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ABSTRACT 

 

NONLINEAR AEROSERVOELASTIC MODELLING AND ANALYSIS OF 

AIRCRAFT WITH CONTROL SURFACE FREEPLAY 

 

 

Yurtsever, Utku 

Master of Science, Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Melin Şahin 

Co-Supervisor: Prof. Dr. Altan Kayran 

 

 

November 2022, 137 pages 

In this study, nonlinear aeroservoelastic analysis of aircraft with control surface 

freeplay is performed using the fictitious mass approach. For the demonstration of 

the nonlinear aeroservoelastic analysis methodology, an available very light aircraft 

(VLA) design configuration is selected. The aeroelastic model of the aircraft is 

obtained by combining the structural and aerodynamic models of the aircraft, which 

are prepared by the finite element modelling and analysis tool 

MSC.Patran/MSC.Nastran and the aeroelastic solver ZAERO, respectively. 

Nonlinear aeroservoelastic model of the aircraft is obtained by integrating the control 

surface freeplay models and the flight control algorithm created using MATLAB. 

The nonlinear effects of different control surface freeplays on the aircraft are 

investigated at various flight conditions. The results with aileron, elevator, and 

rudder freeplays show that for the particular aircraft studied, elevator is the most 

critical control surface in terms of nonlinear aeroservoelastic behavior of the aircraft 

leading to instability, and the freeplay in the rudder has no effect on the instability 

of the aircraft. 

Keywords: Aeroelasticity, Aeroservoelasticity, Nonlinear Aeroservoelastic 

Modelling, Freeplay, Fictitious Mass Approach 
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ÖZ 

 

BOŞTA HAREKET DAVRANIŞI İÇEREN KONTROL YÜZEYLERİNE 

SAHİP UÇAĞIN DOĞRUSAL OLMAYAN AEROSERVOELASTİK 

MODELLENMESİ VE ANALİZİ 

 

 

Yurtsever, Utku 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Dr. Melin Şahin 

Ortak Tez Yöneticisi: Prof. Dr. Altan Kayran 

 

Kasım 2022, 137 sayfa 

Bu çalışmada uçaktaki kontrol yüzeylerindeki boşta hareket davranışından dolayı 

doğrusal olmayan bir şekilde hayali kütle kullanımı ile modellenip analiz edilmiştir. 

Doğrusal olmayan aeroservoelastik analiz metodolojisinin gösterimi için mevcut bir 

çok hafif hava aracı seçilmiştir. Sonlu elemanlar modelleme ve analiz programı 

MSC.Patran ve MSC.Nastran kullanarak oluşturulan uçağın yapısal modeli, 

aeroelastisite çözücüsü olan ZAERO ortamında oluşturulan aerodinamik model ile 

birleştirilerek aeroelastik model oluşturulmuştur. Uçuş kontrol algoritması 

MATLAB kullanarak oluşturulmuş ve sistemin doğrusal davranışını bozan kontrol 

yüzeylerindeki boşta hareket davranışı modellenmesi ile doğrusal olmayan 

aeroservoelastik model elde edilmiştir. Farklı boşta hareket davranışlarının serbest 

oynama açıları göz önüne alınarak doğrusal olmayan bu davranışın, uçağın 

üzerindeki etkisi zamana bağlı olarak ve farklı uçuş koşullarında incelenmiştir. 

Kanatçıklar, irtifa dümeni ve istikamet dümeninde yapılan incelemelerde, irtifa 

dümeninin uçağın aeroservoelastik davranışın en önemli kontrol yüzeyi olduğu 

belirlenirken istikamet dümenindeki boşta hareket davranışı uçağın kararsızlığı 

üzerinde etkisinin olmadığı saptanmıştır.   

Anahtar Kelimeler: Aeroelastisite, Aeroservoelastisite, Doğrusal Olmayan 

Aeroservoelastik Model, Boşta Hareket Davranışı 
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[𝐶𝑣] Aeroelastic vehicle-level C matrix in state-space domain 

[𝐷𝑣] Aeroelastic vehicle-level D matrix in state-space domain 

[𝐶] Global damping matrix 

[𝐺] Spline Matrix 

[𝐷] Parametric matrix of RFA 

[𝐼] Identity Matrix 

[𝑀] Global mass matrix 

[𝑅] Aerodynamic lag roots 

[𝑊] Weighting factor 

[𝐸] Parametric matrix of RFA 

[�̅�] Generalized mass matrix 

[𝐾] Global stiffness matrix 

[�̅�] Generalized stiffness matrix 

[𝑄] Generalized aerodynamic force 

[𝑄ℎℎ] Generalized aerodynamic force matrices due to structural modes 

[𝑄ℎ𝑐] Generalized aerodynamic force matrices due to control surfaces 

[�̃�] Approximated [𝑄] with RFA  

[�̃�ℎℎ] Approximated [𝑄ℎℎ] with RFA 

[�̃�ℎ𝑐] Approximated [𝑄ℎ𝑐] with RFA 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Background to the Study 

1.1.1 Aeroelasticity 

There has been comprehensive amount of work in recent years to model and analyze 

aeroelastic response of the aircraft while planes are getting lighter due to fuel 

efficiency requirement and more agile aircraft demand. Nowadays, it is essential to 

estimate the aeroelastic response of aircraft during preliminary design phases in 

order to prevent weight penalties and to escape flutter or catastrophic structural 

failure. 

The improvements in aerospace and materials industry made aircraft lighter day after 

day resulting in more flexible aircraft. Flexible aircraft are prone to flutter or limit 

cycle oscillation (LCO) type sustained oscillations due to the coupling of unsteady 

aerodynamics and structural vibrations and unpredictable structural failures may be 

encountered. 

1.1.2 Aeroservoelasticity 

Further improvements in aircraft resulted in the development of fly-by-wire 

airplanes. For more agile aircraft design to minimize the pilot errors and to increase 

the comfort of passenger and the flight crew, fly-by-wire aircraft became more 

popular nowadays. In fly-by-wire aircraft, control surfaces are driven by actuators 

powered by electricity, hydraulic system, or both. Although actuators facilitate to 
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overcome the loads on control surfaces, complexity of the flight control system is 

increased. Therefore, flight control computers accompany pilots. 

Flight control computer requires an integrated flight control algorithm which 

controls the aircraft motion by deflecting the control surface through actuator 

commands and stabilizes the aircraft. The flight control algorithm can interfere with 

the aeroelastic behavior of the aircraft, because both the control surfaces and the 

main structures to which flight control surfaces are attached to are flexible. The 

interaction of aerodynamics, flexible structural response and the control algorithm is 

the field of ASE which is studied in this thesis.   

The aeroservoelastic phenomenon is getting more popular because of the increased 

number of fly-by-wire aircraft. Aeroservoelastic behavior of the fly-by-wire aircraft 

must be investigated since the flight control algorithm can be easily coupled with 

aeroelastic behavior of the aircraft causing catastrophic failure. Although inhibiting 

the instability of the aeroelastic system results in weight penalty, in the field of 

aeroservoelasticity (ASE), the most convenient way of inhibiting the 

aeroservoelastic instability is to use structural coupling filters such as notch, low-

pass and Kalman filters. It is worth to mention that these filters induce lags on the 

flight control algorithm and if they are not planned during the preliminary design 

phase of the aircraft, it can urge the budget of the flight control algorithm. 

1.1.3 Nonlinear Aeroservoelastic Analysis 

With the increasing complexity of the aeroservoelastic response of the aircraft, the 

solution fidelity of linear aeroservoelastic analysis decreased; moreover, nonlinearity 

associated with the aeroservoelastic behaviour of the aircraft can only be analyzed 

with nonlinear aeroservoelastic analysis, such as limit cycle oscillations due to 

freeplay of the control surfaces. Therefore, including the nonlinearity in analysis is 

necessary. However, conducting nonlinear analysis in ASE is not a straightforward 

process as in other aerospace and engineering fields. It requires substantial workload 
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to define, model and analyze the system. Moreover, validating the aeroservoelastic 

behavior of the aircraft by experimental test is not a budget-friendly method since it 

requires flight tests which are very dangerous to conduct. Therefore, analysis of the 

nonlinear aeroservoelastic behavior of the aircraft using a model based solution is 

studied more and more in the literature.  

1.2 Objective of the Thesis 

The objective of the thesis is to present a nonlinear aeroservoelastic analysis 

methodology of aircraft with control surface freeplay and to investigate the nonlinear 

dynamic behavior of the aircraft which has different control surface freeplays at the 

same time.  

1.3 Scope of the Thesis 

In this study, nonlinear aeroservoelastic behaviour of aircraft due to freeplay 

nonlinearity is investigated in four sub-sections: structural dynamics, aerodynamic, 

aeroelastic and nonlinear aeroservoelastic modelling and analysis.    

Chapter 2 is devoted to the literature survey about the nonlinear ASE. Historical and 

recent developments are presented. Since the scope of this study is investigating the 

nonlinear ASE, literature survey mainly focuses on nonlinear ASE topics rather than 

on unsteady aerodynamics and aeroelasticity. 

Chapter 3 is dedicated to the structural dynamics modelling of the very light aircraft 

that is investigated in this thesis. Details of the global FE model of the aircraft 

including the control surfaces are given. Modal analysis of the aircraft is conducted, 

and mode shapes and natural frequencies are obtained. Mode shapes and associated 

frequencies are used as the base structural dynamic model in the following sections. 

Chapter 4 describes the aerodynamic modelling which is used in the aeroelastic and 

the related analysis. Based on the computational fluid dynamic (CFD) model, high 
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fidelity aerodynamic model is created. Classical aerodynamic influence coefficient 

(AIC) matrices are stored and then they are transformed into state-space domain via 

the Rational Function Approximation (RFA). In order to decide on the least square 

fit methodology, Roger’s and Minimum State methods are compared and it is 

decided to use the Roger’s method since it showed better approximation. 

Chapter 5 gives the details on the open-loop response of the aircraft which basically 

excludes the control algorithm. In order to obtain the aeroelastic model, spline 

methodology which is the coupling of the structural model with the aerodynamic 

model, is explained. Spline verification results and details of the aeroelastic analysis 

of the aircraft are given.  

Chapter 6 presents the modelling and analysis of the linear and nonlinear 

aeroservoelastic phenomenon. Firstly, actuator dynamics model is introduced. Then, 

static aeroelastic analysis is performed in order to obtain rigid body stability 

derivatives which are used in a simple flight control algorithm design. Control 

surface freeplay and fictitious mass implementations are described. Lastly, time 

marching nonlinear aeroservoelastic analyses of the aircraft are conducted for 

different control surface freeplay input. Finally, results are presented.  

The general conclusions and future work recommendations for this study are given 

in Chapter 7. 
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1.4 Limitations of Study 

Primary limitations of the study are: 

1. Real very light aircraft that is studied in this thesis does not have any sensor, 

servo-actuator and flight control algorithm system. Therefore, 

implementation of them in the study is completely artificial. 

2. For the very light aircraft studied, rigid body aircraft stability coefficients and 

derivatives are not available. In order to model the aeroservoelastic behaviour 

of the aircraft, they are obtained using a rather inconvenient way. 

3. In the nonlinear aeroservoelastic analyses performed, aircraft is assumed to 

be always in the level flight condition. No maneuver condition is considered 

in this study.  
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents the literature survey regarding the nonlinear aeroservoelastic 

analysis due to freeplay motion on the control surfaces with the fictitious mass 

approach. Firstly, latest advances and progresses on the field of ASE are 

summarized. Then, the work done on the effect of freeplay on the aeroservoelastic 

behaviour of aircraft is discussed. Specifically, work performed with and without 

fictitious mass approach is emphasized. Finally, recent improvements on nonlinear 

aeroservoelastic analysis are explained.         

2.2 Aeroservoelasticity 

Aeroelasticity (AE) is an interesting and complex phenomenon where inertial forces, 

the elasticity of the aircraft and aerodynamic forces and moments couple with each 

other [1]. During the design phase of an aircraft, it is inevitable to study this 

phenomenon in order to prevent expensive costs like time, weight penalties and 

failure of the aircraft or sub-structure [2]. While the technology on the control of 

aircraft improved in order to make the aircraft more agile and comfortable, a different 

phenomenon, ASE, has appeared. ASE involves the coupling of the flight control 

algorithm and aeroelastic behavior of the aircraft [3]. It is necessary to investigate 

the aeroservoelastic behavior of the aircraft in order to prevent catastrophic failure 

due to instabilities related with ASE. 
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First formal ASE studies started with the highly maneuverable fighters such as the 

Lockheed F-16, the McDonnell Douglas F/A-18 and some of civil transport aircraft 

which are all built with automatic flight control system in the early 1970s [4]. In 

order to fly beyond the open-loop flutter speed in these agile aircraft, passive flutter 

suppression systems were developed by Abel et. al. in the late 1970s [5],[6]. This 

first passive flutter suppression system and likewise the first aeroservoelastic studies 

were based on changing the closed-loop characteristic of the aircraft with respect to 

the inputs of the sensors which measure also the structure response of the wing. 

Followingly, in order to build active flutter suppression system, the time domain 

representation of the aeroelastic model which is based on the frequency domain was 

required. To be able to do that, Dunn [7] presented the unsteady aerodynamic forces 

in the time domain by Padé approximation in 1980 and Karpel [8] has discussed 

several rational function approximation methods and offered the “minimum-state” 

approximation in 1981. 

The other improvements in ASE were related with other flight regimes such as 

separated and transonic-induced flows. The Theodorsen [9] model of the 

representation unsteady oscillatory aerodynamic has been used up to present. This 

method is based on linearized small-disturbance and potential aerodynamic model 

with a harmonic motion assumption for wing-like surfaces. Therefore, during the 

time domain representation it can be directly used, and transfer matrix of 

aerodynamic model can be employed. However, this method is not applicable for 

separated and transonic flows since they are highly nonlinear. Edwards et. al. [10] 

reviewed the transonic unsteady aerodynamics and their application on 

aeroelasticity. They have studied the implementations of Navier-Stokes equations 

for unsteady aerodynamics for high speed flow fields that have low angle of attack 

and low speed flow fields with high angle of attack. Later, Raveh [11] presented a 

novel approach on modeling unsteady aerodynamic forces based on Computational 

Fluid Dynamics (CFD) input-output data for subsonic separated flows. On the other 



 

 

9 

side, for the transonic regime, transonic small-disturbance (TSD) model has been 

used and widely accepted in the aeroelasticity field [12]. 

Although there are several studies on unsteady aerodynamic models in the literature, 

ASE has inherent uncertainties. Therefore, the flight control algorithm should be 

robust to compensate these uncertainties in ASE and it should be adaptive. While 

using high gains in linear feedback theory in flight control algorithm provides 

robustness, it degrades the performance of the control algorithm at higher 

frequencies. Therefore, various linear feedback theories such as linear quadratic 

Gaussian (LQG) [13], H2/H∞ control [14] and structured singular value synthesis [15] 

were proposed to this dilemma. 

2.3 Fictitious Mass Approach 

In 1975, fictitious mass approach was firstly presented by Karpel et al. [16] in the 

form of component mode synthesis, where the natural modes of separate structural 

components are combined for the natural modes of the combined structure. Then, 

this method was employed to represent modal coordinates of structural modal with 

large local structural variations in aeroelastic analysis [17].  In this study, they have 

suggested to formulate time domain aeroelastic equations in state-space model by 

using small number of generalized coordinates. Then Karpel and Raveh improved 

the accuracy and efficiency of this technique on modal-based structural analysis [18].  

Next, Karpel and Wieseman [19] have used this technique to obtain time domain 

solution of flutter equations with large stiffness change. In this study, a nominal finite 

element model is modified with a large fictitious mass which was located on the area 

of the structural change, and natural mode shapes and frequencies were obtained. 

Then, separating a subset of these modes at lower frequencies, a set of structural 

modal coordinates is obtained and used in time domain flutter analysis. The main 

point of this study was representing the local structural changes such as freeplay 

without changing the modal coordinates directly and consequently analysis time has 

been reduced enormously. 
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2.4 Freeplay Implementations 

In the theoretical study of freeplay, the mathematical modeling of freeplay 

nonlinearity is the first important subtopic. There are several mathematical studies 

to represent freeplay motion in aeroelastic analysis in the literature. Fundamental 

approach is idealized and piecewise model of freeplay if there is not any available 

freeplay test data [20]. In this method, same value of rotational stiffness coefficient 

has been assumed outside the freeplay regions and inside the freeplay region, control 

surface rotational stiffness is taken as zero. However, since this approach is discrete 

at the freeplay zone boundaries, it is a non-smooth freeplay model which introduces 

discontinuity. Dimitriadis [20] offered an alternative approach which utilized the 

restoring moment concept, and this approach is used in this study. Pereira et al. [21] 

introduced a freeplay implementation in which hardening effect of the nonlinearity 

is modeled via rational polynomial function and freeplay model is represented by 

hyperbolic functions. With this approach, the discontinuity on freeplay model was 

avoided and therefore undesired aeroelastic responses mitigated.  

Another approach in the literature is the equivalent linearized stiffness approach. 

Anderson and Mortara [22] have used this method based on the freeplay test data. In 

this study, they have compared the freeplay analysis results utilizing the equivalent 

linearized stiffness approach with the maximum freeplay observed in flight test and 

stated that equivalent linearized stiffness implementation is a conservative approach. 

Other approach in the literature is based on assuming the freeplay region as nonlinear 

and non-constant. Vasconcellos et al. [23] stated nonlinear effect of the freeplay can 

cross the freeplay region of the control surfaces. Therefore, a third order polynomial 

is assigned in order to represent the cubic hardening or softening behavior of the 

nonlinearity. 

Danowsky et al. [24] and He et al. [25] utilized the describing function approach to 

model freeplay nonlinearity in aeroelastic analysis. Danowsky et al. used analytical 
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solution to solve the aeroservoelastic problem and He et al. utilized the harmonic 

balance method.  

2.5 Nonlinear Aeroservoelastic Analysis 

The backlash of the control surface actuation systems and manufacturing tolerances 

leads to control surface freeplay, which is a nonlinear event and couples with the 

aeroservoelastic model and consequently flutter instability and limit cycle 

oscillations (LCO) may occur. Therefore, the study of nonlinear dynamic behavior 

of an aeroservoelastic system is crucial to prevent probable instability occurrences 

and sustained oscillation type system responses. 

The effects of including freeplay in the nonlinear dynamics system behavior were 

started to be investigated in the 1950s [26]. From then, designers of military and civil 

aircraft have been dealing with minimizing the freeplay effects and their 

maintenance costs and also designing aircraft free from any aeroelastic and also 

aeroservoelastic instabilities. Hoffman et al. [27] conducted the first full scale 

experimental tests for different freeplays in a wind tunnel in 1954. Then, Woolstan 

et al. [28] and Shen [29] introduced the first theoretical studies on the freeplay 

problem. In 1999, Lee et al. [30] investigated the modelling and solutions of 

nonlinear aeroelastic analysis for different type of structural and aerodynamic 

nonlinearities. Tian et al. [3] also investigated the nonlinear aeroservoelastic analysis 

but with a reduced model in order to improve computational efficiency by using the 

component mode synthesis technique. As progress is made in the computational 

capabilities and experimental studies, understanding solutions in aeroservoelastic 

problems involving freeplay and consequently its nonlinear behavior became 

simpler.  

Although nonlinear aeroelasticity is popular topic in the literature, there are few 

studies about the nonlinear aeroservoelastic analysis due to control surface freeplay 

by using the fictitious mass approach. The first study related with nonlinear 
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aeroservoelastic analysis due to freeplay was introduced in 2007 by Gold et al. [31]. 

In this study, they used a reduced order ASE model with the fictitious mass approach 

to model nonlinear actuator stiffness. In order to prevent limit-cycle oscillations, a 

nonlinear control strategy is presented for an unmanned air vehicle (UAV).  In 2013, 

Huang et al. [32] performed nonlinear aeroservoelastic analysis due to structural 

nonlinearity for a controlled multiple actuated-wing model by using the FM 

approach. In this study, linear flutter control system was utilized, and they have 

examined the nonlinear dynamic effects of the freeplay on the linear flutter control 

algorithm. Karpel et al. [33] investigated the effect of nonlinear structural elements 

on the aeroservoelastic behaviour by using the full span stick model of the aircraft. 

They have utilized a linear ASE model in the frequency domain analysis and a 

nonlinear feedback controller in time-marching analysis and they observed limit-

cycle oscillations due to actuator nonlinearities. As a continuation of this study, 

Roizner et al. [34],[35] conducted a parametric flutter margin analysis by using the 

same structural and the aerodynamic model for linear and nonlinear stability 

margins.  

In the literature, to the best of the knowledge of the author of this thesis, the effect 

of simultaneous freeplay in different control surfaces on the limit cycle oscillation 

behaviour at the aircraft level has not been studied. In this thesis study, the effect of 

simultaneous aileron-elevator freeplay on the nonlinear aeroelastic behaviour of the 

aircraft is studied, and the significant effect of simultaneous aileron-elevator freeplay 

on lowering the LCO speed compared to elevator freeplay only is shown. It is 

believed that including the investigation of two different control surface freeplay at 

the same time in terms of nonlinear aeroservoelastic behaviour of the aircraft is a 

contribution of the thesis study to the literature. Moreover, a part of this study is 

presented in TOK 2022 (Otomatik Kontrol Türk Milli Komitesi Ulusal Kongresi) and 

published in the proceeding of the conference [36]. 

https://tok2022.firat.edu.tr/
https://tok2022.firat.edu.tr/
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CHAPTER 3  

3 STRUCTURAL MODELLING OF THE VERY LIGHT AIRCRAFT 

3.1 Introduction 

This chapter is dedicated to the development of the structural finite element model 

of the very light aircraft that is used as the platform to demonstrate the nonlinear 

aeroservoelastic modelling and analysis involving freeplay of control surfaces. 

Commercial package programs MSC.Patran® and MSC.Nastran® programs are 

utilized during modelling and analysis processes, respectively. In order to obtain 

modal domain results, which is used as the structural model in aeroelastic analysis, 

MSC.Nastran® SOL 103 solution sequence is executed. In this chapter, firstly finite 

element model of the aircraft is introduced, then the governing equation of the 

motion is given.  

The results of the modal are a set of eigenvalues and eigenvectors, which represent 

the dynamic behavior of the aircraft. These eigenvalues and eigenvectors of the 

system correspond to the frequencies of the vibration modes and mode shapes, 

respectively. The combination of modal frequencies and mode shapes is adequate to 

represent the dynamic system behavior or aeroelastic response since these analyses 

are also conducted in the frequency domain.  

3.2 General Coordinate System 

The general coordinate system used in this study is given in Figure 3.1. The origin 

of this coordinate system is at the frontmost nose point of the aircraft. x axis points 

aft, y axis points in the direction of the right wing and z axis points upwards.    
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Figure 3.1 General Coordinate System 

3.3 Finite Element Model Representation 

The global Finite Element Model (GFEM) of the aircraft is shown in Figure 3.2 - 

3.4. The GFEM is constructed by FE models of primary structural elements of the 

aircraft such as fuselage frames, wing ribs, spars etc., and the aim of using GFEM is 

to represent the global aircraft structure behaviour while providing affordable 

computational time by using less memory. 

 

Figure 3.2 Side View of the Finite Element Model of the Aircraft 
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Figure 3.3 Top View of the Finite Element Model of the Aircraft 

 

Figure 3.4 Front View of the Finite Element Model of the Aircraft 
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The GFEM of the aircraft consists of fuselage, wing, vertical tail, horizontal tail, and 

control surfaces: ailerons, elevator, and rudder. The number of elements used in the 

structural finite element model are given in Table 3.1.  

Table 3.1 Number of Elements used in Structural Model 

Element Type 
Element Name 

In MSC Nastran 
Element Description 

Number of 

Elements 

1-D Bar CBAR Simple Beam Element 52 

1-D Bar CBEAM Beam Element 28 

0-D Bar CBUSH Spring/Damper Element 9 

0-D Mass CONM2 Concentrated Mass Element 17 

2-D Shell CQUAD4 Quadrilateral Plate Element 58215 

1-D Bar CROD Rod Element 3767 

2-D Shell CTRIA3 Triangular Plate Element 135 

1-D Rigid RBE2 Rigid Link Element 32 

1-D Rigid RBE3 Interpolation Constraint Element 17 

 

The CBAR, CBEAM and CROD elements represent 1-D bar, beam and rod 

structures of the aircraft, respectively. CBUSH elements are used to represent the 

spring and local stiffness in the connections on the aircraft, such as actuator stiffness. 

CONM2 elements are concentrated mass elements such as equipment of aircraft or 

pilot weight. CQUAD4 and CTRIA3 elements are used to model 4-noded 

quadrilateral and 3-noded triangular thin shell structures like the skin of the aircraft, 

respectively. RBE2 and RBE3 are the rigid body elements which are employed on 

rigid links and interpolation constraint elements.   

In this study, the CROD type of finite element members are utilized to model 

symmetric and constant cross-sectional flanges of spars and ribs, and also frames of 

the aircraft since these structures and also their finite element representation carries 
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only axial and torsional loads [37]. The location of these type of elements in FE 

model presented in Figure 3.5.  

The CTRIA3 and CQUAD4 type elements are used to simulate thin shell plate 

components of the aircraft such as skin. These types of elements carry in-plane force, 

moments and shear forces [37]. Therefore, they are used to model the skin plates of 

the aircraft and they are shown in Figure 3.6. 

 

Figure 3.5 CROD Elements in the FE Model of the Aircraft 

 

Figure 3.6 CQUAD4 and CTRIA3 Elements in the FE Model of the Aircraft 
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The CBEAM element type is the comprehensive version of the CROD which can 

also carry transverse shear forces, bending moments and cross-sectional warping 

loads [37]. On the other hand, CBAR element type has same properties with the 

CBEAM except the cross-sectional warping loads. In this study, CBEAM and CBAR 

type of elements are used to model complex geometries with varying cross-sectional 

areas such as engine mounts and wing-fuselage connection parts since these areas 

are exposed to relatively large amounts of force and moment than other parts of the 

aircraft and it requires a comprehensive modelling in order to represent the static and 

dynamic behaviour of the aircraft better. The locations of the CBEAM and CBAR 

elements are presented in Figure 3.7.  

 

Figure 3.7 CBEAM and CBAR Elements in the FE Model of the Aircraft 

The CONM2 element type are used to model concentrated mass such as equipments 

and pilots weight. These lumped mass elements are distributed to aircraft frames by 

of the rigid body element, RBE3, to increase the accuracy of mass distribution of the 

aircraft. The other rigid body element type, RBE2, is to represent a rigid connection 

such as hinge of the control surfaces of the aircraft as shown in Figure 3.8 and Figure 

3.9. The CBUSH elements are utilized to model generalized spring type structural 

elements such as actuator stiffness.   
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Utilizing the GFEM, stiffness and mass matrices are constructed by MSC.Nastran®. 

Since the structural model has 57369 nodes with 6 degree of freedom per node, 3 

translational and 3 rotational, the degree of freedom in the modal analysis is 344214. 

In other words, the constructed stiffness matrix is a square one and its size is 344214 

by 344214. 

The mass model of the aircraft is represented by the density of structural components 

and concentrated (lumped) mass elements CONM2. Lumped mass elements in the 

FE model are distributed to certain nodes by RBE3 elements according to the degree 

of freedom and the distance between the lumped element location and the node. The 

weight, inertia and center of gravity (CG) properties of the aircraft with respect to 

the general coordinate system of the structure model are given in Table 3.2.   

 

Table 3.2 Weight and Inertia Properties of the Very Light Aircraft 

Property Value Unit 

CG in x-direction 2007.000 mm 

CG in y-direction -0.562 mm 

CG in z-direction -119.200 mm 

Total Mass 714.030 kg 

Inertia about XX axis 1.020 E+09 kg.mm2 

Inertia about XY axis 6.610 E+05 kg.mm2 

Inertia about YY axis 9.752 E+08 kg.mm2 

Inertia about XZ axis 5.757 E+07 kg.mm2 

Inertia about YZ axis 1.843 E+05 kg.mm2 

Inertia about ZZ axis 1.816 E+09 kg.mm2 

 

Using MSC.Patran®, finite element model is created by assigning proper material 

properties like elastic modulus, Poisson ratio and density etc. Therefore, necessary 
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information to generate the mass and stiffness matrices in the structural dynamic 

model is determined. Mass and stiffness information is the input of the modal 

analysis which is conducted by using MSC.Nastran®. Using the mass information 

given in Table 3.2 and the stiffness information according to the properties of the 

elements, MSC.Nastran® creates the global mass and stiffness matrices firstly. Then, 

it solves the eigenvalue problem which is given in the following section and the 

modal domain results are obtained. 

3.4 Control Surface Actuator Stiffness Implementation 

In order to use the finite element model of the aircraft structure in nonlinear 

aeroservoelastic analysis, rotational stiffness of control surfaces about their hinge 

axes must be controlled. The aim of this is to gain ability to control and change the 

control surface stiffness in the freeplay region. Outside the freeplay region, control 

surfaces have their own stiffness, and they have modal frequencies depending on 

their inertia about their hinge axes. The diagrammatic representations of the aileron 

and rudder actuator stiffness implementation are given in Figure 3.8 and Figure 3.9. 

In Figure 3.8, the left coincident node of the CBUSH element is connected to spar 

of the wing by RBE2 element and right coincident nodes of this spring element is 

connected to front spar of the aileron. CBUSH element, which is a type of spring 

element in FE modelling, ensures the translational and rotational stiffness of the 

aileron on the hinge axis whereas RBE2 element provides a rigid body connection 

between the hard points of the main surfaces, such as spars, and the corresponding 

nodes of the CBUSH element. In a way, RBE2 elements simulate the arms of the 

servo actuators.       
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Figure 3.8 Diagrammatic Representation of Aileron Stiffness 

 

Figure 3.9 Representation of Rudder Stiffness on GFEM 

In Figure 3.9 the coincident nodes are placed at the hinge axis of rudder, and these 

nodes are connected the rudder and vertical tail by rigid body element RBE2. The 

bush element between the coincident nodes represents an artificial spring element 

which is called as CBUSH element in MSC.Nastran®. 
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The property of the CBUSH element is assigned by the PBUSH bulk data card and 

by changing the stiffness values about the three translational and three rotational axes 

one can control the nonlinear stiffness of the control surfaces. Except the rotational 

stiffness about the hinge axis which corresponds to z axis in Figure 3.9, all stiffness 

values are assigned very high values indicating rigid connection about the axes 

except for the z axis rotational stiffness. The stiffness values of the control surface 

about their hinges are chosen by a trial-error procedure by considering the 

decoupling of control surface natural frequencies from other mode shapes and 

ensuring that none of the control surface modes has a flutter instability within the 

flight regime in the open-loop aeroelastic analysis. The stiffness values are given in 

Table 3.3 where TX, TY and TZ correspond to translational stiffness along the x, y 

and z axes, respectively and RX, RY and RZ correspond to rotational stiffness values 

about x, y and z axes, respectively. It should be noted that RZ corresponds to hinge 

axis rotational stiffness for all control surfaces. 

Table 3.3 Control Surface Stiffness Values 

 
TX 

[N/m] 

TY 

[N/m] 

TZ 

[N/m] 

RX 

[Nm/rad] 

RY 

[Nm/rad] 

RZ 

[Nm/rad] 

Ailerons 1.00 E+6 1.00 E+6 1.00 E+6 1.00 E+6 1.00 E+6 1.00E+2 

Elevator 1.00 E+6 1.00 E+6 1.00 E+6 1.00 E+6 1.00 E+6 1.50E+3 

Rudder 1.00 E+6 1.00 E+6 1.00 E+6 1.00 E+6 1.00 E+6 2.30E+3 

 

3.5 Governing Equation of Motion of the Dynamic Model of the Aircraft 

The governing equation of motion of the multi degree of freedom dynamic system 

without any force input is represented as, 

[𝑀]{ℎ̈(𝑡)} + [𝐶]{ℎ̇(𝑡)} + [𝐾]{ℎ(𝑡)} = {0} (3.1) 
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where {h(t)} is the displacement vector, [M], [C] and [K] are the global mass, 

damping and stiffness matrices respectively. In this equation, vector size is ntotal x 1 

and size of the matrices are ntotal x ntotal where ntotal is total number of degrees of 

freedom in the finite element model. Since acquiring precise damping of the 

structural model is not easy, to simplify the governing equation damping is not 

included in the structural analysis. Then, governing equation becomes as given in 

Equation (3.2). 

[𝑀]{ℎ̈(𝑡)} + [𝐾]{ℎ(𝑡)} = {0} (3.2) 

 Assuming harmonic solution using Equation (3.3), 

{ℎ(𝑡)} = {ℎ̃}𝑒𝑖𝜔𝑡 (3.3) 

Equation (3.2) can be expressed as in Equation (3.4). 

−𝜔2[𝑀]{ℎ̃}𝑒𝑖𝜔𝑡 + [𝐾]{ℎ̃}𝑒𝑖𝜔𝑡 = {0} (3.4) 

Finally, the equation motion of the dynamic system can be expressed as an 

eigenvalue problem given by Equation (3.5). 

[𝐾 − 𝜔2𝑀]{ℎ̃} = {0} (3.5) 

For non-trivial solution of Equation (3.5), determinant of the coefficient matrix must 

vanish. 

det|[𝐾 − 𝜔2𝑀]| = {0} (3.6) 

The solution of Equation (3.6) yields eigenvectors and eigenvalues which correspond 

to mode shapes and mode frequencies. 
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3.6 Mesh Independence Study 

Mesh independence study is conducted in order to determine dependence of the 

results on the mesh fidelity. For this purpose, bar elements (CBAR, CBEAM and 

CROD elements), and shell elements (CQUAD4 and CTRIA3 elements) are refined 

with multiplication factors of 2, 4 and 8, and they are given in Figure 3.10, Figure 

3.11, and Figure 3.12 respectively. Necessary grid points are created according to 

the element type. 

Modal analyses are conducted for refined models and modal frequencies obtained 

are listed in Table 3.4. Using the most refined model which is refined with a 

multiplication factor of 8 as the basis, natural frequencies are compared, and percent 

differences are given in Table 3.5. In this table, multiplication factors 2, 4 and 8 are 

denoted as x2, x4 and x8 respectively. Since differences between frequencies are 

negligible and the percentage of difference is very small, the nominal mesh is chosen 

and used in this study. It is worth to mention that frequencies of control surfaces are 

free from the mesh dependency study since their frequencies depend only on the 

spring elements in their connections as shown in Figure 3.8 and Figure 3.9.  

It should be mentioned that the mass model of the nominal FE model is composed 

of lumped mass points and structural mass based on the density assigned to the 

material of finite elements. Since structural mass is based on density, this causes 

local modes in the refined models and one example of a local mode shape which is 

amplified with multiplication factor of 2 (x2) is given in Figure 3.13. In order to 

eliminate local modes and the effect of the inertia effect from the mesh dependency 

study, the mass model is modified. The details are given in Section 3.6.1. 
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Figure 3.10 Mesh Refinement with Multiplication Factor of 2 

 

Figure 3.11 Mesh Refinement with Multiplication Factor of 4 
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Figure 3.12 Mesh Refinement with Multiplication Factor of 8 

 

 

Figure 3.13 Local Mode Shape Example of the GFEM 
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Table 3.4 Modal Frequencies According to Mesh Density 

Mode Shape  

# 

Frequency [Hz] 

(Nominal Mesh) 

Frequency [Hz] 

(x2) 

Frequency [Hz] 

(x4) 

Frequency [Hz] 

(x8) 

1 10.328 10.217 10.209 10.205 

2 18.568 18.371 18.365 18.361 

3 19.476 19.476 19.476 19.476 

4 20.392 20.292 20.267 20.238 

5 22.083 22.083 22.083 22.083 

6 23.225 23.117 23.068 23.059 

7 24.624 24.357 24.255 24.223 

8 24.988 24.623 24.478 24.359 

9 30.414 30.236 30.118 30.095 

10 32.083 32.083 32.083 32.083 

11 32.120 32.120 32.120 32.120 

12 33.173 32.955 32.943 32.938 

13 35.974 35.186 35.155 35.146 

 

Table 3.5 Comparison of Modal Frequencies 

Mode Shape  

# 

Difference [%] 

(Nominal Mesh) 

Difference [%]  

(x2) 

Difference [%]  

(x4) 

1 1.2053 0.1176 0.0392 
2 1.1274 0.0545 0.0218 
3 0.0000 0.0000 0.0000 
4 0.7609 0.2668 0.1433 
5 0.0000 0.0000 0.0000 
6 0.7199 0.2515 0.0390 
7 1.6555 0.5532 0.1321 
8 2.5822 1.0838 0.4885 
9 1.0600 0.4685 0.0764 
10 0.0000 0.0000 0.0000 
11 0.0000 0.0000 0.0000 
12 0.7135 0.0516 0.0152 
13 2.3559 0.1138 0.0256 
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3.6.1 Inertia and Mass Modification in Mesh Refinement 

The CQUAD4 elements in the nominal FE model are surrounded by CROD 

elements. At the corners of shell elements, grids of the bar elements are coincident 

with shell elements grids, so local modes are prevented. When the mesh is refined, 

new grids are located at the centers of shell elements in the nominal model (red dot 

in Figure 3.14) and since they do not have any interaction with bar elements, this 

causes local mode shape problem due to fact that shell elements are 2-D and they 

cannot resist out of plane forces [37]. In Figure 3.14, an arbitrary fuselage section is 

given for the nominal mesh (left) and the refined mesh with multiplication factor of 

2 (right).   

  
Figure 3.14 Illustration of the Grid Causing Local Mode Shape 

The solution of such local mode shapes is handled using the lumped mass approach. 

For the fuselage section example shown in Figure 3.14, firstly, the center of gravity 

and the mass and inertia information only for the section involving a local mode is 

determined with MSC.Patran®. Then a new grid and CONM2 lumped mass element 

is generated at the center of gravity of the section. The properties of the CONM2 

lumped mass element represent the mass and inertia information of this fuselage 

section. CONM2 element is connected to the grid points at the intersection of the 

shell and bar elements by RBE3 elements as shown in Figure 3.15. Hence, the mass 
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and inertia of the section is distributed to selected grid points by the RBE3 elements. 

Finally, the density of the elements for this section is set to zero and this process is 

applied to the overall aircraft. Generally, the sections are taken as between the frames 

in the fuselage and ribs in the wing. 

 

Figure 3.15 Representation of the Modified Mass and Inertia Distribution 

3.7 Modal Analysis Results 

The solution of eigenvalue problem given by Equation (3.6) is a set of mode shapes 

and frequencies. Number of frequencies and mode shapes is equal total degree of 

freedom of the dynamic system and structural behavior of the aircraft can be 

represented as a superposition of these mode shapes and frequencies. However, in 

terms of aeroelastic point of view, using all mode shapes and frequencies in the 

analysis is not convenient way due to the analysis time. The contribution of the 

modes with higher frequencies are less than the modes with lower frequencies. 

Therefore, structural dynamic behavior in aeroelastic analysis can be represented by 

using certain number of mode shapes and frequencies starting from the lowest ones. 

Ceiling frequency in order to represent dynamic response of this type aircraft is about 
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40 Hz [38] since higher frequencies cannot be excited by unsteady aerodynamics. 

The principal mode shapes and their frequencies are listed in Table 3.6 by 

disregarding the rigid body modes. It should be also mentioned that, given mode 

shapes and natural frequencies belong to nominal structural model whose mass 

model consists of lumped mass and density of related structural elements. Since the 

results of mesh independence study and consequently inertia and mass modification 

in mesh refinement studies show that the difference between the nominal and refined 

models are small and negligible, the results of nominal structural model are presented 

and nominal structural model is used through this study. 

Table 3.6 Mode Shapes and Frequencies of the Very Light Aircraft 

 # Mode Shape Frequency [Hz] 

 1 The First Wing Bending 10.328 

 2 Antisymmetric Wing Bending + Fuselage Torsion 18.568 

 3 Rudder Rotation 19.476 

 4 Horizontal Tail Bending + Elevator Rotation 20.392 

 5 Elevator Rotation 22.083 

 6 Wing 2nd Bending + Horizontal Tail Rotation 23.225 

 7 Wing 2nd Bending + Rear Fuselage Lateral Bending 24.624 

 8 Wing In-plane Bending 24.988 

 9 Elevator Bending 30.414 

 10 Aileron Symmetric Bending 32.083 

 11 Aileron Antisymmetric Bending 32.120 

 12 Horizontal Tail In-plane Bending + Vertical Tail 

Bending 33.173 

 13 Vertical Tail Bending 35.974 

 

For demonstration, wing bending mode shape is given in Figure 3.16. The other 

mode shapes are presented in Appendix A. 
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Figure 3.16 The First Wing Bending Mode Shape at 10.328 Hz 

3.8 Conclusion 

In this chapter, firstly finite element model of structural system is introduced. The 

details of GFEM of the aircraft are given and then governing equation of motion 

which is used in modal analysis is presented. Then a mesh independency study is 

conducted, and it is demonstrated that the nominal mesh fidelity has sufficient 

maturity to use in this study. The results of the modal analysis are given as mode 

shapes and frequencies.  
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CHAPTER 4  

4 AERODYNAMIC MODELLING OF THE VERY LIGHT AIRCRAFT 

4.1 Introduction 

This chapter presents the unsteady aerodynamic force and moment calculations 

which are used in the aeroelastic and aeroservoelastic analyses. In order to construct 

the AIC matrix, which is widely used in the aeroelasticity field, a commercial 

software system ZAERO which is developed by ZONA Technology, Inc. is utilized.  

Firstly, using the 3-D Computational Fluid Dynamics (CFD) model of the aircraft, 

the aerodynamic model is created. Since ZAERO does not have any user interface 

environment and CFD model cannot be directly used in aeroelastic analysis as an 

aerodynamic model, this process required serious workload. 

After constructing the aerodynamic model, using ZONA6 submodule of ZAERO, 

AIC matrices are saved at discrete Mach numbers and for several reduced 

frequencies. Since computed AIC matrices are saved for once, they can be directly 

used in following analysis, and it reduces analysis time enormously. 

Classical aerodynamic models in aeroelastic analyses are handled in frequency 

domain approach. In other words, the unsteady aerodynamic force and moments due 

to structural deformation are calculated at discrete non-dimensional frequencies 

named as reduced frequencies (k). However, in order to perform time-marching 

nonlinear aeroelastic and aeroservoelastic analysis, AIC matrices in frequency 

domain have to be transformed to time domain. In the thesis study, necessary 

transformations are made by the Rational Function Approximation (RFA) utilizing 

different approximations.  
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4.2 Unsteady Aerodynamics Modelling in ZAERO 

In this part of the study, unsteady aerodynamics modelling that is used in the 

aeroelastic analysis is described. Aerodynamic mesh of the aircraft that is obtained 

by using high fidelity aerodynamic surface mesh prepared for CFD analysis in Ansys 

Fluent is given in Figure 4.1. 

 

Figure 4.1 High Fidelity Aerodynamic Mesh Prepared for CFD Analysis 

As it mentioned previously, the aerodynamic mesh prepared for CFD analysis cannot 

be directly used in aeroelastic analysis to be performed in ZAERO since the mesh is 

too dense for aeroelastic analysis. Therefore, using the aerodynamic mesh prepared 

for CFD analysis, a bunch of slices are taken through the fuselage, wings, and tails 

as shown in Figure 4.2, in order to construct the aerodynamic mesh be used in 

aeroelastic analysis. With the help of these slices, the points on wing-like elements 

and arbitrary body cross sections are determined and a MATLAB® code with 

graphical user interface is utilized by importing these slices and points as an input. 

The aim of using slices rather than the solid model in this code is nothing but for 

simplicity. For instance, in the wing of the aircraft, with the slices, the CFD nodes 
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intersecting with the slices can be easily determined, and these slices can be used to 

build the aerodynamic mesh to be used in aeroelastic analysis.  Slices at the root and 

tip of the wing are shown in Figure 4.2. The middle slice through wing in this model 

is at the edge of the aileron, hence aileron meshes are separated from the wing model 

and control surface aerodynamic panels are easily defined. This MATLAB® code 

also generates the bulk data cards of aerodynamic mesh of the aeroelastic model such 

as CAERO7, BODY7.  The aerodynamic model which is created is given in Figure 

4.3.  

 

Figure 4.2 Taken Slices from the CFD Model 
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Figure 4.3 Aerodynamic Mesh to be used in Aeroelastic Analysis 

In this model, wings and tails are modelled as wing-like elements and fuselage is 

modelled as a body-like element. In conventional aeroelastic analysis, generally 

fuselage is not modelled, and this leads to miscalculation of wake vortices in the root 

of the wing. On the other hand, since wing-like elements are modelled as 2-D panels, 

the thickness effect is not considered and its effect on the pressure distribution is 

disregarded; however, since the slices, which are captured from the CFD model, 

include thickness, and ZAERO has a capability to model the thickness, thickness 

effect is included in the aeroelastic model. Figure 4.4 shows the 3-D aeroelastic 

model which also has the thickness effect included in wing-like elements. However, 

the thickness effect cannot be represented in the spline verification and flutter mode 

shape representation which is discussed in Section 5.3 and 5.5.  
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Figure 4.4 Aerodynamic Model in Aeroelastic Analysis with Thickness Effect 

 

Based on the aerodynamic mesh given in Figure 4.4, three-dimensional unsteady 

linearized small disturbance potential equation [39] is used in the ZONA6 

submodule of ZAERO for aerodynamic analysis. It should be noted that the unsteady 

linearized small disturbance potential equation which is derived from velocity 

potential equation is widely used and accepted in aeroelasticity field [1] and there 

are several studies which the fuselage modelled as a body and aeroelastic analysis 

conducted by utilizing ZAERO in the literature [40],[41],[42].  

There are further studies in order to improve the aerodynamic model in aeroelastic 

analysis such as advanced small perturbation potential flow theory [43] and small 

disturbance CFD [44]. Therefore, small perturbation assumption is sufficient to 

represent the aerodynamic behaviour in aeroelastic analysis since the unsteadiness 

of aerodynamics is based on the small aircraft structure deformations; hence 

unsteady aerodynamics can easily be assumed linear. The governing three-

dimensional unsteady linearized small disturbance potential equation is given by 
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Equation (4.1) and the derivation of this equation according to usage in aeroelastic 

analysis and necessary explanations can be found in Appendix C. 

(1 − 𝑀2
∞)𝛷𝑥𝑥 + 𝛷𝑦𝑦 + 𝛷𝑧𝑧 − 2

𝑀∞

𝑎∞
𝛷𝑥𝑡 −

1

𝑎∞
2

𝛷𝑡𝑡 = 0 (4.1) 

where, M∞ and a∞ is the freestream Mach number and speed of sound respectively 

and 𝛷 denotes the total velocity potential.   

The fuselage of the aircraft studied in this thesis is modelled with body-like elements 

whereas, wings, horizontal and vertical tails of the aircraft are modelled with wing-

like elements. ZAERO computes the steady and unsteady pressure on wing-like and 

body-like components at discrete Mach numbers and reduced frequencies with 

appropriate integral equations and boundary conditions according to element type 

and steady/unsteady conditions, then stores AIC matrices. The flow chart of 

computation procedure for steady and unsteady coefficient of pressures is given in 

Figure 4.5. 
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Figure 4.5 Flow Chart of the Computational Procedure for Unsteady Pressures [45] 

Following the computational process presented in Figure 4.5, ZAERO makes 

necessary arrangements by using the pressure coefficient (Cp) and constructs AIC 

matrices in order to relate the structural mode shapes and the aerodynamic model, as 

shown in Equation (4.2),   

{𝐹𝑎} = 𝑞∞[𝐴𝐼𝐶]{𝑎} (4.2) 

where a, q∞ Fa denote the aerodynamic displacement vector, dynamic pressure and 

force and moment vector respectively.  
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4.3 Rational Function Approximation of Unsteady Aerodynamics 

The AIC matrices mentioned in the Section 4.2 are calculated and stored at discrete 

Mach numbers and reduced frequencies (k). The reduced frequency (k), which is an 

indication of the unsteadiness of the flow, shows up as the argument in the AIC 

matrices for the simple harmonic motion assumption. The reduced frequency is 

defined as, 

𝑘 =
𝜔𝐿

𝑉
(4.3) 

where ω, L and V are the harmonic oscillatory frequency, reference chord length 

and velocity of the undisturbed flow. Equation (4.2) can then be re-expressed by 

Equation (4.4). 

{𝐹𝑎} = 𝑞∞[𝐴𝐼𝐶(𝑖𝑘)]{𝑎} (4.4) 

It should be noted that AIC matrices are calculated utilizing simple harmonic motion 

assumption and stored for each reduced frequency; AIC matrices are defined in the 

frequency domain. This approach is a very convenient way to study the aeroelastic 

behavior in terms of calculation time and accuracy. However, time marching solution 

of nonlinear aeroelastic equations requires time domain aerodynamic force and 

moment information; therefore, AIC matrices should be transformed into time 

domain, in other words state space form.  

Before this transformation, stored AIC matrices should be in a form of generalized 

with respect to spline and structural mode shape vector. Spline matrix can be defined 

such as:  

{𝑎} = [𝐺]{ℎ} (4.5) 

where, a, h and G are aerodynamic displacement vector, structural deformation 

vector and the spline matrix, respectively. It is worth to mention that size of the h 

vector is equal to the total structural degree of freedom ntotal, length of the a vector 
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is equal to the total number of aerodynamic boxes, naero, multiplied with 6 since 

interpolated aerodynamic displacement is expressed in terms of 3 translational (x, y 

and z axis) displacements, and also their derivatives with respect to the wind axis to 

cover the slopes of the displacements. Therefore, size of the G matrix is (6 x naero) 

by (ntotal). The aerodynamic panels in aeroelastic analysis, wing-like or body-like, 

have control points which are shown in Figure 4.6. For body-like elements, the 

control points correspond to the center of the panels, whereas for the wing-like 

elements, control points correspond to 85% of the chord for subsonic flight regime. 

The problem of data transversal between the panel model and the structural finite 

element model usually amounts to the displacement transferal from the structural 

grid points to the aerodynamic control points of the panel model and that of the forces 

from the aerodynamic control points to the structural grid points.  

 

 
 

Figure 4.6 Aerodynamic Panel Discretization for Body-like (left) and Wing-like 

(right) Elements 

The aerodynamic force vector (Fa) can be transformed to structural force vector (Fh) 

by using spline matrix given in Equation (4.5): 

{𝐹ℎ} = [𝐺]𝑇{𝐹𝑎} (4.6) 

The aerodynamic force vector can be re-defined by substituting Equation (4.5) into 

Equation (4.4): 
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{𝐹𝑎} = 𝑞∞[𝐴𝐼𝐶(𝑖𝑘)][𝐺]{ℎ} (4.7) 

Then, structural force vector can be expressed by substituting Equation (4.7) into 

Equation (4.6): 

{𝐹ℎ} = 𝑞∞[𝐺]𝑇[𝐴𝐼𝐶(𝑖𝑘)][𝐺]{ℎ} (4.8) 

It should be noted that the order of the force vector (Fh) given in Equation (4.8) 

corresponds to the degree of freedom in modal analysis; however, they need to be 

transformed into the modal domain in order to use in aeroelastic analysis. Once the 

modal matrix ([𝜙]) is obtained the via modal analysis solution described in Section 

3, the global structural degree of freedom vector (h) can be transformed into 

generalized coordinates (𝜉) as given by Equation (4.9). 

{ℎ} = [𝜙]{𝜉} (4.9) 

Here, the order of the modal matrix equal to 344214 dof by 19 modes. It should also 

be noted that 19 modes contain 6 rigid-body modes and 13 elastic modes. Using the 

governing equation of the structural dynamic system given in Equation (3.2), 

aeroelastic equation of motion without damping can be defined as: 

[𝑀]{ℎ̈(𝑡)} + [𝐾]{ℎ(𝑡)} = {𝐹ℎ} (4.10) 

Following the substitution of Equation (4.9) into Equation (4.10) and each term is 

multiplied by [𝜙]𝑇 from left side resulting in, 

[�̅�]{�̈�} + [�̅�]{𝜉} = [𝜙]𝑇{𝐹ℎ} (4.11) 

where generalized mass ([�̅�]) and stiffness ([�̅�]) matrices are defined as: 

[�̅�] = [𝜙]𝑇[𝑀][𝜙] (4.12) 

[�̅�] = [𝜙]𝑇[𝐾][𝜙] (4.13) 
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Substituting Equation (4.8) into Equation (4.11) using Equation (4.9) gives 

Equation (14). 

[�̅�]{�̈�} + [�̅�]{𝜉} = 𝑞∞[𝜙]𝑇[𝐺]𝑇[𝐴𝐼𝐶(𝑖𝑘)][𝐺][𝜙]{𝜉} (4.14) 

To be able to model the kinematic motion of control surfaces and aerodynamic force 

and moments due to control surfaces in aeroservoelastic analysis, the modal matrix 

of the system includes control surface modes that are computed internally by 

ZAERO. Therefore, modal matrix of the system can be represented as a combination 

of structural mode shapes or modal matrix ([𝜙ℎ]) and control surface kinematic 

mode ([𝜙𝑐]). The right side of the Equation (4.14) can be divided into two parts as, 

[�̅�]{�̈�} + [�̅�]{𝜉} = 𝑞∞[𝑄ℎℎ(𝑖𝑘)]{𝜉} + 𝑞∞[𝑄ℎ𝑐(𝑖𝑘)]{𝛿} (4.15) 

where, 

[𝑄ℎℎ(𝑖𝑘)] = [𝜙ℎ]𝑇[𝐺]𝑇[𝐴𝐼𝐶(𝑖𝑘)][𝐺][𝜙ℎ] (4.16) 

[𝑄ℎ𝑐(𝑖𝑘)] = [𝜙ℎ]𝑇[𝐺]𝑇[𝐴𝐼𝐶(𝑖𝑘)][𝐺][𝜙𝑐] (4.17) 

 

and GAF matrix can also be represented as, 

[𝑄] = [𝑄(𝑖𝑘)] = [𝑄ℎℎ(𝑖𝑘)] + [𝑄ℎ𝑐(𝑖𝑘)] (4.18) 

Here, [𝑄ℎℎ] and [𝑄ℎ𝑐] are generalized aerodynamic force (GAF) matrices due to 

structural modes and control surface modes, respectively. 

The conversion of GAF matrices into state-space equations is done using the rational 

function approximation (RFA). This process has an intermediate step which is the 

transformation of GAF matrices that are defined in frequency domain into Laplace 

(s) domain. Although the calculated GAF matrices are defined at specific Mach 

numbers or velocities and reduced frequencies, Laplace domain is continuous. 

Therefore, following expression is assumed, 
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𝑔 +  𝑖𝑘 =
𝑠𝐿

𝑉
(4.19) 

where g is the non-dimensional damping which expands the unsteady aerodynamics 

from the imaginary axis (g=0) to the entire Laplace domain [46], and it is not 

described during the calculation of GAF matrices, and it was taken as zero. However, 

transformation from frequency domain into time domain requires this damping 

parameter. At this point, the new challenge is to expand unsteady aerodynamic 

matrices, which are defined on the red line in Figure 4.7, to the entire Laplace 

domain. 

 

Figure 4.7 Representation of Transformation of GAF from Frequency Domain to 

Laplace Domain [46] 

The calculated GAF matrices are defined at discrete complex reduced frequency 

numbers. On the other hand, in order to perform nonlinear aeroservoelastic analysis, 

elements of GAF matrices should be defined in a continuous Laplace domain which 

includes damping that corresponds to the negative real axis in Figure 4.7. However, 

the classic GAF matrices are defined only for different reduced frequencies which 

correspond to positive imaginary axis in the same figure. According to given non-

dimensional damping formula in Equation (4.19), for the transformation from 
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discrete frequency domain to continuous Laplace domain, a set of roots on negative 

axis which are named as aerodynamic lag roots are required and they are the 

corresponding damping terms. Then, calculated GAF matrices will be continuous in 

Laplace domain, and they can easily be transformed to time domain by Inverse 

Fourier Transform methods.  To remove the discontinuity on the negative axis, a set 

of lag roots are located, as shown in Figure 4.8 [46]. 

 

Figure 4.8 Aerodynamic Lag Roots [45] 

On negative real axis, the non-dimensional damping is negative which is related to 

aerodynamic lag. Aerodynamic lag roots represent the delay of the flow since their 

reduced frequency is zero and they have only non-dimensional damping term.  

On the other hand, there is no method or rule of thumb for the selection of the number 

of aerodynamic lag roots and their location. Hereby, this decision depends on the 

trial-error procedure. The numbers of aerodynamic lag roots and locations can be 

determined by comparing the frequency and time-domain GAF matrices. In this 

comparison, since the conversion is an approximation, calculated aerodynamic 

matrices in frequency domain can be assumed exact.   
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Generalized aerodynamic force and moments due to structural mode shapes and 

kinematic control surface modes can be expressed [45] as: 

[�̃�(𝑠)] = [𝐴0] +
𝐿

𝑉
[𝐴1]𝑠 +

𝐿2

𝑉2
[𝐴2]𝑠

2 + [𝐷] [𝑠[𝐼] −
𝑉

𝐿
[𝑅]]

−1

[𝐸]𝑠 (4.20) 

here, [A0], [A1], and [A2] represent aerodynamic stiffness, damping and apparent 

mass matrices of the unsteady aerodynamics respectively. [D] matrix is either 

identity matrix or treated as a free variable according to least square fit method which 

is mentioned in the following, [E] matrix is a free variable and [R] stands for 

aerodynamic lag root matrix where the lag roots are positioned diagonally. In this 

equation, only known matrix is R and other matrices are found by least square fit 

procedure utilizing Equations (4.21) and (4.22). This method is based on minimizing 

the difference between the frequency domain GAF matrices [𝑄] and approximated 

GAF matrices [�̃�] in the state-space domain. 

휀 = √ ∑ 휀𝑝,𝑞,𝑟
2

𝑝𝑚𝑎𝑥,𝑞𝑚𝑎𝑥,𝑟𝑚𝑎𝑥

𝑝,𝑞,𝑟

(4.21) 

휀𝑝,𝑞,𝑟 =  |�̃�(𝑖𝑘𝑟) − 𝑄(𝑖𝑘𝑟)|𝑊𝑝,𝑞,𝑟 (4.22) 

here, p and q correspond to mode shapes of the structure and r is the reduced 

frequency index of the GAF matrix respectively. pmax and qmax denote the total 

number of mode shapes and rmax is the total number of reduced frequencies. W is the 

weight factor which is used to increase or decrease weight of the mode shapes and 

reduced frequencies. In this study, weighting factor for all mode shapes and reduced 

frequencies are taken as equal.      

In Equation (4.20) unknown matrices, [A0], [A1], and [A2] for both solution methods 

and [E] matrix in Roger’s Method and [D] and [E] matrices in Minimum State 

Method are solved using the least square fit procedure. 
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4.3.1 Roger’s Method 

Roger’s method [46] assumes [E] as a free variable and [D] and [R] are fixed. In this 

method, [D] and [R] have the following form,  

[𝐷] = [[𝐼]ℎℎ, [𝐼]ℎℎ. . [𝐼]ℎℎ]𝑁ℎ𝑥 𝑁𝑙𝑎𝑔
(4.23) 

[𝑅] = −

[
 
 
 
 
 
 
 
 
 
 
 
 
[

R1

.
RNlag

]

1

[

R1

.
RNlag

]

2

.
.

[

R1

.
RNlag

]

𝑁ℎ]
 
 
 
 
 
 
 
 
 
 
 
 

(4.24) 

 

here h denotes the hth  mode shape, Nh and Nlag are the number of mode shapes and 

aerodynamic lag terms. Therefore, the size of the [R] matrix is NhxNlag by NhxNlag. 

4.3.2 Minimum State Method 

Karpel’s minimum state method [8] takes the [D] and [E] matrices as free variables 

and [R] matrix is assumed as: 

[𝑅] = −

[
 
 
 
 
 
𝑅1

𝑅2

.
.

𝑅𝑁𝑙𝑎𝑔]
 
 
 
 
 

𝑁𝑙𝑎𝑔𝑥𝑁𝑙𝑎𝑔

(4.25) 
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4.3.3 Comparison of Roger’s and Minimum State Methods 

When Equations (4.24) and (4.25) are compared, although number of aerodynamic 

lag terms in Karpel’s minimum state method is only Nlag, in Roger’s method this 

number is multiplied with the number of structural modes (Nh  x Nlag). Since [D] and 

[E] matrices are unknowns or free variables in the least square procedure in Karpel’s 

method and it has an iterative solution for these matrices, this method is a nonlinear 

least square procedure in order to achieve more accurate approximation.  

The comparison of the Roger’s and Karpel’s methods can be conducted on the 

generalized aerodynamic force matrix of the very light aircraft. It should be noted 

that generalized aerodynamic force matrices (GAF) are non-dimensionalized with 

respect the mode shapes and they are calculated at specific Mach number and 

reduced frequency. This comparison is conducted for all Mach numbers, reduced 

frequencies and mode shapes by visual inspection. For the calculated AIC matrix at 

0.2 Mach which is generalized with the 1st symmetric wing bending mode shape, the 

comparison of real and imaginary parts of GAF matrices is given in Figure 4.9 for 

all reduced frequencies. This comparison is made for the Q77 element of the GAF 

matrix. From the visual inspection of this figure, it can be concluded that Roger’s 

method has a better fit to the frequency domain approach than the minimum state 

method. Therefore, in this study Roger’s method is used to transform GAF matrices 

into state-space format. 

In Figure 4.9, the data points on the lines correspond to the reduced frequencies of 

aerodynamic model since generalized aerodynamic force (GAF) matrices are 

calculated at discrete Mach numbers and reduced frequencies.  
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Figure 4.9 Comparison of Roger's and Karpel's Method of GAF (Q77) at 0.2 Mach 

for Several k  

4.4 Conclusion 

In this chapter, unsteady aerodynamic model of the aircraft is introduced firstly. In 

order to conduct aeroservoelastic analysis in time domain and time marching 

nonlinear aeroelastic analysis, aerodynamic force and moments calculated in 

frequency domain are transformed into state space via RFA. In this approximation, 

different methods are compared, and Roger’s method approximation is seen fit better 

to the frequency domain results which can be assumed exact solution. Comparison 

of Roger’s and Karpel’s methods is performed for a specific element of the GAF 

matrix in Figure 4.9, but in general comparison shows that for all elements of the 

GAF matrix, Mach numbers and reduced frequencies Roger’s method gives a better 

for the frequency domain approach.
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CHAPTER 5  

5 AEROELASTIC MODELLING AND ANALYSIS 

5.1 Introduction 

In this chapter, using the structural dynamic model in modal domain introduced in 

CHAPTER 3 and aerodynamic model in frequency domain referred in CHAPTER 

4, aeroelastic modelling is introduced. In order to couple the structural and the 

aerodynamic model, spline methodology is presented and then governing equations 

are introduced. Finally, open-loop flutter analysis is conducted in ZAERO 

environment and flutter analysis results are presented.  

5.2 Spline Methodology 

Aeroelasticity phenomenon is a multi-disciplinary phenomenon, and it requires to 

define the interaction between the structural and aerodynamic models. In other 

words, the change in aerodynamic force and moments acting on the aircraft due to 

structural displacements should be calculated. Therefore, in order to transform the 

modal displacement into the aerodynamic model, spline matrix generation is 

essential. Constructing spline matrix with ZAERO is nothing but selection of certain 

structural grids and matching with them with corresponding aerodynamic panels or 

bodies. It should be noted that the selected structural grids, whose displacements are 

transformed to aerodynamic model, must belong to hard points of the aircraft in order 

to prevent the interaction of local mode shapes and the aerodynamic model. 

Therefore, the structural grids used in spline matrix generation are chosen from grids 

on frames, ribs and spars of the aircraft, as shown in Figure 5.1 and their positions 

on the aerodynamic model are shown in Figure 5.2. 
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Figure 5.1 Spline Grids Selected from the Structural Model 

 

Figure 5.2 Spline Grids Presentation on the Aerodynamic Model 

The equation of interaction between the structural deformation and aerodynamic 

displacement can be expressed in Section 4.3. 
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5.3 Spline Verification 

In order to confirm that selected structural grids used in the spline are adequate, 

spline verification is necessary for all type of aeroelastic analysis. To do a spline 

verification, aerodynamic model is checked if the deformation of the aerodynamic 

model follows the primary structural mode shapes. In Figure 5.3, comparisons are 

given for some structural modes. For all mode shapes, comparisons are given in 

Appendix B. Based on the spline verification study, it is concluded that for all 

structural mode shapes, the deformation of the aerodynamic model followed the 

structural modes in conformance; therefore, selected structural spline grids are 

sufficient to build an interaction between the structural and the aerodynamic model. 

  

 
 

  

Figure 5.3 Spline Verification for the First Three Elastic Modes 
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5.4 Governing Equations of Aeroelastic Analysis 

Using equations of motions aeroelastic system given in Equation (4.15) and 

removing one part of the GAF contribution due to control surface modes since this 

chapter is related with open-loop aeroelastic analysis, governing equation of motion 

for open-loop aeroelastic system reads: 

[�̅�]{�̈�} + [�̅�]{𝜉} = 𝑞∞[𝑄ℎℎ(𝑖𝑘)]{𝜉} (5.1) 

where, modal generalized coordinates (𝜉) can be re-written by assuming harmonic 

motion. 

{𝜉} =  {𝜉̅}𝑒𝑖𝜔𝑡 (5.2) 

Substituting Equation (5.2) into Equation (5.1) yields. 

−𝜔2[�̅�]{𝜉̅}𝑒𝑖𝜔𝑡 + [�̅�]{𝜉̅}𝑒𝑖𝜔𝑡 = 𝑞∞[𝑄ℎℎ(𝑖𝑘)]{𝜉̅}𝑒𝑖𝜔𝑡 (5.3)  

Simplifying Equation (5.3) reads, 

[−𝜔2[�̅�] + [�̅�] − 𝑞∞[𝑄ℎℎ(𝑖𝑘)]]{𝜉̅} = {0} (5.4) 

where [�̅�] are [�̅�] are the generalized structural mass and stiffness matrices 

according to Equation (4.12) and (4.13) respectively, [𝑄ℎℎ(𝑖𝑘)] is generalized 

aerodynamic force (GAF) matrix with respect to structural mode shapes ([𝜙ℎ]) only, 

and ω and q∞ are the natural frequency and free stream dynamic pressure. In order 

to measure damping of the aeroelastic system, artificial structural damping, g, is 

added to the equation which is proposed by Theodorsen [9] and it is widely accepted 

in the aeroelasticity field, and it is called as K-method flutter equation. It is consistent 

mathematically with the simple harmonic motion assumption. In the K-method 

solution, damping is artificial, and it does not have any physical meaning; therefore 

flutter speed is exact only at the zero damping. Using the K-method flutter solution 
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method, Equation (5.4) can be rewritten including non-dimensional damping term 

(g): 

[−𝜔2[�̅�] + (1 + 𝑖𝑔)[�̅�] − 𝑞∞[𝑄ℎℎ(𝑖𝑘)]]{𝜉̅} = 0 (5.5) 

Dynamic pressure can be written in terms of reduced frequency, k, as shown in 

Equation (5.6). 

𝑞∞ =
1

2
𝜌𝑉2 = 

1

2
𝜌 (

𝜔𝐿

𝑘
)

2

(5.6) 

Inserting Equation (5.6) into Equation (5.5) and dividing the whole equation with 

square of natural frequency gives the eigenvalue problem for flutter analysis in the 

K-method: 

[[�̅�] +
𝜌

2
(
𝐿

𝑘
)
2

+ [𝑄ℎℎ(𝑖𝑘)] − 𝜆[�̅�]] {𝜉̅} = 0 (5.7) 

where λ is the complex eigenvalue which is determined by an eigenvalue problem 

after some iterations. Complex eigenvalue is defined by Equation (5.8). 

𝜆 = (
1 + 𝑖𝑔

𝜔2
) (5.8) 

The K method in aeroelastic analysis is not a matched solution method, in another 

saying, resultant flutter velocity does not correspond to the Mach number which is 

used in calculation of AIC matrices. Therefore, P-K method, which is a matched 

solution method, is used in this study. This method is proposed by Hassig [47] and 

it is expressed as, 

[(
𝑉

𝐿
)
2

[�̅�]𝑝2 + [�̅�] −
1

2
𝜌𝑉2[𝑄ℎℎ(𝑖𝑘)]] {𝜉̅} = 0 (5.9) 

where, 𝑝 is the non-dimensional Laplace parameter, and it is expanded as: 
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𝑝 = 𝑔 + 𝑖𝑘 (5.10) 

where non-dimensional damping is assumed as a function of transient decay rate 

coefficient (γ) and reduced frequency (k) shown in Equation (5.11).  

𝑔 =  𝛾𝑘 (5.11) 

In the iterative solution algorithm of the P-K method, reduced frequency k and the 

imaginary part of 𝑝 is matched; hence the solution is a matched point solution. The 

imaginary part of the solution gives the resultant frequency of the system, and the 

real part of the system gives the estimated damping at each velocity. Finally, the 

eigenvalue problem solution of Equation (5.9) gives velocity versus damping (V-g) 

and velocity versus frequency (V-f) curves which are the general outputs of flutter 

analysis. 

5.5 Flutter Analysis Results 

Based on aerodynamic and structural models which are introduced in Chapter 3 and 

Chapter 4 respectively, flutter analysis is conducted within ZAERO environment 

using the P-K method. The list of velocities and the corresponding Mach numbers 

and the reduced frequencies used to calculate the AIC matrices are listed in Table 

5.1. In this table, velocities and Mach numbers correspond to each other since all 

analyses are conducted at the sea level altitude. It should be noted that for each 22 

velocities or corresponding Mach numbers, AIC matrices are calculated and saved 

for 20 reduced frequencies by using ZAERO. According to ZAERO file management 

system, each of the saved AIC matrix files contains required reduced frequencies 

within. Therefore, totally 22 AIC matrix files are saved whereas 440 Mach-k pair 

AIC matrices are used in this study.    
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Table 5.1 Parameters of AIC Matrices 

 # Velocities (m/s)  # Mach Numbers (M)  # Reduced Frequencies (k) 

 1 0.000  1 0.000  1 0.000 

 2 10.000  2 0.030  2 0.020 

 3 20.000  3 0.060  3 0.050 

 4 30.000  4 0.090  4 0.100 

 5 40.000  5 0.120  5 0.200 

 6 50.000  6 0.150  6 0.300 

 7 60.000  7 0.170  7 0.400 

 8 70.000  8 0.200  8 0.500 

 9 80.000  9 0.230  9 0.600 

 10 90.000  10 0.260  10 0.700 

 11 100.000  11 0.290  11 0.800 

 12 110.000  12 0.320  12 0.900 

 13 120.000  13 0.350  13 1.000 

 14 130.000  14 0.380  14 1.100 

 15 140.000  15 0.410  15 1.200 

 16 150.000  16 0.440  16 1.300 

 17 160.000  17 0.470  17 1.500 

 18 170.000  18 0.500  18 2.000 

 19 180.000  19 0.520  19 2.500 

 20 190.000  20 0.550  20 3.000 

 21 200.000  21 0.580    

 22 210.000  22 0.610    

 

The results of flutter analysis are presented as velocity-damping (V-g) and velocity-

frequency (V-f) plots in the velocity range of interest given in Table 5.1 and at the 

sea level. Velocity-damping and velocity-frequency plots are given in Figure 5.4 and 

Figure 5.5, respectively. 

 



 

 

58 

 

Figure 5.4 Velocity vs Damping Plot 
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Figure 5.5 Velocity vs Frequency Plot 
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It should be noted that, matched point flutter solution algorithm is used during the 

flutter analysis. Moreover, because of the unrestrained aircraft model, aeroelastic 

behavior of rigid body modes are excluded from results. The starting point for 

undamped oscillatory solutions of the structure is the flutter speed; thus, this is 

referred to as the vehicle's flutter speed. It can be concluded from flutter result graphs 

that the aircraft is free from flutter within its flight regime. Beyond the dive speed of 

the very light aircraft which is 70.736 m/s, flutter instability is observed at 163 m/s. 

The flutter mode shape is dominated with mode shape of 1st symmetric elevator 

bending and mode shapes of aileron antisymmetric bending and wing in-plane 

bending slightly contribute to this flutter mode shape. It should be also noted that, 

there is also a slight contribution of the local flap mode. The flutter mode shape is 

given in Figure 5.6.   

 

Figure 5.6 Flutter Mode Shape at 163 m/s 
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5.6 Conclusion 

In this chapter, firstly spline methodology and verification study are introduced in 

order to couple the aerodynamic and the structural models. Then, governing 

equations belonging to the classic flutter analysis are presented and finally, the 

results of the analysis are shared.    

The results show that aircraft is free from flutter instability within the flight regime. 

In the structural modal analysis, structural damping of the aircraft is assumed as zero 

which is unrealistic and conservative approach in aeroelastic analysis; therefore, the 

instability of the aircraft is determined by the positive damping. Mode 11 which is 

the mode shape of 1st symmetric elevator bending has a positive damping starting 

from Vf =163 m/s which indicates the flutter instability. However, flutter speed (Vf) 

is outside of flight regime and also beyond of the 1.15 times of dive speed (VD), of 

the aircraft which is as a required flutter clearance velocity for safety margin in 

aerospace field [48].  For the very light aircraft, 1.15 times the dive speed is 81.346 

m/s. 
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CHAPTER 6  

6 NONLINEAR AEROSERVOELASTIC MODELLING AND ANALYSIS  

6.1 Introduction 

In this chapter of the thesis, nonlinear aeroservoelastic modelling analysis 

procedures are presented. Firstly, actuator model implementation is introduced; 

because actuator dynamic behavior is necessary for control law implementation in 

ASE analysis. After the implementation of the actuator model and consequently of 

its states in the state-space representation of the aeroelastic model, this system 

became the plant level in the aeroelastic system. Then, including control law 

modeling to aeroelastic system, aeroservoelastic modelling is obtained and this is 

called as the vehicle level model. 

Then, nonlinearity which originates from the freeplay in the control surfaces is 

included in ASE analysis and nonlinear system dynamic equations are obtained. In 

order to implement nonlinearity more accurately, fictitious mass approach is used. 

Governing equations of motion of nonlinear aeroservoelastic system with fictitious 

mass approach and freeplay are introduced.  

Finally, time marching solutions of presented nonlinear aeroservoelastic system are 

calculated via ZAERO and they are presented. For each control surface i.e., ailerons, 

elevator, and rudder, freeplay motion is treated separately and also when freeplay 

exist in more than one control surface. Time marching solutions are conducted at 

different flight conditions. 
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6.2 Actuator Modelling 

The aim of the actuation system is to deflect the control surface to the commanded 

position by the flight control system. Actuation system has its own control system, 

and it needs electricity or hydraulic pressure for actuation and a phase and lag 

generally occurs between the command and the control surface motion. The 

imperfection of this system can be represented by a transfer function and this 

dynamic behavior can affect the aeroservoelastic system significantly. However, 

since the purpose of this study is not to investigate the effect of the dynamic behavior 

of the actuator on the aeroservoelastic analysis, a third-order dummy transfer 

function is assigned between the control surface deflection and the actuator 

command. The reason of third order is that ZAERO requires actuator transfer 

functions to be at least third order. Third order transfer function can be expressed as: 

𝛿𝑐𝑠(𝑠)

𝑢𝑎𝑐(𝑠)
=  

𝐴3

𝑠3 + 𝐴1𝑠2 + 𝐴2𝑠 + 𝐴3
(6.1) 

where 𝛿𝑐𝑠 and 𝑢𝑎𝑐 are the control surface deflection and the actuator command in 

Laplace domain, respectively. In order to prevent the effect of the actuator dynamic 

on the aeroservoelastic model, the parameters of the third-order dummy transfer 

function, i.e., A1, A2, A3 are taken as listed in Table 6.1. These parameters are chosen 

by a trial-error procedure so that gain and phase margins are minimized within the 

frequency range of interest. 

Table 6.1 Actuator Transfer Function Parameters 

Parameter Value 

A1 1409.690 

A2 132.4820 E+4 

A3 830.036 E+5  
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As it can be seen in Figure 6.1, the magnitude and phase of the transfer function are 

very close to 0 dB and 0 degree implying that the dummy actuator transfer function 

does not influence the dynamic behavior of the aircraft in the frequency range of 

interest between the 0 and 50 Hz. 

 

Figure 6.1 Bode Diagram of the Actuator Transfer Function 

The actuator transfer function given in Equation (6.1) can be defined in state-space 

representation in the following forms: 

{𝑥𝑎𝑐𝑡̇ } = [
0 1 0
0 0 1

−𝐴3 −𝐴2 −𝐴1

] {𝑥𝑎𝑐𝑡} + {
0
0
𝐴3

} 𝑢𝑎𝑐𝑡 (6.2) 

{𝑥𝑎𝑐𝑡̇ } = [𝐴]{𝑥𝑎𝑐𝑡} + [𝐵]𝑢𝑎𝑐𝑡 (6.3) 

where 𝑥𝑎𝑐𝑡 is the actuator transfer function states and it can be expressed as: 

{𝑥𝑎𝑐𝑡} = {
𝛿
�̇�
�̈�

} (6.4) 
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6.3 Aeroservoelastic Modelling 

Before constructing the aeroservoelastic model, aeroelastic Equation (5.1) should be 

expressed in state space form by utilizing the RFA and transforming the frequency 

domain solution into time domain. Firstly, rational function approximation of the 

GAF matrices is expressed as contribution of both structural mode shapes {ξ} and 

control surface deflections {δ}, 

[�̃�] = [�̃�ℎℎ(𝜉)] + [�̃�ℎ𝑐(𝛿)] (6.5) 

[�̃�ℎℎ(𝜉)] =  𝑞∞ [[𝐴ℎℎ0
]{𝜉} +

𝐿

𝑉
[𝐴ℎℎ1

]{�̇�} +
𝐿2

𝑉2
[𝐴ℎℎ2

]{�̈�}] (6.6) 

[�̃�ℎ𝑐(𝛿)] = 𝑞∞ [[𝐴ℎ𝑐0
]{𝛿} +

𝐿

𝑉
[𝐴ℎ𝑐1

]{�̇�} +
𝐿2

𝑉2
[𝐴ℎ𝑐2

]{�̈�} + [𝐷]𝑥𝑎] (6.7) 

where, A matrices in Equation (6.6-6.7) are the submatrices of A matrices given 

Equation (4.20) and 𝑥𝑎 is the aerodynamic state vector due to the rational function 

approximation which can be expressed as: 

𝑥𝑎 = [𝑠[𝐼] −
𝑉

𝐿
[𝑅]]

−1

[[𝐸ℎ]{𝜉} + [𝐸𝑐]{𝛿}] (6.8) 

Then, re-expressing Equation (4.15) by using Equation (6.6-6.7), one gets, 

[�̅�]{�̈�} + [�̅�]{𝜉} + [𝑀ℎ𝑐]{�̈�} = 𝑞∞[�̃�ℎℎ(𝜉) + �̃�ℎ𝑐(𝛿)] (6.9) 

where, [�̅�] and [�̅�] are the generalized mass and stiffness with respect to modal 

matrix ([𝜙ℎ])  respectively. These matrices are also given in Equation (4.12-4.13). It 

should be noted that, approximated GAF matrix with RFA ([�̃�]) is denoted as [𝑄] to 

simplify the editing of equations through the rest of the study. [𝑀ℎ𝑐] is the 

generalized mass matrix with respect to modal matrix ([𝜙ℎ]) and control surface 

mode shapes ([𝜙𝑐]), which is expressed as in Equation (6.10).  
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[𝑀ℎ𝑐] = [𝜙ℎ][𝑀][𝜙𝑐] (6.10) 

Then assuming aeroelastic state as combination of structural mode shape vector, the 

first derivative of it with respect to time and aerodynamic state respectively: 

 

{𝑥𝑎𝑒} = {

𝜉

�̇�
𝑥𝑎

} (6.11) 

State space form of the aeroelastic system of equations can be expressed in the 

following form according to state-space representation of linear time independent 

(LTI) systems [49]: 

{𝑥𝑎𝑒̇ } = [𝐴𝑎𝑒]{𝑥𝑎𝑒} + [𝐵𝑎𝑒]{𝑢𝑎𝑒} (6.12) 

{𝑦𝑎𝑒} = [𝐶𝑎𝑒]{𝑥𝑎𝑒} (6.13) 

where 

[𝐴𝑎𝑒] =

[
 
 
 
 

0 𝐼 0

−[�̃�]
−1

[[�̅�] − 𝑞∞[𝐴ℎℎ0
]] [�̃�]

−1
[
𝑞∞𝐿

𝑉
[𝐴ℎℎ1

]] 𝑞∞[�̃�]
−1

[𝐷]

0 𝐸ℎ

𝑉

𝐿
[𝑅] ]

 
 
 
 

(6.14) 

[𝐵𝑎𝑒] =

[
 
 
 

0 0 0

𝑞∞[�̃�]
−1

[𝐴ℎ𝑐0
]

𝑞∞𝐿

𝑉
[�̃�]

−1

[𝐴ℎ𝑐1
] −[𝑀ℎ𝑐]

−1 [𝑀ℎ𝑐 −
𝑞∞𝐿2

𝑉2
] [𝐴ℎ𝑐2

]

0 𝐸𝑐 0

 

]
 
 
 

(6.15) 

[�̃�] = [[�̅�] −
𝑞∞𝐿2

𝑉2
 [𝐴ℎℎ2

]] (6.16) 

In Equations (6.12) and (6.13), 𝑥𝑎𝑒 is the aeroelastic state vector, 𝜉 and �̇� are the 

structural mode shape vector and its first derivative with respect to time, respectively. 

𝐴𝑎𝑒 and 𝐵𝑎𝑒 include generalized aerodynamic force and moments due to structural 
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deformation and control surface rotation. 𝑢𝑎𝑒 is the input vector of the system which 

defines control surface deflections, i.e., aileron, elevator and rudder deflections. 𝑦𝑎𝑒 

is the output vector of the aeroelastic system which corresponds to sensor states, and 

they are the rotational rates of the aircraft in 3 axes, and they are denoted as p, q and 

r. 𝐶𝑎𝑒 matrix represents the sensor model in the structural dynamics model since it is 

necessary for the control algorithm. In ZAERO, the location of the sensor on aircraft 

is provided by a structural node in the FE model. It should be noted that a structural 

grid point at the center of gravity of the aircraft is created and it is selected as a sensor 

grid for the aeroservoelastic model. This sensor model measures the necessary inputs 

of flight control algorithm. The input to the flight control algorithm corresponds to 

the output of the aeroelastic plant system (𝑦𝑎𝑒). In this study, since the sensors 

measure the velocity of a structural grid, [𝐶𝑎𝑒] matrix can be defined as: 

𝐶𝑎𝑒 = [

[0]

[𝜙ℎ𝑖
]

[0]

] (6.17) 

where, [𝜙ℎ𝑖
] represents the modal displacement of structural modes at the ith grid in 

the FE model corresponding to the sensor grid.   

Appending the third order actuator dynamic states given in Equations (6.3) into 

aeroelastic state space equations which is given in Equations (6.12-6.13), state-space 

plant model is obtained as,  

{𝑥�̇�} = [𝐴𝑝]{𝑥𝑝} + [𝐵𝑝]{𝑢𝑝} (6.18) 

{𝑦𝑝} = [𝐶𝑝]{𝑥𝑝} + [𝐷𝑝]{𝑢𝑝} (6.19) 

{𝑥𝑝} = {

𝑥𝑎𝑒

𝛿
�̇�
�̈�

} (6.20) 
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where, 𝛿, �̇� and �̈� are control surface actuator states and their first and second 

derivative with respect to time respectively. 𝑢𝑝 is the input of the plant system and 

it corresponds to control surface actuator inputs in the plant model and 𝑦𝑝 is the 

output vector and it is identical to 𝑦𝑎𝑒. It should be noted that, the plant-level 

aeroelastic system includes aerodynamic, structure, actuator and sensor models, and 

the only difference from vehicle-level aeroelastic or aeroservoelastic model is the 

flight control algorithm.  

6.3.1 Trim Analysis and Rigid Body Aircraft Stability Derivatives 

In order to obtain the flight control law algorithm, stability derivatives of the rigid 

aircraft are necessary. Therefore, static aeroelastic or trim analysis is conducted in 

ZAERO environment. It should be noted that, although static aeroelastic analysis is 

not within the scope of this thesis, the result of trim analysis yields flexible and rigid 

stability coefficients and also their derivatives. The governing equations of static 

aeroelastic analysis is expressed as [45]: 

[𝐾]{ℎ} = {𝐹𝑎} − {𝐹𝐼} (6.21) 

where, K is global structural stiffness matrix, Fa and FI are aerodynamic and inertia 

force and moment vectors respectively. ZAERO solves Equation (6.16) while 

balancing aerodynamic and inertial forces acting on the flexible aircraft. Moreover, 

Fa is expressed as the superposition of the rigid body forces, FR, due to rigid body or 

control surface motion and flexible forces, Ff, due to the structural deformation, as 

shown by Equation (6.9). 

{𝐹𝑎} =  {𝐹𝑓} + {𝐹𝑅} (6.22) 

In order to obtain rigid body stability derivatives, flexible forces on the aircraft 

assumed as zero and rigid body forces on aircraft are expressed with respect to 

control law algorithm inputs, p, q and r, and also control surface deflections, i.e., 

𝛿𝑎𝑖𝑙, 𝛿𝑒𝑙𝑒𝑣 and 𝛿𝑟𝑢𝑑. 
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{𝐹𝑎} =  {𝐹𝑅} = 𝐹𝑅(𝑝, 𝑞, 𝑟, 𝛿𝑎𝑖𝑙 , 𝛿𝑒𝑙𝑒𝑣, 𝛿𝑟𝑢𝑑) (6.23) 

The inputs and outputs of the trim analysis are listed in Table 6.2. It should be noted 

that rates are nondimensionalized. In this table, b, S and c correspond to half-span, 

reference area of the wing and span length respectively. Moreover, M denotes the 

moment, q∞ is the dynamic pressure.   

Table 6.2 Trim Analysis Inputs and Outputs 

# Trim Inputs Units Trim Outputs 

1 p rate [pb/2V] Drag Coefficient (ΔCx) 

2 q rate [qc/2V] Side Force Coefficient (ΔCy) 

3 r rate [rb/2V] Lift Coefficient (ΔCz) 

4 Aileron Deflection degree Roll Moment Coefficient (ΔCl) 

5 Elevator Deflection degree Pitch Moment Coefficient (ΔCm) 

6 Rudder Deflection degree Yaw Moment Coefficient (ΔCn) 

 

In Table 6.2, trim inputs are defined in an unconventional way which is required in 

static aeroelastic analysis in ZAERO. Normally, p rate described for the roll 

acceleration of the aircraft with respect to x axis and its unit is radian per second 

(radian/second). Since ZAERO requires these parameters in non-dimensionalized 

form, p, q and r rates are non-dimensionalized with respect to their p, q and r angles, 

respectively, half-span (b), chord (c) and the velocity (V). On the other hand, the 

trim outputs which are coefficients of the aircraft are in conventional units. In the 

following Table 6.3 and Table 6.4, the trim analysis results which are the delta 

coefficients of the aircraft are given with respect to unit p rate input and unit aileron 

input, respectively. These analyses are conducted for several Mach numbers, but in 

Table 6.3 and 6.4, the results are given for only four different Mach numbers. 
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Table 6.3 Coefficients of Aircraft for a Unit p Rate Input in Static Trim Analysis 

Mach # ΔCx ΔCy ΔCz ΔCl ΔCm ΔCn 

0.050 0.00100 -0.01537 -0.45415 -0.46016 1.17622 -0.02747 

0.111 0.00287 -0.01382 -0.43735 -0.46170 1.14900 -0.02297 

0.134 0.00288 -0.01403 -0.43893 -0.46236 1.15341 -0.02306 

0.156 0.00289 -0.01427 -0.44072 -0.46312 1.15845 -0.02316 

 

Table 6.4 Coefficients of Aircraft for a Unit Aileron Input in Static Trim Analysis 

Mach # ΔCx ΔCy ΔCz ΔCl ΔCm ΔCn 

0.050 0.00000 -0.00026 0.00060 0.00267 -0.00150 0.00006 

0.111 0.00000 -0.00027 0.00055 0.00267 -0.00145 0.00005 

0.134 0.00000 -0.00027 0.00056 0.00268 -0.00146 0.00005 

0.156 0.00000 -0.00027 0.00056 0.00268 -0.00147 0.00005 

 

It should be noted that all delta coefficients found in static aeroelastic analysis are 

calculated with respect to the aerodynamic center of the aircraft. However, the 

motion of the aircraft is governed according to the force and moments acting about 

the center of gravity; therefore, calculated forces and moments at the aerodynamic 

center should be translated to the center of gravity. The positions of the aerodynamic 

center and the center of gravity as measured from the nose of the aircraft are given 

in Table 6.5. 

Table 6.5 Position of Center of Gravity and Aerodynamic Center 

Point x (mm) y (mm) z (mm) 

Center of Gravity 1898.000 0.000 -425.700 

Aerodynamic Center 2007.000 -0.560 -119.200 
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Since the delta coefficients of the aircraft are the response to corresponding unit 

inputs, they are also the derivatives of the aircraft at the same time. For example, for 

a unit aileron input corresponding to 1 degree in trim analysis, the change in the 

aerodynamic coefficients is the result of the analysis. Since the inputs of the analysis 

are unit and the results are the change in coefficients, the delta coefficients 

determined are the derivatives of the aircraft with respect to input of the analysis. 

The derivatives of the VLA are compared with the derivatives of a similar aircraft 

CESSNA 182 [50] and presented in Table 6.6 . It is seen that the derivatives of these 

two aircraft match well which means that stability derivatives of the VLA are 

reasonable and they can be directly used to model the rigid body motion of the 

aircraft. 

Table 6.6 Comparison of CESSNA 182 [50] and METU-VLA Stability Derivatives  

Stability Derivative CESSNA 182 METU-VLA 

𝑐𝐿𝛼
 4.4100 4.8140 

𝑐𝐿𝑞
 3.9000 4.4410 

𝑐𝑚𝛼
 -0.6130 -0.9250 

𝑐𝑚𝑞
 -12.4000 -12.6040 

𝑐𝑛𝑟
 -0.0930 -0.0780 

𝑐𝑛𝑝
 -0.0278 -0.0274 

 

Next step is expressing equation of motion of the rigid aircraft in state-space [49] 

domain as,  

{𝑥�̇�} = [𝐴𝑅]{𝑥𝑅} + [𝐵𝑅]{𝑢𝑅} (6.24) 

{𝑦𝑅} = [𝐶𝑅]{𝑥𝑅} + [𝐷𝑅]{𝑢𝑅} (6.25) 

where CR and DR are identity and zero matrices and, 
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𝑥𝑅 =  [
𝑝
𝑞
𝑟
] (6.26) 

𝑢𝑅 = [

𝛿𝑎𝑖𝑙

𝛿𝑒𝑙𝑒𝑣

𝛿𝑟𝑢𝑑

] (6.27) 

[𝐴𝑅] =

[
 
 
 
 
 
 
𝑑(𝑐𝑙)

𝑑𝑝

𝑑(𝑐𝑙)

𝑑𝑞

𝑑(𝑐𝑙)

𝑑𝑟

𝑑(𝑐𝑚)

𝑑𝑝

𝑑(𝑐𝑚)

𝑑𝑞

𝑑(𝑐𝑚)

𝑑𝑟

𝑑(𝑐𝑛)

𝑑𝑝

𝑑(𝑐𝑛)

𝑑𝑞

𝑑(𝑐𝑛)

𝑑𝑟 ]
 
 
 
 
 
 

(6.28) 

[𝐵𝑅] =

[
 
 
 
 
 
 
𝑑(𝑐𝑙)

𝑑𝛿𝑎𝑖𝑙

𝑑(𝑐𝑙)

𝑑𝛿𝑒𝑙𝑒𝑣

𝑑(𝑐𝑙)

𝑑𝛿𝑟𝑢𝑑

𝑑(𝑐𝑚)

𝑑𝛿𝑎𝑖𝑙

𝑑(𝑐𝑚)

𝑑𝛿𝑒𝑙𝑒𝑣

𝑑(𝑐𝑚)

𝑑𝛿𝑟𝑢𝑑

𝑑(𝑐𝑛)

𝑑𝛿𝑎𝑖𝑙

𝑑(𝑐𝑛)

𝑑𝛿𝑒𝑙𝑒𝑣

𝑑(𝑐𝑛)

𝑑𝛿𝑟𝑢𝑑 ]
 
 
 
 
 
 

(6.29) 

Since the outputs of static aeroelastic analysis yield the rigid body derivatives of 

aircraft with respect to inputs of the analysis, all derivatives in 𝐴𝑅 and 𝐵𝑅 matrices 

are acquired. Once the 𝐴𝑅 and 𝐵𝑅 matrices are obtained, control algorithm can be 

included in the equations of motion of rigid body dynamics, and this study is 

presented in the following section. 

6.3.2 Control Law Modelling 

Using the 𝐴𝑅 and the 𝐵𝑅 matrices, given by Equations (6.23) and (6.24), at specific 

Mach numbers a simple flight control algorithm with feedback gain technique is 

developed by the pole placement [51] using the “place” command in MATLAB®. 

With this technique, the negative or near zero eigenvalues or poles of the matrix 𝐴𝑅 

are transformed to negative and away from zero since the stability criteria for 
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stability of rigid body aircraft system is to have negative eigenvalues for the 𝐴𝑅 

matrix. 

Utilizing a simple flight control algorithm with linear feedback gain matrix K which 

is developed in MATLAB environment, Simulink model of the flight control 

algorithm is shown in Figure 6.2. 

 

Figure 6.2 Simulation Model of the Flight Control Algorithm 

The poles of the system before the control algorithm implementation are determined 

from Equation (6.25). 

det|𝑠𝐼 − 𝐴𝑅| = 0 (6.30) 

The poles of the system after the control algorithm implementation are determined 

from Equation (6.26). The gain matrix [𝐾] as been selected according to the pole 

placement process. With the “place” command, desired eigenvalues of the closed-

loop system can be easily obtained, and the output of this command is the [𝐾] matrix.    

  

det|𝑠𝐼 − (𝐴𝑅 − 𝐵𝑅𝐾)| = 0 (6.31) 

Open-loop system poles are investigated for several Mach numbers which are given 

in Table 5.1 at sea level and it is seen that there are no positive poles, which means 
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that the open-loop model of the aircraft is stable at these flight conditions. During 

the pole placement method, the poles of the closed-loop system are taken as twice 

the poles of the open-loop system of the corresponding each flight condition. In other 

words, the open-loop poles are doubled just to increase stability of the aircraft and 

obtain a simple flight control algorithm and used in the analysis.  

In order to check feedback control algorithm, the aeroelastic plant model which is 

computed at 0.3 Mach number and at sea level, is placed into the Simulink model 

given in Figure 6.2. Total state number of this aeroelastic plant model is 139 and it 

is composed of 26 structural, 104 aerodynamic lag and 9 sensor states.  

This system is simulated by a 5o control surface rotation impulse input with a 

duration of one second for each control surface; antisymmetric ailerons, elevator and 

rudder inputs, respectively. The input of the simulation is given in Figure 6.3.  

The output of this simulation with aileron input is the angular velocity about the x-

axis (p), with elevator input is the angular velocity about the y-axis (q) and with 

rudder input is the angular velocity about the z-axis (r). Simulation is performed for 

the open-loop system by breaking the feedback loop and also for the closed-loop 

system. The results are presented in between Figure 6.4 and Figure 6.6 and it can be 

concluded that, flight control algorithm works well with the aeroelastic plant model 

without any divergent behaviour in terms of oscillations and it decreases the 

amplitude of the open-loop oscillations, therefore it can be used in aeroservoelastic 

analysis. 
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Figure 6.3 Control Surface Rotations Used in Simulations 

 

Figure 6.4 Simulation Results of Angular Velocity about x-axis (p) vs Time 
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Figure 6.5 Simulation Results of Angular Velocity about y-axis (q) vs Time 

 

Figure 6.6 Simulation Results of Angular Velocity about z-axis (r) vs Time 
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6.4 Freeplay Implementation  

The mathematical modeling of the freeplay nonlinearity is the first major subtopic in 

the theoretical research of freeplay [26]. In literature, many methods have been 

introduced and used [22], [52], [53], [30]. In this study, most common approach is 

utilized with the correction of the offset moment [20]. The schematic diagrams of 

freeplay modelling without offset moment are shown in Figure 6.7. 

 

Figure 6.7 Schematic Diagram of Freeplay Modelling without Offset Moment 

In Figure 6.7, δ0 is the freeplay angle, K and K0 are the nominal and freeplay stiffness 

values, respectively. As one can see from Figure 6.7, at the freeplay boundaries (-δ0 

and + δ0) there are jump discontinuities in the stiffness and this can lead to unrealistic 

bigger limit cycle oscillation. For this reason, freeplay modelling needs to be 

modified [54] with the inclusion of offset moment, as shown in Figure 6.8.  
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Figure 6.8 Schematic Diagram of Freeplay Modelling with Offset Moment 

The governing equations of aeroelastic problem without damping can be re-written 

by using Equation (4.15) and simplifying the right side of the equation such as: 

[�̅�]{�̈�} + [�̅�]{𝜉} − 𝑞∞[𝑄(𝑖𝑘)]{𝜉} = {0} (6.32) 

where, the right side of the Equation (6.32) can be expanded as: 

[𝑄] = [𝑄(𝑖𝑘)] = [𝑄ℎℎ(𝑖𝑘)] + [𝑄ℎ𝑐(𝑖𝑘)] (6.33) 

It should be noted that, the terms are in Equation (6.32-6.33) are generalized terms 

with the mode shape matrix ([𝜙]) of the aircraft structure without any freeplay. 

Therefore, [�̅�],[�̅�] and [𝑄] matrices are the generalized mass, stiffness and 

aerodynamic force matrix respectively. {𝜉} is generalized coordinates which is given 

in Equation (4.9). In order to overcome nonlinearity and implement freeplay 

nonlinear behaviour to aeroservoelastic system, Equation (6.32) is written in three 

linear regions as given by Equations (6.34)-(6.36). Then, with the inclusion of the 

offset moment corrections at the right side of the equations, the three governing 

equations of nonlinear aeroelastic problem becomes, 
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[�̅�]{�̈�} + [�̅�]{𝜉} − 𝑞∞[𝑄]{𝜉} = [𝜙]𝑇[𝐾ℎ𝑖𝑛𝑔𝑒]{𝛿0}                  for 𝛿 > 𝛿0 (6.34) 

[�̅�]{�̈�} + [𝐾0
̅̅ ̅]{𝜉} − 𝑞∞[𝑄]{𝜉} = 0                                for  𝛿0 ≥ 𝛿 ≥ −𝛿0 (6.35) 

[�̅�]{�̈�} + [�̅�]{𝜉} − 𝑞∞[𝑄]{𝜉} = −[𝜙]𝑇[𝐾ℎ𝑖𝑛𝑔𝑒]{𝛿0}             for 𝛿 < −𝛿0 (6.36) 

where [𝐾0
̅̅ ̅] denotes the generalized stiffness matrix in freeplay region which can be 

obtained the changing nominal control surface rotational stiffness with respect to 

hinge axis which is given in Table 3.3, and [𝜙]𝑇[𝐾ℎ𝑖𝑛𝑔𝑒]{𝛿0} terms are the offset 

moment corrections inside and outside of the freeplay regions with respect to control 

surface rotation 𝛿0. 𝐾ℎ𝑖𝑛𝑔𝑒 stiffness matrix can be obtained by subtracting the non-

generalized stiffness matrix in freeplay region from nominal non-generalized 

stiffness matrix as given in Equation (6.37). 

[𝐾ℎ𝑖𝑛𝑔𝑒] = [𝐾] − [𝐾0] (6.37) 

The sizes of these three different stiffness matrices are identical and [𝐾ℎ𝑖𝑛𝑔𝑒] is a full 

of zero matrix except the corresponding degree of freedom which is related with the 

control surface rotational stiffness. [𝐾0] matrix differs from [𝐾] only at the relevant 

degree of freedom.   

With this offset moment correction, the nonlinearity explained in Figure 6.7 is 

eliminated and smooth stiffness change by allocating restoring moments according 

to the freeplay region, in control surface rotation is obtained, which is represented in 

Figure 6.8. Equations (6.34)-(6.36) can be used in the solution of aeroelastic 

problems with freeplay and this method of solution may be named as the direct 

method. 
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6.5 Fictitious Mass Implementation 

Fictitious mass approach was firstly presented by Karpel et. al. [16] and there are 

several usages in the literature [17],[18],[19]. Nowadays, this approach is widely 

accepted in order to represent large structural deformations such as freeplay. 

Although nonlinear aeroelastic or aeroservoelastic analysis with freeplay motion can 

be performed without using fictitious mass approach which is called as direct 

approach. Fictitious mass approach has advantages such as decreasing computational 

time and increasing accuracy. 

In order to implement the fictitious mass approach to represent the freeplay at the 

control surfaces, a large inertial mass is placed at the hinge of the control surfaces to 

the nominal structural dynamics model. This insubstantial inertial mass corresponds 

to the rotational axis of the control surface with respect to its hinge axis and the 

existence of this large inertia enforces control surface rotational mode shapes to 

occur at lower frequencies. Fictitious mass approach in FE modelling is a trial-error 

procedure and in its implementation, one has to be sure about that the frequency of 

the rigid body rotation of the control surface is near zero and the associated mode 

shape does not interact with the other aircraft mode shapes. In this study, the 

rotational inertia value of the fictitious mass is 105 kg.mm2 for aileron freeplay case, 

106 kg.mm2 for elevator and rudder freeplay cases. In the case of two different 

control surface freeplay, which is elevator and right aileron case in this study, two 

different fictitious masses are placed to these control surfaces. Fictitious masses of 

the single control surface freeplays are used in the case of multiple freeplay case. 

Then, a modal analysis is conducted with fictitious mass and mass normalized mode 

shape matrix ([𝜙𝐹𝑀]) is obtained. Using the nominal mass and stiffness matrices 

which refer to the nominal structural dynamics model, generalized mass and stiffness 

matrices are determined according to Equations (6.38-6.39). 

[�̅�𝐹𝑀] = [𝜙𝐹𝑀]𝑇[𝑀𝑛𝑜𝑚][𝜙𝐹𝑀] (6.38) 
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[�̅�𝐹𝑀] = [𝜙𝐹𝑀]𝑇[𝐾𝑛𝑜𝑚][𝜙𝐹𝑀] (6.39) 

In this equations, nominal mass and stiffness matrices are denoted by 𝑀𝑛𝑜𝑚 and 

𝐾𝑛𝑜𝑚 respectively. �̅�𝐹𝑀 and �̅�𝐹𝑀 are generalized version of the nominal mass and 

stiffness matrices with respect to mass normalized mode shape vector of the aircraft 

model with the fictitious mass ([𝜙𝐹𝑀]). If fictitious mass approach is not utilized, 

outside of the freeplay region, Equations (6.38-6.39) can be written as given by 

Equations (6.40-6.41). 

[�̅�𝑛𝑜𝑚] = [𝜙𝑛𝑜𝑚]𝑇[𝑀𝑛𝑜𝑚][𝜙𝑛𝑜𝑚] (6.40) 

[�̅�𝑛𝑜𝑚] = [𝜙𝑛𝑜𝑚]𝑇[𝐾𝑛𝑜𝑚][𝜙𝑛𝑜𝑚] (6.41) 

It can be concluded by comparing Equation (6.38) and Equation (6.40) that, whether 

the fictitious mass approach is utilized or not, same global mass matrix is used in 

both approaches. The only difference is the modal matrix which is used in 

generalization. Then, Equations (6.34-6.36) can be rewritten by using the 

generalized mass and stiffness matrix which are obtained by the fictitious mass 

approach as, 

[�̅�𝐹𝑀]{�̈�𝐹𝑀} + [�̅�𝐹𝑀]{𝜉𝐹𝑀} − 𝑞∞[𝑄𝐹𝑀]{𝜉𝐹𝑀} = [𝜙𝐹𝑀]𝑇[𝐾ℎ𝑖𝑛𝑔𝑒]{𝛿0}           𝛅 > 𝛅𝟎  (6.42) 

[�̅�𝐹𝑀]{�̈�𝐹𝑀} + [�̅�0/𝐹𝑀]{𝜉𝐹𝑀} − 𝑞∞[𝑄𝐹𝑀]{𝜉𝐹𝑀} = 0                            𝛅𝟎 ≥ 𝛅 ≥ −𝛅𝟎   (6.43) 

[�̅�𝐹𝑀]{�̈�𝐹𝑀} + [�̅�𝐹𝑀]{𝜉𝐹𝑀} − 𝑞∞[𝑄𝐹𝑀]{𝜉𝐹𝑀} = −[𝜙𝐹𝑀]𝑇[𝐾ℎ𝑖𝑛𝑔𝑒]{𝛿0}   𝛅 < −𝛅𝟎    (6.44) 

where,  

[�̅�𝐹𝑀] = [𝜙𝐹𝑀]𝑇[𝑀𝑛𝑜𝑚][𝜙𝐹𝑀] (6.45) 

[�̅�𝐹𝑀] = [𝜙𝐹𝑀]𝑇[𝐾𝑛𝑜𝑚][𝜙𝐹𝑀] (6.46) 

[𝑄𝐹𝑀] = [𝜙𝐹𝑀]𝑇[𝐺]𝑇[𝐴𝐼𝐶(𝑖𝑘)][𝐺][𝜙𝐹𝑀] (6.47) 

[�̅�0/𝐹𝑀] = [𝜙𝐹𝑀]𝑇[𝐾0][𝜙𝐹𝑀] (6.48) 
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The objective of the FM method is to generate one set of modes that contain elastic 

modes outside and inside the freeplay region. Some advantages of using the fictitious 

mass approach are explained in the following. When there is a structural 

modification such as freeplay, stiffness or mass change, if the modal matrix of the 

original system without this structural modification is used in obtaining the 

generalized equations of the system with the structural modification, then to achieve 

a reasonable level of accuracy in the output such as frequencies of the system or any 

aeroelastic analysis output, then relatively high number of modes of the system 

without the structural modification has to be used.  In the direct method of solution, 

modal matrix ([𝜙]) used in Equations (6.42-6.44) is the one used in generalizing the 

equations both in the regions without freeplay, hence without structural 

modification, and in the region with freeplay, hence with structural modification. In 

this case very high number of modes of the system without any structural 

modification has to be used to generate the modal matrix [17]. In large scale 

problems such as the one in aircraft level, this increases the computational time 

significantly if a sufficient level of accuracy is desired.  

Another way of implementing the direct method is to use separate modal matrices in 

the region without the freeplay and in the region with the freeplay. In this case, 

corresponding equations for Equations (6.49-6.51) would be in the following forms: 

For δ >  δ0:  

[�̅�𝑛𝑜𝑚]{�̈�𝑛𝑜𝑚} + [�̅�𝑛𝑜𝑚]{𝜉𝑛𝑜𝑚} − 𝑞∞[𝑄𝑛𝑜𝑚]{𝜉𝑛𝑜𝑚} = [𝜙𝑛𝑜𝑚]𝑇[𝐾ℎ𝑖𝑛𝑔𝑒]{𝛿0}       (6.49) 

for δ0  ≥  δ ≥  −δ0:  

[�̅�𝑓𝑟𝑒𝑒]{�̈�𝑓𝑟𝑒𝑒} + [�̅�0𝑓𝑟𝑒𝑒
] {𝜉𝑓𝑟𝑒𝑒} − 𝑞∞[𝑄𝑓𝑟𝑒𝑒]{𝜉𝑓𝑟𝑒𝑒} = 0                 (6.50) 

for δ < − δ0:  

[�̅�𝑛𝑜𝑚]{�̈�𝑛𝑜𝑚} + [�̅�𝑛𝑜𝑚]{𝜉𝑛𝑜𝑚} − 𝑞∞[𝑄𝑛𝑜𝑚]{𝜉𝑛𝑜𝑚} = −[𝜙𝑛𝑜𝑚]𝑇[𝐾ℎ𝑖𝑛𝑔𝑒]{𝛿0}   (6.51) 

where, 
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[�̅�𝑓𝑟𝑒𝑒] = [𝜙𝑓𝑟𝑒𝑒]
𝑇
[𝑀𝑛𝑜𝑚][𝜙𝑓𝑟𝑒𝑒] (6.52) 

[�̅�0𝑓𝑟𝑒𝑒
] = [𝜙𝑓𝑟𝑒𝑒]

𝑇
[𝐾0][𝜙𝑓𝑟𝑒𝑒] (6.53) 

[�̅�𝑓𝑟𝑒𝑒] = [𝜙𝑓𝑟𝑒𝑒]
𝑇
[𝐺]𝑇[𝐴𝐼𝐶(𝑖𝑘)][𝐺][𝜙𝑓𝑟𝑒𝑒] (6.54) 

Equations (6.49)-(6.51) would suitably be used for flutter analysis in separate regions 

with and without freeplay. For dynamic response type analysis, time domain solution 

would require switching of the modal matrix used for the generalization of the 

equations from [𝜙𝑛𝑜𝑚] to [𝜙𝑓𝑟𝑒𝑒] and vice versa. Moreover, stiffness matrices in both 

regions would have to be switched from [𝐾𝑛𝑜𝑚] to [�̅�0𝑓𝑟𝑒𝑒
] and vice versa. On the 

other hand, when the fictitious mass approach is used, as given by Equations (6.42-

6.44), only a single modal matrix [∅𝐹𝑀] is used. Moreover, the number of modes to 

be included in the modal matrix of the system with the fictitious mass is considerably 

less than the number of modes to be included in the modal matrix of the system in 

the direct method without freeplay and fictitious mass.  

Wing bending mode shape, one of the primary mode shapes, are presented in Figure 

6.9 and Figure 6.10. In Figure 6.9, wing bending mode shape calculated by the direct 

approach is shown in the freeplay region. As seen in Figure 6.9, the freeplay control 

surface deflection is very high in the wind bending mode. In Figure 6.10, wing 

bending mode shape calculated by the fictitious mass approach is shown in the 

freeplay region. In this case, because of the large fictitious mass added to the hinge 

axis, control surface deflection cannot be observed in the wing bending mode.  

The comparison of the natural frequencies of the modal solution inside the freeplay 

region with the direct approach and FM approach is given in Table 6.7. The aileron 

symmetric bending and antisymmetric rigid body rotations occur around 32 Hz in 

nominal case, because in the nominal case there is no freeplay.  
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Table 6.7 Comparison of Natural Frequencies between the FM and Direct Method 

Approaches for the Aileron Freeplay 

Mode Shape # 
Nominal Case1 

[Hz] 

FM Approach2 

[Hz] 

Direct Approach3 

[Hz] 

The First Wing Bending 10.328 10.334 10.423 

2 18.568 18.589 18.630 

3 19.476 19.476 19.477 

4 20.392 20.391 20.392 

5 22.083 22.083 22.083 

6 23.225 23.298 23.336 

7 24.624 24.636 24.639 

8 24.988 24.999 24.997 

9 30.414 30.426 30.427 

Aileron Symmetric Bending 32.083 1.589 1.217 

Aileron Antisymmetric Bending 32.120 1.592 1.223 

12 33.173 33.166 33.166 

13 35.974 35.969 35.969 

 

From Table 6.7, it can be concluded that, FM approach allows the correct calculation 

of the frequencies of the aircraft both in the freeplay region and outside the freeplay 

region. 

 

 

1 In the nominal case, the structural dynamic FE model without any freeplay that is used in Section 3 

is used. 
2 The natural frequencies are obtained without any modal reduction for the case of aileron freeplay 

with direct approach. 
3 The natural frequencies are obtained without any modal reduction for the case of aileron freeplay 

with FM approach. 
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Figure 6.9 Mode Shape of the Wing Bending with the Direct Approach 

 

Figure 6.10 Mode Shape of the Wing Bending with the Fictitious Mass Approach 

The structural dynamic models in Equations (6.42-6.44) can also be represented as 

two discrete models, inside and outside the freeplay zone as, 

[−𝜔𝐹𝑀
2 [�̅�𝐹𝑀] + [�̅�𝐹𝑀]]{𝜉�̅�𝑀} = 0           𝑓𝑜𝑟     𝛿 > |𝛿0| (6.55) 

[−𝜔𝐹𝑀/𝑓𝑟𝑒𝑒
2 [�̅�𝐹𝑀] + [�̅�0/𝐹𝑀]] {𝜉�̅�𝑀} = 0          𝑓𝑜𝑟     𝛿 ≤ |𝛿0| (6.56) 

where, 𝜔𝐹𝑀/𝑓𝑟𝑒𝑒 and 𝜔𝐹𝑀 represent the natural frequencies of the system in freeplay 

zone and outside the freeplay zone, which is the nominal case, respectively. In direct 

approach case, the structural dynamic models in Equations (6.49-6.51) can be 

expressed in following form: 

[−𝜔𝑛𝑜𝑚
2 [�̅�𝑛𝑜𝑚] + [�̅�𝑛𝑜𝑚]]{𝜉�̅�𝑜𝑚} = 0                 𝑓𝑜𝑟     𝛿 > |𝛿0| (6.57) 

[−𝜔𝑛𝑜𝑚/𝑓𝑟𝑒𝑒
2 [�̅�𝑓𝑟𝑒𝑒] + [�̅�0𝑓𝑟𝑒𝑒

]] {𝜉�̅�𝑟𝑒𝑒} = 0        𝑓𝑜𝑟     𝛿 ≤ |𝛿0| (6.58) 
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here, 𝜔𝑛𝑜𝑚 and 𝜔𝑛𝑜𝑚/𝑓𝑟𝑒𝑒 represent the natural frequencies of the system in the 

freeplay zone and outside the freeplay zone, which is the nominal case, respectively. 

The natural frequencies obtained by the fictitious mass approach and the direct 

method) are solved numerically by using the relevant generalized mass and stiffness 

matrices in these equations and they are compared in Table 6.8 for the case of rudder 

freeplay. 

Table 6.8 Comparison of Natural Frequencies between the FM and Direct Method 

Approaches with and without Rudder Freeplay 

# 
Mode 
Shape 

Exact Solution Direct Approach FM Approach 

Without 
Freeplay 

With 
Freeplay 

𝜔𝑛𝑜𝑚 

(Hz) 

𝜔𝑛𝑜𝑚/𝑓𝑟𝑒𝑒 

(Hz) 

𝜔𝐹𝑀 

(Hz) 

𝜔𝐹𝑀/𝑓𝑟𝑒𝑒 

(Hz) 

1  10.328 10.328 10.319 10.319 10.319 10.319 

2  18.568 18.587 18.576 18.584 18.587 18.591 

3 
Rudder 

Rotation 19.476 0.162 19.823 0.175 19.571 1.716 

4  20.392 20.390 20.392 20.392 20.400 20.400 

5  22.083 22.082 22.083 22.083 22.101 22.101 

6  23.255 23.253 23.255 23.255 23.261 23.259 

7  24.624 24.604 24.632 24.616 24.657 24.627 

8  24.988 24.982 24.988 24.988 24.988 24.988 

9  30.414 30.413 30.452 30.452 30.414 30.414 

10  32.083 32.083 32.083 32.083 32.083 32.083 

11  32.120 32.119 32.120 32.120 32.120 32.120 

12  33.173 33.139 33.173 33.148 33.361 33.349 

13 
Vertical 

Tail 

Bending 
35.974 35.894 34.835 35.896 35.982 35.982 

 

In Table 6.8, the exact solution of the natural frequencies is obtained with full-sized 

(not generalized) mass and stiffness matrices of the structural dynamic system; hence 

it is referred as the exact solution. In this example, FM is used to represent the rudder 
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freeplay, therefore natural frequencies of the rudder rotation and vertical tail bending 

mode shapes are the most affected ones in this case. Firstly, the natural frequency of 

the rudder rotation mode shape outside the freeplay region (19.476 Hz in exact 

solution) is captured accurately with the FM approach (19.571 Hz). Moreover, the 

natural frequency of vertical tail bending mode shape outside of freeplay region 

(35.974 Hz in exact solution) is also captured accurately with FM the approach 

(35.982 Hz).   

6.6 Governing Equation of Motion 

The aeroelastic model equations given in Equations (6.12-6.13)includes the mass, 

stiffness and aerodynamic models of the very light aircraft. Then, aeroelastic plant 

model is obtained by adding actuator states of the control surfaces to aeroelastic 

model and state-space representation of aeroelastic plant model is presented in 

Equations (6.18-6.19). Aeroelastic plant model contains the aeroelastic model as 

well as control surface states with their dynamic behavior.   

In this study, to solve nonlinear system with freeplay in control surfaces, the 

aeroelastic plant model is divided into three sub-linear aeroelastic regions by 

utilizing the offset moment correction and fictitious mass approach as given by 

Equations (6.42-6.44). Therefore, for a specific flight condition, Mach number and 

altitude, and a control surface with freeplay, three aeroelastic plant models are 

obtained.    

The next step is to include flight control algorithm states into aeroelastic plant 

equations to obtain the vehicle or aeroservoelastic level equations, which are denoted 

with subscript v, in state-space domain as, 

{𝑥�̇�} = [𝐴𝑣]{𝑥𝑣} + [𝐵𝑣]{𝑢𝑣} (6.59) 

{𝑦𝑣} = [𝐶𝑣]{𝑥𝑣} (6.60) 
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{𝑥𝑣} = {
𝑥𝑝

𝑥𝑐
} (6.61) 

where, xc is the flight control algorithm states. It should be noted that, nonlinearity 

due to the freeplay requires more than one plant algorithm to be included; however, 

flight control algorithm does not change with respect to the plant model. On the other 

hand, each aeroservoelastic vehicle model corresponds to combination of an 

aeroelastic plant model and the flight control algorithm which depends only on the 

flight condition and independent from control surface nonlinearity.  

It is worth to mention that all aeroservoelastic vehicle models are obtained in state-

space or time domain. Therefore, these vehicle models, which include the freeplay 

motion of the control surface, can be simulated in discrete time domain directly. 

Time domain simulation requires time step or time resolution value which 

determines the time interval between the solution points and also initial condition of 

the aircraft. In this study, time resolution (dt) is used as 0.001 s in all nonlinear 

aeroelastic analyses and initial condition of the aircraft is taken as level flight, which 

means that the aircraft is not in a maneuver and it has zero angle of attack and zero 

side-slip angle. The initial condition of vehicle level equations is given by Equation 

(6.62). 

{𝑥𝑣} = {�̇�𝑣} = {0} (6.62) 

 

In this study, to represent the nonlinear aeroservoelastic behaviour, different plant 

models are used according to the freeplay zone and flight condition with fixed flight 

control algorithm which also changes with the flight condition. For a specific flight 

condition with specific control surface with freeplay, the solution algorithm used in 

this study can be expressed as a schematic diagram as shown in Figure 6.11. 
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Figure 6.11 Representation of the Nonlinear Aeroservoelastic Analysis 

In this figure, as it is stated previously, there are three sub-linear aeroelastic plant 

model in order to represent the nonlinearity. In the time simulation at any discrete 

solution point, according to the control surface position at that instant, related 

aeroelastic plant model is chosen and used. These aeroelastic plant models are 

nothing but the state-space representation of Equations (6.42-6.44).  

The flight control algorithm in this closed-loop system is free from the freeplay 

motion and it depends only on the flight condition. The inputs of the flight control 

algorithm are the outputs of aeroelastic plant systems which are obtained by 

artificially placed sensors at the center of gravity of the aircraft and included in the 

Cae matrix in Equation (6.13).      
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6.7 Nonlinear Aeroservoelastic Analysis Results 

The results of the nonlinear aeroservoelastic analysis are selected as deformations of 

some structural grids which are the left or right wing tip, center of gravity (CG) of 

the aircraft and the hinge axis rotation of the investigated control surface with 

freeplay. The external excitation of the analysis is selected as a sinusoidal external 

pilot input for all control surfaces as shown in Figure 6.12.  

 

Figure 6.12 Sinusoidal External Excitation 

6.7.1 Aileron Freeplay 

For the aileron with freeplay, for different freeplay angles (δ0=0.01o, 0.05o, 0.20o, 

0.50o, 1.0o and 2.5o), nonlinear aeroservoelastic analyses are conducted for different 

Mach numbers at the sea level. The nonlinear dynamic behavior of the aileron due 

to freeplay at 59.00 m/s which corresponds to 0.173 Mach number is given in Figure 

6.13. 
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Figure 6.13 Right Aileron Rotation about the Hinge Axis at 59.00 m/s for Different 

Freeplay Angles 

From Figure 6.9, it is observed that for the 59.00 m/s aircraft velocity the disturbance 

given by the pilot damps out for all aileron freeplay angles except 1.00 o and 2.50 o. 

These freeplays does not have any divergent behaviour and their damping are very 

low. However, increasing the velocity of the aircraft to 60.00 m/s, aircraft shows 

divergent behavior for freeplay angles 1.00 o and 2.50 o only as shown in Figure 6.14. 

Therefore, limit-cycle oscillation (LCO) behaviour is captured at 59.00 m/s for only 

freeplay angles which are 1.00 o and 2.50 o. Displacements of the center of gravity of 

the aircraft in 3 translational degrees of freedom at 59.00 m/s are given in Figure 

6.15-6.17. Displacements of the left wing tip in the y and z directions are given in 

Figure 6.18–6.19.  
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Figure 6.14 Right Aileron Rotation about the Hinge Axis at 60.00 m/s for Different 

Freeplay Angles 

 

 
Figure 6.15 Center of Gravity Displacement at 59.00 m/s in the x-direction for 

Different Aileron Freeplay Angles 
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Figure 6.16 Center of Gravity Displacement at 59.00 m/s in y-direction for 

Different Aileron Freeplay Angles 

 
Figure 6.17 Center of Gravity Displacement at 59.00 m/s in z-direction for 

Different Aileron Freeplay Angles 
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Figure 6.18 Left Wing Tip Displacement at 59.00 m/s in y-direction for Different 

Aileron Freeplay Angles 

 
Figure 6.19 Left Wing Tip Displacement at 59.00 m/s in z-direction for Different 

Aileron Freeplay Angles 
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6.7.2 Elevator Freeplay 

For the elevator with freeplay, for different freeplay angles (δ0=0.01o, 0.05o, 0.20o, 

0.50o, 1.0o and 2.5o), nonlinear aeroservoelastic analyses are conducted for different 

Mach numbers at the sea level. The elevator rotation about the hinge axis at 245.00 

m/s which corresponds to 0.720 Mach number is given in Figure 6.20. 

 

 
Figure 6.20 Elevator Rotation about the Hinge Axis at 245.00 m/s for Different 

Freeplay Angles 

When the velocity of aircraft is increased to 246.00 m/s, the observed oscillations 

are getting large and not damping out as seen in Figure 6.21. Therefore, the 

maximum velocity of the aircraft with LCO behaviour is 245.00 m/s, beyond that 

velocity, aircraft starts to diverge. Displacements of center of gravity of the aircraft 

in 3 translational degrees of freedom at 245.00 m/s are given in Figure 6.22-6.24 and 

the left wing tip displacements in the y and z direction are given in Figure 6.25.    
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Figure 6.21 Elevator Rotation about the Hinge Axis at 246.00 m/s for Different 

Freeplay Angles 

 

    

 
Figure 6.22 Center of Gravity Displacement at 245.00 m/s in the x-direction for 

Different Elevator Freeplay Angles 
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Figure 6.23 Center of Gravity Displacement at 245.00 m/s in the y-direction for 

Different Elevator Freeplay Angles 

 
Figure 6.24 Center of Gravity Displacement at 245.00 m/s in the z-direction for 

Different Elevator Freeplay Angles 



 

 

99 

 
Figure 6.25 Wing tip Displacement at 245.00 m/s in the z-direction for Different 

Elevator Freeplay Angles 

It is noted that when there is freeplay in the elevator, freeplay motion has an effect 

on the pitch motion of the aircraft resulting in a change in the lift distribution on the 

wing. Hence, it is deemed that this effect promotes limit cycle oscillation behavior. 

After the initial excitation, oscillations with constant amplitudes start to occur at 

about t=0.5 seconds at the center of gravity and wing tip of the aircraft. 

It should be also noted that the elevator rotation in Figure 6.21, also causes elastic 

bending of the horizontal tail. Hence, the elevator rotation has bigger amplitude than 

the related freeplay angle.  
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6.7.3 Rudder Freeplay 

For the rudder with freeplay, for different freeplay angles (δ0=0.01o, 0.05o, 0.20o, 

0.50o, 1.0o and 2.5o), nonlinear aeroservoelastic analyses are conducted for different 

Mach numbers at the sea level. The nonlinear aeroservoelastic results for different 

freeplay angles at 68.050 m/s which corresponds to 0.20 Mach is given in Figure 

6.26. 

 
Figure 6.26 Rudder Rotation about the Hinge Axis at 68.050 m/s for Different 

Freeplay Angles 

Displacements of the center of gravity of the aircraft in 3 translational degrees of 

freedom at 68.050 m/s are given in Figure 6.27-6.29 and wing tip displacement in 

the z-direction is given in Figure 6.30. 
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Figure 6.27 Center of Gravity Displacement at 68.050 m/s in x-direction for 

Different Rudder Freeplay Angles 

 
Figure 6.28 Center of Gravity Displacement at 68.050 m/s in y-direction for 

Different Rudder Freeplay Angles 
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Figure 6.29 Center of Gravity Displacement at 68.050 m/s in z-direction for 

Different Rudder Freeplay Angles 

 
Figure 6.30 Wing tip Displacement at 68.050 m/s in z-direction for Different 

Rudder Freeplay Angles 

On account of the yaw characteristic of the aircraft, freeplay motion of the rudder 

did not lead to a clear limit cycle oscillations as in elevator. The amplitudes of 

displacements and rotations are relatively small with respect to aileron and elevator 

freeplay cases. However, as seen in Figure 6.26, at high freeplay angles amplitude 
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of the rudder rotation did not diminish in the time interval analyzed and this may be 

a sign of limit cycle oscillation. 

6.7.4 Aileron and Elevator Freeplay  

For the right aileron and elevator with freeplay, for different simulataneous freeplay 

angles (δ0=0.01o, 0.05o, 0.20o, 0.50o, 1.0o and 2.5o) with same freeplay angles for 

both control surfaces, nonlinear aeroservoelastic analyses are conducted for different 

Mach numbers at the sea level. The nonlinear aeroservoelastic analysis results with 

elevator and right aileron freeplay at the 159.00 m/s are given in Figure 6.31 and 

Figure 6.32 respectively. 

The results at 159.00 m/s show that nonlinear motion of the aircraft is sustained and 

damped. Therefore, in order to observe limit-cycle oscillation behavior, velocity is 

increased to 162.00 m/s and control surface rotations are presented in Figure 6.33. 

According to these results, for aileron and elevator freeplay case, the non-divergent 

LCO behaviour is observed at 159.00 m/s and displacements of the center of gravity 

of the aircraft in 3 translational degrees of freedom at this velocity are given in Figure 

6.34-6.36 and wing tip displacement in the x and z direction are given in Figure 6.37-

6.38. 
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Figure 6.31 Elevator Rotation about the Hinge Axis at 159.00 m/s for Different 

Freeplay Angles 

 

Figure 6.32 Right Aileron Rotation about the Hinge Axis at 159.00 m/s for 

Different Aileron and Elevator Freeplay Angles 
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Figure 6.33 Elevator Rotation about the Hinge Axis at 162.00 m/s for Different 

Different Aileron and Elevator Freeplay Angles 

 

Figure 6.34 Center of Gravity Displacement at 159.00 m/s in x-direction for 

Different Aileron and Elevator Freeplay Angles   
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Figure 6.35 Center of Gravity Displacement at 159.00 m/s in y-direction for 

Different Aileron and Elevator Freeplay Angles   

 

Figure 6.36 Center of Gravity Displacement at 159.00 m/s in z-direction for 

Different Aileron and Elevator Freeplay Angles   
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Figure 6.37 Right Wing tip Displacement at 159.00 m/s in the x-direction for 

Different Aileron and Elevator Freeplay Angles 

 

Figure 6.38 Right Wing tip Displacement at 159.00 m/s in the z-direction for 

Different Aileron and Elevator Freeplay Angles 

As it can be inferred from the results, for the elevator freeplay case only, the velocity 

of LCO is 245 m/s. On the other hand, the velocity of LCO is 159 m/s for the right 



 

 

108 

aileron and elevator freeplay case. Although the responses are smaller in right aileron 

and elevator freeplay case, LCO behaviour is clearly seen and compared to the only 

elevator freeplay case, the velocity of LCO decreased significantly. It should be 

noted that in the simultaneous aileron-elevator freeplay case, freeplay exists only in 

the right aileron, not in both left and right aileron. ZAERO has a capability of 

handling at most 9 freeplay regions, or nonlinear regions in general, therefore both 

left and right aileron freeplay together with elevator freeplay could not be analyzed. 

The only way to perform this analysis could be to extract all system matrices outside 

ZAERO and perform nonlinear aeroelastic analysis outside the ZAERO 

environment. This could be possible future study. 

6.8 Conclusion 

In this chapter, studies performed on the nonlinear aeroservoelastic modelling and 

analysis are presented. Firstly, details of the actuator dynamic model and plant level 

aeroelastic equations are presented. The aircraft studied in this thesis is not a fly-by-

wire (FBW) aircraft; hence the actuators are artificial and in this study interference 

of the actuator dynamics with the aeroelastic system is not considered and actuator 

is represented by a dummy transfer function. 

Followingly, in order to construct the aeroservoelastic or the vehicle model of the 

aircraft, flight control law algorithm is incorporated into the aeroelastic model. Since 

the aircraft does not have any FCC and flight control law, and aircraft rigid body 

derivatives are required, trim analysis is conducted on rigid body aircraft and 

stability derivatives are obtained. Then, a simple flight control algorithm is generated 

by the pole placement method and simulation of the closed-loop system with the 

aeroelastic plant model is performed and results are presented.  

To reflect nonlinearity, which is caused by control surface freeplay, freeplay 

implementation by adding the offset moments is explained. Later, to approximate 

the nonlinearity better in the structural dynamic model, fictitious mass approach is 
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presented. Governing equations of the nonlinear aeroservoelastic model including 

freeplay nonlinearity and fictitious mass approach are given. 

Finally, nonlinear aeroservoelastic analysis is performed for each control surfaces, 

i.e., ailerons, elevator, rudder and the combination of aileron and elevator, with 

different freeplay angles at different flight conditions for sinusoidal disturbances of 

control surfaces. As a result of aeroservoelastic analyses, control surface rotations 

and the displacements of the center of gravity, wing tip and control surfaces are 

presented and LCO velocities are determined. It is seen that for the particular aircraft 

studied, only the elevator and the combination of the aileron/elevator freeplay caused 

a limit cycle oscillation and rudder freeplay cause a mild LCO of the rudder for all 

freeplay angles. The freeplay on the aileron caused LCO behaviour for only 1.00° 

and 2.50° freeplay angles. It is also observed that, when the elevator freeplay has 

LCO at 245 m/s, simultaneous right aileron and elevator freeplay case resulted in a 

LCO velocity at 159 m/s. This is a significant reduction in LCO velocity. 

Simultaneous freeplay in control surfaces must be studied at the aircraft level to 

evaluate the effect of freeplay on the nonlinear aeroelastic behaviour of aircraft.   





 

 

111 

CHAPTER 7  

7 CONCLUSION 

7.1 General Conclusion 

The aim of this study is to introduce modelling and analysis of nonlinear 

aeroservoelastic model of the aircraft due to freeplay motion of the control surfaces 

and examining the nonlinear dynamic behavior of the aircraft. Based on the structural 

dynamics and aerodynamic models of a full-span very light aircraft, aeroelastic 

model is constructed using the spline methodology. Artificial actuators and flight 

control algorithm is included into the aeroelastic model and aeroservoelastic model 

obtained. Implementing freeplay motion of control surfaces into the aeroservoelastic 

model by the fictitious mass approach, nonlinear aeroservoelastic model is obtained 

and analyzed. The results of this analysis are presented for different control surface 

freeplay angles. 

First part of the study is on the structural modelling of the aircraft. GFEM of the 

aircraft which is generated in MSC.Patran® environment is introduced. In order to 

cover linear and nonlinear dynamic behavior of the aircraft, modal analysis is 

conducted via MSC.Nastran® and structural mode shapes and frequencies are 

obtained. Frequency domain results are used to represent the flexibility of the aircraft 

in aeroelastic and aeroservoelastic analysis later on. 

In the second part of the study, aerodynamic model of the aircraft is introduced. 

Utilizing the CFD model of the aircraft, high fidelity aeroelastic aerodynamic model 

is generated. Using this model, AIC matrices are calculated and stored in frequency 

domain via ZONA6 which is submodule of ZAERO. In order to use the calculated 

AIC matrices in aeroservoelastic analysis, they have to be transformed into time 

domain in state-space form using the Rational Function Approximation method 
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which is available in ZAERO. As for the rational function approximation, two 

different least square fit methods, Roger’s and Minimum State, are offered. By 

comparing the approximation results of the two methods with the frequency domain 

result, it is seen that Roger’s method showed better approximation; hence in the rest 

of the analysis this method is used. 

In the third part of the thesis study, structural and aerodynamic models are integrated 

with the spline methodology and aeroelastic model of the aircraft is created. By 

selecting structural grids and pairing them with related aerodynamic elements, 

ZAERO constructs spline matrices which allows to bring about an interaction 

between the aerodynamic and structural models. Moreover, for the verification of 

the spline methodology, structural mode shapes of the FE model of the aircraft and 

projected mode shapes on the aerodynamic model are compared. The results show 

that spline grids are well-chosen and coupling of the structural and the aerodynamic 

model is satisfactory. To examine the flutter instability of the aircraft using the 

generated aeroelastic model, flutter analysis is conducted. Two solution methods, K 

and P-K methods are presented. Since the P-K solution algorithm gives matched 

point solution in flutter analysis, it is chosen and used in rest of the analysis. The 

flutter analysis of the open-loop aeroelastic model, without any control model, shows 

that aircraft is free from flutter instability within the flight regime. However, mode 

shape of elevator bending at 163.590 m/s which corresponds to 0.470 Mach number 

at the sea level has positive damping which is an indication of flutter instability. 

Since flutter speed is beyond the aircraft capabilities and regulation limitations, it is 

concluded that aircraft is free from flutter. 

Last chapter is dedicated to nonlinear aeroservoelastic modelling and analysis. 

Firstly, dynamic behavior of control surface actuators is represented by a transfer 

function in Laplace domain. On the other hand, since there is no actuator in the 

aircraft in real life, the effect of phase and lags characteristic of actuators on the 

aeroelastic and aeroservoelastic analysis is not considered. Although it is out of the 

scope of thesis, aeroservoelastic analysis requires a flight control algorithm. 
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Therefore, trim analysis is conducted utilizing the aeroelastic model of the aircraft 

and rigid body derivatives of the aircraft with respect to control surface deflections 

and rates in three degrees of freedom are calculated in ZAERO. The equations of 

rigid body motion of the aircraft are expressed in state-space domain and a simple 

flight control algorithm is generated by the pole placement method utilizing rigid 

body aircraft matrices which are based on the stability derivatives of the aircraft 

obtained previously. Combining the control surface actuator dynamic behavior and 

the flight control algorithm with the aeroelastic system, linear aeroservoelastic 

system is constructed and their governing equations are presented. Followingly, 

freeplay implementation is shared. Modification on off-set moments is utilized to 

represent the freeplay accurately and provide continuity during the transition of the 

freeplay regions. Then, fictitious mass approach is introduced and implement in the 

nonlinear aeroelastic analysis. Nonlinear dynamic behavior of the aircraft due to 

freeplay is represented in a more convenient way by the fictitious mass approach 

than the direct method approach regarding the mode shapes and frequencies. Finally, 

the aeroservoelastic model of the aircraft is created utilizing offset moment 

correction to include the restoring forces due to freeplay motion into the system of 

equations and the fictitious mass approach. Related governing equations are 

presented and time marching nonlinear aeroservoelastic analyses due to different 

control surface freeplays are conducted and nonlinear responses of the aircraft are 

presented separately for each control surface freeplay and also for the combination 

of elevator and aileron freeplays. It should be noted that time marching nonlinear 

analysis is performed for different flight conditions and characteristics of the effect 

of freeplay in different control surfaces on the aircraft response are different from 

each other. The results of time domain analyses showed that limit cycle oscillation 

occurred only related with the elevator freeplay and combined aileron/elevator 

freeplay motions for all freeplay angles in the study. For the aileron case, limit cycle 

oscillation behaviour is captured only for a few freeplay angles. High amplitude 

rudder freeplay has relatively very small amplitude LCO, which can be ignored since 

their motions damped out directly. When the velocity of analysis is increased to 
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cover bigger oscillations, attitude of the aircraft has a tendency to diverge due to 

rigid body modes. It should be emphasized that simultaneous right aileron and 

elevator freeplay case resulted in a significant reduction in the LCO velocity 

compared to the only elevator freeplay case. This study shows that simultaneous 

freeplay in multiple control surfaces has a significant effect on the nonlinear 

aeroelastic characteristics of aircraft. Such effects can only be discovered if the 

nonlinear aeroelastic analyses are performed at the aircraft level.  

7.2 Recommendations for Future Work 

During structural dynamic representation in aeroelastic and aeroservoelastic 

analysis, reduced order models can be used such as static and dynamic condensation 

on stiffness and mass matrices in order to decrease computational time of all analysis. 

In this study, rigid body aircraft stability derivatives are obtained via trim analysis 

performed in ZAERO, and the parameters are limited according to the capabilities 

of ZAERO. Normally, by using available CFD database or wind tunnel results of the 

aircraft in the flight regime, full-state feedback theory can be utilized. However, 

ZAERO is an aeroelastic design and analysis program and all of aircraft stability 

derivatives could not be obtained. Therefore, full-state feedback theory could not be 

used in this study; because states are limited to the rates in 3 degrees of freedom 

which are p, q and r. Using CFD analysis and database, the coefficients and rigid 

body derivatives of the aircraft can be obtained more accurately and in full state.   

Instead of pole placement method during the flight control law algorithm design, 

Linear Quadratic Regulator (LQR), µ -analysis and synthesis or H2 -synthesis can be 

utilized. It should be also noted that, the open-loop poles of the aircraft are negative, 

and they are doubled and used as closed-loop poles. When the damping of the open-

loop system is increased by feedback gain, it is observed that nonlinear LCO 

behaviour of the aircraft shifts to higher velocities and it can be investigated as a 
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future study. Moreover, a state observer can be modelled in order to increase the 

flight control algorithm to full-state feedback. 

Finally, simultaneous freeplay in multiple control surfaces can be studied at aircraft 

level to ascertain the effect of critical freeplay combinations on the LCO velocity.  
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APPENDICES 

A. Mode Shapes of the Very Light Aircraft 

 

Figure A.1 Antisymmetric Wing Bending + Fuselage Torsion Mode Shape at 

18.568 Hz 
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Figure A.2 Rudder Rotation Mode Shape at 19.476 Hz 

 

Figure A.3 Horizontal Tail Bending + Elevator Rotation Mode Shape at 20.392 Hz 
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Figure A.4 Elevator Rotation Mode Shape at 22.083 Hz 

 

Figure A.5 Wing 2nd Bending + Horizontal Tail Rotation Mode Shape at 23.225 Hz 
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Figure A.6 Wing 2nd Bending + Rear Fuselage Lateral Bending Mode Shape at 

24.624 Hz 

 

Figure A.7 Wing In-plane Bending Mode Shape at 24.988 Hz 
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Figure A.8 Elevator Bending Mode Shape at 30.414 Hz 

 

Figure A.9 Aileron Symmetric Bending Mode Shape at 32.083 Hz 
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Figure A.10 Aileron Antisymmetric Bending Mode Shape at 32.120 Hz 

 

Figure A.11 Horizontal Tail In-plane Bending + Vertical Tail Bending Mode Shape 

at 33.173 Hz 
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Figure A.12 Vertical Tail Bending Mode Shape at 35.974 Hz 
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B. Spline Verification 

  

Figure B.1 Spline Verification of Horizontal Tail Bending + Elevator Rotation 

Mode Shape 

 

  

Figure B.2 Spline Verification of Elevator Rotation Mode Shape 

 
 

Figure B.3 Spline Verification of Wing 2nd Bending + Horizontal Tail Rotation 

Mode Shape 
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Figure B.4 Spline Verification of Wing 2nd Bending + Rear Fuselage Lateral 

Bending Mode Shape 

  

Figure B.5 Spline Verification of Wing In-plane Bending Mode Shape 

 
 

Figure B.6 Spline Verification of Elevator Bending Mode Shape 
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Figure B.7 Spline Verification of Aileron Symmetric Bending Mode Shape 

 

 

Figure B.8 Spline Verification of Aileron Antisymmetric Bending Mode Shape 

 

 
 

Figure B.9 Spline Verification of Horizontal Tail In-plane Bending + Vertical Tail 

Bending Mode Shape 
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Figure B.10 Spline Verification of Vertical Tail Bending Mode Shape 
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C. Small Disturbance Equation Derivations 

The Equation (4.1) can be divided into two parts [45]: 

Θ =  Θs + Θu (𝐶. 1) 

In Equation (C.1), steady and unsteady velocity potentials are represented by Θs and 

Θu respectively. According to steady and unsteady terms in Equation (C.1) 

respectively, Equation (4.1) can be expressed by Equations (C.2) and (C.3). 

(1 − 𝑀2
∞)Θs𝑥𝑥

+ Θs𝑦𝑦
+ Θs𝑧𝑧

= 0 (C. 2) 

(1 − 𝑀2
∞)Θu𝑥𝑥

+ Θu𝑦𝑦
+ Θu𝑧𝑧

− 2
𝑀∞

𝑎∞
Θu𝑥𝑡

−
1

𝑎∞
2 Θu𝑡𝑡

= 0 (𝐶. 3)

Equation (C.2) and Equation (C.3) are the steady and unsteady linearized small 

disturbance equations respectively. Assuming simple harmonic motion with 

oscillatory frequency (𝜔), the unsteady velocity potential can be expressed as: 

Θu = Θ̅𝑒𝑖𝜔𝑡 (C. 4) 

where reduced frequency-domain velocity potential is denoted with Θ̅. In order to 

simplify the equations, x, y and z terms can be expressed as: 

�̅� =
𝐿𝑥

𝛽
(C. 5) 

�̅� = 𝐿𝑦 (C. 6) 

𝑧̅ = 𝐿𝑧 (C. 7) 

where L is the reference length of the aeroelastic analysis, and it corresponds to the 

chord length and 𝛽 is defined expressed as in Equation (C.8). 

𝛽 = √|1 − 𝑀2
∞| (C. 8) 
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Introducing modified velocity potential (Θ̃) and with the help of Equations (C.5-C.8), 

Equation (C.4) can be written in the following form: 

Θu = Θ̅𝑒𝑖𝜔𝑡 = Θ̃𝑒𝑖𝜆𝑀∞�̅� (C. 9) 

where reduced frequency (k) and compressible reduced frequency (𝜆) terms have the 

following definitions. 

𝑘 =
𝜔𝐿

𝑉
(C. 10) 

𝜆 =
𝑘𝑀∞

𝛽
(C. 11) 

In Equation (C.10), ω, L and V are the harmonic oscillatory frequency, reference 

chord length and velocity of the undisturbed flow. Then, Equation (C.3) can be re-

expressed by defined parameters as in Equation (4.13). 

Θ̃�̅��̅� + 𝜇Θ̃�̅��̅� + 𝜇Θ̃�̅��̅� + 𝜆2Θ̃ = 0 (C. 12) 

The value of 𝜇 term in Equation (C.12) is 1 in subsonic region and -1 in supersonic 

region. Applying Green’s theorem [55] to Equation (C.12), an integral solution is 

obtained in the following form: 

Θu = ΘW(𝑥0, 𝑦0, 𝑧0) + ΘB(𝑥0, 𝑦0, 𝑧0) (C. 13) 

Θw(𝑥0, 𝑦0, 𝑧0) =  
1

𝐸𝜋
∬Δϕ(𝑥′, 𝑦′, 𝑧′, 𝑡)𝑒𝑖𝜆𝑀∞𝜉

𝜕

𝜕𝑛
𝐾𝑑𝑆

𝑤

(C. 14) 

ΘB(𝑥0, 𝑦0, 𝑧0) =  −
1

𝐸𝜋
∬𝜎(𝑥′, 𝑦′, 𝑧′, 𝑡)𝑒𝑖𝜆𝑀∞𝜉𝐾𝑑𝑆

𝐵

(C. 15) 

In these equations, 𝛩𝑊 and 𝛩𝐵 are the velocity potential influence due to wing-like 

components and body-like components respectively. 𝛥𝜙 and 𝜎 refer to unsteady 
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doublet and source singularity distributions, respectively. K is the Kernel function 

and it is defined based on the flight regime as, 

𝐾 =
𝑒𝑖𝜆𝑅

𝑅
                    𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑜𝑛𝑖𝑐 𝑟𝑒𝑔𝑖𝑜𝑛 (C. 16) 

𝐾 =
cos (𝜆𝑅)

𝑅
        𝑓𝑜𝑟 𝑠𝑢𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑐 𝑟𝑒𝑔𝑖𝑜𝑛 (C. 17) 

where R is defined as, 

𝑅 =  √𝜉2 + 𝜇휂2 + 𝜇휁2 (C. 18) 

and, 

𝜉 = (
𝑥′ − 𝑥0

𝛽𝐿
) ,   휂 = (

𝑦′ − 𝑦0

𝐿
) ,   휁 = (

𝑧′ − 𝑧0

𝐿
) (C. 19) 

In Equation (C.19), 𝑥′, 𝑦′ and 𝑧′ locations correspond to center of the sources and 

doublets in Equation (C.14) and (C.15) respectively. 𝑥0, 𝑦0 and 𝑧0 locations are the 

field points to be calculated; E is equal to 2 or 4 in supersonic and subsonic flight 

regime, respectively. In Equation (C.14),  
𝜕

𝜕𝑛
 is the out-normal vector of the defined 

aerodynamic surface S, which is expressed as, 

𝑆 = 𝑆(𝑥, 𝑦, 𝑧, 𝑡) (C. 20) 

where x, y, z are the points of the aerodynamic surface and t is time. The integral 

solutions of the problem over the surface S which are given in Equation (C.14) and 

(C.15) are defined in terms of the unsteady source and doublet singularity 

distributions. The source singularity distributions are used to calculate unsteady 

potential due to body-like components, whereas doublet singularity distributions are 

used to calculate unsteady wing-like components. Therefore, the integral boundary 

of the solution of the wing-like velocity potential equation (𝛩𝑊) given in Equation 

(C.14) is corresponding to wing-like element surface and its wake effect through the 
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downstream whereas the integral boundary of the solution of the body-like velocity 

potential equation (𝛩𝐵) given in Equation (C.15) is corresponding to body-like 

element surface. These integral equations are solved by the submodules of ZAERO, 

ZONA6 and ZONA7 in subsonic and supersonic regions respectively with necessary 

boundary conditions according to the aerodynamic model.  

The unsteady velocity potential equation for wing-like elements is completely 

decoupled from steady velocity potential. On the other hand, unsteady velocity 

potential for body-like elements is coupled with the steady velocity potential. The 

governing equations for steady velocity potential for both wing-like and body-like 

elements are the small steady perturbations of the velocity components in x, y and z 

directions and further details can be found in [45]. 
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