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ABSTRACT

NUMERICAL CALCULATION OF HOMOGENIZED PROPERTIES OF
PIEZOELECTRIC COMPOSITES

Kurt, Mustafa
M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Ercan Gürses

November 2022, 110 pages

Piezoelectric materials are the materials we use in many parts of our lives without

being aware. These materials can convert electrical energy into mechanical energy or

vice versa. Although this ability renders piezoelectric ceramics very attractive materi-

als for sensing and actuation applications, their use often remains limited, due to their

weight and brittleness. As a result of these drawbacks, piezoelectric composites are

developed, and they offer superior performance compared to monolithic piezoelectric

materials.

The main aim of this study is to numerically calculate the effective material prop-

erties (elastic, piezoelectric, and dielectric) of piezoelectric composites to determine

the behavior and performance of the piezoelectric composites. With micromechani-

cal methods, the overall behavior of piezoelectric composites is obtained by using the

properties of their constituents through a finite element analysis of a periodic repre-

sentative volume element (RVE) or a unit cell model.

In this study, different piezoelectric fiber composites are studied. The most encoun-

tered piezocomposite in the literature is 1-3 type piezocomposites, whose full set of
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material moduli is extracted using the homogenization method. The results are ver-

ified with experimental data and different numerical studies from the literature. The

homogenization method is validated with a macro-scale boundary value problem and

the results are compared with a numerical study from the literature. Moreover, porous

piezoceramics are investigated. The effects of size, shape, and distribution of pores

upon the effective material properties and performance coefficients are investigated.

Finally, the porosity is incorporated into the 1-3 piezocomposites and its influence on

the hydrostatic performance coefficients is investigated.

Keywords: Piezoelectricity, Composite, Homogenization, Finite element analysis,

Porosity
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ÖZ

PİEZOELEKTRİK KOMPOZİTLERİN HOMOJENLEŞTİRİLMİŞ
ÖZELLİKLERİNİN SAYISAL OLARAK HESAPLANMASI

Kurt, Mustafa
Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ercan Gürses

Kasım 2022 , 110 sayfa

Piezoelektrik malzemeler hayatımızın birçok alanında farkında olmadan kullandığı-

mız malzemelerdir. Bu malzemeler, elektrik enerjisini mekanik enerjiye veya tam

tersine dönüştürme özelliğine sahiptir. Bu özellik, piezoelektrik seramikleri sensör ve

aktüatör uygulamaları için oldukça cazip hale getirse de, ağır ve gevrek yapıda ol-

maları nedeniyle kullanımları genellikle sınırlı kalır. Bu dezavantajların bir sonucu

olarak, piezoelektrik kompozitler geliştirilmekte ve monolitik piezoelektrik malze-

melere göre daha üstün performans sunmaktadırlar.

Bu çalışmanın ana amacı, piezoelektrik kompozitlerin davranış ve performansını be-

lirlemek için piezoelektrik kompozitlerin etkin malzeme özelliklerini (elastik, piezo-

elektrik ve dielektrik) sayısal olarak hesaplamaktır. Mikro mekanik yöntemlerle, pi-

ezoelektrik kompozitlerin genel davranışı, bileşenlerinin özellikleri kullanılarak, pe-

riyodik temsili hacim elemanının (RVE) veya bir birim hücre modelinin sonlu eleman

analizi yoluyla elde edilir.

Bu çalışmada, farklı piezoelektrik fiber kompozitler incelenmiştir. Literatürde en çok
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karşılaşılan piezokompozit, bu çalışmada homojenizasyon yöntemi kullanılarak tüm

malzeme modülleri çıkarılan 1-3 piezokompozitlerdir. Sonuçlar, deneysel veriler ve

literatürdeki birçok sayısal çalışma ile doğrulanmıştır. Homojenleştirme yöntemi, makro

ölçekli bir sınır değer problemi ile doğrulanmış ve sonuçlar literatürdeki sayısal bir

çalışma ile karşılaştırılmıştır. Ayrıca, gözenekli piezoseramikler de araştırılmıştır. Gö-

zeneklerin boyut, şekil ve dağılımının etkin malzeme özellikleri ve performans katsa-

yıları üzerindeki etkileri araştırılmıştır. Son olarak, gözenekli yapı 1-3 piezokompo-

zitlere dahil edilmiş ve hidrostatik performans katsayıları üzerindeki etkisi araştırıl-

mıştır.

Anahtar Kelimeler: Piezoelektrisite, Kompozit, Homojenleştirme, Sonlu elemanlar

analizi, Gözenek
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CHAPTER 1

INTRODUCTION

Piezocomposites, or piezoelectric composites, are composite materials consisting of a

piezoelectrically active material and a piezoelectrically passive material host material,

e.g., polymer or epoxy. The piezoelectrically active material is most commonly a

piezoceramic or a piezoelectric ceramic, and this is the constituent that makes the

composite piezocomposite. Due to their superior properties over conventional pure

piezoceramics and tailorable properties, piezocomposites have been considered very

promising and used in many different fields since then. Some special properties of

piezocomposites are high electromechanical coupling, mechanical flexibility, and low

acoustic impedance.

The high electromechanical coupling means better conversion between the mechan-

ical and electrical energy. Low acoustic impedance helps the acoustic waves to be

transmitted to new media such as water or human tissue. These properties render

piezoelectric composites very beneficial for underwater sonar applications or ultra-

sonic transducer applications in medicine.

The properties that we obtain from a piezoelectric composite depend on the material

selection, the volume fraction of the phases, and the topology of the phases. There-

fore, by manipulating the aforementioned parameters, we can obtain different prop-

erty values, meaning that the properties of the piezoelectric composites are tailorable,

and this is generally not possible for a pure piezoelectric material.

The connectivity of the phases dictates the name of the piezoelectric composites and

their nature. Depending on how the phases are interconnected, the geometry and the

behavior of the piezocomposite change. For a two-phase piezoelectric composite,

1



there are 10 possible patterns: 0-0, 0-1, 0-2, 0-3, 1-1, 1-2, 1-3, 2-2, 2-3 and 3-3.

Especially a 1-3 piezocomposite configuration, which consists of PZT-rod and polymer-

matrix as its constituents, has been considered the most useful because this composite

configuration has features such as high coupling coefficients, mechanical flexibility,

low acoustic impedance, decent acoustic matching to human tissue, and water [1].

These mentioned features make 1-3 piezoelectric composites quite beneficial for both

underwater sonar applications and ultrasonic transducer applications of medical diag-

nosis.

Since these piezocomposite materials are among the important parts of the recent

materials in engineering fields due to their unique advantages, the prediction of the

material properties of the piezocomposites has become very necessary. The macro-

scopic properties of piezocomposites can be determined following the homogeniza-

tion method. The concept of representative volume element (RVE) arises in the ho-

mogenization method. A representative volume element is said to be the smallest

piece that can represent the entire structure homogeneously and is often modeled as

a cube in three-dimensional numerical calculations. In the homogenization method,

a macroscopic strain state is applied to an RVE, and the average of the non-uniform

stress field over the RVE is computed. The homogenized material properties can then

be computed using the macroscopic strain and the average stress values, assuming

a linear constitutive relation. In this study, a representative volume element in the

form of a cube is used for all the analyses using commercial finite element analysis

software ABAQUS [2].

By obtaining these average (effective) properties, new homogeneous material with

approximately the same mechanical and piezoelectrical behaviors as the original het-

erogeneous material can be created. This method is called homogenization, which

will be explained in more detail in Chapter 4.

Finite element analyses are conducted with the commercial software program ABAQUS.

Python programming language embedded in ABAQUS facilitated the application of

boundary conditions and post-process calculations. Creating a Python script to do the

pre or post-processing jobs or to automate the repetitive tasks decreases the time and

effort required for analysis. Furthermore, for some specific jobs, it becomes a must
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to do so. Applying periodic boundary conditions (PBCs) is an example of it. There

are two main Python scripts developed for this thesis, one for applying PBCs and the

other for post-processing.

1.1 Motivation and Aim of the Thesis

The fact that the monolithic piezoelectric materials do not meet the requirements of

the specific applications necessitates the use of the piezoelectric composites, which

are made of piezoelectric materials embedded in a piezoelectrically passive host ma-

terial. Moreover, the computation of the effective material coefficients of these com-

posites is a vital step reaching the optimum design with appropriate material selection

and configuration. Numerical calculations also offer a great variety and convenience

in estimating the effective material coefficient. Therefore, numerical calculation of

effective properties of piezocomposites is essential and valuable.

1.2 Outline of the Thesis

Chapter 2 is a literature review chapter. Related studies in the literature are reviewed

and briefly explained.

In Chapter 3, general information about piezoelectricity is thoroughly reported. It

consists of sections that explain the fundamental principles of piezoelectric materials,

such as their crystal structures, poling, and connectivity. Data of the piezoelectric

materials are shared in tables. Two different types of piezoelectric materials, piezo-

ceramics and piezopolymers, are briefly explained and piezocomposites and their ad-

vantages are stated. Material coefficients and performance coefficients of the piezo-

electric materials are explained.

In Chapter 4, the following information regarding the calculation of the effective

properties is expressed. Constitutive equations of the piezoelectric behavior, assump-

tions, and material tensors of transversely isotropic piezoelectric materials are stated.

Homogenization method, the concept of RVE, types of boundary conditions, and par-

ticularly the periodic boundary condition (PBC) are explained. The application of
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PBCs and the calculation of the effective properties are presented.

In Chapter 5, diphasic 1-3 piezocomposites are studied. Their full set of material

moduli is extracted by analyzing RVEs in ABAQUS. An example model is analyzed,

and the results are discussed. Effective material coefficients are tabulated, and contour

plots of stresses, electric field, and electric displacements are shown. Furthermore, by

using two different analysis models, the results of this study are compared with the

four studies found in the literature.

In Chapter 6, porous piezoceramics are studied. Since only the performance coef-

ficients regarding the hydrostatic applications are of interest, related material coeffi-

cients are evaluated, not all the material coefficients. It is observed that the presence

of pores increased the hydrostatic performance of the piezoceramics. The effects of

size, shape, and configuration are studied.

In Chapter 7, the conclusions will be remarked.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, important and related studies found in the literature about the homog-

enization of piezocomposites will be mentioned.

In 2019, Pramanik and Arockiarajan [3] wrote a comprehensive review article in

which all the previous studies are mentioned, and important subjects such as porosity,

interphase effects, and non-linearities are discussed.

Smith [4] discussed the effect of using polymer materials with negative Poisson’s ratio

on the coupling between the electrical and mechanical responses and concluded that it

increased the electromechanical energy conversion of the piezocomposite. By doing

so, the polymer matrix transformed the lateral stresses and helped in compressing the

piezoelectric phase.

Upon that, Swart and Avellaneda [5] studied the limits of Poisson’s ratio and con-

cluded that using a negative Poisson’s ratio improved performance. They also exam-

ined the effect of porosity in the matrix phase and obtained different homogenized

properties and improved performance compared to composites with the non-porous

matrix.

Bennett and Hayward [6] sought to get the maximum hydrostatic performance of a

1-3 piezocomposite. They achieved the best performance by using a piezocomposite

with a low volume fraction PZT-5H and concluded that the polymer phase should be

compliant and the Poisson’s ratio should be as low as possible. The effect of Poisson’s

ratio was greater than Young’s modulus of the polymer phase.

So far, researchers have investigated combinations of piezoelectrically active or pas-
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sive phases and isotropic, transversely-isotropic, or anisotropic phases. As examples,

the following can be given:

• Smith and Auld [7], Smith [8] and Chan and Unsworth [9] used transversely

isotropic active fiber and isotropic passive matrix.

• Guinovart-Diaz et al. [10] studied transversely isotropic active fiber and trans-

versely isotropic active matrix.

• Dunn and Taya [11], on the other hand, studied anisotropic active fiber and

transversely isotropic active matrix.

Berger et al. [12], [13] focused on square arrangements of cylindrical fibers in 1-3

piezocomposites. In the study, an analytical and a numerical approach are presented

to calculate the effective coefficients. These two studies can be considered bench-

marks and have often been resorted to verifying other studies’ results.

Just like Berger et al. [12], [13], the works of Kar-Gupta and Venkatesh [14]–[16]

are also well-known. In their study, Kar-Gupta and Venkatesh [14] developed an an-

alytical model for 1-3 piezoelectric composite and presented all the 45 independent

material properties analytically. They also developed a FEM model and concluded

that the analytical model successfully predicted the effective properties in the lon-

gitudinal direction of fiber (i.e., C33, κ33, and ε33). However, the analytical model

underpredicted the effective properties in the transverse directions like κ11 and κ22.

They stated that the differences were higher for matrix-dominant systems compared to

fiber-dominant systems, and it was due to the approximation made in the FEM model,

where the piezocomposite is modeled as a layered composite. Also, they noted that

as the fiber volume fraction increases, the agreement between the FEM model and the

analytical model worsens. They also studied in [16] the 1-3 piezoelectric composites

according to their fiber arrangements.

Bowen and Kara [17] examined the influence of pore anisotropy on the hydrostatic

properties for 3-3 piezocomposites, taking into account poling direction. They con-

cluded that having pores aligned in the poling direction, permittivity in 3-direction

(εT33), hydrostatic strain coefficient (dh), and hydrostatic figure of merit (dhgh) in-
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creased, but hydrostatic voltage coefficient (gh) is found to be insensitive to pore

shape.

Moreno et al. [18] performed finite element analysis on 1-3 composites made of

lead zirconate titanate (PZT) and the polymeric matrix. This study explained how the

periodic boundary conditions should be applied in the computational homogenization

of pizoelectric composites.

Tita et al. [19] evaluated the effective properties of smart composite materials with

both perfect and imperfect fiber-matrix adhesion. They investigated different case

studies to understand the influence of parameters, such as the geometry of the fiber

cross-section, volume fraction, and imperfection in the interface, on the effective co-

efficients of composite materials. Their study concluded that more significant differ-

ences are observed for the effective coefficients of directions 1 and 2. Nevertheless,

the effective coefficients in direction 3 (fiber direction) showed minute differences.

This result is valid for different fiber volume fraction values and different levels of

imperfect contact.

Mishra et al. [20] investigated a piezoelectric nanocomposite that is made of vertical

arrays of piezoelectric zinc oxide (ZnO) nanowires and a SU8 photoresist as a poly-

meric matrix. In this study, the effective properties are evaluated by analyzing cubic

RVE using finite element analysis. The results obtained were in agreement with the

results that are obtained by a semi-analytical Eshelby Mori-Tanaka (EMT) method,

in particular at low volume fractions. They investigated the influence of fiber arrange-

ment, fiber volume fraction, and RVE size on the material properties. How the ZnO

nanowires are arranged did cause differences in effective transverse elastic and piezo-

electric coefficients but did not change the effective longitudinal (in fiber direction)

properties much. Also, they studied two sizes of RVE and concluded that increasing

the size of the RVE by two times did not affect the electromechanical properties of

the piezocomposite, except for e15.

According to Heiber et al. [21], PZT fibers can be produced for a wide range of di-

ameters from 5 micrometers to 1000 micrometers. Della and Shu [22] studied the

influence of three types of matrices on the performance of 1-3 piezoelectric com-

posites: an active piezoelectric ceramic BaTiO3, an active piezoelectric polymer
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[P(VDF-TrFE)], and a passive polymer Araldite D. PZT-7A fibers of circular cross

section are used for all cases. They did the calculations using a micromechanics-

based Mori-Tanaka model. They deduced that the active polymer matrix could seri-

ously enhance the hydrostatic performance, yet the electromechanical coupling coef-

ficient and acoustic impedance were not improved noticeably. Also, they discovered

that using piezoelectric ceramic (BaTiO3) as a matrix does not improve performance.

To improve the thermal reliability and the performance of the 1-3 piezocomposites

made of PZT and epoxy, Li et al. [23] introduced the reinforcement inclusions of glass

spheres into the epoxy matrix. They fabricated the 1-3 piezocomposites and obtained

the experimental results which revealed that while low content of glass spheres (≤ 4

%) does not contribute to any improvement, the higher content of glass spheres (≥
12 %) improved the dielectric permittivity, mechanical quality factor and lowered the

thermal expansion coefficient of the piezocomposite.

Della and Shu [24] also investigated the possible effects of porosity in the matrix for

1-3 piezocomposites. They did a two-step analytical solution with Mori-Tanaka (MT)

method [25], the first homogenized the porous matrix and then the whole structure,

including the piezoelectric fiber and the porous matrix. Results showed that adding

pores into the matrix significantly improved the figures of merits and the performance

of the piezocomposite.

A similar but experimental study was conducted by Khanbareh et al. [26], in which

they aimed to reduce the dielectric permittivity of the matrix phase and increase the

flexibility for soft robotic skin applications by adding a gaseous phase into the ma-

trix. They achieved the reduction of the dielectric permittivity, which resulted in an

increase in the piezoelectric voltage coefficient (g33) in return. New micro-porous

piezocomposite can possess g33 coefficient up to twice as non-porous piezocomposite

and five times as bulk PZT ceramics.

In a recent study about porosity, Isaeva and Topolov [27] studied the influence of

a porous piezo-matrix on the piezoelectric properties and figures of merit compared

to a non-porous piezo-matrix. Fiber material was chosen as KNNTL-Mn. Results

showed that figures of merit like d33g33 and d31g31 improved with the addition of

pores into the matrix. It is also stated that elliptic pores rather than spherical pores
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can further improve the performance, inferring the influence of elastic anisotropy on

the piezoelectric performance and the figures of merit (FOMs).

In the study of Martínez-Ayuso et al. [28], porous piezoelectric material (PZT-5A) is

investigated through both analytical and numerical methods. With both methods, it

was concluded that the figures of merit increased as the porosity increased. Porous

piezoelectric materials are said to offer significant advantages for energy harvesting

applications compared to monolithic piezoelectric materials. Also, it is deducted that

the most favorable case is when the air inclusions are in the shape of perfect spheres

and distributed spatially uniformly.
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CHAPTER 3

PIEZOELECTRICITY

Piezoelectricity is the formation of electric charges in response to applied mechanical

stress, which is called the direct piezoelectric effect. The other way around is also

possible; by applying an electric field, the piezoelectric material undergoes a defor-

mation, which is called the inverse piezoelectric effect. The word “piezo” is derived

from the Greek word “piezein” and means “to press/squeeze”. Therefore, the word

piezoelectricity literally implies electricity from pressure [29].

These observed properties are defined as electromechanical coupling. The piezoelec-

tricity results from the linear electromechanical interaction between the mechanical

and electrical states in crystalline materials with no inversion symmetry [30]. This in-

teraction relates a high amount of electric field to very small mechanical strains. For

example, in Quartz, in response to 1000 V/cm electric field generates a mechanical

strain of the order of 10-7 [31].

The piezoelectricity phenomenon was first discovered by French physicists Jacques

and Pierre Curie in 1880 [32], [33]. Later, it began to be studied and understood as

time went by. In 1917, Langevin and co-workers developed the first serious appli-

cation of piezoelectricity around WWI, which was a transducer used to detect sub-

marines and measure their depth. This application can be considered the basis of

sonar. Although many applications are developed, the research field is active yet to-

day. The main focus of the researchers has been the development of a composite

material that possesses the desired properties that are not present in naturally found

piezoelectric materials.

Quartz, tourmaline, sodium potassium tartrate, and Rochelle salt can be given as ex-
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amples of naturally present crystals. Natural crystals are considered the most suitable

piezoelectric materials for sensor applications because they are highly stable. Their

highly stable properties provide a longer lifetime for the sensor used in the system.

The low electromechanical coefficient of quartz causes it not to be preferred in appli-

cations where electromechanical energy conversion is essential. Because of their high

piezoelectric voltage coefficient (gh), lithium sulfate and tourmaline are two crys-

talline piezoelectric materials still used in commercial hydrophones. These crystals

have also been used for shock and airflow measurements. Lithium niobate (LiNbO3)

and lithium tantalate (LiTaO3) are preferred in high-temperature acoustic sensors due

to their high sensitivity up to 4000 ◦C [34].

Ferroelectric materials can be defined as materials whose crystal structure has the

ability to be instantly polarized under a high electric field (≈ 106 V/m). Ferroelectric

materials are a type of piezoelectric materials, and the polarization of the crystal

structure observed in piezoelectric materials under a high electric field is called the

ferroelectric property. Quartz (SiO2) and zinc oxide (ZnO) are piezoelectric materials,

but they are not ferroelectric.

During World War II, Barium Titanate (BaTiO3, BT), the most famous ceramic ferro-

electric, was discovered independently by three countries, Japan, the USA, and Rus-

sia [35]. BaTiO3 was actually the first commercialized ferroelectric and piezoelectric

material [36].

Figure 3.1: Crystal structure of Barium Titanate [37]

Common applications of the piezoelectric effect are based on ferroelectric ceramic
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materials, and their advantages can be explained as [31]:

• Ferroelectric materials contain a high piezoelectric effect.

• Ceramics are easy to access and can be produced cost-effectively.

• Depending on the geometrical shaping and physical properties, ceramics offer

a high degree of variation.

The piezoelectric effect has been used in many applications, such as in sonar ap-

plications, actuators, sensors, piezoelectric inkjet printing, as a clock generator in

electronic devices, instrument pick-ups, and micro-robotics [31]. We also make use

of the piezoelectric effect in our everyday lives, such as sparking to ignite gas cook-

ing and heating devices, torches, and cigarette lighters. For example, quartz watches

consist of a quartz crystal which is a piezoelectric material. Quartz crystal vibrates

at one of its resonance frequencies, and time is measured more accurately compared

to mechanical watches. Until today, Barium Titanate (BaTiO3) and Lead Zirconate

Titanate (PZT) single or multi-component solid solutions have been mainly studied

and used.

The solids in which the atoms are arranged in one pattern over the whole structure

are called crystals or crystalline solids. Most piezoelectric materials are said to be

crystalline solids and belong to a class of them. In crystallography, there are 32

crystal classes, 21 of which experience the piezoelectric effect [38]. For a material

to be piezoelectric material, it must have an asymmetric crystal lattice structure or a

non-centrosymmetric crystalline.

Crystal non-symmetry is what causes the piezoelectric effect. A perovskite struc-

ture is any crystal structure material that follows the formula ABX3. The perovskite

structure is named after the mineral called perovskite, composed of calcium titanate

CaTiO3. A typical unit cell for a piezoceramic has a non-symmetric perovskite struc-

ture as depicted in Figure 3.1, in which the negative and positive charges forming the

unit cell have an asymmetry between them. A dipole is created due to this non-

symmetry. This is valid for temperatures below the Curie temperature. If the piezo-

electric material temperature goes beyond the Curie temperature, the crystalline struc-
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ture loses its non-symmetricity and transforms into a cubic lattice. This is shown in

Figure 3.2.

Figure 3.2: Schematics of a) Cubic and b) Tetragonal Lattices [39]

Deforming the material, and thus the crystal structure, changes the distance between

the positive and negative charge sites (dipole) in each unit cell, resulting in a net total

polarization in the crystal. This is the direct piezoelectric effect. However, in non-

piezoelectric crystals, after the applied mechanical stress, despite the displacement in

the crystal structure, the distribution of the charges preserves the symmetry, resulting

in no net polarization [40]. In Table 3.1, the properties of some popular piezoelectric

crystals are tabulated.

Table 3.1: Properties of some piezoelectric crystals at room temperature

Crystal Name Chemical Formula Max. piezoelectric coeff. (pC/N) KT
11 KT

33 Ref

Barium Titanate BaTiO3 392 (d15) 2920 168 [41]

Lead Niobate PbNb2O6 45 (d33) – 180 [41]

Quartz SiO2 2.3 (d11) 4.6 4.7 [41]

Lithium Niobate LiNbO3 68 (d15) 84 30 [42], [43]

Lithium Tantalate LiTaO3 26 (d15) 51 45 [42], [43]

Rochelle Salt NaKC4H4O6 · 4H2O 2300 (d14) 1100 9.2 [41]

Sodium Chlorate NaClO3 1.7 (d14) 5.8 [41]

Tourmaline CaAl3Mn6(BO3)3(SiO3)6(OH)4 3.6 (d15) 8.2 7.5 [41]

When we look at the quartz (the chemical formula is SiO2) crystal formation, as

depicted in Figure 3.3, we see that the oxygen element has negative charges while

the silicon element has a positive charge. If the material is under no electrical or

mechanical loading, the centers of negative and positive charges overlap, resulting in

a net zero dipole moment. However, when there is mechanical or electrical loading,

the centers of positive and negative charges are displaced from each other, and a net
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dipole moment is generated.

Figure 3.3: Atomic structure of Quartz [44]

Likewise, these charge sites (dipole) extend or contract when they are subjected to an

electric field. Whether it extends or contracts, the electric field applied dictates the

direction of the straining. Since the crystalline structure is non-symmetric, the applied

electric field will cause the positive and negative charges to shift, and this will deform

the structure, and mechanical strain will occur. This is called the inverse piezoelectric

effect.

Mechanical compressive or tensile stress applied on any piezoelectric ceramic mate-

rial disrupts the dipole moment of the structure and generates voltage. Compressing

the piezoelectric ceramic will cause a voltage generation with the same polarity as

poling voltage. However, when pulling in the poling direction or pressing in the trans-

verse direction of the poling direction, the piezoelectric ceramic generates a voltage

with a polarity opposite that of the poling voltage, as shown in Figure 3.4c. Moreover,

Steinkopff [45] stated that piezoelectric ceramics show a low degree of mechanical

tension/compression asymmetry which means that the application of either tension or

compression force causes similar force-displacement curves and thus similar values

of electric potential.

When the voltage applied to the ceramic in the poling direction has the same polarity

as the polarization voltage, the ceramic element elongates, and its diameter decreases

(Figure 3.4d). When a voltage with the opposite polarity of the poling voltage is ap-

plied, the ceramic element shortens in length and expands from the diameter (Figure

3.4e).
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Figure 3.4: Direct and inverse piezoelectric effect. [46]

Piezoceramic materials are aggregates of tiny piezo crystallites. Since usually the

dipoles are oriented randomly in the material, movements of these dipoles in response

to the applied external electric field will cancel out each other and will yield the net

polarization as zero at the macro scale. The dipoles must be aligned to obtain a net

polarization, i.e., piezoelectric behavior at the macro scale. The process that makes it

happen is called poling.

Piezoelectric composites, or piezocomposites, have been developed in order to im-

prove the properties of pure (monolithic) piezoelectric materials, for instance, lead

zirconate titanate (PZT). They can meet the requirements for applications such as un-

derwater sonar, acoustic transducers, medical diagnosis, and non-destructive material

evaluation [47]. Piezocomposites usually consist of two phases, one of which is a

piezoelectrically active material, and the other is a piezoelectrically passive phase,

generally a polymer or air. Piezocomposites are usually described with two num-

bers beside their names, which designates the architecture of piezoelectric compos-

ites [48]. These numbers express how the piezoelectric and polymer phases are in-

terconnected. For instance, a ‘0–3’ piezocomposite implies a piezocomposite whose

piezoelectric phase is just some particles distributed in a polymer matrix. Here “0”

refers to piezoelectric particles, and “3” refers to a continuous polymer matrix in all

directions. Similarly, the ‘1–3’ numbering represents piezoelectric rods embedded in

a polymer matrix.

The piezoelectric material’s polarization axis is usually considered as x3 or Z-axis as

a convention. This convention will be used in this study.
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3.1 Fabrication

As a first step, the piezoceramic should be prepared. In order to prepare a piezoelec-

tric ceramic material, fine powdered metal oxide powders are mixed in specific ratios

and then heated up in order to obtain a homogeneous powder mixture. By adding an

organic binder to the obtained powder, it can be converted into structural elements in

various shapes such as disc, wire, bar, plate, or can be stored as a powder. Piezoceram-

ics, which have been given various forms, are fired by applying for firing programs

within certain periods. This firing process is called sintering, and its main purpose

is to transform the powder particles into a dense crystalline structure that binds them

together. After these processes, the substances are allowed to cool and, if necessary,

they are cut to the desired dimensions, or the rough surfaces are smoothened [46].

The 1-3 connectivity configuration is quite ideal for the extrusion process. Piezoce-

ramic rods have to be sintered up to almost their theoretical density (7900 kgm3);

afterward poling process can be applied. For general piezocomposite transducer ap-

plications, the rods are manufactured by extrusion of a PZT-organic binder slip [49].

While manufacturing, to align the piezoceramic rods, two fixtures with dozens of

holes are used. These fixtures with holes are manufactured according to the pattern

and volume fraction of the piezocomposite rods. For instance, a high volume fraction

requires dense or larger holes. When the piezoceramics rods are placed into the fix-

tures, the system is put in a plastic tube filled with epoxy resin [49]. With this process,

piezoceramic rods and polymer coalesce, and the excess epoxy is trimmed off.

Lastly, if the piezoceramic rods are not pre-poled, electrodes are applied to the piezo-

composite, and the system is poled in a hot oil bath for a couple of minutes under a

high electric field.

3.2 Poling

Every piezoelectric material has a Curie temperature, where the material loses its

permanent magnetic properties. Below that temperature, the material shows no polar-

ization because the dipoles in the crystal structure are aligned randomly, and the local
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polarizations cancel each other. For the piezoelectric material to gain a net polariza-

tion, the dipoles must be aligned in one direction. For this purpose, the piezoelectric

material is heated above Curie temperature. Thereupon the dipoles can change ori-

entation. A strong electric field is then applied to orient the dipoles in the electric

field direction. Heating the material above Curie temperature and applying a strong

electric field is called the poling process. While maintaining the electric field present

and active, the material is cooled down to under its Curie temperature so that the

dipoles can no longer change their orientation. Therefore, the dipoles are oriented

permanently, and the material has gained a net polarization. The material that went

through the poling process is said to be poled. A schematic that illustrates the poling

process is shown in Figure 3.5.

In practice, the Curie temperature changes from material to material. For example,

pure BaTiO3 has a Curie temperature of 123 ◦C [50], [51], whereas PZT5-H has a

Curie temperature of 230 ◦C [52]. An applied electric field can also have various

values depending on the material types and their composition. For example, it varies

from 0.1 kV/mm to 4 kV/mm for BZT–BCT ceramics [53].

During the process of poling, a high electric field is created by applying a DC voltage

on the material with the help of electrodes placed on the surfaces of the material,

and the dipoles are directed parallel to this electric field. During poling, the regions

become anisotropic because the dipoles become aligned in the direction of the electric

field that is applied. After polarization, a few regions can distort from the polarization

direction, but the polarization is permanent in the majority. Thus, the pre-polarization

material is isotropic and does not exhibit piezoelectric behavior, but at the end of the

polarization, the dipoles are oriented towards the axis with the electric field, and a net

electrical dipole moment is formed in the whole structure consisting of polycrystals.

The piezoelectric, elastic, and dielectric properties of ceramics that are poled depend

on temperature highly. Thus, heating the material beyond the Curie point kills poling

effect because the dipoles will return to be oriented randomly and causes the piezo-

electric properties to vanish [55]. For high-temperature applications, piezoceramics

with high Curie temperatures are strongly desired. Also, applying a very high electric

field can distort the dipoles from their alignment and again end the polarization. In
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Figure 3.5: Depiction of poling process under an applied electric field [54]

this study, we always assume that the piezoelectric materials are fully poled.

3.3 Properties of Piezoelectric Materials

There are both ceramics and polymers that show piezoelectric effects. Piezoceramics’

elastic modulus can vary from 10 GPa to 120 GPa, while piezoelectric polymers can

only have elastic moduli of 1-3 GPa [56]. Similar to elastic modulus, dielectric and

piezoelectric coefficients of piezoceramics are very high compared to piezopolymers.

3.4 Piezoceramics

One of the, if not the most, frequently used piezoceramic is lead zirconate titanate

(PZT), whose chemical formula is Pb[ZrxTi1−x]O3 (0≤x≤1). PZT is a ceramic per-

ovskite material because its crystal structure follows the ABX3 formula, just like

barium titanate (BaTiO3). Great piezoelectric sensitivity, availability and relatively

high operating temperatures help PZT ceramic excel among the other piezoceramics

and make it the most widely used piezoceramic.

There are different PZT variations. For example, One of the commonly studied chem-

ical compositions is PbZr0.52Ti0.48O3. Piezoceramics vary according to their hard-

ness. As given in Table 3.2, the properties and characteristics of hard, semi-hard, and

soft PZT ceramics are very different.
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Table 3.2: Properties of PZT Ceramics Groups [57], [46]

Property Soft PZT Semi-hard PZT Hard PZT

Electromechanical Coupling High Medium Low

Permittivity High Medium Low

Compliance High Medium Low

Density Low Medium Hard

Tc Low Medium Hard

Polarization Easier Medium Harder

Lead titanate (PbTiO3 or PT) and lead zirconate titanate (PZT) and their variations

are known to be toxic piezoelectric materials because they contain lead. They damage

the skin, mucous membranes, eyes, and cause harm to unborn babies, and are thought

to negatively affect fertility [58]. Therefore, for biological purposes, non-toxic piezo-

electric materials, such as BaTiO3, are used. Properties of common piezoelectric

ceramics, which are studied and used in industry, are shown in Table 3.3.

Table 3.3: Properties of common piezoelectric ceramics

Chemical Formula Tc (
◦C) d33 (pC/N) d31 (pC/N) KT

33 Ref

BaTiO3 115 190 -78 1700 [41]

PbTiO3 470 56 – 190 [59]

PZT-5A 365 374 -171 1700 [60]

PZT-5H 195 593 -274 3400 [60]

PZT-7A 350 153 -60 425 [60]

PZT-8 300 225 -97 1000 [60]

European Community started to implement some restrictions on the use of deleterious

materials in 2006, which certainly cut the usage of lead (Pb) [37]. Some further

restrictions may come in the near future, so the popularity of lead-free piezoelectric

ceramics will like to increase.

3.5 Piezopolymers

Many piezoelectric polymers are fluorocarbon-based polymers. Among these poly-

mers, Polyvinylidene difluoride (PVDF) is known as the most studied piezoelectric
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polymer. Unlike piezoceramics, PVDF does not have a high piezoelectric strain co-

efficient, d, but due to its small permittivity, PVDF has a high piezoelectric voltage

coefficient, g, making it suitable for sensor applications. A strong piezoelectric effect

in PVDF compared to other polymers was discovered in Japan in 1969, and it was

observed that the piezoelectric coefficient of its poled thin film could be around 6-7

pC/N [61]. Although polymer piezoelectric materials like PVDF are suited for sensor

applications, they are not suited for being an actuator or high-power transducers due

to their very small piezoelectric constants and stiffness compared to piezoceramics

[1]. For such applications in which piezoelectric polymers fall short, piezocompos-

ites have resorted.

PVDF has a highly crystalline structure; the crystallinity in the structure varies be-

tween 50% and 70%. This variation is due to three different phase states called α, β, γ.

α and β phases are shown in Figure 3.6. Conversion between these three structures

can be accomplished using various chemical and physical techniques. Since there are

dipoles perpendicular to the axis of the molecule in the β and γ forms, the material

possesses a net polarization and shows a piezoelectric effect. The β phase of PVDF

shows the strongest piezoelectricity [62]. Besides PVDF, trifluoro ethylene copoly-

mer poly(vinylidene fluoride-co-trifluoro ethylene) (PVDF-TrFE) has also been stud-

ied in the past.

Figure 3.6: Alpha-phase and Beta-phase structure of PVDF [63]

21



3.6 Doping

Piezoelectric materials’ properties can also be improved by adding doping agents

called dopants. Dopants are impurities introduced to materials and can change their

electrical or optical characteristics. Introducing dopants to PZT can significantly alter

its properties [34]. Dopants can be either donors or acceptors.

We can group piezoelectric ceramics into three groups: soft, semi-hard and hard. This

grouping was made by considering the compositions and properties of piezoelectric

ceramics. Soft ceramics have donor dopants, whereas hard ceramics have acceptor

dopants.

Donor dopants create cation (metal) vacancies in the structures of the crystals, result-

ing in an enhancement in domain reorientation and piezoelectric coefficients. The

product of donor dopants is called soft PZTs. Those called 5A and 5H can be ex-

amples of soft PZTs. They, in the end, have high piezoelectric coefficients, high

electromechanical coupling factors, high permittivity, low coercive field, and low

mechanical quality factors [64]. PZT-5A is known for applications of varying and

high temperatures. On the other hand, PZT-5H is known to have better piezoelec-

tric properties, but it has a modest Curie temperature, so it has a limited temperature

range.

Conversely, acceptor dopants result in oxygen vacancies that attach to the domain

walls, inhibiting the dipoles from aligning with the spontaneous polarization inside

the domain. That yields hard PZTs, like those designated with 4 and 8 [65]. A hard

PZT has characteristics of low piezoelectric properties, low permittivity, high Qm,

and a high coercive field [66].

PZT-based piezoelectric materials show different properties according to their com-

position ratios. PZT-4, PZT-5, PZT-6, and PZT-7 are generally referred to as PZTs

doped with Fe, Nb, Cr, and La, respectively [42]. Properties of different PZT types

are shown in Table 3.4.
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Table 3.4: Properties of PZT Ceramics

Designation Tc (
◦C) d33 (pC/N) d31 (pC/N) KT

33 Ref

PZT-2 370 152 -60 450 [41]

PZT-4 325 285 -122 1300 [60]

PZT-5A 365 374 -171 1700 [60]

PZT-5H 195 593 -274 3400 [60]

PZT-7A 350 153 -60 425 [60]

PZT-8 300 225 -97 1000 [60]

3.7 Piezocomposites

While designing piezocomposites, it is desired that the best properties of the compos-

ite constituents are utilized, and the constituent should cover the weakness of the other

constituent. For example, piezoelectric polymer PVDF is good for sensor application

due to its high piezoelectric voltage constant, g but, terrible for actuator applications

due to its small piezoelectric strain constant, d. On the other hand, piezoelectric

ceramic PZT is the opposite, good for actuator applications but bad for sensor appli-

cations. However, a piezocomposite made of PZT and polymer has a d value close

to PZT and a g value close to PVDF, exhibiting a wide range of piezoelectric re-

sponses. Thus, for applications like underwater, in which both actuation and sensing

are performed, piezocomposites are considered to be way too better compared to sin-

gle materials [1].

Table 3.5: Comparison of the Piezoelectric Properties of PZT-Polymer Composites

with PVDF and PZT [1]

Connectivity Material(s)
Density, ρ

(10−3kg/m−3)

Elas. Coeff., C33

(GPa)
Dielectric, ε3

d33

(pC/N)

g33

(10−3mV/N)

gh

(10−3mV/N)

- Extended PVDF 1.8 3 13 20 160 80

- PZT(501A) 7.9 81 2000 400 20 3

3-1 PZT - Epoxy 3.0 19 400 300 75 40

3-3
PZT - Silicone

(Replica type)
3.3 3 40 110 280 80

3-0 PZT - PVDF 5.5 2.6 120 90 85 -

3-0 PZT - Rubber 6.2 0.08 73 52 140 30

23



In Table 3.5, particular material and piezoelectric coefficients of Extended PVDF,

PZT(501A), and some other PZT-Polymer piezocomposites are compared to see which

material is better in which coefficients. Each coefficient actually represents the rel-

evance to a specific application, which will be explained in the next section called

Section 3.11. As can be seen from Table 3.5, piezoceramic PZT(501A) has the high-

est density and dielectric permittivity ε, but this advantage comes at the expense of

its piezoelectric voltage coefficients, g33 and gh. Extended PVDF offers the low-

est density and good piezoelectric voltage coefficients but has very low stiffness and

piezoelectric strain coefficient d33. Piezocomposites, on the other hand, offer mod-

erate to high values of coefficients, depending on the constituents and the purpose of

the piezocomposite.

3.8 Piezocomposite Design

The major aim in designing a piezocomposite is to maximize its electromechanical

energy conversion to give greater responsibility for a unit input. The performance of

the piezocomposite can be improved by increasing the volume fraction of the piezo-

electric phase, changing the shapes and connections of the inclusions, or using a

material with higher piezoelectric coupling properties. However, there are other re-

quirements or constraints, such as stiffness/compliance, flexibility, and weight. The

objective in the design of a piezocomposite is to obtain a material that satisfies the

requirements and has high properties that are not present in conventional materials.

It is desired that the transducers should have properties such as low-density, large

piezoelectric coefficient, compliant and flexible. In applications where piezoelectric

materials are used as actuators, piezoelectric materials are usually in the shape of

shell patches. Furthermore, there are electrodes on both surfaces that are parallel to

the structure to which it is bonded, and the poling axis is usually normal to the patch

or structure surface. In such applications, a small electric field applied during the

operation will cause the PZT patch to elongate or contract. Since the PZT patch is

bonded to the structure perfectly, the structure will bend in the direction of contrac-

tion.
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A well-design composite should make maximal use of the desired properties of each

phase. For that purpose, people usually design a composite that consists of a PZT

ceramic and a polymer. PZT ceramic is a must to have because of its high electrome-

chanical coupling factor and high piezoelectric coefficient. Polymer, on the other

hand, is useful to increase the elastic compliance and flexibility of the composite and

reduce the permittivity (to obtain high g) and density. With the desired properties of

each phase, a piezocomposite with high electromechanical coupling capability and

yet flexibility can be obtained.

3.9 Product Properties

It is also very interesting to see that, sometimes, apart from the properties of the

phases of composite, there become completely new properties (product properties)

that are not present in the phases alone.

Assume that applying X to the composite causes a change in Y in phase 1, and a

change in Y causes a change in Z in phase 2. If not for the combination of phase

1 and phase 2, the resultant change in quantity Z, would never happen. This new

function, which relates input X to output Z is a new product property that the phases

as individuals cannot possess. The product effect can be shown in Figure 3.7a. Piezo-

composites can show such a product property. The transfer of the quantity Y from 1

to 2 can be accomplished by several different kinds of coupling [49].

Furthermore, sometimes phase 1 or phase 2 alone generates an output less than any

combination of phases 1 and 2. This is called the combination effect, as depicted

in Figure 3.7b, and it can be seen in certain piezocomposites. Piezoelectric voltage

coefficient, g is an example of the combination effect [1].

3.10 Connectivity

Connectivity is one of the most critical subjects in composites. Consider what would

happen if the columns of a building were connected in series rather than parallel. In

designing a piezoelectric composite, the connectivity of the phases is very important
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Figure 3.7: a) Product Effect and b) Combination Effect [1]

to care for because connectivity controls the pattern of the electric flux in the material.

Of course, it changes mechanical properties as well.

Newnham et al. [48] were the first to introduce the concept of connectivity for piezo-

composites that are made of PZT and polymer phases. Since there are three perpen-

dicular axes in nature, a phase can be interconnected in at most three directions and

at least zero directions. Therefore, it can have a connection type of 0, 1, 2, or 3.

Speaking of diphasic composites, which have two single phases as constituents, the

connection type of the composite can be indicated, in general, in ten different config-

urations, such as 0-0, 0-1, 0-2, 0-3, 1-1, 1-2, 1-3, 2-2, 2-3, 3-3. These combinations

are shown in Figure 3.8, in which shaded regions refer to first connectivity number.

The first number is used for the connectivity of the active phase, and the second num-

ber is used for the connectivity the passive phase. For example, in a 1-3 connectivity

pattern, the passive phase is connected in all three directions, whereas the active phase

is connected only in one direction. Not surprisingly, usually, shell structures have a

connection type of 2, and beam structures have a connection type of 1 if they are not

placed perpendicularly interconnected to themselves.

Among all the piezoelectric composite configurations, 1-3 piezocomposites are found
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Figure 3.8: Connectivity Patterns of Two-Phase Composites [1]

the most useful and thus have been the focus mostly, although there are studies inter-

ested in other important configurations, namely 2-2, 3-3, 0-3. For example, 1-3 and

2-2 piezocomposites are shown in Figure 3.9.

Figure 3.9: a) 1-3 Piezocomposites and b) 2-2 Piezocomposites [67]

For other applications, there might be a need for more phases in a composite. Fur-

thermore, the more phases are present, the more different patterns there can be. For

example, there can be 20 three-phase and 35 four-phase connectivity configurations.

For n phases, the formula for this is (n+3)!/(3!n!) [49].
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3.11 Performance of Piezocomposites

In nature, unfortunately, the desired property coefficients come with undesired ones.

For example, piezoelectric ceramics have high piezoelectric coefficients, but they are

brittle and lack the flexibility that a transducer needs. On the other hand, polymers can

meet the desired mechanical requirements, but they have very little or no piezoelectric

effect. Thus, the figures of merit are a concept of trade-off, some of them are high,

and some of them are low, depending on the requirements.

Hydrostatic piezoelectric coefficients are the key parameters of the piezocomposites

that are as using as hydrostatic transducer materials. They define how effective, and

suitable the piezocomposites are for their specific use.

For example, Bennett and Hayward concluded that the best hydrostatic performance

of a 1-3 piezoelectric composite is acquired with the piezocomposite that has a low

volume fraction of PZT-5H and stiffener plates [6]. Having not too hard a piezoce-

ramic phase and compliant polymer phase helped them to obtain this result. Also,

they noted that the polymer phase should have a Poisson’s ratio as low as possible

[6].

It also should be noted that in design and practice, one should generally stay within

the limits of linear response of piezoelectric ceramic in order for the piezoceramic to

give a response in proportion to the higher force level [8].

Bennett and Hayward discovered that polymers should have high elastic compliance

and low Poisson’s ratio. Although these two conditions may be opposing for vis-

coelastic materials, the results indicated that the effect of Poisson’s ratio on hydro-

static performance is significant [6].

Suppose the piezoelectric material is to be used as a hydrophone to detect signals

lower than 100 kHz. In that case, the acoustic wavelength dimension will be greater

than the hydrophone’s, and the stress on the piezocomposite due to the acoustic wave

will be hydrostatic [68]. Under such conditions, passive hydrophone sensitivity is

specified by the hydrostatic voltage coefficient, gh [17].

While calculating figures of merit that measure the performance of the piezocompos-
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ite, the effects of inertia are neglected; only the constitutive properties are considered

in calculations [67].

Since piezoelectric ceramics are not isotropic, the material coefficients depend on the

directions of the applied mechanical or electrical force. Therefore, each coefficient

has two subscripts to indicate the directions of the two related quantities. Of course,

some notations are shown briefly with a single number, thanks to the Voigt notation.

The positive polarization direction is specified by the direction Z or 3 in the XY Z or

123 coordinate systems, respectively.

3.11.1 Elastic Compliance

Compliance, the inverse of the stiffness, is the strain that the material observes for unit

stress applied. Instead of stiffness, compliance terms are usually used for calculating

the figures of merit of piezoelectric materials. sD is the compliance under constant

electrical displacement and, sE is the compliance under constant electric field. The

first subscripts of sD and sE indicate the direction of strain, and the second subscripts

indicate the direction of stress.

sE11 is the compliance in direction 1 (perpendicular to poling axis) under a constant

electric field which means a short circuit. sD33 is the compliance in direction 3 (parallel

to poling axis) under constant electrical displacement which means an open circuit.

3.11.2 Permittivity (Dielectric Constant)

Permittivity or dielectric constant, ε, is a material property and, it is the induced di-

electric displacement in response to per unit of an electric field. Permittivity also

means how much charge a material can store. εS implies the dielectric constant un-

der constant strain, whereas εT implies the dielectric constant under constant stress.

The first and the second subindices of ε represent the direction of the dielectric dis-

placement, and the electric field, respectively.

On the other hand, sometimes, the relative dielectric constant is also used and shown

by k or K. As given in (3.1), it is the ratio of the material permittivity to the absolute

29



dielectric constant, ε0, which simply is the amount of charge that the electrodes in

a vacuum can store up. It can be said that it is the capability of an electric field to

permeate a vacuum. ε0 is 8.854x10−12 farads/meter.

KT =
εT

ε0
(3.1)

Depending on the indices ε takes, different meanings can be understood.

• εT11 is the permittivity or the polarization in direction 1 (perpendicular to poling

axis) in response to an applied electric field in direction 1 under constant stress

• εS33 is the permittivity or the polarization in direction 3 (parallel to poling axis)

in response to an applied electric field in direction 3 under constant strain.

3.11.3 Density

The density of a piezoelectric composite is very critical due to the fact that there

might be some weight restrictions depending on the application. Moreover, density

affects acoustic impedance matching to the loading. Density differences between the

piezocomposite used as a transducer and the surrounding environment, such as water

or human tissue, cause a mismatch in their acoustic impedances, causing some waves

to reflect off the interface. Therefore, it is crucial to reduce the transducer’s density

to a value close to that of the surrounding environment to minimize the losses [49].

Whilst densities of piezoceramics vary from 7000 kg/m3 to 8000 kg/m3, those of

piezoelectric polymers vary from 1000 kg/m3 to 2000 kg/m3 [56].

The density of the composite will be between those of its constituents. Therefore

can be adjusted depending on the volume fractions. Since PZT has a density of 7900

kg/m3 and epoxy has a density of 1100 kg/m3, the density of the composite can have

a value near that of epoxy for low PZT volume fractions. That would also make the

difference between the densities of the composite and the medium smaller, resulting

in a greater acoustic impedance matching capability.
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3.11.4 Piezoelectric strain coefficient (d)

The piezoelectric strain constant, designated by d, can be defined as the resulting

polarization/electric displacement in response to an applied unit mechanical stress

(T ) or the resulting mechanical strain (S) in response to an applied unit electric field.

d = (∂S/∂E)T = (∂D/∂T )E (3.2)

The first subindex of the piezoelectric charge constant indicates the polarization di-

rection or the direction of the applied electric field. The second subindex of the piezo-

electric charge constant indicates the direction of the mechanical stress applied or the

resulting mechanical strain. The piezoelectric strain coefficient, d is a very prominent

indicator for actuator applications.

Since strain is the product of the piezoelectric charge coefficient and applied electric

field, the piezoelectric charge coefficient is a vital coefficient that tests the suitability

of the material for strain-dependent actuator application.

Some important piezoelectric coefficients express particular situations:

• d31 is the induced polarization (electric displacement) in direction 3 (parallel to

poling direction) in response to the applied unit stress in direction 1 (perpen-

dicular to poling direction) or induced strain in direction 1 in response to an

applied unit electric field in direction 3.

d31 = (∂D3/∂T1)E = (∂S1/∂E3)T (3.3)

• d33 is the induced polarization (electric displacement) in direction 3 in response

to the applied unit stress in direction 3 or induced strain in direction 3 in re-

sponse to the applied unit electric field in direction 3.

d33 = (∂D3/∂T3)E = (∂S3/∂E3)T (3.4)

• d15 is the induced polarization (electric displacement) in direction 1 in response

to the applied unit shear stress in plane 13 or induced shear strain in plane 13
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in response to the applied unit electric field in direction 1.

d15 = (∂D1/∂T13)E = (∂S13/∂E1)T (3.5)

Large d coefficients are desirable in piezoelectric driver applications such as ultra-

sonic cleaners and sonar.

3.11.5 Hydrostatic strain constant (dh)

Hydrostatic strain constant or coefficient dh can be seen as a factor determining the

material’s performance for active transducer applications. Similar to the piezoelectric

strain coefficient, d, the hydrostatic strain constant is the resulting hydrostatic strain

for a unit electric field (m/V) or the charge induced for a unit hydrostatic force (C/N),

see (3.6).

dh = d31 + d32 + d33

= 2d31 + d33
(3.6)

3.11.6 Piezoelectric voltage coefficient (g)

The piezoelectric voltage constant, g, is the electric field created by the piezoelec-

tric material as a result of the applied unit mechanical stress or the mechanical strain

created by the piezoelectric material as a result of the applied unit electrical displace-

ment. The first subindex of the piezoelectric voltage constant indicates the direction

of the electric displacement and electric field. The second subscript specifies the

direction of the mechanical stress or strain being applied. Since the product of the ap-

plied stress and the piezoelectric voltage constant is the strength of the electric field

created in a piezoelectric material in response to applied mechanical stress, the piezo-

electric voltage constant has a significant role in determining whether the material

used for sensor applications is correct.

The piezoelectric voltage constant, g is a highly significant indicator for sensing ap-

plications.
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g =
d

εT
(3.7)

g = (−∂E/∂T )D = (∂S/∂D)T (3.8)

Some important piezoelectric voltage coefficients express particular situations:

• g31 is the electric field generated in direction 3 (parallel to poling direction)

in response to applied unit stress in direction 1 (perpendicular to poling direc-

tion) or the resulting strain in direction 1 in response to applied unit electric

displacement in direction 3.

• g33 is the electric field generated in direction 3 in response to applied unit stress

in direction 3 or the resulting strain in direction 3 in response to applied unit

electric displacement in direction 3.

• g15 is the electric field generated in direction 1 in response to applied unit shear

stress in plane 13 or the resulting shear strain in plane 13 in response to applied

unit electric displacement in direction 1.

3.11.7 Hydrostatic piezoelectric voltage constant (gh)

Hydrostatic piezoelectric voltage constant or coefficient is a factor that measures the

passive hydrophone sensitivity. It is an electric field generated for a unit of hydrostatic

stress (V/mPa), see (3.9).

gh = 2g31 + g33 =
dh
εT33

(3.9)

Since for high hydrostatic voltage coefficients, high values of dh and low permittivity

are needed, piezocomposites with small volume fractions of piezoceramics and high

values of dh have substantially high hydrostatic voltage coefficients.
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3.11.8 Hydrostatic figure of merit (dhgh)

The hydrostatic figure of merit, the product of dh and gh, designates the piezodevice

both as a hydrophone and an actuator (active-passive transducer) and specifies the

signal-to-noise ratio [69], [70].

HFOM = dhgh (3.10)

3.11.9 Hydrostatic Compliance (sh)

Hydrostatic compliance is the elastic compliance that material shows under hydro-

static loads. It can be obtained as follows:

sEh = sE11 + sE22 + sE33 + 2sE12 + 2sE13 + 2sE23 (3.11)

However, since piezoelectric ceramics are mostly transversely isotropic, (3.11) can

be reduced to:

sEh = 2sE11 + sE33 + 2sE12 + 4sE13 (3.12)

3.11.10 Hydrostatic Coupling Coefficient (kh)

The hydrostatic coupling coefficient is the factor that indicates the effectiveness of

the conversion between the mechanical and electrical energies for hydrostatic appli-

cations. It can be obtained as follows:

kh =

(
dh

εT33s
E
h

)1/2

=

(
dhgh
sEh

)1/2

(3.13)
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3.11.11 Electromechanical Coupling Factor (k)

The electromechanical coupling factor, k, indicates how effective the conversion is

between the mechanical and the electrical energies. It measures what fraction of the

electrical energy is converted to mechanical energy when an electric field is applied.

Vice versa also applies. The first subindex of the electromechanical couple factor

indicates the direction the electrodes lie (or the electric field), and the second subindex

indicates the direction of the mechanical reaction (e.g. vibration).

k2 =
Output mechanical energy

Input electrical energy
(3.14)

Electromechanical coupling factor values in the catalogs of piezoelectric ceramic

manufacturers are the theoretical maximum values. A typical piezoelectric ceramic

can convert only 30-75% of the energy sent in any form to other energy forms at

low input frequencies, depending on its composition and the direction of the applied

forces [46]. As expected, the desired thing is usually high electromechanical coupling

factor values, and in good designs of piezoelectric systems, this efficiency can reach

up to 90% [46].

The electromechanical coupling factor can have various subscripts. For example:

• k31 is the coupling factor for the electric field in direction 3 and the mechanical

strain (or stress) in direction 1. It is used for piezoceramic plates.

k31 =

(
d31

εT33s
E
11

)1/2

(3.15)

• k33 is the coupling factor for the electric field in direction 3 and the mechanical

strain (or stress) in direction 3. It is used for piezoceramic rods.

k33 =

(
d33

εT33s
E
33

)1/2

(3.16)

• kt, thickness coupling factor, is very similar to k33, but it is used for materials

like a disc or a plate whose surface areas are larger than their third dimension,

that is, thickness.
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Please note that these expressions stated above are valid for low frequency or static

cases.
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CHAPTER 4

METHODOLOGY

This chapter includes piezoelectricity theory and the methodology used in the study.

The piezoelectric constitutive equations are shared and explained, assumptions made

through the analysis process are stated, and computational techniques, such as the

homogenization method and RVE concept, are introduced.

4.1 Piezoelectric Constitutive Equations

As explained in the previous chapter, piezoelectric materials can respond to both me-

chanical and electrical changes. Moreover, this interchangeable behavior happens

almost linearly, meaning that the coupling between the mechanical action and the

electrical reaction can be considered linear. However, this is true under the applica-

tion of low electric field or low mechanical stress, which is the interest of this thesis

[71]. Under high levels of an electric field or mechanical stress, the piezoelectric ma-

terials start to show non-linearity and this is due to the polarization switching taking

place in the grain domains [72].

The constitutive equations representing the linear piezoelectric coupling behavior are

Tij = CE
ijklSkl − ekijEk,

Di = eiklSkl + εSikEk

(4.1)

where T and S are stress and strain tensors, respectively. E and D are the electric

field and the electric displacement vectors, respectively. CE is the fourth-order elas-

ticity tensor at a constant electric field, εS is the second-order dielectric tensor at a
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constant strain field, and e is the third-order piezoelectric coupling tensor.

These piezoelectric constitutive equations come from the energy framework and en-

ergy conservation equations. The amount of work done on the piezoelectric material

is due to an external force applied, electrical work done, or heat entering in. Fur-

thermore, the linear piezoelectric constitutive equations are derived by integrating the

differential Gibbs free energy relation [71].

G = U − TijSij − EnDn,

dG = dU − TijdSij − SijdTij − EndDn −DndEn

(4.2)

In 4.2, G and U represent Gibbs free energy and internal energy, respectively. By

choosing our independent and dependent variables and taking the derivative of Equa-

tion 4.2 with respect to the independent variables, we can get a unique set of con-

stitutive equations. For example, choosing (S,D) as independent variables leads to

Equation 4.3, whereas choosing (T ,E) as independent variables can yield such a

relation as in Equation 4.4.

Tij = CD
ijklSkl − hkijDk,

Ei = −hiklSkl + βS
ikDk

(4.3)

Sij = sEijklTkl + dkijEk,

Di = diklTkl + εTikEk

(4.4)

Each type of constitutive equation might have advantages and disadvantages over the

other. For instance, for transducer design, stress T and electric field E are reason-

able to choose as independent input variables. Depending on the interest of output

variables, any type of piezoelectric constitutive equation set might be selected.

In our study, we preferred to use (S,E) as independent variables, but we could

have used other combinations such as (S,D) or (T ,D). They are also doable

in ABAQUS. For (S,E) variable combination, displacement and electric potential

boundary conditions are applied, whereas stress and electrical charge loadings should

be applied for (T ,D) variable combination. The reason for our choice is due to the

fact that this combination gives piezoelectric coefficient e and dielectric constant εS
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as in the literature and material data sheets, making comparisons and inferring re-

sults easier. We also used (T ,E) as independent variables calculating the hydrostatic

performance coefficients, which will be explained in Chapter 6.

When a piezoelectric material is polarized to a level of polarization with external

energy, only some portion of this energy is stored as potential energy because some

energy is dissipated as heat [71]. It is shown that heat dissipation is mainly caused by

ferroelectric hysteresis and becomes more prominent in high-frequency applications

[73]. Since the scope of this thesis is static or low-frequency applications, energy

dissipation is not accounted for.

Continuing from Equation 4.1, since the tensors T , S, CE , εS are symmetric, these

constitutive equations can be expressed in matrix notation by Voigt’s notation,


{
T
}{

D
}
 =

[CE

]
−
[
e
]t[

e
] [

εS
]


{
S
}{

E
}
 . (4.5)

For anisotropic materials, the material coefficient matrix has 81 (9x9) independent

terms. However, since the piezoelectric materials are transversely isotropic, the stiff-

ness, the piezoelectric, and the dielectric matrix get reduced to a total of 11 indepen-

dent coefficients. Aligning a piezoelectric solid in its axis of symmetry and embed-

ding it into an isotropic matrix yield a piezocomposite that is transversely isotropic.

Therefore, Equation 4.5 can be written as:



T11

T22

T33

T12

T23

T31

D1

D2

D3



=



CE
11 CE

12 CE
13 0 0 0 0 0 −e13

CE
12 CE

11 CE
13 0 0 0 0 0 −e13

CE
13 CE

13 CE
33 0 0 0 0 0 −e33

0 0 0 CE
66 0 0 0 0 0

0 0 0 0 CE
44 0 0 −e15 0

0 0 0 0 0 CE
44 −e15 0 0

0 0 0 0 0 e15 εS11 0 0

0 0 0 0 e15 0 0 εS11 0

e13 e13 e33 0 0 0 0 0 εS33





S11

S22

S33

S12

S23

S31

E1

E2

E3



(4.6)
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Applying a coercive electric field and/or high mechanical stress leads to non-linear

behavior for the piezoelectric materials [74]. Moreover, in this non-linear region, the

loading rate starts to appear as a factor that affects the electro-mechanical response.

At low-loading conditions, rate dependency can be considered negligible, but at high-

loading conditions, electrical and mechanical responses of ferroelectric materials are

experimentally proven to be time- and frequency-dependent [75]–[78].

Other studies also show that the electrical or mechanical loading rate has an influence

on the behavior of piezocomposites [72], [79], [80].

Since the scope of this thesis is piezoelectric materials under low levels of electri-

cal and mechanical loading and low-frequency conditions, rate dependency was not

studied.

4.2 Representative Volume Element

A Representative Volume Element (RVE) is said to be the smallest volume element

of the composite that is “statistically representative of the composite”[81]. The tran-

sition from an RVE to a component is shown in Figure 4.1. Instead of analyzing

the whole composite material, we can analyze the representative volume element to

obtain the macroscopic behavior of the material.

Figure 4.1: Composite built from duplicated RVEs [82]

An example of an RVE model prepared in ABAQUS is shown in 4.2. It consists of a

fiber material in the middle and a matrix material surrounding it. For simplicity, the

RVE is chosen as a unit cube unit.
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Figure 4.2: An RVE model for 1-3 piezocomposites in ABAQUS

One of the major advantages of the numerical methods is that it provides the user

total control over the model, allowing him/her to apply any kind of load and boundary

conditions with any material and being able to model any geometry that is meshable

and computationally possible. For instance, for complex shapes, unlike circular or

square, one has to resort to numerical methods [13].

All the RVE models presented in this thesis comply with the transverse isotropy.

However, if an asymmetrical model were used, such as 1-3 piezocomposite which

has a fiber with an offset from the center, the transverse isotropy would not be valid

anymore. Thus, more terms in Equation 4.6 would be required to capture the defor-

mation of this asymmetrical RVE model correctly.

4.3 Homogenization

The main idea of homogenization is to develop an equivalent and homogenized con-

tinuum which has average piezomechanical properties the same as the original het-

erogeneous material. For that purpose, we will calculate the effective properties of

heterogeneous materials by solving the boundary value problem. In order to do that,

one should define proper boundary conditions on the representative volume element

(RVE).
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By mechanics of material, we aim to predict and understand the behavior of the ma-

terial. Although this can be done quickly for homogeneous materials, it is arguably

more cumbersome for heterogeneous materials. Therefore, by estimating the effective

(averaged or overall) properties of the heterogeneous material, the homogenization

technique makes predicting the material behavior much easier.

For instance, if we were to analyze a brick wall (see Figure 4.3), the smallest part of

the brick wall that consists of a couple of bricks and filler between them can reproduce

the whole brick wall by periodicity and thus would be enough for us to predict the

whole brick wall behavior.

Figure 4.3: Illustration of homogenization example

In this study, we focus on the numerical homogenization method using finite ele-

ment analysis whereas there are also analytical methods. Of these analytical meth-

ods, mixture rule models do not consider the interaction between the phases, while

self-consistent methods consider some interaction, but they are limited to simple ge-

ometries.

When conducting computational homogenization, the effective properties will be

computed by the finite element method. For that purpose, the finite element anal-

ysis program ABAQUS will be used.

The scale at which the homogenization method is applied is very important. It should

be noted that the composite material that we deal with must be periodic or almost pe-

riodic and the size of the unit cell must be very small compared to the whole model’s

size and larger than the material grain size or fiber diameter [67].

Another assumption is that the operational wavelength is larger than the dimensions

of the unit cell, which means that the problem is static. If the operational wavelength
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happens to be smaller than the dimensions of the unit cell, then wave reflections inside

the unit cell will take place and they will have to be considered when doing the math

[67].

One of the benefits of the homogenization method is that we only need information

about the RVE. Therefore, the RVE can have any complex shape and can be solved

with the help of FEM.

The main aim of homogenization is to get a homogenous model that is equivalent to

the original composite. In both models, the stored strain energies are required to be

the same [12]. The whole domain can be reduced to a single cell, which is called a

unit cell or representative volume element (RVE).

An RVE is the smallest part that can be modeled, and it contains all the required and

sufficient information like geometrical and material parameters at the microscale to

obtain the effective (overall) material properties of the composite.

Composite materials can be simulated with RVEs placed periodically, meaning that

by merging these RVEs periodically in all directions together, the macroscopic be-

havior of the original model can be obtained. Therefore, to ensure that these RVEs

can add up while their matching faces fit together perfectly, it is necessary to apply

periodic boundary conditions (PBC) to the RVEs. These periodic boundary condi-

tions on the boundary of the unit cell are given in [83]. These PBC ensure that every

RVE that makes up the composite model has the same exact deformation mode and

no RVE surfaces penetrate each other, or no gap exists between the adjacent RVEs.

To obtain certain effective coefficients, certain load cases or boundary conditions must

be given to the RVE model. These load cases are such that only one component of

the macroscopic strain is prescribed as non-zero while all others are zero.

As for the mesh convergence, Bergel et al. [13] stated that for accurate results, the

mesh density on the surfaces parallel to the fiber cross-section should be such that the

average element size is around 5% of the RVE width.

The selection of proper microscopic boundary conditions is a crucial step in any nu-

merical homogenization approach. Since the RVE is subjected to these boundary
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conditions, the effective properties are ascertained from the RVE’s averaged response.

However, the boundary conditions must satisfy some mathematical conditions. As

Hill [84] suggested in his Hill-Mandel macro homogeneity condition (or Hill condi-

tion), the equivalence of elastic materials’ energetically and mechanically determined

properties is ensured along with some required conditions. Hill-condition can be sat-

isfied by the following three boundary conditions for heterogeneous medium [85],

[86], [87]:

(1) linear displacement boundary condition (Dirichlet condition)

(2) constant traction boundary condition (Neumann condition) and

(3) periodic boundary condition.

Hill’s energy principle suggests that:

σ : ϵ = σ̄ : ϵ̄ (4.7)

where bar denotes the volume average.

The above condition states that the average of the double contraction of the stress and

strain tensors is equal to the double contraction of their average values.

In an RVE, the average stresses and strains are described by

ε̄ij =
1

V

∫
V

εij dV (4.8)

σ̄ij =
1

V

∫
V

σij dV (4.9)

σij εij =
1

V

∫
V

σijεij dV (4.10)

where V is the volume of the representative volume element.

With the use of the divergence theorem and with the assumption of no body forces,

skipping the intermediate steps, we can have
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∮
δV

(ti − σ̄ijnj)(ui − ε̄ikxk) dS = 0 (4.11)

From the equation, we can make either the first or second term zero, and that provides

us displacement boundary condition and traction boundary condition, respectively.

Alternatively, we can get periodic boundary conditions, which will be explained in

the PBC section.

4.3.1 Linear Displacement Boundary Condition (DBC)

Linear displacement boundary condition requires defining uniform displacement val-

ues on the surfaces of the RVE, which is also called Kinematic Uniform Boundary

Conditions (KUBC) or Dirichlet Condition.

The displacement field in the form of macroscopic strain is enforced on the RVE

boundaries:

ui − ε̄ijxj = 0 ∀ x ∈ δV (4.12)

where ε̄ij is the average strain. This equation satisfies Hill’s energy principle.

4.3.2 Constant Traction Boundary Condition (TBC)

Constant traction boundary condition requires defining uniform traction values on

the surfaces of the RVE, which is also called Static Uniform Boundary Conditions

(SUBC) or Neumann Condition.

The traction field in the form of macroscopic stress is enforced on the RVE bound-

aries:

ti = σ̄ijnj ∀ x ∈ δV (4.13)

where σ̄ij is the average strain. This equation satisfies Hill’s energy principle.
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4.3.3 Periodic Boundary Condition (PBC)

In application, the periodic boundary condition imposes the anti-periodicity of the

traction field over the RVE border and the periodicity of fluctuations [88]. To achieve

this, we divide the RVE boundary δV into positive δV + and negative δV − compo-

nents, see Figure 4.4.

Noting that fluctuation term is:

ui = ūi + ũi = ε̄ijxj + ũi (4.14)

ũ(x+) = ũ(x−) ∀ x+ ∈ δV + and ∀ x− ∈ δV − (4.15)

t(x+) = −t(x−) ∀ x+ ∈ δV + and ∀ x− ∈ δV − (4.16)

Figure 4.4: Positive and negative boundary discretization [88]

4.3.4 Comparison of Boundary Conditions

Many studies in the literature show that the PBC is considered to be the most efficient

method, even for arrangements that are not periodic [89]–[91]. Furthermore, as pre-

sented in Figure 4.5, the periodic boundary condition offers a more accurate estimate
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for a given RVE size than the linear displacement and the constant traction boundary

conditions.

Although the periodic boundary condition is suitable for periodic structures, as the

name suggests, the aforementioned conclusion is also valid, provided the micro-

structure does not show geometrical periodicity [88].

Figure 4.5: Convergence comparison of the boundary conditions in a RVE [88]

As seen from Figure 4.5, as the RVE size gets bigger, the average properties for all

BC types converge to each other.

4.4 Application of PBCs

A composite material can be represented by periodically arrayed RVEs. This brings

simplicity to modeling. For this periodicity, periodic boundary conditions must be

applied to the modeled RVE. Boundary conditions to be applied in this context are

critical for the success of the modeling [92]. Thus, each neighboring RVE in the

structure should have the same deformation shape and should not be separated or

overlapped. The general periodic boundary condition given by Havner [93] has been

accepted as one of the foundations of the representative volume element concept.

Periodicity condition means that the shapes of opposite boundaries, such as positive

and negative X , Y , and Z surfaces, remain identical. Moreover, these surfaces will
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have traction values that are equal in magnitude but of the opposite sign.

Figure 4.6: Schematic of a matching pair of nodes on opposite faces of an RVE [82]

To be able to apply the PBC, the meshes of the opposing surfaces must be identical.

Afterward, the classical application enforces the same degree of freedom value to the

nodes on two opposing RVE surfaces. The opposing nodes are shown in Figure 4.6.

A Python script is developed to apply the periodic boundary condition. The periodic

boundary condition (PBC) script made the process very simple and time-efficient.

Applying PBC to RVE would be a very time-consuming and challenging operation

without the script. Selecting each and every node on the opposing faces by hand and

binding them to each other with a constraint equation would be required. For a very

fine mesh, it may take much too long time if not impossible.

Depending on the loading case, certain constraints are used to set the strain values

between each matching node’s displacement values.

In Figure 4.7, the names of the surfaces of the representative volume element (X+,

X−, Y+, Y−, Z+, and Z−) and the reference systems (X-Y -Z and 1-2-3) are

shown.

The periodicity in the representative volume element requires conformation condi-

tions with respect to opposite edges on the surfaces. According to the periodicity

rule, the displacement, which is related to the mean unit cell strain can be expressed

as the following expression:

48



Figure 4.7: Part and Surface Designations in a Representative Volume Element [94]

ui
K+ − ui

K−
= S̄ij(xj

K+ − xj
K−

) (4.17)

where ui refers to the displacement value of the nodes, S̄ij is the mean strain value

and xj denotes the coordinates of the node. The ’K+’ and ’K−’ indices refer to the

nodes on positive xj and negative xj faces, respectively, of the surfaces X+, X−,

Y+, Y−, Z+, and Z−, as depicted in Figure 4.7.

A similar equation can also be written for the electrical degrees of freedom, as shown

in Equation 4.18. ϕ stands for electric potential, and E stands for the electric field

vector.

ϕK+ − ϕK−
= Ēi(xi

K+ − xi
K−

) (4.18)

These conditions stated above must be applied for each pair of nodes on opposite

sides of the unit cell. Provided that the structure is symmetric, i.e. its inclusion does

not have offset, it is not a must to specify these conditions on the nodes of the unit

cell for some of the loading cases. Because, in these loading cases, displacement and

electrical boundary conditions already satisfy the parallelism constraint. In fact, all
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electrical boundary conditions can be given as surface boundary conditions and do

not require the application of PBC.

Automatic procedures for searching for mutual nodes and applying constraints pro-

vide great convenience. Scripts can be written in Python both for this purpose and to

avoid mistakes when choosing nodes. Python is an embedded programming language

in ABAQUS, and every command done on GUI can be done with Python codes.

Because only the volume percentage and fiber distribution affect the numerical es-

timation of the effective coefficients, not the absolute size, the unit cell size can be

selected to have a unit length. Choosing a unit cube in the dimension of unity can

help in both pre and post-process.

The right mesh size needs to be determined to get results that are accurate enough.

It is recommended that the average element size in the x1-x2 plane (perpendicular

to the fiber axis) is about 5% of the width of the unit cell [13]. Also, unit cells can

be modeled in the x3 direction with just one element since the expected infinite fiber

length makes the effective material properties independent of that direction. However,

depending on the researcher’s preference, it can be preferable to visualize the typical

cell element as a cube.

Table 4.1: Load cases and relevant material coefficient groups

No. 1 2 3 4 5 6

Group Ceff
11 ,Ceff

12 Ceff
13 , Ceff

33 Ceff
44 , eeff15 Ceff

66 eeff13 , eeff33 , εeff33 εeff11

4.5 Loadings and Boundary Conditions

Several load cases are required to obtain effective material properties. All 11 active

coefficients can be computed with 6 different load cases. These are shown in Table

4.1. In these loadings, the displacement and electric potential are applied in such a

way that only the relevant (to be calculated) strain and electric field components are

non-zero.
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The boundary conditions are shown in Table 4.2. For each effective coefficient, cer-

tain displacements or electric potentials must be applied to certain surfaces. The

displacement and electric potential values to be unset are shown by "−". Moreover,

the formula to obtain the effective coefficient is given in the last column.

Table 4.2: Boundary conditions on the RVE surfaces and corresponding effective

coefficients

Effective

Properties

X−
ui/ϕ

X+

ui/ϕ

Y−
ui/ϕ

Y+

ui/ϕ

Z−
ui/ϕ

Z+

ui/ϕ
Formula

Ceff
11 0/0 ũ1/0 0/0 0/0 0/0 0/0 T̄11 / S̄11

Ceff
12 0/0 ũ1/0 0/0 0/0 0/0 0/0 T̄22 / S̄11

Ceff
13 0/0 0/0 0/0 0/0 0/0 ũ3/0 T̄11 / S̄33

Ceff
33 0/0 0/0 0/0 0/0 0/0 ũ3/0 T̄33 / S̄33

Ceff
44 ũ3/0 ũ3/0 0/– 0/– ũ1/– ũ1/– T̄13 / S̄31

Ceff
66 ũ2/– ũ2/– ũ1/– ũ1/– 0/0 0/0 T̄12 / S̄12

eeff13 0/– 0/– 0/– 0/– 0/0 0/φ̃ −T̄ 11 / Ē3

eeff33 0/– 0/– 0/– 0/– 0/0 0/φ̃ −T̄ 33 / Ē3

eeff15 ũ3/0 ũ3/0 0/– 0/– ũ1/– ũ1/– D̄1 / S̄31

εeff11 0/0 0/φ̃ 0/– 0/– 0/– 0/– D̄1 / Ē1

εeff33 0/– 0/– 0/– 0/– 0/0 0/φ̃ D̄3 / Ē3

Another important point is that while obtaining the coefficients in the axial direction,

the boundary conditions in the table above can be applied directly without PBC and

the desired results can be obtained. These values are Ceff
11 , Ceff

12 , Ceff
13 , Ceff

33 , eeff13 ,

eeff33 , εeff11 and εeff33 . In other words, these displacement and electrical boundary con-

ditions already satisfy the parallelism condition [19]. However, for the coefficients

Ceff
44 , eeff15 , Ceff

66 related with shear, a connection must be established between the

nodes that will create the periodic boundary condition. A script was written in the

Python scripting language for this periodic boundary condition generation, which is

embedded in ABAQUS.

The loadings can be divided into two types: axial and simple shear loadings. In the

following sections, detailed explanations and representations of these loadings are

shown.
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4.5.1 Axial Load

As an example of axial mechanical loading, consider loading for Ceff
13 and Ceff

33 .

Boundary conditions should be applied such that all strain components and electrical

fields are zero, except for the normal strain in the x3 direction. Therefore, the nor-

mal displacements on all surfaces except the positive Z surface are set to zero. An

arbitrary normal displacement value is assigned on the Z+ surface of the model, i.e.,

uz = ũ3, while keeping the Z− surface fixed, i.e., uz = 0. On the X− and X+

surfaces, the boundary conditions to fix the displacements in the x direction should

be applied so that ux = 0. Similarly, in the Y− and Y+ directions, the boundary con-

ditions to fix the displacements in the y direction should be applied so that uy = 0.

In addition, electric potential (voltage) boundary conditions should also be defined.

On Z− and Z+ surfaces, the electric potential (voltage) boundary condition should

be defined so that ϕ = 0. Electric potential boundary conditions for X−, X+, Y−,

and Y+ surfaces might be defined depending on the electric potential gradient pres-

ence across these surfaces. If there is an electrical field induced in the normal direc-

tions of these surfaces zero electric potential boundary conditions must be defined,

otherwise not. Applied boundary conditions are shown in Figure 4.8.

Figure 4.8: Mechanical Loading applied in Z to calculate Ceff
13 and Ceff

33
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Then, Ceff
13 can be found by dividing the mean normal stress value in the X direction,

T̄11 obtained from the model by the mean normal strain value in the Z direction,

S̄33. Similarly, Ceff
33 can be found by dividing the mean normal stress value in the

Z direction, T̄33 obtained from the model by the mean normal strain value in the

Z direction, S̄33. Other coefficients can be found in this way using the boundary

conditions and equations in the table.

Similarly, boundary conditions in other directions created by normal strain or electri-

cal boundary conditions can also be given.

4.5.2 Simple Shear

Obtaining the coefficients based on the mean shear strain is more complicated and

requires more attention. For example, for Ceff
44 with a pure in-plane state on the x1-

x3 plane, the constraint equations must be written for the nodal points on surfaces

X and Z. In this equation for opposite nodes, an arbitrary value is written to the

difference of displacements of these two nodes. However, the constraint equations

consist of the arbitrary values only in the in-plane directions, which are 1 and 3 for

Ceff
44 case. On the X surfaces, displacement in x3 direction (u3) must be involved.

Alike, on the Z surfaces, displacement in x1 direction (u1) must be involved.

u3
X+ − u3

X− = ũ3,

u1
Z+ − u1

Z− = ũ1

(4.19)

In ABAQUS, a single constraint equation contains a single pair of nodes. So, for each

opposite pair of nodes, there should be a constraint equation, and it is almost impos-

sible to do it by hand unless the model is very small. Therefore, these constraints

are enforced in ABAQUS using Python script. These constraint equations must be

written in a parametric form so that the arbitrary value can be changed later if needed.

After the script is run, all the opposite nodes are linked to each other. For the compu-

tation of Ceff
44 , degrees of freedom of opposite X and Z surface nodes are enforced to

have a difference of the arbitrary value. However, opposite Y surface nodes will have

zero displacement in the Y direction. These arbitrary values are assigned to reference
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points RP-1, RP-2, and RP-3 so that anytime the user can change the arbitrary value

in a single move. The constraint equations can be written as follows:

u3
X+ − u3

X− − u3
RP−3 = 0,

u1
Z+ − u1

Z− − u1
RP−1 = 0

(4.20)

Figure 4.9: An example of an RVE with the constraint equations which are depicted

with yellow circles.

While applying the mechanical boundary conditions, some restrictions must be made

in order to make only the field values (stress, strain, electric field, etc.) related to the

material coefficients be calculated non-zero. Therefore, for Ceff
44 case, as stated in

the table, the electrical degrees of freedom on both positive and negative X surfaces

should be enforced to be zero.

Shear loadings cannot be depicted visually because all the displacement loadings oc-

cur in the constraint definitions in ABAQUS. However, all pairs of nodes matched

are shown in Figure 4.9. Each yellow circle refers to a constraint definition. The

constraint equations are defined in ABAQUS as given in Equation 4.20. Constraint

and boundary conditions for Ceff
66 can be done with a similar procedure.
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4.6 Calculation of Effective Properties

In this section, the calculation of the effective properties is explained.

Here we assume that the average mechanical and electrical properties of our RVE are

equivalent to those of piezocomposite, as shown in Equation 4.21.

⟨Tij⟩ = Tij, ⟨Dk⟩ = Dk, ⟨Sij⟩ = Sij, ⟨Ek⟩ = Ek, (4.21)

The average stresses (Tij), strains (Sij), electric fields (Ei), and electrical displace-

ments (Di) in the RVE can be defined as in Equation 4.22.

Tij =
1

|V |

(∫
V

Tij dV

)
, Sij =

1

|V |

(∫
V

Sij dV

)
Di =

1

|V |

(∫
V

Di dV

)
, Ei =

1

|V |

(∫
V

Ei dV

) (4.22)

where |V | denotes the RVE volume.

In FEM, similar to the equations above that define the average properties of the RVE,

the average properties can be calculated by the following relations in 4.23.

Tij =
1

Vtot

(
nel∑
n=1

T n
ij V

n

)
, Sij =

1

Vtot

(
nel∑
n=1

Sn
ij V

n

)

Di =
1

Vtot

(
nel∑
n=1

Dn
i V

n

)
, Ei =

1

Vtot

(
nel∑
n=1

En
i V

n

) (4.23)

These calculations repeat for every element or integration point in the FE model. In

ABAQUS, the volume of the integration points can be requested. Thus, by multiply-

ing the values of the field of interest at the integration points with the volume of that

integration point and summing them up, the total value is obtained. Then, these total

values are divided by the total volume resulting in the average value of the RVE.
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CHAPTER 5

TWO PHASE PIEZOCOMPOSITES

This chapter aims to obtain the complete set of material parameters, which consists

of the effective elastic, dielectric and piezoelectric tensors. In this chapter, except for

the macro-scale application, only unidirectional periodic 1-3 piezoelectric composites

with cylindrical fibers are studied and analyzed. Different loading cases and boundary

conditions are applied to obtain the 11 effective coefficients of transversely isotropic

1-3 piezoelectric composites.

First, the necessary steps in the finite element model will be explained, and some

information about the analysis, method, and ABAQUS will be given. Afterward, the

results obtained will be shown and discussed.

In the results section, extracting all 11 effective material coefficients is exemplified,

and the difference between Periodic Boundary Condition (PBC) and Displacement

Boundary Condition (DBC) is shown with analyses. Also, four similar studies from

the literature will be compared with this study. Each two of the four studies inves-

tigated the same case. Therefore, two different 1-3 piezocomposite models are ana-

lyzed, and each is compared with two studies. Later, a study containing experimental

data will be compared to our results. Lastly, a macro-scale analysis is conducted to

see if the homogenization method works and offers a real advantage.

The first model is compared with the studies carried out by Tita et al. [19] and Berger

et al. [12]. The second model is compared with the studies of Berger et al. [13] and

Pettermann et al. [95].
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Figure 5.1: An RVE model for 1-3 piezocomposites in ABAQUS

5.1 An analysis of 1-3 piezocomposite

In this section, the fundamentals of the analysis of 1-3 piezocomposites in ABAQUS

will be explained.

5.1.1 FEM Model

An example of an RVE for 1-3 piezocomposites prepared in ABAQUS is shown in

Figure 5.1. As can be seen, the cylindrical section in the middle represents the piezo-

electric fiber, and the other section is the matrix phase.

There are a couple of assumptions that should be stated for the upcoming analyses:

• Fiber and matrix phases are assumed to be perfectly bonded.

• The fiber is aligned and poled along the Z or x3 axis.

5.1.1.1 Material

Notations for representing higher-order tensors as matrices can change from program

to program. ABAQUS uses the notations 1, 2, 3, 4, 5, and 6 for 11, 22, 33, 12, 13, and

23 to map higher-order tensors to matrices. This applies to all material coefficients.

58



Elastic Properties: The whole fourth-order tensor of elastic material coefficients is

given into ABAQUS. The reduced form of the elastic material coefficients for trans-

versely isotropic materials is given in Equation 4.6.

Piezoelectric Properties: For piezoelectric coefficients, ABAQUS uses triple index

notation, whereas piezoelectric data supplied by manufacturers usually have double

index notation. Therefore, a conversion between the two must be made. Correspon-

dence between tensor and vector notations is as follows, the 11, 22, 33, 12, 13, and

23 components of the tensor correspond to the 1, 2, 3, 4, 5, and 6 components, re-

spectively, of the corresponding vector [2].

The piezoelectric material properties can be defined by giving the stress coefficients

(e) or strain coefficients (d). In either case, a complete tensor is made of 18 compo-

nents, and its order is given in Table 5.1.

Table 5.1: Piezoelectric tensor format in ABAQUS [2]

e1 11 e1 22 e1 33 e1 12 e1 13 e1 23

e2 11 e2 22 e2 33 e2 12 e2 13 e2 23

e3 11 e3 22 e3 33 e3 12 e3 13 e3 23

While the first index on the piezoelectric coefficients refers to the component of elec-

tric displacement, the next pair of indices refer to the component of mechanical stress

or strain [2].

Hence, the piezoelectric components causing electrical displacement in the 1-direction

are all given in the first row and the other directions in the other rows.

Dielectric Properties: The dielectric property of a material allows it to have a

potential gradient (also known as an electric field). Because of this, although non-

piezoelectric materials have no piezoelectric coefficient, they still show an electrical

potential gradient because they have dielectric properties.
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5.1.1.2 Mesh

In order to conduct the piezoelectric analysis, the "Piezoelectric" option must be se-

lected in the element type family. By selecting "Piezoelectric", the electric potential

degree of freedom (DOF) is added to three mechanical DOFs (components of the dis-

placement vector). Electric potential degree of freedom is indicated with the 9th DOF

in ABAQUS.

The piezoelectric element type is only available for solid elements. Depending on the

shape of the solid element and the order of the interpolation function, the following

elements are mostly used: C3D8E (8-node linear piezoelectric brick), C3D10E (10-

node quadratic piezoelectric tetrahedron), C3D20E (20-node quadratic piezoelectric

brick), C3D20RE (20-node quadratic piezoelectric brick, reduced integration).

In ABAQUS, the electric field is called the electrical potential gradient (EPG), and

the electrical displacement is called the electrical flux vector (EFLX).

For the fidelity of the results, a mesh convergence study was done and all analyses are

conducted with a mesh size fine enough.

5.1.1.3 Loadings and BCs

Loading and boundary conditions are applied as explained in Section 4.5.

5.1.2 Results and Discussion

In this section, the results of an RVE model are shown and discussed. First, extracting

all 11 effective material coefficients is presented, and later, the difference between

Periodic Boundary Condition (PBC) and Displacement Boundary Condition (DBC)

is studied with different RVE models.

In this section, the subject 1-3 piezoelectric composite is made of circular piezoelec-

tric fiber, PZT-5A, and Epoxy matrix. The model can be seen in Figure 5.2. The

material properties are taken from Berger et al. [12] and tabulated in Table 5.2.
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Figure 5.2: The subject RVE model with fiber volume fraction of 55.5%

Table 5.2: Material Properties of PZT-5A and Epoxy. Note that elastic, piezoelectric

and dielectric coefficients are given in GPa,C/m2 and nF/m, respectively.

C11 C12 C13 C33 C44 C66 e13 e33 e15 ε11 ε33

PZT-5A 121.00 75.40 75.20 111.00 21.10 22.80 -5.40 15.80 12.30 8.11 7.35

Epoxy 3.86 2.57 2.57 3.86 0.64 0.64 – – – 7.97× 10−2 7.97× 10−2

5.1.2.1 Extraction of 11 Effective Coefficients

A 1-3 piezocomposite made of PZT-5A with 55.5% fiber content and an epoxy matrix

is investigated. Boundary conditions are applied according to Table 4.2.

Obtained effective properties and pure constituent material properties are shown in

Table 5.3. It can be seen that the effective material coefficients are always between

the values of the constituents, namely PZT-5A and Epoxy. Pure constituent material

coefficients determine the range of the effective coefficients. However, while some

coefficients stand in the middle of this range, some stand close to values of PZT-5A

or epoxy. This can be explained by the effect of connectivity. Since the fiber is placed

along the Z axis, the coefficients directly related to the Z axis, such as Ceff
33 , eeff33 ,

and εeff33 , are quite high. However, other coefficients related to the X or/and Y axes

are found lower and close to those of epoxy.
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Table 5.3: Effective and constituent material properties of PZT-5A/Epoxy piezocom-

posite for 55.5% volume fraction. Note that elastic, piezoelectric and dielectric coef-

ficients are given in GPa,C/m2 and nF/m, respectively.

C11 C12 C13 C33 C44 C66 e13 e33 e15 ε11 ε33

PZT-5A 121.00 75.40 75.20 111.00 21.10 22.80 -5.40 15.80 12.30 8.11 7.35

Epoxy 3.86 2.57 2.57 3.86 0.64 0.64 – – – 7.97× 10−2 7.97× 10−2

Eff. Props. 10.84 4.64 6.03 35.07 2.21 1.54 -0.26 10.84 0.02 0.29 4.26

Coefficients Ceff
11 and Ceff

12 : First, the result of mechanical loading in the X-axis

is examined. According to the first two rows of Equation 4.6, by applying pure axial

strain in the X-direction, we can obtain the effective coefficients Ceff
11 and Ceff

12 by

C11 = T11/S11 and C12 = T22/S11.

In Figure 5.3, von Mises distribution in the deformed shape and stress distributions

in X and Y directions in undeformed shape are shown. As can be seen, although

PBC is applied, the deformation shape does not have wavy shape because the RVE is

symmetric.

Please note that stress components are designated with Tij in the equations and ta-

ble; however, it is designated with Sij in ABAQUS. Similarly, strain components are

designated with Sij in the thesis, with Eij in ABAQUS.

Figure 5.3: Under mechanical loading in X , a) von Mises distribution in the deformed

shape, b) stress distribution in X and c) stress distribution in Y in undeformed shapes

Coefficients Ceff
13 and Ceff

33 : Similarly, by applying pure axial strain in the Z-

direction, we can obtain the effective coefficients Ceff
13 and Ceff

33 by C13 = T11/S33

and C33 = T33/S33.
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In Figure 5.4, von Mises distribution in the deformed shape and stress distributions

in the X and Z directions in the undeformed shape are shown. Similar to Ceff
11 and

Ceff
12 case, the deformation shape does not have wavy shape because the RVE is sym-

metric.

Figure 5.4: Under mechanical loading in Z, a) von Mises distribution in the deformed

shape, b) stress distribution in X and c) stress distribution in Z in undeformed shapes

Coefficient εeff11 : According to the 7th row of Equation 4.6, by applying an electri-

cal field in the X-axis, we cause the RVE to possess electrical charges and we can

obtain εeff11 by ε11 = D1/E1.

In Figure 5.5, von Mises distribution in the deformed shape, electric displacement,

and electric field in the X-direction in the undeformed shape are shown.

Figure 5.5: Under electrical loading in X , a) von Mises distribution in the deformed

shape, b) electric displacement in X and c) electric field in X in undeformed shapes

Coefficients eeff13 , eeff33 and εeff33 : By applying an electrical field in the Z-axis, we

can obtain eeff13 , eeff33 and εeff33 by e13 = T11/E3, e33 = T33/E3, and ε33 = D3/E3.
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Figure 5.6 shows electric displacement in the Z direction in the deformed shape and

stress distributions in the X and Z directions in the undeformed shapes.

Figure 5.6: Under electrical loading in Z, a) electric displacement in Z distribution

in the deformed shape, b) stress distribution in X and c) stress distribution in Z in

undeformed shapes

Coefficient Ceff
66 : To obtain Ceff

66 , a pure shear state in X-Y must be enforced on

the RVE, and by C66 = T12/S12, it can be obtained.

Figure 5.7 shows the distributions of 12 components of stress and strain in the de-

formed shape. It should be noticed that the shapes of the surfaces of the RVE are

repeatable. If this RVE cell were merged with its identical twin in any direction, their

surfaces would match perfectly, which is a requirement of periodicity condition and

a result of PBC.

Figure 5.7: Under shear loading in X-Y , a) stress distribution in X-Y and b) strain

distribution in X-Y in the deformed shapes
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Coefficients Ceff
44 and eeff15 : According to the fourth and eighth rows of Equation

4.6, a pure shear state in Y -Z-plane is enforced on the RVE and Ceff
44 and eeff15 can

be obtained by C44 = T23/S23 and e15 = D2/S23. Instead of creating a simple shear

state in Y -Z-plane, we could create a simple shear state in X-Z-plane and obtain the

same coefficients because the fourth and eighth rows and fifth and seventh rows of

Equation 4.6 have the same coefficients.

In Figure 5.8, the distributions of 23 components of stress and strain in the deformed

shape are shown.

Figure 5.8: Under shear loading in Y -Z, a) stress distribution in Y -Z and b) electric

displacement distribution in Y in the deformed shapes

Coefficients Ceff
44 and eeff15 are known to be the most difficult coefficients to get, and

most discrepancies are found in these coefficients when compared with other studies

from the literature. Because they depend on the boundary conditions greatly, any little

non-zero parameter except S13 or S23 can yield wrong calculation of Ceff
44 and eeff15 .

Also, similar to the loading to determine Ceff
66 , the wavy displacement field on the

Z surfaces is the result of applying periodic boundary conditions. PBCs guarantee

the periodicity requirement. Therefore, for shear loadings, PBCs have to be used,

and displacement boundary conditions are not suitable. However, for axial loadings,

either DBC or PBC can be used.
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5.1.2.2 PBC vs. DBC

In this subsection, boundary conditions PBC and DBC are investigated. DBC is ap-

plicable only for non-shear loadings. It can be used for axial loadings because DBC

complies with the periodicity requirement of RVE.

For comparison, we take the case in which electrical loading in Z is applied to the

RVE. With this loading, we make use of the effective stress and electrical displace-

ment values to calculate the effective material coefficients. Therefore, this loading

type covers both the mechanical and the electrical output parameters, which are stress

and electric displacement, respectively.

Table 5.4: Comparison of mechanical and electrical parameter results of PBC and

DBC

Parameter Unit PBC DBC
Difference of

DBC w.r.t. PBC

S11 m/m order of 10−17 order of 10−19 0%

S22 m/m order of 10−18 order of 10−18 0%

S33 m/m order of 10−19 order of 10−18 0%

T11 Pa -257.128 -257.127 -3×10−4%

T22 Pa -257.002 -257.002 +1×10−4%

T33 Pa 10837.189 10837.189 +1×10−6%

E1 V/m order of 10−13 order of 10−13 0%

E2 V/m order of 10−13 order of 10−13 0%

E3 V/m -1000 -1000 0%

D1 C/m2 order of 10−21 order of 10−21 0%

D2 C/m2 order of 10−21 order of 10−21 0%

D3 C/m2 -4.260×10−6 -4.260×10−6 +3×10−7%

The results are tabulated in Table 5.4. Generally, DBC is known to be stiffer than PBC

and yields effective coefficients higher than PBC does. For most of the coefficients,

it does so. T22, T33 and D3 are greater in DBC result; however T11 is found to be

greater in PBC results. In fact, for this analysis, T11 and T22 should be equal because

PZT-5A’s piezoelectric material coefficients e13 and e32 are equal to each other. The
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effective stresses T11 and T22 are slightly different due to the discretization errors.

Therefore, except for one coefficient, DBC results were found to be greater than PBC.

However, in our case, the mesh size effect is greater than the effect of the difference

between PBC and DBC. For that reason, for axial loading, either PBC or DBC can be

used. Meshing the model fine enough is found to be more critical than the choice of

BC.

5.2 Comparison with literature

In this section, the studies found in the literature will be reproduced, and our modeling

technique will be verified. Our results will be compared to a total of five studies, four

of which are numerical and one experimental.

5.2.1 Comparison with Tita et al. [19] and Berger et al. [12]

This section compares the results of the current study to the works of Berger et al.

[12] and Tita et al. [19].

The study of Berger et al. [12] includes both analytical and numerical solutions.

The analytical solution is based on the method called Asymptotic Homogenization

Method (AHM), and the numerical solution utilized FEM. On the other, in Tita et al.

[19], only a numerical solution is present.

This comparison is performed with a 1-3 piezocomposite model made of PZT-5A and

Epoxy. Only one fiber volume fraction value is studied, which is 55.5%. Material

properties are taken from Tita et al. [19] and Berger et al. [12] and shown in Table

5.2.

The model can be seen in Figure 5.2. It has cylindrical piezoelectric fiber in the

middle and epoxy around it.

This model is analyzed in ABAQUS and has 9860 linear 8-noded piezoelectric solid

elements (C3D8E). In the study of Berger et al. [12], FEM calculations were made

with ANSYS. . Similarly, the RVE model has 8-noded brick elements with three
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mechanical and one electrical potential DOFs. The study of Tita et al. [19] used

ABAQUS for calculations, and for meshing the RVE model, approximately 4000

quadratic piezoelectric brick elements (C3D20E) were used.

All loadings and BCs are applied according to the explanation in Section 4.5. For the

computation of C44 and e15, a shear loading is applied in the Y -Z-plane, unlike the X-

Z-plane as explained before. This only changes the deformation, not the coefficients,

because the material and the model are transversely isotropic, and the axis of isotropy

is the Z-axis.

Table 5.5: Comparison for 55.5% volume fraction. Note that elastic, piezoelectric

and dielectric coefficients are given in GPa,C/m2 and nF/m, respectively.

Ceff
11 Ceff

12 Ceff
13 Ceff

33 Ceff
44 Ceff

66 eeff13 eeff33 eeff15 εeff11 εeff33

Berger et al. AHM [12] 9.739 5.590 6.079 35.071 2.146 2.085 -0.250 10.861 0.022 0.278 4.209

Berger et al. FEM [12] 10.917 4.652 6.079 35.351 1.890 1.557 -0.255 10.889 0.018 0.288 4.249

Tita et al. [19] 10.856 4.666 6.043 35.127 2.205 1.528 -0.258 10.864 0.025 0.287 4.270

Current study 10.835 4.641 6.028 35.074 2.214 1.537 -0.257 10.837 0.023 0.286 4.260

All results are tabulated in Table 5.5. Axial coefficients, Ceff
13 , Ceff

33 , eeff13 , eeff33 ,

εeff11 , εeff33 present excellent agreement and they are very close for each type of anal-

ysis. Coefficients Ceff
11 , Ceff

12 and Ceff
66 are found very close in numerical results.

Analytical results for these coefficients deviate from the other three results. However,

for Ceff
44 and eeff15 , analytical results are in close agreement with this study and Tita

et al. [19]. FEM results of Berger et al. [12] underpredicted these coefficients. Some

discrepancies usually come across with coefficients Ceff
44 and eeff15 . Because shear

loadings, unlike axial loadings, are more complicated, leading to more heterogeneous

fields, and these coefficients are affected significantly by BCs.

5.2.2 Comparison with Berger et al. [13] and Pettermann et al. [95]

This section compares the results of this study and the studies of Berger et al. [13]

and Pettermann et al. [95]. The results of both Berger et al. [13] and Pettermann et

al. [95] are FEM-based numerical solutions.

The subject model is a 1-3 piezocomposite model made of PZT-7A and Epoxy. How-
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ever, this epoxy is different from the epoxy in the previous section. Material proper-

ties are shown in Table 5.6 and can be found in Berger et al. [13].

Table 5.6: Material Properties of PZT-7A and Epoxy. Note that elastic, piezoelectric

and dielectric coefficients are given in GPa,C/m2 and nF/m, respectively.

C11 C12 C13 C33 C44 C66 e13 e33 e15 ε11 ε33

PZT-7A 154.837 83.237 82.712 131.390 25.696 35.800 -2.120 9.521 9.349 4.065 2.079

Epoxy 8.000 4.400 4.400 8.000 1.800 1.800 – – – 0.037 0.037

In the study of Berger et al. [13], effective material coefficients are transformed into

a set of new coefficients. Transformation formulae are shown in Equation 5.1. They

are derived from the piezoelectric constitutive equations written in the form of (S,D)

as independent variables (see Equation 4.3). CD is the elasticity tensor at a constant

electric displacement, β is the dielectric tensor, and hD is the piezoelectric coupling

tensor at a constant electric displacement.

βeff
11 = 1/εeff11 , βeff

33 = 1/εeff33 ,

CeffD
11 = Ceff

11 + eeff13

2
βeff
33 , CeffD

12 = Ceff
12 + eeff13

2
βeff
33 ,

CeffD
13 = Ceff

13 + eeff13 eeff33 βeff
33 ,

CeffD
33 = Ceff

33 + eeff33

2
βeff
33 ,

CeffD
44 = Ceff

44 + eeff15

2
βeff
11 ,

CeffD
66 = Ceff

66 , heffD
31 = eeff13 βeff

33 ,

heffD
33 = eeff33 βeff

33 heffD
15 = eeff15 βeff

11

(5.1)

In this section, fiber volume fraction values of 20%, 40%, and 60% are studied. RVE

models for these fiber volume fraction values are shown in Figure 5.9. Trends and

variations of the effective material coefficients are plotted. However, since the result

of Pettermann et al. [95] is available only for 60% volume fraction, the plots do not

include the results of Pettermann et al. [95]. A comparison of the three studies is

made only for a 60% volume fraction and tabulated in Table 5.7.

For different fiber volume fractions, different effective material coefficients are ob-

tained. These results are compared with Berger et al. [13] and can be seen in Figures
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Figure 5.9: Investigated fiber volume fraction ratios: a) 20%, b) 40%, c) 60%

Table 5.7: Comparison for 60% volume fraction. Note that the units are in GPa,

109Vm/C and 109V/m, respectively.

CeffD
11 CeffD

12 CeffD
13 CeffD

33 CeffD
44 CeffD

66 βeff
11 βeff

33 heffD
31 heffD

33 heffD
51

Current study 25.13 8.75 10.82 86.99 6.68 4.63 6.359 0.781 -0.157 5.034 0.329

Berger et al. [13] 25.17 8.71 10.82 86.97 6.66 4.64 6.364 0.781 -0.157 5.034 0.328

Difference -0.14% 0.45% 0.00% 0.02% 0.29% -0.13% -0.07% -0.02% 0.10% 0.01% 0.35%

Pettermann et al. [95] 25.19 8.76 10.84 87.10 6.70 4.64 6.341 0.780 -0.157 5.034 0.330

Difference -0.08% -0.57% -0.18% -0.15% -0.60% 0.00% 0.36% 0.13% 0.00% 0.00% -0.61%

5.10, 5.11 and, 5.12. The agreement is good, but eeff15 shows a greater deviation in

higher fiber volume fractions.
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Figure 5.10: a) Ceff
44 and b) Ceff

66 versus fiber volume fraction
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Figure 5.11: a) keff (= (Ceff
11 + Ceff

22 )/2) and b) εeff11 versus fiber volume fraction
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Figure 5.12: a) eeff13 and b) eeff15 versus fiber volume fraction

5.2.3 Comparison with experimental data

In this section, in order to verify our modeling technique, experimental data is found

from the literature and compared with the FEM results obtained in this study.

Experimental data are taken from the studies of Dunn and Taya [11] and Chan and

Unsworth [9]. The verification model is a 1-3 piezocomposite that is made of PZT-

7A and epoxy, and both references used the same material. Material coefficients are

taken from these studies and tabulated in Table 5.8.

The 1-3 piezocomposite was experimented by Chan and Unsworth [9] for various

volumes of fiber fractions. Volume fractions up to 70% are modeled in FEM, and the

results are compared for effective coefficients deff33 , εT,eff33 , and seff11 + seff12 . These

values are plotted and compared in Figure 5.13.

As the PZT-7A volume fraction converges to 1, meaning that the whole part is made
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Table 5.8: Material properties of PZT-7A and Epoxy. Note that elastic, piezoelectric

and dielectric coefficients are given in GPa, 10−12m/V and nF/m, respectively.

C11 C12 C13 C33 C44 C66 d31 d33 d15 εS11 εS33

PZT-7A 148.0 76.2 74.2 131.0 25.4 35.9 -60 150 362 4.0728 2.0807

Epoxy 8.0 4.4 4.4 8.0 1.8 1.8 – – – 0.0372 0.0372

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
75

100

125

150

175

200

PZT-7A Volume Fraction

d
ef

f
3
3

[1
0−

1
2
m
/V

]

This study
Chan and Unsworth [9]

Figure 5.13: deff33 vs. PZT-7A volume fraction

of PZT-7A, the effective d33 value should converge to 150×10−12 m/V because this

is the material property. However, as it seems in Figure 5.13, the effective d33 goes be-

yond 150×10−12 m/V around 30% of fiber volume. After measuring the d33 value for

a randomly chosen PZT-7A sample and finding d33 out to be 163-167×10−12 m/V,

Chan and Unsworth [9] decided to take material property d33 as 167×10−12 m/V in

their numerical model to verify with their experimental data. Thus, we follow the

same procedure and re-run our FEM models.

As can be seen in Figure 5.14, the numerical results are now closer to the experimental

data, and now it can be said that the numerical results are in agreement with the

experiment. Besides deff33 , other effective material coefficients εT,eff33 , and seff11 + seff12

are also compared with the experimental data in Figures 5.15 and 5.16.
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Figure 5.14: deff33 vs. PZT-7A volume fraction (d33 = 167×10−12m/V for PZT-7A)
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Figure 5.15: εT,eff33 /ε0 vs. PZT-7A volume fraction (d33 = 167×10−12m/V for PZT-

7A)

Looking at the figures, it can be said that the numerical results obtained in this

study are generally in agreement with the experimental data presented by Chan and

Unsworth [9] although there are some slight deviations. In Figure 5.14, deff33 values

obtained by FEM followed the trend of the experimental data. Except for the first

one, other values underestimated the experimental data, and the percentage of error
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Figure 5.16: seff11 + seff12 vs. PZT-7A volume fraction (d33 = 167×10−12m/V for

PZT-7A)

remained below 10%. In Figure 5.15, ratios of εT,eff33 to absolute dielectric constant,

ε0 are shown. As can be seen, the results are found to be very close, and they change

almost linearly with the PZT-7A volume fraction. In Figure 5.16, effective compli-

ance coefficients seff11 + seff12 are compared. The numerical results obtained by this

study are in agreement with the experimental data and have a similar trend. The min-

imum and the maximum percentages of error are found to be around 11% and 22%,

respectively.

5.3 Application to a Macro-Scale Boundary Value Problem

So far, only homogenized material coefficients obtained by RVE are presented in this

study. In this section, on the other hand, an example of a macroscale piezocomposite

structure with the homogenized material properties obtained by prior RVE analyses

is studied, which is actually the main purpose of the homogenization method.

In this section, we aim to reproduce a macro-scale piezocomposite model with the

help of the homogenization method and treat it like a uniform homogeneous material.

For this purpose, an appropriate RVE model will be prepared and analyzed to obtain
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the complete set of material moduli. Then these homogenized material properties

are given into the macro-scale model with the single material section. It is expected

that both homogeneous and heterogeneous macro-scale give very similar results. An

arbitrary model could be developed to validate the application of the homogenization

method to macro-scale BVPs, but we did prefer to compare our results to a literature

study. Therefore, the model presented by Prasad et al. [96] is chosen and studied.

This model is made of a circular shim plate at the bottom and a circular piezoelectric

plate on top, as shown in Figure 5.17. For computational efficiency, only a quarter

model with symmetric BCs is analyzed.

Figure 5.17: Full scale of macroscale model and its quarter computational domain

[97]

Material properties of piezoelectric material APC850 are taken from the study of

Prasad et al. [96] but some material coefficients were missing because their loading

requires not all terms of the material moduli. Therefore, the remaining missing coef-

ficients are obtained from the manufacturer’s data sheet [98]. The material properties

of APC850 and shim are tabulated in Table 5.9. The dielectric material properties ε11

and ε33 are taken the same, as 1750.

In all analyses, the ratio of piezoelectric plate height to shim plate height, which is a

parameter, remained constant at 0.4. In fact, the radius of the shim plate was fixed,

too. Only the radius of the piezoelectric plate is changed. Ratios of radii of the

piezoelectric plate to shim plate studied in this chapter are as follows: 0.2, 0.4, 0.55,

0.65, 0.75, 0.85, and 0.9.
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Table 5.9: Material properties of APC850 and shim. Note that elastic, piezoelectric

and dielectric coefficients are given in GPa, 10−12m/V and nF/m, respectively.

Elastic Modulus, E Poisson’s ratio, v d31 d33 d15 ε/ε0

APC850 63 0.31 -175 400 590 1750

Shim 90 0.32 – – – 1

First, the heterogeneous macro-scale model is analyzed as it is; piezoelectric plate on

top, shim plate on the bottom. Then, a homogeneous macro-scale model is developed,

and its homogenized material properties are obtained by RVE models, as explained

in Chapter 4. The RVE model is prepared as shown in Figure 5.18 because this

model represents the macro-scale model better than a cylindrical RVE model and

gives better results. Since the height ratio is fixed at 0.4, only one RVE model is

needed. Mechanical and electrical loadings are applied to this RVE model to get the

complete set of material coefficients. Then, these homogenized material properties

are set into the homogeneous macro-scale model.

Figure 5.18: RVE model prepared for macro-scale problem

The model is fixed on the outer surface of the shim plate, and a positive voltage is

applied on the upper surface of the piezoelectric plate while fixing the voltage on the

lower surface of the shim plate to zero. The fixed outer surface, material regions, and

mesh are shown in Figure 5.19. Since the outer portion of the models consists of only
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(a) Heterogeneous Macro-Scale Model (b) Homogeneous Macro-Scale Model

Figure 5.19: Material regions, mesh and mechanical BC surface of a) the heteroge-

neous and b) the homogeneous macro-scale models

(a) Heterogeneous Macro-Scale Model (b) Homogeneous Macro-Scale Model

Figure 5.20: Displacement contour of a) the heterogeneous and b) the homogeneous

macro-scale models under 5 V electrical load.

shim, homogenization is only applied to the interior portion of the model. In Figure

5.19a, yellow and red regions correspond to the APC850 piezoelectric material and

shim, while in 5.19b, red and blue regions correspond to the homogenized piezocom-

posite and shim, respectively. The following model has a radius ratio of 0.85, and 5

V is applied between its surfaces.

The overall displacement distribution of the macro-scale models is shown in Figure

5.20, and it is seen that both models yield almost the same result, which proves the

validity of the homogenization method.

Also, to compare our results to Prasad et al. [96], different radii of the piezoelectric
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plate are analyzed, and the deflection of the middle point on the piezoelectric plate vs.

ratio of the radii of the piezoelectric plate to the shim plate curve is drawn as shown in

Figure 5.21. There is some discrepancy between these two results, but they show the

same trend. Nonetheless, the primary purpose of this section, showing the validity of

the homogenization method and proving that the macro-model with the homogenized

properties gives similar results as the original heterogeneous model, is demonstrated.
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Figure 5.21: Deflection of the middle point for various radii of the piezoelectric plate
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CHAPTER 6

POROUS PIEZOCOMPOSITES

Porosity is generally considered as a defect in materials; however, a well-designed

porosity in piezoelectric materials can enhance the performance of the piezoelectric

material. The pores inside the material actually lower the mechanical and piezoelec-

tric material properties. Nevertheless, figures of merit calculated for piezoelectric

materials increase as the porosity increases. This behavior is due to a partial cou-

pling between the longitudinal and transverse effects [99]. Porosity leads to higher

values of FOMs and lowers acoustic impedance values, causing an improved acoustic

performance in ultrasonic applications.

In this chapter, the generation of porosity and its effects on the effective coefficients

and the figures of merit are explained. Later, analyses of porous piezoceramics and

porous piezocomposites are conducted.

6.1 Generation of Porosity

Pores usually are generated by some external post-treatments after the piezoelectric

material is manufactured. The space that pores will replace, is usually filled with other

materials in preprocessing. These materials are then removed by thermal treatment.

This method is the most resorted method, and it is called the “Sacrificial Template

Method” or the “BurPS (Burn out Polymer Sphere) Process”. There are also other

techniques, namely the “Replica Technique” or “Direct Foaming” [28], [99]. These

techniques are shown in Figure 6.1.
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Figure 6.1: Porosity Manufacturing Techniques [100]

6.1.1 Sacrificial Template Method

In this method, simply put, pre-filled materials are evaporated with heat from the

piezoelectric material. The most common sacrifice materials are polyethylene ox-

ide (PEO) and poly(methyl methacrylate) (PMMA), polyvinyl chloride (PVC), the

polystyrene (PS). [99], [101]. Organic sacrifice materials can be removed with ther-

mal treatments, but some chemical treatments must be applied to remove inorganic

sacrifice materials. However, this technique is applicable only for inclusion percent-

ages lower than 70% [102]. The size of the pores depends on the size of the sacrificial

materials, usually varying from 2 to 100 micrometers [100].

In this method, overlapping of the pores is minimized; pores can only barely touch

each other at their boundaries.
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6.1.2 Replica Technique

In this method, a prepared template is impregnated into a ceramic suspension and then

removed, resulting in a macro-porous ceramic. However, a drawback of this method

is that the minimum cell size is limited to around 200 micrometers [100].

6.1.3 Direct Foaming

This method, on the other hand, uses the incorporation of air bubbles into the ce-

ramic material. The more amount of gas incorporated into the ceramic suspension,

the higher level of porosity is obtained. However, the pore size is depended on the

stability of the wet foam, which is known before the setting process occurs. With con-

trolled foam stability and setting kinetics, pore sizes ranging from 35 micrometers to

1.2 mm have been achieved [100].

Unlike the sacrificial templated method, direct foaming can cause overlapping of the

pores because, during the process, air bubbles can intersect each other and merge

[28].

6.2 Calculation of Hydrostatic Performance Coefficients

Hydrostatic performance coefficients were mentioned in Section 3.11 in Chapter 3.

However, for completeness, the equations are explicitly shown here, too.

Piezoelectric equations can be written in the stress-electric displacement form as

shown in (4.1), or can be written as shown in the following form:

ϵ = sE · σ + dT ·E,

D = d · σ + εσ ·E
(6.1)

where σ and ϵ are stress and strain vectors, respectively. E and D are the electric

field and the electric displacement vectors, respectively. sE is the compliance matrix

at a constant electric field, d is the piezoelectric strain coefficient, εσ is the dielectric
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matrix at a constant stress. In order to get this set of equations, we need to have the

following necessary relationship:

sE = CE−1
,

d = e · sE,

εσ = εS + d ·CE−1 · dT

(6.2)

By using the relations given in (6.2), we can calculate the hydrostatic performance

coefficients dh and gh as shown in (6.3).

dh = 2d31 + d33

gh = 2g31 + g33 =
dh
εσ33

(6.3)

6.3 Analysis of Porous Piezoceramics

Porous piezoceramic materials possess high hydrostatic figures of merit, lower acous-

tic impedance mismatch with respect to the medium, and low mechanical quality

factor, which is a subject of vibration.

By controlling the porosity density/size or the morphology of the pores, desired char-

acteristics can be achieved.

The grade of anisotropy of a composite is determined by its constituents. More-

over, since the piezoelectric material is transversely isotropic, air inclusion must be

isotropic or transversely isotropic at most not to violate the assumptions that already

been made. The air itself is isotropic, but the shape and distribution of pores can

affect the overall anisotropy of the piezoceramic. Therefore, air inclusion the shape

of perfect spheres or in the shapes of ellipses or cylinders elongated along the normal

direction of the plane of isotropy, which is direction 3, comply the assumptions of

the transversely isotropic analysis.

The analysis procedure of porous piezoceramics is very similar to that of two-phase

piezocomposites. The extraction of effective coefficients is the same, but the postpro-
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cessing calculations differ.

Porosity can be in any shape in FEM however, in reality, pores generally are produced

in the shape of a sphere or cylinder. Therefore, only spherical or cylindrical pores will

be examined.

6.3.1 Modelling

The finite element model can include the pore geometry as a solid domain or not. The

example RVE models are shown in Figure 6.2, where the pores are indicated with

the white region and piezoceramics with grey. By treating pores as empty spaces,

we do not have meshes in pore domains and we simulate the real case; however, this

brings complexity to the RVE model. The more straightforward method is to model

the pore geometry with appropriately chosen material properties. For phases modeled

as pores, very low elastic properties (E = 100Pa), zero piezoelectric properties, and

relative permittivity of vacuum (ε = 1) can be used.

Figure 6.2: Two modeling examples, in which a) pore is modeled and b) pore is not

modeled

Since the purpose is to obtain hydrostatic performance coefficients, we only need to

get coefficients Ceff
11 , Ceff

12 , Ceff
13 , Ceff

33 , eeff13 , eeff33 , and εeff33 because other coefficients

did not affect the hydrostatic coefficients dh and gh.

Since these effective coefficients can be obtained properly with displacement bound-

ary conditions (DBC), either DBC or periodic boundary conditions (PBC) can be
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used.

To see the effects of modeling pores or not and boundary conditions, the following

three cases under mechanical loading in X are compared:

• Modeling pores as solid domains and using DBC

• Modeling pores as solid domains using PBC

• Modeling pores as empty domains and using DBC

The RVE model consists of 90% PZT-5A content and 10% pore content. Pores are

modeled as two spheres, one of which is a full sphere at the center of the cube, and

the other is divided into eight and located at the corners.

The von Mises stress distribution results for mechanical loading in X-direction are

shown in Figure 6.3. It can be seen that the contours and the deformation state of

the piezoceramic phase are very similar. The deformed shape of the pores differ

depending on the BC but it is not of interest.

Figure 6.3: Under mechanical loading in X-direction, von Mises stress distribution

in deformed shape of a) BC with pore geometry, b) PBC with pore geometry and c)

PBC without pore geometry

As seen in Table 6.1, all three results are in close agreement and there is an insignifi-

cant difference between the three. Therefore, instead of modeling pores as vacancies

in the mesh domain, we can model the pore phase with appropriate material parame-

ters.

Moreover, either DBC or PBC yields close results. Although DBC is known to be

stiffer than PBC, when the second phase is air, this is not valid anymore. If some
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Table 6.1: Comparison of pore modeling techniques for 10% pore volume fraction.

The units are in GPa, C/m2 and nF/m, respectively.

Modelling Ceff
11 Ceff

12 eeff13 eeff33 εeff33

DBC with pore geometry 91.503 53.705 -3.179 14.123 6.627

PBC with pore geometry 91.672 53.805 -3.205 14.132 6.605

PBC without pore geometry 91.635 53.756 -3.207 14.130 6.599

other materials not too soft compared to PZT-5A were used as the second phase, the

DBC result would be greater.

6.3.2 Comparison with literature data

In this section, the analyses conducted in the study of Martinez et al. [28] are re-

produced. In their study, both the numerical FEA solution and analytical Mori-Tanaka

solution are presented.

PZT-5A is used as piezoceramic, and the material properties are shown in Table 5.2.

Analyses are conducted for three different pore volume fractions 10%, 30%, and

50%. For each pore volume fraction value, effective coefficients are tabulated and

compared. These are shown in Tables 6.2, 6.3, and 6.4. The results indicate that this

study agrees with the numerical and analytical resultd of Martinez et al[28]. and the

analytical result, with a slight increase in higher pore volume fractions. εeff33 values

in the article seemed incorrect and inconsistent with the material value. In [28] the

effective εeff33 values for various pore volume ratios were found greater than the ε33 of

PZT-5A, which is not possible.

Also, the hydrostatic performance coefficients for each volume fraction are evaluated

and plotted in Figures 6.4 and 6.5. As can be seen, the difference between this study

and Martinez’s numerical study is minimal for both dh and gh. All three solutions

gave close results for dh. However, Mori-Tanaka’s solution overpredicts gh compared

to numerical methods. This might be due to the difference in εeff33 values obtained

with Mori-Tanaka’s solution.
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Table 6.2: Comparison for 10% pore volume fraction. Note that the units are in GPa,

C/m2 and nF/m, respectively.

Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

This study 91.490 53.692 52.649 82.184 -3.179 14.123 6.627

Martinez et al. [28] 90.321 52.833 51.902 81.406 -3.050 14.084 13.214**

Difference 1.3 % 1.6 % 1.4 % 1.0 % 4.2 % 0.3 % -49.8 %

Mori-Tanaka [28] 91.955 54.693 53.091 82.355 -3.099 14.168 12.517**

Difference -0.5 % -1.8 % -0.8 % -0.2 % 2.6 % -0.3 % -47.1 %

** Plotted values of εeff33 seemed incorrect and inconsistent in the paper [28].

Table 6.3: Comparison for 30% pore volume fraction. Note that the units are in GPa,

C/m2 and nF/m, respectively.

Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

This study 53.686 29.289 28.055 47.231 -0.618 10.536 5.157

Martinez et al. [28] 52.353 28.357 27.120 46.484 -0.631 10.103 9.713**

Difference 2.5 % 3.3 % 3.4 % 1.6 % -2.1 % 4.3 % -46.9 %

Mori-Tanaka [28] 55.504 30.263 27.987 47.736 -0.792 10.415 8.420**

Difference -3.3 % -3.2 % 0.2 % -1.1 % -22.0 % 1.2 % -38.7 %

** Plotted values of εeff33 seemed incorrect and inconsistent in the paper [28].

Table 6.4: Comparison for 50% pore volume fraction. Note that the units are in GPa,

C/m2 and nF/m, respectively.

Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

This study 29.697 15.569 14.801 26.188 0.302 6.607 3.463

Martinez et al. [28] 28.556 14.759 13.913 25.625 0.277 6.458 6.449**

Difference 4.0 % 5.5 % 6.4 % 2.2 % 9.0 % 2.3 % -46.3 %

Mori-Tanaka [28] 32.179 16.360 14.500 27.106 0.060 6.869 5.275**

Difference -7.7 % -4.8 % 2.1 % -3.4 % 401.2* % -3.8 % -34.4 %

∗ eeff13 values nearing zero cause large percent differences.

** Plotted values of εeff33 seemed incorrect and inconsistent in the paper [28].
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Figure 6.4: dh versus pore volume fraction
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Figure 6.5: gh versus pore volume fraction

6.3.3 Effect of Pore Shapes

In this section, the effects of pore shapes are investigated. Since the air itself is

isotropic, the shape of the pore geometry can cause anisotropy overall. As the trans-

verse isotropy must be preserved in the RVE models, air inclusions can be modeled

as perfect spheres or as ellipses and cylinders elongated along the normal direction of

the plane of isotropy.

For comparison, while keeping the pore volume fraction at 10 %, we model the pore

shape as follows:
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• Perfect sphere

• Ellipse having aspect ratio of 1.53 aligned with the Z axis (axis of isotropy)

• Cylinder aligned with the Z axis

Models with three distinct pore shapes are shown in Figure 6.6.

Figure 6.6: Cut-views of the RVEs that contain 10 % pore in the shape of a) perfect

sphere, b) ellipse aligned with Z axis c) cylinder aligned with Z axis

Table 6.5: Effective properties comparison of different pore shapes at the same vol-

ume fraction 10 %. Note that the units are in GPa, C/m2 and nF/m, respectively.

Pore Shape Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

Perfect Sphere 93.529 54.704 53.176 83.157 -3.403 14.262 6.531

Ellipse aligned with Z 89.505 51.295 52.106 85.023 -3.369 14.794 6.615

Cylinder aligned with Z 80.618 43.625 47.572 84.550 -3.416 15.344 6.702
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Figure 6.7: a) dh and b) gh versus pore shape

88



The effective coefficients are tabulated in Table 6.5, and the hydrostatic performance

coefficients are shown in Figure 6.7. It can be seen that the spherical sphere yields the

highest dh and gh values. This might be attributed to the lowest Ceff
33 value it has be-

cause Ceff
33 is known to be dominant in dh and gh calculation, and smaller Ceff

33 yields

higher dh and gh values.

6.3.4 Effect of Pore Size

In this section, the effect of pore size will be investigated. For this purpose, RVEs

having a single spherical central pore with pore fractions of 0%, 10%, 20%, and 30%

are analyzed.

Table 6.6: Effective properties of porous piezoceramics with spherical pores at vary-

ing volume fractions. Note that the units are in GPa, C/m2 and nF/m, respectively.

Pore Fraction Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

0* % 121.000 75.400 75.200 111.000 -5.400 15.800 7.349

10 % 93.529 54.704 53.176 83.157 -3.403 14.262 6.531

20 % 72.996 39.535 37.552 63.284 -2.222 12.549 5.625

30 % 56.864 28.134 26.106 48.293 -1.400 10.737 4.704

∗ (Pure PZT-5A)
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Figure 6.8: a) Ceff
11 and b) Ceff

12 versus pore volume fraction

As can be seen from Table 6.6 and Figures 6.8-6.11, more pore content means lower

effective material coefficients as expected because the material content decreases.
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33 versus pore volume fraction
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Figure 6.10: a) eeff13 and b) eeff33 versus pore volume fraction

However, as the pore volume ratio increases, hydrostatic performance coefficients dh

and gh increase, as shown in Figure 6.12, which is a beneficial result of the addition

of pores.

6.3.5 Effect of Spherical Pore Configuration

In this section, different configurations of spherical pores are investigated. While

keeping the pore volume fraction constant, the location of the spheres and/or the

number of pores are altered to see the effect of the distribution of the spherical pores.

For comparison, the following three configurations are analyzed:

• Model a: Single spherical pore at the center of the RVE
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Figure 6.11: εeff33 versus pore volume fraction
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Figure 6.12: a) dh and b) gh versus pore volume fraction

• Model b: Two spherical pores; one at the center and the other is divided into

1/8 spheres located at the corners

• Model c: Two spherical pores aligned in the axis of isotropy

Three spherical pore models are shown in Figure 6.13.

Table 6.7: Effective properties of piezoceramics with spherical pores at varying vol-

ume fractions. Note that the units are in GPa, C/m2 and nF/m, respectively.

Sphere Configuration Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

Model a 93.529 54.704 53.176 83.157 -3.403 14.262 6.531

Model b 91.503 53.705 52.649 82.184 -3.179 14.123 6.627

Model c 90.387 52.063 52.061 84.820 -3.524 14.746 6.598
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Figure 6.13: Cut-views of the RVEs that contain 10 % pore in the shape of a) single

sphere, b) two spheres, one in the middle and the other divided into 1/8 located at the

corners, and c) two spheres aligned in the axis of isotropy
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Figure 6.14: a) dh and b) gh versus spherical pore configuration

The effective coefficients are tabulated in Table 6.7, and the hydrostatic performance

coefficients are shown in Figure 6.14. It can be seen that Model a and Model b are

very close to each other, as expected. On the other hand, Model c is found to be the

worst configuration of all when hydrostatic performance coefficients are considered.

6.3.6 Effect of Cylindrical Pore Configuration

In this section, different configurations of cylindrical pores are investigated. While

keeping the pore volume fraction constant, the location and/or the number of cylinders

are altered to see the effect of the distribution of the cylindrical pores.

For comparison, the following three configurations are analyzed:
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• Model a: Single cylindrical pore at the center of the RVE

• Model b: Two cylindrical pores, one at the center and the other divided into 1/4

located at the edges

• Model c: Two cylindrical pores aligned in the axis of isotropy

Three spherical pore models are shown in Figure 6.15.

Figure 6.15: Cut-views of the RVEs that contain 10 % pore in the shape of a) a single

cylinder, b) two cylinders, one at the center and the other divided into 1/4 located at

the edges, and c) two cylinders aligned in the axis of isotropy

Table 6.8: Effective properties of piezoceramics with cylindrical pores at varying

volume fractions. Note that the units are in GPa, C/m2 and nF/m, respectively.

Cylinder Configuration Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

Model a 80.723 43.690 47.639 84.616 -3.421 15.345 6.704

Model b 80.284 45.291 48.082 85.032 -3.453 15.348 6.713

Model c 87.261 49.223 49.995 83.924 -3.548 14.890 6.559

The effective coefficients are tabulated in Table 6.8, and the hydrostatic performance

coefficients are shown in Figure 6.16. It can be seen that Model a and Model b yielded

the same result, as expected. These two configurations were also found similar in the

spherical configuration section. On the other hand, Model c is found to be the best

configuration of all when hydrostatic performance coefficients are considered. This

might be due to the low Ceff
33 and low εeff33 values.
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Figure 6.16: a) dh and b) gh versus cylindrical pore configuration

6.4 Analysis of Porous Piezocomposites

This section combines porous piezoceramics and matrix materials to get the porous

piezocomposites. To this end, the piezoelectric phase of the 1-3 piezocomposites is

substituted with porous ceramics. Homogenized properties of the porous piezoce-

ramics are inserted into the piezoelectric phase, and the porous piezocomposites are

analyzed. Finally, the effective coefficients and performance coefficients are calcu-

lated.

The studied 1-3 piezocomposite is made of cylindrical PZT-5A fiber and epoxy,

whose material properties are given in Table 5.3. In this section, a two-step ho-

mogenization method is followed. First, piezoceramics with spherical pores will be

analyzed, as shown if Figure 6.17a. The reason why the pores are taken as spheri-

cal is that the pores in piezoceramics are usually manufactured spherical in practice,

and consequently, most studies modeled the pores as spherical, too. After calculating

the complete set of homogenized material properties of porous piezoceramics, we in-

sert them into the piezoelectric fiber region of the two-phase 1-3 piezocomposite (see

Figure 6.17b) and calculate the final material properties.

In all analyses, the epoxy volume fraction was fixed at 40%. The addition of pore

causes a reduction in fiber volume fraction. Therefore, volume fractions of pore and

PZT-5A always add up to 60%.

The effective material properties of piezocomposite for varying pore volume frac-
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Figure 6.17: Cut-views of the RVE models of a) the porous piezoceramic and b) the

porous piezocomposite

tions are tabulated in Table 6.9. As expected, the addition of pore degrades the ef-

fective material properties because adding an amount of pore means removing the

same amount of piezoceramic. Some material coefficients were affected more than

the loss of the piezoceramic material. For example, increasing pore content from 0%

to 30% halved the PZT-5A content; however, material coefficients like Ceff
33 , eeff13 ,

eeff33 , and εeff33 decreased more than two times. Only mechanical coefficients, except

Ceff
33 , decreased less than two times. These observations conclude that the addition

of pore substantially affects the piezoelectric, dielectric, and axial mechanical coef-

ficient in fiber direction negatively. Therefore, there might be a limit to the addition

of pores regarding the composite requirements determined according to the operating

conditions.

Table 6.9: Effective properties of porous piezocomposites with varying pore volume

fraction and with fixed 40% epoxy content. Note that the units are in GPa, C/m2 and

nF/m, respectively.

Pore Fraction PZT-5A Fraction Ceff
11 Ceff

12 Ceff
13 Ceff

33 eeff13 eeff33 εeff33

0* % 60 % 12.480 4.975 6.785 37.993 -0.313 11.697 4.601

10 % 50 % 11.919 4.871 6.081 29.314 -0.227 8.751 3.639

20 % 40 % 11.208 4.659 5.298 22.348 -0.172 6.426 2.707

30 % 30 % 9.966 4.175 4.215 15.434 -0.113 4.232 1.813

∗ (Nonporous PZT-5A-Epoxy piezocomposite)
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Figure 6.18: a) dh and b) gh versus pore volume fraction in piezocomposite made of

PZT-5A and epoxy

After obtaining the homogenized properties, we can calculate the hydrostatic per-

formance coefficients, plotted in Figure 6.18. As can be seen, any amount of pore

increases the hydrostatic performance coefficients. These increases occur linearly

for dh but quadratically for gh. This behavior was already observed in Section 6.3

while studying porous piezoceramics. While adding 20% pore doubles dh, it in-

creases gh more than three times. At higher pore content, this difference will be

much higher. Therefore, for higher hydrostatic performance coefficients, depend-

ing on the performance coefficient requirement, some amount of pore content can be

added to the piezoelectric fiber of the piezocomposites. However, it should be noted

that higher pore content means degraded effective material coefficients for piezo-

composites. Therefore, the effective mechanical coefficients should also be checked.

Insufficient stiffness can spoil the operation of the piezocomposite, no matter how

high its hydrostatic performance coefficients are.
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CHAPTER 7

CONCLUSION

In this chapter, comments about the results will be made and the conclusions drawn

will be mentioned.

The ability of piezoelectric materials to convert energy between mechanical and elec-

trical interactions makes them useful for sensing and actuation applications. How-

ever, because of their brittleness, the need for more compliant piezoelectric structures

emerged, leading to the development of piezocomposites (or piezoelectric compos-

ites). The behavior of piezocomposites can be estimated using analytical or numerical

micromechanical approaches. In this thesis, the latter is studied.

The homogenization method is used to estimate the effective material coefficients

of the piezocomposites. In the commercial FE software program ABAQUS, a unit

cell model of a piezocomposite is created and analyzed with appropriate loading and

boundary conditions. After post-processing, the effective material coefficients and

figure of merits are calculated.

The results are compared to experimental, analytical, and numerical results from the

literature to verify the method used in this thesis. In addition, to prove the usabil-

ity and advantage of the homogenization method, a macro-scale model is created

with the effective material properties previously calculated using the homogenization

method. The macro-scale model is also analyzed with the original heterogeneous ma-

terial properties, and these two analyses yielded similar results, proving the validity

of the homogenization method.

Overall, some of the effective material coefficients were found to be very sensitive to

boundary conditions. Therefore, the appropriate application of boundary conditions is
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crucial. The ground rule is that the boundary conditions should be applied so that only

the field values (stress, strain, electric field, etc.) related to the material coefficients to

be calculated should be non-zero. For example, to calculate Ceff
11 and Ceff

12 , the unit

cell should have non-zero stress/strain values only in directions 1 and 2. Moreover,

these boundary conditions can be applied more than a single way. It is shown that

both PBC and DBC can be used depending on the loading. PBC can be used for any

load case, whereas DBC can be used only for axial loadings.

In Chapter 5, two-phase piezocomposites that consist of a piezoelectric fiber and a

non-piezoelectric compliant matrix are studied. It is found that the effective material

coefficients in the direction of the piezoelectric phase (Ceff
33 , eeff33 , and εeff33 ) increase

linearly with piezoelectric volume fraction for 1-3 piezocomposites. However, for

transverse and shear material coefficients, this behavior is nonlinear. Also, the co-

efficients Ceff
44 and eeff15 have notoriety for being the most difficult ones to verify

with other methods. In comparison plots of the different methods, Ceff
44 and eeff15 have

the biggest scatter. This is attributed to the fact that the material values involved

in these calculations have significant differences in order, and sometimes it is hard

to get a pure shear state mathematically, meaning having exact zero values at other

coefficients.

Porous piezoceramics and piezocomposites made of porous piezoceramics are in-

vestigated in Chapter 6. It is shown that although porosity decreases the effective

material coefficients, the resultant hydrostatic performance coefficients are found to

be greater than those of non-porous materials. This behavior is valid for both piezoce-

ramics and piezocomposites with porous piezoelectric fibers. Even high amounts of

porosity, such as 30% or 50%, lead to further increases in hydrostatic performance co-

efficients. Most effective material coefficients are affected more than the predictions

of simple rule of mixtures. For example, Ceff
11 decreased from 121 GPa to 93.529 GPa

with the addition of 10% porosity to a non-porous piezoceramic. It is seen that the

93.529 GPa is far less than 90% of the material property 121 GPa. On the other hand,

eeff33 and εeff33 are found in linear proportion to the material content, meaning that 20%

porosity yielded 80% of the piezoelectric phase’s material properties.

The hydrostatic performance coefficients dh and gh for both piezoceramics and piezo-
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composites with porous piezoelectric fibers always increase with porosity. These in-

creases happen linearly for dh and quadratically for gh. Large percentages of porosity

can yield very high gh values for piezocomposites. Of course, higher hydrostatic

performance coefficients may not always mean better, because, at high pore volume

fractions, the effective material coefficients decrease significantly. This might be un-

desirable for some applications that have some stiffness requirements.

Finally, the effects of pore shape and configuration are investigated. The pore volume

fraction is always kept at 10%. A single spherical, ellipsoidal, and cylindrical pore is

investigated. Both dh and gh are found to be greater for spherical pore shape, followed

by the ellipsoidal and the cylindrical pore in descending order. Finally, the effects of

different pore configurations on hydrostatic performance coefficients are studied for

spherical and cylindrical pores.
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