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ABSTRACT

DATA-DRIVEN APPROACH FOR RUBBERLIKE MATERIALS

Tufekcioglu, Murat Enis

M.S., Department of Micro and Nanotechnology

Supervisor: Assoc. Prof. Dr. Hüsnü DAL

November 2022, 80 pages

Rubberlike materials, due to their structure, can undergo very high strains during

loading and exhibit highly non-linear behavior. After the load is removed, they usu-

ally return to their pre-deformation shape, in a sense, no energy is lost during their

deformation. Due to these properties, rubberlike materials can be modeled as hyper-

elastic materials. The modeling approach of many people dealing with rubber is to

choose one of the appropriate free energy/strain energy functions developed for rub-

ber in the literature. Material parameter values of the chosen model are determined

from the parameter sets that give the best fit to the material tests. Sometimes to find

the best-fitted model, several models are checked and compared. Currently, there

are over 40 free energy functions defined in the literature and new ones are added

to them every day. Finding the best-fitted model can become a tiresome process and

data-driven material models can become very useful tools in this context. Thanks to

the general approach they offer, they can enable easy and accurate modeling for rub-

berlike materials that exhibit very different behavior characteristics according to their

chemical structure, curing process, additives, and the ambient conditions in which

they are used.

Data-driven hyperelasticity is a promising approach for the constitutive modeling of
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rubberlike materials because it enables the direct use of experimental data for the con-

struction of the stress-strain response without using any specific analytical expression

for the strain energy density function. In this thesis, distinct kinematic approaches

to the hyperelastic response of rubberlike materials are proposed based on invariant

and principal stretch based formulations given in [1]. Instead of defining a strain en-

ergy function with physically meaningful material parameters, the partial derivatives

of the strain energy density functions, which are used in stress expressions, are re-

placed with appropriate B-spline interpolations. Those B-spline interpolations have a

set of control points that are defined from various multiaxial loading scenarios such

as uniaxial tension, pure shear, and (equi)biaxial tension deformations. These control

points can also be defined as parameters of the data-driven material model. The con-

vexity requirement is also enforced through those control points to ensure a convex

and stable constitutive response.

The thesis starts with the definitions of B-splines with different degrees and different

control points and continues with the introduction of the developed B-spline algo-

rithm. In the sequel, different kinematic approaches to be adopted in data-driven

modeling are explained. The proposed data-driven models for each kinematic ap-

proach are tested and compared for different degrees and control point numbers using

Kawabata and Treloar data sets. Finally, the success of the proposed models in cap-

turing the mechanical behavior for different deformation modes and strain levels is

demonstrated by the quality of fit criteria.

Keywords: data-driven approach, hyperelastic material modeling, b-spline genera-

tion, invariant based material modeling,optimization
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ÖZ

KAUÇUK GİBİ MALZEMELER İÇİN VERİ ODAKLI YAKLAŞIM

Tufekcioglu, Murat Enis

Yüksek Lisans, Mikro ve Nanoteknoloji Bölümü

Tez Yöneticisi: Doç. Dr. Hüsnü DAL

Kasım 2022 , 80 sayfa

Kauçuk benzeri malzemeler, yapıları gereği yükleme sırasında çok yüksek gerilim-

lere maruz kalabilir ve doğrusal olmayan davranışlar sergileyebilir. Maruz kaldıkları

yükü kaldırdıktan sonra, genellikle deformasyon öncesi şekillerine geri dönebilirler,

bir anlamda deformasyonları sırasında enerji kaybı olmaz. Bu özelliklerinden dolayı

kauçuk benzeri malzemeler hiperelastik malzemeler olarak modellenebilir. Kauçuk

ile uğraşan birçok kişinin modelleme yaklaşımı, literatürde kauçuk için geliştirilmiş

uygun serbest enerji/gerinim enerjisi fonksiyonlarından birini seçmektir. Seçilen mo-

delin malzeme parametre değerleri, malzeme testlerine en iyi uyumu veren parametre

setlerinden belirlenir. Bazen en uygun modeli bulmak için birkaç model kontrol edilir

ve karşılaştırılır. Halihazırda literatürde 40’ın üzerinde tanımlı serbest enerji fonksi-

yonu bulunmaktadır ve bunlara her geçen gün yenileri eklenmektedir. En uygun mo-

deli bulmak yorucu bir süreç olabilir. Veriye dayalı malzeme modelleri bu bağlamda

çok faydalı araçlar haline gelebilir. Sundukları genel yaklaşım sayesinde kimyasal

yapıları, kürleşme süreçleri, katkı maddeleri ve kullanıldıkları ortam koşullarına göre

çok farklı davranış özellikleri sergileyen kauçuk benzeri malzemelerin kolay ve doğru

bir şekilde modellenmesini sağlarlar.
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Veriye dayalı hiperelastik modelleme, gerinim enerjisi yoğunluk fonksiyonu için her-

hangi bir özel analitik ifade kullanmadan gerilim-gerinim yanıtının oluşturulması için

deneysel verilerin doğrudan kullanımına olanak sağladığından, kauçuk benzeri mal-

zemelerin modellemesi için umut verici bir yaklaşımdır. Bu tezde, [1]’de verilen de-

ğişmezler ve asal gerilmelere dayalı formülasyonlar temel alınarak, kauçuk benzeri

malzemelerin hiperelastik yanıtına farklı kinematik yaklaşımlar önerilmiştir. Fizik-

sel olarak anlamlı malzeme parametreleriyle bir gerinim enerjisi fonksiyonu tanımla-

mak yerine, gerilim ifadelerinde kullanılan gerinim enerjisi yoğunluk fonksiyonları-

nın kısmi türevleri, uygun B-spline enterpolasyonlarıyla değiştirilmiştir. Bu B-spline

enterpolasyonları, tek eksenli çekme, saf kesme ve (eş)çift eksenli çekme gibi çeşitli

çok eksenli yükleme senaryolarından tanımlanan bir dizi kontrol noktasına sahiptir.

Bu kontrol noktaları, veriye dayalı malzeme modelinin parametreleri olarak da ta-

nımlanabilir. Aynı zamanda kararlı model yanıtını için sağlanması gereken dışbükey

gerekliliği bu kontrol noktaları aracılığıyla uygulanır.

Bu tez, farklı derecelere ve farklı kontrol noktalarına sahip B-spline’ların tanımları ile

başlar ve geliştirilen B-spline algoritmasının tanıtılmasıyla devam eder. Devamında,

veriye dayalı modellemede benimsenecek farklı kinematik yaklaşımlar açıklanmakta-

dır. Her kinematik yaklaşım için önerilen veri odaklı modeller, Kawabata ve Treloar

veri setleri kullanılarak farklı dereceler ve kontrol noktası sayıları için test edilmiş

ve karşılaştırılmıştır. Son olarak, önerilen modellerin farklı deformasyon modları ve

gerinim seviyeleri (düşük, orta ve yüksek) için mekanik davranışı yakalamadaki ba-

şarısı, uygunluk kriterlerinin kalitesi ile gösterilmektedir.

Anahtar Kelimeler: veriye dayalı yaklaşım, hiperelastik malzeme modelleme, b-spline

üretimi, değişmez tabanlı malzeme modelleme, optimizasyon
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CHAPTER 1

INTRODUCTION

The models used for rubberlike materials in the literature are divided into phenomeno-

logical and micromechanical models. Recently, data-driven modeling has been added

to these as a new modeling approach. Data-driven models have attracted attention be-

cause they easily overcome the difficulties of phenomenological and micromechan-

ical models. Data-driven modeling is also promising in terms of the variety of its

application area. This work will likely be a milestone for modeling metamaterials

or non-traditional materials that are new to the materials literature because it may be

possible to model these materials similarly. In the last decades, there are various data-

driven methods have been proposed. These methods can be classified into two main

groups; (i) model-free distance-minimizations based data-driven and (ii)model-based

data-driven methods. The study conducted here uses a model-based data-driven ap-

proach. Strain energy is said to be a function of invariants or principal stretches with-

out giving any precise formulation or definition. Instead of defining a strain energy

function, partial derivatives of the strain energy with respect to invariants, principal

stretches, or according to model parameters, which are functions of invariants and

principal stretches, are defined with B-splines. The use of the test data determines

B-splines with suitable control points. For all four kinematic approaches, model pa-

rameters have no physical meaning. Thus, models are mainly general and can be

applied to different kinds of rubber.

1.1 Motivation and Problem Definition

Rubber is a material that can be classified as hyperelastic material when the observed

strain behavior under stress is investigated. Originally latex is a white liquid from a

1



tree named Hevea brasiliensis. The processed latex from the tree can develop as

natural rubber. Rubber can also be produced synthetically. [2]

The physical properties of rubberlike materials can be defined by their very high

deformability and complete recoverability. Rubberlike materials have properties like

long chains and increased flexibility and mobility for high deformability. These long-

chained molecules should be linked together for full recoverability so that the main

structure can recover after deformation [3].

Natural rubber is a polymeric material that has a monomer named isoprene. Multi-

ple isoprene, which has a chain structure called polyisoprene. This polymer can be

hardened with sulfur and heat treatment under 140− 160◦C. This process is named

Vulcanization. The main idea behind this process is to develop links between dif-

ferent chains to increase the strength of the rubber. In literature, different model-

ing approaches and numerous models describe the material’s free energy function

for predicting rubberlike material behavior. While some approaches use principal

stretch and invariant-based mathematical models to predict the material’s stress-strain

curve, there are also micromechanically based material models that try to imitate the

chain structure of rubber with physically meaningful parameters. [1] recently listed

44 hyperelastic models from each group and compared their performances. Most

models can predict rubber behavior under certain conditions. While some give good

fits for high stretch levels, some can produce agreeable results only for the Gaus-

sian regime of deformations. Due to this diversity, choosing the appropriate model

for the rubber material and determining the best parameter set can become challeng-

ing. Hence, data-driven models have gained attention to overcome the challenges

of the phenomenological and micromechanical models. Generally, data-driven mod-

eling approaches can be classified into two main categories, see [4, 5]. These are;

(i) the model-free distance minimization approach and (ii) WYPIWYG (What-You-

Prescribed-Is-What-You-Get) approach. Model-free distance minimization was de-

veloped to bypass constitutive modeling by finding stress-strain pairs with the least

distance to experimental data. This approach was initially proposed for non-linear

truss and linear elastic materials [6] and then extended to hyperelastic materials [7]

and inelastic materials [8]. WYPIWYG approaches form a constitutive manifold di-

rectly from the experimental data. These approaches focus on building constitutive

2



relations through interpolation functions to describe the free energy function. WYPI-

WYG approach was developed based on the idea proposed in [9]. Later, WYPI-

WYG was extended to the macro-micro-macro approach by [10, 11]. Micro-macro-

micro approach is a procedure in which micromechanical behavior is obtained from a

macroscopic test without an underlying analytical model. Then computed microme-

chanical behavior is used to predict continuum behavior under any loading condition.

Invariant-based models define the free energy function in terms of Invariant prop-

erties of material deformation. Neo-Hookean [12], Yeoah [13], Gent [14], Yeoh-

Fleming [15], Mooney-Rivlin [16] [17] are well known examples can be chosen

from many. Principal stretch-based models are similar to invariant-based models,

but they define the free energy function ψ in principal stretches λ. Well-known litera-

ture examples of principal stretch based models can be listed as Valanis-Landel [18],

Ogden [19], Shariff [20] and Tube [21] models. Other than these two generic cat-

egories, some micromechanics-based models perform well compared to invariant

and principal stretch-based models. Famous micromechanics based models can list

as, Three-Chain Model [22], Eight-Chain Model(Arruda-Boyce Model) [23], Micro-

sphere Model [24], Extended Eight-Chain Model [25] [26]. There are also many other

models and categories, including Mixed Invariant and Principal Stretch Based mod-

els. For further reading, [1] is a precious source to understand and compare models

in the literature.

1.2 Proposed Methods and Models

Rubberlike materials are modeled through a strain energy density function that de-

pends on either principal stretches or invariants. Hence, the notion of material objec-

tivity and material frame indifference are a priori satisfied. In the sequel, we propose

four different data-driven approaches that depend (i) directly and (ii) indirectly on

invariants and principal stretches.

The goal is to obtain a data-driven constitutive framework that can give accurate pre-

dictions for all deformation ranges and states, such as uniaxial tension, biaxial ten-

sion, and pure shear deformations. For this purpose, only the partial derivatives of

the strain energy density functions are estimated by appropriate B-spline interpola-
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tions that eliminate any fixed form of strain energy density function. In this study,

all methods must calculate the B-Spline and its shape functions. A generic B-Spline

generation tool code is developed and implemented for all models to make it easier.

The B-spline tool can predict any curve by using any degree of shape functions and

using any number of knots within the range where the curve is defined.

1.3 Contributions and Novelties

The experimental rubber data is obtained from Treloar’s [27] experiments and Kawa-

bata’s [28] studies. Since both data have been widely used in the literature, the

method’s success can be compared easily, and results can be discussed more ade-

quately. Treloar’s data consists of uniaxial tension, pure shear, and equ-biaxial ten-

sion test data for vulcanized rubber. On the other hand, Kawabata provides a biaxial

data set. MATLAB’s Optimization Toolbox has been used to predict the best fitted

control point set. FMINCON is the function that has been used. For the cases with a

higher number of parameters which causes divergence for the solution, the number of

iterations has been increased to get physical-based results. To understand the effect

of the control point number, the quality of the fit study was conducted at the end, and

plots were obtained in terms of the number of control points and fit quality.

Although data-driven studies have significantly increased over recent years, the data-

driven approach for engineering problems, especially computational mechanics prob-

lems, needs to be shared. This rarity is because the data-driven approach may stand

far from the physics behind mechanical issues. This study considers physical rules

with constraints of optimization solutions.

1.4 The Outline of the Thesis

The thesis is organized as follows. In Chapter 1, a brief introduction to the topic has

provided. Chapter 2 focuses on the basics of continuum mechanics, gives definitions

of invariants and principal stretches, offers free energy definitions of hyperelastic ma-

terials with their related stress expressions, and shows the homogenous deformation

modes used for material characterization. Spline definition, Bézier curves, and B-

Splines are explained in chapter 3. In chapter 4 new data-driven model with four

4



different kinematic approaches is proposed. All models are structured with B splines.

Finally, chapter 5 summarizes the thesis work.
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CHAPTER 2

CONTINUUM MECHANICS BACKGROUND

This section summarizes basic concepts in continuum mechanics and introduces the

kinematics and state variables of an isotropic hyperelastic body subjected to finite de-

formations. Different formulations of the free energy function, governed by principal

stretches and invariants, are given with its stress and strain expressions.

2.1 Kinematics

An unloaded body, defined as B0 is composed of an infinite number of material

points. These points occupy geometrical positions in 3D Euclidean Space R3. Any

arbitrary point on the unloaded body can be labeled with its position vector X , and

its new position on the current state at time t by x. The loaded body is defined as B.

See Figure 2.1.

With the deformation map ϕ(X, t) we can represent a nonlinear deformation field

within time t ∈ T ⊂ R+. In this manner, the material points X ∈ B0 can be defined

on spatial points x = ϕt(X) which we can call the Eulerian(current) configuration of

a material point. Let us use TXB0 and TxB to symbolize the tangent spaces in the

Eulerian and the Lagrangian manifolds. The deformation gradient becomes;

F : TXB0 → TxB; F :=
∂ϕt(X)

∂X
(2.1)

Equation 2.1 is used to map the unit tangent of the Lagrangian configuration onto the

Eulerian configuration. After that, let T ∗
XB0 and T ∗

xB indicate the cotangent spaces

in the Lagrangian and Eulerian manifolds. Volume map det[F] is weighed by cof[F],

and we can describe a normal map per unit reference volume as;

F−T : T ∗
XB0 → T ∗

xB; n = F−TN (2.2)
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B0 B

xX

dX
dx

E1
E2

E3

e1
e2

e3

ϕt(X)∂B0 ∂B

Figure 2.1: Left-hand side is the (unloaded) reference configuration B0 with a bound-

ary description ∂B0, right-hand side is the deformed configuration B with a bound-

ary ∂B as a result of deformation ϕ.

a) b)

TXB0TXB0 TxBTxB

T ∗
XB0T ∗

XB0 T ∗
xBT ∗

xB

Tangent

space

Normal
space

LAGRANGIANLAGRANGIAN EULERIANEULERIAN

TT tt

N N nn

FF

C g
b−1

F−T F−T

G

Figure 2.2: Definition of metric tensors. a) current metric in Lagrangian configuration

C = F TgF ; b) reference metric in Eulerian configuration b−1 = F−TGF−1
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Equation 2.2 is used to map the vector N of the Lagrangian configuration onto its

counterpart n in the Eulerian configuration. In the undeformed configuration, let

dX, dA, and dV represent the infinitesimal line, area, and volume elements. Also,

the deformation gradient F , its cofactor as, cof[F] = det[F]F−T and the Jacobian

J :=det[F]>0 characterize the deformation of infinitesimal line, area, and volume ele-

ments

dx = FdX, da = cof [F]dA, dv = det[F]dV (2.3)

To ensure from non penetrable deformations ϕ, J:=det[F] >0 relations should be sat-

isfied. Also, G and current g metric tensors and respectively NX of X and Nx of

x, should furnish locally B0 and the spatial B manifolds. To map between co- and

contra-variant objects in Lagrangian and Eulerian manifolds, mentioned metric ten-

sors play a vital role. In light of these definitions, the left Cauchy Green tensor can

be written as

C = FTgF and c = F−TGF−1 (2.4)

the pull back of the current metric g and the inverse of the left Cauchy Green tensor

c = b−1 is defined as the push-forward of the Lagrangian metric G., see Figure 2.2.

2.2 Principal Stretches and Invariants

We can define an energy expression for an isotropic material governed by principal

stretches or invariants to fully establish the principle of material objectivity and ma-

terial frame indifference.

C :=
3

∑

a=1

λ2aN
a ⊗ Na and cof [C] :=

3
∑

a=1

ν2aNa ⊗ Na (2.5)

where

νi = J/λi with ν1 = λ2λ3, ν2 = λ3λ1, ν3 = λ1λ2 (2.6)

are the definition of principal areal stretches given in Figure 2.3 .

Three isotropic invariants of the right Cauchy Green tensor can be defined as

I1 := tr[C], I2 := tr[cof [C]], and I3 := det[C] (2.7)

When we compare expressions 2.3 and 2.7, we can easily conclude that these invari-

ant definitions are affiliated with volumetric, areal, and linear stretches within an
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(a) (b)

1

1

1

N1
N1

N2

N2N3 N3

λ
1

λ
1

λ2λ2

λ3λ3

ν
1

ν2

ν3

Figure 2.3: The invariants (a) Undeformed infinitesimal unit volume element (b) De-

formed element where N 1, N 2 and N 3 are the principal directions in the Lagrangian

setting. (i) I1(C) = λ21 + λ22 + λ23 as sum of squares of the principal stretches, (ii)

I2(C) = ν21 + ν22 + ν23 as sum of squares of principal areal stretches where νi = J/λi

and (iii) I3 = J2 = λ21λ
2
2λ

2
3 as square of volumetric stretch.

infinitesimally small cube which represents the material properties. The deformation

gradient F can be broken down into volumetric and unimodular parts, respectively,

F vol := J1/31 and F̄ := J−1/3F as,

F = FvolF̄ (2.8)

2.3 The Free Energy Function

Along with the multiplicative split of the deformation gradient 2.8, a special class of

materials in finite elasticity is governed by the free energy function of the form;

ψ(F ) = ψ(J) + ψ(F̄ ) (2.9)

which dates back to Flory [29]. The original proposition of Flory was in an additive

form

ψ(θ,F) = ψv(θ, J) + ψe(θ,F) (2.10)

where the first term ψ(θ, J) represents inter-molecular interactions occurring in sim-

ple liquids, and the terms of the function are the temperature θ and volume change

J . The second therm ψ(θ,F ), also has similar dependencies on the total deforma-

tion and temperature, and this term represents entropic shape changes in the material.
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So, we can say that even if it is small, the entropic effect on the volumetric response

is also included in the energy function expression. Nevertheless, it can be counted

as the standard approach in the rubber elasticity community that uses exact geomet-

rical decomposition of additive form in equation 2.9 with the deformation gradient

into unimodular and volumetric parts with multiplicative split 2.8. [30–34]. Although

within the incompressibility limit, both approaches are likely to have the same consti-

tutive conclusion, Dal’s work [35] shows that it becomes more realistic when we treat

it as slightly compressible elastomers, and this approach originated from Flory. The

compressibility of rubber can be explained before the macroscopic cracks which oc-

curred while the degradation of the material, with the small cavities, introduced while

manufacturing [36]. Furthermore, splitting perfectly geometric should be eliminated

to prevent computational cost and instantaneous Poisson’s ratio at the boundary con-

ditions. In this manner, examples of pure volumetric free energy functions are defined

in Kadapa, and Hossain’s work [37]. With the help of these examples, the main goal

of reaching boundary behaviors along convexity - quasi-incompressible behavior- and

growth requirements would achieve.

2.4 Stress Expressions

The most fundamental requirement of hyperelasticity is a free energy function defined

in two forms as written in equations 2.9 and 2.10. In general hyperelastic materials

are assumed to have no dissipation, resulting in a canonical relationship within the

energy function between Lagrangian and Eulerian stresses.

S = 2∂Cψ̂(F
TgF,X) and τ = 2∂gψ̃(g,F,X) (2.11)

In equation 2.11, S represents the second Piola–Kirchhoff, and τ represents the

Kirchhoff stresses. The τ expression is also named the Doyle–Eriksen formula of

hyperelasticity. We can relate isotropic finite elastic materials with principal stretches

or invariants with;

ψ = ψ̃(λ1, λ2, λ3) or ψ = ψ̃(I1, I2, I3) (2.12)

Which is validated by the principle of material objectivity and material frame invari-

ance.
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2.4.1 Invariant Formulations

With the help of the chain rule, the Lagrangian and Eulerian stress expression can be

represented as with the initial equation 2.122;

S = 2∂Cψ = 2

[

∂ψ

∂I1

∂I1
∂C

+
∂ψ

∂I2

∂I2
∂C

+
∂ψ

∂I3

∂I3
∂C

]

(2.13)

τ = 2∂gψ = 2

[

∂ψ

∂I1

∂I1
∂g

+
∂ψ

∂I2

∂I2
∂g

+
∂ψ

∂J

∂J

∂g

]

(2.14)

We need to define the following derivatives to move further the expressions of the

Lagrangian and Eulerian stress tensors, which are described in equations 2.13 and

2.14;

∂CI1 = 1, ∂CI2 = I11 − C, ∂CJ =
1

2
JC−1 (2.15)

The same approach is also needed from the push forward expression of 2.15 for the

spatial metric g, so,

∂gI1 = b, ∂gI2 = I1b − b2, ∂gJ =
1

2
Jg−1 (2.16)

We can insert 2.15 and 2.16 into 2.13 and 2.14. After rearrangement, we can finally

get the invariant-based stress relation solution for isotropic hyperelastic materials.

with c1 =
∂ψ

∂I1
c2 =

∂ψ

∂I2
p = −J∂Jψ (2.17)

We can merge and generalize the equations 2.13 and 2.14 within the principal direc-

tions. Note that this expression is based on principal stretches;

Si = 2(c1 + I1c2)1− 2c2λ
2
i −

1

λ2i
p

τi = 2(c1 + I1c2)λ
2
i − 2c2λ

4
i − pg−1

(2.18)

2.4.2 Principal Stretch Based Formulations

To get a principal stretch-based free energy function 2.121, the Kirchoff stress tensor

can be written as;

S =
3

∑

a=1

1

λa
βaNa ⊗ Na − pC−1

τ =
3

∑

a=1

λaβana ⊗ na − p1

(2.19)

with

β1 =
∂ψ

∂λ1
β2 =

∂ψ

∂λ2
β3 =

∂ψ

∂λ3
(2.20)
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2.4.3 Stresses Under Homogeneous Deformations

Since most of the experiments are done with a displacement-focused setup, most of

the time, only easier data taken from the experiments become the nominal stress, and

the cross-section area measurement is pretty rare. So we can define the deformation

gradients and the stress expressions as the following base expressions and definitions.

• Uniaxial Tension

• Equibiaxial Tension

• Pure Shear

• Biaxial Tension

F =









F11 0 0

0 F22 0

0 0 F33









and P =









P1 0 0

0 P2 0

0 0 P3









(2.21)

Uniaxial tension : For an incompressible hyperelastic solid, the deformation and

stress state under uniaxial tension are given in Figure 2.4 and equation 2.22.

Figure 2.4: Uniaxial tension deformation
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F =









λ 0 0

0 1√
λ

0

0 0 1√
λ









and P =









P1 0 0

0 0 0

0 0 0









(2.22)

The first two invariants under uniaxial deformation are written as;

I1 = λ2 +
2

λ
, I2 = 2λ+

1

λ2
(2.23)

The nominal stress P = FS expression under uniaxial tension deformation state for

invariant and principal stretch-based formulations read.

(UT) Invariant: P1 = 2(c1 +
c2
λ
)(λ−

1

λ2
)

(UT) Prin. stretch: P1 = β1 −
1

λ3/2
β2

(2.24)

Equibiaxial tension : For an incompressible hyperelastic solid, the deformation and

stress state under equibiaxial tension are given in Figure 2.5 and equation 2.25.

Figure 2.5: Equibiaxial tension deformation

F =









λ 0 0

0 λ 0

0 0 1
λ2









and P =









P1 0 0

0 P1 0

0 0 0









(2.25)
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The first two invariants under the equibiaxial deformation state read.

I1 = 2λ2 +
1

λ4
, I2 = λ4 +

2

λ2
. (2.26)

The nominal stress under equibiaxial tension is read for invariant and principal stretch-

based formulations.

(ET) Invariant: P1 = 2(c1 + c2λ
2)(λ−

1

λ5
)

(ET) Prin. stretch: P1 = β1 −
1

λ3
β2

(2.27)

Biaxial tension : For an incompressible hyperelastic solid, the deformation and

stress state under biaxial tension are given in Figure 2.6 and equation 2.28.

Figure 2.6: Biaxial tension deformation

F =









λ1 0 0

0 λ2 0

0 0 1
λ1λ2









and P =









P1 0 0

0 P2 0

0 0 0









(2.28)

The first two invariants under the biaxial deformation state read.

I1 = λ21 + λ22 +
1

λ21λ
2
2

, I2 = λ21λ
2
2 +

1

λ21
+

1

λ22
(2.29)

15



The nominal stress under biaxial tension is read for invariant and principal stretch-

based formulations.

(BT) Invariant: P1 = 2(c1 + c2λ
2
2)(λ1 −

1

λ31λ
2
2

)

P2 = 2(c1 + c2λ
2
1)(λ2 −

1

λ21λ
3
2

)

(BT) Prin. stretch: P1 = β1 −
β3
λ1λ22

P2 = β2 −
β3
λ21λ2

(2.30)

Pure shear : For an incompressible hyperelastic solid, the deformation and stress

state under pure shear are given in Figure 2.7 and equation 2.31.

Figure 2.7: Pure shear deformation

F =









λ 0 0

0 1 0

0 0 1
λ









and P =









P1 0 0

0 P2 0

0 0 0









(2.31)
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The first two invariants under the pure shear deformation state read.

I1 = I2 = λ2 +
1

λ2
+ 1 (2.32)

The nominal stress under pure shear for invariant and principal stretch-based formu-

lations read.

(PS) Invariant: P1 = 2(c1 + c2)(λ−
1

λ3
)

P2 = 2(c1 + c2λ
2)(1−

1

λ2
)

(PS) Prin. stretch: P1 = β1 −
β3
λ2

P2 = β2 −
β3
λ2

(2.33)
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CHAPTER 3

SPLINES

In this chapter theory behind splines and spline generation and B-splines will be ex-

plained.

3.1 Introduction

Splines are special piecewise functions that generate a polynomial. Splines are mainly

used for data interpolation or smoothing. The main idea behind splines is that instead

of representing a curve with a more significant ordered single function, it is repre-

sented with a lower ordered piecewise function set and vertices. This approach is

easier to solve.

3.2 Bézier Curve

B-Splines can be represented by with parametric equation combination of Bézier

curves. A parameter, t is used to determine the value of a point on the curve, where

0 ≤ t ≤ 1. An example of a first degree Bézier curve is given in Figure 3.1 where P0

and P1 are the control points of the Bézier curve. The parametric definition of the line

between P0 and P1 is given as;

P0 = (x0, y0), P1 = (x1, y1), and P (x, y) = P (t) = (1− t)P0 + tP1 (3.1)

with

x(t) = (1− t)x0 + tx1 y(t) = (1− t)y0 + ty1 (3.2)

19



t = 0

t = 0

t = 1/2

t = 1

t = 1

P0

P0

P (t)

P (t)

P1

P1

Figure 3.1: Example Bézier curve with 1st degree

We can list some properties of Bézier curves as;

• Parameter t represents the location of the point P (t) on the line between P0 and

P1.

• An n degree Bézier curve is defined using n+ 1 control points.

• The first and the last control points are always the endpoints of the Bézier curve.

• To define a quadratic Bézier curve as shown in Figure 3.2 three control points

P0, P1 and P2 are needed. Two line equations between P0 → P1 and P1 → P2

are given as;

Q0(t) = (1− t)P0 + tP1 Q1(t) = (1− t)P1 + tP2 (3.3)

• C(t) is a point (shown by black dots in the Figure 3.2) on the quadratic Bézier

curve that lies on the line Q0 → Q1 (blue line in the same figure)

C(t) = (1− t)Q0 + tQ1 = (1− t2)P0 + 2t(1− t)P1 + t2P2 (3.4)

• A Bézier curve is contained within its control polygon, defined as the "Convex

hull property" of a Bézier curve. For a quadratic Bézier curve, the control

polygon is shown with red lines in Figure 3.2.
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P0 P0 P0 P0

P0 P0 P0 P0

P1 P1
P1 P1

P1 P1 P1 P1

P2 P2 P2 P2

P2 P2 P2
P2

Q0 Q0
Q0

Q0
Q0

Q0

Q0

Q1 Q1 Q1

Q1 Q1
Q1 Q1

Quadratic Bézier curve

t = 0 t = 1 t = 2

t = 3 t = 4 t = 7 t = 11

Figure 3.2: Formation of Bézier curve

3.2.1 Bernstein polynomials

The binomial expansion reads

1 = (u+ (1− u)n) =
n

∑

i=0

(

n

i

)

ui(1− u)n−i. (3.5)

Bernstein polynomials with degree n can be defined as

Bn
i (u) =

(

n

i

)

ui(1− u)n−i, i = 0, ...., n (3.6)

Where n is the degree of the Bernstein polynomials and n+ 1 is the number of the

Bernstein polynomials for the corresponding segment. Properties of Bernstein poly-

nomials can be listed as; Bernstein polynomials are symmetric,

Bn
i (u) = Bn

n−i(1− u) (3.7)

Their only roots are at 0 and 1,

Bn
i (0) = Bn

n−i(1) =







1

0
for

i = 0

i > 0
(3.8)

They form a partition of unity,

n
∑

i=0

Bn
i (u) = 1, for all u ∈ R (3.9)

They are always positive,

Bn
i (u) > 0, for u ∈ (0,1) (3.10)
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Higher ordered polynomials can be calculated with the recursion formula

Bn
i + 1(u) = uBi − 1n(u) + (1− u)Bn

i (u), (3.11)

This recursion pattern can be represented as follows;

B0
0 B1

0 B2
0 ... Bn

0

B1
1 B2

1 ... Bn
1

B2
2 ... Bn

2

. . .
...

Bn
n

(3.12)

where B0
0 = 1 and any other B values that cannot be represented in this pattern are 0.

3.2.2 Bézier Representation

Every polynomial P (u) with the degree of d can be represented with a unique nth

degree Bézier representation. If and only if d ≤ n.

b(u) =
n

∑

i=0

ciB
n
i (u) (3.13)

One can also extend this representation with parameter transformation

u = a(1− t) + bt, a 6= b (3.14)

and

P (u(t)) =
n

∑

i=0

biB
n
i (t) (3.15)

The set bi is called Bézier points or, more generally, vertices of Bézier curve P(u) over

[a,b]. Bernstein polynomials are symmetric, so that we can say that.

P (u) =
n

∑

i=0

biB
n
i (t) =

n
∑

i=0

bn−iB
n
i (s) (3.16)

where

u = a(1− t) + bt = b(1− s) + as (3.17)
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This relation shows that we can define Bézier over [a,b] and [b,a] with two different

parameter orientations. For the endpoints of the Bézier curve segment P[a,b], always

b(a) = b0 and b(b) = bn (3.18)

3.3 B-Splines

Splines are piecewise curves that are differentiable up to a prescribed order. The

simplest example is a piecewise linear C0 spline, i.e., a polygonal curve. The name

splines come from elastic beams that lay out sweeping curves in ship design.

A curve C(t) is called spline of degree n with the knots t0, ..., tm where ti ≤ ti+1

B-splines are formed by joining several Bézier curves end on end. Using B-spline is

a more effective method because, for Bézier curves, the number of control points is

directly related to the degree of the curve. As done in Bézier representation, a curve

can also be represented with an affine combination of some control points as

C(t) =
∑

piN
n
i (t) (3.19)

Where N are called basis spline functions which can be calculated with the degree.

B-Splines can be defined with shape functions and vertices set. To define b-splines

with m+ 1 knots, we must divide the target cluster into m intervals. t represents any

point in the target cluster, and ti, where i is between 0 and m, represents the location

of knots. The term p represents the degree of shape functions. When p = 0 splines do

not have continuity(1), 0th order has the purpose of calculating higher orders instead

of generating a spline.

Ni,0(t) =











1 if ti ≤ t < ti+1

0 otherwise
(3.20)

Beginning from 0th order, remaining ordered basis functions(Ni,p) are calculated with

the one before (Ni,p−1) (2). For all the t values, the sum of Ni,p(tn) must be equal to

1.

Ni,p(t) =
t−ti

ti+p−ti
Ni,p−1(t) +

ti+p+1−t

ti+p+1−ti+1
Ni+1,p−1(t) (3.21)
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After the desired function gets, only the missing part becomes vertices, where Pi is

the set of vertices. The resultant curve can be defiAfter the desired function gets, only

the missing part becomes vertices, where Pi is the set of vertices. The resultant curve

can be defined as the production of vertices and shape functions.

In Figure 3.3, the region which the dashed red line indicates shows which shape

functions are used in which degree to calculate the B-Spline in the interval [t4, t5)

as an example. For the first order, N1
4 would be enough, and for the second order

B-spline projection, N2
3 and N2

4 are needed.

To compute Ni,1(t), Ni,0(t) and Ni+1,0(t) are required. Therefore, we can compute

N0,1(t), N1,1(t), N2,1(t), N3,1(t) and so on. These Ni,1(t)’s are written in the third

column. Once all Ni,1(t)’s have been computed, we can compute Ni,2(t)’s and put

them in the fourth column. This process continues until all required Ni,p(t)’s are

computed.

3.4 MATLAB Solution for B-Spline

MATLAB function that can generate shape functions in certain intervals has gener-

ated extremely parametric functions to make it more flexible and easy to use. There

are only four inputs we need to insert;

• nok(integer): Number of knots

• xin(array): Solution domain (x− axis)

• order(integer): Order of shape function

• plotcheck(logical): true(generates plots for shape functions to check them)

After defining some fundamental parameters, noel is assigned as 50. This value gen-

erates equally spaced virtual data locations between control points. The purpose of

this parameter is to increase the smoothness of shape functions when the amount

of data set is relatively low. After generating new x values, equally spaced control

point locations are collected. This location set starts with the smallest value in the

data set and ends with the greatest value. Other locations are generating uniformly

spaced inside of those points. knot_loc represents indices of knot location values,
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Figure 3.3: Triangular algorithm for calculation of knot span in the desired degree
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and knot_xin represents knot values. Note that, until this point, only the first and last

elements of the data set have been used.

As described in Figure 3.3 to not lose the continuity of the basis vectors, some control

points should be added to the right and left-hand sides. The number of control points

that should be added depends on the order of the shape function that the input asks.

So that the input set should be extended on both sides, and new control point locations

should be defined. After this definition, the database entered as input was appending

the virtual set and sorted again to get precise results. A unique function is used

to eliminate any duplication. Since knot_loc values have shifted, they need to be

updated with new values by using the search function, and this process also helps to

obtain added control points and their locations.

After perfect assignation of control points and all x values, shape functions can be

calculated using equations 3.20 and 3.21. With the help of very successful array

management of MATLAB and de Boor’s algorithm [38], the computational time is

significantly decreasing.

The final part of the code aims to extract only the needed part of the shape function so

that the extra knots and x values added to the left and right sides are extracted in the

final section. This process aims to keep consistency between input and output so that

the equation can be solved smoothly. The plot section is activated when plotcheck is

assigned as ’true’.

Figure 3.4a shows the shape functions of the first degree within the desired interval.

This figure shows the initial point of the basis function calculation and is an excellent

example of equation 3.20. For this degree, it is hard to obtain a meaningful curve,

so the 0th order can be considered as the initialization part of the B-Splines basis

functions. After this point, equation 3.21 reads and calculates the rest of the shape

functions. Dashed lines represent control point locations, and in every interval, the

number of curves with nonzero values should equal the degree of the basis function

set.

26



0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

(a) Basis functions of 1st degree

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

(b) Basis functions of 2nd degree

-10 0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U

(c) Basis functions of 3rd Degree

-20 -10 0 10 20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U

(d) Basis functions of 4th Degree

Figure 3.4: Uniform basis functions for different degrees.

With the help of MATLAB code for basis vector generation, as seen in Figure 3.4,

shape functions have been plotted for the desired order. Basis vector code is designed

to obtain the basis function with any degree and number of control points. All of

the results can be used to plot any B-Spline, but Figure 3.4a is first degree and not

practical to get a continuous spline curve, so in all plots, a minimum second degree

used. The accuracy of the curve for fitting increases with the degree also, so there

is a need for optimization to get satisfactory results with the lowest degree for the

computation time reduction.

In Figure 3.5, the transition from basis vector to B-Spline has shown. With the help

of equation 3.19, B-Splines are generated with the product of vertice set and basis

vectors; the basis vector’s degree determines the B-Spline curve’s degree. While the

degree increases, the computational cost increases; on the other hand, the curve’s

smoothness also increases. The example of smoothness can be seen in Figure 3.5a;
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with the second degree of basis functions, the curve generated became continuous

but linear. We can generalize this by saying that the nth order of basis functions can

create curves that have continuity up to its (n− 1)th derivative. We can also see that

if we increase the degree, the number of basis functions and control points that affect

the spline segment between control points also increases.

-20 0 20 40 60 80

0

0.1

0.2

0.3

0.4

0.5

-20 0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

I1

B
-s

pl
in

e

I1

B
as

is
fu

nc
ti

on

P1
P2

P3

N1
N2
N3

B-spline
Control points

(a) Shape functions Ni for

equally spaced 5 knots and 3

control points

-60 -40 -20 0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-60 -40 -20 0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

I1

B
-s

pl
in

e

I1

B
as

is
fu

nc
ti

on

P1 P2

P3

P4

N1N2
N3N4

B-spline
Control points

(b) Shape (basis) functions Ni

for equally spaced 7 knots and 4

control points

-50 0 50 100

0

0.2

0.4

0.6

0.8

1

1.2

-50 0 50 100

0

0.2

0.4

0.6

I1

B
-s

pl
in

e

I1

B
as

is
fu

nc
ti

on

P1 P2 P3

P4

P5

N1
N2
N3N4
N5

B-spline
Control points

(c) Shape functions Ni for

equally spaced 9 knots and 5

control points
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CHAPTER 4

DATA-DRIVEN MODELING OF HYPERELASTIC MATERIALS

The data-driven approach for material modeling will be discussed and explained in

this chapter. The four different kinematic models studied in this thesis are listed

below;

• invariant based model

• modified invariant based model

• principal stretch based model

• modified principal stretch based model.

4.1 Introduction

The mechanical behavior of rubberlike materials due to their highly nonlinear behav-

ior and high level of deformation strains are modeled as hyperelastic. It is not easy to

define one general potential function which works for all types of hyperelastic materi-

als. Data-driven material modeling aims to define a general data-driven model for all

types of hyperelastic materials by fitting the partial derivatives of the potential func-

tion used in stress definitions to experimental stress-strain data. Another aim here is

to imitate material behavior without losing any data. The use of spline generation and

optimization solvers are facts that make it easy to build a data-driven model.

4.2 Treloar’s Data

Treloar’s experimental rubber data is commonly used to validate models for rubber-

like materials. The data represents rubber at 20oC within a substance of 8% of sulfur.
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Figure 4.1: Treloar data

Treloar data in Figure 4.1 is taken from experiments conducted with natural rubber by

Professor Leslie Ronald George Treloar [12]. Data consists of uniaxial tension data

within the stretch range of up to 7.6, equibiaxial tension data within the range of up

to 4.97, and pure shear up to 4.45.

4.3 Constraints

We apply simple restriction rules between control points to achieve physically con-

sistent results. The stability or convexity of the model is achieved by the positive

first derivative relationship between sequential control points, or simply by forcing

the control points to be larger than the previous control point. Approximate second

and third order derivatives are also derived using the finite difference of the control

points as shown in equation 4.2. Limiting the second and third derivatives or their

numerator as given in 4.1, if necessary, can be beneficial for the smoothness of the
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solution.
constraint1 −→ ki+1 − ki > t1

constraint2 −→ ki+2 − ki+1 + ki > t2

constraint3 −→ ki+3 − 3ki+2 + 3ki+1 − ki > t3

(4.1)

In Amores’ [10] [11] the employed equations for the stability and smoothness are

given in equation 4.2

D
(1)
j =

Pj+1 − Pj
h

D
(2)
j =

Pj+2 − 2Pj+1 + Pj
h2

D
(3)
j =

Pj+3 − 3Pj+2 + 3Pj+1 − Pj
h3

(4.2)

where h is the knot span or segment size of the B-spline. Here example of D matrices

for a data-driven model with two sets of 5 vertices is given. Even though there are

two sets of vertices for each partial derivative term of the model each constraint can

be written in a single matrix for all the vertices.

D
(1)
j =

1

h





































−1 1 0 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0

0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 −1 1





































(4.3)

D
(2)
j =

1

h2



























1 −2 1 0 0 0 0 0 0 0

0 1 −2 1 0 0 0 0 0 0

0 0 1 −2 1 0 0 0 0 0

0 0 0 0 0 1 −2 1 0 0

0 0 0 0 0 0 1 −2 1 0

0 0 0 0 0 0 0 1 −2 1



























(4.4)

D
(3)
j =

1

h3















−1 3 −3 1 0 0 0 0 0 0

0 −1 3 −3 1 0 0 0 0 0

0 0 0 0 0 −1 3 −3 1 0

0 0 0 0 0 0 −1 3 −3 1















(4.5)

31



Since the need is inequality about them and increasing the effect of constraints may

lower the Quality of Fit, the first and second constraints only need to be positive so

that the term h vanishes for the first and second Invariant.

4.4 Error Calculation

There are more than 40 hyperelastic models for rubberlike materials in the literature,

and some fit well where stretch levels are really low, some fit well only for the Gaus-

sian region, and some work well in the non-Gaussian region shown in Figure 4.2. To

evaluate the performance of hyperelastic models, Dal [39] proposes the 4.6 equation,

called quality of fit.

χ2 =
(P11(λi)− P11,exp(λi))

2

P11,exp(λi)
(4.6)

Here, the same formula is used to compare the performance of the proposed data-

driven models for all regions.

Figure 4.2: Regions of stretch data (Retrieved from [39])

In the below tables which show errors, region 1 corresponds low range, region 2

corresponds low and mid-range, and region 3 corresponds complete range of the data

which are shown in Figure 4.2.
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4.5 Invariant Based Data-Driven Model

In this model, without giving any definition for the free energy function, ψ = ψ̄(I1, I2, I3)

is assumed to be in invariant basis form and the Lagrangian and Euler stresses are de-

fined by the application of the chain rule. Since it is assumed to be no volume change

during deformation only the partial derivatives with respect to I1 and I2 are replaced

with B-spline definitions.

4.5.1 Methodology

First of all the stretches and the stresses under homogenous deformations are given

for uniaxial tension, equibiaxial tension, and pure shear. Experiments are usually

done with the displacement-based setup, and cross-sectional area changes are not

taken into account, the stretches and nominal stresses obtained from these tests are

the experimental inputs of the data-driven model.

F =









λ 0 0

0 1√
λ

0

0 0 1√
λ









and P =









P1 0 0

0 0 0

0 0 0









(4.7)

for equibiaxial tension;

F =









λ 0 0

0 λ 0

0 0 1
λ2









and P =









P1 0 0

0 P1 0

0 0 0









(4.8)

for pure shear;

F =









λ 0 0

0 1 0

0 0 1
λ









and P =









P1 0 0

0 P2 0

0 0 0









(4.9)

This can lead us to the left Cauchy-Green deformation tensor with relation;

B = FFT (4.10)
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And with the left Cauchy-Green deformation tensor we can calculate the invariants

as;

I1 := tr(B) = Bii = λ21 + λ22 + λ23

I2 :=
1

2
[(trB)2 − tr(B2)] =

1

2
(B2

ii −BjkBkj) = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1

I3 := detB = J2 = λ21λ
2
2λ

2
3

(4.11)

The Eulerian stress is defined by the application of the chain rule is given as:

τ = 2∂gψ = 2

[

∂ψ

∂I1

∂I1
∂g

+
∂ψ

∂I2

∂I2
∂g

+
∂ψ

∂J

∂J

∂g

]

(4.12)

τ is the Kirchhoff stress. Substituting the derivatives with respect to spatial metric g,

given in detail in [39], and rearranging the equation gives

τ = 2(c1 + I1c2) b − 2c2b
2 − pg−1 (4.13)

with c1 =
∂ψ

∂I1
c2 =

∂ψ

∂I2
p = −J∂Jψ (4.14)

In the equation 4.13, I1, I2, and λi are already known from stretch values in the

experimental data. c1 and c2 will be replaced with the B-spline definitions given in

equation 4.15.

c1 = N1p1 and c2 = N2p2 (4.15)

N1 and N2 are the basis functions, p1 and p2 are representing their vertice sets respec-

tively. So equation leads

τi = 2(N1(λi)p1 + I1(λi)N2(λi)p2)λ
2
i − 2N2(λi)p2λ

4
i − p (4.16)

with at a given λi calculated I1 and I2

N1p1 = [N1(I1) · · · Nn(I1)]









P̂I11
...

P̂I1n
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c2 = [N1(I2) · · · Nm(I2)]









P̂I21
...

P̂I2m









where n, m are the number of B-spline control points with prescribed x values I11,

· · · , I1n and I21, · · · , I2m whose limits are determined from the available ranges in

the tests.

The transition from Kirchhoff stress to the first Piola-Kirchhoff stress (nominal stress)

can be calculated as

P = τF−1 (4.17)

We can derive an error relation from the above relation and observe the final relation

to solving.

E =
1

ndata

∑

(P − Pexp)
2 (4.18)

To get final stress values, the only thing we should do to solve the E equation for

the p1 set and p2 set is to minimize the error. This can be done in many ways, but

this problem is solved with Nonlinear Optimization tools in this thesis. On the other

hand, since this is an optimization problem, there should be some constraints to get a

physically consistent model.

4.5.2 Results for Invariant Based Approach

The Treloar and Kawabata datasets are used to validate and evaluate the performance

of the proposed model.
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4.5.2.1 Simultaneous Fit Result to Treloar Data
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Figure 4.3: Invariant based approach: Treloar data

The invariant based model is fit to Treloar data simultaneously as shown in Figure 4.3.

In this fit, all experiments are simultaneously included in the optimization problem;

also weights of all data are included in this optimization problem. Values of the

weight distribution can be seen in Table 4.2.

Table 4.1: Invariant based approach: Vertices fitted to Treloar data

c1 c2

p1 0.162854 0.002655

p2 0.163004 0.002752

p3 0.163019 0.002758

p4 0.163047 0.002759

p5 0.207318 0.002760

p6 0.298758 0.002760

p7 0.428004 0.002762

p8 1.681677 0.002781
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Figure 4.4: Derivatives of energy function with respect to invariants

In Table 4.1, vertice values calculated through optimization have been shown. The

optimized values also obey the stability constraint rules given in equation 4.2. The

invariant based derivative values c1 and c2, calculated with optimized vertice set and

basis function, have been plotted in Figure 4.4a and Figure 4.4b respectively. Deriva-

tives must be greater than zero because of the model stability requirement. Figure

4.4a and Figure 4.4b show that the proposed model satisfies this requirement.

Table 4.2: Invariant based approach: Weights fitted to Treloar data

wut wet wps

weights 0.20 0.20 0.60

Table 4.3: Invariant based approach: QOF values for Treloar data

Region 1 Region 2 Region 3

UT 0.0211 0.0525 0.0631

ET 0.0577 0.1393 0.1502

PS 0.0312 0.0375 0.0409

ALL 0.1101 0.2294 0.2543

The quality of fits for all regions is shown in Table 4.3 for all three experiments, and
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the cumulative results of all experiments are also shown. Although the fit qualities

are quite good for all regions, the best fit is obtained in Region 1 due to the different

trends of equibiaxial and uniaxial tension tests in medium and high-strain regions.
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Figure 4.5: Invariant based model predictions for Kawabata data from data points

obtained from Treloar data

In Figure 4.5, the same simultaneous fitted vertice set is used to plot Kawabata exper-

iment data for biaxial tension to see the model’s performance within similar but not

exact physical conditions.

4.5.2.2 Biaxial Fits to Kawabata Data

Validation is important for proposed models and their application methods, here the

same method is applied to the Kawabata data set. All fits are done with the same

number of control points and degrees with the Treloar data fits to compare the perfor-

mance easily. Fitted results can be seen in Figure 4.6.
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Figure 4.6: Invariant based model predictions for Kawabata data

Table 4.4: Invariant based approach: Vertices fitted to Kawabata data

c1 c2

p1 0.318096 0.093595

p2 0.154592 0.014285

p3 0.142211 0.010597

p4 0.131771 0.007458

p5 0.128147 0.007288

p6 0.114500 0.005725

The proposed model gives quite nice fits for all Kawabata tests in different stretch

levels. The vertice sets of the Kawabata fit are given in Table 4.4. These vertices

were also tried for Treloar data fits just to see their performance for higher stretch

levels. Since the stretch range of Kawabata data is much smaller than that of Treloar

data, model success is not good for stretch values greater than 3, see Figure 4.7.
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Figure 4.7: Invariant based model predictions for Treloar data with vertice points

obtained from Kawabata data

4.6 Modified Invariant Based Data-Driven Model

As an alternative to the direct use of the first two invariants, here the B-spline interpo-

lation is employed for two macro-kinematic variables which are functions of the first

and second invariants.

4.6.1 Methodology

The methodology is pretty similar to the invariant based approach. The only differ-

ence is, instead of I1 and I2, the model uses two other macro kinematic variables,

namely the longitudinal stretch λch and the areal stretch νch, which are defined by

reference to [35]. The longitudinal stretch λch and the areal stretch νch are related to

I1 and I2 and they are defined as;

λch =

√

I1
3

and νch =
3

√

I2
3

. (4.19)

B-spline interpolation is employed for the partial derivatives of free energy function
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with respect to these macro-kinematic variables. Thus, the derivatives of the free

energy function with respect to the invariants are given as;

c1 =
∂ψ

∂I1
=

∂ψ

∂λchn

∂λchn

∂I1
(4.20)

c2 =
∂ψ

∂I2
=

∂ψ

∂νchn

∂νchn

∂I2
(4.21)

where

∂λchn

∂I1
=

1

6

1

λ2chn

,
∂νchn

∂I2
=

1

9

1

ν2chn

. (4.22)

Finally, the derivatives of the free energy function with respect to λchn and νchn are

estimated by B-spline interpolations.

ĉ1 =
∂ψ

∂λchn
= [N1(λchn) · · · Nn(λchn)]









P̂λchn1

...

P̂λchnn









ĉ2 =
∂ψ

∂νchn
= [N1(νchn) · · · Nn(νchn)]









P̂νchn1

...

P̂νchnn









The rest of the calculations are the same as the invariant based model.

4.6.2 Results for Modified Invariant Based Approach

The performance of the proposed modified invariant based approach is assessed by

fits to Treloar and Kawabata data sets.

4.6.2.1 Treloar Based Simultaneous Fit Results

The modified invariant based model is used to fit Treloar data simultaneously as

shown in Figure 4.8. In this fit, all experiments are simultaneously included in the

optimization problem; also weights of all data are included in this optimization prob-

lem. Values of the weight distribution can be seen in Table 4.6.
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Figure 4.8: Modified invariant based approach: Treloar data

Table 4.5: Modified invariant based approach: Vertices fitted to Treloar data

ĉ1 ĉ2

p1 0.479793 0.200090

p2 0.727134 0.396911

p3 1.064566 0.426831

p4 1.980226 0.443884

p5 2.979472 0.487106

p6 6.055671 0.519046

p7 10.76522 0.544376

p8 70.22761 0.908433

Table 4.5 gives the values of the vertice sets calculated through optimization. The

optimized values also obey the stability constraint rules shown in equation set 4.2.

The partial derivative values ĉ1 and ĉ2 with respect to modified invariants, calculated

with optimized vertice sets are given in Figure 4.9a and 4.9b. The figures show that
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the effect of longitudinal stretches increases as the stretch increases, but the effect of

areal stretches decreases.
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Figure 4.9: Derivatives of energy function with respect to modified invariants

The quality of fits for all regions are shown in Table 4.7 and cumulative results of

all experiments are also shown in the same table. Compared to the invariant based

approach fits are much better in all regions. This improvement in the fit is thought to

be due to a better estimation of the I2 effect in the modified invariant approach.

Table 4.6: Modified invariant based approach: Weights fitted to Treloar data

wut wet wps

weights 0.20 0.20 0.60
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Figure 4.10: Modified invariant based model predictions for Kawabata data from data

points obtained from Treloar data

In Figure 4.10, the vertices used in simultaneous fits to Treloar data are employed

to estimate the Kawabata data to see the model’s performance within similar but not

exact physical conditions. The result is much better than the invariant based approach.

Table 4.7: Modified invariant based approach: QOF values for Treloar data

Region 1 Region 2 Region 3

UT 0.0023 0.0026 0.0151

ET 0.0146 0.0153 0.0158

PS 0.0071 0.0074 0.0076

ALL 0.0242 0.0255 0.0386
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4.6.2.2 Kawabata Based Biaxial Fit Results

The modified invariant based model is also validated with Kawabata data. Again all

fits are done with the same number of control points and degrees with the Treloar

data fits to make it easy to compare. Fitted results can be seen in Figure 4.11 and the

vertice sets are given in Table 4.8.
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Figure 4.11: Modified invariant based model predictions for Kawabata data

As seen in Figure 4.11 proposed modified invariant model predicts very successfully

all Kawabata tests in all stretch levels.

Treloar fit performance is also checked by using the same vertice sets used in Kawa-

bata fits, see Figure 4.12. Since the stretch range of Kawabata data is less than Treloar

data, model prediction is not that successful in the non-Gaussian regions.
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Figure 4.12: Modified invariant based model predictions for Treloar data from vertice

points obtained from Kawabata data

Table 4.8: Modified Invariant based approach: Vertices fitted to Kawabata data

ĉ1 ĉ2

p1 0.650509 0.309980

p2 0.984426 0.327047

p3 1.329832 0.384145

p4 1.653477 0.498076

p5 1.898696 0.575534

p6 2.321614 0.861077

4.7 Principal Stretch Based Approach

In this section without giving any definition for the free energy function, ψ = ψ̄(λ1, λ2, λ3)

is assumed to be in principal stretch basis form and the Lagrangian and Euler stresses

are defined by partial derivatives of free energy with respect to principal stretches.
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4.7.1 Methodology

The strain energy function is defined as a function of principal stretchesψ = ψ̃(λ1, λ2, λ3).

Stress expressions for the principal stretch based approach are written as;

S =
∑3

a=1
1
λa
βaN a ⊗N a − pC−1

τ =
∑3

a=1 λa βana ⊗na − p1.

(4.23)

where βa =
∂ψ
∂λa

with a=1,2,3 and replaced by B-spline

βa =
∂ψ

∂λa
= [N1(λa) · · · Nn(λa)]









P̂1

...

P̂n









4.7.2 Results for Principal Stretch Based Approach

The Treloar and Kawabata datasets are used to validate and evaluate the performance

of the proposed model.

4.7.2.1 Treloar Based Simultaneous Fit Results

The simultaneous fit results of the principal stretch based approach to the Treloar data

set are given in Figure 4.13. In this fit, all experiments are simultaneously included

in the optimization problem; also weights of all data are included in this optimization

problem. Values of the weight distribution can be seen in Table 4.10. Since rubber

is assumed to be symmetric, there is only one set of vertices that are used for the

prediction of the partial derivatives with respect to all principal stretches.
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Figure 4.13: Principal stretch based approach: Predictions for the Treloar data

Table 4.9: Principal stretch-based approach: Vertices fitted to Treloar data

p1 0.108146

p2 0.108468

p3 1.371108

p4 2.540026

p5 22.53062

Table 4.10: Principal stretch-based approach: Weights fitted to Treloar data

wut wet wps

weights 0.20 0.20 0.60

As seen in Figure 4.13 and in Table 4.11 model fits only for the regions of the curve

before getting stiffer, for all three test curves. It can be said that the model only works

for some parts of the Gaussian region. It has no ability to predict the non-Gaussian
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region.

Table 4.11: Principal stretch-based approach: QOF values for Treloar data

Region 1 Region 2 Region 3

UT 0.7765 5.2585 7.6215

ET 0.0048 0.8222 38.806

PS 0.0016 0.7970 2.8705

ALL 0.7831 6.8777 49.298

In Table 4.9, values calculated through optimization have been shown. The optimized

values also obey the stability constraint rules shown in 4.2. In Figure 4.14, the vertices

used in simultaneous fits to Treloar data are also employed to estimate the Kawabata

data to see the model’s performance within similar but not exact physical conditions.

Fits are good only for stretch values less than 1.2.

0.9 0.95 1 1.05 1.1 1.15 1.2

0

0.05

0.1

0.15

0.2

0.25

0.8 0.9 1 1.1 1.2 1.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 1.5 2

0

0.2

0.4

0.6

0.8

1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

λ1e = 1.04
λ1e = 1.06
λ1e = 1.08
λ1e = 1.10
λ1f = 1.04
λ1f = 1.06
λ1f = 1.08
λ1f = 1.10

λ1e = 1.12
λ1e = 1.14
λ1e = 1.16
λ1e = 1.20
λ1f = 1.12
λ1f = 1.14
λ1f = 1.16
λ1f = 1.20

λ1e = 1.24
λ1e = 1.30
λ1e = 1.60
λ1e = 1.90
λ1f = 1.24
λ1f = 1.30
λ1f = 1.60
λ1f = 1.90

λ1e = 2.20
λ1e = 2.50
λ1e = 2.80
λ1e = 3.10
λ1f = 2.20
λ1f = 2.50
λ1f = 2.80
λ1f = 3.10

λ2λ2

λ2λ2

P
2
2

[M
P

a]

P
2
2

[M
P

a]

P
2
2

[M
P

a]

P
2
2

[M
P

a]

Biaxial fit (λ1 : 1.04− 1.10) Biaxial fit (λ1 : 1.12− 1.20)

Biaxial fit (λ1 : 1.24− 1.90) Biaxial fit (λ1 : 2.20− 3.10)

Figure 4.14: Principal stretch based model predictions for Treloar data
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4.7.2.2 Kawabata Based Biaxial Fit Results

The performance of the principal stretch based model is evaluated also with Kawabata

data. Here the model does not perform well with the same number of vertices used

for Treloar data fits, so the vertice number is increased to twelve. Fitted results can

be seen in Figure 4.15. Even though the vertice number is increased, the model could

not fit well for all the Kawabata tests.
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Figure 4.15: Principal stretch based model predictions for Kawabata data

Table 4.12: Principal stretch-based approach: Vertices fitted to Kawabata data

p1 0.007309 p7 0.873982

p2 0.770354 p8 0.945474

p3 0.796691 p9 1.026919

p4 0.796988 p10 1.123305

p5 0.797273 p11 1.225094

p6 0.804144 p12 1.358111
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4.8 Modified Principal Stretch Based Approach(Ogden-like Approach)

Similar to principal stretch based approach the free energy function is assumed to be

function of principal stretches.

4.8.1 Methodology

As done in the previous principal stretch based approach, stress tensor can be defined

as;

S =
3

∑

a=1

1

λa
βaNa ⊗ Na − pC−1

τ =
3

∑

a=1

λaβana ⊗ na − p1

(4.24)

with

β1 =
∂ψ

∂λ1
β2 =

∂ψ

∂λ2
β3 =

∂ψ

∂λ3
(4.25)

where βa =
∂ψ
∂λa

with a=1,2,3 and replaced by B-spline

βa =
∂ψ

∂λa
= [N1,1(λa) · · · N1,n(λa)]









P̂1

...

P̂n









(4.26)

Since the principal stretch based model is not performing well, additional terms are

needed the increase its performance. This operation is a pretty similar process as in

Ogden’s model [19] this method can be considered as an Ogden-like model. We can

redefine τ expression as;

τ =
3

∑

a=1

(λaβana ⊗ na + λa
∂ψ

∂νa

∂νa
∂λa

na ⊗ na)− p1 (4.27)

where

νa =
1

λa
,

∂νa
∂λa

= −
1

λ2a
(4.28)

reads

τ =
3

∑

a=1

(λaβana ⊗ na −
1

λa
γa(νa)na ⊗ na)− p1 (4.29)

γa =
∂ψ

∂νa
= [N2,1(λa) · · · N2,n(λa)]









P̂1

...

P̂n









(4.30)
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4.8.2 Results for Modified Principal Stretch Based Approach

Treloar and Kawabata data sets are employed to evaluate the performance of the mod-

ified principal stretch based approach.

4.8.2.1 Treloar Based Simultaneous Fit Results

The simultaneous model predictions of modified principal stretch based approach for

Treloar data is shown in Figure 4.16. In this fit, all experiments are simultaneously

included in the optimization problem; also weights of all data are included in this

optimization problem. Values of the weight distribution can be seen in Table 4.15.

The additional term has given the model flexibility to fit the test data in the non-

Gaussian region.
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Figure 4.16: Modified principal stretch based approach fitted to Treloar data simulta-

neously

In Table 4.13, control point values calculated through optimization are shown. The

optimized values also obey the stability constraint rules shown in 4.2.
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Table 4.13: Modified principal stretch based approach: Vertices fitted to Treloar data

ĉ1 ĉ2

p1 0.084193 0.033827

p2 0.530532 0.068994

p3 0.536627 0.074366

p4 0.865464 0.078333

p5 1.420563 0.124170

p6 2.971365 0.184306

p7 6.160343 0.254215

p8 46.46855 0.420333

By using the same vertices, model performance is check also for the Kawabata tests,

see Figure 4.17. It is seen that the vertices found from Trealor fit works also quite

nicely for the Kawabata data except for the tests with greater than λ1 = 2.5.

Table 4.14: Modified principal stretch based approach: QOF values for Treloar data

Region 1 Region 2 Region 3

UT 0.0050 0.0059 0.0218

ET 0.0182 0.0192 0.0198

PS 0.0087 0.0088 0.0092

ALL 0.0320 0.0340 0.0509
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Figure 4.17: Modified Principal stretch based model predictions (Kawabata

data/Treloar Fit results)

Table 4.15: Modified principal stretch-based approach: Weights fitted to Treloar data

wut wet wps

weights 0.20 0.20 0.60

4.8.2.2 Kawabata Based Biaxial Fit Results

The modified principal stretch based model is also validated with Kawabata data. All

fits are done with the same number of control points and degrees with the Treloar data

fit to make it easy to compare Fitted results can be seen in Figure 4.18, and the vertice

sets are given in Table 4.16
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Figure 4.18: Modified Principal stretch based model predictions (Kawabata

data/Kawabata fit results)

Table 4.16: Modified principal stretch based approach: Vertices fitted to Treloar data

ĉ1 ĉ2

p1 0.023130 0.002882

p2 0.043360 0.005845

p3 0.583708 0.007009

p4 0.656359 0.033689

p5 0.825263 0.057258

p6 1.044102 0.059039

p7 1.184615 0.072957

p8 5.973244 0.148117

Using vertice sets of Kawabata fit, model performance is also checked for the Treloar

data, see Figure 4.19. Since the stretch range of Kawabata data is less than Treloar,
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model success is not good where λ > 2.5.
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Figure 4.19: Modified principal stretch based model predictions for Treloar data from

vertice points obtained from Kawabata data

4.9 Effect of Stability Constraint

As defined in 4.1, constraints are needed to obtain meaningful results and to focus

on physical meaning while generating data-driven models. Constraints decrease the

solution interval of the models and sometimes complicate the fitting but also provide

physically consistent models. As shown in Figure 4.20a and 4.20b, constraints add

smoothness to the model results.
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Figure 4.20: Derivatives of energy function with respect to stretch values

As given in Table 4.17 the model’s performance is decreasing with constraints as

expected, but physically reliable method generation is the primary goal of the models.

Table 4.17: Principal stretch-based approach: Weights fitted to Treloar data

With constraint Without constraint

Error 0.050915 0.048052

In this thesis, four different data-driven model approaches are mentioned, and three

of them give satisfactory results in the interval where the model has input test data.

B-Spline functions in all approaches are generated only for existing ranges in tests.

Since B-Spline is not generated beyond these limits, the model does not perform well

beyond limits. This can be easily seen in Figures 4.7, 4.12, and 4.19 where the Treloar

fits are performed with the vertices of Kawabata fits. The uniaxial tension test has a

stretch range between 1− 7.6, and the biaxial tension test has a stretch range for λ1

between 1.04− 3.1. When vertices from simultaneous fits of Treloar data are used for

Kawabata fits, BE fits are not perfect but not very far away from the exact behavior

of the material, see Figures 4.5, 4.10 and 4.17. On the other hand, BE fit results are

not working correctly with Treloar data since the data limit is out of range.
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4.10 Effect of Vertice Number

In order to see the effect of the control point (vertice) number on the quality of fit,

an additional study is conducted by using the modified invariant based approach. It

is expected that as the vertice number increases, the accuracy of the fit should also

increase. However, the main purpose of the study is to determine an appropriate num-

ber for the vertices that should be used in the model. For this study, only the Treloar

data sets are employed, and the quality of fits are determined from the simultaneous

fits to Treloar data.

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure 4.21: Vertice number effect for modified invariant based approach

Figure 4.21 shows the effect of vertice number on the quality of fit for 3 different

regions. The effect of vertice number is much greater in the first region, for the other

two regions fit quality changes significantly at the beginning but later remains almost

constant as the vertice number increases. If we compare the effect of knot number

in the case of I1 and I2, we can say that I1 is the main invariant that has the bigger
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effect on the response of the material. Thus, increasing the vertice number of the B-

spline responsible for I1 affects the quality of fit more. On the other hand, the effect

of I2 can be seen in region one since area change has more effect for smaller stretch

values, as the material elongates the chains in the rubber get aligned. Then, in higher

stretches area change becomes less important compared to chain elongations.

4.11 Effect of Degree of Polynomial

Another study was conducted to observe and validate the effect of basis function

degree (or B-spline order) on the quality of fit. The vertice number is fixed to 20 and

the order of the B-spline is increased. The study is done for the modified invariant

based approach.

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure 4.22: Degree effect for modified invariant based approach

As shown in Figure 4.22 except region 1, for the other two regions increasing the

degree of the basis function has nearly no effect on the quality of fit criteria. If we are
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using enough vertices, there is no need to use higher degree basis functions, we can

say that degree 2 may be sufficient.
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CHAPTER 5

CONCLUSIONS

In this study, four data-driven models for rubberlike materials have been proposed,

and a generalized parametric spline generation tool has been developed. The perfor-

mance of all models has been observed, and the ways to increase their performance

has investigated.

Two of the models are assumed to have free energy functions that are functions of the

material invariants, and the other two approaches are assumed to be based on principal

stretches. However, the common point for all proposed models is to create a model

with the help of partial derivatives of the free energy function without defining the

free energy function itself. The main idea of this work was not to be forced to define

any free energy function and to be able to define a general data-driven hyperelastic

model which can be used for all rubberlike materials. When the performances of

these four different approaches are compared, we can say that modified invariant and

modified stretch based models are the two best approaches, followed by invariant

based and stretch based models, respectively. We can first examine the modified

invariant-based approach to understand the reason for this. Unlike the invariant based

approach, we can see that the effects of longitudinal elongation and areal changes are

reflected much more realistically in the modified invariant based approach. When the

derivative functions of the model are examined, it is seen that the effect of I2 decreases

gradually when high stretch levels are reached, as expected, but the same cannot be

said for the invariant based approach. For the case of the modified principal stretch

based approach, the term νa =
1
λa

, which was later added to the model, both increased

the flexibility of the model and, in a sense, enabled the model to take into account the

effects of surface area changes that are perpendicular to the direction of the principal
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stretch as shown in Figure 2.3. While the modified stretch-based approach has very

impressive results, the modified invariant-based approach gives slightly better results

with our optimization method. If another optimization method had been used, perhaps

the opposite would have happened.

Additionally, the effect of control points and basis function degrees is investigated for

all models. Since the test data is not very complex, B-spline curves of lower order

can also solve the problem with very similar performance compared to higher order

ones. On the other hand, the effect of the number of control points is more significant,

but we can say that by observation, the user does not have to increase the number of

the control points too much to get a satisfactory result. This process can be optimized

by a residual approach to understanding how things work. If the outcome doesn’t

change, there is no need to use too many control points.

Three of the models give satisfactory results in the interval where the model has input

test data. B-Spline functions in all approaches are generated only for existing ranges

in tests. Since B-Spline is not generated beyond these limits, the model does not

perform well beyond limits. This can be easily seen in Figures 4.7, 4.12, and 4.19,

where the Treloar fits are performed with the vertices of Kawabata fits. The uniaxial

tension test has a stretch range between 1− 7.6, and the biaxial tension test has a

stretch range for λ1 between 1.04 − 3.1. When vertices from simultaneous fits of

Treloar data are used for Kawabata fits, BE fits are not perfect but not very far away

from the exact behavior of the material, see Figures 4.5, 4.10 and 4.17. On the other

hand, BE fit results are not working correctly with Treloar data since the data limit

is out of range. A basic extrapolation algorithm should be added for the out-of-range

predictions to avoid this for future FE implementations of the method.

In the literature, numerous models were proposed to get a constitutive response for

rubberlike materials. These models are also based on some optimization of parame-

ters defined by the model owner. However, most of them have the more likely physical

definition. By this approach, the data-driven model has more fundamental physics, so

the model can be extended and might have more common future applications. Since

the basisvector tool is generalized and parameterized, it might be used in the near

future for any academic or industrial study.
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As a solver from MATLAB’s Optimization Toolbox, FMINCON was selected. FMIN-

CON requests the initial optimization point to calculate the results. These initial

points can be assigned with a genetic algorithm. However, the problem is that the

genetic algorithm is giving better results with fewer parameters. Since, with a data-

driven model, we need to solve equations for more than five parameters and be con-

strained with physical meanings, a genetic solver is not a good choice for this method.

Throughout the study, physical consistency is always considered in order to maintain

repeatability. Mathematical constraints support this consistency in the optimization

solver FMINCON by MATLAB. Linear inequality constraints are applied to get a

more accessible and accurate result.

With only a single tool, four different models have been introduced at the first ap-

proach, the number of approaches will increase soon, and the data-driven approach

will help to get more successful computations for engineering problems with less

effort.

The results of the study are auspicious. For future work, results can be run in finite

element solvers to investigate the validation of the approach on the structural level.

On the other hand, extrapolation studies and different material investigations can be

conducted. A data-driven model can be applied to any data that is hard to solve or

needs to be optimized.
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APPENDIX A

MATLAB CODE FOR B-SPLINE

• nok(integer) : Number of knots

• xin(array) : Solution domain (x− axis)

• order(integer): Order of shape function

• plotcheck(logical): true(generates plots for shape functions to check them)

1 function [N,del,xinkg,knotxinoriginal,Nfull,xfull,knotfull]=...

2 basisvector(nok,xin,order,plotcheck)

3 Defining

4 format longE

5 tol=eps(10000);

6 noel=50;

7 nok=nok 1;

8 xinkf=linspace(xin(1),xin (end),nok noel+1);

9 knotloc=zeros(floor(length(xinkf)/noel)+1,1);

10 for i=1:length(knotloc)

11 knotloc(i)=1+noel ( i 1);

12 end

13 knotxin=zeros(length(knotloc),1);

14 for i=1:length(knotloc)

15 knotxin(i)=xinkf(knotloc(i));

16 end

17 knotxinoriginal=knotxin;

18 Data adjustment

19 del=knotxin(2) knotxin(1);

20 xink=linspace(xin(1) del order,xin (end)+del order,((nok+2 order) noel+1));

21 for i=1:length(xink)
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22 for j=1:length(xin)

23 if abs(xink(i) xin(j)) tol

24 xink(i)=xin(j);

25 end

26 end

27 end

28 knotloc=zeros(floor(length(xink)/noel)+1,1);

29 for i=1:length(knotloc)

30 knotloc(i)=1+noel ( i 1) ; knot index in variables

31 end

32 knotxin=zeros(length(knotloc),1) ; knot values

33 for i=1:length(knotloc)

34 knotxin(i)=xink(knotloc(i));

35 end

36 xink=[xink, xin];

37 xink=sort(unique(xink));

38 for k=1:length(knotloc)

39 knotloc(k)=find(xink==knotxin(k));

40 end

41 Calculation of Basis Vector

42 N=zeros(order,length(xink),length(knotxin) 1+2 order+2);

43 for i=order+1:length(knotxin)+order 1

44 for j=knotloc(i order):knotloc(i+1 order) 1

45 N(1,j,i)=1;

46 end

47 end

48 for d=2:order

49 for i=1:(length(knotxin)) d

50 for k=1:length(xink) 1

51 N(d,k,i+order)=(((xink(k) knotxin(i))/(knotxin(i+d 1) ...

52 knotxin(i)) N(d 1 ,k,i+order)))+(((knotxin(i+d) ...

53 xink(k))/(knotxin(i+d) knotxin(i+1)) ...

54 N(d 1 ,k,i+1+order)));

55 end

56 end

57 end

58 Nfull=N;

59 xfull=xink;

60 knotfull=knotxin;

61 Result arranging
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62 xinkg=xink(knotloc(1+order):knotloc(end order));

63 xinkg=sort(unique(xinkg));

64 Nend=zeros(order,length(xinkg),nok+2);

65 nstart=knotloc(1+order);

66 nend=knotloc(end order);

67 for d=1:order

68 for i=1:nok+order+1

69 count=0;

70 for k=nstart:nend

71 count=count+1;

72 Nend(d,count,i)=N(d,k,i+order);

73 end

74 end

75 end

76 N=Nend;

77 Plot

78 if plotcheck==true

79 for i=1:order

80 figure

81 xlabel( x )

82 ylabel( y )

83 title( T )

84 hold on

85 grid minor

86 for k=1:size(N,3)

87 plot(xinkg,N(i,:,k))

88 end

89 legend( Location , eastoutside )

90 end

91 end

92 end
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APPENDIX B

QOF RESULTS FOR NON-SIMULTANEOUS CASES

a Effect of Knot Number for UT Only Fit

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure B.1: Knot effect on UT for modified invariant based approach
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b Effect of Degree for UT Only Fit

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure B.2: Degree effect on UT for modified invariant based approach
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c Effect of Knot Number for ET Only Fit

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure B.3: Knot effect on ET for modified invariant based approach
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d Effect of Degree for ET Only Fit

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure B.4: Degree effect on ET for modified invariant based approach
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e Effect of Knot Number for PS Only Fit

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure B.5: Knot effect on PS for modified invariant based approach
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f Effect of Degree for PS Only Fit

(a) Quality of fit comparison for region 1 (b) Quality of fit comparison for region 2

(c) Quality of fit comparison for region 3

Figure B.6: Degree effect on PS for modified invariant based approach
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