

TECHNICAL DEBT SPECIFICATION AND CATEGORIZATION FOR

SOFTWARE AS A SERVICE APPLICATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

YASEMİN KURANEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

NOVEMBER 2022

Approval of the thesis:

TECHNICAL DEBT SPECIFICATION AND CATEGORIZATION FOR

SOFTWARE AS A SERVICE APPLICATIONS

submitted by YASEMİN KURANEL in partial fulfillment of the requirements for

the degree of Master of Science in Information Systems, Middle East Technical

University by,

Prof. Dr. Banu Günel Kılıç

Dean, Graduate School of Informatics

Prof. Dr. Altan Koçyiğit

Head of Department, Information Systems

Assist. Prof. Dr. Özden Özcan Top

Supervisor, Information Systems, METU

Prof. Dr. Altan Koçyiğit

Co-Advisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. Banu Günel Kılıç

Information Systems, METU

Assist. Prof. Dr. Özden Özcan Top

Supervisor, Information Systems, METU

Assist. Prof. Dr. Nurcan Alkış Bayhan

Technology and Knowledge Management, Baskent University

Date: 28.11.2022

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name Last name : Yasemin, Kuranel

Signature :

iv

ABSTRACT

TECHNICAL DEBT SPECIFICATION AND CATEGORIZATION FOR

SOFTWARE AS A SERVICE APPLICATIONS

Kuranel, Yasemin

Master of Science, Department of Information Systems

Supervisor : Assist. Prof. Dr. Özden Özcan Top

Co-Supervisor: Prof. Dr. Altan Koçyiğit

November 2022, 70 pages

An outcome of taking poor decisions or choosing easier solutions for faster code

delivery is technical debt (TD). It is important to specify technical debt in any

development effort. Technical debt is also common in platform-based solutions.

However, there is not much research about TD categorization for software as a

service applications (SaaS). In this study, we used different categorization methods

to specify the TD in organizations using SaaS applications. To understand the

technical debt indicators and problems specific to such organizations, and to address

TD management, we conducted two different case studies. First, we evaluated the

effectiveness of existing technical debt categorization methods varying in

granularity. For the second case study, we used one of the categorization methods

with the highest level of detail, which takes the nature of the debt into consideration,

and we performed a mapping with the TD categories and ISO/IEC 12207 software

life cycle processes. We found the indicators, reasons, the problems arising due to

TD, and the ways in which TD management can be performed in organizations

working with SaaS applications. It was determined that TD categories and problems

that exist in traditional software applications are also seen in the field of SaaS, but

v

there are also additions to TD problems that are specific to SaaS. The 9 different

categories of TD experienced in SaaS applications and the sub-diffractions of the

“SaaS Related Limitations” category are presented in the study.

Keywords: Technical Debt, Categorization, Software as a Service

vi

ÖZ

SERVİS OLARAK YAZILIM UYGULAMALARINDA TEKNİK BORÇ

BELİRTİMİ VE SINIFLANDIRMASI

Kuranel, Yasemin

Yüksek Lisans, Bilişim Sistemleri

Tez Yöneticisi: Dr. Öğrt. Üyesi. Özden Özcan Top

Ortak Tez Yöneticisi: Prof. Dr. Altan Koçyiğit

Kasım 2022, 70 sayfa

Kötü kararlar almanın veya daha hızlı kod teslimi için daha kolay çözümler seçmenin

bir sonucu teknik borçtur (TD). Herhangi bir geliştirme çabasında teknik borcu

belirtmek önemlidir. Teknik borç, platform tabanlı çözümlerde de yaygındır. Ancak,

servis olarak yazılım uygulamaları (SaaS) için teknik borç sınıflandırması hakkında

çok fazla araştırma yoktur. Bu çalışmada, servis olarak yazılım uygulamaları

kullanan kuruluşlarda teknik borcu belirlemek için farklı kategorizasyon yöntemleri

kullandık. Teknik borç göstergelerini ve bu tür kuruluşlara özgü sorunları anlamak

ve TD yönetimini araştırabilmek için iki farklı durum çalışması yürüttük. İlk olarak,

ayrıntı düzeyine göre değişen mevcut teknik borç sınıflandırma yöntemlerinin

efektifliğini değerlendirdik. İkinci durum çalışması için, borcun niteliğini dikkate

alan, detay seviyesi en yüksek kategorizasyon yöntemlerinden birini kullandık ve

buradaki teknik borç kategorileri ve ISO/IEC 12207 yazılım yaşam döngüsü

süreçleri ile bir eşleştirme gerçekleştirdik. Geleneksel yazılım uygulamalarında var

olan kategorilerin servis olarak yazılım alanında da görüldüğünü ancak bu alana

özgü farklılıaşmaların da olduğunu, buradaki özgün göstergeleri, sebepleri ve

bunlardan kaynaklanan sorunları tespit ettik. Çalışmada servis olarak yazılım

vii

uygulamalarında yaşanan 9 farklı teknik borç kategorisi ve “SaaS ile İlgili

Sınırlamalar” kategorisinin alt kırınımları sunulmaktadır.

Anahtar Kelimeler: Teknik Borçlanma, Kategorizasyon, Servis Olarak Yazılım

Uygulamaları

viii

Dedicated to my family

ix

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assist. Prof. Dr. Özden Özcan

Top. She always supported me with her ideas, vision, and encouragement. Her

teachings will always stay with me, and her perseverance will always be an

inspiration for me.

Secondly, I would like to thank my co-advisor Prof. Dr. Altan Koçyiğit for making

this study possible. I always felt his support throughout the thesis study, helping me

to stay on the right track, and introducing me new ways of thinking throughout all

my studies in METU.

I would like to thank Bülent Doğan and Burak Fenercioğlu for giving me the chance

to become a part of a wonderful team and encouraging me for this study. I am

thankful to all my team members for supporting me and putting up with me, and for

being a part of my thesis study.

I am grateful to my friend Onatkut Dağtekin for his support.

I cannot describe how thankful I am for my mother Tümay, my father Levent and

my brother Yiğit. Thank you for your love and being there for me whenever I need

you.

Finally, I would like to thank my beloved husband Şahin, for being with me always,

for growing up together, loving me endlessly, and believing in me.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. vi

ACKNOWLEDGMENTS .. ix

TABLE OF CONTENTS .. x

LIST OF TABLES .. xii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xv

CHAPTER

1 INTRODUCTION ... 1

1.1 Background of the Problem ... 2

1.2 Motivation ... 3

1.3 Objectives and Scope .. 4

1.4 Research Strategy .. 4

1.5 Organization of the Thesis ... 6

2 BACKGROUND INFORMATION .. 9

2.1 Technical Debt ... 9

2.1.1 Level 1 Categorization – Steve McConnell ... 9

2.1.2 Level 2 Categorization – Martin Fowler ... 10

2.1.3 Level 3 Categorization – Alves et al. .. 11

2.2 Cloud Computing and Software as a Service - SaaS 12

2.3 Customer Relationship Management – CRM 14

2.4 Related Work on Technical Debt Analysis on Enterprise Level

Solutions .. 16

3 CASE STUDY ON ANONYMOUS ISSUE STATEMENTS OF A

CRM PLATFORM .. 17

3.1 Design of the Study ... 18

3.2 Conduct of the Study ... 20

3.2.1 Categorization .. 20

3.2.2 Validation .. 22

3.3 Findings of the Study ... 23

xi

3.3.1 Categorization Results ... 23

3.3.2 Relationship Between Categorization Methods 26

3.3.3 Inferences on Level 3 Categorization – “Nature” of the TD 26

3.3.4 Evaluation of the First Case Study ... 27

4 CASE STUDY ON TECHNICAL DEBT AND SDLC PROCESSES

WITH A SOFTWARE DEVELOPMENT TEAM 29

4.1 Design of the Study .. 31

4.1.1 Software Life Cycle Processes ... 32

4.1.2 TD Management .. 33

4.1.3 Coding – Categorization Practice .. 33

4.2 Conduct of the Study ... 34

4.2.1 Organizational Structure and Software Team Experience 34

4.2.2 Software Life Cycle Processes and Level 3 TD Mapping 35

4.2.3 SDLC Process Involvement ... 36

4.2.4 TD Awareness .. 38

4.2.5 Coding and Categorization .. 39

4.3 Findings of the Study ... 41

4.3.1 TD Indicators and TD Problems .. 41

4.3.2 TD Categories and Analysis .. 43

4.3.3 SaaS Related Limitations ... 45

5 RESULTS AND DISCUSSION .. 47

6 CONCLUSION .. 55

REFERENCES .. 57

APPENDIX A .. 61

APPENDIX B .. 62

APPENDIX C .. 65

APPENDIX D .. 67

xii

LIST OF TABLES

TABLES

Table 1- The technical debt quadrant of Fowler ... 10

Table 2 - Technical debt types with definitions by Alves et al. 11

Table 3 - Validator Expertise in Software Development and SaaS Platform based

on years of experience ... 20

Table 4 - Example categorization of confessions on Level 1 20

Table 5 - Example categorization of confessions on Level 2 21

Table 6 - Example categorization of confessions on Level 3 22

Table 7 - Matching Entries for each level of categorization 23

Table 8 – Number of entries in each technical debt category 24

Table 9 – Mapping of Level 1 and Level 2 categories .. 25

Table 10 – Total number of entries in Level 1 vs Level 2 categorization when Level

3 category is Design .. 25

Table 11 - Total number of entries in Level 1 vs Level 2 categorization when Level

3 category is People ... 26

Table 12 - ISO/IEC 12207 processes utilized in the case study 32

Table 13 - TD Management Options ... 33

Table 14 - TD Level 3 vs ISO/IEC 12207 Processes .. 35

Table 15 - SDLC processes practiced in the organization and the number of

participants taking responsibility in each process ... 36

Table 16 – SDLC process involvement for each interviewee 37

Table 17 – Experience Level and TD Awareness for each interviewee 39

Table 18 – Coding and Categorization Process for Case Study 2 – Participant #4 . 40

Table 19 - TD indicators .. 41

Table 20 - TD problems .. 42

Table 21 – Categories found by coding ... 43

Table 22 – Examples related to SaaS Related Limitations 45

xiii

Table 23 – TD issues experienced in SaaS applications vs TD types..................... 48

Table 24 – TD awareness based on roles .. 49

xiv

LIST OF FIGURES

FIGURES

Figure 1 - Steps of Research Strategy ... 6

Figure 2 – Data collection process for Case Study 1 ... 18

Figure 3 - Data collection process for Case Study 2 ... 31

Figure 4 – Categories mentioned the most by interview participants 44

Figure 5 – Sub-categories on SaaS related limitations .. 50

xv

LIST OF ABBREVIATIONS

Cons. : Consultant

CRM : Customer Relationship Management

Customer Sup : Customer Support

Dev. : Developer

ERP : Enterprise Resource Planning

IEC : the International Electrotechnical Commission

ISO : the International Organization for Standardization

ISV : Independent Software Vendor

Org : Organization

QA : Quality Assurance

QA Eng. : Quality Assurance Engineer

Release Mng. : Release Manager

RQ : Research Question

SaaS : Software as a Service

SDLC : Software Development Life Cycle

TD : Technical Debt

1

CHAPTER 1

1 INTRODUCTION

Technical debt is the outcome of taking poor decisions or choosing easier or quicker

paths for code delivery, resulting in refactoring processes and more effort by the

developers in long term. Given that software companies are in competition, decisions

and actions taken instantly during development process affect the overall software

quality such as code, user experience, architecture, and design quality and

consequently the product quality. However, in software processes, especially in

service or maintenance improvements that need to be delivered quickly, technical

debt can become inevitable. The reasons for this debt include pressure from

customers, lack of communication, tests with low code coverage, the architecture of

the software, or even missing documentation. One of the evident problems of this

debt result in significant decreases in product quality or agility in delivery. Therefore,

it is essential to measure technical debt, in terms of delivering high quality products

and services. These problems are also common in platform-based solutions, increase

with platform-specific boundaries and limitations, and lead to malfunctions in both

software processes and the end product delivered to the customer.

Software as a service applications are commonly used in the software development,

and prefered for their benefits on low setup and infrastructure costs, and their

scalability. They take the effort of managing complex software or hardware systems

from software development companies. Another widely used platform by businesses

is Customer Relationship Management (CRM) platforms, that provide an

improvable way of managing business by increasing collaborative work, presenting

easy-to-use features such as reporting tools, and therefore elevating success. These

improvements -either products or services- are often delivered by software

companies that are specialized in platform-based solutions. Organizations using

software as a service applications and customer relationship management platforms

are also experiencing technical debt throughout their development activities. The

purpose of this thesis is to specify and categorize the technical debt present in

organizations using software as a service applications, particularly in customer

relationship management (CRM) platforms.

2

1.1 Background of the Problem

In the literature, there are studies which compare different technical debt

identification methods such as the study by Zazworka et al. where the essential

properties of TD should be captured, to approach TD with tools instead of using

manual approaches (2013). The study of Ramasubbu and Kemerer focuses on TD

based on interdependencies between client and vendor activities for maintenance and

presenting the implications for studies for managing TD in enterprise systems

(2016). Codabux et al.’s study focuses on insights from practitioners for TD

identification (2017); whereas Skourletopoulos et al.’s research is on a cost

estimation approach to identify the budget constraints which causes TD (2014).

There are also case studies that compare technical debt management in different

companies by Zazworka et al.(2013), Iuliia (2017), Alzaghoul and Bahsoon (2013)

and Klinger et al. (2011).

Kruchten et al. summarizes the evolution of technical debt and identifies this as the

technical debt landscape and proposes a solution for the organization of the problem

(2012). One of the studies from Alves et al. suggests an ontology of technical debt

terms, to organize the different types and indicators of TD, based on its “nature”

where the activity of the development process execution is taken into consideration

(2014).

There are also studies which aims to detect the problems and reasons regarding TD

by running surveys with software practitioners and software developers. One of these

studies by Falessi and Kazman, aim to detect the “worst smells”, and their

frequencies, and the possible causes defined as “worst reasons”, such as “lack of

knowledge” for code smells type of issues in software development (2021). Another

study by Ramač et al. collects information using a survey study with software

practitioners, aiming to find the causes for software development teams to incur TD

in their projects and the effects of TD (2022). The study identifies several TD types

by occurrence as: design, test, code, architecture, and documentation debt, and

provides the TD awareness and familiarity of software practitioners to the concept,

and reports on the significance of other effects on the familiarity.

Although the technical debt concept is widely applicable to any software

development project, there is a limited understanding of the causes and effects of it

on development efforts in software as a service applications and enterprise level

software. Enterprise software definition covers customizable platforms such as

Enterprise Resource Planning (ERP), Human Resources Management (HRM) and

Customer Relationship Management (CRM). It is crucial to investigate and specify

3

technical debt in these systems as the success in business highly depends on effective

usage of these systems in a well-organized way.

1.2 Motivation

CRM platforms provide a streamlined way of managing businesses by improving

collaborative work, presenting easy-to-use features such as reporting tools, and

therefore elevating success in businesses (Salesforce, 2020). These improvements -

either on products or services- are often delivered by software companies that are

specialized in platform-based solutions or in-house teams who are responsible for

understanding the requirements of business users and building solutions.

Accordingly, the quality of such systems contributes to the overall quality of

business processes. Hence, in this study, we specifically focused on technical debt

in a CRM platform (i.e. Salesforce). Salesforce is a software company specialized in

CRM, containing applications focused on sales, marketing, customer service, and

also product/application development, providing software as a service (SaaS) and

platform as a service (PaaS) (Youseff et al. 2008). Since the platform serves as a

service for many organizations and application development teams, experiencing

technical debt is inevitable for most of the stakeholders.

In the first case study, we’ve tried to understand the effect of different categorization

methods on analyzing the causes of technical debt on Salesforce platform. We have

used different categorization methods to understand the causes of technical debt on

Salesforce platform, and we have seen that some categories – Design debt, People

debt and Process debt – are standing out. However, we have concluded that our

findings on this case study falls short on reflecting the debt that is specific to CRM

and SaaS platforms. As SaaS applications are being used around the globe and the

platform has its own development tools, and governor limitations, the technical debt

management is expected to be slightly different than handling technical debt on a

regular software development company. Therefore finding different categories for

specifying the technical debt present in such systems become the motivation of this

study, with the urge to tackle this challenge which will benefit software development

teams in the industry using SaaS/PaaS. As the second case study was designed and

conducted, the need to find the application specific TD issues became one of the

significant objectives of the study, and findings around the methods for managing

TD in organizations using SaaS was examined based on practitioner’s point of view

and analyzed based on their experiences in software development and their roles in

the organization.

4

1.3 Objectives and Scope

The objective of this study is to specify the causes of technical debt in CRM

platforms that provide SaaS/PaaS by deriving different technical debt categories that

will reveal the debt in a more understandable way. When the causes are more

apparent to software development teams, the technical debt awareness will increase.

According to Suryanarayana et al. “Awareness is the first step toward managing

technical debt” (2014). If the awareness is high within a project team, then managing

technical debt would be easier, by identifying the causes and/or impacts of the debt.

The importance of knowing the products and services used in software development

is clear, especially within the scope of CRM and SaaS applications and technical

debt specification. However, difficulties in managing technical debt may arise due

to difficulties in specifying this debt. For this reason, the scope of the study includes

improvements for the specification of technical debt, by leveraging the

categorization methods that are present today.

To improve the awareness, the aim is to specify the technical debt issues specific to

CRM platforms and investigate the effectiveness of different technical debt

categorization methods on analyzing the causes of the debt on SaaS applications.

After analyzing the possible causes of technical debt in such applications, the

purpose is to find out the methods for managing technical debt in organizations that

develop software in SaaS platform and make an improvement in technical debt

management for such organizations.

1.4 Research Strategy

As the purpose of the study is to specify and categorize the technical debt issues

related to SaaS applications and CRM platforms, we have formulated the research

questions of this study by targeting these applications.

RQ1: How do different technical debt categorization or identification methods help

on analyzing the causes of technical debt in a Customer Relationship Management

(CRM) platform?

RQ2: What are the technical debt issues in organizations using SaaS in CRM?

RQ3: What are possible problems caused due to TD in such organizations?

RQ4: What are the methods for managing TD in organizations using SaaS?

5

For the research methodology, a qualitative study on Salesforce platform was

performed, by using 300 issue definitions, which were collected as confessions from

OrgConfessions, which provides unbiased confessions of Salesforce developers,

administrators, and consultants anonymously. The study was conducted using

different technical debt categorization methods, which provide increasing level of

detail. The categorization helped on the identification of the root causes of technical

debt on Salesforce platform and therefore aims to increase the “awareness” among

software development teams in CRM platforms. The details of the study are

presented in chapter 3.3 in order to answer RQ1.

After conducting the case study it was understood that the categorization methods

can be formed differently for SaaS applications. Therefore we have conducted a

second study with a software development company, which specializes in Salesforce

application development and services for customization. Multiple interviews were

conducted with the software development team members with separate roles to

understand the causes of technical debt in their organization, and how they’ve been

managing the debt. The results of the second study created the opportunity to form

new technical debt categories that addresses the problems that are common in

software development companies using SaaS applications. The TD indicators,

problems and managerial activities are introduced in chapter 4.3 and discussed

further in chapter 5, to answer the rest of the research questions. The research

strategy followed in this study is provided step by step in Figure 1.

6

Figure 1 - Steps of Research Strategy

1.5 Organization of the Thesis

The overall study consists of six main sections. Chapter 2 is the literature review of

studies on technical debt, and background information on CRM and SaaS

applications. Chapter 3 is explaining the case study that was done on anonymous

7

issue statements of the CRM Platform. Chapter 4 presents the case study that was

done with a CRM software development team using SaaS applications. Chapter 5

presents the results and discussion section. Chapter 6 concludes the thesis with

findings, the significance of the study and future work.

9

CHAPTER 2

2 BACKGROUND INFORMATION

2.1 Technical Debt

The term “technical debt” was created as a metaphor by Ward Cunningham (1992),

to describe all the code defects, and design and architectural mistakes made by

developers, and to summarize them to “non-technical” people in software projects.

Technical debt occurs when an instantaneous action adds value to the software but

leads to undesirable consequences. In other words, taking shortcuts during analysis,

design, implementation, testing or even documentation phases of a project might end

up in more effort and time spent on the tasks to resolve a defect or to enhance the

quality of the end product.

Several technical debt identification methods are suggested by researchers in the

literature and comparisons of these different methods are made since Cunningham’s

introduction by Zazworka et al. (2013), Ramasubbu and Kemerer (2016), Codabux

et al (2017), and Skourletopoulos et al.(2014), Alves et al.(2014), McConnell (2013),

and Fowler (2009). Among these, we selected Steve McConnell’s, Martin Fowler’s,

and Alves et al.'s approach for technical debt categorization. We ordered these three

approaches as follows according to the increasing level of granularity of their

descriptions and applied them to our context in this order.

2.1.1 Level 1 Categorization – Steve McConnell

The first level technical debt identification can be performed on the “intention” level

as suggested by Steve McConnell (2013). Each technical debt can be categorized as

“intentional” and “unintentional”. In software projects, technical debts are usually

unintentional, when imperfect solutions are preferred unconsciously. We discovered

that most of the architectural or structural debts fall into this category, since the

consequences of the architectural/design decisions could usually be observed at later

stages of a software development life cycle.

10

On the other hand, almost all suboptimal solutions preferred to address the needs of

customers or stakeholders intentionally, lead to low product quality alongside. Such

solutions may be developed to solve design or code defects which blocks the

software. Consequences of these actions are mostly known by development teams at

the time of the actions, and mostly marked as “to be refactored” in the following

development iterations. Therefore, such cases are considered as intentional technical

debt.

2.1.2 Level 2 Categorization – Martin Fowler

The second level of technical debt categorization we used is the “Technical Debt

Quadrant” developed by Martin Fowler (2009). This quadrant classifies the technical

debt based on the intention of the person who creates the debt but in a more detailed

way than McConnell’s classification. The classification quadrant shown in Table 1

includes both the classification types and the examples for each classification given

by Fowler.

Table 1- The technical debt quadrant of Fowler

 Reckless Prudent

Deliberate We don’t have time for

design

We must ship now and deal with

consequences

Inadvertent What’s layering? Now we know how we should have done it

Below, we provide the explanations of the examples given above:

1. Reckless – Inadvertent: “What’s layering?”. This example refers to the lack of

knowledge on good design practices and capability of practicing them as a team

of developers. This kind of technical debt is the least desirable one and usually not

recognized.

2. Reckless – Deliberate: “We don’t have time for design”. This example may refer

to project planning issues and not meeting deadlines, the state of not affording the

time required to come up with clean solutions. Quick solutions without proper

design, causing long-term defects are considered mainly in this category.

11

3. Prudent – Deliberate: “We must ship now and deal with consequences”. This

example refers to meeting certain deadlines with quick and low quality solutions,

but accepting the debt, where the cost of paying it is recognized.

4. Prudent – Inadvertent: “Now we know how we should have done it”. This

example refers to a state where the code or design had been clean but realizing

that it could have been designed better to meet the requirements. The debts in this

category can be seen as learning opportunities to provide higher quality on

upcoming development cycles or efforts.

2.1.3 Level 3 Categorization – Alves et al.

Aside from the intention and carefulness aspects of technical debt– which were

covered by McConnell’s and Fowler’s approaches respectively – a more

comprehensive taxonomy was formed by Alves et al. (2014). They defined an

ontology for the “nature” of the debt, by considering the activities of the development

process where the debt occurs. They identified 13 different technical debt types

which were correlated with the activity of the development process execution:

Table 2 - Technical debt types with definitions by Alves et al.

Technical Debt

Types – Level 3

Definitions

Architecture Debt
Refers to the problems encountered in product architecture,

such as, violation of modularity.

Build Debt
Refers to issues that make the build task harder, and

unnecessarily time consuming.

Code Debt
Refers to the problems found in the source code that

can negatively affect the legibility of the code making it

more difficult to maintain.

Defect Debt
Refers to known defects, usually identified by testing

activities or by the user and reported on bug tracking

systems.

Design Debt
Refers to debt that can be discovered by analyzing the

source code and identifying violations of the principles of

good object-oriented design.

12

Documentation Debt
Refers to the problems found in software project

documentation and can be identified by looking for missing,

inadequate, or incomplete documentation of any type.

Infrastructure Debt Refers to infrastructure issues that can delay or hinder some

development activities.

People Debt Refers to people issues that can delay or hinder some

development activities.

Process Debt Refers to inefficient processes, e.g. what the process

was designed to handle may be no longer appropriate.

Requirement Debt Refers to tradeoffs made with respect to what requirements

the development team needs to implement or how to

implement them.

Service Debt Refers to the inappropriate selection and substitution of web

services that lead to mismatch of the service features and

applications’ requirements.

Test Automation

Debt

Refers to the work involved in automating tests of

previously developed functionality to support continuous

integration and faster development cycles.

Test Debt Refers to issues found in testing activities that can affect the

quality of those activities.

Usability Debt Refers to inappropriate usability decisions that

will need to be adjusted later.

Versioning Debt Refers to problems in source code versioning,

such as unnecessary code forks.

This third level categorization creates the deepest level of understanding on

identifying technical debt as the nature of the debt is considered in the categorization.

2.2 Cloud Computing and Software as a Service - SaaS

Software as a service, also known as on-demand software, is a way to deliver

applications and software over the Internet, as a service. Unlike on-premise software,

which usually requires installation and maintenance by users, software as a service

allows users to access the required architecture and resources via the Internet. SaaS

solutions are usually preferred because of their lower upfront costs when compared

to traditional or on-premise software (Cusumano, 2010).

Table 2 (cont.)

13

SaaS applications use a multitenant architecture, where all applications and users

share a single infrastructure and code base. The faster/easier innovation of SaaS

applications is through multitenancy. As the software is delivered through the

Internet, the ability for each user to access data is ensured. Most SaaS solutions

provide no-code solutions, saving both from development time, and the cost of

maintaining a code base. Allowing no-code automation and customization, it causes

no harmful effects to the common infrastructure, and organizations can achieve

success in their business processes.

As SaaS is usually prefered by organizations that hold back due to costs and the time

spent to evaluate, analyze, install on-premise software, SaaS applications are usually

compared to packaged software. Main differences of these can be defined as:

- Setup and infrastructure costs

- Scalability

- Rapidness in implementation

- Accessibility

- Update frequencies

- Maintenance costs

- Security

One of these main differences are often pointed out as ease of customization with

SaaS applications, usually with no-code tools. The changes that can be made without

writing code is playing a huge role in the automation and maintenance of business

processes for organizations. While making the changes users use the advantage of

using SaaS solutions, with the benefit of documented and ready-to-use solutions for

their use cases if the service provider offers the specifications of the platform,

software or service. In order to undertake all such improvements and maintenance

work, organizations can employ in-house teams or administrators, as well as

depending on external support, or even independent software vendors (ISV)

(Mazalon, 2021).

At this point, it is also important that the developments that are made works as a

complete system, within the limits of the provided service, depending on the

architecture, and being compatible with the infrastructure. Also, the customizations

made by external software providers, ISVs or in-house teams, should be well

documented. Services and/or customizations that are not well documented, joined

with less-experienced administrators or developers starts causing troubles in the

SaaS applications. These problems can usually be similar to the problems

experienced in on-premise services, however they can also be related to the SaaS

application, the infrastructure, or may be introduced with continuous updates to the

14

service (Agarwal, 2011). Most SaaS applications provide solutions to such problems

with bug-fixes on their release cycles, some may offer workarounds for their known

issues as well. Either way, it is important for SaaS users to follow the updates from

SaaS provider (Liu et al. 2011), and document their customizations and business

processes. Otherwise, it is possible to say that technical debt becomes a problem in

the field of SaaS applications due to such problems.

2.3 Customer Relationship Management – CRM

Being one of the pillars of Enterprise Resource Planning (ERP) systems, Customer

Relationship Management (CRM) system is the complete system of services

required to manage a business’ interactions with its customers by organizing

activities such as sales and marketing by leveraging different tools of automation and

handling the life cycle of a customer with the organization wherever required. The

transactions with the customers are traced with CRM systems, therefore it is

beneficial to use them to maintain a long-term relationship with the customers

(Tohidi and Jabbari, 2012).

The CRM as we know started in 1980s, with the name of ACT!, by Pat Sullivan and

Mike Muhney (Bryant, 2018). It was founded to provide storage and organization

for customer life cycle information in an effective way (Rigby and Ledingham,

2004). As CRM systems are developing in agility in the last 15 years, each day more

CRM software is introduced. Some of the CRM tools are exceling at being easy-to-

use, or better at managing sales teams or online transactions, some of them are

preferred for being highly customizable. There are many types of CRM tools which

are famous for different capabilities. Some of the most popular and highly-used

CRM tools are:

- Microsoft CRM

- Salesforce CRM

- Oracle CRM

- SAP CRM (Ascendix, 2022)

15

As businesses has different needs and requirements, it becomes harder to choose the

correct program for the organization. There are common items that are present in

most CRM tools which satisfies the following needs of organizations:

- Ease of use

- Sales management

- Reporting

- Customization

- Integration

- Automation

As there are different features introduced in different CRM tools, there are different

platform-specific boundaries and limitations that may lead to problems for

organizations, resulting in poor business quality. When the CRM platform gets more

customizable, more complex solutions to user requirements are to be produced. This

usually requires a dedicated team to provide maintenance for organizations.

Furthermore, lots of issues for customers are introduced as some features are

constantly evolving with platform updates.

Widely used by businesses, the solutions that are created on CRM platforms are

usually produced by in-house teams, or software companies that are specialized in

platform-based solutions.

Being one of the world’s leading cloud-based CRM platform/software, Salesforce,

provides a highly customizable platform, with capabilities such as reporting and

dashboard creation, automation with non-coding tools such as process builders, and

flows, assisting in forecasting and additional AI solutions. These capabilities are

provided with the cost of a complex environment that needs dedicated teams or

admins to handle such costly customizations.

As some of these customizations can be made by in-house teams, there are also

solution providers that work on products that can be easily installed using

Salesforce’s marketplace, AppExchange. Although Salesforce recommends using

non-coding tools wherever possible, it is sometimes inevitable to write code for

specific cases or even install the applications on AppExchange for requirements that

will cost more to implement. All these features and alternatives makes Salesforce a

complex system, which causes technical debt to be introduced, by both organization

admins, and/or the solution providers of different applications.

16

2.4 Related Work on Technical Debt Analysis on Enterprise Level

Solutions

Although the technical debt concept has been extensively studied in the literature,

there are few studies in relation to analysis of technical debt for enterprise software

systems, especially customer relationship management software. Klinger et al.

(2011) analyzed the technical debt by conducting interviews with technical architects

related to enterprise level solutions and made recommendations for organizations to

manage technical debt with enterprise-level circumstances (Klinger et al, 2011).

Another study in this area is on managing technical debt using an option-based

approach for cloud-based solutions, where each option’s ability to clear technical

debt is analyzed (Alzaghoul and Bahsoon, 2013). There is also a study which focuses

on the dependencies between client – vendor maintenance activities in enterprise

level software systems and empirically quantifying “the negative impact of technical

debt on enterprise system reliability” (Ramassubbu and Kemerer, 2016).

There is also a study made by Kumar et al. (2019), for identifying and estimating the

technical debt for service composition in SaaS cloud, which aims to propose a way

to help the decision making process for managing TD based on estimates for future

debt. As in this study, Kumar puts emphasis on the concepts of “good debt” and “bad

debt” in terms of classification of TD in the context of SaaS applications (Kumar,

2021).

17

CHAPTER 3

3 CASE STUDY ON ANONYMOUS ISSUE STATEMENTS OF A CRM

PLATFORM1

The first case study was conducted on anonymous issue statements about Salesforce

confessed by practitioners on OrgConfessions, and the aim was to use three levels of

categorization methods, to understand the intentions, indicators, and the causes of

technical debt on CRM platforms. Figure 2 presents the flow of the first case study

based on the design and conduct processes and the analysis with respect to research

questions.

As it can be understood from the three main sections in the figure, the case study

consists of three main stages: Design, Conduct and Analysis. In the study, which is

carried out by a certified platform developer, TD categorization methods in the

literature were examined and 3 categories at different levels of granularity were

determined as the initial step of the design stage. Afterwards, research was conducted

on the issues in SaaS/CRM platforms, and the anonymous issue set was found which

was defined as “confessions” from platform users having different roles in the

business. A sample set which is 50% of the data that was available at the time of the

study was selected. The design stage was concluded with the determination of the

experts that will contribute to the study for reviewing the categorizations for the

issues. The experts were selected in terms of experience of the platform and

experience in software development areas.

In the conduct stage, the sample set of issues were categorized based on the three

different technical debt categorization methods that were determined. When the

categorization was completed, the experts categorized a smaller set of issues, and

their categorization was used for validating the study using majority voting method.

The details of the validation can be found in section 3.2.2.

1 The following section of the thesis was published as conference proceeding on SERP’20 – The

18th Int’l Conference on Software Engineering Research and Practice – American Council on

Science and Education. (Doğancı, Özcan-Top & Koçyiğit, 2021)

18

In analysis stage, the similarities between the two levels of TD categorization were

stated, and the most frequent categories of all three levels were found for the

SaaS/CRM platform. The effectiveness of the categorization methods in identifying

the causes of TD has been understood in the analysis stage as an answer to the first

research question of the thesis.

Details of these stages are presented in the following sections of the study.

Figure 2 – Data collection process for Case Study 1

3.1 Design of the Study

The study is based on issue statements published as anonymous confessions by an

Independent Software Vendor (Confessions.org). These issue statements are written

by developers, administrators, consultants, and users working on the Salesforce

platform. As there are different stakeholders in any Salesforce organization, the

confessions of these stakeholders, their daily routines, the mistakes they’ve made

over the course of their projects or customizations, the problems that they experience

are also varying.

19

As of writing this thesis, there are currently more than 1200 entries published. During

the design and conduct of the study, there were 700 entries published. The entries

are not always written in-detail and the confessors are usually using an informal

voice. Moreover, they used the domain knowledge to express the issues succinctly.

Hence, many of the confessions are ambiguous and cannot be categorized without

knowing the context and the nature of the pertinent implementation. Therefore, the

decision was made for categorizing almost half of the entries published for the design

of the study. The total number of entries analyzed in this study is covering

approximately the 25% of the current total.

Technical debt categorization was carried out by a certified Salesforce platform

developer, having more than four years of experience in product development and

consultancy in the platform. The confessions were gathered randomly from the

OrgConfessions site, and the identification numbers were also collected.

The categorization process mainly included analysis of the issue definitions on

OrgConfessions, and determination of relevant technical debt categories based on

three categorization approaches for each entry. The technical debt categorizations

were described in the Technical Debt chapter of the thesis, giving background

information about the three different levels of categorization. The issue definitions

that were gathered were categorized in three iterations for the three different

categorization methods. The first iteration was made with the first level of

categorization which was covering the intention aspect, the second iteration was for

the level 2 categorization which was the carefulness, and the third level of

categorization was on the nature of the debt, which was the final iteration for

categorization process. The details of each iteration and example categorizations are

provided in the following chapter of the study.

The team of experts that would take part in the validation process of the study were

also determined in the design of the study, based on their experience with software

development and their familiarity with the SaaS application. The team of experts

consist of developers that work in a Salesforce consultancy and product development

team. Four of these people work as software developers, whereas one of them works

as a tester/quality assurance specialist. These experts have varying experiences in

both software development and the Salesforce platform. Hence, to minimize the

effect of validator experience on analysis, we employed cross validation. To this end,

the experts with less than 1 year of experience on the Salesforce platform but having

nearly 10 years of experience in software development; and those having around 2

years of experience both in Salesforce and software development evaluated the same

set of confessions. The level of experience is given in years and the experiences on

20

the platform and in software development for each validator is overlapping, meaning

that a validator’s experience in the software development was developing during

working with SaaS platform.

Table 3 - Validator Expertise in Software Development and SaaS Platform based

on years of experience

Validator Role Experience in Software

Development (in years)

Experience in SaaS

Platform (in years)

QA Engineer 3 2.5

Technical Lead 11 Less than a year

Software Developer 1 1

Software Developer 2 2

Software Developer 15 12

SaaS Consultant 10 15

3.2 Conduct of the Study

In this section examples for three different levels of categorization, and the details

of the validation process will be presented.

3.2.1 Categorization

At the first level of detail, the entries are evaluated from the intention aspect to see

whether the developers foresaw the consequences when they made an inappropriate

decision (intentionally) or not (unintentionally). Example confessions for these

categories are as follows:

Table 4 - Example categorization of confessions on Level 1

Confession # Confession Content TD Category

on Level 1

#231 People refuse to do changes anywhere but in

production, since there “is no real test data

Intentional

21

#129 We installed a managed package that added a

currency field onto every standard AND

custom object.

Unintentional

For the second level of categorization, the intentions of the decision maker who

eventually caused the debt was the criteria on evaluating the entries. These intentions

are found by using the “Technical Debt Quadrant” introduced by Fowler. Each

category in the quadrant can be identified as Reckless (R), Prudent (P), Inadvertent

(I), and Deliberate (D). The union of these categories constitute the technical debt

quadrant. The example entries falling in each quadrant section are as follows:

Table 5 - Example categorization of confessions on Level 2

Confession

Confession Content TD Category

on Level 2

#201 Users doing a Trailhead course and started

installing apps in our prod org vs their own

playground.

Reckless-

Inadvertent

#198 35 users logging in with shared username/password

that had System Admin access.

Reckless-

Deliberate

#394 Validation rule to stop one spammer (hardcoded

email address) from creating email-to-case.
Prudent-

Deliberate

#307 Invited to new Chatter group called “ISV-ABC.”

We all ignored it because it looked like a test. ABC

actually stands for a territory: AMER – BUILD –

CENTRAL.

Prudent-

Inadvertent

The categorization at the third level was performed by considering the software

development process during which the debt injected. This evaluation is based on

Alves et al.’s (2014) 13 different categories. A sample set of confessions for these

categories are as follows:

Table 4 (cont.)

22

Table 6 - Example categorization of confessions on Level 3

Confession

Confession Content TD Category

on Level 2

#74 40 lookup fields on the Product object. Design

#84 Request for a multi-select picklist with 98 values.

When advised this was not the best practice and to

rethink the need, they came back with a request for

a picklist with 78 values.

People

#164 Sandbox not updated 10 years. Process

#147 Multiple fields with same label. Documentation

#39 Hard coded user names in Apex classes. Code

3.2.2 Validation

The example confessions can be seen in Appendix A and the evaluation form

attached is Appendix B. Forty-five entries were chosen randomly from the set of

categorized entries (confessions). This refers to validation of the 15% of the

categorizations given by the researcher. As the confessions are vaguely stated, the

experts’ categorizations were not always consistent. For this reason, we employed

the majority voting method in deciding on the correct technical debt categories for

each categorization level. The categories found by the researcher were compared

with the ones found by validators and in the case of a tie, the researcher’s

categorization was assumed to be valid.

In the validation phase of this study, the focus was also on understanding whether

different roles or experiences in software development or the Salesforce platform

influenced the categorization process. Table 7 shows that most of the Salesforce

experts were in consensus in categorization of the confessions (91% at Level 1, 77%

at Level 2 and 75% at Level 3). However, due to ambiguities in the issue statements,

and the existence of non-mutually exclusive categories (e.g. Design and

Architecture) in technical debt categorization at Level 3, we concluded that the

categorization levels can be revised to consider the ambiguous or unknown sourced

debt issues.

23

Table 7 - Matching Entries for each level of categorization

Categorization

Level

Number of Matching

Entries

Percentage of Matching

Entries

1 41/45 91%

2 35/45 77%

3 34/45 75%

As can be seen in Table 7 out of validated 45 entries, the percentage of matching

entries are decreasing with increasing level of categorization. This shows that when

the technical debt categories’ granularity increases, the consistency of the decisions

made in categorization decreases.

One reason for this decrease at Level 3 is that there is no clear distinction among the

categories of this level. For example, in some cases a debt categorized as “Design”

could go under “Architecture” or “Code” or even “Requirement” categories as well.

Another cause of this decrease is the ambiguities in issue definitions. Since the actual

process in the software development life cycle where the debt had been introduced

was unknown to researchers and the group of validators, making decisions at Level

3 was more difficult than the other two technical debt categorization levels.

3.3 Findings of the Study

In this section, the results of the three level technical debt categorization of

OrgConfession issues are introduced. The categorization results of 300 issue

definitions are delivered on the first section of the chapter. Afterwards, the

correlation between these categories and the reasons for disagreements in the

validation method are specified.

3.3.1 Categorization Results

The categorization of 300 confessions and the results are summarized in Table 8

below.

24

Table 8 – Number of entries in each technical debt category

Level Technical Debt Type Number of Entries

1
Intentional 219

Unintentional 81

2

Reckless-Deliberate 202

Reckless-Inadvertent 66

Prudent-Deliberate 11

Prudent-Inadvertent 21

3

Design 138

People 51

Process 41

Documentation 24

Code 16

Test 13

Requirement 5

Infrastructure 5

Service 4

Architecture 3

Table 8 shows that, out of 300 entries analyzed, most of the issues are classified as

Intentional at Level 1 and as reckless – deliberate at Level 2.

Mapping of the categories at Level 1 and Level 2 as shown in

Table 9 revealed that most of the intentional type of technical debt corresponds to

reckless-deliberate type debt according to Level 2 categorization and most of the

unintentional type of technical debt corresponds to the reckless-inadvertent type debt

at Level 2.

25

Table 9 – Mapping of Level 1 and Level 2 categories

 Level 2

 R.D R.I P.I P.D

Level 1 Intentional 200 6 2 11 219

Unintentional 2 60 19 0 81

As it can be seen in Table 8, “Design” and “People” type categories are the most

frequent ones at Level 3. Hence, in Table 10 and Table 11, we present a breakdown

of the “Design” and “People” category confessions for Level 1 and Level 2. As

shown in Table 10, most of the “Design” type technical debt are categorized as

intentional (113) and reckless-deliberate (103). On the other hand, most of the

“People” type technical debt are categorized as intentional (27) and reckless-

deliberate (25) as well. Additionally, the second frequent category for the “People”

technical debt was unintentional and reckless-inadvertent. Hence, we can say that

most of the “People” type technical debt can also be classified as a reckless technical

debt.

Table 10 – Total number of entries in Level 1 vs Level 2 categorization when Level

3 category is Design

Detailed results for

Level 3 = Design

Level 2

 R.D R.I P.I P.D

Level 1 Intentional 103 3 2 5 113

Unintentional 1 19 5 0 25

26

Table 11 - Total number of entries in Level 1 vs Level 2 categorization when Level

3 category is People

Detailed Results for Level 3 =

People

Level 2

 R.D R.I P.I P.D

Level 1 Intentional 25 1 0 1 27

Unintentional 0 19 5 0 24

3.3.2 Relationship Between Categorization Methods

Within the analysis of the results and the number of entries categorized at these three

different levels, we observed that the first two levels of technical debt categorization

are strongly correlated to each other. The most likely cause of this correlation is that

the intention aspect is also covered by the Level 2 categorization defined by Fowler

in the Technical Debt Quadrant. Fowler states that “…the moment you realize what

the design should have been, you also realize that you have an inadvertent debt.”,

pointing out that the correlation we mentioned between Level 1 and Level 2

categorizations is valid. By nature, the unintentional debt cannot be known until the

moment it is realized, and Fowler’s statement supports that. This also explains the

same case for the inadvertent debt category.

3.3.3 Inferences on Level 3 Categorization – “Nature” of the TD

After evaluating the first two levels of categorization and the results, the third and

most detailed categorization results are discussed for the top three categories:

“Design”, “People” and “Process”.

The “Design” type technical debt in the Salesforce platform can be attributed to

requirements errors as well. It is not possible to distinguish design and requirement

type errors due to ambiguity in issue definitions. Therefore, a design issue may also

suggest an inefficiency in requirement elicitation and specification processes (such

as requirements are not well defined or analyzed enough for a specific business need

which leads to incorrect solutions in the Salesforce platform). Some of the design

issues may be related to replicating an already existing third party package or

27

features in the Salesforce platform which ends up with a redundant development.

Similarly, instead of using built-in components which already exist in the Salesforce

platform, introducing new custom-made components or solutions that satisfy the

same set of requirements are classified as “Design” debt.

We observed that the “People” type technical debt category is strongly related to

faults caused by human errors and lack of user training. The technical debt

introduced in this category are also linked to communication errors or lack of

communication. People working on the Salesforce platform with different roles are

implicitly or explicitly mentioned in the confessions. The following are the entries

for representing the different roles causing the “People” type technical debt at Level

3:

- “We can’t move to Lightning because our Dev Team refuses to learn Javascript to

write the Lightning components we need.” (confession #114) → The role of the

person mentioned in this confession is Developer

- “10 year old Org. Admin didn’t know how customize nav bar. So they went in for

each user and customized their tabs.” (confession #186) → The role of the person

mentioned in this confession is Administrator

- “All managers insist on having a password that never expires.” (confession #216)

→ The role of the person mentioned in this confession is Businesspeople

With the study it is understood that the technical debt linked to “Process” type is

strongly related to the methodology followed in the development and delivery

processes. Process related debts are indicators of not following the software

development best practices accepted by the Salesforce community (2020). (i.e. not

using the suggested deployment connections for deployment purposes).

3.3.4 Evaluation of the First Case Study

As a result of the first case study based on anonymous and ambiguous issue

statements, we were able to comprehend the benefits of different technical debt

categorization methods in CRM platforms. We also detected the top three processes

that gives some insight on the problems that are experienced heavily in Salesforce

platform based on the third level of categorization. However, making these

28

inferences from ambiguous issue statements prevented us from understanding the

root causes of these problems in SaaS applications.

As these evaluations and inferences are made based on predictions from experts,

based on the knowledge on the platform, we wanted to verify the TD categorizations

based on unambiguous problems that software development teams experience in

CRM and SaaS applications. Also the capability of these TD categories to define the

problems experienced in these platforms are still open to discussion after conducting

the first case study. Therefore we started to design a second case study with

developers working with such applications, and the design was based on the

problems faced in a project that was created using these services, SaaS, and CRM.

29

CHAPTER 4

4 CASE STUDY ON TECHNICAL DEBT AND SDLC PROCESSES WITH A

SOFTWARE DEVELOPMENT TEAM

The second case study was conducted to specify the problems related to technical

debt in organizations using SaaS and CRM applications, by analyzing unambiguous

problems that software organizations experience. As the evaluations made on the

first case study was based on ambiguous issues, the second study’s purpose was to

create a deeper understanding of technical debt by eliminating the ambiguity and

providing evidence on an actual project based on SaaS applications.

The main objective of the case study was to specify the relationship of organizations

using SaaS and CRM applications and technical debt. The specification of technical

debt, the related problems caused by debt, and different options for managing the

debt are specified based on the second case study. As a result of the case study, we

were able to determine various categories for specifying technical debt in

organizations using SaaS applications.

The second case study, like the first, consisted of three main stages: Design, Conduct

and Analysis. The main purposes of the second case study were to eliminate the

ambiguity in the first case study – due to anonymous confessions – and to focus on

the TD activities based on the third level of categorization – nature of the debt –

which was related to SDLC activities. Another purpose was to focus on the

managerial activities on TD.

In the design stage, the different purposes of the study were recapped, and different

steps were carried out to fulfill each purpose. After the determination of an

organization working with SaaS applications, it was decided that one-on-one

interviews should be conducted with the software practitioners working in the

organization, in order to reduce the ambiguity that was present in the first case study.

As the practitioners were to discuss the problems that they experience in software

development based on their current project, they were more precise about the root

causes of some of these problems. While choosing the interviewees, the roles and

experiences of the software practitioners were taken into consideration to provide in-

detail analysis based on different levels of expertise. Further actions taken in the

design stage was to conduct a literature study on TD management, and the

categorization method on the nature of the debt. The nature level categorization –

third level in the first case study – and the different categories were mapped with

30

ISO/IEC 12207 software life cycle processes to carry out the interviews based on a

standard. In the light of the information gathered in the design stage, the interview

questionnaire was created, and the design stage of the study was terminated. The

interview questionnaire can be seen in Appendix C and D for English and Turkish

versions respectively.

During the conduct stage, structured, one-one-one interviews were conducted with

the software practitioners. During these interviews, the questionnaire prepared with

open-ended questions was reviewed, and interviews were made based on the roles

and responsibilities of the interviewee. During the interviews, the observations, and

the information that each interviewee shared were recorded, and they were listed at

the end of each interview by the interviewer. When all interviews were completed,

the conduct phase of the study was terminated with the coding of the recorded

findings.

As a result of the first analysis in the recorded interview findings, TD indicators and

TD problems were determined from the perspective of software practitioners

working with SaaS applications. Later, with the coding phase, the TD categories for

SaaS were determined in line with these problems and indicators. 24 TD indicators,

10 TD problems, 9 TD categories were determined, answering the second and third

research questions of the thesis. Along with these, the last research question of the

thesis was answered by analyzing the managerial activities for TD mentioned by

practitioners.

Figure 3 presents the flow of the second case study based on the design and conduct

processes and the analysis with respect to research questions. Details of these stages

are presented in the following sections of the study.

31

Figure 3 - Data collection process for Case Study 2

4.1 Design of the Study

As understood from the first case study in identifying TD, we concluded that Level

3 categorization has higher importance, when it comes to understanding the

nature/root cause of the debt. This categorization provided a higher level of

granularity, and the debt categories were similar to software development life cycle

processes. However, the level 3 categories for TD can be manipulated specifically

for SaaS and CRM applications for a better understanding of TD in these systems.

32

4.1.1 Software Life Cycle Processes

In order to understand the nature of the TD in SaaS applications, the first step was

to design an interview questionnaire to illuminate the SDLC processes defined for

software development teams working with SaaS applications. The main target of the

interview questionnaire was the different technical debt issues experienced by people

working in such organizations, having various experiences and roles in the project.

Afterwards, the software development team that participates in similar SDLC

activities in SaaS applications was detected.

To identify these roles and responsibilities of the participants, the ISO/IEC 12207

(ISO/IEC 12207, 2008) software life cycle process international standard was used.

The standard was used to specify the SDLC activities and conduct the study with a

solid foundation. Table 12 shows the processes that have been utilized in the study.

Table 12 - ISO/IEC 12207 processes utilized in the case study

Technical

Management

Processes

Project Planning Process 6.3.1

Project Assessment and Control Process 6.3.2

Configuration Management Process 6.3.5

Technical

Processes

Stakeholder Needs and Requirements Definition Process 6.4.2

Systems/Software Requirements Definition Process 6.4.3

Architecture Definition Process 6.4.4

Design Definition Process 6.4.5

Implementation Process 6.4.7

Integration Process 6.4.8

Verification Process 6.4.9

Transition Process 6.4.10

Validation Process 6.4.11

After being informed about the structure of the organization and the level of

experience of the participants, the main goal was to understand the degree of

achievement on tasks and activities of each SDLC process defined. For this reason,

we have designed some questions in the interview questionnaire to identify the roles

and responsibilities of each participant, by specifying their titles and the SDLC

processes that they are responsible from.

On the next steps, without mentioning about the TD metaphor, we created questions

to point out the specify the problems they have been experiencing in the project, by

also focusing on the SaaS aspect. After specifying the common problems

33

experienced in all software development projects, we tried pointing out the process

related problems for each participant. Afterwards, the TD concept was introduced

and the participants knowledge on TD was tried to be measured.

4.1.2 TD Management

After preparing the initial TD specification questions, we determined managerial

options from different sources regarding technical debt management for

organizations. The options are listed in Table 13. Questions related to management

options are also included in the questionnaire, to specify the managerial activities

that software practitioners follow on their project. We also created separate questions

for understanding the participant’s preferences regarding the management of TD

specific to SaaS applications.

Table 13 - TD Management Options

TD Management Options Definition

Recognizing TD Identification of TD, conducting analysis on

architecture, design, development and

management artifacts

Making TD visible Communication, Tracking, Involvement

Planning TD Decision making on options: Prevention,

Monitoring, Repayment, Prioritization of TD

Living with TD Strategic TD, Intentions, Avoidance, Accepting

TD

We tried to unify different TD management options that are accepted in TD

management. We created questions for further understanding on participants’

preferences and experiences on TD management (Ozkaya, 2021).

4.1.3 Coding – Categorization Practice

When the interviews were concluded, we evaluated the interview results by applying

coding steps in the grounded theory method. The first step was open coding, where

the interview records were broken down into discrete parts. On the second step the

connections between these parts were defined. At the final step, the connections

between the codes were made into categories, where we tried to capture the essence

of the case study and tried finding out TD categorization for software development

34

using SaaS applications. The categorization and coding were made based on the level

3 categorization and the ISO/IEC 12207 processes.

In this way, the design of the case study was completed, and it can be summarized

as follows:

1. Determining the software development team to conduct the case study,

working with SaaS and CRM applications

2. Analyzing the results from first case study and finding out that third level of

categorization can be enhanced

3. Identifying the ISO/IEC 12207 processes and reviewing each activity and

task defined for the processes

4. Creating the first version of the interview questionnaire by combining both

contexts on SDLC

5. Creating questions related to specifying problems in SaaS applications

6. Identifying TD management methods

7. Advancing questions in accordance with the management methods and

options

4.2 Conduct of the Study

4.2.1 Organizational Structure and Software Team Experience

Based on the design for the case study, one of the important steps was to determine

the software development company that the interview took place. When determining

the software company, our expectation was for the company to fulfill some SDLC

activities, such as analysis, design, implementation, and testing, to a certain level.

Apart from this, it was important that there was an active project being worked on

by the company. The most important characteristic of the company was to work with

SaaS applications.

There were three separate teams working with SaaS applications in the company.

However, one of the teams was dealing with product development and software

services delivery, and all implementation effort was based on a CRM platform. The

team can also be identified as an ISV in the specific CRM ecosystem.

The competencies, experiences, and the roles of the people in the team varied.

Considering the experience level as years of study and developing in CRM platform,

the variations were 1, 2, 3, 5, 10 years of experience. The titles of the people in the

team were:

35

- Consultant

- Developer

- Quality Assurance (QA) Engineer

- Technical Team Lead

- Release/Project Manager

- Customer Support Agent

4.2.2 Software Life Cycle Processes and Level 3 TD Mapping

As a result of the first case study the technical debt categories were found to be

mostly related with the Design, People, and Process categories. These categories can

be paired with the following ISO/IEC 12207 processes in Table 14.

Table 14 - TD Level 3 vs ISO/IEC 12207 Processes

TD Categories

for Level 3

Definitions ISO/IEC 12207

Process

Design Debt Refers to debt that can be discovered by

analyzing the source code and identifying

violations of the principles of good object-

oriented design.

Architecture

Definition Process

Design Definition

Process

People Debt Refers to people issues that can delay or hinder

some development activities.

Project Planning

Process

Project Assessment

and Control Process

We excluded the process debt from this pairing, as the process debt refers to

inefficient processes, or not maintaining the processes that cannot handle their

responsibilities appropriately, and therefore accommodates all processes that are not

fully achieved by the organization.

For the design debt, as it refers to the debt that can be discovered by identifying the

violations of solid design principles, the pairing was made with architecture and

design planning processes and their tasks and activities, where the purpose is to

36

develop a detailed architectural view and prepare a detailed design, including all

software elements.

For the people debt, as it refers to issues related to people delaying the activities or

create difficulties for development tasks, the pairing was made with respect to

ISO/IEC 12207 technical planning processes. In these processes the plans for

executing the project are determined and the roles and responsibilities for

stakeholders are defined. Besides from these, the technical progress reviews are

performed for achieving to project objectives. For the conduct of the study another

area that people debt was used was on including the decision makings for the

managerial activities on TD.

For each ISO/IEC 12207 process mentioned in the study, we’ve tried to summarize

the tasks and activities defined in each process in SaaS applications context. We also

considered this context during the grounded theory coding iterations.

4.2.3 SDLC Process Involvement

After the interview questionnaire was prepared, we conducted 45 minute interviews

with each person in the software development team. The interview questions were

asked in English and repeated in Turkish, and the rest of the interviews were held

mostly in Turkish. The software development life cycle activities were recapped in

English. Two people out of all interviewees preferred to conduct the interviews in

English. Each person in the team was responsible for at least one activity or task in

the given process list in ISO/IEC 12207. The SDLC processes experienced in the

organization with respect to number of participants taking responsibilities for the

respective process is shared in Table 15.

Table 15 - SDLC processes practiced in the organization and the number of

participants taking responsibility in each process

ISO/IEC 12207 processes Process involvement score based on

participant count

Project Planning Process 3

Project Assessment and Control

Process

1

Configuration Management Process 0

Stakeholder Needs and Requirements

Definition Process

6

37

Systems/Software Requirements

Definition Process

5

Architecture Definition Process 3

Design Definition Process 5

Implementation Process 6

Integration Process 5

Verification Process 6

Transition Process 0

Validation Process 4

The processes for which the participant took responsibility were asked. To fulfill this

purpose, the names of each process were listed to the participant. If the participant

requested examples for any process, these examples were given by referring to the

tasks and activities defined for these processes in ISO/IEC 12207 standard. The

following table presents the SDLC process involvement for each participant of the

interviews. The configuration management and transition processes are not

presented in the table as there aren’t any participant stating involvement in these

processes.

Table 16 – SDLC process involvement for each interviewee

Interviewee # 1 2 3 4 5 6 7 8 9

Project Planning

Process

 X X X

Project

Assessment and

Control Process

 X

Stakeholder

Needs and

Requirements

Definition Process

 X X X X X X

Systems/Software

Requirements

Definition Process

 X X X X X

Architecture

Definition Process

 X X X

Table 15 (cont.)

38

Design Definition

Process

 X X X X X

Implementation

Process

X X X X X X

Integration

Process

X X X X X

Verification

Process

 X X X X X X

Validation

Process

 X X X X

4.2.4 TD Awareness

We chose not to discuss the technical debt concept in the first part of the interviews.

First, we questioned the problems that participant had with each of these processes,

for the tasks and activities that they participate in, without creating a biased opinion

on TD. When the TD metaphor was introduced to the interviewees, 10% of the

participants stated that they didn’t know about this metaphor at all, even though they

knew about the indicators of TD issues and experienced it in their project.

The following table presents the experience levels of participants based on years in

software development and in SaaS organizations and their TD awareness. The TD

Awareness score is given based on the scale below:

- Low: the participant doesn’t know the TD metaphor completely but gives

broad examples of TD throughout the interview OR knows the metaphor but

doesn’t know what is considered as TD in the processes that they are involved

in.

- Intermediate: the participant knows the TD metaphor, gives examples not

in detail, does not express impact on process or opinion on managing TD.

- High: the participant knows the TD metaphor, gives proper examples of TD,

knows the indicators and problems caused by TD, expresses opinion to some

extent to overcome/manage TD.

Table 16 (cont.)

39

Table 17 – Experience Level and TD Awareness for each interviewee

Role Experience Level in

Software

Development (in

years)

Experience Level

in SaaS (in years)

TD Awareness

1 Consultant 3 3 Low

2 QA Engineer 5 5 High

3 Developer 4 4 High

4 Developer 5 2 Intermediate

5 Team Lead 13 3 High

6 Developer 5 2.5 Low

7 Developer 3 3 Intermediate

8 Release

Manager

2 2 Low

9 Customer

Support

Specialist

5 2.5 Intermediate

4.2.5 Coding and Categorization

After each interview was completed, the observations and answers of each

interviewee was recorded. The interview data was coded into different sections with

respect to level of detail and their relation to TD, where the options were: indicators,

problems, managerial options initially. The coding of the interviews was evaluated

using grounded theory coding. After the initial step, the connections between each

code were formed based on the nature/process levels and the keywords that each

participant mentioned throughout the interviews. The TD categories that are

mentioned in the findings section are formed using this axial coding step, by

eliminating and reforming some of the categories based on resemblance to one

another. The following table presents the example coding and categorization process

for an interview with participant #4.

40

Table 18 – Coding and Categorization Process for Case Study 2 – Participant #4

Sample Interview Data R.Q.2: TD issues R.Q.3: TD

problems

Categories

… Sometimes when we can’t

speak to the customer

directly… It is not our

concern, but the

requirements are not

gathered completely... We

may have to generalize our

product for multiple

customers, that prevents us

from coming up with simple

designs at some points...

Environment setup and

SaaS configurations takes

time, and sometimes an

issue is only reproducible

on the customer’s org. …the

number of issues on the

customer’s end may be

higher than our

expectation... We may have

to act based on changes on

SaaS application, which

ends in unexpected

development effort… We

record some of these issues

but sometimes we have to do

this ASAP...

Communication

issues when we

can't speak to

customers

directly

Incomplete

architecture /

work

Miscommuni

cation

Not

understanding

requirements

completely

Decrease in

product quality

Not

following

standards

Overengineering Testing takes

forever

Time

constraints

Troubleshooting

is difficult - SaaS

Spending more

time to find

workarounds to

pass by the limits

by SaaS provider

SaaS Related

Limitations

Designs not

being approved

by customers

Spending more

time on analysis

on problems

Design flaws

Compatibility

issues due to

SaaS

Having to

remove/deprecate

a feature not

working anymore

SaaS Related

Limitations

The next section will state the findings of the case study, specifying the TD issues

and problems, managerial preferences of the participants, based on the results of the

coding processes.

41

4.3 Findings of the Study

As a result of this case study, we have examined the problems related to technical

debt in the context of SaaS applications from the perspective of software

development practitioners, that has been developing products and providing

professional services in a CRM platform. After our analysis, the first findings that

emerges from the interviews can be examined in the following contexts:

1. Technical debt indicators

2. Problems caused by technical debt

3. Technical debt management methods

4.3.1 TD Indicators and TD Problems

For the first and second contexts, the indicators and the problems caused by the

technical debt, it was found out that most participants were affected by the design

flaws present in their project, as well as realizing that they are not always following

the best practices and standards that should be in a software development project. In

the following tables some of these ideas and discourses are shared.

Table 19 - TD indicators

Non-informative issue descriptions

No test steps/reproduce steps defined for bugs found

No definition of stakeholder needs and requirements (sometimes)

Known issues on SaaS provider

Harder to replicate a production/live system on SaaS provider

No way to overrun the limits by SaaS provider

Quick fixes per customer request with suboptimal design / low performance code

Lack of information by possible impact on certain functionality by SaaS provider

No consensus with the customer on certain requirements / performance

Definition of done is not specified

Features being deprecated by SaaS provider

Using “hacky” methods (sometimes)

Unit tests with no assertion

42

Not following well designed coding conventions

Time constraints

Refactor/rework cycles with developer initiative

Not following the changes happening on SaaS provider side

Incomplete design

Issues found by customers but not in verification processes

Failing in making features generic for all SaaS users / customers

Compatibility issues due to SaaS

Using partial solutions for some problems

Lack of technical support from SaaS provider

Lots of options for customization/configuration on SaaS application side

After evaluating these samples, it was understood that the TD indicators were present

in the project, across different software development life cycle processes, such as

design, validation, and implementation. It was also obvious that there were some

indicators on SaaS applications side as well. When interviewed on the problems that

was caused to experiencing these TD indicators, all the interviewees mentioned

customer dissatisfaction and a decrease in their motivation. Besides from these, the

technical and managerial problems are shared in the following table.

Table 20 - TD problems

Spending more time to find workarounds to pass by the limits by SaaS provider

Spending more time on analysis on problems

Troubleshooting takes much more time

Decrease in product quality

Cannot create new features due to constant rework cycles

Having to remove/deprecate a feature not working anymore

Spending more time on documentation in order to provide workarounds for

customers

Table 19 (cont.)

43

Conflict on requirements and design

Issues usually not being fixed completely/perfectly

Testing takes forever

4.3.2 TD Categories and Analysis

Based on these ideas and samples, we have completed the coding process, and

obtained some categories. You can see the explanation for each of these categories

in Table 21.

Table 21 – Categories found by coding

Category Explanations with examples

1 Miscommunication Issues related to miscommunication between developers, other

team members such as QA, customer success agent, etc. Also

misunderstood requirements from customer side or upper

management

2 Incomplete work Design or architectural decisions not being completed, missing

design definition and documentation, missing test steps and

definition of done not being defined

3 Design flaws Non-matching requirements and design, design not being

applicable to SaaS application, design that misses some scenarios

on SaaS usage and customization

4 Not following

standards

Not following good coding conventions, creating highly coupled

classes, not following best practices provided by SaaS

application, not completing the unit testing, non-defined test steps

5 Time constraints Deadlines for product releases, trying to keep up with

6 Testing failures Non-descriptive test cases, impossible to define every usage

scenario for each customer, no testing strategy for some features,

not measuring the success/failure rate for tests, unit tests with no

assertions

7 Finding

workarounds

Using partial solutions, using “hacky” methods, quick fixes per

customer request, not creating the perfect solution for a bug

Table 20 (cont.)

44

8 Unawareness Not all team members have the same expertise level, delayed

training on some features on SaaS application, not knowing all

coding conventions that the seniors are following, developers

only following the design that is provided, but not adding up to

the design, checking the architectural requirements, etc.

9 SaaS Related

Limitations

Features being deprecated by SaaS provider, lack of

documentation on some features on SaaS application, lack of

technical support on features that require technical expertise

After creating the categories, for the next step, an analysis was made on the

categories and the interview results, to find the ones that were mentioned the most

by the practitioners. We made this analysis by counting the indicators and problems

referred the most by the interviewees.

The results showed that the top three categories were found are as follows:

1. SaaS Related Limitations

2. Not following standards

3. Design Flaws

Figure 4 – Categories mentioned the most by interview participants

4

6

7

10

11

16

20

23

25

0 5 10 15 20 25 30

Incomplete Work

Unawareness

Finding workarounds

Testing Failures

Time Constraints

Miscommunication

Design Flaws

Not following standards

SaaS Related Limitations

Count

C
at

eg
o

ry

Count of Category

Table 21 (cont.)

45

4.3.3 SaaS Related Limitations

To examine the first category – SaaS Related Limitations – which is a problem

mentioned by every interview participant, we present the list all problems and

indicators mentioned during the study in Table 22.

Table 22 – Examples related to SaaS Related Limitations

Known issues on SaaS provider

Harder to replicate a production/live system on SaaS provider

No way to overrun the limits by SaaS provider

Lack of information by possible impact on certain functionality by SaaS provider

Features being deprecated by SaaS provider

Not following the changes happening on SaaS provider side

Failing in making features generic for all SaaS users / customers

Compatibility issues due to SaaS

Lack of technical support from SaaS provider

Lots of options for customization/configuration on SaaS application side

If we review the results in this field, it is indicated that the problems experienced in

the SaaS applications have their own sub-categories. These can be further discussed

with respect to ISO/IEC 12207 processes. The discussion around the sub-categories

will be introduced in detail in the next chapter of the thesis.

47

CHAPTER 5

5 RESULTS AND DISCUSSION

In this chapter the answers to the research questions introduced in the first chapter

of thesis will be presented and will be discussed in the light of the multiple case

studies conducted and described in chapters 3 and 4, respectively.

Three different categorization levels that were used in conducting the categorization

help tremendously in analyzing the debt. The first two levels summarize the

intentions and the behavior in terms of carefulness of people and organizations,

which is helpful in detecting the debt in terms of the company's culture. The third

level of categorization is helpful on the identification and the causes of technical debt

in a more detailed manner, since it gives a lower level understanding of the debt, in

terms of where it was introduced in the first place. To make it more useful, we need

more clear distinctions between categories, and we should consider multiple

categories for each issue especially when we deal with ambiguous issue definitions.

In line with these answers, we made the following inferences:

- It was understood that the intentions of the decision makers in software

delivery processes are very important in analyzing the technical debt incurred

when delivering and maintaining software, especially for the debts

introduced in the “Design” stage of the project/product.

- The most beneficial and clear technical debt categorization could be

performed by the people who were involved in the customization and

development of the Salesforce platform.

Each technical debt may be related to one or more issues involving several

different development activities or aspects. Hence, we may consider

multiple categories for each issue rather than mapping each issue to just one

category.

- There is also a need to define each category in the CRM context for the third

level of categorization which offers the higher granularity. It may also be

possible to bring new levels of categories to cover different aspects of

software development. Moreover, it may be necessary to customize

categories to better support development in different domains.

48

With the conduction of the second case study the ambiguity that was present in the

first case study due to anonymous issue statements was inhibited. With the

interviews and the categorization results, it can be concluded that the technical debt

issues in organizations using SaaS applications in CRM platforms, are not very

different from the technical debt issues experienced in other software development

companies. The top three technical debt issues are:

1. SaaS related limitations

2. Not following standards

3. Design flaws

“Not following standards” and “Design flaws” issues are already a reflection of the

technical debts foreseen in previous studies and in other software development

companies (Alves et al., 2014). It is possible to find a relevance between the

indicators obtained as a result of the interviews, and the technical debt categories

previously determined in the ontology of terms for technical debt. Based on the

answers given by the practitioners, it is possible to relate these issues to the following

technical debt types:

Table 23 – TD issues experienced in SaaS applications vs TD types

TD issues experienced in SaaS

applications

TD types in Ontology of Terms

SaaS related limitations
Build Debt, Infrastructure Debt, Test Debt

Not following standards
Code Debt, Test Debt, Requirement Debt

Design flaws
Architecture Debt, Design Debt

The mapping here is also related to the top 5 frequent TD types in Ramač et al.’s

study, listed as: Design, Test, Code, Architecture, Documentation (2022). The issues

of design flaws and not being able to follow standards in the code, are tried to be

addressed in various techniques described in different studies (Albuquerque et al.,

2022). It can be stated that these TD issues, which are also experienced in the field

of SaaS applications, are effective in different fields in software development, and

different solution techniques and management methods are being studied to address

these issues.

49

These categories which were obtained from the interview data coding in the second

case study, vary according to the experience level and the role of the interviewees as

well. The different perspectives and awareness towards different TD categories are

presented in the following table.

Table 24 – TD awareness based on roles

Role Cons. Dev. Lead QA

Eng.

Release

Mng.

Customer

Sup.

Miscommunication X X X X X X

Incomplete work X

Design flaws X X

Not following

standards

 X X

Time constraints X X

Testing failures X X X X

Finding

workarounds

 X X

Unawareness X

SaaS Related

Limitations

X X X X X X

Apart from the roles, the experience levels of the practitioners in the software

development and in SaaS applications created a different level of awareness towards

TD. When the categories are listed based on frequency of mention based on

participant experience, it is possible to state that the categories of “SaaS Related

Limitations” and “Not following standards” are mentioned by each participant,

whereas the “Unawareness” and “Incomplete work” categories are mentioned in a

non-frequent manner, and explicitly by the participant who is the team lead. The rest

of the categories can be considered as commonly mentioned during the interviews.

50

As one of the commonly mentioned categories, the “Miscommunication” category

has different kind of indicators based on the interviewee experience and role. For

practitioners having roles that are more involved with customer requests and

customer support, the miscommunication was mentioned to be caused by indicators

such as “Not understanding requirements completely” or “Lack of requirements

elicitation with customer”, whereas from a developers perspective, the

miscommunication category indicators were more likely to be related to

overengineering problems – which can also be considered in design flaws – but

actually caused by “lack of requirements elicitation with upper management” or

technical decision makers. Also one of the important indicators on

miscommunication is “Customers can’t keep up with our releases”, which was stated

by the customer support role. This indicator is different from others in the same

category, because although the root cause behind this indicator is creating many

versions and releases for customers to fix different problems in the product, the

customer support role put emphasis on the communication problems with the

customer due to this indicator.

When SaaS related limitations are considered as a highly mentioned issue in a

company where SaaS applications are heavily used, it is a necessity to explain the

sub-categories on this indicator.

Figure 5 – Sub-categories on SaaS related limitations

1

1

1

5

7

9

0 1 2 3 4 5 6 7 8 9 10

Known Issues / Bugs

Lack of Documentation

Lack of Support on Technical Issues

Design Changes / Deprecated Features

Governor Limits

Problems in Replicating Live/Production System

Count of Sub-Category

51

In Figure 5, a lower level categorization for SaaS related issues is provided.

Depending on these sub-categories for TD issues experienced, it is possible to say

that there can be platform-dependent TD.

In other traditional or on-premise solutions, these TD issues do not occur, because

the maintenance, repairs, updates, and the entire infrastructure are fully customized

for a specific company. Therefore the services or the software delivered on these

circumstances, doesn’t have difficulties as in replicating live or production systems

as in SaaS, or on-demand solutions. Also, based on the sources being selected, the

limitations could easily be avoided. In the terms for SaaS overcoming these problems

are not always possible, but there should be some workarounds that are found by the

software practitioners using SaaS applications in their services.

The problems that are caused by the SaaS applications are summarized in chapter

4.3 of the thesis on Table 20 - TD problems. Most of these problems are related to

the problems caused by TD in other software development activities. An increase in

time spent on development activities, an increased cost for the project or services to

be delivered due to refactoring cycles, and the decreases in overall product quality

are examples to these problems. Other problems in organizations using SaaS can be

inferred as follows:

- Troubleshooting taking much more time due to customizations on SaaS

application, depending on the platform requirements, limitations, and the

level of customizations that can be made in the system.

- Spending more time on refactoring cycles, due to SaaS application changing

periodically, resulting in having to reduce the new features being released in

the product or services side.

- As SaaS applications can deprecate/remove features, the problems addressed

in the earlier versions of the software that is already provided should be re-

visited. Therefore some issues are not usually fixed completely for the

organization using SaaS in product delivery.

- With each SaaS application release, which can be defined as changes in the

infrastructure, some resources in the project are forced to be tracking these

changes and the possible impact on the software.

The common options for TD management were shared on section Error! Reference s

ource not found.. These were defined as follows:

52

- Recognizing TD

- Making TD visible

- Planning TD

- Living with TD (Ozkaya, 2021)

The analysis on the second case study showed that, most of the TD issues found by

software practitioners were mostly being recorded in issue tracking products.

Therefore the first step in managing TD, which is the recognition and identification

should be achieved and is an important step in managing TD in organizations using

SaaS applications as well.

Although the TD awareness levels were differing based on experience level and role,

most of the interview participants mentioned that TD was visible across the

development team and the higher management. Therefore the communication,

tracking and involvement on TD side was achieved in this organization.

The TD awareness results of the participants in the second case study were in line

with the "familiarity with TD concept" findings in the study of Ramač et.al (2022).

In Ramač' et al.’s study, 69% of the participants were aware of TD while the rest

mentioned that they had not heard of the concept before. In the second case study,

the participants' experience in software development and their TD awareness were

examined, in chapter 4.2.4. According to the findings here, TD awareness in 3 out of

9 participants was at "Low" level. In Ramač et al.'s study, it was also among the

findings that experience level was related to TD awareness. It has been mentioned

that more experienced members in the teams are more likely to define the TD concept

and have practical experience (2022). Considering the experience of the practitioners

in this study in software development, TD awareness levels remained at a directly

proportional level. Of course, it is worth noting that roles of the software

practitioners have a significance. While experience level and TD awareness find

clearer answers in the QA, Dev and Lead roles in the participants of the study, the

practitioners that has involvement with managerial or customer support related roles

do not have much practical experience with TD.

Another important point is that if TD explanations in the first case study shared in

Appendix B are reviewed, it can be observed that the group of experts acting as

validators were mostly in consensus on the TD definition and explanations based on

the validated issues. Considering the roles and experiences of the validators, it was

53

possible to detect the importance of awareness and identification of TD in the first

case study as well.

The communication and involvement methods in managing TD is also significant in

terms of SaaS applications. It is important to make TD visible and present it to all

stakeholders. While familiarizing with TD, all stakeholders should be aware of the

causes of TD, either caused by development team by not following the best practices

or caused by SaaS limitations.

Some of the practitioners that participated in the second case study also mentioned

about the TD that they introduced in the project and to the product, due to various

reasons such as time constraints, and governor limits on the SaaS limitations. The

practitioners that work as developers mentioned that they reflect some of this debt in

their commit messages and/or comments on the source code of the project. This

improves the TD awareness among practitioners that are involved with the coding

processes and that has responsibilities in the design and architectural processes of

the software development life cycle. This concept is addressed as self-admitted TD

in literature, and recognized by other software practitioners, and eventually has a

significance on the TD management efforts (Zampetti et al., 2021).

One possible obstacle in making TD visible is to measure it based on different

metrics. The practitioners of the organization were not using or aware of any metrics

for managing TD. This obstacle makes it difficult to manage TD in terms of planning.

The decision making on different options, such as prevention, monitoring, or

repayment can be made in an easier fashion, if TD is somehow measurable across all

types on level 3 categorization, such as design debt, infrastructure debt, and test debt.

As stated in the study from Curtis et al., quantifying the TD is important since the

decision makers of the organizations take their actions on the information that is

visible to them based on costs and risks (2012). Therefore the importance of TD

measurement should be emphasized while mentioning the obstacles towards TD

awareness. The developers tend to measure “code” debt with the help of different

static code analysis tools, but in this case of SaaS usage, there isn’t a way to measure

the impact TD caused by SaaS provider. Therefore, the lack of documentation or

support from SaaS provider becomes more significant in this process, but the main

objective of software practitioners should be tracking down changes and

modifications on SaaS side to track the TD. Apart from these, there is also another

step in TD management which is lack of TD prevention. Being able to provide

options for preventing TD is important for services and products running in an ever-

changing application such as the field of SaaS.

55

CHAPTER 6

6 CONCLUSION

In this thesis study, we conducted a study on the specification and categorization of

technical debt for organizations dealing with CRM specific development on SaaS

applications. By making use of different categorization methods and ISO/IEC 12207

SDLC processes, we tried to reveal what benefits categorization can determine in

technical debt specification.

As a result of the study, the effectiveness of three technical debt categorization

methods having different levels of granularity was examined. Also, the technical

debt issues arising, such as design flaws, SaaS related limitations and not-following

best practices were found out. The problems caused by such issues were also

considered in SaaS application usage, appearing as inability to meet customer

satisfaction, decrease in product quality, and problems in capacity and resource

planning. Also, different options on TD management were also evaluated

specifically for SaaS.

Since the study was conducted specifically on software companies developing with

SaaS applications, we hope that the findings of the study will raise awareness among

the organizations that will use such applications. Through this awareness, companies

can shape their preferences according to what kind of problems they may encounter

when they choose SaaS applications. In addition, being aware that technical debt can

be inevitable in SaaS applications, as in on-premise solutions, start-up and small

scale organizations may take action to prevent the technical debt.

For future work, we hope to facilitate the management of TD in this area, and to

create a set of metrics for software practitioners using SaaS who will just start

managing TD in their organization.

57

REFERENCES

Agarwal, P. (2011, February). Continuous SCRUM: agile management of

SAAS products. In Proceedings of the 4th India Software Engineering

Conference (pp. 51-60).

Albuquerque, D., Guimarães, E., Tonin, G., Rodriguez, P., Perkusich, M.,

Almeida, H., ... & Chagas, F. (2022). Managing Technical Debt Using

Intelligent Techniques-A Systematic Mapping Study. IEEE Transactions on

Software Engineering.

Alves, N. S., Ribeiro, L. F., Caires, V., Mendes, T. S., & Spínola, R. O. (2014,

September). Towards an ontology of terms on technical debt. In 2014 Sixth

International Workshop on Managing Technical Debt (pp. 1-7). IEEE.

Alzaghoul, E., & Bahsoon, R. (2013, May). CloudMTD: Using real options

to manage technical debt in cloud-based service selection. In 2013 4th

International Workshop on Managing Technical Debt (MTD) (pp. 55-

62).IEEE.

Ascendix. (2022). Top 10 CRM Software Companies. Available from:

https://ascendixtech.com/top-crm-software-companies/.Accessed 15.8.2022.

Bryant, M. (2018, Jul). The History of Act! CRM. Available from:

https://www.acttoday.com.au/blog/the-history-of-act-crm.Accessed

8.6.2022.

Codabux, Z., Williams, B. J., Bradshaw, G. L., & Cantor, M. (2017). An

empirical assessment of technical debt practices in industry. Journal of

software: Evolution and Process, 29(10), e1894.

Cunningham, W. (1992). The WyCash portfolio management system. ACM

SIGPLAN OOPS Messenger, 4(2), 29-30.

Curtis, B., Sappidi, J., & Szynkarski, A. (2012, June). Estimating the size,

cost, and types of technical debt. In 2012 Third International Workshop on

Managing Technical Debt (MTD) (pp. 49-53). IEEE.

https://ascendixtech.com/top-crm-software-companies/
https://www.acttoday.com.au/blog/the-history-of-act-crm

58

Customer Relationship Management (CRM). (2022) Salesforce. Available

from: https://www.salesforce.com/ap/definition/crm/ Accessed 19.05.2022.

Cusumano, M. (2010). Cloud computing and SaaS as new computing

platforms. Communications of the ACM, 53(4), 27-29.

Elements.cloud, Org Confessions, Elements.cloud. Available from:

https://elements.cloud/confessions/. Accessed 9.2.2020.

Falessi, D., & Kazman, R. (2021, May). Worst smells and their worst reasons.

In 2021 IEEE/ACM International Conference on Technical Debt (TechDebt)

(pp. 45-54). IEEE.

Fowler,M. (2009) martinfowler.com. Available from:

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html. Accessed

12.05.2020.

ISO, I. (2008). IEC 12207 Systems and software engineering-software life

cycle processes. International Organization for Standardization: Geneva.

Iuliia, G. (2017). Technical Debt Management In Russion Software

Development Companies. Master's Thesis. St. Petersburg University

Graduate School of Management.

Klinger, T., Tarr, P., Wagstrom, P., & Williams, C. (2011, May). An

enterprise perspective on technical debt. In Proceedings of the 2nd Workshop

on managing technical debt (pp. 35-38).

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From

metaphor to theory and practice. Ieee software, 29(6), 18-21.

Kumar, S., Bahsoon, R., Chen, T., & Buyya, R. (2019, July). Identifying and

estimating technical debt for service composition in SaaS cloud. In 2019

IEEE International Conference on Web Services (ICWS) (pp. 121-125).

IEEE.

Kumar, S. (2021). Technical debt-aware and evolutionary adaptation for

service composition in SaaS clouds (Doctoral dissertation, University of

Birmingham).

https://www.salesforce.com/ap/definition/crm/
https://elements.cloud/confessions/
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

59

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D.

(2011). NIST cloud computing reference architecture. NIST special

publication, 500(2011), 1-28.

Mazalon, L. (2021). 12 Salesforce ISVs Who’ve Raised Millions (Totalling

$1.35Billion), SalesforceBen. Available from:

https://www.salesforceben.com/salesforce-isvs-whove-raised-millions/.

Accessed 20.5.2022.

Mcconnell, S. (2021). Construx, 1 January 2013. Available from:

https://www.construx.com/resources/whitepaper-managing-technical-debt/.

Accessed 5.2.2020.

Ozkaya, I. (2021). Managing technical debt. CARNEGIE-MELLON UNIV

PITTSBURGH PA.

Ramač, R., Mandić, V., Taušan, N., Rios, N., Freire, S., Pérez, B., ... &

Spinola, R. (2022). Prevalence, common causes and effects of technical debt:

Results from a family of surveys with the IT industry. Journal of Systems and

Software, 184, 111114.

Ramasubbu, N., & Kemerer, C. F. (2016). Technical debt and the reliability

of enterprise software systems: A competing risks analysis. Management

Science, 62(5), 1487-1510.

Rigby, D. K., & Ledingham, D. (2004). CRM done right. Harvard business

review, 82(11), 118-130.

Salesforce, Deploy Enhancements from Sandboxes, Salesforce. Available

from:

https://help.salesforce.com/articleView?id=changesets_about_connection.ht

m&type=5. Accessed 10.5.2020.

Salesforce, ISVforce Guide, Salesforce. Available from:

https://developer.salesforce.com/docs/atlas.enus.packagingGuide.meta/pack

agingGuide/appexchange_intro.htm. Accessed 9.2.2020.

Salesforce, What is Salesforce? Salesforce. Available from:

https://www.salesforce.com/eu/products/what-is-salesforce/. Accessed

https://www.salesforceben.com/salesforce-isvs-whove-raised-millions/
https://www.construx.com/resources/whitepaper-managing-technical-debt/
https://help.salesforce.com/articleView?id=changesets_about_connection.htm&type=5
https://help.salesforce.com/articleView?id=changesets_about_connection.htm&type=5
https://developer.salesforce.com/docs/atlas.enus.packagingGuide.meta/packagingGuide/appexchange_intro.htm
https://developer.salesforce.com/docs/atlas.enus.packagingGuide.meta/packagingGuide/appexchange_intro.htm
https://www.salesforce.com/eu/products/what-is-salesforce/

60

12.5.2020.

Salesforce, Worlds Number One CRM, Salesforce. Available from:

https://www.salesforce.com/campaign/worlds-number-one-CRM/ Accessed

12.6.2022.

Skourletopoulos, G., Mavromoustakis, C. X., Bahsoon, R., Mastorakis, G.,

& Pallis, E. (2014, December). Predicting and quantifying the technical debt

in cloud software engineering. In 2014 IEEE 19th international workshop on

computer aided modeling and design of communication links and networks

(CAMAD) (pp. 36-40). IEEE.

Suryanarayana, G., Samarthyam, G., & Sharma, T. (2014). Refactoring for

software design smells: managing technical debt. Morgan Kaufmann.

Tohidi, H., & Jabbari, M. M. (2012). The necessity of using CRM. Procedia

Technology, 1, 514-516.

Youseff, L., Butrico, M., & Da Silva, D. (2008). Grid computing

environments workshop, 2008. GCE ‘08, Austin, Texas, 12-16.

Zampetti, F., Fucci, G., Serebrenik, A., & Di Penta, M. (2021). Self-admitted

technical debt practices: a comparison between industry and open-source.

Empirical Software Engineering, 26(6), 1-32.

Zazworka, N., Spínola, R. O., Vetro', A., Shull, F., & Seaman, C. (2013,

April). A case study on effectively identifying technical debt. In Proceedings

of the 17th International Conference on Evaluation and Assessment in

Software Engineering (pp. 42-47).

Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., & Shull,

F. (2014). Comparing four approaches for technical debt identification.

Software Quality Journal, 22(3), 403-426.

https://www.salesforce.com/campaign/worlds-number-one-CRM/

61

APPENDIX A

SET OF CONFESSIONS FOR VALIDATION FOR CASE STUDY 1

Entry # Entry

50 A single apex class with 13,000 lines of code!

51 Added 20 dummy classes (8000 lines code) and test classes to boost code

coverage.

52 My Manager removed the ability to export reports. Without telling anybody.

2 days before month end reporting was due.

53 Using i++ to increase code coverage of test classes unethically.

54 Custom address fields on Contact and Lead objects.

55 35 Users, 25 Profiles. Every custom field on every object starts with z_ .

Different suppliers, created different fields for same purpose.

56 Multiple Orgs. They couldn’t work out what was configured so they start

again, and again, and again. We see this a LOT in the nonprofit space.

147 Multiple fields with same label.

148 Process consolidation – 16 PBW on a single object and each PPW has single

action and criteria.

149 Renamed every metadata API name to the business unit that needed it. The

developers needed to access lookup sheet to be able to decipher.

150 Created a custom fields for every standard field because admin couldn’t see

them in searches.

151 1 process includes 18 PBW, 2 flows, 12 workflow rules, 30 custom formula

fields. Plus maybe some code. No one knows how or why it exists.

152 A managed package that used Translation workbench to swap the labels on

two fields so they are now the opposites of their API names.

288 Over 150,000 reports….

294 Role names ‘hard coded’ within Apex Classes.

62

APPENDIX B

VALIDATION FORM PROVIDED TO CRM PRACTITIONERS FOR CASE STUDY 1

Analyzing Technical Debt by Categorizing Anonymous Developer Confessions of a CRM

Application by Yasemin Doğancı

The study is conducted to evaluate anonymous developer confessions about different Salesforce

organizations and categorize them according to three different categorization options on

technical debt. After you read the definitions of three different categorization options, please fill

in the form and categorize each entry.

Technical Debt Explanation

The term “technical debt” was created as a metaphor by Ward Cunningham, to describe all the

code defects, and design and architectural mistakes made by developers, and to summarize these

to “non-technical” people in software projects. The idea behind this term is that, when an action

is made that adds value at that point in time, will have consequences in the future which should

be paid with an extra cost, which is described as debt.

Technical Debt Category Definitions

Option 1 = Intentions: According only to the intension of the people who introduced the

debt.

Possible Values: Intentional, Unintentional

Option 2 = Technical Debt Quadrant: According to the intensions and knowledge of the

people who introduced the debt.

Possible Values: Reckless – Inadvertent, Reckless – Deliberate, Prudent – Inadvertent, Prudent –

Deliberate

Turkish Translation for each:

- Reckless: Umarsız

- Deliberate: Kasten

- Inadvertent: Yanlışlıkla Yapılan

- Prudent: İhtiyatlı

Option 3 = Introduction of the Debt in Software Development Life Cycle: Exactly when the

debt is introduced in the software development process.

Possible Values: Architecture, Build, Code, Defect, Design, Documentation, Infrastructure,

People, Process, Requirement, Service, Test Automation, Test

63

Please fill this form before starting categorization.

Name:

Role *:

Years of Experience in Software Development *:

Years of Experience in Salesforce Platform *:

Option1 Possible Values:

- Intentional

- Unintentional

Option 2 Possible Values:

- Reckless – Inadvertent

- Reckless – Deliberate

- Prudent – Inadvertent

- Prudent – Deliberate

Option 3 Possible Values:

- Architecture The debt is caused by Salesforce’s architectural flaws or

deficiency

- Build Errors in the implementation of the solution or software

- Code Lack of coding standards, hard coding user data

- Defect Bugs, errors that are not traceable

- Design Building without thinking through the data model, poor

business analysis

- Documentation Undocumented work, uncertain/outdated documents

- Infrastructure Lack of tools needed for the operations, mis-usage of the

tools

- People Insufficient training, human error, lack of understanding on

platform

- Process No implementation methodology, development in

Production

- Requirement Changing requirements, not understandable requirements

- Service Errors in the maintenance stages

- Test Automation Errors in test automation process, lack of automated tests

- Test Lack of unit tests, low code coverage

65

APPENDIX C

INTERVIEW QUESTIONS

1. Can you tell me about the organization, its size and domain of service?

2. What is your role in the organization, and do you have any responsibilities

in any of the projects?

3. Can you describe the project and the technologies being used?

4. Do you participate in any of the following Software Life Cycle Processes?

a. Project Planning

b. Project Assessment and Control

c. Configuration Management

d. Stakeholder Needs and Requirements Definition

e. Systems/Software Requirements Definition

f. Architecture Definition

g. Design Definition

h. Implementation

i. Integration

j. Verification

k. Transition

l. Validation

5. Do you experience any issues with the processes/practices that you

participate in the project?

6. Do you practice the tasks/activities defined for each process?

7. Do you think there are tasks that you fail or don’t achieve completely?

8. What kind of problems occur in the project due to these issues?

9. How did you realize these problems? Do you have any further observations

on the problems?

10. Do you know if these problems are caused by the SaaS provider or the

development team that you belong to?

66

11. Do you have any recommendations or a way to solve/prevent these

problems?

12. Do you experience any further challenges regarding the usage of SaaS

applications in the project?

13. Do you sometimes choose easy (limited) solutions to problems in your

project, instead of using the better approach?

14. Do you have rework or refactoring cycles for your source code?

15. Do you have any problems that you choose not to fix/solve and only

monitor the course/trend over time?

16. Are you familiar with the technical debt metaphor?

17. Do you measure the technical debt that is present in your project, using any

tools or processes?

18. Do you mostly monitor or take further action on technical debt issues?

19. How do you decide the managerial activities on the technical debt issues?

20. Do you have any metrics or scale to prioritize the technical debt issues?

21. Do you have any technical debt that is expected to become worse in the

future?

22. To what extent does technical debt affect your motivation?

23. Is your management aware of technical debt and are they taking any action?

24. Do you have additional issues that you would like to mention/highlight?

25. Do you think that there’s room for improvement for your

project/organization?

67

APPENDIX D

GÖRÜŞME SORULARI

1. Çalıştığınız organizasyondan, boyutundan ve hizmet alanından bahsedebilir

misiniz?

2. Organizasyondaki rolünüz nedir ve herhangi bir projede sorumluluğunuz

var mı?

3. Projeyi ve kullanılan teknolojileri anlatabilir misiniz?

4. Aşağıdaki Yazılım Yaşam Döngüsü Süreçlerinden (Software Life Cycle

Processes) herhangi birinde rol alıyor musunuz?

a. Proje Planlama – (İng. Project Planning)

b. Proje Doğrulama ve Kontrol – (İng. Project Assessment and

Control)

c. Konfigürasyon Yönetimi – (İng. Configuration Management)

d. Paydaş İhtiyaçları ve Gereksinimleri Tanımı – (İng. Stakeholder

Needs and Requirements Definition)

e. Sistem/Yazılım Gereksinimleri Tanımı – (İng. Systems/Software

Requirements Definition)

f. Mimari Tanım – (İng. Architecture Definition)

g. Tasarım Tanımı – (İng. Design Definition)

h. Uygulama – (İng. Implementation)

i. Entegrasyon – (İng. Integration)

j. Doğrulama – (İng. Verification)

k. Geçiş – (İng. Transition)

l. Geçerleme – (İng. Validation)

5. Projeye katıldığınız süreçlerde/uygulamalarda herhangi bir sorun yaşıyor

musunuz?

6. Her süreç için tanımlanan görevleri/etkinlikleri uyguluyor musunuz?

68

7. Başarısız olduğunuz veya tam olarak başaramadığınız görevler olduğunu

düşünüyor musunuz?

8. Bunlar nedeniyle projede ne gibi sorunlar yaşanıyor?

9. Bu sorunları nasıl fark ettiniz? Sorunlarla ilgili başka gözlemleriniz var mı?

10. Bu sorunların SaaS (Servis Olarak Yazılım Uygulamaları) sağlayıcısından

mı yoksa ait olduğunuz geliştirme ekibinden mi kaynaklandığını biliyor

musunuz?

11. Bu sorunları çözmek/önlemek için herhangi bir öneriniz veya yönteminiz

var mı?

12. Projede SaaS (Servis Olarak Yazılım Uygulamaları) uygulamalarının

kullanımıyla ilgili başka zorluklarla karşılaşıyor musunuz?

13. Bazen projenizdeki sorunlar için daha iyi yaklaşımı kullanmak yerine kolay

(sınırlı) çözümler mi seçiyorsunuz?

14. Kaynak kodunuz için yeniden işleme (rework) veya yeniden düzenleme

(refactoring) döngüleriniz var mı?

15. Düzeltmeyi/çözmeyi tercih ettiğiniz ve sadece zaman içindeki

gidişatı/eğilimi takip ettiğiniz herhangi bir sorununuz var mı?

16. Teknik borç metaforuna aşina mısınız?

17. Projenizde mevcut olan teknik borcu herhangi bir araç veya süreç

kullanarak ölçüyor musunuz?

18. Teknik borç sorunlarını daha çok izliyor veya daha fazla önlem alıyor

musunuz?

19. Teknik borç sorunlarını yönetsel faaliyetlere nasıl karar veriyorsunuz?

20. Teknik borç sorunlarını önceliklendirmek için herhangi bir ölçütünüz veya

ölçeğiniz var mı?

21. Gelecekte daha da kötüleşmesi beklenen herhangi bir teknik borcunuz var

mı?

22. Teknik borç motivasyonunuzu ne ölçüde etkiliyor?

23. Yönetiminiz teknik borcun farkında mı ve önlem alıyor mu?

24. Belirtmek/vurgulamak istediğiniz ek sorunlarınız var mı?

69

Projeniz/bulunduğunuz organizasyon için iyileştirmeye yer olduğunu düşünüyor

musunuz?

70

SKB-SA02/F01 Rev:03 06.08.2018

TEZ İZİN FORMU / THESIS PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences

Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics

Enformatik Enstitüsü / Graduate School of Informatics

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadı / Surname : ..
Adı / Name : ..
Bölümü / Department : ...

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : ..
..
..
..
..

TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master Doktora / PhD

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately

for access worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or
proprietary purposes for a period of two year. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six

months. *

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye teslim edilecektir.
 A copy of the Decision of the Institute Administrative Committee will be delivered to the
library together with the printed thesis.

Yazarın imzası / Signature Tarih / Date

