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ABSTRACT

STOCHASTIC MODELING OF STOP-LOSS REINSURANCE AND EXPOSURE
CURVES UNDER TIME DEPENDENT STRUCTURE

Mert, Özenç Murat

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. A. Sevtap Selçuk-Kestel

December 2022, 109 pages

Insurance markets play an essential role in the economy of the world and its structure
requires reinsurance policies due to the growth in populations, extreme (catastrophic)
events, political and economical perspectives. In this thesis, stop-loss contracts, one
of the reinsurance policy types, are covered for two different contract types: (i) con-
tracts with retention and (ii) contracts with both retention and cap (maximum). This
thesis covers two different methodologies, distributional and stochastic behaviors of
the claim amounts for the analysis of loss modeling, the costs of insurer and reinsurer,
and exposure curves to obtain a fair premium share. Unlike most studies on reinsur-
ance policies, the thesis makes emphasizes the time-dependent and time-influenced
structure of claims and gives comprehensive derivations to model claims amounts
and to examine the costs of parties and the exposure curves. In the distributional ap-
proach, heavy-tailed distributions, specifically, Pareto, Gamma, and Inverse Gamma,
are used and the costs of parties and the exposure curves are derived analytically under
the selected distributions. Using Monte Carlo simulations and considering the joint
analysis of parties’ loss ratios, the optimal retention and maximum levels are found
and compared with the values minimizing the risks of parties under VaR and CVaR
risk measures. In the stochastic modeling approach, in order to express both random
and time-dependent mechanisms of the claim amounts, Geometric Brownian Motion
with time-varying parameters is used and the costs of parties and the exposure curves
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are derived analytically since the time elapses during the contract period brings dis-
similarities on the claim behavior so does on the cost, premium share. Furthermore,
Pareto-Beta stochastic jump diffusion (PBJD) model and its theory are implemented
for capturing possible extreme losses. The analytical derivations for the costs and the
exposure curves under PBJD are also collected. The emphasis on the applications of
real-life data, specifically Turkey’s compulsory traffic insurance claims, is made for
the stochastic approaches. The results for the expected costs and the exposure curves
are presented. In order to obtain the forecasts values of the loss amounts, the expected
costs, and the exposure curves, the time-varying parameters are taken as time series
and ARIMA family models and cubic spline extrapolation are applied to these series
in order to keep the structure of stochastic models.

Keywords: Stop-Loss Reinsurance, Exposure Curves, GBM, PBJD, The Costs of
Insurer and Reinsurer, Premium share, ARIMA, Cubic Spline Extrapolation, Fore-
casting
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ÖZ

ZAMANA BAĞLI HASAR FAZLASI REÜSÜRANS VE RİZİKO EĞRİLERİNİN
STOKASTİK MODELLEMESİ

Mert, Özenç Murat

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. A. Sevtap Selçuk-Kestel

Aralık 2022, 109 sayfa

Dünya ekonomisinde önemli bir rol oynayan sigorta piyasaları, nüfus artışı, katastro-
fik olaylar, politik ve ekonomik perspektifler nedeniyle reasürans politikalarını gerek-
tirmektedir. Bu tezde, reasürans poliçe türlerinden biri olan zarar-durdur sözleşmeleri,
(i) rehinli sözleşmeler ve (ii) hem reasüranslı hem de üst limitli (maksimum) sözleş-
meler olmak üzere iki farklı sözleşme türü için ele alınmıştır. Bu tez, hasar model-
lemesinin analizi için hasar tutarlarının dağıtımsal ve stokastik davranışları, sigortacı
ve reasürör maliyetleri, adil prim payı elde etmek için riziko eğrileri olmak üzere
iki farklı metodolojiyi kapsamaktadır. Reasürans politikaları üzerine yapılan çoğu ça-
lışmanın aksine, tez, hasarların zamana bağlı yapısını vurgular ve hasar tutarlarını
modellemek ve tarafların maliyetlerini ve riziko eğrilerini incelemek için kapsamlı
çıkarımlar verir. Dağılım yaklaşımında, özellikle Pareto, Gamma ve Ters Gamma ol-
mak üzere kalın kuyruklu dağılımlar kullanılır ve seçilen dağılımlar altında tarafla-
rın maliyetleri ve riziko eğrileri analitik olarak türetilir. Monte Carlo simülasyonları
kullanılarak ve tarafların kayıp oranlarının ortak analizi göz önünde bulundurularak,
VaR ve CVaR risk ölçütleri kapsamında optimal elde tutma ve maksimum seviyeler
bulunur ve tarafların risklerini minimize eden değerler ile karşılaştırılır. Stokastik mo-
delleme yaklaşımında, talep tutarlarının hem rastgele hem de zamana bağlı mekaniz-
masını ifade etmek için zamanla değişen parametrelerle Geometrik Brown Hareketi
kullanılmış ve sözleşme sırasında geçen süre nedeniyle tarafların maliyetleri ve riziko
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eğrileri analitik olarak türetilmiştir. Zaman, hasar davranışında olduğu gibi maliyet,
prim payı üzerinde de farklılıklar getirir. Ayrıca, olası aşırı kayıpları yakalamak için
Pareto-Beta stokastik sıçrama difüzyon (PBJD) modeli ve arkasındaki teori uygulan-
maktadır. Bu tez, maliyet türevlerini ve PBJD kapsamında riziko eğrilerini birleştirir.
Stokastik yaklaşımlar için gerçek hayat verileri kullanılıp, özellikle Türkiye’nin zo-
runlu trafik sigortası hasar veri uygulamalarına vurgu yapılmıştır. Beklenen maliyetler
için sonuçlar, riziko eğrileri sunulmaktadır. Kayıp miktarları, beklenen maliyetler ve
riziko eğrilerinin tahmin değerlerini elde etmek için zamanla değişen parametreler
zaman serisi olarak alınmış ve stokastik yapıyı korumak için ARIMA ailesi modelleri
ve bu serilere kübik spline ekstrapolasyonu uygulanmıştır.

Anahtar Kelimeler: Zarar-Durdur Reasürans, Riziko Eğrileri, Sigortacı ve Reasürör
Maliyetleri, Prim Payı, ARIMA, Kubik Spline Ekstrapolasyonu, Tahmin
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CHAPTER 1

INTRODUCTION

A reinsurance contract shows different characteristics depending on the type of agree-

ment. Among all other types of reinsurance forms, stop-loss is the most common type

of agreement at which the partition rule of the risk is determined by a prescribed re-

tention level. Additional to this constraint, depending on the type of the risk, the

reinsurer may decide to set an upper bound (cap or maximum) on the severity of the

risk (claim amount, cost). The partition of the risk with respect to the levels of these

factors (d and m) between two parties creates a natural correlation that contributes to

the set the optimal value maximizing the interest of insurer and reinsurer. The stop-

loss reinsurance has an interesting property such that its optimal value is depicted

when the variance of the cost, especially for the insurer, is minimized. Besides the

dependence between insurer’s and reinsurer’s behavior on their expected claims, the

time influence on this balance is influential, due to extreme events such as natural dis-

asters and economic recessions. For this reason, this thesis analyzes the equilibrium

between parties under three approaches:

(i) No time influence on the claims but there is statistical behavior, which leads us

to study the dependence with respect to parametric evaluations;

(ii) Time influence leading to the stochastic behavior on the aggregate claims;

(iii) Time influence with extreme event impact incorporated with stochastic behav-

ior on the aggregate claims.

Most of the optimal reinsurance studies in literature minimize the variance of cost for

the insurer but rarely consider the reinsurer’s aspect (see [10, 20, 24, 21, 17]). The
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insurer’s optimal strategy under the standard deviation premium principle with sev-

eral constraints, [20], optimal reinsurance arrangements under various mean-variance

premium principles, [7, 29], the relation between the adjustment coefficient and max-

imum expected utility of wealth with respect to the retained risk, [24, 21], the optimal

retentions by minimizing the value-at-risk (VaR) and the conditional tail expectation

(CTE) of the insurer’s total risk, and some other risk measures, [13, 4, 45, 23, 16, 34],

can be counted among many remarkable studies in reinsurance optimization. Some

other literature such as Markowitz type efficient frontier solution to determine the op-

timal retention and limiting levels under a joint survival probability, [18, 19], design-

ing an optimal reinsurance contract maximizing the joint survival and profitable prob-

abilities, [11], two state-of-the-art evolutionary and swarm intelligence approaches,

[39], and optimal reinsurance contracts minimizing the convex combination of the

VaR for both parties, [12], concentrate on the joint behavior of the insurer and rein-

surer in optimizing the retention offer different approaches. Additionally, the optimal

values of the contract by minimizing the total risks of the insurer VaR, CVaR, and

CTE can be found in [13, 39, 49, 15]. The other risk measures such as ES (expected

shortfall) and RCVaR (robust conditional value-at-risk, [25]) can also be considered

in this framework. However, we stick with the coherent measures to be consistent

with insurance literature.

On the other hand, for the partition of risk premium between insurer and reinsurer,

exposure curves are commonly used in practice. Based on the level of retention, the

premium share is mostly considered in non-proportional reinsurance contracts. The

“rating by a layer of insurance” method evaluates the proportion of losses with re-

spect to the size of loss from aggregate loss distributions [40]. In [30], the liability

insurance in which the claim sizes can not be assumed to be scaled by sums insured

is introduced. They analyze Riebesell’s system introduced in 1936 from the perspec-

tive of the collective risk model theory. The well-known exposure curves, which

are a form of analytic function with two parameters by using Maxwell-Boltzman,

Bose-Einstein, Fermi-Dirac (MBBEFD) distribution class for a single risk in [6] and

extended in [2] for two dependent risks, is derived as a sole function of the reten-

tion. The dependence between the costs of insurer and reinsurer measured by the

correlation coefficient as a function of retention and maximum levels under Normal,
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Gamma, and translated Gamma loss distribution assumptions are introduced by [14],

at which the optimal stop-loss contract attains the maximum correlation. However,

the literature lacks the studies about the exposure curves for stop-loss contracts under

optimal constraints and dependence framework.

Due to the other varieties in the loss distributions and the direct influence of the de-

pendence created with respect to the upper and lower bounds (retention and cap) in

reinsurance agreements, we aim to examine the influence of the correlation coeffi-

cient on the valuation of premiums for insurer and reinsurer, and then, evaluate the

optimal stop-loss contract in the frame of Pareto, Gamma, and Inverse Gamma as ag-

gregate claim distributions under two cases. Case I refers to the contracts only with

retention(d); Case II quotes the ones with both retention and maximum (m) as defin-

ing constraints. The optimal value for d and m are determined in such a way that the

maximum level of these bounds optimizes (minimizes) the cost of both insurer and

reinsurer under the selected loss distributions. To do so, we derive the expressions for

the mean and the variance of the aggregate claims for insurer and reinsurer and the

correlation coefficient (ρ) between the costs of both parties. Keeping up the value of

the correlation between their respective costs, we determine the optimum premium

and its partition between the insurer and the reinsurer. Under this framework, the ex-

posure curves as functions of retention and maximum levels for each distribution are

analytically derived. Monte Carlo simulations are employed to illustrate the impact

of parameters on determining the premium share. We employ a dynamic optimization

scheme to determine the retention and maximum levels, which yields an equilibrium

maximizing risk premiums for both parties. The convergence to optimal bounds in

two cases is determined according to the values achieving the maximum correlation

minimizing the expected cost. Under the proposed framework, we investigate the

effectiveness of the optimized d and m levels compared to the risk measures VaR

and CVaR. Our results show that the optimal values for both cases also maximize the

correlation between the costs. We expect the findings are utilized to determine the

optimum level, its related retention value with respect to their cost distribution under

derived exposure curves.

Additionally, stop-loss takes into account the balance between insurer and reinsurer

under certain conditions, which requires a good understanding of historical loss data.
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Loss modeling is one of the most celebrated mathematical approaches in actuarial

sciences. It offers valuable theoretical and practical guidance for expected claims and

risk management. Methods such as the chain ladder and interactive modeling to esti-

mate the claims ([38]), the framework of double generalized linear models to model

the dispersion of the costs as well as the mean of the claim costs ([44]), and actuarial

loss functions based on a symmetrized version of the semiparametric transformation

approach to kernel smoothing to estimate both the initial mode and the heavy tail

that is suitable for actuarial loss distributions ([8]) can be given as striking examples

from literature. However, no specific study in the literature determines the exposure

curves for time-dependent stop-loss contracts. The expansion of the premium income

or loss over the contract’s time frame is important to capture the time influence on the

random loss.

In this part, we consider the daily aggregate loss per day to follow the claims in a time-

dependent mechanism that can be utilized as a stochastic model under a discrete-time

framework. Moreover, we assume that the claims follow a stochastic behavior, specif-

ically the geometric Brownian motion with time-varying parameters. We employ a

continuous-time model and an increasing σ- algebra filtration to achieve the discrete-

time formalism. In the stop-loss scheme, we consider Case I, Case II. Under this

framework, the time-dependent costs of the insurer and the reinsurer under both cases

are analytically investigated. Here, each party’s costs refer to the amount of payment

done by the insurer and the reinsurer, which results from a random loss (claims). Fur-

thermore, the partition of the premium is proposed under the time-dependent setup

for both insurer and reinsurer. To illustrate the findings, an application to the real

data on Turkey’s compulsory traffic insurance claims for the year 2006 is employed.

The claim distribution within the policy year supports the influence of time on the

claims as well. In the literature, the parameter estimation in stochastic models is cru-

cial to develop a better understanding of real-world problems in insurance, finance,

and physics ([48]). In this thesis, the time-varying parameters required in model-

ing are found using dynamic maximum likelihood parameter estimation (DMLE).

Based on those estimates, the simulated claims are used to depict the cost of par-

ties, exposure curves under Case I and Case II. Having attained proper performance

in simulations, we forecast the claims, the costs, and the exposure curves using two
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approaches: (i) the cubic spline extrapolation as its implementation is straightfor-

ward due to equally-distanced discrete time intervals, (ii) dynamic AutoRegressive

Integrated Moving Average (ARIMA) as parameters vary with respect to time. The

performance of simulations is tested using MAPE and RMSE. Our findings illustrate

that time influence on the claims should be taken into account as well. The proposed

approach and analytical results can be a useful tool and guide to determine the fair

premium share.

Subsequently, in line with a fully stochastic approach, we investigate how extreme

losses influence costs and premium share under the constraints using the stochastic

jump-diffusion process for the claims. In this frame, the Pareto-Beta jump-diffusion

(PBJD) process is chosen as it allows up-and-down jumps generated by two indepen-

dent Poisson processes at which jump magnitudes are drawn from Pareto and Beta

distributions. Choosing PBJD to capture the extremes in claim amounts stems from

the number and magnitude of the up-jumps that are more frequent than the down

jumps. With this motivation, we derive the probability density of the log return pro-

cess of PBJD for each time increment within time-varying perspectives as a novel

contribution. The probability density is constructed by the weighted mixture of Nor-

mal, Pareto, and Beta distributions for each time increment to derive the expected

costs of the insurer and the reinsurer for two types of contracts: (i) Case I and Case

II. Furthermore, we derive the exposure curves under the prescribed assumptions.

The numerical approximations are utilized to evaluate challenging integrations, and

applications are performed using the same data set daily containing compulsory traffic

insurance claims (MTPL) from the Turkish insurance market. Based on the proposed

model, the MTPL claims are forecasted with respect to the calibrated time-varying

parameters whose values are estimated by dynamic ARIMA with trend search. The

performance of the forecast is determined by RMSE and MAPE. The time-varying

parameter estimations made in two stages: dynamic moment matching estimation for

the jump part and dynamic maximum-likelihood estimation for the continuous part.

Even though the literature offers many studies on jump-diffusion processes within the

perspectives of finance and economy (see [37], [1], [36]), the actuarial implementa-

tions of those are scarce (see [3], [41], [22]). Therefore, we aim to contribute to the

reinsurance loss modeling literature by implementing a jump-diffusion approach to
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involve the impact of extreme losses having jumps in its claim history. The outcome

of our approach enables researchers the analytical derivations of the expected loss and

premium shares via exposure curves. The verifications through Monte Carlo simula-

tions based on real-life data-driven calibrated parameters are found to be promising

aid for practitioners.

1.1 The organization of the thesis

Chapter 2 gives the basic definitions and types of reinsurance policies, the exposure

curves usage by considering the relations of the risk on the insurer and reinsurer with

the premium share, and the mathematical background of stochastic differetional equa-

tions and stochastic jump diffusions in order to constitute definitions and theorems

that are used in this thesis.

In Chapter 3, the derived expressions for the expected value, variance, and correlation

coefficient for the two cases are presented in Section 3.1. Moreover, the derivations

of these statistics under Pareto, Gamma, and Inverse Gamma assumptions are intro-

duced. Section 3.2 presents the premium share between the insurer and reinsurer by

implementing the proposed exposure curves under three distributional assumptions.

Section 3.3 sets up an optimization problem and corresponding algorithms to obtain

the solutions. Section 3.4 is devoted to numerical illustrations at which the simula-

tions based on the framework for the insurer and the reinsurer are presented as well

as their behavior with respect to VaR and CVaR risk measures. Section 3.5 gives

concluding remarks.

Chapter 4 is structured as follows: Sections 4.1 and 4.2 present analytical deriva-

tions of the time-varying cost and exposure curves under geometric Brownian motion

assumption. Section 4.3 examines parameter estimation by dynamic maximum like-

lihood estimator. The simulations of loss, the costs, and exposure curves based on

real data are found in Section 4.4. Section 4.5 is devoted to forecasting and its perfor-

mance with respect to real observations. Section 4.6 concludes the chapter.

Chapter 5 investigates the influence of extreme losses on a stop-loss agreement be-

tween insurer and reinsurer in the frame of stochastic loss amount process with jump
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influence. We assume that the extreme losses can be captured by PBJD and investigate

the plausibility of the models on real-life data set. The analytical derivations to find

expected costs and premium shares via exposure curves are novel. The verifications

using Monte Carlo simulations based on data-driven calibrated parameters are more

than promising as an aid for practitioners. In numerical analysis, the use of MTPL

data is original, and estimating time-varying parameters in two stages which are dy-

namic moment matching estimation for the jump part (λ̂u, λ̂d, ν̂u(i), ν̂d(i)) and dy-

namic maximum-likelihood estimation for the continuous part (µ̂(i), σ̂(i)), is shown

to be effective for the estimation of daily aggregate losses. Forecasting is achieved

by implementing both dynamic structures of parameters in time and time dependence

offers researchers and practitioners to make predictions of daily aggregate claims for

a policy year.
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CHAPTER 2

PRELAMINARIES

2.1 Reinsurance

An insurance company can take on an obligation of a reinsurance contract in order to

protect itself from the greater risks or to reduce its own expected higher risks. By the

reinsurance contract, the insurer transfers its part of risks to the reinsurer in return of

giving a part of the premiums earned from the policy holders.

The reinsurance contracts can be classified into two groups as the proportional and

the non-proportional reinsurance. In proportional reinsurance, the insurer and the

reinsurer share liabilities in a predetermined proportion as described within the un-

derlying aggrement. The spliting up of premiums and claims is shared between the

insurer and the reinsurer according to the proportion. There are two types of propor-

tional reinsurance contracts as quota-share and surplus. In quota-share treaty, the in-

surer and reinsurer share premiums and losses according to a fixed percentage. Quota

share reinsurance allows an insurer to retain some risk and premium while sharing

the rest with an insurer up to a predetermined maximum coverage. Surplus reinsur-

ance treaty is defined as in which the insurer retains a fixed amount of policy liability

and the reinsurer takes responsibility for what remains. In non-proportional contracts,

the reinsurer only has a concrete liability to the insurer if individual claims or aggre-

gated claims amounts exceed the amount specified in the contract. The reinsurer is

obliged to compansate the insurer’s loss exceeding this amount. There are two types

of non-proportional reinsurance contracts as stop-loss and excess-loss. In stop-loss

reinsurance, losses over a specific amount are covered solely by the reinsurer and not
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by insurer company. Aggregate stop-loss reinsurance caps the aggregate amount of

losses that a insurance company is responsible for, called the retention level or the

deductible, and would only apply when the value of claims occurrences reaches the

retention level. In excess of loss, the reinsurer indemnifies the insurer company for

losses that exceed a specified limit. Depending on the treaty, it can apply to either the

all loss events during the policy period or can apply to losses in aggregate. Treaties

may also use bands of losses that are reduced with each claim.

In this thesis, we focus on stop-loss reinsurance, which can written as two different

kinds of contracts. These are contract with retention and contract with both retention

and maximum. In the literature, the investigation of stop-loss contracts depend highly

on loss modeling. In general, the studies of loss modeling assume that the claim

amounts are determined by a distribution. The nature of actuarial losses and the

studies show that the selection of a heavy tailed distribution for the loss modeling is

beneficial in terms of more accurate risk analysis.

2.2 Exposure Curves

Non-proportional reinsurance treaties should be rated based not only on losses in the

past experience, but also on actual exposure. The rating of exposure is conditional to

risk profiles for the risk collaterals. A risk band summarizes all risks of similar size

(SI, MPTL, or EML) that belong to the same risk category. For the purposes of rating,

all risks in a given band are assumed to be homogeneous. They can thus be modeled

using a single loss distribution function.

The exposure rating problem is determining how to divide the total premiums of one

band between the ceding company and the reinsurer. The issue is resolved in two

steps. First, the overall risk premiums (per band) are calculated by applying a suitable

loss ratio to the gross premiums. These risk premiums are then subdivided into risk

premiums for retention and risk premiums for cession in a subsequent step. Because

of the nature of non-proportional reinsurance, this is possible with the assistance of

the loss distribution function. In practice, however, the accurate loss distribution

function for an individual band of a risk profile is rarely known. This information
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gap is bridged by using distribution functions derived from large portfolios of similar

risks. These distribution functions can be found in the form of so-called exposure

curves. These curves allow the reinsurer to directly extract the risk premium ratio as

a function of the deductible.

Underwriters frequently have a limited number of discrete exposure curves at their

disposal. These curves are available in graphical and tabular formats, and they are

also used in computerized underwriting tools. For each risk band, one of the curves

must be chosen, but it is not always clear which curve should be used. In such cases,

the underwriter may wish to employ a virtual curve that lies between two discrete

curves.

This can be accomplished by substituting analytical exposure curves for the discrete

curves. Then, for each set of parameters, another curve is defined. When a continuous

set of parameters is available, the exposure curves can be smoothly varied across the

entire range of available curves. However, the curves must meet certain conditions,

which limit the parameter range. Furthermore, if a curve family with many (more

than two) parameters is used, practical issues may arise. Finding a set of parameters

that can be associated with the information available for a class of risks may then

become extremely difficult. This issue can be solved by restricting a curve family to

a one- or two-parameter subclass and introducing new parameters.

2.3 Backround in Stochastic Modeling

In this part, we present some definitions and theorems that are used in this thesis,

which are required for the construction of stochastic loss modeling. For this rea-

son, we begin with the construction of Brownian motion. Then, we continue with

the backround, basics, and properties of stochastic processes, which are geometric

Brownian motion (GBM) and Pareto-Beta jump diffusion process (PBJD).
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2.3.1 Brownian motion and its properties

Construction of a symmetric random walk is necessary to create a Brownian motion.

For this, a fair coin is tossed repeatedly where the probabilities of H , "head", and

T , "tail", on each toss are 1
2
. Let ω be the infinite sequence of tosses, and ωn is the

outcome of nth toss. Define

Cj =

 1 if ωj = H,

−1 if ωj = T,
(2.1)

and, M0 = 0, such that

Mk =
k∑

j=1

Cj, k = 1, 2, . . . (2.2)

Here, Mk is the process called as a symmetric random walk. Additionaly, the aim is

to quicken the time and scale down the step size in a symmetric random walk in order

to obtain a scaled symmetric random walk; therefore, to obtain the approximation of

a Brownian motion.

W n(t) =
1√
n
Mnt, (2.3)

where n is a fixed positive integer. Here, W n(t) is called as a scaled symmetric

random walk.

Brownian motion is obtained by the limit of W n(t), defined in Equation (2.3), as

n→∞.

Definition 2.1. [43] Let (Ω,F ,P) be a probability space. Assume that W (t), t ≥ 0,

is a continuous function with W (0) = 0 and depends on ω for each ω ∈ Ω. Then

W (t) is a Brownian motion if the increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tk)−W (tk−1) (2.4)

are indepedent to each other for all 0 = t0 < t1 < · · · < tk. Moreover, each

increment has a normal distribution with mean 0 and variance ti − ti−1 for i =

0, 1, . . . , k, i.e.,

E[W (ti)−W (ti−1)] = 0,

V[W (ti)−W (ti−1)] = ti − ti−1.
(2.5)
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Moreover, the time elapsing bring the change in the information available at each

time. For the representation of this, filtration usage and its relation with a Brownian

motion are essential for the further analysis in the thesis.

Definition 2.2. [43] Let W (t) be a Brownian motion and defined in a probability

space (Ω,F ,P). Let F(t), t ≥ 0, be a filtration for the Brownian motion. F(t) is a

collection of σ-algebras and satisfies

(i) F(s) ⊆ F(t) for 0 ≤ s < t.

(ii) W (t) is F(t)-measurable.

(iii) The increment W (u)−W (t) is independent of F(t) for 0 ≤ t < u.

The properties of Definition (2.2) need to be evaluated for a better understanding.

Property (i) stands for representing accumulation of information, i.e.,F(t) has at least

as much information available as than F(s). Property (ii) indicates the adaptivity of

a Brownian motion, i.e., the information available at time t is sufficient to evaluate

W (t). Property (iii) says that after time t, any increment of the Brownian motion is

independent of the information at time t, i.e., the information available at earlier time

can not be used for prediciting future behavior of Brownian motion.

The derivations and analysis in the thesis are used under expected operator, E[.], with

respect to the information available in earlier time, F(.), to construct the sliding

pattern and to obtain closed form solutions. For this, we need the following The-

orem [2.1], which shows the martingale represention of a Brownian motion.

Theorem 2.1. [28] For 0 ≤ s < t,

E[W (t)|F(s)] = W (s). (2.6)

The quadratic variation of a Brownian motion needs to be taken into acccount for the

solution of models in the thesis and the usage of Ito’s calculus. Moreover, a fixed

time interval is required to build the continous models in the thesis in terms of their

discretization. For this reason, let Qv be the partition of time interval [0, T ], which is

set as

0 = t0 < t1 < · · · < tn = T.
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The step size of partition points is not required to be equally distanced, although we

use equally spaced step size in the thesis. Let ||Π|| = max
j=0,t1,...,n−1

tj+1 − tj .

Theorem 2.2. [5] Let W be a Brownian motion. The quadratic variation of W up to

time T is

[W,W ](T ) = lim
||Π||→0

n−1∑
j=0

[W (j + 1)−W (j)]2 = T, ∀T ≥ 0, (2.7)

almost surely.

2.3.2 Ito Processes and Ito’s Lemma

The stochastic model and finding its solutions require the descriptions of Ito processes

and Ito’s formula.

Definition 2.3. [43] A stochastic process X(t) defined on (Ω,F ,P) is called one-

dimensional Ito process if it has a form

X(t) = X(0) +

∫ t

0

µ(X(s), s)ds+

∫ t

0

σ(X(s), s)dW (s), 0 ≤ t ≤ T. (2.8)

Here, µ(X(t), t) and σ(X(t), t) are square integrable and adapted drift and volatility

processes with respect to the filtration {F}t.

The differential form of Equation (2.8) is written as

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t), 0 ≤ t ≤ T.

Theorem 2.3. (Ito’s Lemma)

[28] Let f(x, t) be a function, which has continuous partial derivatives ∂f
∂x

, ∂2f
∂x2 and

∂f
∂t

. Let X(t) be an Ito process, which has an SDE form

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t), 0 ≤ t ≤ T.

Let Y (t) = f(X(t), t), 0 ≤ t ≤ T. Then Y (t) is also an Ito process with SDE

dY (t) =

(
∂f

∂t
(X(t), t) + µ(X(t), t)

∂f

∂x
(X(t), t) +

σ2(X(t), t)

2

∂2f

∂x2
(X(t), t)

)
dt

+ σ(X(t), t)
∂f

∂x
(X(t), t)dW (t).

(2.9)
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2.3.3 Geometric Brownian Motion

The construction of GBM is build on a Brownian motion with drift and scaling, which

is stated in the following:

Definition 2.4. [43] A stochastic process Y (t) is said to be a Brownian motion with

drift and scaling if Y (t) is the solution of the stochastic differention equation (SDE)

dY (t) = µdt+ σdW (t), (2.10)

where µ and σ > 0 are constants.

Definition 2.5. [42] A stochastic process X(t) is said to be a geometric Brownian

motion (GBM) if X(t) is the solution of the stochastic differention equation (SDE)

dX(t) = µX(t)dt+ σX(t)dW (t), (2.11)

where µ and σ > 0 are constants.

The solution of SDE in Equation (2.11) is found using Ito’s lemma on f(x) = ln(x)

with X(0) > 0 as

X(t) = X(0)e(µ−
σ2

2
)t+σW (t). (2.12)

Since we can easily change the starting point X(0), we take it as 1 for simplicity. The

basic properties of GBM are collected as

i) Distributions: For t ∈ (0,∞), X(t) has the lognormal distribution with mean

(µ − σ2/2)t and standard deviation σ
√
t. The probability density function ft

and the cumulative distribution function Ft are

ft(x) =
1

σx
√
2πt

exp
(
− [ln(x)− (µ− σ2/2)t]2

2σ2t

)
,

Ft(x) = Φ

[
ln(x)− (µ− σ2/2)t

σ
√
t

]
,

respectively, for x ∈ (0,∞), where Φ is the standard normal distribution func-

tion. Furthermore, the quantile function F−1
t is

F−1
t = exp((µ− σ2/2)t+ σ

√
t)Φ−1(p), p ∈ (0, 1),

where Φ−1 is the quantile function of standard normal.
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ii) Moments: For n ∈ N and t ∈ [0,∞), the nth moment of X(t) is

E[Xn
t ] = exp

(
nµt+

σ2

2
t(n2 − n)

)
.

The mean and variance of X(t) follow from nth moment as

E[X(t)] = eµt,

V[X(t)] = e2µt(eσ
2t − 1),

respectively.

2.3.4 Poisson and Compound Poisson Processes

Assume that E is a random variable with the probability density function fE(t) and

the cumulative distribution function FE(t)

fE(t) =

λe−λt, t ≥ 0

0, t < 0,
,

FE(t) = 1− e−λt, t ≥ 0,

(2.13)

where λ > 0 is a constant. E is said to be an exponential random variable with

mean 1
λ

. Furthermore, one of the important property of the exponential distribution is

memoryless, which can be hightlighted as

P(E > t+ s|E > s) =
P(E > t+ s)

P(E > s)

=
e−λ(t+s)

e−λs
= e−λt = P(E > t).

(2.14)

Consider a sequence E1, E2, . . . of independent exponential random variables with

each having the same mean 1
λ

. We set up an event, called a jump, which occurs at the

time of E1, E2, . . .. Here, each of Ej, j = 1, 2, . . ., is called the interarrival times and

the arrival times are defined as

An =
n∑

j=1

Ej. (2.15)

Moreover, An is nth jump time and has the gamma density

fAn(t) =
tn−1

(n− 1)!
λne−λt, t ≥ 0. (2.16)
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The Poisson process N(t) enumerates the number of jumps up to time t, which is

displayed as

N(t) =



0, 0 ≤ t < A1,

1, A1 ≤ t < A2,

...

n, An ≤ t < An+1

...

. (2.17)

Since 1
λ

is the expected time between jumps, the arriving times of jumps is an average

rate of λ for a time unit. Thus, the Poisson process N(t) has intensity λ.

Furthermore, N(t) with intensity λ has the distribution

P(N(t) = n) =
(λt)n

n!
e−λt, n = 0, 1, 2, . . . . (2.18)

One of the important property of Poisson Process is that it has stationary and inde-

pendent increments, which is a consequence of the memorylessness of exponential

random variables. The following Theorem 2.4 also indicates this.

Theorem 2.4. [27] Let N(t) be a Poisson process with λ intensity and

0 = t0 < t1 < · · · < tj < · · · < tn. The increments

N(t1)−N(t0), N(t2)−N(t1), . . . , N(tj)−N(tj−1), . . . , N(tn)−N(tn−1)

are stationary and independent. Moreover,

P(N(tj)−N(tj−1) = J) =
λJ(tj+1 − tj)

J

J !
e−λ(tj+1−tj), J = 0, 1, . . . . (2.19)

Consider a sequence of independent and identically distributed random variables

R1, R2, . . . in which each has mean β. Additionally, each Ri, i = 1, 2, . . ., is also

independent of Poisson process N(t). The compound Poisson process is defined as

Q(t) =

N(t)∑
i=1

Ri, t ≥ 0. (2.20)

The jump times of Q(t) and N(t) are the same; however, the difference betwwen

them is their jumps sizes. N(t) has the jump size 1, whereas Q(t) has the jumps of

random sizes denoted by random variables Ri.

17



As in the Poisson process N(t), the increments of the compound Poisson process

Q(t) are stationary and independent.

Theorem 2.5. [43] Let Q(t) be a compound Poisson process and

0 = t0 < t1 < · · · < tj < · · · < tn. The increments

Q(t1)−Q(t0), Q(t2)−Q(t1), . . . , Q(tj)−Q(tj−1), . . . , Q(tn)−Q(tn−1)

are stationary and independent. Moreover, the distributions of Q(tj) − Q(tj−1) and

Q(tj − tj−1) are the same.

Let the moment generating function of Ri be

MR(z) = E[ezRi ].

Then, the moment generating function of Q(t) is

MQ(t)(z) = E[ezQ(t)] = eλt(MR(z)−1). (2.21)

If Ri’s are not random but a constant value r, then Q(t) = rN(t). This yields the

moment generating function of rN(t) as

MrN(t)(z) = eλt(e
zr−1).

By taking r = 1, we have the moment genrating function of N(t) as

MN(t)(z) = eλt(e
z−1). (2.22)

2.3.4.1 Jump Processes

Let (Ω,F ,P) be a probability space with filtration F(t), t ≥ 0.

Define a stochastic process K(t) such that K is allowed to have jumps, i.e.,

K(t) = K(0) + I(t) +R(t) + J(t), (2.23)

where X(0) is the initial value,

I(t) =

∫ t

0

Γ(s)dW (s)
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is an Ito integral of an adapted process Γ(t) with respect to the filtration and W (t) is

a Brownian motion,

R(t) =

∫ t

0

Θ(s)ds

is a Riemann integral and Θ(t) is also adapted, and J(t) is an adapted pure jumps

process with J(0) = 0. Moreover, J(t) is right-continuous, i.e., J(t) is the value

after the jump and we denote J(t−) is the value right before the jump.

The continuous part of X(t) is denoted by

Kc(t) = K(0) + I(t) +R(t).

Moreover, the left continuous part of X(t) is

K(t−) = K(0) + I(t) +R(t) + J(t−).

Thus, the jump size of X at time t is

∆K(t) = K(t)−K(t−).

Let Ψ(t) be an adapted process and X(t) of the form given in Equation (2.23). The

stochastic integral of Ψ with respect to X is

∫ t

0

Ψ(s)dK(s) =

∫ t

0

Ψ(s)Γ(s)dW (s) +

∫ t

0

Ψ(s)Θ(s)ds+
∑
0<s≤t

Ψ(s)∆J(s).

(2.24)

In differentiation form,

Ψ(t)dK(t) = Ψ(t)Γ(t)dW (t) + Ψ(t)Θ(t)dt+Ψ(t)dJ(t). (2.25)

Now, our aim is to compute quadratic and cross variations of jump process K on a

time interval [0, T ]. Consider the partition on [0, T ] of the form

0 = t0 < t1 < · · · < tn = T.

Let ||Π|| = max
j=0,t1,...,n−1

tj+1 − tj be the longest subinterval. Define

Qv(K) =
n−1∑
j=0

(K(tj+1)−K(tj))
2.
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The quadratic variation of K on [0, T ] is

[K,K](T ) = lim
||Π||→0

Qv(K). (2.26)

Let K1(t) and K2(t) be jump processes. Define

Cv(K1, K2) =
n−1∑
j=0

(K1(tj+1)−K1(tj))(K2(tj+1)−K2(tj)).

The cross variation of K1 and K2 on [0, T ] is

[K1, K2](T ) = lim
||Π||→0

Cv(K1, K2). (2.27)

According to these notations, we give the quadratic and cross variations of jump

processes in the following Theorem 2.6.

Theorem 2.6. [46] Let K1(t) = K1(0)+I1(t)+R1(t)+J1(t) and K2(t) = K2(0)+

I2(t) +R2(t) + J2(t) be jump processes, where

Ii(t) =

∫ t

0

Γi(s)dW (s), Ri(t) =

∫ t

0

Θi(s)ds, i = 1, 2,

J1(t) and J2(t) are pure jump processes. Then

[K1, K1][T ] =

∫ T

0

Γ2
1(s)ds+

∑
0<s≤t

(∆J1(s))
2, (2.28)

[K1, K2][T ] =

∫ T

0

Γ1(s)Γ2(s)ds+
∑
0<s≤t

∆J1(s)∆J2(s). (2.29)

For the solution of a stochastic jump processes, it is required to use Ito-Doeblin for-

mula, which is indicated in the following Theorem 2.7

Theorem 2.7. (Ito-Doeblin formula)

[46] Let K(t) be a jump process and a function f(.) have the continuous first order,

f ′(.), and second order, f ′′(.) derivatives. Then

f(K(t)) =f(X(0)) +

∫ t

0

f ′(K(s))dKc(s) +
1

2

∫ t

0

f ′′(K(s))d[Kc, Kc](s)

+
∑
0<s≤t

[f(K(s))− f(K(s−))],
(2.30)

where Kc(t) is the continuous part of the jump process K(t).
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For the determination of solution, it is useful to understand stochastic exponential

terminology presented in Theorem 2.8 below.

Theorem 2.8. (Doleans-Dade Exponential)

[33] Let K(t) be a jump process. The stochastic expnential of (Doleans-Dade expo-

nential) the process K is also a process defined to be

εK(t) = exp

(
Kc(t)− 1

2
[Kc, Kc](t)

) ∏
0<s≤t

(1 + ∆K(s)). (2.31)
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CHAPTER 3

OPTIMAL PREMIUM ALLOCATION

This chapter presents the analytical derivations of stop-loss reinsurance cost, variance

and covariance under dependence structure. It also gives the derivations for exposure

curves under the assumption that losses are distributed Pareto, Gamma, and Inverse

Gamma.

3.1 Implemenation of distributional approach

Our aim is to investigate the effects of correlation coefficient on the estimation of

premium valuation for the insurer and the reinsurer. Furthermore, because of the

other variations in loss distributions and the direct impact of the dependence formed

in reinsurance agreements with respect to the upper and lower bounds (retention and

cap), we analyze the optimal stop-loss contract if the aggregate claims are distributed

by Pareto, Gamma, and Inverse Gamma.

3.1.1 The costs of insurer and reinsurer

The stop-loss contract is started or rejected based on the positions including the re-

tention or both retention and cap levels when the claim occurs. With respect to these

parameters’ values, expected costs and premiums vary for both parties, creating a nat-

ural dependency between claims to be paid. Figs. 3.1a and 3.1b indicate that the risk

margin follows an inverse pattern between the insurer and the reinsurer for each case.
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Figure 3.1: The risk share between parties

Suppose that the total claim costs in one period is denoted by the random variable S

and shared among the insurer and the reinsurer. Moreover, the costs of insurer and

reinsurer are denoted by I and R, respectively. We can represent the costs’ partitions

on S as

S = I +R. (3.1)

If we use a well-known distribution for S, we are able to obtain the probability dis-

tributions for insurer and reinsurer. This directs us to derive the expressions of the

expected costs and the variance for each contract types (Case I and Case II) analyti-

cally if they exist. Although these derivations are unambiguous in actuarial literature,

the custom-made analytics with respect to certain distributions are distinctively pre-

sented in this chapter.

In [14], the aggregate loss distribution function, the distributions functions for the
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costs of insurer and reinsurer, denoted by FS(s), FI(s), and FR(s) respectively, the

expected value, the variance, the correlation coefficient, dentoed by E[.], V[.], and

ρ(., .) are provided. The costs of insurer and reinsurer under the contracts with reten-

tion (Case I) are defined as

I = min(S, d), and FI(s) =

FS(s), s < d

1, s ≥ d
,

R = max(S − d, 0), and FR(s) = FS(s+ d).

(3.2)

Proposition 3.1. [14] The expected values of costs of insurer and reinsurer, their

variances and correlation coefficient with respect to retention level d are given as

E[I(d)] = E[S]− E[R(d)], (3.3)

E[R(d)] =

∫ ∞

d

[1− FS(s)]ds, (3.4)

V[I(d)] = V[S]− V[R(d)]− 2Cov[I(d), R(d)], (3.5)

V[R(d)] = 2

∫ ∞

d

s[1− FS(s)]ds+ E[R(d)](−2d− E[R(d)]), (3.6)

ρ(I(d), R(d)) =
E[R(d)](d− E[S] + E[R(d)])√

V[R(d)]
(
V[S] + E[R(d)](d+ E[S])− 2

∫∞
d

s[1− FS(s)]ds
) .

(3.7)

The correlation coefficient between the insurer and the reinsurer specified in Eq. (3.7)

is a purely d-dependent function; thus, the retenion level which maximizes the corre-

lation coefficient results in the best option for the insurer and the reinsurer.

For a stop-loss contract type with both retention, d, and maximum, m, offers the cost

partition for the insurer and the reinsurer, which is given as

I(d,m) = min(S, d) +max(S −m, 0), (3.8)

R(d,m) = min(m− d,max(S − d, 0)). (3.9)

The distribution functions for the costs of insurer and reinsurer in this contract type
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(Case II) are

FI(s) =

FS(s), s < d

FS(s+m− d), s ≥ d,
,

FR(s) =

FS(s+ d), s < m− d

1, s ≥ m− d,
,

(3.10)

respectively. Using the same methodology as in Case I, the expressions of the ex-

pected costs, variances and correlation coefficient are obtained in Proposition 3.2.

Proposition 3.2. [14] The expected values of costs of insurer and reinsurer, their

variances and correlation coefficient with respect to retention level d and maximum

m are

E[I(d,m)] = E[S]− E[R(d,m)], (3.11)

E[R(d,m)] = E[R(d)]− E[R(m)], (3.12)

V[I(d,m)] = V[S]− V[R(d,m)]− 2Cov[I(d,m), R(d,m)], (3.13)

V[R(d,m)] = V[R(d)]− V[R(m)] (3.14)

+ 2E[R(m)](E[R(d)]− E[R(m)] + d−m)

ρ(I(d,m), R(d,m)) =
Cov[I(d), R(d)]− (2d−m)E[R(m)]√

V[R(d,m)](V[S]− V[R(d,m)]− 2Cov[I(d,m), R(d,m)])
.

(3.15)

where E[R(.)] and V[R(.)] are mentioned in Propositon 3.1. The term in Eq. (3.15),

ρ(I(d,m), R(d,m)), is a function determined by the bounds agreed upon the con-

tracts. The derivations related to the losses distributed Normal, Gamma, and trans-

lated Gamma are presented in [14]. However, Pareto, Gamma, and Inverse Gamma

are the most common distributions for loss amounts in the literature, [9] and [47],

because of the following characteristics: (i) the Pareto distribution captures the large

losses since it has very tick tail; (ii) the fact that Gamma distribution is closed under

convolution and right-skewed makes it infinitely divisible and applicable for extreme

claims; (iii) the heavy-tail of Inverse Gamma is useful to analyse larger claims explic-

itly.
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Furthermore, Pareto and Inverse Gamma have a comparably heavy tail than Gamma.

The statiscal properties of Gamma and Inverse Gamma are better than Pareto, for

instance, if a random variable Y has a distibution Gamma with parameters a and b,

then 1
Y

is distributed by Inverse Gamma with parameters a and 1
b
.

The analytical formulations are derived for the expected value, variance and the cor-

relation coefficient under both contract types (Case I and Case II) in this chapter as

well.

3.1.1.1 Aggregate claims with Pareto distribution

Suppose that the total costs of claims, S, has Pareto distribution with the shape pa-

rameter a and the scale parameter b where a, b ∈ R+. The expected costs and the

variance of the insurer and their covariance for Case I and Case II are derived and

presented below.

Proposition 3.3. Under the assumption that S ∼ Pareto(a, b), the expected costs and

the variances of the insurer and the reinsurer under Case I with respect to retention

level d are

E[I(d)] =
b
(
a− (b/d)(a−1)

)
a− 1

, (3.16)

E[R(d)] =
bad1−a

a− 1
, (3.17)

V[I(d)] =
ab2 − 2a(a− 2)bad1−a[d− b] + (a− 2)ba+1d2−2a[ba−1 − 2]

(a− 1)2(a− 2)
,

(3.18)

V[R(d)] =
bad(2−a)

[
2− (b/d)a(a− 2)

]
(a− 1)2(a− 2)

, (3.19)

Cov[I(d), R(d)] =
abad1−a(d− b) + bad(2−a)

[
(b/d)a − 1

]
(a− 1)2

, (3.20)

respectively.
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Proposition 3.4. Under the assumption that S ∼ Pareto(a, b), the expected costs and

the variances of the insurer and the reinsurer under Case II with respect to retention

level d and the maximum level m are

E[I(d,m)] =
a2b− ab− ba[d1−a −m1−a]

a− 1
, (3.21)

E[R(d,m)] =
ba

a− 1

[
d1−a −m1−a

]
, (3.22)

V[I(d,m)] = −2badm1−a

a− 1
+

b2am2(1−a)
[
2d2(1−a) − 1

]
(a− 1)2

(3.23)

+
bad1−a

[
2(1− a)d+ 2ba − d(b/d)a

]
+ 2ba−+1d1−a

[
a− ba−1d1−a

]
(a− 1)2

+
ab2 − 2ba

[
d2−a −m2−a

]
(a− 1)2(a− 2)

,

V[R(d,m)] =
b2a

(a− 1)2

[
(m1−a − d1−a)2 − 2(m2(1−a) + d1−a)

]
(3.24)

+
2ba

(a− 1)2(a− 2)

[
d2−a −m2−a + (a− 1)(a− 2)m1−a(d−m)

]
,

Cov[I(d,m), R(d,m)] =
(2d−m)bam1−a

a− 1
+

bad1−a

(a− 1)2

[
a(d− b) + d1−a(ba − da)

]
,

(3.25)

respectively.

3.1.1.2 Aggregate claims with Gamma distribution

Suppose that the aggregate costs of claims, S, has Gamma distribution with the shape

parameter a and the scale parameter b where a, b ∈ R+. The expected costs and the

variance of the insurer and their covariance for Case I and Case II are derived and

presented below.

The derived expressions in Propositions 3.5 and 3.6 require the functions of the upper

and lower incomplete gamma, Γ(s, x), γ(s, x), x > 0 and the gamma, Γ(s), which

are defined as

Γ(s, x) =

∫ ∞

x

ts−1e−t dt, γ(s, x) =

∫ x

0

ts−1e−t dt, Γ(x) =

∫ ∞

0

ts−1e−t dt.

(3.26)
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In short, the relation between the incomplete gamma functions and gamma function

can be written as

Γ(s, x) + γ(s, x) = Γ(x).

Proposition 3.5. Under the assumption that S ∼ Gamma(a, b), the expected costs

and the variances of the insurer and the reinsurer under Case I with respect to reten-

tion level d are

E[I(d)] =
(ab+ d)Γ(a, bd)− bΓ(a+ 1, bd) + abγ(a, bd)

Γ(a)
, (3.27)

E[R(d)] =
1

Γ(a)

[
bΓ(a+ 1, bd)− dΓ(a, bd)

]
, (3.28)

V[I(d)] = ab2 + E[R(d)]
(
2d+ E[R(d)]

)
(3.29)

+
Γ(a, bd)

Γ(a)

[
2abd(ba+1 − 1)− d2(2ba+1 + 1)

]
− b2Γ(a+ 1, bd)

Γ(a)
− 2

(
1

Γ(a)

[
bΓ(a+ 1, bd)− dΓ(a, bd)

])2

, (3.30)

V[R(d)] = E[R(d)]
(
− 2d− E[R(d)]

)
(3.31)

+
1

Γ(a)

[
b2Γ(a+ 1, bd)− d2Γ(a, bd)

]
,

Cov[I(d), R(d)] =

(
1

Γ(a)

[
bΓ(a+ 1, bd)− dΓ(a, bd)

])2

(3.32)

− dΓ(a, bd)

Γ(a)

[
(d− ab)(ba+1da−1 − 1)

]
,

respectively.
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Proposition 3.6. Under the assumption that S ∼ Gamma(a, b), the expected costs

and the variances of the insurer and the reinsurer under Case II with respect to re-

tention level d and the maximum level m are

E[I(d,m)] =

[
ab− 2(b2 − 1)d

]
Γ(a, bd) +

[
ab− 2(b2 − 1)m

]
Γ(a, bm)

2Γ(a)
(3.33)

+
ab
(
γ(a, bd) + γ(a, bm)

)
+ (bd)ae−bd + (bm)ae−bm

2Γ(a)
,

E[R(d,m)] =
b2 − 1

Γ(a)

[
dΓ(a, bd)−mΓ(a, bm)

]
− ba

Γ(a)

[
dae−bd −mae−bm

]
,

(3.34)

V[I(d,m)] = ab2 + E[R(d,m)]
[
E[R(d,m)] + 2ab

]
(3.35)

− 1

Γ(a)

[
b2(Γ(a+ 2, bd)− Γ(a+ 2, bm)) + 2b(m− d)Γ(a+ 1, bd)

]
+

1

Γ(a)

[
(m2 + 2dm)Γ(a, bd)

]
− 2
(
E[R(d,m)]− 1

Γ(a)

[
bΓ(a+ 1, bm)− dΓ(a, bm)

])2
,

V[R(d,m)] =
1

Γ(a)

[
b2(Γ(a+ 2, bd)− Γ(a+ 2, bm))− d2Γ(a, bd)−m2Γ(a, bm)

]
(3.36)

+ E[R(d,m)]
[
− E[R(d,m)]− 2d

]
,

Cov[I(d,m), R(d,m)] =
(
E[R(d,m)]− 1

Γ(a)

[
bΓ(a+ 1, bm)− dΓ(a, bm)

])2
(3.37)

+
m− d

Γ(a)

[
bΓ(a+ 1, bd)− dΓ(a, bd)

]
+ E[R(d,m)](d− ab),

respectively.

3.1.1.3 Aggregate claims with Inverse Gamma distribution

Suppose that the total costs of claims, S, has Inverse Gamma distribution with the

shape parameter a and the scale parameter b where a, b ∈ R+. The expected costs

and the variance of the insurer and their covariance for Case I and Case II are derived

and presented below.

Proposition 3.7. Under the assumption that S ∼ IG(a, b), the expected costs and the
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variances of the insurer and the reinsurer under Case I with respect to retention level

d are

E[I(d)] =
b
[
Γ(a, b/d)− (a− 1)γ(a− 1, b/d)

]
+ γ(a, b/d)

[
1 + (a− 1)d

]
(a− 1)Γ(a)

(3.38)

E[R(d)] =
1

Γ(a)

[
bγ(a− 1, b/d)− dγ(a, b/d)

]
, (3.39)

V[I(d)] =
b2

(a− 1)2(a− 2)
+
(
E[R(d)]

)2
(3.40)

+
b2γ(a− 2, b/d) + 2(bd− 1)γ(a− 1, b/d) + (2− d2)γ(a, b/d)

Γ(a)

− 2

[
1

Γ(a)
[bγ(a− 1, b/d)− dγ(a, b/d)]

]2
,

V[R(d)] =
1

Γ(a)

[
b2γ(a− 2, b/d)− 2dbγ(a− 1, b/d) + d2γ(a, b/d)

]
(3.41)

−
(
E[R(d)]

)2
,

Cov[I(d), R(d)] =

[
1

Γ(a)

[
bγ(a− 1, b/d)− dγ(a, b/d)

]]2
(3.42)

+
1

Γ(a)

[
Γ(a, b/d)− Γ(a− 1, b/d) + (b− d)

(
d− b

a− 1

)]
,

respectively.

Proposition 3.8. Under the assumption that S ∼ IG(a, b), the expected costs and the

variances of the insurer and the reinsurer under Case II with respect to retention level

d and the maximum level m are
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E[I(d,m)] =
b

a− 1
− ba

Γ(a)

[
d1−ae−b/d −m1−ae−m/d

]
(3.43)

− 1

Γ(a)

[
(b− d)γ(a− 1, b/d)− (b−m)γ(a− 1, b/m)

]
,

E[R(d,m)] =
1

Γ(a)

[
(b− d)γ(a− 1, b/d)− (b−m)γ(a− 1, b/m)

]
(3.44)

+
ba

Γ(a)

[
d1−ae−b/d −m1−ae−m/d

]
,

V[I(d,m)] =
b2

(a− 1)2(a− 2)
−m2 + d2 + E[R(d,m)]

[
E[R(d,m)]− 2b

a− 1

]
(3.45)

− 2(m− d)

Γ(a)

[
1

Γ(a)
[bΓ(a+ 1, bm)−mΓ(a, bm)]

]
+

∞∑
k=0

(−1)k(m2−a−k − d2−a−k)

k!(a+ k)(2− a− k)
,

V[R(d,m)] = m2 − d2 −
∞∑
k=0

(−1)k(m2−a−k − d2−a−k)

k!(a+ k)(2− a− k)
(3.46)

+ E[R(d,m)]
[
− E[R(d,m)]− 2d

]
,

Cov[I(d,m), R(d,m)] =
(
E[R(d,m)]− 1

Γ(a)

[
bΓ(a+ 1, bm)−mΓ(a, bm)

])2
(3.47)

=
m− d

Γ(a)

[
1

Γ(a)
[bΓ(a+ 1, bm)−mΓ(a, bm)]

]
+ E[R(d,m)]

(
d− b

a− 1

)
,

respectively.

The functions of incomplete gamma and gamma functions given in Eqs. (3.26) are

used in Propositions 3.7 and 3.8. Combining with the exposure curves, the analytical

derivations for Pareto, Gamma, and Inverse Gamma under Case I and Case II are our

main tools to find the optimal values of retention, maximum , and premimum values

in the contract agreement between the insurer and the reinsurer. A summary of these

derivations is presented in the following Tables 3.1 and 3.2), as well as the sketches

of some propositions in Appendix A.1.
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3.2 Premium Shares using Exposure Curves

For the case of per risk, exposure rating is associated to risk profiles based on pre-

vious observation. A risk band is a summary of similar sized risks in the same risk

category. For the rating, risks in a single band are regarded homogeneous; therefore,

they can be modeled using a single loss distribution function. Our aim is to achieve

acceptable partition of the specific risk between the insurer and the reinsurer by using

the exposure rating and the risk band, which is carried out in two phases. To begin, by

employing a convenient loss ratio, we estimate the risk premiums as a ratio of earned

premium. Secondly, the risk premiums are transferred to a reinsurer with respect

to the retention and the maximum, which necessitates the use of a loss distribution

function. Furthermore, for a analogous risk types involved in large portfolios, the

correct loss distribution function is derived, which are called exposure curves (G(.))

and evaluate the ratio of risk premiums in terms of a predetermined deductible and

maximum.

The exposure curves under Case I and Case II are derived in the form of analytical

expressions using the selected distribution on the aggregate claim amounts.

The aggregate claims has a range over R+; however, it is important to modify the

aggregate claims using the maximum possible loss, M , in order to obtain a realistic

approach. For this reason, let X be a new random variable with the distribution

function FX(.) and X is defined as X = S
M

.

The ratio between the insurer’s expected loss and the expected aggregate loss is de-

fined as, [6],

G(k) =

∫ k

0
[1− F (x)]dx∫∞

0
[1− F (x)]dx

, (3.48)

where k = d
M

. In fact, Eq. (3.48) is adjusted for Case I as

G(k) = 1−
∫∞
k
[1− F (x)]dx

E[X]
. (3.49)

The exposure curves under Case II are derived and we present the expressions as

below.
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Proposition 3.9. The exposure curve with respect to the limits k = d
M

and l = m
M

is

G(k, l) = 1−
∫∞
k
[1− F (x)]dx−

∫∞
l
[1− F (x)]dx∫∞

0
[1− F (x)]dx

. (3.50)

The usage of exposure curves, G(.), which matches G(k) and G(k, l) for the contract

types Case I and Case II, respectively, partites the risk premium (P (.)) between the

insurer and the reinsurer. The premium of insurer and reinsurer, which are denoted

by (PI(.)) and (PR(.)), respectively are found for two cases as

PI(.) = G(.)P, PR(.) = (1−G(.))P, (3.51)

Under this partition, the loss ratios of insurer and reinsurer become

PIr(.) =
E[I(.)]
PI(.)

, (3.52a)

PRr(.) =
E[R(.)]

PR(.)
, (3.52b)

respectively.

The maximum possible loss adjustment on the upper limit is employed on the distribu-

tion of X = S
M
,M > 0, where S has the selected distribution under the assumptions

of Pareto(a, b), Gamma(a, b), and IG(a, b). Then, X has the distributions

X
d
= Pareto

(
a,

b

M

)
, X

d
= Gamma

(
a,

b

M

)
, and X

d
= IG

(
a,

b

M

)
with distribution functions

F P
X(x) = 1− b

M x
, FG

X(x) =
γ(a, b

M
x)

Γ(a)
, and F IG

X (x) =
Γ(a, b/M

x
)

Γ(a)
,

respectively.

Proposition 3.10. Suppose that X has the distributions Pareto(a, b/M),

Gamma(a, b/M), and IG(a, b/M). In Case I, the exposure curves (GP (k), GG(k),

GIG(k)) for these distributions are

GP (k) =
aka−1 − (bM)a−1

aka−1
, (3.53)

GG(k) =
γ(a+ 1, b

M
k)

Γ(a)
− kM

ab

(
1−

γ(a, b
M
k)

Γ(a)

)
, (3.54)

GIG(k) =
(a− 1)Γ(a− 1, b

Mk
)

Γ(a)
− kM(a− 1)

b

[Γ(a, b
Mk

)− Γ(a)]

Γ(a)
, (3.55)
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respectively, where k = d
M

.

Proposition 3.11. Suppose that X has the distributions Pareto(a, b/M),

Gamma(a, b/M), and IG(a, b/M). In Case II, the exposure curves (GP (k, l), GG(k, l),

GIG(k, l)) for these distributions are

GP (k, l) =
aMa−1 − ba−1(k1−a − l1−a)

aMa−1
, (3.56)

GG(k, l) = 1 +
γ(a+ 1, b

M
k)

Γ(a)
−

γ(a+ 1, b
M
l)

Γ(a)
+

(k − l)M

ab
(3.57)

− k
γ(a, b

M
k)

Γ(a)
+ l

γ(a, b
M
l)

Γ(a)
,

GIG(k, l) = 1−
(a− 1)

[
Γ(a− 1, b

Ml
)− Γ(a− 1, b

Mk
)
]

Γ(a)
(3.58)

+
M(a− 1)

b

[kΓ(a, b
Mk

)− lΓ(a, b
Ml

)]

Γ(a)
+

(k − l)M(a− 1)

b
,

respectively, where k = d
M

and l = m
M

.

3.3 The Optimization of d and m

Our aim is to find the values of the retention d and the maximum m, which maximize

the dependence between the insurer and the reinsurer with the minimum cost to assure

the plausible business. On the other hand, loss ratios of both parties are also affected

by the values of d and m. For this reason, our approach to finding the optimal values

maximizing the correlation between the expected costs attaining the loss ratios of

both to be as close as to each other. In other words, the optimal d and m find the

reasonable risk relation between parties for a reasonable debate on the loss and the

premium share.

The optimization problem, which maximizes the correlation between the costs of

insurer and the reinsurer while the loss ratios of parties are equivalent to each other

are conveyed as

Case I: max
d

ρ(I(d), R(d))

s.t. PIr(d)− PRr(d) = 0

d > 0,

(3.59)
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Case II: max
d,m

ρ(I(d,m), R(d,m))

s.t. PIr(d,m)− PRr(d,m) = 0

d > 0, m > 0, m > d.

(3.60)

The loss ratios PIr(d) and PRr(d) can be rewritten as E[I(d)]
PG(k)

and E[R(d)]
P (1−G(k))

, respec-

tively, and the constraint in Eq. (3.59) turns into

E[R(d)]G(k) =
E[S]
2

Correspondingly, the term representing the constraint in Eq. (3.60) facilitates to

E[R(d,m)]G(k, l) =
E[S]
2

where k = d
M

, l = m
M

and M is the maximum possible loss.

The problems in Eqs. (3.59, 3.60) are rephrased as

Case I: max
d

ρ(I(d), R(d))

s.t. E[R(d)]G(k)− E[S]
2

= 0

d > 0,

(3.61)

Case II: max
d,m

ρ(I(d,m), R(d,m))

s.t. E[R(d,m)]G(k, l)− E[S]
2

= 0

d > 0, m > 0, m > d.

(3.62)

In order to obtain the tractable solutions for the optimization problem, which do not

have closed form, we require numerical methods. For this reason, we introduce two

algorithms, Algorithm (1) and Algorithm (2), which are used to achieve optimal val-

ues for Case I and Case II contract types, respectively.

In these algorithms, the possible retention and maximum levels are considered in the

interval of [m × M,M ] and the loss amounts are generated by the proposed loss

distribution. Searching of the maximum correlation between the parties and checking
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whether the contraints in Eqs. (3.61) and (3.62) are satisfied provides the optimal

values. Furthermore, the small choice of the partition length ∆ of interval [m×M,M ]

enhances the robustness of the optimization problem.

Algorithm 1: Case I: optimal d⋆

Consider the partition of the interval [m×M,M ] as

m×M = d0 < d1 < . . . < di < di+1 < . . . < dn = M such that n many

equidistant subintervals are obtained where m×M and M are minimium

and maximum possible losses, respectively.

Let ∆ = di+1 − di.

Let tol be a chosen small tolerance number.

for i← n by ∆ do

while E[R(di)]G( di
M
)− E[S]

2
< tol do

Calculate ρ(di) = ρ(I(di), R(di))

end

end

Choose the maximum correlation ρ(I(di), R(di)) which is satisfied by

di = d⋆.
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Algorithm 2: Case II: optimal d⋆ and m⋆

Consider the partitions of the interval [m×M,M ] as

m×M = d0 < d1 < . . . < di < di+1 < . . . < dn = M and

m×M = m0 < m1 < . . . < mj < mj+1 < . . . < mn = M such that n

many equidistant subintervals are obtained where m×M and M are

minimium and maximum possible losses, respectively.

Let ∆ = di+1 − di = mj+1 −mj .

Let tol be a chosen small tolerance number.

for i← n by ∆ do

for j ← n by ∆ do

while E[R(di,mj)]G( di
M
,
mj

M
)− E[S]

2
< tol & mj > di do

Calculate ρ(di,mj) = ρ(I(di,mj), R(di,mj))

end

end

end

Choose the maximum correlation ρ(I(di,mj), R(di,mj)) which is satisfied

by di = d⋆ and mj = m⋆.

3.4 Numerical Illustrations

Based on the aggregate losses drawn from the selected distributions, we establish

exposure curves in order to express the applications of the proposed methodology. We

choose the parameters of these distributions, which produce the same expected and

variance values. This results in obtaining rational foundation from which to compare

loss distribution and their exposure curves. Thus, the parameters of each distributions,

which are Pareto(3.2361, 1.3820), Gamma(4, 0.5), IG(6, 10), generate E[S] = 2 and

V[S] = 1.

We resolve the levels of optimal retention and maximum with respect to the highest

correlation between the costs of insurer and reinsurer, which have the impacts on the

mean and variance values, partition of premium, and loss ratios simultaneously. For

Case I and Case II, we summarize the results in Table 3.3 and Table 3.4 under tle
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assumptions of selected distributions.

For Case I, in Table 3.3, the optimal retention levels are near 2 and close to each

other under each distribution although it can be marked that Gamma distribution as-

sumption yields the highest correlation. The premium shares of insurer and reinsurer

are maximum in Pareto and Gamma, respectively. We also see that the loss ratios

of insurer and reinsurer are obtained as same values, which are achieved their minu-

mum in Gamma, whereas the shares of the premium for insurer and reinsurer are

gained under different distributions. We deduce that the expected loss is lower for

parties in Gamma as well. The selected distributions’ tail nature is noticeable since

our simulation includes the interval of minimum and maximum losses generated by

proposed distributions. In Fig. 3.2a, the Gamma distribution has a confined interval

with respect to others.

For Case II, simulations form a surface, which is not tractable. We clarify this prob-

lem by fixing the retention level to the optimal value, which enables us for searching

for optimal maximum level and for investigating the effects of chane in m upon the

correlation coefficient and loss ratios. Table 3.4 indicates that Pareto distribution

yields the maximum correlation, which is the same situation in Case I. The maximum

m level is achieved under Pareto distribution; however, Gamma distribution provides

the maximum premium and preimum ratios. Furhermore, due to the fact that the com-

mitments for the reinsurer rises according to the increase in the maximum level, we

expect that the correlation tendency with respect to maximum levels become horizon-

tal, which is also indicated in Fig. 3.2b. In other words, the adequate high cap levels

do not impose on the depedence between parties.

Table 3.3: Case I: optimal retention values
Pareto Gamma InvGamma

Max Correlation 0.3629 0.4740 0.4202
Optimal Retention (d⋆) 2.2171 2.0996 2.1605

Premium (P ) 4.0416 4.1859 4.0626
PI(d⋆) 3.6076 3.4545 3.4641
PR(d⋆) 0.4340 0.7314 0.5985
PIr(d⋆) 0.4948 0.4748 0.4923
PRr(d⋆) 0.4948 0.4748 0.4923
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Table 3.4: Case II: optimal retention and maximum values
Pareto Gamma InvGamma

Max Correlation 0.4412 0.4346 0.4361
Optimal Retention (d⋆) 3.5164 2.9214 3.1017

Optimal Maximum (m⋆) 9.1544 5.0814 6.0517
Premium (P) 4.0810 4.1149 4.0916
PIr(d⋆,m⋆) 0.4901 0.4860 0.4889
PRr(d⋆,m⋆) 0.4901 0.4860 0.4889
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Figure 3.2: The risk share between insurer and reinsurer

The derived exposure curve function, which represents the behavior of premium share

between parties for Case I, is presented in Figs. 3.3a, 3.3c, and 3.3e. The charge for

the insurer is increased by the raise in the retention level, which matches up to a higher

premium share in favor of insurer’s side. In contrast, this diminishes the reinsurer’s

cost, which causes a lesser premium share for the reinsurer’s side. The exposure

curves according to the change in m values under Case II are shown in Figs. 3.3b,

3.3d, and 3.3f, which indicate the ratio of reinsurer’s premium share. The increase in
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maximum level results in the larger costs for the reinsurer, which is the reason for the

rise of reinsurer’s premium share ratio. On the other hand, the decline in the insurer’s

cost leads to the decrease the premium gained by the insurer.
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(b) Pareto: Case II
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(c) Gamma: Case I
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(d) Gamma: Case II
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(e) Inverse Gamma: Case I
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Figure 3.3: Case I and Case II: the exposure curves of parties under the selected
distributions

The risk measures VaR and CVaR, which are associated with the requirements of

reserve and capital, are considered for the assessment of each parties’ maximal risk.

For insurer and reinsurer, the VaR and CVaR values in terms of certain α (confidence
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level) values under selected distributions are displayed in Table 3.5. According to the

calculations that take d⋆ into account, we demonstrate that the increase on the values

of α causes the declines in the difference between VaR and CVaR values for insurer

and reinsurer under Gamma distribution. Futhermore, Gamma distribution yields the

highest correlation between parties in Case I, which is additional sign for the optimal

retention, d⋆, maximizing the correlation between parties and detecting the state of

equilibrium between parties’ loss ratios. Moreover, d⋆ is also confirmed when we

consider the risk measures VaR and CVaR for insurer and reinsurer.

Table 3.5: Case I: VaR and CVaR of the parties for optimal d
α Risk measure Pareto Gamma InvGamma

0.90

VaRI 2.2171 2.0996 2.1605
CVaRI 2.2171 2.0996 2.1605
VaRR 0.5990 1.2410 1.0130
CVaRR 5.8055 2.9455 6.5825

0.95

VaRI 2.2171 2.0996 2.1605
CVaRI 2.2171 2.0996 2.1605
VaRR 1.2720 1.7780 1.6680
CVaRR 6.1420 3.2140 6.9100

0.99

VaRI 2.2171 2.0996 2.1605
CVaRI 2.2171 2.0996 2.1605
VaRR 3.5350 2.9290 3.4530
CVaRR 7.2735 3.7895 7.8025

Table 3.6: VaR and CVaR according to the chosen loss distributions
α Risk measure Pareto Gamma InvGamma

0.975
VaR 4.3208 4.3860 4.5450
CVaR 6.2540 5.0695 5.8206

0.99
VaR 5.7350 5.0290 5.6130
CVaR 8.2972 5.6892 7.0823

0.995
VaR 7.1048 5.6879 6.5340
CVaR 10.2891 6.1462 8.1793

The VaR and CVaR values under certain α values and selected distributions, which are

computed according to the simulated aggregate claims, are presented in Table 3.6. For

comparing our findings in Case II, the expected values (E[Iv], E[Icv], E[Rv], E[Rcv])

and the alterion based on the variances ( V[I]
V[Iv ] ,

V[R]
V[Rv ]

, V[I]
V[Icv ] ,

V[R]
V[Rcv ]

) for insurer and
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reinsurer with respect to VaR and CVaR are obtained in Table 3.7. As an exam-

ple demonstrated in Table 3.7, for insurer and reinsurer successively, the expected

costs (E[I], E[R]) are 1.9325 and 0.0675; whereas the same quantities in case of VaR

(E[Iv],E[Rv]) become 1.9718 and 0.0283 and for CVaR are (E[Icv], E[Rcv]) 1.9447

and 0.0555 under Pareto with α = 0.975. The values in Table 3.7 are found by taking

m⋆ as its corresponding optimal value exhibited in Table 3.4. Gamma distribution,

which provides the lowest loss ratios as a result of our optimization algorithms, gen-

erates the closest approximation; therefore, is more appropriate when we consider

VaR and CVaR risk measures. Additionally, the lowest variance change is obtained

under Gamma distribution for all α values.

Table 3.7: The relative variances and expected costs if m⋆ is considered as VaR and
CVaR

Pareto Gamma InvGamma

α 0.975 0.99 0.995 0.975 0.99 0.995 0.975 0.99 0.995

E[I] 1.9325 1.9325 1.9325 1.8771 1.8771 1.8771 1.8990 1.8990 1.8990

E[Iv] 1.9718 1.9489 1.9394 1.8881 1.8881 1.8772 1.8990 1.8990 1.8990

E[Icv] 1.9447 1.9347 1.9304 1.8771 1.8734 1.8720 1.9008 1.8940 1.8914

E[R] 0.0675 0.0675 0.0675 0.1230 0.1230 0.1230 0.1010 0.1010 0.1010

E[Rv] 0.0283 0.0509 0.0607 0.1120 0.1120 0.1229 0.0801 0.0974 0.1038

E[Rcv] 0.0555 0.0654 0.0696 0.1228 0.1265 0.1277 0.0992 0.1060 0.1087
V[I]
V[Iv]

0.5948 0.7516 0.8748 1.0983 1.0983 1.0181 0.8319 0.9647 1.0301

V[I]
V[Icv]

0.7672 0.9408 1.0372 0.9994 1.0224 1.0274 0.9819 1.0547 1.0893

V[R]

V[Rv]
10.1959 2.4040 1.4443 1.3478 1.3478 0.9166 2.0096 1.1293 0.9046

V[R]

V[Rcv]
1.8431 1.1537 0.8700 1.0033 0.8909 0.8549 1.0639 0.8297 0.7496

3.5 Discussion

The aim of this chapter is to analyse optimal premium share between the insurer and

the reinsurer using the exposure curves under certain aggregate loss distribution. We

achieve the optimal premium in terms of the level of dependence- correlation coeffi-

cient between the costs of insurer and reinsurer under an optimization scheme. The

main contribution of this chapter to the literature is to obtain the analytical derivations

of the exposure curves under Pareto, Gamma, and Inverse Gamma distributions under

44



the standard deviation premium principle. This enables researchers to understand the

pricing behavior. Using the Monte Carlo simulations and the proposed approach in

this chapter, we also determine that under which of the distributions the maximum

correlation, the highest premium, and the smaller expected loss are observed with re-

spect to the conditions on the reinsurance contract in terms of retention level and/or

maximum level. Furthermore, we compare the optimized values based on the pro-

posed approach with the values that minimize the total risks of parties with respect

to VaR and CVaR risk measures. The outcomes indicate that the optimized solution

that maximizes the correlation between parties and equates their loss ratios is close

enough to the VaR and CVaR values with high α levels for all selected distributions

under Case I and Case II. Among the others, Gamma distribution is more convenient

when compared the others, which is the situation that we obtain by our proposed

methodology.
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CHAPTER 4

STOCHASTIC STOP-LOSS REINSURANCE AND EXPOSURE

CURVES VIA GEOMETRIC BROWNIAN MOTION MODEL

This chapter presents the analytical derivations of the costs of insurer and reinsurer

if the losses follow Geometric Brownian Motion model with time-varying parame-

ters. The time-dependent exposure curves which determine the fair premium share

between parties are derived under stochastic behavior of the losses. Moreover, the

time-varying parameters of the model are estimated using maximum likelihood esti-

mators (MLE) dynamically. The simulation and the forecasts of the loss amounts, the

costs of parties, and the exposure curves are demonstraded as well.

Assume that the loss XG(t) satisfies the following stochastic differential equation

(SDE) on the probability space (Ω,F ,P) and the contract issued for this random loss

is written over the time period [0, T ]:

dXG
t = µXG

t dt+ σXG
t dWt, (4.1)

where the parameters µ and σ are constants, and Wt is one-dimensional Brownian

motion.

The solution of SDE in Eq. (4.1) is known to be given as

XG
t = XG

0 e
(µ−σ2/2)t+σWt .

The model in the discrete-time is built on a finite probability space (Ω,F ,P) equipped

with a filtration, i.e., an increasing sequence of σ-algebras in F partitioned as F0, F1,
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F2, . . . , Fn. That is, Fn represents the information at time n and is called as σ-

algebra of events up to time n.

The n-many equidistant subintervals, which is the partition of the period [0, T ], is

considered as 0 = t0 < t1 < . . . < ti < ti+1 < . . . < tn = T and let ∆t = ti+1 − ti.

The discrete-time solution of the SDE at ti+1 can be written as

XG
ti+1

= XG
ti
e(µ(i)−σ(i)2/2)∆t+σ(i)(W (ti+1)−W (ti)), (4.2)

where µ(i) and σ(i) are the constant parameters governing the period between [ti, ti+1].

Moreover, we assume that the time-varying parameters, µ(i) and σ(i), are indepen-

dent.

According to this loss model setup, the costs of the insurer and the reinsurer are

derived.

4.1 The Expected Costs Derivations

One of the important issues in a reinsurance contract is to decide at which retention

level will be an agreeable selection maximizing the profit of both parties. The tools

such as exposure curves help us determine an approximate partition of the premium

as well as the loss amount. On the other hand, especially for the possibility of hav-

ing catastrophic risks, reinsurers are reluctant to agree on taking the whole amount

exceeding the retention. This is regularized by setting a cap (maximum) value on the

claims from above. Therefore, a stop-loss contract may have either agreement based

on only retention or both retention and cap. We consider both cases under Case I and

Case II abbreviations for simplicity, respectively.

4.1.1 Case I: Retention

Suppose that the insurer and the reinsurer agreed on a predetermined retention level

d. The costs at time t under the probability measure P can be written as
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I(t,XG
t , d) = min(XG

t , d),

R(t,XG
t , d) = max(XG

t − d, 0).
(4.3)

The expected costs of insurer and reinsurer in an unspecified time frame within a

contract year are collected in Theorem 4.1.

Theorem 4.1. The expected costs of the reinsurer and insurer at time t with respect

to the retention level d are

E[R(t,XG
t , d)] = XG

0 eµtΦ(E1d)− dΦ(E2d),

E[I(t,XG
t , d)] = XG

0 eµt(1− Φ(E1d)) + dΦ(E2d),
(4.4)

respectively, where

Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt,

E2d =
ln
(

XG
0

d

)
+ (µ− σ2

2
)t

σ
√
t

, and

E1d = E2d + σ
√
t.

Proof. The proof is sketched in Appendix A.2

As we consider the time-varying impact on the expected losses, we define analo-

gously, the costs at time ti under the same probability measure is given as

I(ti, X
G
ti
, d) = min(XG

ti
, d), (4.5)

R(ti, X
G
ti
, d) = max(XG

ti
− d, 0).

Using Theorem 4.1, Corollary 4.2 is established for the discrete-time model to achieve

the expected costs terms for insurer and reinsurer with respect to the filtration F .

Corollary 4.2. The expected costs of the reinsurer and insurer at the time ti+1 with

respect to the filtration Fti and the retention, d, are

E[R(ti+1), X
G
ti+1

, d)|Fti ] = XG
ti
eµ(i)∆tΦ(E1id)− dΦ(E2id),

E[I(ti+1), X
G
ti+1

, d|Fti)] = XG
ti
eµ(i)∆t(1− Φ(E1id)) + dΦ(E2id),

(4.6)
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respectively. Here,

E2id =
ln
(

XG
ti

d

)
+ (µ(i)− σ(i)2

2
)∆t

σ(i)
√
∆t

, and

E1id = E2id + σ(i)
√
∆t,

where Φ(x) is defined in Theorem 4.1.

4.1.2 Case II: Retention and Maximum

Assume that the agreement between insurer and reinsurer is based on the predeter-

mined retention level d and the maximum level m. The parties’ costs, which depend

on the time t, the loss XG
t , d, and m, are written as

I(t,XG
t , d,m) = min(XG

t , d) + max(XG
t −m, 0),

R(t,XG
t , d,m) = min(m− d,max(XG

t − d, 0)).
(4.7)

According to the costs separation and the model in Eq. (4.1), the derivations of ex-

pected costs are obtained.

Theorem 4.3. The expected costs of the insurer and reinsurer at time t with respect

to the retention level d and the maximum level m are

E[I(t,XG
t , d,m)] = XG

0 e
µt[1 + Φ(E1m)− Φ(ER1d)] + dΦ(E2d)−mΦ(E2m),

E[R(t,XG
t , d,m)] = XG

0 e
µt[Φ(E1d)− Φ(E1m)]− dΦ(E2d) +mΦ(E2m),

(4.8)

respectively, where

E2m =
ln
(

XG
0

m

)
+ (µ− σ2

2
)t

σ
√
t

, and E1m = E2m + σ
√
t,

Φ(x), E1d, and E2d are the same as defined in Theorem 4.1.

Proof. The proof is sketched in Appendix A.2.
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In the discrete-time ti, the costs of both parties are expressed as

I(ti, X
G
ti
, d,m) = min(XG

ti
, d) + max(XG

ti
−m, 0),

R(ti, X
G
ti
, d,m) = min(m− d,max(XG

ti
− d, 0)).

(4.9)

We also derive the expected costs under Case II for both parties under the discrete-

time model with the filtration F as the following Corrollaries 4.2 and 4.4.

Corollary 4.4. The expected costs of the insurer and reinsurer at the time ti+1 with

respect to the filtration Fti , the retention, d, and the maximum, m, are

E[I(ti+1, X
G
ti+1

, d,m)|Fti ] = XG
ti
eµ(i)∆t[1 + Φ(E1im)− Φ(E1id)]

+ dΦ(E2id)−mΦ(E2im),

E[R(ti+1, X
G
ti+1

, d,m)|Fti ] = XG
ti
eµ(i)∆t[Φ(E1id)− Φ(E1im)]

− dΦ(E2id) +mΦ(E2im),

(4.10)

respectively, where

E2im =
ln
(

XG
ti

m

)
+ (µ(i)− σ(i)2

2
)∆t

σ(i)
√
∆t

, and E1im = E2im + σ(i)
√
∆t,

Φ(x), E1id, and E2id are defined in Corollary 4.2.

The derivations in Corrollaries 4.2 and 4.4 are obtained based on Theorems 4.1 and

4.3; thus, we skip the proofs for them as we give the proofs for their related theorems.

4.2 Time-Varying Frame in Exposure Curves

The allocation of risks together with the premium share for insurer and reinsurer are

achieved by employing the exposure curves. The risk for loss alters by time elapsing,

which is especially the case when natural catastrophes are considered; thus, the mean

of losses varies over time. This is another indicator that the exposure curves need to

take the time influence into account. For this reason, we modify the exposure curves

proposed by [6] under Case I and Case II in both time-dimensional and SDE-type loss

distribution assumptions and derive the corresponding analytical forms.
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Definition 4.1. The exposure curves for reinsurer and insurer under Case I are de-

fined as

GR(t, d) =
E[R(t,XG

t , d)]

E[XG
t ]

= Φ(E1d)−
d

XG
0

e−µtΦ(E2d),

GI(t, d) = 1−GR(t, d),

(4.11)

respectively.

Definition 4.2. The exposure curves for reinsurer and insurer at time ti+1 with respect

to filtration F under Case I are expressed as

GR(ti+1, d) =
E[R(ti+1, X

G
ti+1

, d)|Fti ]

E[XG
ti+1
|Fti ]

= Φ(E1id)−
d

XG
ti

e−µ(i)∆tΦ(E2id),

GI(ti+1, d) = 1−GR(ti+1, d),

(4.12)

respectively.

Definition 4.3. The exposure curves for reinsurer and insurer under Case II are de-

fined as

GR(t, d,m) =
E[R(t,XG

t , d,m)]

E[XG
t ]

= Φ(E1d)− Φ(E1m) + e−µt

[
m

XG
0

Φ(E2m)−
d

XG
0

Φ(E2d)

]
,

GI(t, d,m) = 1−GR(t, d,m),

(4.13)

respectively.

Definition 4.4. The exposure curve under Case II for reinsurer and insurer at time

ti+1 with respect to filtration F are expressed as

GR(ti+1, d,m) =
E[R(ti+1, X

G
ti+1

, d,m)|Fti ]

E[S(ti+1)|Fti ]

= Φ(E1id)− Φ(E1im) + e−µ(i)∆t

[
m

XG
ti

Φ(E2im)−
d

XG
ti

Φ(E2id)

]
,

GI(ti+1, d,m) = 1−GR(ti+1, d,m),

(4.14)

respectively.
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The parameters µ and σ of the proposed loss model should be estimated in accord

with the derivations given in this section.

4.3 Parameter Estimation under Time-Varying Frame

The models developed under the SDE assumption do not produce good solutions for

parameter estimation; therefore, we calibrate the parameters using real-life data by

employing a a dynamic maximum likelihood estimation method in order to incorpo-

rate the time-varying effects on the parameters at each discritized time interval. The

real-life data contains a large portfolio (approx. 1 million) compulsory traffic insur-

ance (MTPL) policyholders in Turkey for the year 2006. The reasons for using MTPL

data are listed as follows: (i) The real-life data which is accessible covers all MTPL

policies in Turkey in 2006, (ii) The claim history is exceptional as in 2006 severe

weather conditions and flood experienced in Istanbul causing extreme payments for

insurance and reinsurance companies. Additionally, Istanbul and its vicinity, which is

the highly populated and industrial region in Turkey, can be taken as a good represen-

tative for Turkey’s MTPL picture. (ii) The data owner and source, TRAMER (Traffic

Insurance Information Center), does not permit the use of its data due to confiden-

tiality purposes. For this reason, the extension of the application to later years is not

possible. On the other hand, we are confident that the methodology introduced here

can find its applicability to any other non-life branches.

We prepare the data as aggregate daily losses, which provides 365 observations for

2006 and forms equally distant time subintervals with each length of 1-day. Fig. 4.1a

exemplifies the daily loss, which shows a rising movement that is more incessant be-

havior until half of the year and then depreciates its increasing rate. This structure

in the data also confirms our methodologies for examining loss, costs, and exposure

curves at time-varying aspects. As being observed, the range in the loss is very large

(maximum loss is 5,738,647 TL); therefore, we rescale using min-max data transfor-

mation.

Suppose that Li denotes the aggregate daily claim at time ti for i = 0, 1, . . . , 365.

Then min-max transformation whose graph is shown in Fig. 4.1b becomes
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TL(i) =
L(i)−min(L(i))

max(L(i))−min(L(i))
,

where TL(i) denotes the transformed data at time ti for i = 0, 1, . . . , 365.
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(a) Original data
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(b) Transformed Data

Figure 4.1: Aggregate daily claims for the compulsory traffic insurance data

Based on the loss distribution expressed in terms of SDE, we derive the corresponding

estimates for the parameters µ̂ and σ̂ using DMLE.

S̄(i) : = ln

(
XG

ti+1

XG
ti

)

=

(
µ(i)− σ(i)2

2

)
∆t+ σ(i)W (∆t).

Since W (∆t)
d
=
√
∆tY where Y ∼ N(0, 1), S̄(i) ∼ N

((
µ(i)− σ(i)2

2

)
∆t, σ(i)2∆t

)
.
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Define the log-transformed data as LTL(i) := ln
(

TL(i+1)
TL(i)

)
. Equating LTL(i) to

S̄(i) and using the maximum likelihood estimator (MLE) of S̄(i) for each [ti, ti+1]

produce the results for calibrated parameters µ̂(i) and σ̂(i) in [ti, ti+1]. Then, the

MLE of S̄(i) is found as

µ̂MLE =
1

i+ 1

i+1∑
j=0

S̄(j) =

(
µ(i)− σ(i)2

2

)
∆t,

σ̂MLE =

√√√√ 1

i+ 1

i+1∑
j=0

(S̄(j)− µ̂MLE)2 =
√

σ(i)2∆t,

(4.15)

whose solution yields the estimates of parameters for the specified time interval ex-

pressed as

σ̂(i) =

√
1

i+1

∑i+1
j=0(S̄(j)−

1
i+1

∑i+1
j=0 S̄(j))

2

√
∆t

,

µ̂(i) =
1

i+1

∑i+1
j=0 S̄(j) +

1
i+1

∑i+1
j=0(S̄(j)−

1
i+1

∑i+1
j=0 S̄(j))

2

2

∆t
.

(4.16)

As a subsequent of the calibration of parameters, we perform a simulation analy-

sis in order to justify our proposed model. The parameters µ(i) and σ(i) for i =

0, 1, . . . , 365 are calculated using Eq. 4.16 over 100, 000 Monte Carlo (MC) simula-

tions. We displays the DMLE fit’s performance regarding to the transformed obser-

vations in Fig. 4.2. In the graph, the line represents the simulation results while the

dots are for the real observations.

MAPE(%) and RMSE values are calculated in order to determine the performance of

the estimates through simulations. It is found that MAPE is around to be 1.5177%,

whereas RMSE yields a value of 0.0734 for transformed data. It is also important

to note that these performance measures estimated using the original data remain

unchanged for MAPE but produces large values in RMSE as the original data includes

extreme values.
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Figure 4.2: Comparison of Geometric Brownian motion model with time-varying
parameters and transformed data

4.4 Application to MPTL Data

As a result of examination of possible retention and cap levels, we choose retention

and cap values as d = 0.3 and m = 0.7 according to the levels having the lowest

MAPE and RMSE in simulations. We simulate the expected costs and the exposure

curves for insurer and reinsurer separately by considering the analytical derivations

and the calibrated estimates.

4.4.1 Simulations for expected costs

Fig. 4.3 indicates the costs’ behavior of parties in a position to real claim amount for

Case I with d = 0.3 by using Corollary 4.2. When the aggregate daily loss (dashed

blue color) exceeds the retention level, the insurer’s expected cost (green line) stays

constant with an insignificant deviation around the retention level (black horizontal

line) until the middle of the policy year. The expected cost of the reinsurer (red line)

is deemed to be zero until the aggregate claim exceeds the retention level, which is

expected from the contract agreement.
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Figure 4.3: Case I: the expected costs
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Figure 4.4: Case II: the expected costs

Based on the real claim amounts, Fig. 4.4 shows the costs’ behavior of the parties

under Case II with d = 0.3 and m = 0.7 by using Corollary 4.4. When the claim

amount is between the retention level and the maximum level (cyan horizontal line),

insurer’s expected costs (green line) remains constant with an insignificant deviation

around the retention level (black horizontal line), which is also the same in Case I.

Using Corollary 4.4, the costs’ behavior of the parties according to real claim amounts

for Case II with d = 0.3 and m = 0.7 is shown in Fig. 4.4. It can be seen that when

the loss amount is higher than the retention level and smaller than the maximum level

(cyan horizontal line), the expected costs of the insurer (green line) remains constant

with an insignificant deviation around the retention level (black horizontal line) as

in Case I. When the loss amount is higher than the maximum level, the expected

cost of the reinsurer remains constant with an insignificant deviation around the level

m− d = 0.4 (pink horizontal line). These small deviations between d and m− d can
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be expected as the simulations are done based on estimated parameters.

4.4.2 Simulations for exposure curves

The time-dependent exposure curves are simulated by the following Definitions 4.2

and 4.4 for Case I and Case II, respectively.

Based on the simulated expected costs given in Fig. 4.3, we study the behavior of

exposure curves under Case I, given in Fig. 4.5a. In a position to the expected claims

in time, we see that the insurer’s costs remain below the retention level until the loss

reaches the retention level. For this reason, the exposure curve suggests the premium

to be shared in such a way that the insurer collects all the premium (green line) until

the loss exceeds the retention level. After this, the losses above the retention level

set the cost of the insurer constant at the retention level, and the cost of the reinsurer

starts inclining (red line), resulting in the share of the reinsurer in the premium to be

increased as expected. Thus, Fig. 4.5a represents the fair division between the parties

while time elapses.

In Case II, in addition to the maximum level, the simulations depict that the higher the

costs from m, the less the reinsurer pays as the amount corresponds to the difference

m − d. This reduces the risks of the reinsurer by decreasing its costs. Thus, when

both types of contracts are compared, one can expect that the share of the premium for

the reinsurer is lower in Case II than its share Case I. This leads reinsurer’s premium

share is lower in Case II, as can be seen from Figs. 4.5a and 4.5b. The fair partition

of the premium between two parties within a policy year is represented in Fig. 4.5b.
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(a) Case I
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Figure 4.5: The exposure curves: (a) Case I, (b) Case II

4.5 Forecasting the losses, costs and exposure curves

Due to the random occurrences of the aggregate daily loss at any time t, we aim

to forecast the aggregate claims, expected costs, and premium share within the re-

maining time in a policy year based on the analytical derivations and the estimated

parameters obtained using real-life data. To do so, we employ two methods at which

one encounters the time effect, whereas the other is easier to implement and does

not require any constraints. We use the method of cubic spline extrapolation and dy-

namic ARIMA models. Since we estimate the time-varying parameters which fit the

data appropriately, we end up with again a time series composed of parameters for

daily and weekly units. The performance of the daily time unit is found to be more

accurate. Processing the forecasting on the time-varying parameters rather than the

original data has advantages such as (ii) the performance of forecasting is found to be
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much better than applying these methods to the data itself directly, (ii) the analytical

results are to be preserved and incorporated.

4.5.1 Using cubic spline extrapolation

The forecasting algorithm using cubic spline extrapolation depends on system up-

dates. In other words, we update the data after finding the extrapolated parameters

using the estimated parameters. Here, we set the first 300 days as training and the

rest as test data to measure the forecasting performance. Therefore, the estimated

parameters of µ̂ and σ̂ for forecasting are found based on these 300 observations.

We consider system updates having one day time unit. These updates basically refer

to daily forecasts with replacement, if updates are one day. The forecast of the loss

amounts is based on the forecast of the time-varying parameters, µ̂, and σ̂, which are

considered a time series. The algorithm of the method is presented in Algorithm 3.

Algorithm 3: cubic spline extrapolation with system updates
Let nmo and tn be the number of observed data points and the number of

training data points, respectively ;

Set u as the system updates;

for j ← tn to nmo by 1 do

fit cubic spline function to j many data points;

extrapolate a data point and save it for forecasting;

if j − tn+ 1 (mod u) ̸= 0 then

use extrapolated data instead of (j + 1)th data of original one;

else

replace all the extrapolated data with the original data;

end

end
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Figure 4.6: The parameter forecasts: cubic spline extrapolation

Figs. 4.6a and 4.6b expose the forecasted µ̂ and σ̂ and estimated values according to

daily updates, respectively. Cubic spline forecasted and estimated values of σ̂ follow

better fit compared to µ̂. Both of the estimates decay by the time, and this is captured

by the forecasted values as well. Although µ̂ parameters are volatile, this method is

good enough to obtain daily forecasts.
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(a) Claim amount
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(b) The costs under Case I
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(c) The costs under Case II
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(d) The exposure curves: Case I
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(e) The exposure curves: Case II

Figure 4.7: Daily forecasts: cubic spline exptrapolation
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Plugging in the forecasted parameters to the analytical derivations, we obtain aggre-

gate loss, costs, and exposure curves illustrated in Figs. 4.7a, 4.7b, 4.7c, 4.7d, and

4.7e. We see that the cubic spline extrapolation captures the relatively more stable

losses but not good enough for the extreme losses yielding the cubic spline method

to be a good choice when extreme claims are not expected. In Figs. 4.7b and 4.7c

under both Case I, and Case II, the forecasted costs are captured better within the

constraints (retention level and cap value). On the extreme claims, the parties’ costs

are not captured; however, when the claim amounts are higher than the retention level

and the maximum level in Case I and in Case II, respectively, the cubic spline ex-

trapolation satisfies the contracts’ offers, which are that the insurer should pay the

costs of only the retention level amount for Case I and the reinsurer should pay the

costs of only the difference between maximum and retention levels for Case II. The

fair share of the premium between parties by using time-dependent exposure curves

is given in Figs. 4.7d and 4.7e for Case I and Case II under the circumstances that we

take the forecasted loss amounts in our estimation. Therefore, a good performance

in forecasting the time-dependent exposure curves is a result of a good performance

in forecasting the loss. The accuracy of the fits is measured by MAPE (20.01%)

and RMSE (0.1881), whose values show efficiency in implementing the cubic spline

method in forecasts.

4.5.2 Using dynamic ARIMA

Our aim is to forecast the loss amounts, the parties’ costs, and their exposure curves by

using daily system update. However, to keep the dynamic behavior of the forecasting

to enhance the performance, we use ARIMA and forecast by searching the trend in

the data of the estimated parameters that are considered as time series in this study.

Similar to the first cubic spline approach, we split the data as training and test. At

this point, to analyze the influence of the number of observations (tn) included in

the training set, which can have an impact on the model performance, we set two

options: (i) 200 and (ii) 300 observations for training sets which are chosen randomly.

Dynamic ARIMA algorithm to forecast given time series depends on trend search in

train data, and then this search should be expanded by adding a test data point to train

the new set. However, to ensure the dynamic structure, we consider a sliding pattern
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to create a new set.

In forecasting by using cubic spline extrapolation, we find that the weekly updates’

performance is poor compared to the daily updates. In the ARIMA trend search algo-

rithm above, we may change the updates easily; however, although weekly updates in

the ARIMA trend search gives a better performance than the weekly updates in cubic

spline extrapolation (% change in MAPEs of ARIMA is 20 % less than the one with

cubic spline). The algorithm of the process is given in Algorithm 4.

Algorithm 4: dynamic ARIMA with trend search
Let nmo and tn be the number of observed data points and the number of

training data points, respectively.

Fit ARIMA to tn many data points, i.e., to train data.

Find best fitted ARIMA order (p, d, q) where p is the number of

autoregressive terms, d is the number of nonseasonal differences needed for

stationarity, and q is the number of lagged forecast errors in the prediction

equation.

Forecast a data point and save it;

for j ← tn to nmo by 1 do
Exclude the first data point from the train data and add the first data of the

test data to the last of train data;

Set this data as new train data;

Exclude the first data of the test data and set it as test data;

Fit ARIMA to new train data;

Find best fitted ARIMA order (p, d, q);

Forecast a data point and save it.
end

We use the same approach as in the cubic spline forecasting, i.e., we first apply dy-

namic ARIMA with trend search on the estimated time-varying parameters, µ̂, and

σ̂. Figs. 4.8a, 4.8b, 4.8c, and 4.8d compare the forecasted µ̂ and σ̂ variates, and esti-

mated ones according to daily updates for both train data with 200 and 300 time units,

respectively. Forecasted σ̂ shows a similar pattern as in the cubic spline case, whereas

µ̂ with the dynamic ARIMA method captures volatility in the parameter better, espe-

cially with a sample size of 200. This is due to short time memory being carried with
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the information more than a large sample under a sliding frame setup.
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Figure 4.8: The parameter forecasts: dynamic ARIMA

Based on these forecasts, the proposed variables are forecasted, whose results are

illustrated in Figs. 4.9c, 4.9d, 4.9e, and 4.9f, and show the daily forecast of the parties’

costs under Case I and Case II. The performance of the cost forecasts under both Case

I and Case II is directly affected by the forecasts of the loss amounts. As in the cubic

spline extrapolation method, when a better performance in the loss amounts forecast

is obtained, better results in the forecasting parties’ costs are achieved. A fair and

suitable share of the premium depends on the exposure curves. Figs. 4.9g, 4.9h, 4.9i,

and 4.9j show the forecasted time-dependent exposure curves under Case I, and Case

II. The curves are suitable when we consider the forecasted loss amounts. Moreover,

the risks of the insurer and the reinsurer are reflected according to the contract types

(Case I and Case II) in the forecasted curves. The algorithm to forecasts daily loss

amounts results in a better forecast when we use the shorter length of the training

data set; however, when we compare Figs. 4.9a and 4.9b, we see that the extreme

losses are captured by the algorithm if tn = 300. Although the overall results are

better if tn = 200, the algorithm does not catch the extreme losses contrary to the

situations of tn = 300. The efficiency measures for tn = 200, MAPE (7.44%) and

RMSE (0.0530), show that dynamic ARIMA with trend search yield slightly good

performance with respect to tn = 300 (MAPE(9.03%) and RMSE (0.0771)), but

much better results compared to cubic spline method.

64



0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.2

0.4

0.6

0.8

1

Time

 

 

DynamicARIMAFit
TransformedData

(a) The claim amounts if tn = 200

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0

0.2

0.4

0.6

0.8

1

Time

 

 

DynamicARIMAFit

TransformedData

(b) The claim amounts if tn = 300

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

 

 

DailyForecastInsurerCost

DailyForecastReinsurerCost

RetentionLevel

LossAmount

ForecastedLoss

(c) The expected costs if tn = 200: Case I

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

DailyForecastInsurerCost
DailyForecastReinsurerCost
RetentionLevel
LossAmount
ForecastedLoss

(d) The expected costs if tn = 300: Case I
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(e) The expected costs if tn = 200: Case II
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(f) The expected costs if tn = 300: Case II
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(i) The exposure curves if tn = 200
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Figure 4.9: Daily forecasts: dynamic ARIMA

4.6 Discussion

With the stop-loss arrangement, the insurer and reinsurer begin a business in which

the costs of the parties and the fair distribution of the premium are the primary con-
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siderations. The goal of this chapter is to propose a stochastic model, specifically a

geometric Brownian motion with time-varying parameters, to describe the behavior of

actuarial claim amounts. The dynamics of stop-loss contracts are investigated under

policy period, retention level, and retention-cap levels, with the assumption that claim

amounts follow a stochastic model. Analytical derivations of the costs and exposure

curves are found for both continuous-time and discrete-time models. The real-life

data is used to validate the model and dynamically estimate the time-varying param-

eters using the maximum likelihood estimator to achieve the parameters governing

the small and equidistant time intervals. The fit results are sufficient to demonstrate

that the model’s application to the real data set is appropriate. Based on our analyti-

cal derivations and estimated parameters, we present simulations of expected parties’

costs and exposure curves. Furthermore, we forecast loss amounts, expected costs,

and exposure curves using cubic spline extrapolation and dynamic ARIMA family

models. Moreover, we investigate the performances of daily and weekly updates in

cubic spline extrapolation, as well as the performances of the length of the train data

set with daily updates in dynamic ARIMA models, in order to capture the future be-

havior of claim amounts and develop a better understanding of the effects of length

of train data on claim forecasts in a short term period prediction. The parties can

reinvest or start a new business by utilizing this property.
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CHAPTER 5

TIME DEPENDENT STOP-LOSS REIUNSURANCE AND

EXPOSURE CURVES VIA STOCHASTIC JUMP DIFFUSION

This chapter presents the analytical derivations of the costs of insurer and reinsurer if

the losses follow stochastic Pareto and Beta jump diffusion model with time-varying

parameters. The time-dependent exposure curves which determine the fair premium

share between parties are derived under stochastic jump diffusion behavior of the

losses. Moreover, the time-varying parameters of the model are estimated using mo-

ment matching estimator (MME) and maximum likelihood estimators (MLE) dynam-

ically. The simulation and the forecasts of the loss amounts, the costs of parties, and

the exposure curves are demonstraded as well.

In this chapter, a difference is made in the use of notation for the retention level. This

is because d we will use for the down jump is the same as the retention level. In order

not to contradict the general literature usage for down symbol d, the retention level

for this chapter is characterized by k.

Suppose that the loss XJ(t) satisfies the following stochastic differential equation

(SDE) with jumps on the probability space (Ω,F ,P) and the contract is valid for this

random loss over period [0, T ]:

dXJ(t) = XJ(t−)

(
µdt+ σdW (t) +

∑
j=u,d

(V j
Nj(t)

− 1)dN j(t)

)
, (5.1)

where µ and σ are the drift and volatility terms, W (t) is a standard Brownian mo-

tion (Wiener process), V j is the jump magnitude, and N j(t) are independent Poisson

67



process with intensity parameters λj . Here, j = u, d represent up- and down- jumps,

respectively.

Furthermore, the up-jump magnitude (V u) and the down-jump magnitude (V d) are

distributed Pareto(νu) and Beta(νd, 1) with density functions

fV u(x) =
νu

xνu+1
, V u ≥ 1, fV d(x) = νdx

νd−1, 0 < V d < 1,

respectively.

All jumps are assumed independent, which results in a mixture of Pareto-Beta distri-

butions for jump magnitudes.

The explicit solution for Eq. (5.1) is obtained by using the Doléans-Dade formula

as,[33],

XJ(t) = XJ(0)e(µ−σ2/2)t+σW (t)
∏
j=u,d

V j(N j(t)), (5.2)

where

∏
j=u,d

V j(N j(t)) =


1 if N j(t) = 0,

Nj(t)∏
i=1

V j
i if N j(t) = 1, 2, 3, . . . .

(5.3)

Our aim is to add time-varying parameters to Pareto-Beta jump diffusion (PBJD)

defined above. For this reason, we investigate the model in discrete-time to analyze

its behavior and compare it with our claims data.

On a finite probability space (Ω,F ,P) equipped with a filtration, the model in the

discrete-time is built. Consider increasing sequence of σ-algebras in F partitioned as

F0, F1, F2, . . . , Fn, i.e., Fn can be taken as the information available at time n and

is called as σ- algebra of events up to time n.

The time period [0, T ] is partitioned as n-many equidistant subintervals such that

0 = t0 < t1 < . . . < ti < ti+1 < . . . < tn = T and let ∆t = ti+1 − ti. The

discrete-time solution of the SDE at ti+1 can be written as
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XJ(ti+1) = XJ(ti)e
(µ(i)−σ(i)2/2)∆t+σ(i)(W (ti+1)−W (ti))

∏
j=u,d

V j
i (N

j(∆t)), (5.4)

where ∏
j=u,d

V j
i (N

j(∆t)) =

1 if N j(∆t) = 0,

V j
i if N j(∆t) = 1.

In Eq. (5.4), we define the jump magnitudes V j
i distributed Pareto(νu(i)) and

Beta(νd(i), 1) at time ti for j = u, d, respectively. In other words, we consider up-

and down- jump magnitudes are varying during the period [0, T ]. Moreover, the drift

and diffusion parameters, µ(i) and σ(i), are also considered as time-varying. On the

other hand, the Poisson parameters, λu and λd are taken as constant.

Eq. (5.4) is obtained using the independent increment property of Brownian motion

and Poisson process, i.e.,

W (ti+1)−W (ti)
d
= W (∆t) and N j(ti+1)−N j(ti)

d
= N j(∆t).

According to this loss model setup, the probability density function of log-return

process in discrete-time and the costs of insurer and reinsurer are derived.

5.1 The Log-Return Process in Discrete-Time

The log-return process of the explicit solution in Eq. (5.4) becomes

Z(ti) := ln
(
XJ(ti+1)

XJ(ti)

)
= (µ(i)− σ(i)2/2)∆t

+ σ(i)W (∆t) + Y u
i N

u(∆t) + Y d
i N

d(∆t),

(5.5)

where ln(V j
i ) = Y j

i for j = u, d and i = 0, 1, 2, . . ., whose up-jump and down-

jump magnitudes (V u
i , V d

i ) within [ti, ti+1] follow Pareto(νu(i)) and Beta(νd(i), 1),

respectively.
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The density of Zti in Eq. (5.5) is obtained as

fZ(ti)(z) =P(uu = 0, λu)P(dd = 0, λd)f0|0(z) + P(uu = 0, λu)f0|1(z)

+ P(dd = 0, λd)f1|0(z)

=e−(λu+λd)f0|0(z) + e−λuf0|1(z) + e−λdf1|0(z)

(5.6)

by modifiying the derivations from [35] into the discrete-time model. Here, P(x, λ)

refers to the density of Poisson distribution. Also, f0|0(z) represents the conditional

density of Z(ti) for the case uu = 0, dd = 0, i.e., no up- and down-jumps, such that

Z(ti) =

(
µ(i)− σ(i)2

2

)
∆t+ σ(i)W (∆t). In other words,

Z(ti) ∼ N
((

µ(i)− σ(i)2

2

)
∆t, σ(i)2∆t

)
.

For simplicity in the following terms, let s := ∆t.

The next term, f0|1(z) is the conditional density of Z(ti) when

uu = 0, dd = 1, i.e., no up-jump and a down-jump, with

f0|1(z) =
νd(i)√
2πsσ(i)2

∫ 0

−∞
e
νd(i)x− 1

2sσ(i)2
(z−x−µ(i)s+ 1

2
σ(i)2s)

2

dx,︸ ︷︷ ︸
=:I1(i)

= νd(i)e
−vd(i)

(
σ(i)2s

2
(νd(i)+1)+z−µ(i)s

)
Φ(0;α1(i), β1(i)

2)

where

I1(i) = e
−vd(i)

(
σ(i)2s

2
(νd(i)+1)+z−µ(i)s

)
σ(i)
√
2πs Φ(0;α1(i), β1(i)

2),

α1(i) = z +
σ(i)2s

2
− µ(i)s+ νd(i)σ(i)

2s, β1(i) = σ(i)
√
s, and

Φ(0;α1(i), β1(i)
2) is the value of normal cdf with mean α1(i) and variance β1(i)

2 at 0.

Finally, f1|0(z) represents the conditional density of Z(ti) for the case uu = 1, dd =

0, i.e., an up-jump and no down-jump, having the form

f1|0(z) =
νu(i)√
2πsσ(i)2

∫ ∞

0

e
−νu(i)x− 1

2sσ(i)2
(z−x−µ(i)s+ 1

2
σ(i)2s)

2

dx,︸ ︷︷ ︸
=:I2(i)

= νu(i)e
−vu(i)

(
σ(i)2s

2
(νu(i)−1)−z+µ(i)s

)
[1− Φ(0;α2(i), β2(i)

2)]
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where

I2(i) = e
−vu(i)

(
σ(i)2s

2
(νu(i)−1)−z+µ(i)s

)
σ(i)
√
2πs [1− Φ(0;α2(i), β2(i)

2)],

α2(i) = z +
σ(i)2s

2
− µ(i)s− νu(i)σ(i)

2s, β2(i) = σ(i)
√
s, and

Φ(0;α2(i), β2(i)
2) is the value of Normal cdf with mean α2(i) and variance β2(i)

2 at 0.

The density of Z(ti) in Eq.(5.6) is the weighted sum of mixture of Normal, Pareto,

and Beta distributions. The proofs for f0|1(z) and f1|0(z) are given in Appendix A.2.

5.2 Expected Costs Derivations

One of the important issues in a reinsurance contract is to decide on which retention

level will be a mutually agreed choice maximizing the profits of insurer and reinsurer.

In this respect, exposure curves are handful tools to depict an approximate premium

partition as well as its corresponding loss amount. Reinsurers, on the other hand, may

also set a cap (maximum) value on the claims to keep their costs under control as a

prevention against catastrophic losses. Therefore, aggrements in a stop-loss contract

may have either only retention or both a retention and a cap. We consider these two

contract types separately and denote each as Case I and Case II, respectively.

5.2.1 Case I: Retention

We assume that the parties (insurer and reinsurer) agree on a predetermined retention

level k. The costs at discrete-time ti under the probability measure P can be written

as

I(ti, X
J(ti), k) = min(XJ(ti), k),

R(ti, X
J(ti), k) = max(XJ(ti)− k, 0).

(5.7)

The expected claims, Eq. (5.8), the costs of reinsurer, Eq. (5.9), and the costs of

insurer, Eq. (5.10), under Case I are shown as follows:

E[XJ(ti+1)|Fti ] = E[XJ(ti)e
Z(ti)] =

∫ ∞

−∞
XJ(ti)e

zfZ(ti)(z) dz, (5.8)
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E[R(ti+1, X
J(ti+1), k)|Fti ] = E[max(XJ(ti+1)− k, 0)|Fti ]

= E[max(XJ(ti)e
Z(ti) − k, 0)]

=

∫ ∞

−∞
max(XJ(ti)e

z − k, 0)fZ(ti)(z) dz︸ ︷︷ ︸
for z>ln

(
k

XJ (ti)

)
:=E1i, max(XJ (ti)ez−k,0) ̸=0

=

∫ ∞

E1i

(XJ(ti)e
z − k)fZ(ti)(z) dz

=

∫ ∞

E1i

XJ(ti)e
z fZ(ti)(z) dz − k

∫ ∞

E1i

fZ(ti)(z) dz,

(5.9)

E[I(ti+1, X
J(ti+1), k)|Fti ] = E[XJ(ti)e

Z(ti)]− E[max(XJ(ti)e
Z(ti) − k, 0)]

=

∫ E1i

−∞
XJ(ti)e

zfZ(ti)(z) dz + k

∫ ∞

E1i

fZ(ti)(z) dz.

(5.10)

The solutions to the integrals in Eqs. (5.8-5.10) require numerical methods to obtain

a closed form analytical solution. The estimations are obtained using the summation

on the indexing sets over the intervals of endpoints in the integrals are highlighted in

Proposition 5.1.

Proposition 5.1. The expected claims, costs of reinsurer and insurer at the time ti+1

with respect to the filtration Fti and the retention, k, are

E[XJ(ti+1)|Fti ] = lim
Nmax→∞

XJ(ti)
Na∑
j=0

eajfZ(ti)(aj) ∆a, (5.11)

E[R(ti+1, X
J(ti+1), k)|Fti ] = lim

Nmax→∞

Nb∑
j=0

[
XJ(ti)e

bj − k
]
fZ(ti)(bj) ∆b, (5.12)

E[I(ti+1, X
J(ti+1), k)|Fti ] = E[XJ(ti+1)|Fti ]− E[R(ti+1, X

J(ti+1), k)|Fti ],

(5.13)

respectively. Here,

{a0 = −Nmax; a1 = a0 +∆a, . . . ; aj = a0 + j∆a, . . . ; aNa = Nmax},

{b0 = E1i; b1 = b0 +∆b, . . . ; bj = b0 + j∆b, . . . ; bNb
= Nmax},
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where ∆a = aj − aj−1, ∆b = bj − bj−1 for each j ∈ {1, 2, . . . ,max(Na, Nb)} and

E1i = ln
(

k

XJ(ti)

)
, i = 0, 1, 2, . . . .

5.2.2 Case II: Retention and Maximum

Suppose that the parties agreed on the prespecified retention level k and the maximum

level m, in [0, T ] which remains the same in each discrete-time ti. The costs under

the probability measure P are expressed as

I(ti, X
J(ti), k,m) = min(XJ(ti), k) + max(XJ(ti)−m, 0),

R(ti, X
J(ti), k,m) = min(m− k,max(XJ(ti)− k, 0)).

(5.14)

Given the expected cost remains to be the same as in Eq. (5.8), the costs of insurer

and reinsurer under Case II are expressed in Eqs. (5.15) and (5.16), respectively.

E[I(ti+1, X
J(ti+1), k,m)|Fti ]

= E[max(XJ(ti+1)−m, 0)|Fti ] + E[min(XJ(ti+1), k)|Fti ]

= E[max(XJ(ti)e
Z(ti) −m, 0)] + E[min(XJ(ti)e

Z(ti), k)]

=

∫ ∞

E2i

XJ(ti)e
z fZ(ti)(z) dz −m

∫ ∞

E2i

fZ(ti)(z) dz +

∫ E1i

−∞
XJ(ti)e

zfZ(ti)(z) dz

+ k

∫ ∞

E1i

fZ(ti)(z) dz,

(5.15)

where

E[max(XJ(ti)e
Z(ti) −m, 0)] =

∫ ∞

−∞
max(XJ(ti)e

z −m, 0)fZ(ti)(z) dz︸ ︷︷ ︸
for z>ln

(
m

XJ (ti)

)
:=E2i, max(XJ (ti)ez−m,0)̸=0

=

∫ ∞

E2i

(XJ(ti)e
z −m)fZ(ti)(z) dz

=

∫ ∞

E2i

XJ(ti)e
z fZ(ti)(z) dz −m

∫ ∞

E2i

fZ(ti)(z) dz,

73



E[min(XJ(ti)e
Z(ti), k)] =

∫ ∞

−∞
min(XJ(ti)e

z, k)fZ(ti)(z) dz︸ ︷︷ ︸
for ln

(
k

XJ (ti)

)
=E1i, min(XJ (ti)ez ,k)=k

=

∫ E1i

−∞
XJ(ti)e

zfZ(ti)(z) dz + k

∫ ∞

E1i

fZ(ti)(z) dz.

E[R(ti+1, X
J(ti+1), k,m)|Fti ]

= E[XJ(ti)e
Z(ti)]− E[max(XJ(ti)e

Z(ti) −m, 0)]− E[min(XJ(ti)e
Z(ti), k)]

=

∫ ∞

−∞
XJ(ti)e

zfZ(ti)(z) dz −
∫ ∞

E2i

XJ(ti)e
z fZ(ti)(z) dz +m

∫ ∞

E2i

fZ(ti)(z) dz

−
∫ E1i

−∞
XJ(ti)e

zfZ(ti)(z) dz − k

∫ ∞

E1i

fZ(ti)(z) dz.

(5.16)

Implementing numerical estimations for the integrals in (5.15-5.16), we derive the

expected values as introduced in Proposition 5.2.

Proposition 5.2. The expected costs of insurer and reinsurer at the time ti+1 with

respect to the filtration Fti , the retention, k, and the maximum, m, are

E[I(ti+1, X
J(ti+1), k)|Fti ] = lim

Nmax→∞

Nc∑
j=0

[
XJ(ti)e

cj −m
]
fZ(ti)(cj) ∆c

+

Ng∑
j=0

XJ(ti)e
gjfZ(ti)(gj) ∆g + k

Nh∑
j=0

fZ(ti)(hj) ∆h,

(5.17)

E[R(ti+1, X
J(ti+1), k,m)|Fti ] = E[XJ(ti+1)|Fti ]− E[I(ti+1, X

J(ti+1), k,m)|Fti ],

(5.18)

respectively. Here,

{c0 = E2i, c1 = c0 +∆c, . . . , cj = c0 + j∆c, . . . , cNc = Nmax},

{g0 = −Nmax, g1 = g0 +∆g, . . . , gj = g0 + j∆g, . . . , gNg = E1i},

{h0 = E2i, h1 = h0 +∆h, . . . , hj = h0 + j∆h, . . . , hNh
= Nmax},

where ∆c = cj − cj−1, ∆g = gj − gj−1, ∆h = hj − hj−1 for each

j ∈ {1, 2, . . . ,max(Nc, Ng, Nh)} and

E1i = ln
(

k

XJ(ti)

)
, E2i = ln

(
m

XJ(ti)

)
, i = 0, 1, 2, . . . .
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5.3 Time Varying Frame in Exposure Curves

The exposure curves are used to allocate risks between insurers and reinsurers, al-

lowing us also to determine their premium share. While we assume that the risk of

loss behavior changes over time due to natural disasters, so do the average losses. In

that case, the exposure curves should also be adopted to capture the time influence.

For this aim, we derive the analytical forms of exposure curves by modifying Berneg-

ger’s model [6] under time-dimensional and SDE-type loss distribution assumptions

for Case I and Case II.

Definition 5.1. The exposure curves for Case I for the reinsurer and insurer at time

ti+1 with respect to filtration F are defined as

GR(ti+1, d) =
E[R(ti+1, X

J(ti+1), k)|Fti ]

E[XJ(ti+1)|Fti ]
(5.19)

= lim
Nmax→∞

∑Nb

j=0

[
XJ(ti)e

bj − k
]
fZ(ti)(bj) ∆b

XJ(ti)
∑Na

j=0 e
ajfZ(ti)(aj) ∆a

,

GI(ti+1, k) = 1−GR(ti+1, k),

respectively. Here,

{a0 = −Nmax, a1 = a0 +∆a, . . . , aj = a0 + j∆a, . . . , aNa = Nmax},

{b0 = E1i, b1 = b0 +∆b, . . . , bj = b0 + j∆b, . . . , bNb
= Nmax},

where ∆a = aj − aj−1, ∆b = bj − bj−1 for each j ∈ {1, 2, . . . ,max(Na, Nb)} and

E1i = ln
(

k

XJ(ti)

)
, i = 0, 1, 2, . . . .

Definition 5.2. The exposure curves for Case II for the insurer and reinsurer at time

ti+1 with respect to filtration F are expressed as

GI(ti+1, k,m) =
E[I(ti+1, X

J(ti+1), k,m)|Fti ]

E[XJ(ti+1)|Fti ]
(5.20)

= lim
Nmax→∞

(∑Nc

j=0

[
XJ(ti)e

cj −m
]
fZ(ti)(cj) ∆c

XJ(ti)
∑Na

j=0 e
ajfZ(ti)(aj) ∆a

+

∑Ng

j=0X
J(ti)e

gjfZ(ti)(gj) ∆g

XJ(ti)
∑Na

j=0 e
ajfZ(ti)(aj) ∆a

+ k

∑Nh

j=0 fZ(ti)(hj) ∆h

XJ(ti)
∑Na

j=0 e
ajfZ(ti)(aj) ∆a

)
,

GR(ti+1, k,m) = 1−GI(ti+1, k,m),
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respectively. Here,

{a0 = −Nmax, a1 = a0 +∆a, . . . , aj = a0 + j∆a, . . . , aNa = Nmax},

{c0 = E2i, c1 = c0 +∆c, . . . , cj = c0 + j∆c, . . . , cNc = Nmax},

{g0 = −Nmax, g1 = g0 +∆g, . . . , gj = g0 + j∆g, . . . , gNg = E1i},

{h0 = E2i, h1 = h0 +∆h, . . . , hj = h0 + j∆h, . . . , hNh
= Nmax},

where ∆a = aj − aj−1, ∆c = cj − cj−1, ∆g = gj − gj−1, ∆h = hj − hj−1 for each

j ∈ {1, 2, . . . ,max(Na, Nc, Ng, Nh)} and

E1i = ln
(

k

XJ(ti)

)
, E2i = ln

(
m

XJ(ti)

)
, i = 0, 1, 2, . . . .

After defining the expressions for the insurer and reinsurer, and assuming that the

stochastic loss defined in Eq. (5.1) is influenced by random jumps Eq. (5.4), we focus

on the estimation of parameters, µ, σ, νu and νd using MTPL data set.

5.4 Parameter Estimation under Time-Varying Frame

We calibrate the model parameter considering an application to the real data, which is

Turkey’s compulsory traffic insurance (MTPL) claims occurred in the calendar year

2006. The parameter estimation structure consists of three parts. We first find the

jump times using the geometric Brownian motion model with time-varying param-

eters whose fit performance is found to be very good [31]. Next, our aim is to find

the parameter of jump magnitudes using the dynamic moment matching estimation

(DMME) for each time unit. After estimating parameters for the jump part of the

process, we use these parameters to eliminate the jumps from the data. Then remain-

ing structure of the PBJD process becomes suitable for dynamic maximum likelihood

estimation (DMLE) for the drift and the volatility parameters for each time unit under

the framework of the geometric Brownian Motion model. The outcomes of the study

is found to capture the real MTPL loss data.

To validate the proposed model and analytical derivations, a real-life data set consist-

ing of approximately 1 million entries in the portfolio of compulsory traffic insurance

(MTPL) in Turkey in one policy year is employed. To calibrate the parameters (µ(i),
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σ(i), νu(i) and νd(i)) of the proposed model, we use maximum likelihood and mo-

ment matching estimations under a dynamic structure to contribute the time-varying

impact on the parameters at each time partition. MATLAB is the software employed

in all numerical applications. The data set with aggregate daily losses provides 365

observations for the year 2006 (Figure 4.1a). We choose equidistant time intervals

of 1-day length. Figure 4.1a shows that the daily losses have an increasing trend

throughout the period, but show volatile structure by the half of the year. The volatile

period shows a sharpe inrease and decrease; however, the up and down extreme vari-

ations differ from each others and the excessive alterations in succesive time points

for the data show different characteristics in the different periods. This pattern also

confirms our assumption on using a PBJD process. Since the range of loss amounts is

very high (minimum = 270 TL, maximum = 5, 738, 647 TL), we rescale the original

losses (L(i), i = 1, .., 365) using min-max transformation (TL(i)).

5.4.1 The detection of jump time and its parameters

We use the properties of geometric Brownian Motion model with time-varying param-

eters to detect the jump time [31]. The calibration results using geometric Brownian

Motion on original and transformed data sets yields the same MAPE for both, but,

lower RMSE for the transformed data. Then, by the help of a risk measure, tail value

at risk (TVaR), we detect jump times to either directions. The proposed GBM model

is given as

XG
ti+1

= XG
ti
e

(
µG(i)−σG(i)2

2

)
∆t+σG(i)(W (ti+1)−W (ti))

, (5.21)

where µG(i) and σG(i) are the calibrated constant parameters governing the period

between [ti, ti+1].

1) Up-jump time detection: If XG(ti+1) ≥ XG(ti), then we consider the discrete-

time solution given in Eq. (5.4) and let

S̄u(i) : = ln

(
XG(ti+1)

XG(ti)

)
=

(
µG(i)−

σG(i)
2

2

)
∆t+ σG(i)W (∆t).
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Since W (∆t)
d
=
√
∆tY where Y ∼ N(0, 1),

S̄u(i) ∼ N

((
µG(i)−

σG(i)
2

2

)
∆t, σG(i)

2∆t

)
.

Thefore, the right TVaR of S̄u(i) is given by

TVaRα(S̄u(i)) =

(
µG(i)−

σG(i)
2

2

)
∆t+ σG(i)

√
∆t

ϕ(Φ−1(α))

1− α
,

where ϕ(.) and Φ−1(.) are the standard Normal density function and quantile,

respectively.

Definition 5.3. The ti’s are stated to be up-jump times if

TVaRα(S̄u(i)) < XG(ti+1), (5.22)

where α is close to 1.

2) Down-jump time detection: If XG(ti+1) < XG(ti), then we consider

S̄d(i) : = ln

(
XG(ti)

XG(ti+1)

)
= −S̄u(i)

= −
(
µG(i)−

σG(i)
2

2

)
∆t− σG(i)W (∆t).

Since W (∆t)
d
=
√
∆tY where Y ∼ N(0, 1),

−S̄d(i) ∼ N
(
−
(
µG(i)− σG(i)2

2

)
∆t, σG(i)

2∆t
)

.

The right TVaR of the random variable S̄d(i) detects the down- jump times and

is given by

TVaRα(S̄d(i)) = −
(
µG(i)−

σG(i)
2

2

)
∆t+ σG(i)

√
∆t

ϕ(Φ−1(α))

1− α
.

Definition 5.4. The ti’s are stated to be down-jump times if

TVaRα(S̄d(i)) < XG(ti+1), (5.23)

where α is close to 1.

Based on Definitions (5.3-5.4), on the data set we find the locations of jump times at

which red and green colored points in Figure 5.1 represent the up- and down- jumps,

respectively.
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Figure 5.1: Jump times in transformed aggregate daily claims

The detected jumps, especially during the last quarter of the contract period Figure 5.1

is verifyable with the history, as in 2006 extreme floods caused large claims in Turkey

[26]. The proposed approach proves to detect jump structure in the frame of PBJD

assumptions.

Using MLE method, the parameters of Poisson processes, λu and λd, are estimated

based on up-jump and down-jump times. Given

E[Nu(T )] = λuT, and E[Nd(T )] = λdT,

we estimate λ̂u = 17
365

= 0.0467 and λ̂d =
8

365
= 0.0220.

Along with the detection of jump times, their magnitude have exposure on aggregate

claims. The up- and down-jump magnitudes require the parameters νu(i) and νd(i)

to be estimated due to the distributional assumptions on each [ti, ti+1]. To do so, the

dynamic match of skewness and kurtosis of X(ti) for each [ti, ti+1] with ∆t is made.

Using the log-return process Z(ti) defined in Eq. (5.5), the skewness and kurtosis of

Z(ti) become
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Skew[Z(ti)] =
6
(

λu

νu(i)3
− λd

νd(i)3

)
V[Z(ti)]3/2

√
∆t

,

Kurt[Z(ti)] =
24
(

λu

νu(i)4
− λd

νd(i)4

)
V[Z(ti)]2∆t

,

(5.24)

respectively. Here, the variance is V[Z(ti)] =
(
σ(i)2 + 2 λu

νu(i)2
+ 2 λd

νd(i)2

)
∆t.

Let V[LTL(i)], Skew[LTL(i)], and Kurt[LTL(i)] denote the sample variance, skew-

ness, and kurtosis at each ti, respectively.

Equating the sample estimates to the population parameters

6

(
λ̂u

νu(i)3
− λ̂d

νd(i)3

)
= Skew[LTL(i)]V[LTL(i)]3/2

√
∆t,

24

(
λ̂u

νu(i)4
− λ̂d

νd(i)4

)
= Kurt[LTL(i)]V[LTL(i)]2∆t

(5.25)

leads to

λ̂uνd(i)
3 − λ̂dνu(i)

3 − A1(i)νu(i)
3νd(i)

3 = 0,

λ̂uνd(i)
4 + λ̂dνu(i)

4 − A2(i)νu(i)
4νd(i)

4 = 0.
(5.26)

Defining

A1(i) =
Skew[LTL(i)]V[LTL(i)]3/2

√
∆t

6
and A2(i)

Kurt[LTL(i)]V[LTL(i)]2∆t

24

and solving the systems of two equations and two unknowns using MATLAB pro-

gramming in Eq. (5.26), ν̂u(i) and ν̂d(i) for each [ti, ti+1] are estimated using dynamic

moment matching method.

5.4.2 Determination of drift and volatility parameters

As the final step, we estimate the drift and volatility parameters using dynamic MLE

(DMLE) with the contribution of sample estimates of λ̂u, λ̂d, ν̂u(i) and ν̂d(i) that

construct the jump part of the proposed model.
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Given the GBM model fit to log transformed returns, jump modified model with time-

varying parameters has drawbacks in implementing the dynamic MLE method. For

this reason, we first eliminate the influence of jumps form the series using Monte

Carlo (MC) simulations. It should be noted that the jump influence on Eq. (5.2),

which is explicitly given in Eq. (5.3), can be reduced easily. To achieve this, 100, 000

up- and down- jumps for each discrete-time period, i, are randomly generated and the

resulting series, called JP , is used to create new series, CD, as follows

CD(i) =
TL(i)

JP (i)
, i = 1, 2, . . . , 365. (5.27)

Consider the discrete-time solution of GBM given in Eq. (5.21) and let

K̄(i) : = ln
(
XG(ti+1)

XG(ti)

)
=

(
µ(i)− σ(i)2

2

)
∆t+ σ(i)W (∆t).

Since W (∆t)
d
=
√
∆tY where Y ∼ N(0, 1), K̄(i) ∼ N

((
µ(i)− σ(i)2

2

)
∆t, σ(i)2∆t

)
.

Similarly, writing LCD(i) := ln
(

CD(i+1)
CD(i)

)
, and then equating LCD(i) to K̄(i), we

obtain MLEs of K̄(i) for each [ti, ti+1] as

µ̂MLE =
1

i+ 1

i+1∑
j=0

K̄(j) =

(
µ(i)− σ(i)2

2

)
∆t,

σ̂MLE =

√√√√ 1

i+ 1

i+1∑
j=0

(K̄(j)− µ̂MLE)2 =
√
σ(i)2∆t,

(5.28)

whose solutions yield the estimates of parameters for the specified time interval and

expressed as

σ̂(i) =

√
1

i+1

∑i+1
j=0(K̄(j)− 1

i+1

∑i+1
j=0 K̄(j))2

√
∆t

,

µ̂(i) =
1

i+1

∑i+1
j=0 K̄(j) +

1
i+1

∑i+1
j=0(K̄(j)− 1

i+1

∑i+1
j=0 K̄(j))2

2

∆t
.

(5.29)
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After the calibration of the parameters, the justification of the model is performed by

100, 000 MC simulations with the estimated parameters. Figure 5.2 shows that the

DMLE (red line) is accurate to catch the jumps as well as it follows the pattern of

transformed data (blue points). This is also justified by the estimates yielding low

MAPE (1.4758%) and RMSE (0.0713) values.
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Figure 5.2: Loss estimates using PBJD with time-varying parameters (red lines) com-
pared to transformed data (blue dots).

5.5 Appilcation to MPTL Data

In the model setup, for simplicity the values of retention and cap are assumed to be

constant. As their value have an influence on the parameter estmates and findings, we

aim to investigate for the values of k, m, which yield lowest MAPE and RMSE as

in [32]. After experimenting with a variety of retention and cap values, we conclude

k = 0.3 and m = 0.7 to be the best choice for this loss data. Based on these,

the simulations are run to calculate the expected costs and exposure curves for the

insurer and the reinsurer separately based on the analytical derivations and calibrated

estimates proposed in this study.

As Propositions (5.1-5.2), Definitions (5.19-5.20) require the knowledge on end val-

ues of the paremeters, we need the probability density of log-return process. In

discrete-time setup, it is observed that a sharp decrease is experienced after a closed

interval of loss amount. This is an expected result, since the frequency of extreme val-

ues is not significant. We choose the time interval which has a jump to see the behav-

ior of end points. Two examples of fZ(ti)(.), i = 316, illustrated in Figures 5.3a-5.3b

show varying scales. Further examinations show that fZ(ti)(.) attains its minimum
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value for each i = 0, 1, . . . , 365 at different values for Nmax, which is actually real

minimum, 10−323, for MATLAB. Thus, we take Nmax = 30 to calculate the expected

claims and the expected costs of insurer and reinsurer.
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(a) Log-return density in a wider interval (−20, 20) for i = 316
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(b) Log-return density in a narrow interval (−3, 3) for i = 316

Figure 5.3: Log-return density for one of the jump points at i = 316

5.5.1 Simulations for expected costs

Based on the outcome of Proposition 5.1 and implications from Figure 5.3, the parti-

tions are choosen as

{a0 = −30, a1 = a0 +∆a, . . . , aj = a0 + j∆a, . . . , aNa = 30},

{b0 = E1i, b1 = b0 +∆b, . . . , bj = b0 + j∆b, . . . , bNb
= 30},

where Na = Nb = 100, 000 and E1i = ln( k
XJ (ti)

) are used to evaluate the expected

costs of insurer and reinsurer. For Case I, Figure 5.4a depicts the behavior of costs

for both parties in a position to real claim amount (blue line) for Case I with k = 0.3.

It can be seen that the insurer’s expected cost (green line) remains constant until the

mid of the policy year with a slight variation around the deductible (black horizontal

line) when the total daily loss (blue line) is higher than the deductible. The expected

cost of the reinsurer (red line) is expected to be zero until the total loss exceeds the

amount of deductible.
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Figure 5.4: The simulations on the expected costs

For Case II, the partitions given in Proposition 5.2 are

{c0 = E2i, c1 = c0 +∆c, . . . , cj = c0 + j∆c, . . . , cNc = 30},

{g0 = −30, g1 = g0 +∆g, . . . , gj = g0 + j∆g, . . . , gNg = E1i},

{h0 = E2i, h1 = h0 +∆h, . . . , hj = h0 + j∆h, . . . , hNh
= 30},

where Nc = Ng = Nh = 100, 000, E1i = ln( k
XJ (ti)

), and E2i = ln( m
XJ (ti)

) with

k = 0.3 and m = 0.7. Figure 5.4b shows that the insurer’s expected cost (green

line) remains constant with a slight variation around the deductible (black horizontal

line), as in Case I, when the claim amount is higher than the deductible and lower

than the maximum amount (cyan horizontal line). If the loss amount is higher than

the maximum value, the expected cost of the reinsurer remains constant with a slight

deviation around the value m− k = 0.4 (pink horizontal line).
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5.5.2 Simulation for exposure curves

Relative to expected losses over time, expsoure curves simulations are made based on

Definitions (5.1-5.2). Figure 5.5a illustrates that the insurer’s cost remains below the

deductible until the loss reaches to k. For this reason, the exposure curve proposes

to allocate the premium so that the insurer collects the entire premium (green line)

until the loss exceeds the deductible. Thereafter, claims above k keep the insurer’s

cost constant at the deductible level, and the reinsurer’s cost begins to decline (red

line), causing the reinsurer’s share of the premium to increase as expected. Thus, Fig-

ure 5.5a depicts the equitable allocation between the parties over time. On the other

hand, the aggreeable share of the premium between parties for Case II is shown in

Figure 5.5b. In adding the maximum level to the contract, we observe that the higher

the difference between the loss amount and m, the lesser the reinsurer’s proportional

risks, since the reinsurer costs remains constant at m − k. Thus, comparing these

cases, it can be expected that the reinsurer’s share on the premium is lower in Case II

than Case I.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Time

P
re

m
iu

m
 S

h
a

re

 

 

ExpCurveInsurer
ExpCurveReinsurer

(a) Case I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Time

P
re

m
iu

m
 S

h
a

re

 

 

ExpCurveInsurer
ExpCurveReinsurer

(b) CaseII

Figure 5.5: The simulated exposure curves

85



5.6 Forecasting the losses, costs and exposure curves

To forecast daily aggregate claims, we employ dynamic ARIMA models. Processing

the forecasting regarding the time-varying parameters as opposed to the original data

benefits such as (i) the performance of forecasting is found a lot better than using

the dynamic ARIMA method to the data itself directly, (ii) the analytical derivations

are to be maintained and integrated. As we estimate the parameters as a time series,

we utilize some parts as training at which dynamic ARIMA algorithm is applied to

forecast these times series. This behavior relies on trend search in train data; then,

this search should be grown with the addition of the test data point to train the new

set. The usage of dynamic structure in ARIMA with trend search causes a sliding

pattern that is examined to establish a new set.

We select the lengths of train data and test data as 200 and 165 days, which are

implemented in dynamic ARIMA algorithm in order to forecast the claim amounts,

the costs of insurer and reinsurer, and the exposure curves. Figure 5.7 indicates the

ARIMA forecast on claim amount the claim amount foreacast and the original test

data, whose values show a good fit MAPE (9.75%) and RMSE (0.0783). It is shown

that PBJD together with dynamic ARIMA trend search algorithm captures the be-

havior of claim amounts. Figures 5.6a and 5.6b demonstrate the forecasted costs of

parties under Case I and Case II, repsectively. In Case I, the insurer pays only the

retention level k, which is seen as the green line (insurer’s costs) and it is coincident

with the retention level (black horizontal line) and the reinsurer pays the rest of the

claim amount in which its costs are expressed with red line. In Case II, the insurer

pays only the retention level k if the claim amount is between the retention and maxi-

mum levels. On the other hand, if the claim amount is higher than maximum level m

(cyan horizontal line), the reinsurer only pays the difference between the maximum

and retention levels m− k (purple horizontal line). The accomplishment of parties’s

costs forecasting is one of the outcomes of obtaining adequate forecasts for claim

amounts. Figures 5.6c and 5.6d show the forecasts under the same setup. The share

of insurer on the premium in Case I is less than its share in Case II since the costs

of the insurer are more than its costs in Case II. The exposure curves of the parties

provide a fair premium share between parties and this is our observations in exposure
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curves forecasts simulations.
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(a) Dynamic ARIMA costs forecasts under Case I
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(b) Dynamic ARIMA costs forecasts under Case II
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(c) Dynamic ARIMA exposure curve forecasts under Case I
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(d) Dynamic ARIMA exposure curve forecasts under Case II

Figure 5.6: The simulated focecasts of expected costs, and exposure curves
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Figure 5.7: Dynamic ARIMA claim forecasts and the test data

5.7 Discussion

In the setting of a stochastic loss amount process with jump influence, this chapter

investigates the impact of extreme losses on a stop-loss agreement between an insurer

and a reinsurer. We assume that PBJD can capture extreme losses and investigate

the models’ validity on real-life data set. The analytical derivations for determining

expected costs and premium shares via exposure curves are novel, and the verifica-

tions using Monte Carlo simulations based on data-driven calibrated parameters look

promising as a tool for practitioners. The use of MTPL data in numerical analy-

sis is new, and estimating time-varying parameters in two stages, dynamic moment

matching estimation for the jump part (λ̂u, λ̂d, ν̂u(i), ν̂d(i)) and dynamic maximum-

likelihood estimation for the continuous part (µ̂(i), σ̂(i)), is shown to be effective

for estimating aggregate losses. Forecasting is accomplished by implementing both

dynamic structures of parameters in time and time dependence, which allows re-

searchers and practitioners to predict daily aggregate claims for a policy year.
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CHAPTER 6

CONCLUSION

Insurance markets are a necessary part of the world’s economy. Due to the effects

of the inreasing trend in world population, catastrophic events, and political and eco-

nomical necessities on the insurance markets, the monetary obligations of companies

in the market also rises significantly. For this reason, the reinsurance policies are

playing a vital role to lighten the financial burden on the insurance companies. In this

thesis, the stop-loss reinsurance, which is one of the commonly issued reinsurance

types, is studied for two types of contracts: contracts with retention value (Case I)

and contracts wtih both retention and cap values (Case II).

The issues required to set the retention and cap values agreed by the insurer and the

reinsurer are the time-dependent structure of randomly changing losses, the change

of the insurer and reinsurer’s own costs over time according to these randomly chang-

ing losses and retention, cap values, and how their share on the premium appear to.

The modeling of these random losses is one of the main elements of the thesis, and

it is carried out by approaching it from three different perspectives. First, it is the

examination of the losses, which are frequently used in the literature, under a pre-

scribed distribution. We use Pareto, Gamma and Inverse Gamma distributions for

modeling losses, since it is more convenient to examine actuarial losses under the

heavy-tailed distributions which are commonly used in the literature. Secondly, we

model the losses with one of stochastic models, Geometric Brownian Motion, since

the distributional approach cannot give the time dependent behavior of the losses and

the effects of time. Finally, we use a stochastic jump diffusion model, the Pareto-

Beta jump diffusion model, to take into account the existence of large losses due to
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extreme and catastrophic events such as floods, earthquakes, and wild fires. Further-

more, among these three methodologies, we examine the costs of the insurer and the

reinsurer and find fair premium shares using the exposure curve.

In this thesis, the effectiveness of our methodologies are discussed with detailed anal-

ysis and derivations. The loss modeling of both distributional and stochastic aspects

are analyzed comprehensively. Moreover, the costs of the insurer and reinsurer are

derived analytically and the fair premium share between them are obtained analo-

gously. For the aim of revealing the validity of our methodologies, especially the

time-dependent structure of the stop-loss reinsurance analysis in terms of loss model-

ing, expected costs, the fair premium share under exposure curves, and the forecasting

power, we apply our findings to a real-life data set containing compulsory traffic in-

surance claims (MTPL) from the Turkish insurance market. In these aspects, this

thesis has theoretical and practical contributions to the insurance market and actuarial

literature, as they are summarized below.

• We determine the optimal premium share between parties under the influence

of exposure curves and certain aggregate loss distributions (Chapter 3). The op-

timal premimum is achieved for the level of correlation coefficient between the

costs of parties, which is attained under an optimization scheme. The analytical

expressions of exposure curves for the selected distributions (Pareto, Gamma,

and Inverse Gamma) in terms of standard deviation premium principle are the

main contributions to the literature, which guides the researchers to charactize

the behavior of premium pricing. We use Monte Carlo simulations to determine

the maximum correlation, the smaller expected costs, and the topmost premium

under the constraintive conditions in terms of predetermined retention and cap

levels. For a better undestanding of our proposed approach in this chapter, we

minimize the total risks of the insurer and reinsurer under VaR and CVaR risk

measures for the comparison purposes. The results display that, for all selected

distributions under Case I and Case II, the optimized solutions of proposed ap-

proach is close to VaR and CVaR solutions. Furthermore, both solutions of VaR

and CvaR, and our proposed methodogy, Gamma distribution is more suitable

than the others.
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• A stochastic model, specifically a geometric Brownian motion with time-varying

parameters, in order to depict the loss behavior under a time-dependent struc-

ture is proposed (Chapter 4). We derive analytically the costs of parties and

the exposure curves for continuous and discrete time frameworks. We use real-

life data to validate the proposed approach in this chapter and to estimate dy-

namically the time-varying parameters with the maximum likelihood estimator,

which are governing the small and equidistant time intervals. The fitting results

of the proposed model is adequate. Based on the estimated parameters, we sim-

ulate the expected costs and the exposure curves of insurer and reinsurer and

forecast claim amounts, expected costs, and exposure curves by considering

time-varying parameters as time-series. Thus, we use cubic-spline extrapola-

tion and ARIMA with trend search on these series in order to protect the struc-

ture of the stochastic model and our derivations of expected costs and exposure

curves. Additionaly, we investigate the efficiency for daily and weekly updates

in cubic spline forecasting and daily updates in ARIMA with trend search fore-

casting. Moreover, the performances of train data length on ARIMA with trend

search forecast are obtained to achieve a better recognition forecasts in a short

term period. This enables the insurer and the reinsurer to reinvest according

to forecasts on the claim amounts, the expected costs, and how to share the

premium using exposure curves and to rebalance their portfolios. The main

contribution of this chapter to literature is to set up a time-dependent mecha-

nism on a stop-loss reinsurance.

• We model the claim amounts with a stochastic jump diffusion model, specifi-

cally Pareto-Beta jump diffusion (PBJD) with time-varying parameters, in or-

der to capture extreme losses and to keep the time influenced structure of losses

(Chapter 5). We derive analytically the expected costs of parties and exposure

curves to find fair premium share under PBJD, which is quite a novel approach

and contribution to the literature. The calibration of parameters is obtained in

two phases: dynamic moment matching estimation for the parameters in jump

part and dynamic maximum-likelihood estimation for continous part, which are

competent for estimating aggreagate losses and appears encouraging tool for

practitioners. Additionally, we forecast the dailly aggregate claims, expected
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costs of parties, and exposure curves for the share of premium for a contract

period by considering ARIMA with trend search on a time-varying parameters

in order to keep the structure of time-dependent structure of claim amounts via

PBJD.

The results presented in the thesis will serve as a benchmark for time-dependent struc-

ture of loss modeling, the costs of parties, and premium pricing and its fair share via

the exposure curves. Using the time dependent structure of our methodologies, the

insurer and reinsurer can evaluate their position on the future loss amounts, the size

of financial costs on their parts of responsibilities, fairly partition of the premium ob-

tained using exposure curves, and the premium value according to the los amounts,

their costs and share on the premium on a specific time interval decided by their own

direction. This can help the practitioners to construct a reinvestment strategy and con-

struct a portfolio to pay their reponsibilities and to make profit. In this perspective,

as a future work, we aim to investigate the reserve scheme on a stop-loss contract by

adding an optimal reinvestment strategy for the joint analysis of insurer and reinsurer

under time-dependent mechanism presented in the thesis.
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APPENDIX A

DERIVATIONS AND RELATED PROOFS

A.1 Proofs for Chapter 3

i) The proofs related to equations given in Proposition (3.3) and Proposition (3.4):

E(R(d)) =

∫ ∞

d

(1− FS(s))ds (A.1)

=

∫ ∞

d

ba

sa
ds =

bad1−a

a− 1
.

Using Proposition 3.2, E[R(d,m)] is obtained by putting Eq. (A.1) into

E[R(d,m)] = E[R(d)]− E[R(m)].

V[R(d)] = 2

∫ ∞

d

ba

sa−1
ds+ E[R(d)](−2d− E[R(d)]) (A.2)

=
bad(2−a)[2− (b/d)a(a− 2)]

(a− 2)(a− 1)2
.

Using Eq. (A.1), the covariance between I and R in Case I is found as

Cov[I(d), R(d)] = E(R(d))

[
d− ab

a− 1

]
+ E(R(d))] (A.3)

=
abad1−a[d− b] + bad(2−a)[(b/d)a − 1]

(a− 1)2
.

V[R(d,m)] = V[R(d)]− V[R(m)] + 2E[R(m)](E[R(d)]− E[R(m)] + d−m)

(A.4)

=
b2a

(a− 1)2

[
(m1−a − d1−a)2 − 2(m2(1−a) + d1−a)

]
+

2ba

(a− 1)2(a− 2)

[
d2−a −m2−a + (a− 1)(a− 2)m1−a(d−m)

]
.
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ii) The proofs related to equations given in Proposition (3.5) and Proposition (3.6):

E[R(d)] =

∫ ∞

d

(s− d)
sa−1e−

s
b

baΓ(a)
ds

=

∫ ∞

d

s
sa−1e−

s
b

baΓ(a)
ds− d

∫ ∞

d

sa−1e−
s
b

baΓ(a)
ds

= ab

∫ ∞

d

sae−
s
b

ba+1Γ(a+ 1)
ds− d

∫ ∞

d

sa−1e−
s
b

baΓ(a)
ds

= ab(1−Ga(d; a+ 1, b))− d(1−Ga(d; a, b))

= ab
Γ(a+ 1, d)

Γ(a+ 1)
− d

Γ(a, d)

Γ(a)
. (A.5)

Using Proposition 3.2, E[R(d,m)] is obtained by putting Eq. (A.5) into

E[R(d,m)] = E[R(d)]− E[R(m)].

V[R(d)] =

∫ ∞

d

(s− d)2
sa−1e−

s
b

baΓ(a)
ds− (E[R(d)])2

= E[R(d)](−2d− E[R(d)]) + (a+ 1)ab2(1−Ga(d; a+ 2, b))

− d2(1−Ga(d; a, b))

= E[R(d)](−2d− E[R(d)]) (A.6)

+
1

Γ(a)
[b2Γ(a+ 1, bd)− d2Γ(a, bd)].

Using Equation[A.5], the covariance between I and R in Case I is found as

Cov[I(d), R(d)] = E(R(d)) [d− ab] + E(R(d))] (A.7)

=

[
1

Γ(a)

[
bγ(a− 1, b/d)− dγ(a, b/d)

]]2
+

1

Γ(a)

[
Γ(a, b/d)− Γ(a− 1, b/d) + (b− d)

(
d− b

a− 1

)]
.

V[R(d,m)] =V[R(d)]− V[R(m)] + 2E[R(m)](E[R(d)]− E[R(m)] + d−m)

(A.8)

=2

∫ m

d

s[1− FS(s)]ds+ E[R(d,m)][−E[R(d,m)]− 2d]

=
1

Γ(a)
[b2(Γ(a+ 2, bd)− Γ(a+ 2, bm))− d2Γ(a, bd)−m2Γ(a, bm)]

+ E[R(d,m)][−E[R(d,m)]− 2d].
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The proof is obtained with a revision on

Cov[I(d,m), R(d,m)] = Cov[I(d), R(d)]− (2d−m)E[R(m)

such that

Cov[I(d,m),R(d,m)] = E[R(d)](d− E[S] + E[R(d)])− (2d−m)E[R(m)

(A.9)

= (E[R(d,m)]− 1

Γ(a)
[bΓ(a+ 1, bm)− dΓ(a, bm)])2

+
m− d

Γ(a)
[bΓ(a+ 1, bd)− dΓ(a, bd)] + E[R(d,m)(d− ab).

iii) The proofs related to equations given in Proposition (3.7) and Proposition (3.8):

E[R(d)] =

∫ ∞

d

(s− d)
ba

Γ(a)
s−a−1e−b/sds

=
ba

Γ(a)

∫ ∞

d

s−ae−b/sds− bad

Γ(a)

∫ ∞

d

s−a−1e−b/sds

=
1

Γ(a)
[bγ(a− 1, b/d)− dγ(a, b/d)].

(A.10)

E[R(d,m)] is obtained by putting Eq. (A.10) into

E[R(d,m)] = E[R(d)]− E[R(m)].

Using Eq. (A.10), the covariance between I and R in Case I is found as

Cov[I(d),R(d)] = E(R(d))

[
d− b

a− 1

]
+ E(R(d))] (A.11)

=

[
1

Γ(a)

[
bγ(a− 1, b/d)− dγ(a, b/d)

]]2
+

1

Γ(a)

[
Γ(a, b/d)− Γ(a− 1, b/d) + (b− d)

(
d− b

a− 1

)]
.

Finding the second moment of the cost of reinsurer with respect to d is enough

to estimate the variance. Thus,
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E[R(d)2] =

∫ ∞

d

(s− d)2
ba

γ(a)
s−a−1e−b/sds (A.12)

=
ba

Γ(a)

[∫ ∞

d

s1−ae−b/sds− 2d

∫ ∞

d

s−ae−b/sds

+ d2
∫ ∞

d

s−1−ae−b/sds

]
=

1

Γ(a)
[b2γ(a− 2, b/d)− 2dbγ(a− 1, b/d) + d2γ(a, b/d)].

V[R(d,m)] = V[R(d)]− V[R(m)] + 2E[R(m)](E[R(d)]− E[R(m)] + d−m)

(A.13)

= 2

∫ m

d

s[1− FS(s)]ds+ E[R(d,m)][−E[R(d,m)]− 2d]

= m2 − d2 −
∞∑
k=0

(−1)k(m2−a−k − d2−a−k)

k!(a+ k)(2− a− k)

+ E[R(d,m)][−E[R(d,m)]− 2d].

A.2 Proofs for Chapter 4

Theorem 4.1:

Let Z =
(
µ− σ2

2

)
t+σWt =

(
µ− σ2

2

)
t+σ
√
tY , where Y is distributed by standard

normal. The linear transformation of normal random variables gives

Z ∼ N

((
µ− σ2

2

)
t, σ2t

)
.

In other words, Z has distributed by normal with mean
(
µ− σ2

2

)
t and variance σ2t.

By Eq. (4.1),

XG
t = XG

0 e
(µ−σ2/2)t+σWt = XG

0 e
Z .

Let Rt = max(XG
t − d, 0) be the cost of reinsurer at time t where d is the predeter-

mined retention level. The expected cost of the reinsurer at t can be written in terms

of the integration using the density of Z as
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E[Rt] = E[max(XG
t − d, 0)] = E[max(XG

0 e
Z − d, 0)]

= XG
0

∫ ∞

K

ezfZ(z)dz − d

∫ ∞

K

fZ(z)dz,
(A.14)

where K = ln
(

d
XG

0

)
and fZ(z) =

1
σ
√
2πt

e−
((µ−σ2/2)t−z)2

2σ2t .

We should solve the following integrals in Eq. (A.14) to obtain the expected cost of

the reinsurer:

I1 :=

∫ ∞

K

ez
1

σ
√
2πt

e−
((µ−σ2/2)t−z)2

2σ2t dz, I2 :=

∫ ∞

K

1

σ
√
2πt

e−
((µ−σ2/2)t−z)2

2σ2t dz.

The solution for I1 is obtained as

I1 = e(µ−σ2/2)t

∫ E2d

−∞

1√
2π

e−(u2/2−uσ
√
t)du,

(
by substitution u =

−z + (µ− σ2)t

σ
√
t

)
,

= eµt
∫ E1d

−∞

1√
2π

e−v2/2dv,

(
by substitution v = u+ σ

√
t

)
,

= eµtNF (E1d),

(A.15)

where NF (x) =
∫ x

−∞
1√
2π
e−

t2

2 dt, E2d =
ln

(
XG

0
d

)
+(µ−σ2

2
)t

σ
√
t

, and E1d = E2d + σ
√
t.

The solution for I2 is obtained as

I2 =

∫ ∞

K

1

σ
√
2πt

e−
((µ−σ2/2)t−z)2

2σ2t dz = NF (E2d)︸ ︷︷ ︸
by substitution u=

−z+(µ−σ2)t

σ
√
t

.
(A.16)

Therefore, plugging the solutions of the integrals found in Eqs. (A.15) and (A.16)

into Eq. (A.14) gives the expected cost of the reinsurer at t, which is found as

E[Rt] = XG
0 e

µtNF (E1d)− dNF (E2d). (A.17)

Since XG
t = XG

0 e
Z ,

E[XG
t ] = XG

0 e
µt.

Since It = min(XG
t , d) and XG

t = It +Rt,

E[min(XG
t , d)] = E[It] = E[XG

t ]− E[Rt].
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Therefore, the expected cost of the insurer at t is found as

E[It] = XG
0 e

µt(1−NF (E1d)) + dNF (E2d). (A.18)

Theorem 4.3:

We use the same methodology used in the proof of Theorem 4.1.

Let It = min(XG
t , d) + max(XG

t − m, 0) be the cost of the insurer at time t where

d and m are predetermined retention and maximum levels. The expected cost of the

insurer at t is

E[It] = E[min(XG
t , d)] + E[max(XG

t −m, 0)]. (A.19)

E[min(XG
t , d)] is found in Theorem 4.1 as

E[min(XG
t , d)] = XG

0 e
µt(1−NF (E1d)) + dNF (E2d). (A.20)

Moreover, E[max(XG
t −m, 0)] is obtained using E[max(XG

t − d, 0)] given in Theo-

rem 4.1. For this, we only need to substitute d with m. Therefore,

E[max(XG
t −m, 0)] = XG

0 e
µtNF (E1m)−mNF (E2m), (A.21)

where E2m =
ln

(
XG(0)

m

)
+(µ−σ2

2
)t

σ
√
t

and E1m = E2m + σ
√
t.

Plugging Eqs. (A.20) and (A.21) into Eq. A.19, the cost of the insurer at t is found as

E[It] = XG
0 e

µt[1 +NF (E1m)−NF (E1d)] + dNF (E2d)−mNF (E2m). (A.22)

Since E[Rt] = E[XG
t ]− E[It] where E[XG

t ] = XG
0 e

µt, the cost of the reinsurer at t is

E[Rt] = XG
0 e

µt[NF (E1d)−NF (E1m)]− dNF (E2d) +mNF (E2m). (A.23)

A.3 Proofs for Chapter 5

First, we fix time for ti = i, then we obtain a solution for all i without loss of gener-

ality.

The conditional density of Z(ti) when no up-jump and a down-jump becomes

98



f0|1(z) =
νd√
2πsσ2

∫ 0

−∞
eνdx−

1
2sσ2 (z−x−µs+ 1

2
σ2s)

2

dx,︸ ︷︷ ︸
=:I1

To solve I1,

I1(z) =

∫ 0

−∞
eνdx−

1
2sσ2 (z−x−µs+ 1

2
σ2s)

2

dx :=

∫ 0

−∞
e−K(x) dx

where

K(x) =
1

2sσ2

(
z − x− µs+

1

2
σ2s

)2

− νdx.

Our aim is to complete the square in K(x) using

1

2

(
x− α1

β1

)2

=
x2

2β2
1

− xα1

β2
1

+
α2
1

2β2
1

. (A.24)

K(x) is obtained explicitly as

1

2sσ2

[
x2 + z2 + µ2s2 +

σ4s2

4
− 2xz − xσ2s+ 2xµs+ zσ2s− 2zµs− µσ2s

]
−νdx.

The term with x2 in K(x) is denoted by

K2(x) :=
x2

2σ2s
.

By equating the x2 terms in Eq. (A.24) and K2(x), we obtain

β1 = σ
√
s, σ, s > 0.

The term with x in K(x) is is denoted by

K1(x) := x

[
−z
σ2s
− 1

2
+

µ

σ2
− νd

]
.

By equating the x terms in Eq. (A.24) and K1(x), we obtain

α1 = z +
σ2s

2
− µs+ νdσ

2s.

The term with x0 in K(x) is denoted by

K0(x) :=
z2

2σ2s
+

µ2s

2σ2
+

σ2s

8
+

z

2
− zµ

σ2
− µ

2
.
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To complete the square in K(x), we adjust K0(x) by

K0(x)± νd

(
σ2s

2
(νd + 1) + z − µs

)
=

α2
1

2β2
1

− νd

(
σ2s

2
(νd + 1) + z − µs

)
.

Thus,

I1(z) =

∫ 0

−∞
e−K(x) dx = e

−νd

(
σ2s
2

(νd+1)+z−µs
) ∫ 0

−∞
e
− 1

2

(
x−α1
β1

)2

dx

= e
−νd

(
σ2s
2

(νd+1)+z−µs
)
β1

√
2π

∫ 0

−∞

1

β1

√
2π

e
− 1

2

(
x−α1
β1

)2

dx

= e
−νd

(
σ2s
2

(νd+1)+z−µs
)
σ
√
2πs Φ(0;α1, β

2
1),

where Φ(0;α1, β
2
1) is the value of the normal cdf with mean α1 and variance β2

1 at 0.

Therefore,

f0|1(z) =
νd√
2πsσ2

I1 = νde
−νd

(
σ2s
2

(νd+1)+z−µs
)
Φ(0;α1, β

2
1).

The conditional density of Z(ti) when an up-jump and no down-jump becomes

f1|0(z) =
νu√
2πsσ2

∫ ∞

0

e−νux− 1
2sσ2 (z−x−µs+ 1

2
σ2s)

2

dx︸ ︷︷ ︸
=:I2

.

To solve I2,

I2(z) =

∫ ∞

0

e−νux− 1
2sσ2 (z−x−µs+ 1

2
σ2s)

2

dx :=

∫ 0

−∞
e−M(x) dx

where

M(x) =
1

2sσ2

(
z − x− µs+

1

2
σ2s

)2

+ νux.

Our aim is to complete the square in M(x) using

1

2

(
x− α2

β2

)2

=
x2

2β2
2

− xα2

β2
2

+
α2
2

2β2
2

. (A.25)

M(x) is obtained explicitly as

1

2sσ2

[
x2 + z2 + µ2s2 +

σ4s2

4
− 2xz − xσ2s+ 2xµs+ zσ2s− 2zµs− µσ2s

]
+νux.

The term with x2 in M(x) is denoted by

M2(x) :=
x2

2σ2s
.
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By equating the x2 terms in Eq. (A.25) and M2(x), we obtain

β2 = σ
√
s, σ, s > 0.

The term with x in M(x) is denoted by

M1(x) := x

[
−z
σ2s
− 1

2
+

µ

σ2
+ νu

]
.

By equating the x terms in Eq. (A.25) and M1(x), we obtain

α2 = z +
σ2s

2
− µs− νuσ

2s.

The term with x0 in M(x) is

M0(x) :=
z2

2σ2s
+

µ2s

2σ2
+

σ2s

8
+

z

2
− zµ

σ2
− µ

2
.

To complete the square in M(x), we adjust M0(x) by

M0(x)± νu

(
σ2s

2
(νu − 1)− z + µs

)
=

α2
2

2β2
2

− νu

(
σ2s

2
(νu − 1)− z + µs

)
.

Thus,

I2(z) =

∫ ∞

0

e−M(x) dx = e
−νu

(
σ2s
2

(νu−1)−z+µs
) ∫ 0

−∞
e
− 1

2

(
x−α2
β2

)2

dx

= e
−νu

(
σ2s
2

(νu−1)−z+µs
)
β2

√
2π

∫ ∞

0

1

β2

√
2π

e
− 1

2

(
x−α2
β2

)2

dx

= e
−νu

(
σ2s
2

(νu−1)−z+µs
)
σ
√
2πs [1− Φ(0;α2, β

2
2)],

where Φ(0;α2, β
2
2) is the value of the normal cdf with mean α2 and variance β2

2 at 0.

Therefore,

f1|0(z) =
νu√
2πsσ2

I1 = νue
−νu

(
σ2s
2

(νu−1)−z+µs
)
[1− Φ(0;α2, β

2
2)].
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