Miller et al. (1960) on randomly generated instance sets. Secondly, we compare

the computing time performance of the two-block formulation with the formulations

of Scholz et al. (2016) and Scholz (2016) on instance set generated in line with Scholz

(2016). Thirdly, we test the performance of the two-block formulation with the for-

mulations of Pansart et al. (2018) and Su et al. (2022) on the instance set generated

by Theys et al. (2010). Lastly, we compare the performance of our Z-Shape algo-

rithm with the ones in the literature as presented in Figure 2.2. We refer to our basic

single- and two-block models as SCS and the models where lazy constraints are ap-

plied as SCS+. We implement the models using CPLEX 20.1.0.0 in AMPL modelling

language on a personal computer with AMD Ryzen 7 4.2 GHz processor and 8 GB

dedicated RAM.

74



Table 4.1: Computing times (in seconds) of the solved instances within 60 seconds

(and the number of solved instances out of 50 instances) on newly generated instances

Aisles Items Single-Block Two-Block

TSP-MTZ SCS SCS+ TSP-MTZ SCS SCS+

10 10 0.33 (50/50) 0.07 0.02 0.27 (50/50) 0.13 0.06

10 20 10.87 (49/50) 0.07 0.03 11.16 (45/50) 0.15 0.10

10 30 43.03 (25/50) 0.07 0.03 23.47 (35/50) 0.19 0.12

20 10 0.53 (50/50) 0.10 0.03 0.56 (50/50) 0.58 0.15

20 20 22.74 (34/50) 0.10 0.04 18.87 (42/50) 1.10 0.23

20 30 53.65 (9/50) 0.12 0.07 36.71 (26/50) 1.72 0.30

30 10 0.48 (50/50) 0.14 0.03 0.41 (50/50) 1.96 0.18

30 20 41.80 (24/50) 0.23 0.05 29.84 (29/50) 4.55 0.45

30 30 59.08 (2/50) 0.32 0.08 43.23 (21/50) 10.20 0.81

In our first set of experiments, we compare the computing time performances of the

single- and two-block versions of SCS and SCS+ to each other, and as well as to those

of the TSP-MTZ. Here we generate instances with 10, 20 or 30 aisles and 10, 20 or 30

pick items for both single- and two-block warehouses. We set a time limit of 60 sec-

onds for the computing time comparison, as the OPP needs to be solved repetitively

in short intervals for each pick list. Table 4.1 shows the average computing times and

the number of solved instances within 60 seconds. We leave out the latter for SCS

and SCS+ as they solve all instances within the time limit. The results show that the

SCS+ formulation solves all instances for the single- and two-block warehouses to

optimality in less than a second on average.

Comparing our formulations to TSP-MTZ, the proposed single- and two-block for-

mulations outperform the corresponding TSP-MTZ formulations at all instances. TSP-

MTZ is unable to solve part of the instances when the pick list size exceeds 20. Com-

paring single- to two-block formulation, we note that there is an increasing differ-

ence between computing times with the increase in the number of aisles large due to

the need of more disconnectivity elimination constraints for the two-block layouts.

Nevertheless, the computing time of SCS+ for two-block layouts is still under 0.80
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seconds on average even for the largest set of instances. Comparing SCS+ to SCS,

we continue to note the significant contribution of the use of lazy constraints when

applied for the two-block layouts.

With our second set of experiments, we compare the computing time performances

of SCS+ for the two-block layout with the performance of the TSP-based formula-

tions, SHSW (Scholz et al. 2016) and S (Scholz 2016). For this end, we generate

two-block OPP instance sets in line with Scholz (2016) where we set the number of

picking aisles as 5, 10, 15, 20, 25 or 30, aisles, the picking sub-aisle-length as 26 time

units, and the number of pick items as 30, 45, 60, 75 or 90. This experiment is the

two-block version of the experiment in Chapter 3. In line with Scholz et al. (2016)

and Scholz (2016), we generate 30 instances for each setting. Table 4.2 presents the

average computing times and the number of solved instances of SHSW, S and SCS+

within a time limit of 30 minutes. We again leave out the number of solved instances

for SCS+ as they solve all instances within the time limit. SHSW is able to solve

all instances to optimality within the time limit for the setting with 5 and 10 aisles,

however the number of solved instances decreases quickly for the settings with 15

aisles and more. Formulation S performs relatively better and solves all instances to

optimality except part of those with 30 aisles. The results show that the performance

of SCS+ significantly outperforms TSP-based formulations, Scholz et al. (2016) and

Scholz (2016) as it solves even the largest set of instances to optimality in 2.21 sec-

onds on average. We also note that unlike the previous experiments, the computing

times only grows moderately as the number of pick locations increases. Moreover,

the computing times start decreasing as the ratio of the number of pick items to that

of aisles increases, particularly for the settings with 90 pick locations and less than

25 aisles.

Our third experiments compare the two-block formulation with those of Pansart et al.

(2018) and Su et al. (2022), denoted as PCC+ and SZ+ respectively, on the two-

block random instance settings in Theys et al. (2010). As in Pansart et al. (2018)

and Su et al. (2022), we generate instance sets with 5, 15 or 60 aisles; 15, 60 or

240 pick locations, 11 time units for the aisle length, and 10 instances in each set.

Although this settings are far from applicability, it can better compare the computing

time performance of the state-of-the-art formulations Table 4.3 depicts the average
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Table 4.2: Comparison of computing times (in seconds) and the proportions of solved

instances on Scholz (2016)’s two-block instances with 30-minute time limit

Aisles Items SHSW S SCS+

5 30 0.78 (30/30) 0.44 (30/30) 0.05

5 45 0.71 (30/30) 0.47 (30/30) 0.05

5 60 0.67 (30/30) 0.46 (30/30) 0.04

5 75 0.74 (30/30) 0.52 (30/30) 0.04

5 90 0.78 (30/30) 0.55 (30/30) 0.03

10 30 14.29 (30/30) 1.03 (30/30) 0.10

10 45 12.17 (30/30) 1.42 (30/30) 0.13

10 60 13.69 (30/30) 1.38 (30/30) 0.14

10 75 10.85 (30/30) 1.58 (30/30) 0.10

10 90 10.03 (30/30) 1.42 (30/30) 0.09

15 30 428.07 (27/30) 6.08 (30/30) 0.23

15 45 351.52 (29/30) 6.54 (30/30) 0.25

15 60 355.98 (29/30) 19.50 (30/30) 0.25

15 75 271.85 (30/30) 13.10 (30/30) 0.24

15 90 478.34 (27/30) 47.94 (30/30) 0.22

20 30 1000.09 (17/30) 6.91 (30/30) 0.34

20 45 1010.82 (16/30) 16.44 (30/30) 0.39

20 60 1010.61 (15/30) 53.12 (30/30) 0.55

20 75 1111.41 (17/30) 113.47 (30/30) 0.52

20 90 1015.24 (17/30) 168.85 (30/30) 0.49

25 30 1695.72 (2/30) 20.02 (30/30) 0.65

25 45 1727.68 (2/30) 44.54 (30/30) 0.72

25 60 1517.52 (7/30) 162.40 (30/30) 1.27

25 75 1654.45 (5/30) 270.24 (30/30) 1.12

25 90 1529.55 (8/30) 317.64 (28/30) 1.24

30 30 1800.00 (0/30) 59.00 (30/30) 0.90

30 45 1752.28 (1/30) 184.08 (29/30) 1.77

30 60 1800.00 (0/30) 330.98 (27/30) 2.11

30 75 1800.00 (0/30) 581.39 (25/30) 2.13

30 90 1800.00 (0/30) 904.34 (20/30) 2.21
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Table 4.3: Computing times (in seconds) of the solved instances within 30 minutes

on Theys et al. (2010) two-block instances

Aisles Items PCC+ SZ+ SCS SCS+

5 15 0.15 0.53 0.05 0.03

5 60 1.46 1.32 0.05 0.03

5 240 32.15 2.91 0.05 0.04

15 15 0.20 0.67 0.34 0.13

15 60 55.92 9.59 0.95 0.22

15 240 1800.00 976.00 0.48 0.09

60 15 0.81 1.07 38.249 1.38

60 60 1800.00 86.59 934.60 12.01

60 240 1800.00 1800.00 1553.03 18.44

computing times for PCC+, SZ+, SCS and SCS+ with a time limit of 30 minutes.

PCC+ solves all intances to optimality in 6 out of 9 settings in less than a minute on

average, however it is not able to solve any of the instances within the 30 minute-time

limit for the settings with 15 aisles, 240 pick locations, and 60 aisles, 60 and 240 pick

locations. SZ+ performs relatively better as it solves all the instances within the limits

except the case of 60 aisles and 240 pick locations. Of our proposed formulations,

SCS+ solves all instances in all settings within the time limit (under 20 seconds on

average for the largest set of instances) while SCS also solves all instances except

5 out of 10 instances with 60 aisles and 240 pick items. More importantly, SCS+

significantly outperforms its counterparts in all except one set of instances, where

its average difference from the best result is half a second. Moreover, the average

of 0.09 seconds for the setting of 15 aisles and 240 pick locations shows that the

computing times are particularly shorter as the ratio of the number of pick locations

to the number of aisles is larger.

As the last experiment, we analyze the performance of the Z-shape heuristic on multi-

block layouts by comparing it with four well-known simple heuristics explained in

the literature section on a set of instances with up to 5 blocks where there are 7 or 15

aisles, each with a length of 10 or 30 time units, and 10 or 15 pick items in the picking
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list, as in line with those in the literature (Roodbergen & De Koster 2001a). During

the analysis, we only focus on the easy-to-memorize heuristics hence the heuristics

which results in relatively more complex routes are left out of consideration (e.g.,

Theys et al. 2010, Çelik & Süral 2019).

Following Roodbergen & De Koster (2001a), we use a set of 2,000 instances for each

combination. In all settings, the horizontal length between two adjacent aisles set to

2 time units. The end of a sub-aisle (length) of a block also refers to the center of the

back cross-aisle of that block and the front cross-aisle of the next block. Table 4.4

gives the average travel times of the heuristics for the multi-block OPP instances. For

each combination, the best heuristic is indicated in bold-underlined.

Table 4.4 shows that the Z-Shape heuristic outperforms all other heuristics for large

size of aisle lengths and large number of blocks. It performs worse only when there is

a two-block layout or when the picking aisle is short. As the picking aisles are deeper

in practice, we conclude that Z-Shape algorithm performs the best in real-world sce-

narios. It performs poorly for two-block layouts because of the unnecessary double

cross-aisle movement on the front cross-aisle to reach to the depot. The negative ef-

fect of these unnecessary movements disappears quickly when the number of blocks

is more than two. We also observe that the combined heuristic outperforms other

heuristics when the picking aisles are short. In numbers, the combined heuristic has

the best performance in 24 of the 40 settings, the largest gap strategy has the best

performance in 1 setting, and Z-Shape algorithm has the best performance in 15 of

the 40 settings.

4.6 Concluding Remarks

This chapter extends the arc routing-based formulation for the single-block layouts

to two-block OPP in parallel-aisle warehouses. Based on similar observations on the

states of the blocks, the occurrences of disconnectivities and the possible movements

we have modified the index sets and the parameters to incorporate the existence of

a middle aisle in the formulation. Then, we present the assignment, sequencing and

degree constraints, which are straightforward extensions of their counterparts in the

single-block model. More importantly, we have analyzed change in the ways and
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Table 4.4: Average travel time for picker routing heuristics (in seconds) for multi-

block layout settings

Method Aisles Items Length Number of Blocks

1 2 3 4 5

7 10 10 74.7 102.0 114.3 132.7 150.8

7 10 30 163.0 220.9 258.6 304.4 353.4

15 10 10 114.2 156.0 165.4 188.0 207.1

15 10 30 219.0 286.2 318.1 367.0 415.3

7 15 10 87.4 125.7 140.8 163.0 178.8

7 15 30 196.9 275.6 318.7 367.2 413.0

15 15 10 136.6 192.1 202.7 235.9 251.5

Z
-S

ha
pe

15 15 30 273.9 362.6 398.2 454.4 495.8

7 10 10 79.2 100.4 122.6 141.0 159.5

7 10 30 191.9 255.9 309.1 354.4 403.4

15 10 10 127.3 143.5 174.2 194.1 217.2

15 10 30 278.0 325.0 381.0 425.3 476.8

7 15 10 88.5 121.5 154.3 174.3 195.3

7 15 30 218.5 318.8 393.3 445.7 499.5

15 15 10 151.3 178.0 223.5 243.0 267.7

S-
Sh

ap
e

15 15 30 345.4 425.9 505.3 550.4 603.2

7 10 10 76.0 95.8 114.2 132.8 152.0

7 10 30 164.1 218.8 268.3 317.4 369.1

15 10 10 123.7 146.0 168.7 188.9 211.7

15 10 30 228.2 280.8 332.6 382.0 436.7

7 15 10 88.5 116.3 140.9 161.2 181.0

7 15 30 197.5 269.0 329.2 382.5 435.6

15 15 10 146.8 179.3 212.9 237.1 260.3

L
ar

ge
st

G
ap

15 15 30 284.0 353.3 419.9 474.1 527.7

7 10 10 70.8 97.1 126.5 157.4 188.2

7 10 30 163.5 244.6 333.7 424.9 517.9

15 10 10 111.2 137.8 170.1 204.1 238.4

15 10 30 226.6 307.3 403.0 505.9 610.0

7 15 10 80.7 116.7 154.0 192.9 231.5

7 15 30 193.0 301.6 415.3 528.1 650.8

15 15 10 132.3 168.9 211.3 256.8 303.1

A
is

le
-b

y-
A

is
le

15 15 30 283.8 394.6 525.3 658.8 795.4

7 10 10 70.8 88.8 111.3 130.6 150.6

7 10 30 163.5 218.8 272.1 321.3 373.3

15 10 10 111.2 126.9 158.7 180.7 205.5

15 10 30 226.6 272.1 332.4 381.9 438.0

7 15 10 80.7 107.1 137.4 157.6 178.5

7 15 30 193.0 271.4 338.9 391.7 445.1

15 15 10 132.3 154.2 198.8 219.8 246.1

C
om

bi
ne

d

15 15 30 283.8 348.1 425.4 475.5 530.4
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types of occurences of the disconnectivities for two-block case, and formulated the

disconnectivity elimination constraints accordingly. The main difference of the two-

block model arises from these disconnectivity elimination constraints. Finally, we

propose a simple and effective heuristic for multiple block layouts, which increases

its performance with more blocks and deeper aisles.

Our findings in computational experiments section show that refraining from imple-

menting TSP subtour elimination constraints increases the efficiency of the OPP for-

mulations significantly as the performance of the proposed formulation for the two-

block layout outperforms the best-known approaches for the two-block OPP to date.

Other noteworthy findings obtained from our computational experiments continues to

support (i) the significant contribution of the use of lazy constraints, (ii) the shorter

computing times when the number of items to number of aisles ratio is large. More-

over, (iii) we observe that the difference between computing times of single- and

two-block formulations increases with a larger number of aisles as the need of more

disconnectivity elimination constraints also increases. Finally we observe that (iv) our

proposed multi-block heuristic outperforms all its simple counterparts for the layouts

with large number of blocks and large size of aisle lengths.
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CHAPTER 5

THE MIN-MAX ORDER PICKING PROBLEM IN SYNCHRONIZED

DYNAMIC ZONE-PICKING SYSTEMS

5.1 Introduction

In order picking operations, items must be collected from the warehouse to satisfy

the customer demand while aiming to optimize a cost or/and service-related objective

(e.g., De Koster et al. 2007, Scholz et al. 2016, van Gils et al. 2018b, Çelik & Süral

2019, Masae et al. 2020a). In the last decades, a growing competition with limited

time windows has put extra pressure on order picking operations. Furthermore, the in-

creasing demands from online retailing have resulted in many relatively small-size or-

ders with promised time windows, which make effective order picking and workload

balancing necessary (Ardjmand et al. 2018, Vanheusden et al. 2020). Consequently,

warehouse managers are under increased pressure to make use of their order picking

resources in an efficient manner. The literature clearly reveals the gap in integrated

operational level warehouse problems considering zone picking operations. Although

recent literature regarding multiple order pickers has increased significantly, the ad-

vantages of zone picking are ignored, thus, zone picking combinations have not been

given any particular attention.

One way of ensuring a more efficient order picking process in terms of response time

is the use of zone-picking. Zone-picking is a method of order picking where the

picking area is divided into a number of zones so that the picking activity is being

conducted at each zone by a different picker, sequentially or synchronously. Zone-

picking also has other advantages including reduction of the travel time, achieving

better workload balance, avoiding congestion within aisles, and ensuring familiarity

of pick locations.
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Although zone-picking and batch-picking are the two main factors influencing the

performance of order picking processes at tactical and operational levels, zone-picking

has received less attention in the literature among all order picking operations (Yu

& De Koster 2009). Synchronized zone-picking refers to the zone-picking process

where all pickers work on the same order simultaneously, thus creating a picking

wave, whereas dynamic zone-picking refers to the zone-picking decisions made at

the operational level, since it is possible to arrange the zone sizes and re-assign the

pickers to zones at each picking wave. A dynamic zoning environment is especially

important when synchronized zone-picking is considered, as fixed zones would lead

to significant idle times where the pickers wait until all the pickers complete the pick-

ing activity. Hence, as opposed to static zoning, dynamic zoning is considered as an

operational level decision problem and can be simultaneously addressed with other

operational level problems, including picker routing and workload balancing.

In most picker routing problems, the main objective is to minimize the total travel

time of the order pickers, as it constitutes more than half of the order picking time

(Bartholdi & Hackman 2019). On the other hand, in synchronized zone-picking, the

lead time of an order picking is determined by the longest time taken by any of the

order pickers in each zone. Therefore, a min-max approach where the objective is to

minimize the latest travel time of any of the pickers is not only a good way of synchro-

nizing zone-picking operations, but it also helps ensure fairness among pickers. This

is also a common objective for other wave-picking operations such as batch-picking

(Ardjmand et al. 2018). For this end, in this chapter we make use of a min-max ob-

jective for the OPP in a parallel-aisle warehouse with a synchronized dynamic zone-

picking system. Such zone-picking systems with a makespan minimization objective

dynamically balance the workload among pickers without the need of additional op-

erational control. To the best of our knowledge, this is the first study that defines

the OPP in a synchronized zone-picking system with a min-max objective, while also

simultaneously considering the picker routing, zone assignment, and workload bal-

ancing decisions. The findings of this research should be helpful in warehouses where

multiple pickers are employed, and lead time requirements are stringent.

Throughout this chapter, we first present the min-max OPP without zoning and give

the VRP min-max formulation. Afterwards, we discuss the OPP with dynamic zon-
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ing under the assumption that each zone of adjacent aisles is assigned to a single

picker and present the relevant zoning constraints. For the min-max VRP without

zoning, we then propose a heuristic approach for the two-picker case based on the

exact picker routing algorithm and the knapsack problem. This approach also consti-

tutes a baseline for our exact DP approach for the min-max VRP with zoning, which

is presented afterwards. As the last approach, we present a batch-picking algorithm

with a min-max objective where we similarly minimize the make-span of a wave-

picking operation. Finally, we work on randomly-generated order picking instances

where the pick locations in a picking list are independently and uniformly distributed

over the order picking area to illustrate the algorithms and compare the performance

of the solution methodologies in various computational experiments.

The remainder of this chapter is organised as follows. Section 5.2 describes the ware-

house corresponding to the OPP. In Section 5.3, we develop the min-max VRP for-

mulations for multi-picker OPP with and without zoning constraints. In Section 5.4,

we present the heuristic approach for the two-picker OPP without zoning. In Sec-

tion 5.5, we develop an exact approach for the min-max OPP under synchronized

dynamic zone-picking policy. Finally, in Section 5.6 we present a modified Clarke &

Wright saving heuristic for min-max OPP under batch-picking policy. Computational

experiments are presented in Section 5.7, and the chapter is concluded in Section 5.8.

5.2 Problem Description

In both manual and automated warehouses, a combination of efficient zoning and

picker routing plays an important role in improving travel time, congestion, and sys-

tem throughput. This chapter considers the order picker routing problem in a dy-

namic and synchronized zoning environment, where the items corresponding to each

customer order are picked simultaneously in multiple zones, and zones may change

between different orders. The objective is to minimize the maximum time of com-

pleting the picking activities in any zone. Using a min-max type of objective not only

minimizes the makespan of an order picking wave, but it also helps balance the work-

load of the order pickers more effectively. We present a mathematical model for the

optimal solution of this problem, as well as a DP approach to find the optimal solu-

tion for the case where a zone is a set of adjacent aisles. Computational experiments
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on randomly generated instances show that the DP approach is able to find optimal

solutions in negligible computational times.

The parallel-aisle warehouse considered in this chapter is given in Figure 5.1. It

contains cross-aisles at front and back of the picking-aisles as in Figure 5.1(a) and

may contain middle cross-aisles, which perpendicularly divide the warehouse into

blocks, and thereby divide the aisles into sub-aisles, as shown on Figure 5.1 (b).

Figure 5.2 shows the graph representations of the warehouses in Figure 5.1(a) and

(b), where each pick location is represented by node vp, p ≥ 1 while v0 represents the

depot, and the edge (p, q) represents the path providing direct access between node

vp and vq. The nodes ai and bi represent the back and front intersection points of

picking-aisle i, respectively. Nodes mij represent the intersection point of picking-

aisles i and middle cross-aisle j. A back cross-aisle of a block is the front cross-aisle

of the next block. A picker starts a feasible picking route from the depot, collects

all the items in the picking list and returns to the depot. The OPP is to find such a

feasible route that can be completed in the minimum time.

5.3 Min-Max OPP with Dynamic and Synchronized Zone-Picking

In this section, we propose a min-max VRP formulation to minimize the lead time of

the multi-picker wave-picking process, after which we introduce zoning constraints

into the formulation. The following assumptions are made to model the problem:

• A zone is a set of contiguous identical aisles. An aisle cannot belong to more

than one zone. The aisles are narrow enough so that order picking can be per-

formed simultaneously from both sides of an aisle in negligible time.

• The warehouse performs wave-picking with a min-max type objective, and we

focus on one wave at a time by applying synchronized dynamic zone-picking

policy to operationally control the zone sizes and therefore picker workloads.

• Each order picking tour starts and ends at the same point (the depot), and all

the items in the wave are picked in one picking tour (of each picker).
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5.3.1 VRP Formulation for the Min-Max OPP

Minimum total time travelled in a multi-picker OPP can be obtained by applying a

two-index VRP variant of commodity flow formulation by Gavish & Graves (1978)

(VRP-MINSUM). However, in our case, using a two-index formulation would not

help to balance the workload of pickers, since these indices refer only to the pick

locations (vertex and edge sets), not to the pickers. To consider balancing, we require

a three-index formulation, where the additional index k is introduced for pickers to

clarify which picker traverses the edge (p, q):

xpqk =

1, if kth picker traverses edge (p, q)

0, otherwise

Let us define N as the set of all pick locations including the depot v0, and K as the

set of all pickers. Also let cpq be the distance of edge (p, q) and gpqk be the number of

units of the commodity passed onto pick location q ∈ N directly from pick location

p ∈ N by picker k ∈ K. The following single commodity flow formulation aims to

minimize the maximum time travelled by any one of the pickers (VRP-MINMAX).

min L (5.1)

s.t.
∑
k∈K

∑
p ∈ N
p ̸=q

xpqk = 1 q ∈ N \ {0} (5.2)

∑
k∈K

∑
q ∈ N
q ̸=p

xpqk = 1 p ∈ N \ {0} (5.3)

∑
q∈N\{0}

x0qk = 1 k ∈ K (5.4)

∑
p∈N\{0}

xp0k = 1 k ∈ K (5.5)

∑
p ∈ N
p ̸=q

xpqk =
∑
p ∈ N
p ̸=q

xqpk q ∈ N \ {0}, k ∈ K (5.6)

∑
k∈K

∑
p ∈ N
p ̸=q

gpqk −
∑
k∈K

∑
p ∈ N \ {0}

p ̸=q

gpqk = 1 q ∈ N \ {0} (5.7)

gpqk ≤ (|N | − |K|)xpqk p ∈ N, q ∈ N \ {0}, p ̸= q, k ∈ K

(5.8)
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∑
p∈N

∑
q∈N

cpqxpqk ≤ L k ∈ K (5.9)

xpqk ∈ {0, 1} p, q ∈ N, p ̸= q, k ∈ K (5.10)

gpqk ≥ 0 p, q ∈ N, p ̸= q, k ∈ K (5.11)

In this formulation, the objective function 5.1 minimizes the time travelled by the

latest picker. Constraints 5.2 and 5.3 state that each pick location should be visited

exactly once by a picker. Constraints 5.4 and 5.5 state that exactly |K| pickers should

leave and return to the depot. Constraint 5.6 guarantees a tour for each picker. Con-

straint 5.7 ensures that exactly one unit of commodity is left to each pick location

and constraint 5.8 states that no commodity is passed through the arcs that are not in-

cluded in the picker tour. The main constraints leading to weakness of the formulation

is the big-M constraint 5.8. (|N | − |K|) is used as the big-M, since there are |N | pick

locations including the depot, and there are |K| pickers, each of whom requires visit-

ing at least one pick location. So, each picker can deliver at most (|N |− |K|) units of

the commodity. Constraint 5.9 ensures that the time travelled by each picker cannot

be more than the longest tour, L, which is to be minimized in the objective function.

Finally Constraints 5.10 and 5.11 define the domains of the decision variables.

5.3.2 VRP-MINMAX Formulation with Zone-Picking Constraints

To incorporate zone-picking constraints into the formulation in the preceding section,

we assume the warehouse follows a synchronized zone-picking policy where all pick-

ers start simultaneously to better control throughput times. When pickers complete

the picking tour, they wait for the completion of the overall picking wave at the de-

pot. A zone is defined as a set of adjacent aisles and zones do not necessarily have the

same number of aisles. A picker can be assigned at most one zone and an aisle cannot

belong to more than one zone. We focus on minimizing the lead time of a picking

wave; hence, workload balancing is also achieved.

In such a case, another decision variable is required to introduce aisles and zones into

the model. Let M be the set of all aisles and parameter ep be the aisle on which the

item p ∈ N is located. Then define:
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yik =

1, if kth picker is assigned to aisle i ∈M

0, otherwise

Now we can use the min-max formulation presented in the previous section as a basis

to come up with the VRP formulation with zone-picking constraints. The following

formulation (referred to as VRP-Z), together with Constraints 5.2 - 5.11, aims to

minimize the maximum travel time subject to zoning constraints.

min L (5.12)

s.t. y11 + y|M |,|K| = 2 (5.13)∑
k∈K

yik = 1 i ∈M (5.14)

∑
i∈M

yik ≥ 1 k ∈ K (5.15)

2xpqk ≤ y(ep)(k) + y(eq)(k) p, q ∈ N \ {0}, p ̸= q, k ∈ K (5.16)

yik ≤ y(i+1)k + y(i+1)(k+1) i ∈M \ {|M |}, k ∈ K \ {|K|} (5.17)

yik + y(i+1)(k−1) ≤ 1 i ∈M \ {|M |}, k ∈ K \ {1} (5.18)

yik ∈ {0, 1} i ∈M,k ∈ K (5.19)

Constraint 5.13 guarantees that the first picker is assigned to the first aisle and the last

picker is assigned to the last aisle. Constraint 5.14 ensures that each aisle is assigned

to exactly one picker. Constraint 5.15 guarantees that each picker is assigned to at

least one aisle. Constraint 5.16 is the linking constraint and guarantees that if kth

picker is traversing the edge (p, q), then the aisles, in which items p and q are located,

are assigned to picker k. Constraints 5.17 and 5.18 ensure that a zone is a set of

adjacent aisles such that if picker k is assigned to aisle i, then the next aisle is assigned

either to picker k or picker k + 1 and no further aisle can be assigned to the previous

pickers.

5.4 A Dynamic Programming-Based Heuristic for the Min-Max OPP with Two

Pickers

The integer programming formulations in Section 5.3 are computationally challeng-

ing to solve for larger instances, as will become apparent in Section 5.7. We first con-
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Figure 5.3: (a) Possible intra-aisle connection types, (b) Possible inter-aisle connec-

tion types, (Ratliff & Rosenthal 1983)

sider the case with two pickers and propose a heuristic approach for VRP-MINMAX,

which also serves as the baseline for the exact approach for VRP-Z with a general

number of pickers. The heuristic introduces a simple but effective DP algorithm for

the min-max OPP without zoning. Although the heuristic tackles the problem with-

out zoning, it uses the idea of assigning pickers to aisles, which may be considered

as constituting temporary zones. This is followed by an improvement scheme (the

travel time balancing algorithm) derived from the knapsack problem, to reduce the

optimality gap at the expense of aisle-zone integrity.

For the single-picker OPP, Ratliff & Rosenthal (1983) provide an exact algorithm, the

RR algorithm, consisting of |M | stages where |M | is the number of aisles. In this

algorithm, there are two sub-stages for each aisle. Each stage has a number of states

called equivalence classes represented by: (i) degree parity at the back of an aisle,

(ii) degree parity at the front of an aisle, and (iii) number of connected components.

Degree parities can be zero (0), even (E) or odd (U), while connectivity can be 0C,

1C or 2C. A partial tour can be represented by one of the six equivalence classes.

These states are updated along the stages using two classes of connection types: intra-

aisle and inter-aisle, as shown in Figure 5.3. At each stage, minimum tour lengths for

each state are found by adding the related possible connection types to the minimum

tour lengths of previous sub-stage. At the last aisle, the partial tour with the minimum

length sum is determined, which yields the optimal solution for the single-picker OPP.

Before developing the proposed algorithms at this and following sections, we primar-
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Table 5.1: Notation used in the proposed algorithms

M Set for the aisles; M = {1, 2, . . . , {|M |}
RR(i, j) Minimum tour length solution of the RR algorithm starting from depot,

entering the zone starting with aisle i and exiting to return to the depot

from aisle j

minL1
i Minimum tour length for picker 1 when aisle i is set as the stopping aisle

i.e., when first i aisles are assigned to picker 1.

minL2
i Minimum tour length for picker 2 when aisle i is set as the stopping aisle

i.e., when last |M | − i aisles are assigned to picker 2.

F (i, k) Cost-to-go function, which returns the lead time of the picking wave, i.e.,

the travel time of the latest picker, in Section 5.5, for optimally assigning

k ∈ K pickers to i ∈M aisles

ily summarize the notation in Table 5.1.

5.4.1 Construction of Temporary Zones

In the first phase of the heuristic, we apply R(i, j) repeatedly for each picker after

assigning their starting and ending aisles. Initially, the first aisle is assigned to picker

1 and the last |M | − 1 aisles are assigned to picker 2, thus aisle 1 is set as the stop-

ping aisle. Then, minimum tour lengths are calculated for RR(1, 1) and RR(2, |M |),
and called minL1

1 and minL2
1 respectively. Subsequently, aisle 2 is set as the stop-

ping aisle and minimum tour lengths, minL1
2 and minL2

2, are calculated again. The

stopping aisle i is increased in this manner until the minimum tour length for picker

1 exceeds the one for picker 2, i.e., minL1
i ≥ minL2

i . At this final stage, the first i

aisles are assigned to picker 1 and the remaining |M | − i aisles are assigned to picker

2 where picker 1 travels at least as many time units as picker 2. Note that, at (i− 1)th

stopping aisle stage, minL1
i−1 ≤minL2

i−1. At this previous stage, the first i−1 aisles

are assigned to picker 1 and the remaining |M | − i+ 1 aisles are assigned to picker 2

where picker 1 travels at most as many time units as picker 2.

The aim of the two-picker algorithm is to return the smaller wave time, i.e., smaller

maximum time travelled, at the final and the previous stages. Before concluding
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the two-picker algorithm, we introduce an improvement algorithm in the following

subsection as the second phase, which further reduces the wave time by minimizing

the absolute travel time difference between the two pickers by focusing on the final

and the previous stages.

5.4.2 Travel Time Balancing Algorithm

In the first phase of the heuristic, there is an aisle-zone integration and also one of the

pickers will travel more than the other picker. The difference, if any, could be further

reduced to more balance the time travelled by each of two pickers at the expense of

aisle-zone integration. Reassignment of moves from one picker to the other is likely

to improve the workload balance at the expense of zone integrity. We observe that,

at the final stage, picker 1 travels at least as many time units as picker 2 where some

possible front movements made by picker 1 can be assigned to picker 2. There is

also a similar case for the previous stage. Some movements made by picker 2 can be

assigned to picker 1. For this end, we develop an exact DP algorithm called travel

time balancing algorithm.

Reassignment of moves from one picker to the other is described as follows. Since

picker 2 starts from depot and uses the front cross-aisle to reach the starting aisle

point, i.e., b(i+1), picker 2 is only allowed to make additional connection type 3 intra-

aisle movements in aisles assigned to picker 1 where j = {1, 2, . . . , i}. Moreover,

picker 2’s connection type 3 movement in aisle j is only possible as long as the

optimum movement made by picker 1 in aisle j at the final stage is a connection

type 3 or connection type 4 movement, because otherwise the connectivity of picker

1’s tour will be lost. Finally we note that if the optimum movement of picker 1 is a

connection type 4 movement, the front part of the movement should be considered as

a candidate connection type 3 movement taken from picker 1 and given to picker 2.

The problem stated here can be described as a variant of the knapsack problem that

fills the travel time difference between two pickers as much as possible. Suppose we

solve a 0-1 knapsack problem having capacity W with i items each with weight wj

and value vj with the additional notation in Table 5.2.

Then, the objective for the 0-1 knapsack problem is to select a subset of items to
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Table 5.2: Additional notation used in travel time balancing algorithm

W Twice the size of the difference between pickers’ travel times,

2(minL1
i −minL2

i )

wj = vj Connection type 3 movement length for aisle j ∈ {1, 2, . . . , i}
w Travel time difference index between the two pickers;

w ∈ {1, 2, . . . ,W}

K1(j, w) The maximal movement obtainable when filling a knapsack of capacity

w time units using reassignable movements among aisles from 1 to j.

K2(j, w) The minimum difference between pickers obtainable when filling a

knapsack of capacity w time units using reassignable movements

among aisles from 1 to j

maximize the total value while satisfying the capacity constraint. K1 value function

stated as the following recursive formula refers to the knapsack DP algorithm. If it

were just a knapsack problem, the optimal value would be stored at K1(i,W ) where

i refers to the last aisle for picker 1:

K1(j, w) =

K1(j − 1, w), w(j−1) ≥ w

max
(
K1(j − 1, w), K1(j − 1, w − 2wj−1) + wj−1

)
, otherwise

(5.20)

where the base cases are K1(0, w) = 0 for w ∈ {1, 2, . . . ,W} and K1(j, 0) = 0 for

j ∈ {1, 2, . . . , i}. However, our objective is not to maximize the value. We would

like to reach as close as possible to half of the knapsack capacity, (minL1
i −minL2

i ),

either above or below. Hence, we aim to choose a subset of connection type 3 intra-

aisle movements from first i aisles, take it from picker 1 and give it to picker 2 to

minimize the difference between two pickers. To solve this problem, we use another

value function storing the actual difference. Such values can be stored at K2 value

function as:

K2(j, w) =
∣∣∣minL1

i −minL2
i − 2K1(j, w)

∣∣∣ (5.21)

The optimal subset of movements, K1(j,W ), is the one which minimizes the dif-

ference K2(i,W ). Thus, this subset can be taken from picker 1 and given to picker
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1. We note that K2(j, w) is found by subtracting the twice of the optimal subset of

movements from the difference between pickers. This can be explained by the fact

that K1(j, w) value is taken from picker 1 and given to picker 2, thus multiplied by 2.

A pseudocode of the travel time balancing algorithm is depicted in Algorithm 1.

Algorithm 1: Travel Time Balancing Algorithm

for aisle j = 1 to i do

for difference w = 0 to W do

if j = 1 or w = 0 then
K1(j, w) = 0

else if 2wj−1 ≤ w then

K1(j, w) = max
(
K1(j − 1, w), K1(j − 1, w − 2wj−1) + wj−1

)
else

K1(j, w) = K1(j − 1, w)

end

K2(j, w) = |minL1
i −minL2

i − 2K1(j, w)|
end

end

for aisle j = 1 to i do

for difference w = 0 to W do

if temp ≥ K2(j, w) then
temp← K2(j, w)

∆i = K1(j, w)

end

end

end

minL1
i = minL1

i −∆i

minL2
i = minL2

i −∆i

By applying Algorithm 1, we have further strengthen the results for the final stage.

A similar method can be applied to the previous stage to reduce the difference by

assigning possible movements made by picker 2 to picker 1. Finally, the maximum

time travelled at the final stage and the previous stage are compared and the smaller

96



of these two maximums is found.

minmaxh = min
(
max(minL1

i ,minL2
i ),max(minL1

i−1,minL2
i−1)
)

(5.22)

In consequence, the heuristic returns minmaxh, the best split between two pickers

that has the smallest wave time. Here, we find a near optimal min-max solution for the

two-picker min-max OPP as we also balance the workload of the pickers and use the

minimum-time routes. The pseudocode of the two-picker min-max OPP algorithm is

depicted in Algorithm 2.

Algorithm 2: The Two-Picker Min-Max OPP Algorithm

for aisle i = 1 to |M | do
minL1

i ← RR(1, i)

minL2
i ← RR(i+ 1, |M |)

if minL1
i ≥ minL2

i then
Apply Algorithm 1 for stage i

Apply a simpler reassignment for stage (i− 1)

minmaxh ←
min

(
max(minL1

i ,minL2
i ),max(minL1

i−1,minL2
i−1)
)

break
end

end

5.4.3 Numerical Example

For the example given in Figure 5.1(a), we demonstrate the solutions of MINSUM,

MINMAX and minmaxh, and the first phase of the two-picker OPP algorithm in

Figures 5.4(a), (b) and (c), respectively.

The VRP-MINSUM model minimizes the total time travelled at 112 time units, with

a maximum travel time of 92 units. The VRP-MINMAX model minimizes the max-

imum time travelled at 58 units. Moreover, the difference between pickers is only

2 units. The first phase of the proposed heuristic yields an approximate solution for

the VRP-MINMAX problem with 62 units. The difference between the travel times

of the pickers is 10 units. Finally, this difference is further reduced by the balanc-

ing heuristic at the expense of aisle-zone integrity using the travel time balancing
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Figure 5.4: The minimum time solutions for the example in Figure 1(a). (a) VRP-

MINSUM, (b) VRP-MINMAX and the two-picker OPP algorithm, (c) initial phase

of the two-picker OPP algorithm

Table 5.3: The solution approach of the two-picker min-max OPP algorithm

Picker 1 Picker 2

Aisles Lead Time Aisles Lead Time Abs.Dif. Remarks

{} 0 {1,2,3,4,5,6} 104 104 1P-OPP

{1} 20 {2,3,4,5,6} 92 72

{1,2} 36 {3,4,5,6} 76 40

{1,2,3} 52 {4,5,6} 62 10 Phase-1

{1,2,3,4} 66 {5,6} 52 14

{1,2,3,4} 58 {4,5,6} 56 2 Phase-2

algorithm, which yields the same solution of the VRP-MINMAX formulation. The

solution approach of the complete two-picker algorithm is shown on Table 5.3.

In the following section, we extend the temporary zoning approach of this section to

develop an exact approach for the min-max OPP under dynamic zoning and a general

number of pickers. This would be tedious by extending the algorithm suggested for

two-picker case. Thus, we propose an exact and more efficient DP algorithm based

on the graph representation of Pascal’s Triangle.
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5.5 An Exact Algorithm for the Min-Max OPP under Synchronized Dynamic

Zone-Picking

In this section, we propose an exact and efficient DP approach for the min-max OPP in

synchronized dynamic zone-picking systems. For this end, we use Pascal’s Triangle

and develop an exact algorithm which runs in polynomial time.

Contrary to tactical level zone-picking policy, there are no dedicated zones assigned

to pickers at the operational level. Zones are assigned to pickers at each picking

wave. Thus, the zone-picking problem is reduced to an operational level decision

integrated with routing and workload balancing problems. In this way, we solve an

integrated zone-picking, picker routing and workload balancing problem where each

zone consists of a certain number of aisles.

In the proposed algorithm for the min-max OPP in synchronized dynamic zone-

picking systems, we first determine all minimum tour lengths for each possible zone

configuration. Based on this information, we recursively look at the optimal combi-

nation of zone assignments that minimizes the longest-time tour length for a given

number of pickers.

Proposition 1 states the required number of minimum tour length information prior to

zone assignment.

Proposition 1. RR algorithm can be calculated for (|M |)(|M |+1)
2

different zone config-

urations for an |M |-aisle picking area in polynomial time.

Proof. This arises from the assumption that a zone is a set of adjacent aisles. There

is only a single possibility for a zone consisting of |M | aisles. RR algorithm runs in

O(|M |). There are two possibilities to construct a zone consisting of (|M |−1) aisles

with O(|M | − 1) running time for each. There are (|M | − 1) different ways to form

zones consisting of 2 aisles with O(2) running time for each. Finally, there are |M |
different ways to form a 1-aisle zone configuration with O(1) running time for each.

Then, for the total number of routing calculation, the proof is the same as the one

of sum of finite arithmetic series formula by induction, thus (|M |)(|M |+1)
2

. When the

running times are also included in the summation, the overall running time ends up
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with:

= (1)(|M |) + (2)(|M | − 1) + . . .+ (|M | − 1)(2) + (|M |)(1)

=
∑
r∈M

r(|M |+ 1− r)

= (|M |+ 1)
∑
r∈M

r −
∑
r∈M

r2

= (|M |+ 1)
(|M |)(|M |+ 1)

2
− (|M |)(|M |+ 1)(2|M |+ 1)

6

=
(|M |)(|M |+ 1)(|M |+ 2)

6

Proposition 2 states the number of possible zones for picker k and implies that zone-

assignment problem can be studied using combinational calculations.

Proposition 2. There are
(|M |−1

k−1

)
different zone configurations to assign k pickers to

|M | aisles in an |M |-aisle picking area.

Proof. This can be shown by the "Stars and Bars" technique by Feller (2008). Sup-

pose |M | aisles (stars) are fixed and (|M | − 1) gaps between aisles, in each of which

there may or may not be a “bar”. A zone configuration is obtained by ‘bar’ing (k−1)

of these (|M | − 1) gaps.

As an example, a visual representation on which k pickers are assigned to 6 aisles

where k ∈ {1, 2, . . . , } is shown on Figure 5.5.

Next, we present two corollaries to better define the later DP recursion.

Corollary 1. The
(|M |−1

k−1

)
possible zone configurations can be represented in a Bino-

mial Expansion where each row represents the number of aisles and each “top-right

to bottom-left diagonal line” represents the number of pickers as shown on Figure

5.6. This can be coded down where each row represents the number of aisles and

each column represents the number of pickers.

The coefficients in the Binomial Expansion also correspond to the entries of Pascal’s

Triangle such that the
(
i
k

)
th coefficient in the Binomial expansion is equal to the entry

at aisle i, picker k in the Pascal’s Triangle.
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Figure 5.5: Visual representation of 6-aisle picking area zone-assignment

Figure 5.6: Binomial expansion of 6-aisle picking area zone-assignment
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Corollary 2. We can track the pathways of
(|M |−1

k−1

)
possible zone configurations to

assign k pickers to |M | aisles using Pascal’s Triangle graph representation.

For example, there are
(
5
2

)
different pathways to go to the entry at aisle 6, picker 3 in

the Pascal’s Triangle as shown on Figure 5.7.

We can now state the main theorem of this study and Algorithm 3. With this algo-

rithm, we can track the optimal combination of zone assignments that minimizes the

longest-time tour length for a given number of pickers.

Theorem 1. The min-max OPP in synchronized dynamic zone-picking systems can

be solved in polynomial time using DP.

Proof. F (i, k) is the cost-to-go function which is equal to the lead time of the picking

wave that optimally assigns k pickers to i aisles, where i ≥ k; i ∈ M . As the initial

step, for the single picker case where k = 1, it is clear that F (i, 1) = RR(1, i).

Moreover, when the number of pickers equals to the number of aisles where k = i,

the cost-to-go function returns F (i, i) = max
j=1...i

(
RR(j, j)

)
. Then, the general DP

recursion can be formalized as follows:

F (i, k) = min
j=k−1...i−1

(
max

(
F (j, k − 1), RR(j + 1, i)

))
(5.23)

Here, the problem of finding the optimal combination of zone assignment for |M |
aisles and k pickers is broken down into the subproblem of introducing the kth picker

and combining it with memorized optimal zone assignment subproblem solutions for

k − 1 pickers. In total, we have (k − 1)
(
|M | − (k − 1)

)
subproblems to assign k

pickers to |M | aisles where each of them has a constant running time thanks to the

memoization . This implies that the recursion has an overall computational complex-

ity of O(k|M |).

As an example, Figure 5.8 depicts a visual representation of Algorithm 3 to find the

minimum lead time of a picking wave among
(
5
2

)
possible zone configurations with 3

pickers and 6 aisles, i.e., F (6, 3).

A pseudocode of the algorithm is given in Algorithm 3.

By this solution methodology, we not only minimize the lead time of the picking wave
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Algorithm 3: Dynamic Zone-Picking Algorithm for Multiple Order Pickers

for aisle i = 1 to |M | do

for aisle j = i to |M | do
return RR(i, j)

end

end

for aisle i = 1 to |M | do
F (i, 1) = RR(1, i)

end

for aisle i = 2 to |M | do

if F (i− 1, i− 1) ≥ RR(i, i) then
F (i, i) = F (i− 1, i− 1)

else
F (i, i) = RR(i, i)

end

end

for aisle i = 3 to |M | do

for picker k = 2 to (i− 1) do

for j = (k − 1) to (i− 1) do

if temp ≥ max
(
F (j, k − 1), RR(j + 1, i)

)
then

temp← max
(
F (j, k − 1), RR(j + 1, i)

)
end

end

F (i, k) = temp

end

end

for each number of pickers, but we also balance the pickers’ travel times.

Proposition 1 allows us to calculate the minimum tour length for each possible zone

configuration. Given that there are multiple blocks, heuristic approaches (e.g., S-

shape, largest gap, aisle-by-aisle, or combined) can be applied to calculate the routes

for each possible zone configuration instead of the RR algorithm. In this way, the

multi-picker dynamic zone-picking algorithm can be heuristically solved for a multi-
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block layout. For the multi-block OPP instance in Figure 5.1(b), Figure 5.9 depicts

the resulting 3-picker routes for S-shape, largest gap, aisle-by-aisle, and combined

heuristic solutions, with minimum wave-picking lead times of 78, 76, 88, and 76 time

units, respectively.

Figure 5.9: Resulting 3-picker heuristic solutions for the instance in Figure 5.1(b).

(a) S-shape heuristic solution. (b) Largest gap heuristic solution. (c) Aisle-by-aisle

heuristic solution. (d) Combined heuristic solution

5.6 A Batch-Picking Heuristic: The Modified Clarke & Wright Saving Algo-

rithm with a Min-Max Objective

As discussed at the beginning of the chapter, the other factor increasing the perfor-

mance of order picking processes is batch-picking. If the number of ordered items
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is relatively small and the number of orders is large, it is inevitable to partition or-

ders into batches in picking operations. A batch-picking is an order picking operation

in which the orders are grouped into batches and those batches are picked simul-

taneously, therefore, forming a wave. In this section, we present a batch-picking

algorithm. In batch-picking problems, we try to partition a given set of orders, not

the aisles as in the case of zone-picking, into batches such that a specific objective is

optimized. The main difficulty for this problem is to find the optimum routes at each

partitioning of the customer order into batches since at each combination we need to

solve another picker routing sub-problem. In this sense it is an integrated OPP. For

this end, we introduce a modified Clarke & Wright saving algorithm with a min-max

objective where we aim to minimize the lead time of an order picking, which is de-

termined by the longest time taken by any of the order pickers collecting each batch.

A min-max approach is also a common objective for this type of wave-picking oper-

ation as it also balances the workload among pickers while sorting and consolidation

processes are not required at the end.

The classical Clarke & Wright saving algorithm, which is widely applied for the ve-

hicle routing problem, computes the savings by merging the locations, hence it is not

necessary to solve another optimization problem in the travel time calculation phase

of the algorithm. However, to apply Clarke & Wright saving algorithm in the batch-

picking OPP, one also needs to solve a picker routing problem at each batch combina-

tion to calculate the travel times of the order pickers. Here, orders are not allowed to

split into batches. Hence, partitioning a given set of orders into batches complicates

the problem more since partition itself is known to be NP-complete (Gademann et al.

2001).

In this regard, we firstly present the formulation of batch-picking OPP with a min-

max objective. Let xs be a binary variable equal to 1 if the batch s ∈ S is created

where S is the set of all possible order-batch combinations. Also let parameter ais be

the binary entry stating whether order i ∈ Q is included in batch s ∈ S where Q is

the set of all customer orders. Then, the BIP formulation for the batch-picking OPP

is as follows.
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min Z (5.24)

s.t.
∑
s∈S

aisxs = 1 i ∈ Q (5.25)

dsxs ≤ Z s ∈ S (5.26)

xs ∈ {0, 1} s ∈ S (5.27)

In this formulation, Constraint 5.25 ensures order i ∈ Q cannot be split into more

than one batch. Additionally, Constraint 5.26 states that the time travelled by each

batch-picker cannot be more than the longest tour, Z, which is to be minimized in the

objective function. Finally, capacity consideration can be included into the model.

The batch configurations which satisfy the capacity constraint 5.28 would constitute

the set S. This inequality limits the total order size of the batch s ∈ S below a

specified capacity.

∑
i∈Q

ais ≤ c s ∈ S (5.28)

We observe that ds is assumed to be a parameter although it is an OPP tour required

to be solved by itself. Moreover, the possible batch set, S increases exponentially

which makes the problem difficult to solve to optimality for instances with large even

moderate number of orders. Also, the parameter ais should be predetermined, but

could also be a decision variable in an integrated formulation, which would make the

formulation non-linear. For this end, we introduce a modified Clarke & Wright saving

algorithm with min-max objective. The objective in this batch-picking problem is to

minimize the time travelled by the latest picker for each number of batches starting

from the largest number of batch to a single batch. The steps of the algorithm are as

given in Algorithm 4.

5.6.1 Numerical Example

Next, we illustrate how the algorithm works for a 5-customer order instance. Initially,

the algorithm assigns each customer order to a different batch. For each batch, a

different picker starts picking. RR algorithm solves the OPP for each batch and the
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Algorithm 4: Batch-Picking Algorithm for Multiple Order Pickers
• Initialization. Assuming each customer order i ∈ Q is distributed to a

different batch. Here, the number of batches is equal to the number of

customer orders. Solve the picker routing problem for each batch using

the RR algorithm and record the time travelled by the latest picker as

“z|S|” where S represents the index set for the created batches.

• Iterations.

– Step 1. Combine each batch in pairs and solve the picker routing

problem using the RR algorithm for each batch combination.

– Step 2. Merge the minimum time travelled batch combination and

record the min-max value, “z|S|”. Now, we have one less number of

batches.

– Step 3. Return to Step 1 until we have a single batch OR

the capacity of the pickers are consumed.

• Termination. Draw the Pareto diagram which shows the latest time

travelled for each number of batches.

order pickers arrive in 62, 84, 90, 112, 42 time-units, respectively. The 112 time-units,

which is the time travelled by the latest picker, is recorded as z5.

As the first iteration, the order picking times of all possible batch combinations are

solved using the RR algorithm. The 1st and 2nd batches, which gave the shortest

time among the candidates, are combined. This new batch is named as batch 1. The

order picking time resulting from this combination is 90 time-units. In this case, z4

remained the same as z5, which is 112. We note that batch 1 includes the orders of

customers 1 and 2.

As the second iteration, the order picking times of all possible batch combinations are

solved using the RR algorithm. The 3rd and 5th batches, which gave the shortest time

among the candidates, are combined. This new batch is named as batch 3. The order

picking time resulting from this combination is 106 time-units. Also in this case, z3

remained the same as z5, which is 112. We note that batch 3 includes the orders of

customers 3 and 5.

As the third iteration, the order picking times of all possible batch combinations are
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Figure 5.10: The solution of the batch-picking algorithm for the numerical example

solved using the RR algorithm. The 3rd and 4th batches, which gave the shortest time

among the candidates, are combined. This new batch is named as batch 3. The order

picking time resulting from this combination is 144 time-units, which is z2. We note

that batch 3 includes the orders of customers 3, 4 and 5.

Finally, as the fourth iteration, remaining two batches, the batches 1 and 3, are com-

bined and the time travelled is solved using the RR algorithm. The order picking time

resulting from this last combination is 168 time-units, which is z1. We note that there

is only a single picker exists and the algorithm terminates. The solution flow of the

algorithm is given in Figure 5.10. The number of pickers and order picking times

obtained in each iteration are visually depicted in Figure 5.11.

So, the decision maker here can decide to go with 3 batches since it is not possible to

reduce the wave-picking time further with an increase in the number of pickers.
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Figure 5.11: Travel times of the latest picker for each number of batches

5.7 Computational Experiments

In this section, we present the computational experiments conducted to test the perfor-

mance of the algorithms. Experiments are conducted in five parts and the instances

are generated in line with those in the literature (Roodbergen & De Koster 2001a,

Scholz et al. 2016). First, we test the performance of the two-picker min-max OPP

algorithm by analysing the optimality gaps and computational times. Secondly, we

aim to observe the impact of the number of pickers on lead time savings. Thirdly,

we study the impact of zone-picking on the lead time by comparing the results of

zone-picking and no zone-picking policies. As the fourth experiment, we test the

performance of the algorithm on multi-block layouts by considering four well-known

routing heuristics. Lastly, we compare the performances of zone-picking and batch-

picking policies with a min-max objective.

Following Roodbergen & De Koster (2001a), we use a set of 2,000 instances for

each combination. We implement the models in AMPL modelling language and the

algorithms in C++ in Microsoft Visual Studio 2019. Average run times of algorithms

are below 0.1 seconds, hence are not reported. In all settings, the horizontal length

between two adjacent aisles set to 2 time units. The end of a sub-aisle (length) of
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Table 5.4: Summary of the computational experiments
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7 10 10 90.90 0.51 1.75 34.41 34.09 0 100.0 0.27

7 10 30 69.50 1.59 3.01 39.40 38.47 12 100.0 0.26

15 10 10 92.20 0.28 1.05 29.46 29.27 4 100.0 2.14

15 10 30 66.55 1.25 2.27 37.77 37.01 6 100.0 2.09

7 15 10 87.10 0.64 1.81 38.23 37.84 6 100.0 2.19

7 15 30 60.75 1.70 2.67 44.05 43.10 4 100.0 2.14

15 15 10 89.85 0.28 0.90 33.99 33.80 2 54.0 34.73

15 15 30 60.30 1.14 1.80 42.37 41.71 10 60.3 33.34

a block also refers to the centre of the back cross-aisle of that block and the front

cross-aisle of the next block.

5.7.1 Performance of the Algorithms

In the first experiments, the performance of the two-picker min-max OPP algorithm

is analysed using optimality gaps. We use the first set of instances where there are 7

or 15 aisles, each with a length of 10 or 30 time units, and 10 or 15 pick items in the

picking list. The summary of the results is given on Table 5.4.

In Table 5.4, Optimal % refers to the percentage of the number of optimal instances

out of 2000 instances for each setting. For each instance, the gap is calculated as

GAP =
ZH−Z∗

MINMAX

Z∗
MINMAX

where Z∗
MINMAX represents the optimal travel time for VRP-

MINMAX problem and ZH represents the travel time of the latest picker calculated

by the two-picker OPP algorithm. The results show that the algorithm leads to either

optimal solutions or very small gaps from the VRP-MINMAX model. Even though

the algorithm is not exact, optimal solutions are produced with a significantly high

frequency. Over all settings, a maximum of 92.2% and an average of 77.1% of the
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solutions are optimal, and the average gap remains below 1.7%. Average Savings

represent the average percent time savings when two pickers are used instead of a

single picker. We can conclude that using two pickers reduces the order picking time

at least about one-third with the best improvement of 44% for the VRP-MINMAX

model and 43% for the heuristic. Furthermore, it can be inferred from Table 5.4

that the larger the number of items and the longer the length of an aisle, the more

significant is the assigning of a second picker.

For each instance or picking wave, both pickers start collecting the orders together.

When a picker arrives back to the depot earlier, s/he is assigned to the longer route

for the next picking wave to keep the workload balanced in the long run. The average

time difference between the pickers is shown on the next column of Table 5.4. On

average, the average time difference between the two pickers is as small as 5.5 units,

which shows that the algorithm can balance the workload substantially.

In the last two columns of Table 5.4, we present the average computational times of

the VRP-Z formulation to compare its performance with the one of the proposed exact

algorithm for the min-max OPP under synchronized dynamic zone-picking. We test

the VRP-Z formulation using the same instance set with up to 6 pickers by setting a

time limit of 60 seconds. VRP-Z formulation results in significantly large number of

unsolved instances when the number of pick locations and the number of aisles is even

slightly larger. The results show that there are a maximum of 45% unsolved instances

when the number of pick locations is increased from 10 to 15 and the number of

aisles is increased from 7 to 15. Hence, we can conclude that the proposed VRP-Z

formulation leads to large computing times when the ratio of number of pick locations

to the number of aisles is large. On the other hand, the proposed algorithm solves all

instances in these settting almost instantly (<0.01 seconds). Even, using the second

set of instances (Scholz et al. 2016), as the number of pick locations is increased to 90

and the number of aisles is set as 30, the maximum computation time remains below

0.1 seconds.

113



Figure 5.12: Impact of pickers on lead time reduction

5.7.2 Impact of Multiple Pickers on Lead Time of the Picking Wave for the

Single Block Layout

To analyse the impact of the multiple pickers on lead time savings, we use the exact

algorithm presented in Section 5.5 to find the optimal solutions for the min-max OPP

under synchronized dynamic zoning, as it finds the same solutions as the VRP-Z for-

mulation in significantly shorter times. We conduct our experiments on two different

sets of randomly generated instances. The first is the same as the one presented in

Section 5.7.1, whereas the second set of instances is the subset of the instance set

designed by Scholz et al. (2016), where we set the number of aisles as 10, 20 or 30,

aisle length as 10, 30 or 50 time units, and number of pick items as 30, 60 or 90.

Results for the first set of instances are summarized on Figure 5.12. Results depict

the averages of percentage reductions on the travel time gained by introducing each

additional picker for 7-aisle and 15-aisle cases out of 2000 instances for each setting.

As a baseline, we set the value of single-picker lead time as 100%. We clearly observe

that assigning additional pickers significantly decreases the lead time of a picking

wave, but to a certain extent and in a decreasing rate. In other words, the law of

diminishing marginal returns applies.

According to the findings from the first set, there is an average of 35% reduction with

the introduction of the second picker. However, the impact of reduction decreases to

9% with the 3rd and to 3% with the 4th picker. Although there is still some decrease

with the introduction of a new picker, this difference reduces to below 1% for the 6th

picker. As Figure 5.12 also shows, relatively larger aisle lengths (triangle markers

114



on the plot) result in more savings with each additional picker. This is also the case

when we examine the straight vs. dotted lines, the former of which represent more

pick items in the list. The results also suggest that if the number of pick locations

is relatively larger, additional pickers yield more savings. The last important find-

ing from Figure 5.12 is that an additional picker brings slightly more benefits if the

number of aisles is relatively smaller.

We gain the same insights with the settings by Scholz et al. (2016). The findings are

depicted on Figure 5.13, which shows the averages of reductions gained by introduc-

ing a new picker for the 10-aisle, 20-aisle, and 30-aisle cases out of 2000 instances

for each setting.

From Figure 5.13, there is an average of 43% reduction with the introduction of the

second picker. The impact of reduction decreases to 13.5% with the 3rd and to 6.5%

with the 4th picker. This difference drops below 1% after the 9th picker for the most

extreme test instance. We also notice that assigning 9 pickers yields 82% savings

in the most extreme case. Moreover, larger aisle length results in more savings with

each additional picker. Figure 5.13 also shows that the most significant impact fac-

tors are the aisle length and the number of pick items. Another interesting result is

that although the size of the instance set is more than doubled in the most extreme

case when it is compared to the most extreme case of the previous instance set, the

threshold number of pickers, beyond which no more significant saving is gained, is

only increased by half.

To sum up, our overall finding regarding the impact of the multiple pickers is that

the length of aisle and the number of pick items have a significantly positive impact

on savings gained by assigning more pickers. The savings are more significant if the

aisle-number is relatively small as long as the length of an aisle is relatively short.

Moreover, there is a threshold value of additional picker beyond which no more sav-

ing is received. Thus, it is noteworthy to remind the fact of the law of diminishing

marginal returns.

It will be inaccurate if we try to give a balanced configuration between the size of

the warehouse and the number of pickers due to significant impact of the number of

pick items. In terms of finding a balanced configuration between the warehouse size
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and number of pickers, we observe that the number of aisles is not a significant fac-

tor. However, the length of aisle is significant in the sense that the deeper the aisles,

the more significant is the assigning of an additional picker. Consequently, managers

should consider assigning each additional picker more carefully due to decreasing

pace in the lead time reduction. As a rule of thumb, managers can keep in my that,

for relatively large aisles, assigning the 2nd picker results in about 45% reduction in

lead time of a pick wave, independent of the warehouse size. A 3rd picker would lead

to 15% reduction in average beyond which it will never reach 10% under synchro-

nized zone-picking systems. So, under strict cost considerations, decision makers

can continue with two pickers as it will give the largest reduction in lead time. As we

suggested in Subsection 5.4.2, one can further reduce the lead time at the expense of

aisle-zone integrity by applying the travel time balancing algorithm.

5.7.3 Comparison of Zone-Picking and No Zone-Picking Cases

Next, we aim to assess the impact of zone-picking on travel time by comparing the gap

between the results of the min-max OPP with those without zone-picking. We include

6 pickers in the first set of instances beyond which no value is added by additional

pickers. Table 5.5 shows a summary of these gaps. For each of these combinations,

best results are indicated in bold. Equal Results % refers to the percentage of the

number of instances with the same results out of 2000 instances for each setting.

The first inference that can be drawn from Table 5.5 is that the percentage of equal

results increases significantly with each additional picker as it increases from 60.9%

in average while there are 2 pickers to 99.8% in average with 6 pickers.

Results also show that the average gap between the zone-picking and no zone-picking,

i,e, the extent of suboptimality from imposing zone picking decreases significantly

with each introduced picker (decrease from 1.86% with 2 pickers to 0.11% with 6

pickers). This can be explained by the fact that the possible movements become more

limited when fewer aisles are assigned to each picker.

From Table 5.5, it can also be inferred that aisle-length is also a significant, but neg-

atively associated factor since an increase in the aisle-length leads to a reduction in

the number of equal results (from 89.33% to 69.52% in average, p-value < 0.01) and

a rise in the average (from 0.50% to 1.53% in average, p-value < 0.01) and standard
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Table 5.5: Gap analysis between zone-picking and no zone-picking cases

Aisles Items Length No. of Pickers

2 3 4 5 6

Equal Results %

7 10 10 79.70 84.00 96.80 99.75 100.00

7 10 30 56.65 66.00 82.60 95.80 99.95

15 10 10 77.05 78.80 95.15 99.70 100.00

15 10 30 48.65 48.75 65.25 86.70 97.15

7 15 10 73.55 79.80 96.15 99.65 100.00

7 15 30 44.80 60.45 73.80 92.60 99.65

15 15 10 68.50 73.65 86.65 97.80 99.85

15 15 30 38.05 38.60 43.60 66.00 85.40

Average Gap %

7 10 10 1.26 1.11 0.22 0.02 0.00

7 10 30 2.69 2.06 1.05 0.26 0.00

15 10 10 0.92 0.87 0.19 0.01 0.00

15 10 30 2.33 2.55 1.70 0.65 0.11

7 15 10 1.42 1.19 0.27 0.03 0.00

7 15 30 2.95 2.06 1.36 0.37 0.02

15 15 10 0.92 1.03 0.50 0.09 0.01

15 15 30 2.41 2.92 2.69 1.55 0.77

Standard Deviation of Gap %

7 10 10 2.85 2.78 1.24 0.38 0.00

7 10 30 4.07 3.60 3.65 1.47 0.11

15 10 10 1.93 1.84 0.89 0.28 0.00

15 10 30 3.13 3.41 2.91 1.97 0.71

7 15 10 2.66 2.52 1.45 0.42 0.00

7 15 30 3.49 3.18 2.77 1.60 0.33

15 15 10 1.51 1.94 1.41 0.66 0.15

15 15 30 2.60 3.35 3.07 2.66 2.13
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deviation of gaps (from 1.25% to 2.50% in average, p-value < 0.01).

5.7.4 Multiple Order Pickers for Multi-Block Layout and a Comparison of

Heuristics

As the fourth experiment, we would like to analyse the performance of the multi-

picker dynamic zone-picking algorithm on multi-block layouts by applying four well-

known heuristics on the first set of instances with up to 5 blocks and 7 pickers. The

S-shape, largest gap, and combined heuristics are improved at the same extent by

forcing that the entering aisle for the closest block to the depot should be the right-

most filled picking sub-aisle (Roodbergen & De Koster 2001a). For each random

instance, dynamic zone-picking algorithm is solved using S-shape, largest gap, aisle-

by-aisle and combined heuristics for multi-block layout. Table 5.6 and Table 5.7 are

the products of this experiment.

Table 5.6 gives the average minimum lead times of the picking waves out of 2000

instances for each setting. For each combination, the best heuristic is indicated in

bold-underlined. Table 5.6 shows that the combined heuristic significantly outper-

forms other heuristics for multi-block layouts and the performance of the heuristics

converges with the increase in the number of pickers.

The combined heuristic has the best performance in 259 of the 280 settings and is

only outperformed where the aisle-length/aisle-number ratio is large. Moreover, per-

formance of the aisle-by-aisle heuristic quickly approaches the combined heuristic

with the increase of the number of pickers. Table 5.6 also shows that the S-shape

heuristic never has the best performance alone. The largest gap strategy solely has the

best performance in 14 settings, each of which emerges when the aisle-length/aisle-

number ratio is large. The aisle-by-aisle heuristic solely has the best performance in

seven settings and performs the same as combined for the single block layout as in

line with the literature (Roodbergen & De Koster 2001a). Moreover, it behaves in-

creasingly poorly with the increase in the number of blocks, even worse than S-shape

heuristic. However, employing more pickers quickly improves the performance of

these heuristics.

Finally, we examine the impact of each additional picker on savings. Table 5.7 shows
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Table 5.6: Minimum wave-picking lead times with each additional picker for multi-

block layout settings

Number of Blocks

1 2

No. of Pickers No. of PickersM
et

ho
d

N
o.

of
A

is
le

s

N
o.

of
It

em
s

A
is

le
L

en
gt

h

1 2 3 4 5 6 7 1 2 3 4 5 6 7

7 10 10 79.2 49.2 40.0 36.9 36.4 36.6 37.2 100.4 63.3 54.8 52.9 52.7 52.9 53.5

7 10 30 191.9 112.6 80.9 73.6 70.4 69.7 70.2 255.9 152.6 129.5 123.9 122.8 122.8 123.3

15 10 10 127.3 83.2 69.9 65.3 64.0 63.9 63.9 143.5 94.4 82.7 79.6 79.0 79.0 79.0

15 10 30 278.0 161.9 123.5 105.8 98.6 95.6 94.7 325.0 195.5 159.2 148.6 145.5 145.0 144.9

7 15 10 88.5 54.2 42.7 38.8 37.8 37.8 38.1 121.5 73.1 59.1 55.4 54.8 54.8 55.0

7 15 30 218.5 127.3 90.0 77.3 73.5 72.4 72.6 318.8 184.1 139.9 130.6 127.6 126.9 127.1

15 15 10 151.3 94.8 77.4 70.0 67.1 66.5 66.4 178.0 110.6 90.7 84.3 82.6 82.2 82.2

S-
Sh

ap
e

15 15 30 345.4 195.9 147.6 121.7 108.4 102.3 99.4 425.9 244.0 185.1 162.3 154.1 151.4 150.7

7 10 10 76.0 46.7 39.4 36.8 36.4 36.6 37.2 95.8 61.6 54.6 52.9 52.7 52.9 53.5

7 10 30 164.1 98.8 80.0 73.6 70.4 69.7 70.2 218.8 145.1 129.1 123.8 122.8 122.8 123.3

15 10 10 123.7 79.8 69.2 65.0 64.0 63.9 63.9 146.0 92.2 82.2 79.5 79.0 79.0 79.0

15 10 30 228.2 141.0 114.1 103.9 98.2 95.5 94.7 280.8 180.6 156.6 148.2 145.5 145.0 144.9

7 15 10 88.5 52.2 42.1 38.6 37.8 37.8 38.1 116.3 69.7 58.5 55.4 54.8 54.8 55.0

7 15 30 197.5 113.3 85.6 77.2 73.5 72.4 72.6 269.0 165.5 138.1 130.4 127.6 126.9 127.1

15 15 10 146.8 91.1 75.1 69.2 66.9 66.4 66.4 179.3 106.9 89.2 84.0 82.5 82.2 82.2

L
ar

ge
st

G
ap

15 15 30 284.0 167.8 129.9 113.4 105.8 101.5 99.2 353.3 214.3 173.8 159.5 153.5 151.3 150.7

7 10 10 70.8 45.5 38.5 36.6 36.4 36.6 37.2 97.1 62.9 54.4 52.8 52.7 52.9 53.5

7 10 30 163.5 97.6 77.3 71.6 69.7 69.6 70.2 244.6 151.5 127.4 123.2 122.7 122.8 123.3

15 10 10 111.2 76.5 67.2 64.4 64.0 63.9 63.9 137.8 94.0 82.4 79.5 79.0 79.0 79.0

15 10 30 226.6 139.6 110.8 100.1 95.9 94.8 94.6 307.3 194.6 157.8 147.4 145.3 144.9 144.9

7 15 10 80.7 50.5 41.3 38.3 37.8 37.8 38.1 116.7 72.5 58.5 55.2 54.7 54.8 55.0

7 15 30 193.0 113.9 84.5 75.9 73.0 72.4 72.6 301.6 181.7 137.5 128.9 127.1 126.9 127.1

15 15 10 132.3 86.7 73.2 68.2 66.6 66.4 66.4 168.9 109.1 90.4 84.1 82.5 82.2 82.2

A
is

le
-b

y-
A

is
le

15 15 30 283.8 167.5 129.4 110.9 103.1 99.6 98.4 394.6 237.5 184.3 160.3 152.8 151.0 150.7

7 10 10 70.8 45.5 38.5 36.6 36.4 36.6 37.2 88.8 60.1 54.0 52.8 52.7 52.9 53.5

7 10 30 163.5 97.6 77.3 71.6 69.7 69.6 70.2 218.8 141.7 126.5 123.1 122.7 122.8 123.3

15 10 10 111.2 76.5 67.2 64.4 64.0 63.9 63.9 126.9 89.6 81.2 79.3 79.0 79.0 79.0

15 10 30 226.6 139.6 110.8 100.1 95.9 94.8 94.6 272.1 176.9 153.0 146.5 145.2 144.9 144.9

7 15 10 80.7 50.5 41.3 38.3 37.8 37.8 38.1 107.1 67.8 57.5 55.1 54.7 54.8 55.0

7 15 30 193.0 113.9 84.5 75.9 73.0 72.4 72.6 271.4 165.6 135.1 128.6 127.0 126.9 127.1

15 15 10 132.3 86.7 73.2 68.2 66.6 66.4 66.4 154.2 101.7 87.4 83.3 82.3 82.2 82.2

C
om

bi
ne

d

15 15 30 283.8 167.5 129.4 110.9 103.1 99.6 98.4 348.1 213.1 171.0 156.4 151.9 150.8 150.7
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Table 5.6 (Continued)

Number of Blocks

3 4

No. of Pickers No. of PickersM
et

ho
d

N
o.

of
A

is
le

s

N
o.

of
It

em
s

A
is

le
L

en
gt

h

1 2 3 4 5 6 7 1 2 3 4 5 6 7

7 10 10 122.6 79.8 71.9 70.3 70.1 70.3 70.9 141.0 97.5 89.4 87.8 87.7 87.8 88.2

7 10 30 309.1 199.8 180.8 177.4 176.8 176.8 177.3 354.4 249.7 233.6 231.2 231.0 231.2 231.4

15 10 10 174.2 111.3 98.5 95.1 94.6 94.5 94.5 194.1 129.0 114.9 111.7 111.1 111.0 111.0

15 10 30 381.0 239.2 207.1 199.1 197.6 197.5 197.4 425.3 286.9 258.2 251.8 250.8 250.7 250.7

7 15 10 154.3 91.0 76.4 73.1 72.5 72.5 72.8 174.3 108.8 94.4 91.1 90.5 90.5 90.8

7 15 30 393.3 231.1 192.1 184.6 182.8 182.5 182.7 445.7 281.0 245.7 239.3 238.1 238.0 238.2

15 15 10 223.5 129.9 107.6 100.9 99.2 98.8 98.8 243.0 147.9 124.7 117.7 116.0 115.7 115.7

S-
Sh

ap
e

15 15 30 505.3 290.5 231.6 212.0 206.3 204.8 204.6 550.4 336.1 280.9 264.2 259.9 259.2 259.2

7 10 10 114.2 78.4 71.8 70.3 70.1 70.3 70.9 132.8 96.3 89.2 87.8 87.7 87.8 88.2

7 10 30 268.3 194.5 180.5 177.3 176.8 176.8 177.3 317.4 246.0 233.3 231.1 231.0 231.2 231.4

15 10 10 168.7 109.1 97.9 95.0 94.6 94.5 94.5 188.9 127.0 114.6 111.6 111.1 111.0 111.0

15 10 30 332.6 227.9 205.5 199.0 197.6 197.5 197.4 382.0 278.4 257.2 251.7 250.8 250.7 250.7

7 15 10 140.9 87.1 76.0 73.1 72.5 72.5 72.8 161.2 105.4 94.1 91.1 90.5 90.5 90.8

7 15 30 329.2 215.7 191.1 184.5 182.8 182.5 182.7 382.5 267.7 244.8 239.2 238.1 238.0 238.2

15 15 10 212.9 124.5 106.1 100.6 99.1 98.8 98.8 237.1 142.5 123.4 117.4 116.0 115.7 115.7

L
ar

ge
st

G
ap

15 15 30 419.9 263.5 223.8 210.4 206.0 204.8 204.6 474.1 312.7 275.3 263.1 259.8 259.2 259.2

7 10 10 126.5 81.9 71.6 70.2 70.1 70.3 70.9 157.4 101.6 88.8 87.7 87.7 87.8 88.2

7 10 30 333.7 209.2 179.7 177.0 176.8 176.8 177.3 424.9 267.6 233.1 231.0 230.9 231.2 231.4

15 10 10 170.1 114.4 98.8 95.1 94.6 94.5 94.5 204.1 135.7 115.7 111.6 111.1 111.0 111.0

15 10 30 403.0 256.3 209.4 198.9 197.5 197.4 197.4 505.9 323.1 262.1 251.9 250.7 250.7 250.7

7 15 10 154.0 96.2 76.1 72.9 72.5 72.5 72.8 192.9 120.4 94.4 90.7 90.5 90.5 90.8

7 15 30 415.3 253.2 191.5 183.4 182.6 182.5 182.7 528.1 324.0 247.2 238.6 238.1 238.0 238.2

15 15 10 211.3 134.9 109.9 101.3 99.1 98.8 98.8 256.8 162.2 130.5 118.5 116.0 115.7 115.7

A
is

le
-b

y-
A

is
le

15 15 30 525.3 319.7 245.6 213.9 206.1 204.7 204.6 658.8 400.9 309.0 268.5 259.9 259.2 259.1

7 10 10 111.3 77.5 71.4 70.2 70.1 70.3 70.9 130.6 95.5 88.9 87.7 87.7 87.8 88.2

7 10 30 272.1 192.1 179.0 177.0 176.8 176.8 177.3 321.3 243.9 232.6 231.0 230.9 231.2 231.4

15 10 10 158.7 107.4 97.2 94.8 94.6 94.5 94.5 180.7 125.8 114.1 111.5 111.1 111.0 111.0

15 10 30 332.4 225.8 203.4 198.2 197.5 197.4 197.4 381.9 276.6 255.7 251.3 250.7 250.7 250.7

7 15 10 137.4 86.1 75.3 72.9 72.5 72.5 72.8 157.6 104.5 93.5 90.9 90.5 90.5 90.8

7 15 30 338.9 214.8 188.2 183.4 182.6 182.5 182.7 391.7 266.8 242.8 238.6 238.1 238.0 238.2

15 15 10 198.8 121.9 104.9 100.1 99.0 98.8 98.8 219.8 140.9 122.5 117.0 115.9 115.7 115.7

C
om

bi
ne

d

15 15 30 425.4 263.3 220.9 208.5 205.3 204.7 204.6 475.5 312.4 272.9 261.9 259.5 259.2 259.1
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Table 5.6 (Continued)

Number of Blocks

5

No. of PickersM
et

ho
d

N
o.

of
A
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le
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N
o.
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A
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le
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h

1 2 3 4 5 6 7

7 10 10 159.5 115.3 106.8 105.3 105.2 105.4 106.0

7 10 30 403.4 301.9 287.4 285.5 285.4 285.5 285.8

15 10 10 217.2 147.7 132.6 129.1 128.5 128.4 128.4

15 10 30 476.8 338.5 311.2 305.6 305.0 305.0 305.0

7 15 10 195.3 127.0 112.7 109.4 108.8 108.8 109.1

7 15 30 499.5 333.1 301.4 295.5 294.6 294.6 294.7

15 15 10 267.7 166.8 142.9 135.6 133.7 133.4 133.4

S-
Sh

ap
e

15 15 30 603.2 385.9 332.5 318.3 314.8 314.3 314.3

7 10 10 152.0 114.3 106.8 105.3 105.2 105.4 106.0

7 10 30 369.1 299.2 287.3 285.5 285.4 285.5 285.8

15 10 10 211.7 145.8 132.3 129.0 128.5 128.4 128.4

15 10 30 436.7 331.6 310.4 305.6 305.0 305.0 305.0

7 15 10 181.0 123.9 112.4 109.3 108.8 108.8 109.1

7 15 30 435.6 322.3 300.4 295.4 294.6 294.6 294.7

15 15 10 260.3 162.1 141.7 135.3 133.7 133.4 133.4

L
ar

ge
st

G
ap

15 15 30 527.7 365.3 328.3 317.5 314.7 314.3 314.3

7 10 10 188.2 121.3 106.2 105.2 105.2 105.4 106.0

7 10 30 517.9 327.0 287.0 285.4 285.4 285.5 285.8

15 10 10 238.4 157.5 133.3 128.9 128.4 128.4 128.4

15 10 30 610.0 388.4 317.2 305.7 305.0 305.0 305.0

7 15 10 231.5 144.5 112.8 109.0 108.8 108.8 109.1

7 15 30 650.8 400.0 303.9 294.9 294.6 294.6 294.7

15 15 10 303.1 190.1 151.3 136.6 133.7 133.4 133.4

A
is

le
-b

y-
A

is
le

15 15 30 795.4 485.2 371.9 323.8 315.1 314.3 314.3

7 10 10 150.6 113.6 106.5 105.3 105.2 105.4 106.0

7 10 30 373.3 297.3 286.6 285.4 285.4 285.5 285.8

15 10 10 205.5 145.1 131.9 128.9 128.5 128.4 128.4

15 10 30 438.0 330.3 309.3 305.4 305.0 305.0 305.0

7 15 10 178.5 123.3 112.0 109.2 108.8 108.8 109.1

7 15 30 445.1 320.7 298.9 295.0 294.6 294.6 294.7

15 15 10 246.1 160.8 141.0 135.1 133.6 133.4 133.4

C
om

bi
ne

d

15 15 30 530.4 365.5 326.6 316.6 314.5 314.3 314.2
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the average percentage savings with each additional picker out of 2000 instances for

each setting where the best heuristic is indicated in bold-underlined. For the sin-

gle block layout, average percentage savings are slightly higher when compared to

the optimal cases resulted from the RR algorithm in Section 5.7.2. When we com-

pare the heuristics, additional pickers yield better savings for S-shape and largest gap

heuristics at single block layouts. With the increase on the number of blocks, each ad-

ditional picker results in more savings for the aisle-by-aisle heuristic. The largest gap

strategy performs poorly in terms of percentage savings with each additional picker.

The combined heuristic never has the best performance alone for the percentage sav-

ings, although it still maintains its overall best performance on the minimum lead

times. This can be explained by the fact that underperforming heuristics lead to more

savings with each additional picker since the performance of the heuristics converges

with the increase in the number of pickers. Overall, we observe that the combined

heuristic performs relatively the best for the multi-picker multi-block dynamic zone-

picking problem, while the performance of largest gap heuristic increases with the

number of blocks and that of aisle-by-aisle heuristics increases with the number of

pickers.

5.7.5 Comparison of Zone-Picking and Batch-Picking Policies

Lastly, we analyse the performances of the zone-picking and batch-picking policies

and also present the average percentage gaps using the first set of instances where

there are 7 or 15 aisles, each with a length of 10 or 30 time units, and 10 or 15 pick

items in the picking list and up to 5 groups of zones or batches. Table 5.8 summarizes

the average minimum lead times of the picking waves and the average percentage

gaps between them out of 2000 instances for each setting resulted using the proposed

approaches. For each setting, the better policy and also the best setting in terms of

average percentage gaps are indicated in bold.

The table shows that the zone-picking policy produces lower lead times. However,

zone-picking policy requires sorting/consolidation after completion while batch pick-

ing policy returns undivided customer orders at the depot. The average gap in per-

centage is below 0.5% in average for the worst case and this gaps seems to be quickly

closed at the sorting/consolidation process although zone-picking still have the advan-
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Table 5.7: Percentage savings with each additional picker for multi-block layout set-

tings

Number of Blocks

1 2

No. of Pickers No. of PickersM
et

ho
d

N
o.

of
A

is
le

s

N
o.

of
It

em
s

A
is

le
L

en
gt

h

2 3 4 5 6 7 2 3 4 5 6 7

7 10 10 37.88 18.70 7.75 1.36 0.00 0.00 36.95 13.43 3.47 0.38 0.00 0.00

7 10 30 41.32 28.15 9.02 4.35 0.99 0.00 40.37 15.14 4.32 0.89 0.00 0.00

15 10 10 34.64 15.99 6.58 1.99 0.16 0.00 34.22 12.39 3.75 0.75 0.00 0.00

15 10 30 41.76 23.72 14.33 6.81 3.04 0.94 39.85 18.57 6.66 2.09 0.34 0.07

7 15 10 38.76 21.22 9.13 2.58 0.00 0.00 39.84 19.15 6.26 1.08 0.00 0.00

7 15 30 41.74 29.30 14.11 4.92 1.50 0.00 42.25 24.01 6.65 2.30 0.55 0.00

15 15 10 37.34 18.35 9.56 4.14 0.89 0.15 37.87 17.99 7.06 2.02 0.48 0.00

S-
Sh

ap
e

15 15 30 43.28 24.66 17.55 10.93 5.63 2.83 42.71 24.14 12.32 5.05 1.75 0.46

7 10 10 38.55 15.63 6.60 1.09 0.00 0.00 35.70 11.36 3.11 0.38 0.00 0.00

7 10 30 39.79 19.03 8.00 4.35 0.99 0.00 33.68 11.03 4.11 0.81 0.00 0.00

15 10 10 35.49 13.28 6.07 1.54 0.16 0.00 36.85 10.85 3.28 0.63 0.00 0.00

15 10 30 38.21 19.08 8.94 5.49 2.75 0.84 35.68 13.29 5.36 1.82 0.34 0.07

7 15 10 41.02 19.35 8.31 2.07 0.00 0.00 40.07 16.07 5.30 1.08 0.00 0.00

7 15 30 42.63 24.45 9.81 4.79 1.50 0.00 38.48 16.56 5.58 2.15 0.55 0.00

15 15 10 37.94 17.56 7.86 3.32 0.75 0.00 40.38 16.56 5.83 1.79 0.36 0.00

L
ar

ge
st

G
ap

15 15 30 40.92 22.59 12.70 6.70 4.06 2.27 39.34 18.90 8.23 3.76 1.43 0.40

7 10 10 35.73 15.38 4.94 0.55 0.00 0.00 35.22 13.51 2.94 0.19 0.00 0.00

7 10 30 40.31 20.80 7.37 2.65 0.14 0.00 38.06 15.91 3.30 0.41 0.00 0.00

15 10 10 31.21 12.16 4.17 0.62 0.16 0.00 31.79 12.34 3.52 0.63 0.00 0.00

15 10 30 38.39 20.63 9.66 4.20 1.15 0.21 36.67 18.91 6.59 1.42 0.28 0.00

7 15 10 37.42 18.22 7.26 1.31 0.00 0.00 37.87 19.31 5.64 0.91 0.00 0.00

7 15 30 40.98 25.81 10.18 3.82 0.82 0.00 39.75 24.33 6.25 1.40 0.16 0.00

15 15 10 34.47 15.57 6.83 2.35 0.30 0.00 35.41 17.14 6.97 1.90 0.36 0.00

A
is

le
-b

y-
A

is
le

15 15 30 40.98 22.75 14.30 7.03 3.39 1.20 39.81 22.40 13.02 4.68 1.18 0.20

7 10 10 35.73 15.38 4.94 0.55 0.00 0.00 32.32 10.15 2.22 0.19 0.00 0.00

7 10 30 40.31 20.80 7.37 2.65 0.14 0.00 35.24 10.73 2.69 0.32 0.00 0.00

15 10 10 31.21 12.16 4.17 0.62 0.16 0.00 29.39 9.37 2.34 0.38 0.00 0.00

15 10 30 38.39 20.63 9.66 4.20 1.15 0.21 34.99 13.51 4.25 0.89 0.21 0.00

7 15 10 37.42 18.22 7.26 1.31 0.00 0.00 36.69 15.19 4.17 0.73 0.00 0.00

7 15 30 40.98 25.81 10.18 3.82 0.82 0.00 38.98 18.42 4.81 1.24 0.08 0.00

15 15 10 34.47 15.57 6.83 2.35 0.30 0.00 34.05 14.06 4.69 1.20 0.12 0.00

C
om

bi
ne

d

15 15 30 40.98 22.75 14.30 7.03 3.39 1.20 38.78 19.76 8.54 2.88 0.72 0.07
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Table 5.7 (Continued)

Number of Blocks

3 4

No. of Pickers No. of PickersM
et

ho
d

N
o.

of
A

is
le

s

N
o.

of
It

em
s

A
is

le
L

en
gt

h
2 3 4 5 6 7 2 3 4 5 6 7

7 10 10 34.91 9.90 2.23 0.28 0.00 0.00 30.85 8.31 1.79 0.11 0.00 0.00

7 10 30 35.36 9.51 1.88 0.34 0.00 0.00 29.54 6.45 1.03 0.09 0.00 0.00

15 10 10 36.11 11.50 3.45 0.53 0.11 0.00 33.54 10.93 2.79 0.54 0.09 0.00

15 10 30 37.22 13.42 3.86 0.75 0.05 0.05 32.54 10.00 2.48 0.40 0.04 0.00

7 15 10 41.02 16.04 4.32 0.82 0.00 0.00 37.58 13.24 3.50 0.66 0.00 0.00

7 15 30 41.24 16.88 3.90 0.98 0.16 0.00 36.95 12.56 2.60 0.50 0.04 0.00

15 15 10 41.88 17.17 6.23 1.68 0.40 0.00 39.14 15.69 5.61 1.44 0.26 0.00

S-
Sh

ap
e

15 15 30 42.51 20.28 8.46 2.69 0.73 0.10 38.94 16.42 5.95 1.63 0.27 0.00

7 10 10 31.35 8.42 2.09 0.28 0.00 0.00 27.48 7.37 1.57 0.11 0.00 0.00

7 10 30 27.51 7.20 1.77 0.28 0.00 0.00 22.50 5.16 0.94 0.04 0.00 0.00

15 10 10 35.33 10.27 2.96 0.42 0.11 0.00 32.77 9.76 2.62 0.45 0.09 0.00

15 10 30 31.48 9.83 3.16 0.70 0.05 0.05 27.12 7.61 2.14 0.36 0.04 0.00

7 15 10 38.18 12.74 3.82 0.82 0.00 0.00 34.62 10.72 3.19 0.66 0.00 0.00

7 15 30 34.48 11.40 3.45 0.92 0.16 0.00 30.01 8.55 2.29 0.46 0.04 0.00

15 15 10 41.52 14.78 5.18 1.49 0.30 0.00 39.90 13.40 4.86 1.19 0.26 0.00

L
ar

ge
st

G
ap

15 15 30 37.25 15.07 5.99 2.09 0.58 0.10 34.04 11.96 4.43 1.25 0.23 0.00

7 10 10 35.26 12.58 1.96 0.14 0.00 0.00 35.45 12.60 1.24 0.00 0.00 0.00

7 10 30 37.31 14.10 1.50 0.11 0.00 0.00 37.02 12.89 0.90 0.04 0.00 0.00

15 10 10 32.75 13.64 3.74 0.53 0.11 0.00 33.51 14.74 3.54 0.45 0.09 0.00

15 10 30 36.40 18.30 5.01 0.70 0.05 0.00 36.13 18.88 3.89 0.48 0.00 0.00

7 15 10 37.53 20.89 4.20 0.55 0.00 0.00 37.58 21.59 3.92 0.22 0.00 0.00

7 15 30 39.03 24.37 4.23 0.44 0.05 0.00 38.65 23.70 3.48 0.21 0.04 0.00

15 15 10 36.16 18.53 7.83 2.17 0.30 0.00 36.84 19.54 9.20 2.11 0.26 0.00

A
is

le
-b

y-
A

is
le

15 15 30 39.14 23.18 12.91 3.65 0.68 0.05 39.15 22.92 13.11 3.20 0.27 0.04

7 10 10 30.37 7.87 1.68 0.14 0.00 0.00 26.88 6.91 1.35 0.00 0.00 0.00

7 10 30 29.40 6.82 1.12 0.11 0.00 0.00 24.09 4.63 0.69 0.04 0.00 0.00

15 10 10 32.33 9.50 2.47 0.21 0.11 0.00 30.38 9.30 2.28 0.36 0.09 0.00

15 10 30 32.07 9.92 2.56 0.35 0.05 0.00 27.57 7.56 1.72 0.24 0.00 0.00

7 15 10 37.34 12.54 3.19 0.55 0.00 0.00 33.69 10.53 2.78 0.44 0.00 0.00

7 15 30 36.62 12.38 2.55 0.44 0.05 0.00 31.89 9.00 1.73 0.21 0.04 0.00

15 15 10 38.68 13.95 4.58 1.10 0.20 0.00 35.90 13.06 4.49 0.94 0.17 0.00

C
om

bi
ne

d

15 15 30 38.11 16.10 5.61 1.53 0.29 0.05 34.30 12.64 4.03 0.92 0.12 0.04
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Table 5.7 (Continued)

Number of Blocks

5

No. of PickersM
et

ho
d

N
o.

of
A

is
le

s

N
o.

of
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s

A
is

le
L

en
gt

h

2 3 4 5 6 7

7 10 10 27.71 7.37 1.40 0.09 0.00 0.00

7 10 30 25.16 4.80 0.66 0.04 0.00 0.00

15 10 10 32.00 10.22 2.64 0.46 0.08 0.00

15 10 30 29.01 8.06 1.80 0.20 0.00 0.00

7 15 10 34.97 11.26 2.93 0.55 0.00 0.00

7 15 30 33.31 9.52 1.96 0.30 0.00 0.00

15 15 10 37.69 14.33 5.11 1.40 0.22 0.00

S-
Sh

ap
e

15 15 30 36.02 13.84 4.27 1.10 0.16 0.00

7 10 10 24.80 6.56 1.40 0.09 0.00 0.00

7 10 30 18.94 3.98 0.63 0.04 0.00 0.00

15 10 10 31.13 9.26 2.49 0.39 0.08 0.00

15 10 30 24.07 6.39 1.55 0.20 0.00 0.00

7 15 10 31.55 9.28 2.76 0.46 0.00 0.00

7 15 30 26.01 6.79 1.66 0.27 0.00 0.00

15 15 10 37.73 12.58 4.52 1.18 0.22 0.00

L
ar

ge
st

G
ap

15 15 30 30.78 10.13 3.29 0.88 0.13 0.00

7 10 10 35.55 12.45 0.94 0.00 0.00 0.00

7 10 30 36.86 12.23 0.56 0.00 0.00 0.00

15 10 10 33.93 15.37 3.30 0.39 0.00 0.00

15 10 30 36.33 18.33 3.63 0.23 0.00 0.00

7 15 10 37.58 21.94 3.37 0.18 0.00 0.00

7 15 30 38.54 24.03 2.96 0.10 0.00 0.00

15 15 10 37.28 20.41 9.72 2.12 0.22 0.00

A
is

le
-b

y-
A

is
le

15 15 30 39.00 23.35 12.93 2.69 0.25 0.00

7 10 10 24.57 6.25 1.13 0.09 0.00 0.00

7 10 30 20.36 3.60 0.42 0.00 0.00 0.00

15 10 10 29.39 9.10 2.27 0.31 0.08 0.00

15 10 30 24.59 6.36 1.26 0.13 0.00 0.00

7 15 10 30.92 9.16 2.50 0.37 0.00 0.00

7 15 30 27.95 6.80 1.30 0.14 0.00 0.00

15 15 10 34.66 12.31 4.18 1.11 0.15 0.00

C
om

bi
ne

d

15 15 30 31.09 10.64 3.06 0.66 0.06 0.03
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tages in terms of congestion in the aisles and familiarity of pick locations. Further-

more, the results shows that the gap gets larger with more number of picking items

and less number of aisles while the length of an aisle does not seem to be significant

factor regarding the use of zone- or batch-picking policy. Finally, needless to say, we

get the same results when there is only one zone or batch to pick.

5.8 Concluding Remarks

In this chapter, we have focused on the multi-picker OPP in parallel-aisle warehouses

under a synchronized dynamic zone-picking policy, with the objective of minimizing

order lead time by minimizing the maximum travel time of each picker, while aiming

to ensure the balance among pickers. This problem is important in the sense of mak-

ing practical and effective use of resources while fulfilling the customer orders within

increasingly competitive due dates.

After proposing integer programming formulations for the cases without and with

zoning policies, we have introduced a knapsack-based DP heuristic for the two-picker

min-max OPP without zoning, as well as a novel polynomial-time exact algorithm

for the min-max OPP in synchronized dynamic zone-picking systems. This DP algo-

rithm assigns pickers for zone-picking and returns the optimal combination of zone

assignments for multiple pickers. Lastly, we focus on the multi-picker OPP from

a batch-picking perspective. Throughout the extensive computational experiments,

we have tested the performance of the algorithms, analysed the impact of zoning

to understand the extent of the suboptimality from imposing zone picking, analysed

the impact of multiple pickers on lead time savings and showed how the DP can be

adapted to multiple blocks.
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Table 5.8: Performance comparison of zone-picking and batch-picking policies

Aisles Items Length No. of zones/batches

1 2 3 4 5

Zone-picking lead times (in seconds)

7 10 10 70.58 45.97 39.12 36.65 36.24

7 10 30 148.90 93.20 78.57 72.37 70.04

15 10 10 110.51 77.07 67.89 64.73 64.19

15 10 30 205.25 129.95 108.99 99.84 95.76

7 15 10 82.11 51.04 42.24 38.44 37.64

7 15 30 180.32 105.61 84.18 76.92 73.38

15 15 10 131.53 86.40 73.79 68.59 66.82

15 15 30 258.61 154.35 122.76 109.63 102.99

Batch-picking lead times (in seconds)

7 10 10 70.58 53.86 49.27 48.46 47.46

7 10 30 148.90 108.70 97.46 95.30 92.72

15 10 10 110.51 86.20 78.94 77.58 76.02

15 10 30 205.25 148.23 130.11 126.34 122.27

7 15 10 82.11 63.97 57.17 55.67 55.07

7 15 30 180.32 132.66 115.34 111.39 109.71

15 15 10 131.53 101.84 90.00 87.15 86.21

15 15 30 258.61 184.96 155.68 147.49 144.94

Average Gap %

7 10 10 0.00 0.17 0.26 0.32 0.31

7 10 30 0.00 0.17 0.24 0.32 0.32

15 10 10 0.00 0.12 0.16 0.20 0.18

15 10 30 0.00 0.14 0.19 0.27 0.28

7 15 10 0.00 0.25 0.35 0.45 0.46

7 15 30 0.00 0.26 0.37 0.45 0.50

15 15 10 0.00 0.18 0.22 0.27 0.29

15 15 30 0.00 0.20 0.27 0.35 0.41
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CHAPTER 6

CONCLUSION

Order picking is the most expensive and labor-intensive warehouse activity. In this

thesis, we present compact mathematical models and exact/heuristic algorithms for

various order picking problems.

In Chapters 3 and 4, we have approached the OPP from an arc routing perspective.

The OPP formulations in the literature depend on the famous TSP and its derivatives,

including Scholz et al. (2016) and Pansart et al. (2018). However, taking the TSP as

a base case and developing new constraints exploiting the special properties of the

parallel-aisle warehouse not only make the formulations more difficult to harness for

the researchers but also it prevents to extend the OPP to different variants. In this

thesis, we present compact arc routing-based formulations for the single- and two-

block OPP in parallel-aisle warehouses. Our approach is important in the sense that

it is an arc routing-based approach making use of specifics of the graph structure

corresponding to the warehouse layout. The disconnectivity elimination constraints

proposed in our studies are the direct implications of the observations we made on

this special structure. Since it is also a compact formulation, it can be a base picker

routing model for more complex integrated operational warehouse problems or OPPs

with multiple blocks or multiple pickers.

Throughout these chapters, we firstly describe the problem in the single- and two-

block parallel-aisle warehouse layouts and present the related literature. Afterwards,

we constitute the single-block OPP formulation. Here, we define and classify the

intra-aisle and cross-aisle movement types, mention how a sequential relation be-

tween these movements can also halves the feasible region, and we explain how to

formulate the degree constraints by only using the odd-degree movements. At the
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same time, we present the assignment, sequencing and degree constraints. After-

wards, we introduce the disconnectivity elimination constraints by defining when and

how such disconnectivities can occur. Also, we present a lazy constraint approach

for the constraints which polynomially increase the size of the problem. Later, in

the experiments section, we show the significant contribution of the lazy constraint

approach. Next, we extend the binary integer programming formulation in the pre-

ceding chapter to the two-block OPP by also explaining how to modify the index sets

and parameters, the additional formations in cross-aisle movements and disconnectiv-

ities. Lastly, for layouts with more than two blocks, we present an easy-to-implement

picker routing heuristic which performs relatively good for the layouts with longer

aisle lengths. Finally, we test the efficiency of the proposed models in terms of com-

putation times and integrality gap. In both single- and two-block warehouses, our

formulations consist of assignment, sequencing, degree and disconnectivity elimina-

tion constraints. while the first three types of constraints occur similarly in both cases,

additional disconnectivities, and therefore disconnectivity elimination constraints, are

defined for the two-block case. These constraints are formulated as lazy constraints,

substantially improving the efficiency of the formulations. The solution approaches

and the results of the computational experiments in these two chapters are submitted

and are under review in a peer-reviewed journal.

In Chapter 5, we consider the multi-picker OPP under a parallel dynamic zone-

picking policy where each picker is assigned to a dedicated zone of aisles at each

pick wave. We balance the workload among pickers by minimizing the maximum

distance traveled by the latest picker and make them use the minimum-time routes.

Considering the balance of the workload distributed among pickers and tight due

dates promised to customers, we present mathematical models, and propose exact

and heuristic algorithms which minimize the lead time of the wave zone-picking pro-

cess for a given the number of aisles and a given number of pickers. Firstly, we

present VRP-MINMAX formulations by extending compact VRP formulations for

cases with and without zoning. However, these formulations perform poorly with the

increase in the number of picking items. Thus, we focus on approximate and exact

dynamic programming algorithms. In this regard, we consider two-picker OPP as a

preliminary step, and then generalize it to multi-picker OPP in parallel-aisle single-
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block/multi-block warehouses under a zone-picking policy. Thanks to the properties

of Pascal’s Triangle, the proposed algorithm on dynamic zone-picking for multiple

pickers performs significantly quickly and exactly. To the best of our knowledge,

this study fills two important gaps regarding the order picking operations. It is the

first study dealing with multiple-picker OPP on multi-block layouts. Also, there is

a clear gap in integrated OPP literature considering zone picking since it is mostly

considered as a tactical level decision. This study fills this gap since it is an inte-

grated zone-picking, picker routing and workforce allocation problem. The solution

approaches and the results of the computational experiments of this chapter have been

published in a peer-reviewed journal (Saylam et al. 2022).

6.1 Major Findings

In general, computational experiments on randomly generated instances in line with

those in the literature show that (i) the arc-routing based formulations perform at least

as good as the ones in the literature in terms of computing times, and (ii) the proposed

algorithms can find optimal and near-optimal solutions in negligible computational

times.

Our computational experiments from Chapters 3 and 4 show that the performance

of the proposed formulation for single-block layout outperforms all TSP-based for-

mulations while it is comparable to that of Goeke & Schneider (2021), and also its

straightforward extension to the two-block layout outperforms the best-known ap-

proaches for the two-block OPP to date. Other noteworthy findings obtained from

our computational experiments include: (i) although the number of constraints is in

quadratic order of the number of aisles, applying the multi-aisle disconnectivity elim-

ination constraints as lazy constraints keeps the constraint size linear for the most of

the instances and also significantly decreases the actual number of constraints and the

computing times, (ii) the integrality gap of the LP relaxation is particularly lower as

the size of the instance increases, due to an increase in the number of disconnectivity

elimination constraints, (iii) the computing times are significantly shorter as the ratio

of the number of pick locations to the number of aisles is larger, (iv) the difference be-

tween computing times of single- and two-block formulations increases with a larger

number of aisles as the need of more disconnectivity elimination constraints also in-
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creases, and (v) the proposed multi-block heuristic outperforms all its counterparts

for the layouts with large number of blocks and large size of aisle lengths.

Important findings obtained from our computational experiments in Chapter 5 are that

(i) the proposed algorithm for the min-max OPP with two pickers generates efficient

solutions very quickly as the optimality gap averages and the standard deviations are

low, (ii) for relatively large aisles, assigning a second picker reduces the order picking

time around 45% in average while this impact exponentially diminishes with each ad-

ditional picker, (iii) the proposed synchronized dynamic zone-picking approach with

a min-max objective spontaneously leads to the balanced partition of the pickers’

workload thus reduces management supervision, and (iv) the travel time gap between

“no zoning” and “zoning” strategies quickly disappears with the introduction of ad-

ditional pickers. It is important to note that we have worked on uniformly distributed

pick locations. That is no demand frequency is taken into account. If a class-based

storage policy, where fast moving class products are stored in the closest aisles, is

applied, the advantage of dynamic zoning policy would be more significant. This is

because the possibility of having a pick location in the further aisles would be rela-

tively small. For the same reason, the proposed algorithm will terminate faster.

6.2 Future Research Directions

For further research, it is noteworthy that the proposed arc routing-based models can

be embedded as the routing subproblem into the integrated/combined order picking

operation problems or can be extended for different variants of the OPP, where each

of these variations could yield a significant contribution to the literature. In this re-

gard, one can aim to extend the compact model to such different variants and still

keep it compact and efficient with polynomial number of variables and constraints.

The proposed formulation can be extended to a general number of blocks. In such

a formulation, assignment, sequencing and degree constraints would be straightfor-

ward, whereas the increase in the number of disconnectivity elimination constraints

would pose the main challenge. But first, one should analyse the solution of the in-

stances in order to better generalize how and when such disconnectivities occur for

multi-block layouts.
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It is also possible to use the proposed formulations in a matheuristic for the multi-

block OPP as the assignment, sequencing and degree constraints in this chapter could

lead to a very tight lower bound. The formulation can also be extended to turn restric-

tions and delays at intersections. In problems with turn penalties, turn costs could

be added during pre-processing for cross-aisle keeping movements according to their

number of turns. For example, type (2) cross-aisle keeping movement has one turn

while type (4) cross-aisle keeping movement has two turns at an aisle. In the same

sense, intersection delay costs could be added during pre-processing for each move-

ment according to their number of intersection visits. An optimal route, then, min-

imizes the sum of the travel time and the turn/intersection delay penalties. Last but

not least, a modified RR algorithm can be studied using the directed movements in-

troduced in this thesis.

On the other hand, the integrated work regarding the min-max OPP under synchro-

nized dynamic zone-picking system can also be further improved by considering joint

zone- and batch-picking approach. The cost factor is not considered in this study and

can be a future research direction. Since each additional picker reduces the zone-

picking lead time in a decreasing pace, the optimal configuration of zoning and the

number of pickers can be further explored with consideration of the cost and ser-

vice level objectives. Moreover, a cost-related study should also consider other cost

factors that vary with the number of zones. For example, as dynamic zones create

a more challenging environment for the pickers, a successful operation requires an

intact communication and coordination with the help of supporting systems such as

pick-by-voice systems. Also, unique features of warehouses, such as intersection

points between picking aisles and cross-aisles, intra-aisle and inter-aisle movement

types, can be included in the OPP formulations. Such an extension could strengthen

the formulation for the multi-picker OPP. The integer programming model can be

adapted to a matheuristic to improve the algorithm. The proposed travel time bal-

ancing algorithm could also be embedded into various heuristics for further improve-

ment purposes. Finally, the introduced exact dynamic programming approach for

the optimal single-block zone assignment can be further studied for an extension to

multiple-block layouts.
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