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ABSTRACT

ROLES OF ANTICIPATION AND INERTIA IN ACTIVE ELASTIC SHEET
MODELS

Demirel, Mert
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ali Emre Turgut

Co-Supervisor: Prof. Dr. Cristián Huepe

November 2022, 73 pages

The use of Active Matter (AM) concepts in robotics so as to model collective motion

has become very prevalent, with Active Elastic Sheet (AES) models being the most

recent ones. In this thesis, anticipation and inertial effects are introduced as the modi-

fying AES parameters prior to multiple allocation studies. It is shown that anticipation

behaves similar to damping under certain conditions, and inertial effects introduce a

dynamical relaxation equivalent to a proportional velocity controller. Since velocities

cannot instantly reach desired values due to the proportional gain, agents respond as if

they have inertias. Rotational inertia is also investigated as the interception of instant

alignment change apart from mass effects along the velocity vector. Reduced active

matter models that utilizes two-particle versions of AES are developed in the pursuit

of simpler representations for multi-agent systems. Toy models with both anticipation

and inertial effects promise better preliminary studies for swarm robotics applications

as they become more and more complex. A multi-agent simulator is built and several

scenarios are functionalized in order to assess performance of toy models by com-

parison. Metrics such as damping ratio and agent separation are studied to discover
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behavioural similarities between reduced and full models. Such similarities could en-

able simpler parameter tuning procedures applied on reduced toy models by extrap-

olating to multi-agent systems more practically. All experiments focus on tuning of

anticipation as the control parameter for which order-disorder transition comparisons

are carried out in order to understand its gradual effect. The relation between mass

included analytical AM models and engineering controllers is justified with reduced

versions of AES and phase transition studies under the measure of polarization.

Keywords: Swarm Robotics, Collective Motion, Anticipation, Inertial Effects
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ÖZ

AKTİF ELASTİK LEVHA MODELLERİNDE ÖNGÖRÜNÜN VE
ATALETİN ROLLERİ

Demirel, Mert
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Emre Turgut

Ortak Tez Yöneticisi: Prof. Dr. Cristián Huepe

Kasım 2022 , 73 sayfa

Aktif Elastik Levha (AEL) modelleri en güncellerinden olmak üzere, Aktif Madde

(AM) konseptlerinin kolektif hareketleri modellemek adına robotik alanda kullanımı

yaygınlaşmış bulunmaktadır. Bu tezde, öngörü ve atalet etkileri çeşitli yerleşim çalış-

maları öncesinde değiştirici AEL parametreleri olarak tanıtılmıştır. Öngörünün belirli

şartlar altında sönümlemeye benzer davrandığı gösterilmiş, ve atalet etkileri oransal

bir hız kontrolcüsüne eşdeğer olarak dinamik bir yavaşlatma sağlamıştır. Hızlar iste-

nilen değerlere oransal kazanım nedeniyle anında ulaşamadığından ajanlar ataletleri

varmış gibi davranmaktadır. Hız vektörü doğrultusunda etki gösteren kütlenin yanı

sıra, anlık yön değişimlerini önlemek adına dönme ataleti de araştırılmıştır. Çok-ajanlı

sistemlerin daha basit temsilleri amacıyla AELnın iki-parçacıklı versiyonlarını kul-

lanan indirgenmiş aktif madde modelleri geliştirilmiştir. Öngörü ve atalet etkilerine

sahip oyuncak modeller giderek daha da zorlayıcı hale evrilen sürü robotiği uygula-

maları için daha iyi ön çalışmalar vadetmektedir. Oyuncak modellerin performansını

karşılaştırmalı olarak değerlendirmek adına çok-ajanlı bir simülatör oluşturulmuş ve
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çeşitli senaryolar işlevselleştirilmiştir. İndirgenmiş ve tam modeller arasındaki davra-

nışsal benzerlikleri keşfetmek adına sönümleme oranı ve ajanlar arası boşluk esaslı

metrikler incelenmiştir. Bu tür benzerlikler, indirgenmiş oyuncak modellerinde uygu-

lanan daha basit parametre ayarlama prosedürlerini çok-ajanlı sistemlere daha pratik

bir şekilde uyarlamayı mümkün kılabilecektir. Tüm deneyler, kademeli etkisi düzenli-

düzensiz değişim karşılaştırmaları ile anlaşılmaya çalışılan öngörü kontrol paramet-

resinin ayarlanmasına odaklanmıştır. Kütle içeren analitik AM modelleri ile mühen-

dislik kontrolcüleri arasındaki ilişki, AELnın indirgenmiş versiyonları ve kutuplaşma

ölçümlü faz değişimi çalışmaları ile doğrulanmıştır.

Anahtar Kelimeler: Sürü Robotiği, Kolektif Hareket, Öngörü, Atalet Etkileri
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CHAPTER 1

INTRODUCTION

1.1 Overview of the Study

Active Matter (AM) concepts and collective motion have a deep connection by means

of their underlying physics. From molecular scales of active solids/crystals up to

macroscopic flock of birds, multi-agent models become powerful tools so as to inves-

tigate inner workings of interactions. Parameters such as scalability, decentralization,

emergence, etc. come into prominence when a network of agents is built with rel-

atively many connections. In a world where complexity equalize to more computa-

tional power, such emergent patterns promises simpler units performing challenging

tasks that none of the constituent individuals can handle. This realm of collective

motion has its extension to engineering applications, specifically in swarm robotics.

From this standpoint, Active Elastic (AE) models build probably the most relevant

bridge in between through their simplicities and characteristics. Throughout the the-

sis, AE models are used as the study of multi-agent systems.

AE models are open to a great number of modifications. Additional inter-connection

parameters, various network topologies and cantilevered connections with offsets are

among the possible extensions that are discussed in the upcoming chapters. For in-

stance, Active Elastic Anticipation (AEAnt) models reveal great amount of new sights

by introducing nature-like behaviours. As shown by Gerlee et al. [3], the existence of

prediction regarding the positions of adjacent agents results in more stable collective

motion as in the case of crystalline textures, and may even yield flocks’ milling be-

haviour independent from the presence of self-propulsion. In addition to behavioural

similarities, it is shown in the following chapters that different modifications may
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even result in equivalent physics with the same mathematical expressions, yet differ-

ent parameter selections. These kind of equivalences bring confidence for the devel-

opment of reduced physics that would shed a light to the foundations in common.

Reduced systems are powerful especially when the philosophy behind them is de-

rived from the concept of downward causation [4]. Therefore, building a useful toy

model for multi-agent systems is nothing but a significant part of the study that is

given coverage by this thesis. The developed toy models are examined with several

modifications and their stance in swarm applications. Various performance metrics

are introduced for not only quantitative comparisons but also phase transition studies.

The results are reflected from a swarm robotics engineering perspective.

1.2 Objective of the Thesis

The motivation behind AE modifications in this thesis focuses mainly on anticipa-

tion and inertia. The first step is to develop toy models with reduced two-particle AE

versions. Having a base model with required simplifications, anticipation and iner-

tial effects are to be added as the enriching parameters. A multi-agent simulator is

required for a scalability assessment of toy model parameters. Hence, we find that an

input driven simulator development becomes a necessity where number of agents, an-

ticipation degree, inertial effects, perturbations, obstacles, etc. are all configurable by

means of either a value or an on/off state. Rest of the study boils down to exhaustive

set of experiments which demonstrate several performance measures ranging from

scalability up to emergent characteristics.

The first Introduction chapter is followed by Literature Survey in which a deep jour-

ney from AM concepts up to macroscopic swarming applications are summarized

with proper collocation. The journey is supported with emergence philosophy and its

extensions to engineering implementations.

The third Methodology chapter elaborates current models with their core formaliza-

tions. Given methodologies from the literature also create a basement for the super-

vening Analytical Description chapter. Here, reduced two-particle AE models are

derived with all the kinematic/kinetic details.
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The fifth Numerical Experiments chapter is filled with handful of simulations where

each and every comparison is illustrated properly in order to evaluate models’ perfor-

mance. All setups are described and portrayed in accordance with their experimental

objectives. Outcomes are discussed thoroughly in the following Results & Discussion

chapter.

Finally, the Conclusion chapter finalizes the study and investigates possible future

work by expanding on what can be done further.

3



4



CHAPTER 2

LITERATURE SURVEY

2.1 Active Matter (AM) Concepts and Collective Motion

Active Matter (AM) is a collection of agents with active energy consumptions through

exerted forces and individual movements. These systems are inherently not in equi-

librium with their surroundings. AM concepts with the inclusion of self-dynamism

are well related to the patterns observed in nature by means of collective motion. The

underlying common principle is pronounced especially when Self-Propelled Parti-

cles (SPPs) are the reason for mentioned self-dynamism. Generalized patterns such

as order of phases and long wave characteristics are already among common studies

as in the case of work by Aditi Simha et al. [5]. At the core of all these studies,

Vicsek Model (VM) [6] is the pioneering origin in which velocity-based alignment

information is shared by the neighbourhood of each agent. The common interest in

collective motion studies is generally the phase transition. For instance, Aldana et

al. [7] investigate long-range interactions with a network-approach in the pursuit of

ordered to disordered state transitions. Such critical points as a result of discontinu-

ous transition states exist even in the simplest form of VM [8, 9]. These transitions

appear at an emergent scale ranging from crystals [10] up to living organisms such

as tissue cells [11] if not macroscopic swarms. As the other way around, downward

causation [4] is well appreciated by Peshkov et al. [12] such that interactions with

metric-free topologies in natural swarms are worth being traced down to AM systems

as how their study shows.
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2.2 Emergence and Swarm Intelligence

The causation between AM systems and collective motion is predicated on the con-

cept of emergence. Although Multi-Agent System (MAS) is described by the lower

level components and Complex Adaptive System (CAS) is described as the higher

level phenomena, they are definitions for the same system with a common goal: an

intelligent organization out of simple constituents [13]. Such definition of emergence

promises a great potential for more efficient ways of creating building blocks.

The same building block throughout the whole system with simple local rules can

define a collective motion once such rules are determinant enough as in the case of

Boids Model (BM) [14], the ancestor of VM. A flock can be easily simulated in BM

once below-given set of simple rules are applied by each and every agent.

• Collision Avoidance: Agents avoid colliding with neighbours.

• Velocity Matching: Agents match their velocities with that of neighbours.

• Flock Centering: Agents try to stay as close as possible to neighbours.

The alignment-based VM has similar set of simple rules and agents need to match

their orientations with that of neighbours [6]. VM can still procure collective motion

in the absence of a leader [15]. Yet similar behaviour is valid when endocannibalism

is the case with agent-based escape and pursuit responses [16]. All these effects are

very well existent in natural swarms as how Vicsek et al. [17] picture in their study.

These kind of emergent behaviours from an aggregation of simplistic elements re-

veal an intelligence that none of the agents themselves individually have. In other

words, such behaviours turn out to be irreducible [4]. Intelligence being a broad

definition, Swarm Intelligence (SI) is a specific contemporary field with yet to be

frame-worked [18]. Schranz et al. [19] picture another outline pivoted around Cyber-

Physical Systems (CPSs) in addition to the one proposed in [18]. Swarm size as a

performance measure becomes a metric when advantages such as adaptability and

scalability of swarms get used in the way CPSs utilize SI systems. In that sense,

swarm size change can be further deepened with conceptual discussions such as au-

topoiesis [20]. In this thesis, studies are based on fixed number of agents where toy
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models are represented with reduced static swarm sizes. For a fixed swarm size,

emergence can be studied in both micro and macro levels [21], downward causation

being the micro one. There have been studies where experimental data is used in

order to determine agent interactions downward to the micro level [22], [23]. Yet,

macroscopic formations (such as vortices and migrations [24]) are among more com-

mon studies after fitting individual-level parameters. The way this thesis proposes

toy models is based on downward direction not in the sense of interactions, but the

reduction of fixed swarm size. Seeing similar patterns in smaller swarms with that of

larger versions is still nothing but an extension of the downward causation concept.

2.3 Active Elastic Sheet (AES) Models

AES models are AM systems described in 2-Dimensional (2D) planes with the sim-

plistic spring-like interactions in between the constituent agents. Unlike AES, velocity-

based VM utilizes alignment/orientation as the information share in between agents.

Ferrante et al. [25,26] show that a position-based model with SPPs can employ collec-

tive rotation/translation states without any information of orientation sharing. Model

is based on a swarm with agents that substitute particles in AES under rotational and

translational degree-of-freedoms (DOFs), and their information sharing with adjacent

agents is utilized by the spring forces between AES nodes as functions of positions.

Such configuration of model is on par with semi-rigid AM concepts. Therefore, it is

showed that phase transitions are also eminent in AES just as in the case of prior AM

concepts with SPPs.

Various modifications exist for AE models. Turgut et al. [27] study different network

topologies among the agents for both AE and Vicsek models as a fundamental alter-

ation. Three types of connectivities are investigated: NN: Nearest-Neighbour, ER:

Erdös–Rényi, SF: Scale-Free and super-positions of them. Critical phase transition

levels are examined for different interaction networks.

Yet another modification over the simple AES is by Lin et al. [2] such that the agents

are attached by the interacting springs in a cantilevered manner, at a distance R in

front of their center-of-rotations (CORs). Phase transitions are investigated similar to

7



the work of network topologies, yet both locally and globally this time.

2.4 Swarm Robotics Applications

Emergent SI means simpler building blocks that bring an efficiency for task alloca-

tion. This is nothing but an engineering dream which enables simpler designs with

much better performance by means of applications. Hence, there have been a lot of

review studies about swarm robotics lately [28–33]. Each work presents a different

taxonomy with varying frame-works, yet common categorizations exist. This is an

expected situation since swarm robotics include a broad range of engineering appli-

cations from Particle-Swarm Optimizations (PSOs) up to real-world agent robots.

Evolutionary methods are well prominent when it comes to downward causation:

given a task, configure agent behaviours... From Novelty-Search methods [34] to

Neural-Network controllers [35], there exist several studies aiming at evolutionary

robotics in swarms. Among all of them, the method called Turing Learning is the

most relevant one in terms of micro-level controller design [36–40]. Turing Learning

can find impressively simple controllers so as to perform the desired tasks. Ferrante et

al. [41] appreciate the importance of simple input/output relations by studying robots

with and without certain parameters such as the orientation control in flocking. Con-

sidering what these flocks of flying robots are capable of [42,43], concepts that make

certain sensory inputs/controllers redundant are at great importance due to their effi-

cient nature. Hence, AE models carry high potentials for swarm robots applications

when alignment share and control are rendered unnecessary. There already exist stud-

ies in which AES is used as the underlying model for swarm robots, just as in the case

of Mona by Raoufi et al. [44]. It is also worthwhile to assess capabilities of position-

based control methods for certain limitations as worked out by Zheng et al. [1].

2.5 Contribution of the Thesis

In this thesis, further AES modifications are investigated. New parameters are intro-

duced prior to the development of toy models for multi-agent AES. Reduced two-

8



particle systems are chosen to be base models for the simplified versions of AES

with N-many agents. Reducing dimensions and swarm sizes down to the least possi-

ble values results in simpler extrapolation processes for further multi-agent analysis.

To illustrate, Czirók et al. [45] study SPP models down to 1D in order to determine

order-disorder transitions as a larger model validation. In a similar manner, reduced

two-particle systems of AE models with different configurations are studied for com-

mon behaviours, specifically the stability characteristics.

The expected similarities in patterns include common behaviours for anticipation and

inertia terms. An anticipating agent can extrapolate the future positions of other

agents. Such inclusion of prediction stabilizes the system and results in ordered states

as AM models. All these effects are well-studied by Gerlee et al. [3] on dynamical

systems. In this thesis, AES is not only modified with anticipating terms but also

introduced with inertial effects along both translational and rotational axes. Addition

of inertia turns out to relax underlying dynamics and behave as if a proportional ve-

locity controller exists. Stabilization due to inertial effects prevents instant disrupt

changes in kinematic parameters. It is also shown that different kinds of equivalences

exist between the developed toy models. For instance, AEA and AEAnt turn out to

be expressed the same by means of mathematical formulation, yet different parameter

selections.

A multi-agent simulator is built in MATLAB with configurable variables. Conditions

such as inclusion of noise/perturbations, obstacles, bouncing walls, etc. are all de-

fined as a boolean parameter in an on/off state manner. Using multi-agent system

simulators, toy models are tested in terms of their emergent performance specifically

based on the scalability. Similar patterns in their damping responses are sought. The

study is finalized after extensive order-disorder studies are carried out using the sim-

ulator.
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CHAPTER 3

METHODOLOGY

3.1 Active Elastic Sheet (AES) - The Simplest Model

The simplest form of AE models is AES where agents are connected to each other by

spring-like interactions in a 2D plane [25, 26]. System of N agents are described by

the below-given over-damped equations of motion.

˙⃗xi = v0n̂i + α[(F⃗i +Drξ̂r) · n̂i]n̂i (3.1)

θ̇i = β[(F⃗i +Drξ̂r) · n̂⊥
i ] +Dθξθ (3.2)

Here,

• ˙⃗xi: Linear velocity of each agent i

• θ̇i: Angular speed of each agent i

• v0: Self-propulsion or forward biasing speed

• α: Inverse translational damping coefficient

• β: Inverse rotational damping coefficient

• n̂i: Unit vector parallel to the heading direction of each agent i

• Drξ̂r: Sensing noise (force measurement errors) with the noise strength coeffi-

cient of Dr and a random unit vector ξ̂r

• Dθξθ: Actuation noise (individual motion fluctuations) with the noise strength

coefficient of Dθ and a random variable ξθ with a uniform distribution

11



The total force acting on each agent i is nothing but the sum of all spring forces.

F⃗i =
∑
j∈Si

− k

lij
(||r⃗ij|| − lij)

r⃗ij
||r⃗ij||

(3.3)

where,

r⃗ij = x⃗j − x⃗i (3.4)

with free lengths of lij and spring constants k/lij .

Equations of AES can easily be converted to numerical versions by Euler method

discretization.

x⃗t+1
i = x⃗ti +

{
v0n̂i + α

[(
F⃗ t
i +

Dr√
∆t
ξ̂r

)
· n̂i

]
n̂i

}
∆t (3.5)

θt+1
i = θti +

{
β

[(
F⃗ t
i +

Dr√
∆t
ξ̂r

)
· n̂⊥

i

]
+

Dθ√
∆t
ξθ

}
∆t (3.6)

Divisions by
√
∆t is proposed so as to prevent noise accumulations.

For stability analysis of AES, small perturbations are considered. For simplicity, a

symmetric boundary condition for a two-particle system is constructed. Therefore,

agents behave the mirrored versions of each others motion.

Figure 3.1: Small Position and Orientation Perturbations for Stability Analysis of

AES [1]

Zheng et al. [1] calculates how these perturbations evolve by time using equations of

motion in order to assess the linearized stability of the system (see Figure 3.1).

d

dt
∆x = 2

(
v0 − αk∆x sin

∆θ

2

)
sin

∆θ

2
(3.7)

d

dt
∆θ = −2βk∆x cos

∆θ

2
(3.8)
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Linearization of Eqns. (3.7) and (3.8) for very small perturbations under small-angle

approximation gives the below system of linearized equations.

d

dt

∆x

∆θ

 =

 0 v0

−2βk 0

∆x

∆θ

 (3.9)

Eigenvalues calculated from the coefficient matrix of Eqn. (3.9) are indicative of the

system stability. Hence,

eig

 0 v0

−2βk 0

 → λ± = ±
√
−2βkv0 (3.10)

One can easily note that both of the eigenvalues are purely imaginary and the system

continuous its oscillations without any dampening out.

The procedure given above is the pioneering form of how the toy model stabilities are

assessed through out this thesis.

3.2 Active Elastic Alignment (AEA) Model

Active Elastic Alignment (AEA) model is a modified version of AES with can-

tilevered arms for offset spring connections.

Figure 3.2: Small Position and Orientation Perturbations for Stability Analysis [2]
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Lin et al. [2] study system of N agents with the same over-damped equations of mo-

tion by AES. The only difference comes into play due to the extending arms (see

Figure 3.2). The effect of arm offset is utilized as a modification to the Eqn. (3.4).

r⃗ij = (x⃗j +Rn̂j)− (x⃗i +Rn̂i) = x⃗j − x⃗i +R(n̂j − n̂i) (3.11)

Here, R is length of the arm and R = 0 case is nothing but the good old AES model.

For stability analysis of AEA, small perturbations are considered again. For sim-

plicity, a symmetric boundary condition for a two-particle system is constructed in a

similar manner.

Figure 3.3: Small Position and Orientation Perturbations for Stability Analysis of

AEA [2]

Lin et al. [2] calculates how these perturbations evolve by time using equations of

motion in order to assess the linearized stability of the system (see Figure 3.3).

d

dt
∆r = 2

[
v0 − αk

(
∆r + 2R sin

∆ϕ

2

)
sin

∆ϕ

2

]
sin

∆ϕ

2
(3.12)

d

dt
∆ϕ = −2βk

(
∆r + 2R sin

∆ϕ

2

)
cos

∆ϕ

2
(3.13)

Linearization of Eqns. (3.12) and (3.13) for very small perturbations under small-

angle approximation gives the below system of linearized equations.

d

dt

∆r

∆ϕ

 =

 0 v0

−2βk −2βkR

∆r

∆ϕ

 (3.14)

Eigenvalues calculated from the coefficient matrix of Eqn. (3.14) are indicative of the

system stability. Hence,

eig

 0 v0

−2βk −2βkR

 → λ± = −βkR±
√
β2k2R2 − 2βkv0 (3.15)
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It is straight-forward to observe that R = 0 case results in exactly the same eigen-

values that of AES with persistent oscillations due to purely imaginary nature. For

R > 0 and v0 < βkR2/2, both eigenvalues are real and negative with an over-damped

decaying solution. For R < 0 and v0 > βkR2/2, on the other hand, both eigenvalues

have negative real and imaginary parts. In that case, aligned state is achieved after

damping certain amount of oscillations.

Lin et al. [2] also present a stability analysis for Head-to-Tail configuration of a two-

particle system. It is observed that the solution in that case is always unstable.

3.3 Active Elastic Anticipation (AEAnt) Model

Active Elastic Anticipation (AEAnt) model is a modified version of AES with addi-

tional forcing terms that induces anticipation effect as if a damper is realized between

agents. The only difference comes into play due to the additional forcing terms and

this is utilized by performing a modification to the Eqn. (3.3).

F⃗i =
∑
j∈Si

[
− k

lij
(||r⃗ij|| − lij)− b||v⃗ij||

]
r⃗ij

||r⃗ij||
(3.16)

where,

v⃗ij = ˙⃗rij (3.17)

The parameter b is the anticipation level added to the spring interaction. It is again

straight-forward to observe that b = 0 case results in exactly the same eigenvalues

that of AES with persistent oscillations due to purely imaginary nature.

It is yet to be shown in the upcoming chapters that AEA and AEAnt have a lot of

common mathematical expressions by means of different parameter representations

such that bv0 ≡ kR. In other words, spring interaction with a constant of k in AEA

happens ahead of the COR as it is an elongated object with a distance R, yet AEAnt

predicts future position corresponding to the same ahead destination with b weighted

distance by the self propulsion of v0.
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3.4 Inertia and Proportional Velocity Controller

An engineering approach to AES based swarm robotics applications is prone to in-

stant/abrupt kinematic changes as seen in [1,44]. One way to solve this issue is using

a proportional velocity controller suggested by Bando et al. [46]. Their Optimal Ve-

locity Model resolves the similar problem that occurs in traffic flows. With this model,

cars cannot reach to their desired velocities instantly and need to accelerate in propor-

tional accordance with the velocity difference between their current and target values.

Figure 3.4: Proportional Velocity Controller

It is to be demonstrated below how such a controller used in AEAnt models is equiv-

alent to the inclusion of inertia (see Figure 3.4).

vd = v0 − αk∆x− αb∆ẋ (3.18)

ẍ = Kacc(vd − ẋ) (3.19)

Plugging vd expression in Eqn. (3.18) to Eqn. (3.19), we get a single line of equation

to be handled.

ẍ = Kacc(v0 − αk∆x− αb∆ẋ− ẋ) (3.20)

Rearranging Eqn. (3.20) gives the final form seen in AE(Ant) models, yet with an

additional second order inertial term on the left.

αmẍ+ ẋ = v0 − αk∆x− αb∆ẋ where αm =
1

Kacc

(3.21)

This is a valuable conclusion since it shows that adding a second order term to the

left with an inertial coefficient is nothing but equivalent to a proportional velocity

controller. This means AE models can be easily modified for both toy model studies

and swarm robotics applications for a better representation of the real mass. It is
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also straightforward to see that introducing rotational inertia to the angular part of AE

models’ equations of motion is a similar procedure as that of the given demonstration

above.
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CHAPTER 4

ANALYTICAL DESCRIPTION

4.1 Overview of the Analytical Models

In this chapter, it is aimed to derive analytical expressions for a system simple enough

to observe and understand the effect of anticipation and inertia. Hence, reduced two-

particle AE models are studied with small perturbations as how Zheng at al. [1] and

Lin et al. [2] investigate small changes in degree-of-freedoms for stability analy-

sis. Two models are presented: Head-to-Tail and Side-by-Side configurations. Over-

damped equations of motions are used with four scenarios per configuration, which

are listed below.

• 1st Order (w/o Inertia) and w/o Anticipation

• 1st Order (w/o Inertia) and w/ Anticipation

• 2nd Order (w/ Inertia) and w/o Anticipation

• 2nd Order (w/ Inertia) and w/ Anticipation
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4.2 Two-Particle AE Models: Head-to-Tail Configuration

The configuration for head-to-tail two-particle AE model is given below.

Figure 4.1: Head-to-Tail Configuration for Two-Particle AE

4.2.1 Head-to-Tail in 1st Order w/o Anticipation

Over-damped equations of motion are constructed below.

∆ẋ1 = v0 + αk(∆x2 −∆x1) (4.1)

∆ẋ2 = v0 − αk(∆x2 −∆x1) (4.2)

Then, the model in only first-order terms becomes a system of ODEs.∆ẋ1

∆ẋ2

 =

−αk αk

αk −αk

∆x1

∆x2

 (4.3)

For stability analysis, eigenvalues of our system matrix are to be calculated.

eig

−αk αk

αk −αk

 → λ− = −2αk, λ+ = 0 (4.4)

Eigenvalues reflect a marginally stable system regardless of the parameter selection.

Absence of imaginary parts with all real values results in a non-oscillatory system.

Analytical solutions for positional perturbations can be easily expressed using above-

calculated eigenvalues.

∆x1 = v0t+ C1 − C2e
−2αkt (4.5)

∆x2 = v0t+ C1 + C2e
−2αkt (4.6)

Finally, change in distance between the two particles can be expressed as the differ-

ence of calculated positional perturbations.

|∆x1 −∆x2| = |2C2e
−2αkt| (4.7)
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4.2.2 Head-to-Tail in 1st Order w/ Anticipation

Over-damped equations of motion are constructed below.

∆ẋ1 = v0 + αk(∆x2 −∆x1) + αb(∆ẋ2 −∆ẋ1) (4.8)

∆ẋ2 = v0 − αk(∆x2 −∆x1)− αb(∆ẋ2 −∆ẋ1) (4.9)

Then, the model in only first-order terms becomes a system of ODEs.∆ẋ1

∆ẋ2

 =

− αk
1+2αb

αk
1+2αb

αk
1+2αb

− αk
1+2αb

∆x1

∆x2

 (4.10)

For stability analysis, eigenvalues of our system matrix are to be calculated.

eig

− αk
1+2αb

αk
1+2αb

αk
1+2αb

− αk
1+2αb

 → λ− = − 2αk

1 + 2αb
, λ+ = 0 (4.11)

Again, eigenvalues reflect a marginally stable system regardless of the parameter se-

lection, yet with an additional anticipation term. Absence of imaginary parts with all

real values results in a non-oscillatory system for this case as well.

Analytical solutions for positional perturbations can be easily expressed using above-

calculated eigenvalues.

∆x1 = v0t+ C1 − C2e
− 2αk

1+2αb
t (4.12)

∆x2 = v0t+ C1 + C2e
− 2αk

1+2αb
t (4.13)

Finally, change in distance between the two particles can be expressed as the differ-

ence of calculated positional perturbations.

|∆x1 −∆x2| = |2C2e
− 2αk

1+2αb
t| (4.14)

Here, we see that the inclusion of anticipation makes |∆x1−∆x2| decay slower to its

steady-state value due to the 1/(1 + 2αb) term in the exponent. Hence, anticipation

introduces an additional control parameter.
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4.2.3 Head-to-Tail in 2nd Order w/o Anticipation

Over-damped equations of motion are constructed below.

αmẍ1 +∆ẋ1 = v0 + αk(∆x2 −∆x1) (4.15)

αmẍ2 +∆ẋ2 = v0 − αk(∆x2 −∆x1) (4.16)

Introducing ∆ẋ1 = ∆u and ∆ẋ2 = ∆w, the model in only first-order terms becomes

a system of ODEs.
∆ẋ1

∆ẋ2

∆u̇

∆ẇ


=


0 0 1 0

0 0 0 1

− k
m

k
m

− 1
αm

0

k
m

− k
m

0 − 1
αm




∆x1

∆x2

∆u

∆w


(4.17)

For stability analysis, eigenvalues of our system matrix are to be calculated.

λ1 = 0, λ2 = − 1

αm
, λ3 =

−1−
√
1− 8α2km

2αm
, λ4 =

−1 +
√
1− 8α2km

2αm
(4.18)

Eigenvalues reflect a marginally stable system regardless of the parameter selection

since real parts can never become positive. As long as 1 < 8α2km, system is oscilla-

tory with generated imaginary parts.

Analytical solutions for positional perturbations can be easily expressed using above-

calculated eigenvalues.

∆x1 = v0 + C4e
− 1

αm
t − C2e

−1−
√

1−8α2km
2αm

t − C3e
−1+

√
1−8α2km
2αm

t (4.19)

∆x2 = v0 + C4e
− 1

αm
t + C2e

−1−
√

1−8α2km
2αm

t + C3e
−1+

√
1−8α2km
2αm

t (4.20)

Finally, change in distance between the two particles can be expressed as the differ-

ence of calculated positional perturbations.

|∆x1 −∆x2| =
∣∣∣∣2C2e

−1−
√

1−8α2km
2αm

t + 2C3e
−1+

√
1−8α2km
2αm

t

∣∣∣∣ (4.21)

It is observed that an additional order in the system not only increases the amount of

eigenvalues with extended dynamics but also introduces a new control parameter m,

namely the spatial mass.
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4.2.4 Head-to-Tail in 2nd Order w/ Anticipation

Over-damped equations of motion are constructed below.

αmẍ1 +∆ẋ1 = v0 + αk(∆x2 −∆x1) + αb(∆ẋ2 −∆ẋ1) (4.22)

αmẍ2 +∆ẋ2 = v0 − αk(∆x2 −∆x1)− αb(∆ẋ2 −∆ẋ1) (4.23)

Introducing ∆ẋ1 = ∆u and ∆ẋ2 = ∆w, the model in only first-order terms becomes

a system of ODEs.
∆ẋ1

∆ẋ2

∆u̇

∆ẇ


=


0 0 1 0

0 0 0 1

− k
m

k
m

−1−αb
αm

b
m

k
m

− k
m

b
m

−1−αb
αm




∆x1

∆x2

∆u

∆w


(4.24)

For stability analysis, eigenvalues of our system matrix are to be calculated.

λ1 = 0, λ2 = − 1

αm
, λ3 =

−1− 2αb−
√
1− 8α2km+ 4α2b2

2αm
,

λ4 =
−1− 2αb+

√
1− 8α2km+ 4α2b2

2αm

(4.25)

Again, eigenvalues reflect a marginally stable system regardless of the parameter se-

lection since real parts can never become positive. As long as 1 < (8α2km− 4α2b2),

system is oscillatory with generated imaginary parts for this case as well.

Analytical solutions for positional perturbations can be easily expressed using above-

calculated eigenvalues.

∆x1 = v0+C4e
− 1

αm
t−C2e

−1−2αb−
√

1−8α2km+4α2b2

2αm
t−C3e

−1−2αb+
√

1−8α2km+4α2b2

2αm
t (4.26)

∆x2 = v0+C4e
− 1

αm
t+C2e

−1−2αb−
√

1−8α2km+4α2b2

2αm
t+C3e

−1−2αb+
√

1−8α2km+4α2b2

2αm
t (4.27)

Finally, change in distance between the two particles can be expressed as the differ-

ence of calculated positional perturbations.

|∆x1 −∆x2| =
∣∣∣∣2C2e

−1−2αb−
√

1−8α2km+4α2b2

2αm
t + 2C3e

−1−2αb+
√

1−8α2km+4α2b2

2αm
t

∣∣∣∣ (4.28)

Here, we see that the inclusion of anticipation makes |∆x1 − ∆x2| decay faster to

its steady-state value due to additional −2αb related terms in the exponents. Hence,

anticipation introduces yet another control parameter again, along with the spatial

mass.
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4.3 Two-Particle AE Models: Side-by-Side Configuration

The configuration for side-by-side two-particle AE model with symmetrical boundary

condition is given below.

Figure 4.2: Side-by-Side Configuration for Two-Particle AE

Different from the head-to-tail one, side-by-side configuration introduces rotational

freedoms of the agents.

4.3.1 Side-by-Side in 1st Order w/o Anticipation

Over-damped equations of motion are constructed below.

∆v̇ = v0 − αk2∆y sin∆θ (4.29)

∆θ̇ = −βk2∆y cos∆θ (4.30)

Equations are to be extended component-wise.

∆ẋ = v0 cos∆θ − αk2∆y sin∆θ cos∆θ (4.31)

∆ẏ = v0 sin∆θ − αk2∆y sin2∆θ (4.32)

∆θ̇ = −βk2∆y cos∆θ (4.33)
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With small-angle-approximation, equations of motions are linearized.

∆ẋ = v0 − αk2∆y∆θ (4.34)

∆ẏ = v0∆θ (4.35)

∆θ̇ = −βk2∆y (4.36)

Then, the model in only first-order terms becomes a system of ODEs.∆ẏ

∆θ̇

 =

 0 v0

−2βk 0

∆y

∆θ

 (4.37)

For stability analysis, eigenvalues of our system matrix are to be calculated.

eig

 0 v0

−2βk 0

 → λ− = −
√
−2βkv0, λ+ =

√
−2βkv0 (4.38)

Eigenvalues reflect pure oscillations regardless of the parameter selection since real

parts are always zero.

Analytical solutions for positional/rotational perturbations can be easily expressed

using above-calculated eigenvalues.

∆y = C1e
−
√
−2βkv0t + C2e

√
−2βkv0t (4.39)

∆θ =
βkl + C1λ+e

λ−t + C2λ−e
λ+t

2βk
(4.40)

Finally, change in distance between the two particles can be expressed directly as

|2∆y(t)|.
|2∆y| = |2C1e

−
√
−2βkv0t + 2C2e

√
−2βkv0t| (4.41)

4.3.2 Side-by-Side in 1st Order w/ Anticipation

Over-damped equations of motion are constructed below.

∆v̇ = v0 − α[k2∆y + b2∆ẏ] sin∆θ (4.42)

∆θ̇ = −β[k2∆y + b2∆ẏ] cos∆θ (4.43)
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Equations are to be extended component-wise.

∆ẋ = v0 cos∆θ − α[k2∆y + b2∆ẏ] sin∆θ cos∆θ (4.44)

∆ẏ = v0 sin∆θ − α[k2∆y + b2∆ẏ] sin2∆θ (4.45)

∆θ̇ = −β[k2∆y + b2∆ẏ] cos∆θ (4.46)

With small-angle-approximation, equations of motions are linearized.

∆ẋ = v0 − α[k2∆y + b2∆ẏ]∆θ (4.47)

∆ẏ = v0∆θ (4.48)

∆θ̇ = −β[k2∆y + b2∆ẏ] (4.49)

Then, the model in only first-order terms becomes a system of ODEs.∆ẏ

∆θ̇

 =

 0 v0

−2βk −2βbv0

∆y

∆θ

 (4.50)

For stability analysis, eigenvalues of our system matrix are to be calculated.

eig

 0 v0

−2βk −2βbv0

 → λ± = −βbv0 ±
√
β2b2v20 − 2βkv0 (4.51)

For v0 < βb2/(2k), both eigenvalues are real & negative and any oscillation is over-

damped. For v0 > βb2/(2k), negative real parts are accompanied by imaginary parts,

so it is expected to see some damped oscillations as the system reaches its aligned

state. Hence, anticipation in this scenario behaves similar to damping as an additional

control parameter introducing negative real parts.

Analytical solutions for positional/rotational perturbations can be easily expressed

using above-calculated eigenvalues.

∆y = C1e

(
−βbv0−

√
β2b2v20−2βkv0

)
t
+ C2e

(
−βbv0+

√
β2b2v20−2βkv0

)
t (4.52)

∆θ =
βkl + C1λ+e

λ−t + C2λ−e
λ+t

2βk
(4.53)

Finally, change in distance between the two particles can be expressed directly as

|2∆y(t)|.

|2∆y| =
∣∣∣∣2C1e

(
−βbv0−

√
β2b2v20−2βkv0

)
t
+ 2C2e

(
−βbv0+

√
β2b2v20−2βkv0

)
t

∣∣∣∣ (4.54)
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4.3.3 Side-by-Side in 2nd Order w/o Anticipation

Over-damped equations of motion are constructed below.

αm∆v̈ +∆v̇ = v0 − αk2∆y sin∆θ (4.55)

βI∆θ̈ +∆θ̇ = −βk2∆y cos∆θ (4.56)

Equations are to be extended component-wise.

αm∆ẍ+∆ẋ = v0 cos∆θ − αk2∆y sin∆θ cos∆θ (4.57)

αm∆ÿ +∆ẏ = v0 sin∆θ − αk2∆y sin2∆θ (4.58)

βI∆θ̈ +∆θ̇ = −βk2∆y cos∆θ (4.59)

With small-angle-approximation, equations of motions are linearized.

αm∆ẍ+∆ẋ = v0 − αk2∆y∆θ (4.60)

αm∆ÿ +∆ẏ = v0∆θ (4.61)

βI∆θ̈ +∆θ̇ = −βk2∆y (4.62)

Introducing ∆ẏ = ∆u and ∆θ̇ = ∆w, the model in only first-order terms becomes a

system of ODEs. 
∆ẏ

∆θ̇

∆u̇

∆ẇ


=


0 0 1 0

0 0 0 1

0 v0
αm

− 1
αm

0

−2k
I

0 0 − 1
βI




∆y

∆θ

∆u

∆w


(4.63)

For stability analysis, eigenvalues of our system matrix are to be calculated.∣∣∣∣∣∣∣∣∣∣∣

−λ 0 1 0

0 −λ 0 1

0 v0
αm

− 1
αm

− λ 0

−2k
I

0 0 − 1
βI

− λ

∣∣∣∣∣∣∣∣∣∣∣
= −λ

{
−λ

[(
− 1

αm
− λ

)(
− 1

βI
− λ

)]}
+

2k

I

v0
αm

=

[(
1

αm
+ λ

)(
1

βI
+ λ

)]
λ2 +

2k

I

v0
αm

=

(
λ2 +

βI + αm

βIαm
λ+

1

βIαm

)
λ2 +

2k

I

v0
αm

= λ4 +
βI + αm

βIαm
λ3 +

1

βIαm
λ2 +

2kv0
Iαm

(4.64)
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Eqn.(4.64) can be converted to a depressed quartic equation using Lodovico Ferrari’s

solution, which requires an exhaustive set of calculation steps. It is still valuable

to see that additional angular DOF from side-by-side configuration yields new con-

trol parameters β and I , namely inverse rotational damping coefficient and rotational

inertia, in addition to all parameters from head-to-tail configuration.

4.3.4 Side-by-Side in 2nd Order w/ Anticipation

Over-damped equations of motion are constructed below.

αm∆v̈ +∆v̇ = v0 − α[k2∆y + b2∆ẏ] sin∆θ (4.65)

βI∆θ̈ +∆θ̇ = −β[k2∆y + b2∆ẏ] cos∆θ (4.66)

Equations are to be extended component-wise.

αm∆ẍ+∆ẋ = v0 cos∆θ − α[k2∆y + b2∆ẏ] sin∆θ cos∆θ (4.67)

αm∆ÿ +∆ẏ = v0 sin∆θ − α[k2∆y + b2∆ẏ] sin2∆θ (4.68)

βI∆θ̈ +∆θ̇ = −β[k2∆y + b2∆ẏ] cos∆θ (4.69)

With small-angle-approximation, equations of motions are linearized.

αm∆ẍ+∆ẋ = v0 − α[k2∆y + b2∆ẏ]∆θ (4.70)

αm∆ÿ +∆ẏ = v0∆θ (4.71)

βI∆θ̈ +∆θ̇ = −β[k2∆y + b2∆ẏ] (4.72)

Introducing ∆ẏ = ∆u and ∆θ̇ = ∆w, the model in only first-order terms becomes a

system of ODEs. 
∆ẏ

∆θ̇

∆u̇

∆ẇ


=


0 0 1 0

0 0 0 1

0 v0
αm

− 1
αm

0

−2k
I

0 −2b
I

− 1
βI




∆y

∆θ

∆u

∆w


(4.73)
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For stability analysis, eigenvalues of our system matrix are to be calculated.∣∣∣∣∣∣∣∣∣∣∣

−λ 0 1 0

0 −λ 0 1

0 v0
αm

− 1
αm

− λ 0

−2k
I

0 −2b
I

− 1
βI

− λ

∣∣∣∣∣∣∣∣∣∣∣
= −λ

{
−λ

[(
− 1

αm
− λ

)(
− 1

βI
− λ

)]
− 2b

I

v0
αm

}
+

2k

I

v0
αm

=

[(
1

αm
+ λ

)(
1

βI
+ λ

)]
λ2 +

2b

I

v0
αm

λ+
2k

I

v0
αm

=

(
λ2 +

βI + αm

βIαm
λ+

1

βIαm

)
λ2 +

2b

I

v0
αm

λ+
2k

I

v0
αm

= λ4 +
βI + αm

βIαm
λ3 +

1

βIαm
λ2 +

2bv0
Iαm

λ+
2kv0
Iαm

(4.74)

Again, Eqn.(4.74) can be converted to a depressed quartic equation using Lodovico

Ferrari’s solution, which requires an exhaustive set of calculation steps. Anticipation

introduces a new control parameter on top of all the previous ones, which is very

similar to that of head-to-tail configurations with anticipation.
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CHAPTER 5

NUMERICAL EXPERIMENTS

5.1 Performance Metrics

Extending the previous type of analysis from Chapter 4 to systems with more than

two agents requires performance metrics so as to evaluate differences between two-

particle analysis and numerical multi-agent simulations. In order to subject toy mod-

els to test in terms of emergent properties, the most sound parameter candidates are

the eigenvalues. For a valid comparison, an equivalent definition needs to be ex-

tracted from larger systems as an eigenvalue substitute. Considering that real and

imaginary parts of the toy model eigenvalues are related to damping ratios and re-

sponse frequencies, respectively; similar corresponding kinematic values can be in-

ferred from multi-agent simulations. Looking for an overall damping ratio correlation

makes more sense since it is expected to have different frequency responses per var-

ious system sizes. When an ensemble of agents move through space, the obvious

oscillations always occur in their heading angles. Therefore, multi-agent damping

ratios are selected to be extracted from the decaying angular oscillation waves by

simply fitting an enveloping exponential curve.

The second metric for performance measures is the distance between agents. Tracing

minimum, maximum and average distances for each time-step over the whole run-

time yields how much responsive agents are. If the minimum distance is larger in

one run compared to the other, one with the larger minimum distance is assumed to

be more responsive since agents outspeed avoiding each other. Similar claim is valid

for the opposite case in which smaller maximum distance assumes more responsive

repulsion forces so that agents do not favour disassembling. The caveat of such a
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faster response is the reduction in system speed after a critical point, which is in

analogy with excessively pre-cautious and observant agents.

Looking from a swarm engineering perspective, the very last but not least parameters

prone to tuning are anticipation and inertia. In order to assess the performance of

each parameter, a metric is to be introduced for the sole evaluation purpose of con-

trolled experiments. It is common in AE model studies that the region order-disorder

transition occurs plays an important role by means of how these parameters affect

the system performance [1, 2, 25–27, 47]. These transitions are defined when agents’

degree of alignment changes drastically. The metric for such information in AM sys-

tems is called the usual polarization order parameter which is defined as below.

ψ =
1

N

∥∥∥∥∥
N∑
i=1

n̂i

∥∥∥∥∥ (5.1)

ψ = 1 when all agents are perfectly aligned. On the other hand, ψ = 0 means all

the agents have random orientations. It is expected to have a decrease in polarization

once actuation noise strength coefficient Dθ surpasses a certain threshold, namely the

transition region. Effects of anticipation and inertia on the position of such transition

points are to be investigated. The relation between anticipation and transition point

would reveal in what trend to tune control algorithms by means of anticipation param-

eter for a better swarm robotics robustness. Similarly, the relation between inertia and

transition region would determine which of lightweight or heavy designs to favour for

less noise susceptibility.

5.2 Experimental Setups

It is essential to emphasize different measures of performance metrics from Section

5.1 by cleverly built experimental setups. Required reasoning scale ranges from how

to configure individual units up to setting environmental conditions. To start with,

agents are to be located in a hexagonal formation with triangular lattices, which is

one of the AM configurations common in AE models. They all have self-propulsion

velocities with both ordered or random initial states in terms of their heading direc-

tions. Agents are assumed to be two-wheeled robots so that lateral translations are

restricted, just as how AE models define movements only in translations along their
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heading directions and rotations about their own axes. This restriction is actually

intrinsic to equations of motion for all AE models so that forces projecting to head-

ing direction creates spatial movements, whereas the other perpendicular components

result in rotations.

Apart from the agent topology, environmental conditions are also designed to vary for

different setups. The main simplistic variances in swarm environments are generally

existence and allocation of the obstacles. For this purpose, two obstacle layouts are

to be introduced so that agents are kinetically related once they are within a vicinity

close enough to trigger sensors. These layouts are selected as ducts and walls whose

kinetics are modelled as circles/cylinders with finite and infinite radii, respectively.

It is to be shown that different anticipation values change the way ensemble handles

obstacles. For instance, existence of anticipation can enable duct passage rather then

being reflected from the circles/cylinders once parameters are tuned correctly. A

similar effect is acquirable regarding how they bounce from the wall.

5.3 Multi-Agent Simulator

Experimental setups described in Section 5.2 are to be numerically implemented by

realization of a multi-agent simulator which is scripted using commercially avail-

able software package MATLAB. Numerical and boolean parameters utilized as an

input for the simulator are tabulated in Tables 5.1 and 5.2 with their typical order-of-

magnitudes/states below. Figures 5.1a and 5.1b demonstrate enabled ducts and walls,

separately.

In addition to pre-defined arena sizes, a periodic boundary condition is implemented

at the borders through which agents are teleported to the other facing edge once they

pass. This effect simultaneously works along both horizontal and vertical limits (see

Figures 5.2a and 5.2b).

As stated in Section 3.4, it is trivial to add proportional velocity controller so as to

include inertial effects. Hence, both spatial and rotational inertias are introduced to

the multi-agent simulator as dynamic relaxations for wider parameter ranges with

stable behaviours. Inertial effects are enabled in the first place by uncommenting the
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related equations of motion lines.

Yet another aspect of the multi-agent simulator is parallelization specifically for order-

disorder transition studies. When such curves are achieved, each and every point on

the curve data corresponds to a single run of simulation. Therefore, time required for

simulations is drastically reduced by making use of multi-threading.
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Table 5.1: Numerical Inputs Used in Multi-Agent Simulator

Parameter Name Description Typical Values

Time increment dt Resolution for the simulation 0.01− 0.1

Final time t_f Simulation duration 1e4− 1e6

Self-propulsion v_0 Forward biasing speed 0.001− 0.005

Damping alpha Inverse translational damp. coeff. 0.001− 0.005

Damping beta Inverse rotational damp. coeff. 0.05− 0.2

Spring constant K Free length of unity 1− 25

Anticipation b AEAnt to AES when zero 0− 75

Arena size x_BC Horizontal length of the arena [−5 5]− [−50 50]

Arena size y_BC Vertical length of the arena [−5 5]− [−50 50]

Shell shell Radius of the voronoi shell 1− 2

Duct position obs_X X-position of the ducts within x_BC

Duct position obs_Y Y-position of the ducts within y_BC

Duct radius obs_R Radius of the duct circles 1− 10

Duct forcing obs_K Force gain 0.1− 2.5

Duct interaction obs_off Interaction offset from the duct 0− 2

Wall position bnc_X X-position of the wall within x_BC

Wall forcing bnc_K Force gain 0.1− 2.5

Wall interaction bnc_off Interaction offset from the wall 0− 2

Noise D_r Sensing noise coefficient 1e− 8− 1e− 6

Noise D_theta Actuation noise coefficient 1e− 8− 1e− 6

Ensemble size L Side length of the hexagon placement 3− 10

Initial randomness D_pert Initial angular perturbation coefficient 0− π

Table 5.2: Boolean Inputs Used in Multi-Agent Simulator

Parameter Name Description Typical States

Anticipation anticipation Sets b to the assigned value false− true

Dynamic Network dynamicNetwork Dynamic linking within shell false− true

Ducts obstacle Puts circular ducts false− true

Wall bounce Puts a bouncing wall false− true

Noise noise Enables sensing/actuation noise false− true

Initial randomness perturbation Enables initial angular perturbation false− true
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(a) Ducts

(b) Wall

Figure 5.1: Enabled Circular Ducts and Wall
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(a) Before Crossing

(b) After Crossing

Figure 5.2: Demonstration of Periodic Boundary Conditions
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CHAPTER 6

RESULTS & DISCUSSION

6.1 Similarities between AEA and AEAnt

Active Elastic Alignment (AEA) and Active Elastic Anticipation (AEAnt) are fun-

damentally two particular models with distinctive configurations. On the other hand,

they have similar mathematical definitions with different parameters. Lin et al. [2]

formulates their system with Eq. (3.14) under small perturbations. Yet similar lin-

earized system of equations in Eq. (4.50) is derived for side-by-side 1st order toy

model configuration with anticipation (see Section 4.3.2). They are listed below for a

better comparison.

Table 6.1: System of Linearized Equations for AEA vs. AEAnt

Model System of Linearized Equations

Active Elastic Alignment (AEA)

∆ṙ

∆ϕ̇

 =

 0 v0

−2βk −2βkR

∆r

∆ϕ


Active Elastic Anticipation (AEAnt)

∆ẏ

∆θ̇

 =

 0 v0

−2βk −2βbv0

∆y

∆θ


It is trivial to see that AEA and AEAnt have common mathematical expressions by

means of different parameter representations such that bv0 ≡ kR. An analogy be-

tween two definitions can be constructed such that extrapolating future position of a

neighbour is equivalent to applying spring forces at that instant with an offset as if the

agent is at that anticipated point. In summary, AEAnt predicts the future, yet AEA

already applies kinetics in advance from that anticipated position.
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6.2 Eigenvalue Plots for Toy Models

In this section, eigenvalue plots for each analytical models from Chapter 4 are given.

Changes in eigenvalues as a function of both anticipation and inertial parameters are

plotted so that stability analysis can be performed. Typical values from Tables 5.1

and 5.2 are assigned for numerical representations.

The very first observation in both eigenvalue expressions and plots is that head-to-tail

configuration is always non-oscillatory with negative real eigenvalues (see Figures

6.1 and 6.2). On the other hand, side-by-side configuration introduces damped oscil-

lations in both 1st and 2nd orders due to additional angular DOFs (see Figure 6.3 for

1st order and Figures 6.4, 6.5, 6.6 for 2nd order).
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(a) Plot of λi(b) from Eqn. (4.11) for Head-to-Tail Configuration in 1st

Order

(b) Plot of λi(b) from Eqn. (4.25) for Head-to-Tail Configuration in 2nd

Order

Figure 6.1: Eigenvalue Plots as a Function of Anticipation for Head-to-Tail Configu-

ration in both 1st and 2nd Orders
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Figure 6.2: Plot of λi(m) from Eqn. (4.25) for Head-to-Tail Configuration in 2nd

Order

Figure 6.3: Plot of λi(b) from Eqn. (4.51) for Side-by-Side Configuration in 1st Order
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(a) Plot of Re[λi(b)] from Eqn. (4.74) for Side-by-Side Configuration in 2nd

Order

(b) Plot of Im[λi(b)] from Eqn. (4.74) for Side-by-Side Configuration in

2nd Order

Figure 6.4: Eigenvalue Plots as a Function of Anticipation for Side-by-Side Configu-

ration in 2nd Order
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(a) Plot of Re[λi(m)] from Eqn. (4.74) for Side-by-Side Configuration in

2nd Order

(b) Plot of Im[λi(m)] from Eqn. (4.74) for Side-by-Side Configuration in

2nd Order

Figure 6.5: Eigenvalue Plots as a Function of Mass for Side-by-Side Configuration in

2nd Order
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(a) Plot of Re[λi(I)] from Eqn. (4.74) for Side-by-Side Configuration in

2nd Order

(b) Plot of Im[λi(I)] from Eqn. (4.74) for Side-by-Side Configuration in

2nd Order

Figure 6.6: Eigenvalue Plots as a Function of Rotational Inertia for Side-by-Side

Configuration in 2nd Order
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6.3 Toy Models vs. Multi-Agent Simulator

Toy models and results from multi-agent simulations are to be compared both quan-

titatively and qualitatively as one of the main objectives of this thesis. Given the

analytical models of two-particle AE systems, only side-by-side configuration results

in oscillations as how it is commonly expected and observed in multi-agent systems.

Eigenvalues of the analytical models are compared to the parameters measured from

multi-agent systems for the purpose of assessing extrapolation characteristics. In or-

der to be consistent with pure analytical approach and Lin et al. [2], only 1st order

systems are investigated as a function of anticipation parameter. 2nd order expres-

sions are to be used for inertial effect comparisons later this chapter. To start with,

real and imaginary parts of the eigenvalues for two-particle AE in side-by-side con-

figuration are plotted as a function of anticipation parameter at Figure 6.3.

It is observed that there exists a critical value of anticipation for which imaginary

parts of the eigenvalues diminish and leave the system with over-damping from that

point on. This seems to be analogous with harmonic oscillator whose oscillations

are critically damped for a certain value of damping ratio. In terms of control engi-

neering perspective, existence of such a point promises broad range of characteristics

depending on performance requirements. How responsive a swarm is to behave can

be tuned given the condition that multi-agent systems have the same pattern. Real

and imaginary parts of the eigenvalues are to be decoupled for separate investigations

in order to discover such oscillation and damping characteristics.

Considering the size of multi-agent systems, expecting their frequency responses to

be in correlation with toy models is not practical as information travelling through

agents results in a kinematic inertia. Therefore, real parts of the eigenvalues are to

be examined as a reflection to damping behaviour of multi-agent systems. If the

orientation angles of each and every agents are plotted as a function of time, systems

with anticipation results in gradual decrease by means of oscillation amplitudes. This

effect can be seen at Figure 6.7 below.
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Figure 6.7: Agent Orientation vs. Time in a Multi-Agent System w/ Anticipation

It is obvious that one can easily fit an exponential decay envelope to these curves,

and extract damping ratios for different runs with changing anticipation values given

that all other parameters are fixed. With a certain precision of anticipation range, a

damping ratio curve as a function of anticipation is achieved and one example of a

comparison plot with the real parts of analytical eigenvalues are given below at Figure

6.8.

It is valuable to see that the linear decreasing trends are common in both of the sys-

tems despite their different slopes and scales. It promises that a particular set of tuned

parameters might result in the same damping ratios with the toy model. Not only the

common trends are existent but also a critical anticipation point may exist as in the

case of toy model eigenvalues. Existence of such critical anticipation value is worth-

while to be discovered as it carries a great potential for swarm robotics applications

by means of a control parameter. Investigation of critical anticipation has its own

challenges as numerical instabilities become the restricting factor and it is left to be

discussed as a future work.
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(a) Plot of Re[λi(b)] from Eqn. (4.51) for Side-by-Side Configuration in 1st

Order

(b) Damping Ratios Extracted from Multi-Agent Simulations w/ Typical

Values

Figure 6.8: Damping Trends for Toy Model vs. Multi-Agent System
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6.4 Avoidance Performance

As described in Section 5.1, distances between each and every agents are a measure

of avoidance behaviour. In Chapter 4, distances between toy model two-particles are

mathematically expressed for both cases with and without anticipation. Distance ex-

pressions for these models are tabulated below at Tables 6.2 and 6.3 with highlighted

additional terms in order to understand effect of anticipation better.

Table 6.2: Distance between Two-Particles for Head-to-Tail Toy Models

Model Distance (|∆x1 −∆x2|)

1st Order w/o Ant. |2C2e
−2αkt|

1st Order w/ Ant. |2C2e
− 2αk

1+2αb
t|

2nd Order w/o Ant.
∣∣∣∣2C2e

−1−
√

1−8α2km
2αm

t + 2C3e
−1+

√
1−8α2km
2αm

t

∣∣∣∣
2nd Order w/ Ant.

∣∣∣∣2C2e
−1−2αb−

√
1−8α2km+4α2b2

2αm
t + 2C3e

−1−2αb+
√

1−8α2km+4α2b2

2αm
t

∣∣∣∣

Table 6.3: Distance between Two-Particles for Side-by-Side Toy Models

Model Distance (|2∆y|)

1st Order w/o Ant. |2C1e
−
√
−2βkv0t + 2C2e

√
−2βkv0t|

1st Order w/ Ant.
∣∣∣∣2C1e

(
−βbv0−

√
β2b2v20−2βkv0

)
t
+ 2C2e

(
−βbv0+

√
β2b2v20−2βkv0

)
t

∣∣∣∣
2nd Order w/o Ant. Long Analytical Solutions

2nd Order w/ Ant. Long Analytical Solutions

Side-by-side model in 1st order, the one closest to the multi-agent AEAnt, has faster

decay rates with the inclusion of anticipation until a critical value as long as all else

is kept equal. This is an expected result from Figure 6.3 since anticipation is pictured

kinetically analogous to damping.

Avoidance effect is prominent in multi-agent systems as well. Two experimental

setups (duct passage and wall bounce) are utilized in order to demonstrate the con-

tribution by anticipation. Both maximum, minimum and average distances between
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particles are traced and plotted as a function of each time-step throughout the whole

simulation. Figures 6.9 and 6.12 display typical duct passage and wall bounce, re-

spectively. For both scenarios, envelopes for the curves given in Figures 6.10 and

6.13 demonstrate increase in minimum and decrease in maximum distances as antic-

ipation is emphasised. This means that when each curve is bordered with a tangential

envelope, absolute values of the peak amplitudes reduce with increasing anticipation.

Such effect is even valid for the envelope curves of average distances (see Figures

6.11 and 6.14).

In terms of avoidance, distances become smaller and smaller as a collision occurs.

But when the system has anticipation and agents on the back anticipate collision,

they do not favour pushing ones in the front and result in an increased minimum

distance of the system. An opposite case exists for maximum distance as well. When

agents try to disperse, distances become larger and larger as separation occurs. Ones

at the circumference anticipate breakaway and do not favour repulsion by the next

inner peripheral ring. Therefore, distances are opted for smaller values so that the

maximum distance decreases.

Existence of anticipation not only dampens oscillations but also increases avoidance

and aggregation performances. Therefore, system adopts more stable and ordered

actions which render swarming tasks such as an ordinary duct passage possible. Sta-

bility and order characteristics are to be further investigated in the upcoming section,

yet Figure 6.15 shows how lack (or insufficient amount) of anticipation can result in a

passage failure due to unexpected oscillatory collisions with poor avoidance response.
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(a) (b)

(c) (d)

Figure 6.9: Typical Duct Passage
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(a) Minimum Distance Plot

(b) Maximum Distance Plot

Figure 6.10: Minimum and Maximum Distances in a Typical Duct Passage
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Figure 6.11: Average Distance in a Typical Duct Passage

(a) (b)

(c) (d)

Figure 6.12: Typical Wall Bounce

53



(a) Minimum Distance Plot

(b) Maximum Distance Plot

Figure 6.13: Minimum and Maximum Distances in a Typical Wall Bounce
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Figure 6.14: Average Distance in a Typical Wall Bounce

(a) (b)

(c) (d)

Figure 6.15: Duct Passage Failure
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6.5 Phase Diagrams

As how control systems are susceptible to noise, a similar phenomenon exists for

AM systems where there is a critical value above which an order-disorder transition

occurs. Phase diagrams are utilized so as to study such transitions in matters. Simi-

larly, robotic systems can have homologous order-disorder transitions after a certain

amount of noise introduced to the system. In that sense, studying phase diagrams for

multi-agent systems is valuable for better performance measures in swarm robotics

applications. Such diagrams are already studied by [1, 2, 25–27, 47]. In this section,

similar studies are carried out with the addition of anticipation and inertia.

All phase diagrams are plotted as polarization (order parameter) vs. actuation noise

strength coefficient in accordance with the Section 5.1. To start with, a triangular

lattice under hexagonal formation with a side length of 7 is placed in a confined arena

with periodic boundary conditions. This means 127 agents are located at the centre of

an arena with initial random heading directions, and actuation noise strength is gradu-

ally increased as order is traced for each time instant. The Figure 6.16 below demon-

strates how existence of anticipation shifts order-disorder transition to the right. It is

also observed that existence of anticipation changes transition behaviour from first-

order-like to second-order-like just similar to the cases studied in [2, 25–27, 47]. It is

to be noted that each and every data point in transition plots corresponds to a single

run of the complete simulation.
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Figure 6.16: Order vs. Noise for Different Anticipation Values with N = 127 and

Initially: Random

It is also to be argued that introduction of random angular orientations in the be-

ginning may result in an altered behaviour. Figure 6.17 shows how this phase tran-

sition is more related to fundamental configurations rather than initially introduced

ordered/disordered heading directions.

System size plays a great role in order-disorder transitions. Unlike AM systems with

monumental amount of agents, more sounded counts are taken into consideration for

a better engineering perspective. For that matter, it is studied whether nearly doubling

the system size would change order characteristics of the ensemble. Side length of

10 with 271 agents are compared to the previous case. It is again seen in Figure

6.18 that the swarm polarization is not altered drastically unless system size changes

in order of magnitudes by means of scale. Increase in the system size would make

transition more discontinuous under normal circumstances. This is expected since

ideal transition in an infinite system does not happen in a continuous manner. To that

extent, change in Figure 6.18 according to system size is shaped such that it becomes

more discontinuous with timely flattened bottom levels for higher amount of agents.
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Figure 6.17: Order vs. Noise for Different Anticipation Values with N = 127 and

Initially: Random vs. Ordered

Figure 6.18: Order vs. Noise for Different Anticipation Values with N = 127 vs.

N = 271 and Initially: Random
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6.5.1 Phase Diagrams with Inertial Effects

The last but not least parameter to be studied in phase diagrams is the inclusion of

inertia. In toy models, two inertial parameters are introduced, namely mass and rota-

tional inertia. Tuning mass in multi-agent systems is more challenging as translational

equation-of-motion includes self-propulsion speed which is artificially coupled to the

dynamics. Therefore, only rotational inertia is studied in terms of agent orientations

as angular equation of motion is more trivial and intuitive.

The Figure 6.19a below demonstrates how existence of rotational inertia shifts order-

disorder transition to the left. It is also observed that the existence of inertia changes

transition behaviour from second-order-like to first-order-like. The reason for this

inverse effect is that system cannot justify alterations by the noise as their response

drastically slows down.

As a composite way of interpreting rotational inertia with anticipation, the same con-

figuration with different b values are plotted at Figures 6.19b,6.19c and 6.19d below.

It is seen that amount of anticipation can drastically shift all inertia curves to the right.

The more inertial system becomes, the more ineffective how anticipation is utilized.

The main motivation behind anticipating the neighbouring agents becomes laggy by

means of performance due to slow system response. Yet, it is valuable to observe that

anticipating more can compensate susceptibility to noise by again shifting transition

points to the right despite inclusion of the inertia. This is demonstrated by Figure

6.20 under different rotational inertia values below. Yet, Figure 6.21 proves the limits

for such an effect by further doubling the rotational inertia value from Figure 6.20d

in order to show how almost the same polarization curve is achieved regardless of the

anticipation value.
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(a) Order vs. Noise with b = 0 for Different Rotational Inertia Values

(b) Order vs. Noise with b = 25 for Different Rotational Inertia Values

Figure 6.19: Order vs. Noise with Various Anticipation Degrees for Different Rota-

tional Inertia Values
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(c) Order vs. Noise with b = 50 for Different Rotational Inertia Values

(d) Order vs. Noise with b = 100 for Different Rotational Inertia Values

Figure 6.19: Order vs. Noise with Various Anticipation Degrees for Different Rota-

tional Inertia Values (Cont.)
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(a) Order vs. Noise with I = 5 for Different Anticipation Values

(b) Order vs. Noise with I = 10 for Different Anticipation Values

Figure 6.20: Order vs. Noise with Various Rotational Inertia Values for Different

Anticipation Degrees
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(c) Order vs. Noise with I = 25 for Different Anticipation Values

(d) Order vs. Noise with I = 50 for Different Anticipation Values

Figure 6.20: Order vs. Noise with Various Rotational Inertia Values for Different

Anticipation Degrees (Cont.)

63



Figure 6.21: Order vs. Noise with I = 100 for Different Anticipation Values

64



CHAPTER 7

CONCLUSION

AE models are simple yet powerful tools with a great potential in swarm robotics ap-

plications. In this thesis, AEAnt models are developed with multiple configurations

for the purpose of investigating parameters with downward causation scaling down

to two-particle systems. Mathematical equivalency of AEA and AEAnt is demon-

strated for a better conceptualization of what anticipation physically means. It is

observed that side-by-side configuration in 1st order promises an anticipation value

analogous to critical damping in harmonic oscillators. This is specifically in line with

common control performance metrics in order to assess and tune system response.

The linear trend of increasing decay rate is justified by making use of the generated

multi-agents simulator. With a similar motivation for emergent properties, distances

between agents for both toy models and multi-agent systems are compared. It turns

out that degree of anticipation enhances avoidance and sticking together by faster de-

caying responses up to a critical value, if not promised by the harmonic oscillator

analogy. Above such a critical value, agents become more and more meticulous so

that the ensemble slows down as a whole.

Toy model studies are followed by order-disorder phase transitions for the purpose

of noise susceptibility assessments. It turns out that anticipation increases noise re-

silience by moving transition to a higher actuation noise strength region, similar to the

study of AEA by Lin et al. [2] in which similar effect is prominent when R (length of

the arm) increases. Hence, equivalency claim between AEA and AEAnt is strength-

ened by the similar effects on transitions. It is also showed that system size and initial

heading direction configuration have minimal effects on transitions shifted due to the

presence of anticipation. An opposite influence is observed when rotational inertia
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is selected to be the control parameter. Curvy trajectories favoured by rotational in-

ertia would work against anticipation, whereas spatial mass would enhance agents

dedication to move towards their anticipated next position. Yet, self-propulsion in-

troduces additional dynamics which makes tuning spatial inertia challenging. Since

self-propulsion creates another time-scale, there could be different stable regimes of

spatial mass for which a parameter search must be performed. It is still worthwhile to

see how robots’ rotational inertias are related to swarms’ noise acceptance level.

7.1 Future Work

Future work as a follow-up to this thesis is listed below.

• Emergent inertial properties from toy models to multi-agent systems are still

open to discovery for similar trends. The linear behaviour of real eigenvalues by

side-by-side configuration in 1st order are followed by non-linear trends which

could not be demonstrated for multi-agent system due to numerical instabili-

ties. More precision in time increment would solve the issue, yet by drastically

boosting simulation time. Finding a parameter space region for which linear to

non-linear trend transition occurs and matching both slopes and scales in values

are left as a future work.

• Avoidance performance can be investigated for the case with existence of in-

ertia. Since dynamic relaxation by the proportional velocity controller opens

the similarity gap between AEAnt and simple form by AES, this thesis focuses

purely on anticipation effects only.

• Order-disorder phase transitions as a function of spatial mass are left to be

studied in the future due to inferring forward biasing speed in translational

equations of motion. It is expected that a parameter selection by fine tuning

could enable a region for spatial mass so that similar transition studies can be

performed.

• A physical experiment is still left missing with either two-wheeled robots or

drones for real robotics applications. It would be valuable to observe how
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highly manoeuvrable Crazyflies and relatively more inertial ground robots cor-

respond to the founding by order-disorder transition studies.

• Throughout the thesis, networking topology of NN: Nearest Neighbour is set

as default. For further exercises, a boolean flag for dynamic networking is

enabled within the multi-agent simulator. Further connectivity types such as

ER: Erdös–Rényi, SF: Scale-Free and super-positions of all these are open to

similar studies by that of this thesis. One can refer to Turgut et al. [27] for

different networking topologies.
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