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ABSTRACT

DEVELOPMENT OF 3-D PRINTED EXOHAND FOR MIRROR THERAPY

Yılmaz, Tunahan
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ali Emre Turgut

Co-Supervisor: Assist. Prof. Dr. Kutluk Bilge Arıkan

November 2022, 131 pages

This thesis presents the modeling and design of a family of exoskeleton mechanisms

to be used in post-stroke rehabilitation therapy. The mechanism in question is an ex-

oskeleton worn on the index finger, and it aims to support the fingers of patients who

have lost their mobility after paralysis, like a physiotherapist, and to improve motor

learning in the patient in this process. Based on motor learning principles, an under-

actuated mechanism design has been created for this purpose, allowing the patient to

make mistakes while also encouraging him to expand the search space. A wide range

of phalanges sizes was considered within the design function to reduce the effect of

finger sizes on the mechanism. Within the mechanism family, there are fully-actuated

and under-actuated versions. While obtaining a fully-actuated design output, it is de-

sired to keep the task space of the mechanism wide. The Global Isotropy Index was

used as the metric controlling the end effector’s manipulability for this purpose. The

Genetic Algorithm toolbox of the MATLAB program was used for mechanism opti-

mization. After obtaining the output for the fully-actuated mechanism, the evolution

of this obtained design into the under-actuated versions was carried out. The Virtual

Work method is used to analyze the under-actuated mechanism by obtaining force

v



equations. A method for this transition that is expected to be easily realized is also

presented. Following the design, the mechanism was manufactured and tested.

Keywords: exoskeleton, global isotropy index, fully-actuation, under-actuation, ge-

netic algorithm
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ÖZ

AYNA TERAPİSİNDE KULLANILMAK ÜZERE 3D BASILMIŞ EL
İSKELETİNİN GELİŞTİRİLMESİ

Yılmaz, Tunahan
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Emre Turgut

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Kutluk Bilge Arıkan

Kasım 2022 , 131 sayfa

Bu tez, inme sonrası rehabilitasyon tedavisinde kullanılacak bir harici iskelet me-

kanizmaları ailesinin modellemesini ve tasarımını sunmaktadır. Söz konusu meka-

nizma, işaret parmağına takılan bir dış iskelet olup, felç sonrası hareket kabiliyetini

kaybetmiş hastaların parmaklarını bir fizyoterapist gibi desteklemeyi ve bu süreçte

hastada motor öğrenmeyi geliştirmeyi amaçlamaktadır. Bu amaçla, motor öğrenme

ilkelerine dayalı olarak, hastanın hata yapmasına izin verecek ve aynı zamanda arama

alanını artırmaya teşvik edecek, eksik-tahrikli bir mekanizma tasarımı yapılmıştır.

Parmak boyutlarının mekanizma üzerindeki etkisini azaltmak için, tasarım fonksiyo-

nunda çok çeşitli falanks boyutları düşünülmüştür. Mekanizma ailesinde, tam-tahrikli

ve eksik-tahrikli sınıflar mevcuttur. Tam tahrikli tasarım çıktısı elde edilirken meka-

nizmanın çalışma alanı geniş tutulmak istenmiştir. Bu amaçla, uç noktasının manipüle

edilebilirliğini kontrol eden metrik olarak Global İzotropi Endeks’i kullanılmaktadır.

Mekanizma optimizasyonu için MATLAB programının Genetik Algoritma araç ku-

tusu kullanılmıştır. Tam-tahrikli mekanizmanın çıktısı elde edildikten sonra, bu çık-
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tının eksik-tahrikli versiyonlara evirilmesi gerçekleştirilmiştir. Sanal İş yöntemi ile

eksik-tahrikli mekanizma analizi kuvvet denklemleri ile yapılmıştır. Ayrıca bu geçiş

için kolaylıkla gerçekleştirilebileceği öngörülen bir yöntem sunulmuştur. Tasarımın

ardından mekanizmanın imalat ve testleri gerçekleştirildi.

Anahtar Kelimeler: dış iskelet, global izotropi endeksi, tam-tahrik, eksik-tahrik, ge-

netik algoritma
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

A stroke may occur at any time. In the world, 15 million people have a stroke every

year. It happens when a blood vessel that feeds blood to a portion of the brain is

blocked or when its blood flow is restricted, depriving the brain tissue of oxygen and

nutrients. After that, minutes later, brain cells start to die. Rapid therapy is required

right away after a stroke. Otherwise, months or years of difficult recuperation are

required. "Get up, stand up, and don’t give up the fight." should be the motto. Stroke

patients must relearn how to perform all these motor functions, much like a baby

learns to sit up and walk.

Motor learning is essential for the production of motor functions. Like elite athletes,

the more practice one puts in, the better the results. Exploration entails looking for

new paths. Exploration is required for the learning process to take place. When a

motor function is well examined, the user wishes to exploit that movement. When

exploitation outnumbers exploration, motor learning nears completion.

Rehabilitation has been used to treat stroke patients for thousands of years. The iden-

tical movements must be repeated hundreds or thousands of times throughout therapy.

Physiotherapists guide patients while they practice for this reason. These repetitious

operations are now guided by robots. If an exoskeleton mechanism is attached to the

body and powered by motors, it can cause bodily components to move. Rehabilitation

robots is a new era with great promise. Unfortunately, they are highly expensive, and

the majority of patients are unable to pay their recuperation procedure.
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Fine motor skills are more difficult to improve than gross motor skills. They require

more time to gain. This thesis describes a 3D-printed exo-finger mechanism that is

incredibly inexpensive in comparison to rehabilitation robots, focuses on fine motor

skill improvement, and has a durable construction that allows it to be utilized by a

diverse spectrum of users.

1.2 The Outline of the Thesis

A literature review is provided in Chapter 2. To begin, stroke, motor learning, and re-

habilitation robots are discussed. The anatomy of the index finger is then introduced.

Third, the mechanism kinds are described in detail: fully actuated and under-actuated.

Following that, performance measurements are provided, which are used to obtain the

perfect mechanism by selecting optimal structural parameters. Then, optimization ap-

proaches such as single objective function and multi-objective function are discussed

(Pareto Optimality). In addition, a manufacturing technology, 3D printing, is de-

scribed in detail for prototype purposes. Finally, the thesis study’s contribution is at

the end of the Literature Survey chapter.

The mathematical modeling of mechanisms and the construction of optimization al-

gorithms are acquired in Chapter 3. First, the fully-actuated mechanism’s kinematic

synthesis is developed. Second, a transition methodology is developed for analyzing

an under-actuated mechanism. Finally, an under-actuated mechanism family is cre-

ated by modifying an already specified fully-actuated mechanism. To ensure that the

needed motor torques of the mechanisms are within the valid range, required motor

torques are calculated for all mechanism types using the Virtual Work Theorem. In

addition, the mechanism’s sensitivity to human index finger size is tested to ensure

that it works for a wide range of finger phalanges sizes. MATLAB is used to identify

the best solutions utilizing the genetic algorithm methodology.

The results of fully actuated, transition part, and under-actuated mechanism family

are presented in Chapter 4. There are three distinct sections in the fully-actuated part,

each distinguished by the optimization problem-solving method. The fully-actuated

portion is chosen from among the options. Then, in the transition section, the most
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basic under-actuated mechanism findings, a 5-bar mechanism, are shown, so that the

force equations can be used to derive the necessary equation to solve the problem. Fi-

nally, utilizing the selected fully-actuated mechanism, an under-actuated mechanism

family is constructed in the final section. Following that, a selection from that family

is made.

The mechanical design and printed mechanism are presented in Chapter 5. A con-

structed torsional spring is also depicted. Within this chapter, the assembly is com-

pleted. The mechanism is then attached to a healthy individual in order to capture

user data. In Chapter 6, there is a discussion part. The challenges of creating an

underactuated mechanism are highlighted. The conclusion is then delivered. Finally,

future work that will advance this research is described and explored.

3



4



CHAPTER 2

LITERATURE SURVEY

2.1 Stroke, Motor Learning and Rehabilitation Robotics

Stroke occurs when any veil that feeds blood to brain is blocked or fractured so that

an area of the brain dies in minutes. There is no way to heal the dead part. If that

part was at the motor cortex which deals with the motor functions, there might be

loss of motion. According to World Health Organization, annually 15 million people

worldwide suffer a stroke[1]. While one-third of them overcome with tiny disorders,

unfortunately another one-third pass away. The last one-third experiences paralysis.

The paralysis types are given in Figure 2.1, which is adapted from [2].

Motor function is generated by triggered motor neurons which are in motor cortex.

Motor function is the basic understanding of movement or activity through the mo-

tor neurons[3]. The learning process of a motor function is called as motor learning.

The user explores for an efficient motor function by making mistakes with a feedback

Figure 2.1: Paralysis Types [2]
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mechanism just like in reinforcement learning process. When the motor function is

gained permanently, the user exploits that motion and motor learning is completed.

When exploitation starts, exploration stops. Then the user makes the same outputs for

the same inputs. Motor control is defined as the process of initiating, directing, and

grading purposeful voluntary movement[3]. In motor learning process, the skill ac-

quisition and progress is done by neural-plasticity[4]. Neural plasticity, also known

as brain plasticity, is the ability of neural networks in the brain to change through

growth and reorganization[3]. The dead part of the brain can not be healed, unfor-

tunately. However, another parts of the brain can take the place of dead parts under

favour of neural-plasticity. Psychotherapists have been dealing with the cure of this

illness. They guide patients to obtain motor functions with learning process. Just

like how parents teach babies to walk, the therapists teach patients to improve the

deficiencies after stroke. Motor recovery is the improvement in the performance of

a fatigued muscle or in the movement of a group of muscles paralyzed by stroke or

injury[5]. The purpose of the therapy is motor recovery. The recovery of a lost ability

after stroke works with the similar neural mechanism as motor learning[5].

Mirror neurons are good to trigger for motor learning. The name of these neurons

come from their working principle. The observed action seems to be reflected, as in

a mirror, in the motor representation for the same action of the observer[6]. There is

a therapy type namely, mirror therapy, in which the stronger body part is used to trick

the brain into thinking that the weaker part is moving[6]. This action observation

and imitation is a tool for neuro-rehabilitation for learning new skills. The action

observation and imitation has a positive impact on recovery of motor functions after

stroke[6].

According to the motor learning principles, in order to improve motor learning, there

are some things to be considered[7]. Firstly, practice time is important. The more it

is practiced, the better the results are. Secondly, the feedback which is given to the

patient should not be a lot, but sufficient. Knowledge of performance and knowledge

of results should be given to the patient in order to make sure that the patient is aware

its situation. Thirdly, motivation is a very helpful for neural-plasticity to occur. A goal

in the practice promotes the patient for the result. Fourthly, mental practice before

session is another helpful tool to use in therapies. Finally, the most important thing is
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Figure 2.2: Hand Rehabilitation Robotics Overview [8]

allowing patient making mistakes. The patient must be guided surely but the guidance

should not be limiting. Otherwise, slacking might occur, which is unwanted in motor

recovery process since it falters motor learning. The patient must explore and make

mistakes so that see the results of those mistakes. In this thesis, a mechanism model,

under-actuated mechanism, is considered, which allows the user to make mistakes

due to its nature.

Nowadays, physiotherapists are substituted with robots. Rehabilitation robotics is a

developing industry. Robots guide patients in rehabilitation processes. The general

overview of the hand rehabilitation robots are given in Figure 2.2, which is taken from

[8].
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2.2 Finger Anatomy

The index finger has 4 degrees of freedom as in Figure 2.3, which is taken from [9].

Figure 2.3: 4 DOF Finger model [9]

When it is considered in planar motion, the adduction-abduction movement can be

eliminated, only extension-flexion movement can be considered. Thus, the dof is

decreased to 3. The planar skeleton model is given in Figure 2.4 which is taken from

literature[10].

Figure 2.4: Planar skeleton model of the human finger [10]

Although the finger segment sizes differ too much due to age, gender, ethnicity and

some other differences, the average sizes are found from the literature[11] as in Table

2.1.

The joint motion range for the index finger is given in Table 2.2, which is adapted

from [12]. These are the boundaries for an index finger to work safely. Working out
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Table 2.1: Human finger phalanges sizes [11]

Finger Segment Length (SD) [cm] Mass [g] Moment of inertia [g/cm2]

Distal 2.4 (0.1) 3.8 2.0

Middle 3.1 (0.2) 6.3 5.8

Proximal 4.9 (0.3) 19.6 45.4

of these boundaries is neither recommended nor achievable. Thus, a task space will

be constructed within these boundaries.

Table 2.2: Finger Joint Motion Range [12]

Finger Joint Angular Relative Motion Range

MCP −90◦ < θ1 < 45◦

PIP −120◦ < θ2 < 0◦

DIP −90◦ < θ3 < 50◦

The reachable workspace for a human index finger is given in Figure 2.5, which is

taken from literature[13].

Figure 2.5: Human finger reachable task space [13]
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Table 2.3: Static Passive Torque [11]

Joint τ s [Nm]

DIP −0.103θ3 + 0.102θ2 − 0.052θ − 0.019

PIP 0.056θ3 + 0.016θ2 − 0.132θ + 0.015

MCP −0.071θ3 + 0.145θ2 − 0.154θ − 0.029

Table 2.4: Stiffness and Damping Coefficients [11]

Joint K [Nm/rad] B [Nms/rad]

DIP 0.38θ2 − 0.09θ + 0.13 0.0081

PIP 1.06θ2 − 0.76θ + 0.4 0.0105

MCP 1.02θ2 − 0.54θ + 0.45 0.0142

Finger passive joint torques are calculated according to the equations in Tables 2.3

and 2.4 which are taken from [11].

The equations in Table 2.3 are to calculate the static passive torque that occurs in the

finger joints at rest. For the torque that is produced by the finger in the motion, the

formula is as follows[11]:

τj = τj
s −Bj θ̇j −Kj(θj)∆θj (2.1)

where τ is the passive joint torque, τs is the static passive torque, and K and B are the

spring and damping coefficient for the joint[11].

2.3 Mechanism Types

2.3.1 Fully-Actuated Mechanisms

If there exists an independent input for each degree of freedom, the system is fully

actuated [14]. In a fully-actuated mechanism, the degree of actuation(doa) is equal to

the degree of freedom(dof ).
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2.3.2 Under-Actuated Mechanisms

In under-actuated mechanisms, the doa less than dof. In order to define the mecha-

nism kinematically, there needs to be number of independent passive elements, such

as springs, equal to the missing number of actuators. Under-actuated systems are able

to flexible. They are sensitive to external forces.

In order to define an under-actuated mechanism kinematically, there needs to imple-

ment force equations.

2.4 Performance Metrics

In all design procedures, finding best is desired. The question is, "with respect to

what?". The answer is "a measure". In order to find an optimal mechanism or system,

performance metrics have been used. At least one performance metric has to be

defined to be minimized or maximized. Some of the design metrics that have been

used so far are given in the below subsections.

2.4.1 Transmission Angles

Transmission angle calculation has been used as a performance measure in mech-

anism optimization. In an ideal mechanism, a smooth motion throughout the task

space is desired, in which the transmission ratios do not change continuously. This

measure might help to choose the best mechanism so that the force transmission is

uniform[15]. The desired value for the transmission angle is 90◦ since the force trans-

mission occurs in that orientation the most effectively.

2.4.2 Required Motor Torques

In some designs, minimizing the required motor torque values is considered as a

measure[16]. For this purpose, the Virtual Work method can be used in order to esti-

mate the motor torque value. Newtonian formulation of the dynamics of the mecha-
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nism can also be used in order to evaluate the motor torque value[17]. These methods

are applied by some assumptions.

2.4.3 Global Isotropy Index

Isotropy means having equal properties in all directions. In kinematic perspective,

it is explained as being the furthest possible distance from singularity[18]. Having

an isotropic mechanism is a desired feature. When a mechanism is isotropic, the

following items are accomplished as explained in [18, 19] as follows:

• High performance is achieved as minimizing waste energy.

• Best servo accuracy can be obtained by the availability of invertability of kine-

matic equations for control.

• Error is equal in all directions.

• Equal forces may be exerted in all directions.

• Equal ease to move in any direction exists.

The history of Global Isotropy Index(GII) begins with Yoshikawa[20]. He proposed

a measure metric for manipulability as in Equation 2.2.

W =
√

det(J(θ)JT (θ)) (2.2)

where J is the Jacobian matrix and θ is the state. Although this metric is used for

obtaining the largest manipulability measure at a given state of end-effector in the

taskspace, it depends on the scale of a manipulator[18]. For a metric to be used in the

design, it is required to be independent from scale[21].

After Yoshikawa, Klein and Blaho examined several performance metrics[22]. They

introduced minimum singular value of Jacobian. However, the expression was not

analytically.

Then, Kim and Khosla indicated 2 problems of Yoshikawa’s manipulability which are

having scale and order dependencies[23]. The scale dependency prevents to compare
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different sized manipulators and the order dependency does not help to understand

physical meaning of the manipulability[18]. In order to overcome this misconception,

they defined a new measure metric, namely isotropy, in which the ratio of geometric

mean and arithmetic mean of the eigenvalues of JJT is considered as in Equation

2.3[23].

∆ =
W

Ψ

Ψ =
trace(JJT )

order m

(2.3)

where ∆ is the measure of isotropy and W is the Yoshikawa’s manipulability measure.

This metric is dimensionless as it is not dependent on the scale.

Klein and Miklos defined "Spatial Isotropy" in which positional and orientational

isotropy of the end-effector is combined to one. They believe that it would be a rel-

atively weak and artificial condition if the Jacobian is considered as a measure of

whole isotropy in one term.[24]

Gosselin reconceived Jacobian matrix by eliminating end-effector angular velocity.

If the end-effector is defined as a single point, the velocity explanation needs the an-

gular velocity. However, usage of more than one point for the end-effector allows to

subtract the angular velocity to define the velocity of the end-effector. Thus, dimen-

sionally homogenous Jacobian is obtained.[25].

Ma and Angeles defined "Dynamic Conditioning Index(DCI)" which measures the

dynamical coupling and numerical stability of the generalized inertia matrix. Re-

sults are well suited for particular positions, however, satisfactory performance is not

guaranteed for whole workspace. Consequently, it was not stated for optimal global

performance when the manipulator works in a large task space.[26]

Angeles is defined "Conditioning index(CI)" in terms of the minimum condition num-

13



ber on the proper choice of the joint variables[27]. It is regarded as a local property.

All the condition indices mentioned so far, which are regarding to Jacobian, depend

on the operating point and the location of the point is critical in obtaining a good

kinematic manipulation performance. Hence they fail to give a reliable measure of

global performance throughout the whole workspace.

Gosselin and Angeles proposed "Global Conditioning Index(GCI)" in which the whole

workspace is considered by the condition number is scaled over the workspace, as in

Equation 2.4.

GCI =

∫
W

dW
k∫

W
dW

(2.4)

where k is the local performance measure such as the condition number as in Equation

2.5:

k =

√
λmax(G(x, p)GT (x, p))

λmin(G(x, p)GT (x, p))
=

σmax(G(x, p))

σmin(G(x, p))
(2.5)

At first, GCI might seem as a good global performance metric. However, since it

averages the results, some poor results might be ignored.

Stocco defined a measurement metric for global isotropy namely GII, which stands

for "Global Isotropy Index"[28]. It is the ratio of the smallest singular value of the

Jacobian matrix to the largest singular value of the Jacobian matrix in the whole

workspace as shown in Equation 2.6.

µ =
σmin(J(Θ))

σmax(J(Θ))
, 0 ≤ µ ≤ 1 (2.6)

where µ is the mechanism isotropy, σmin(J(Θ)) is the minimum singular value de-

composition value of the Jacobian matrix, σmax(J(Θ)) is the maximum singular value

decomposition value of the Jacobian matrix and J(Θ) is the Jacobian matrix that de-

scribes the mechanism.

GII compares the largest and smallest singular values in the entire workspace. Ev-

ery position in whole workspace is checked with all possible configurations, then

minimum and maximum singular values are found. The ratio gives a scalar num-
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ber. As this number(µ) gets closer to 1, mechanism is more isotropic. When µ = 1,

mechanism is perfectly isotropic. Good servo accuracy and singularity avoidance is

obtained. Otherwise, when µ = 0, losing 1 or more dof occurs and inverse kinemat-

ics can not be defined. In the literature, some studies has been examined with the GII

metric[12, 29].

2.4.4 Sensitivity Index

Sensitivity can be explained as the change in an original value of a system when the

variables of that system varies[30]. For design purposes, the sensitivity analysis is

examined in order to determine how the variation of the variables affects the designed

mechanism[31].

Sensitivity analysis has been used to obtain robust systems in which the variation of

some parameters becomes insignificant. This analysis is applied either in the design

procedure as a part of a performance measure[32] or after the design process in order

to check the designed mechanism is appropriate[31].

In this thesis, a robust mechanism is desired. The mechanism is wanted to be used by

different patients. For this purpose, the mechanism is required to be less sensitive to

human finger phalanges sizes.

2.4.5 Collision Prevention

In complex mechanisms, where several loops are included in the mechanism, the

joints might collide with each other. In order to prevent that, a collision prevention

measurement has been used[33]. In this metric, joint positions are checked if they

crash in the task space. For some complicated mechanisms, especially spatial sys-

tems, if the task space is limited, this design metric might be very helpful to obtain

the optimal solution.
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2.5 Optimization methods

Optimization is a way to find a destination in which minimum sources are consumed.

In order to find the best solution, some methods have been used. A straightforward

one is the Brute Force approach. In this method, all possible solutions are calculated,

then the best one is decided. Although this technique guarantees finding the best so-

lution, it requires a considerable computational power[34]. This method is suitable

for small search spaces.

Another optimization technique is the Gradient Descent method. The idea behind

this procedure is to follow a gradient up or down in order to find the maximum or

minimum of response surface[35]. This procedure is much faster than the brute-force

method since all possibilities are not checked. However, a global optimum is not

guaranteed. The solution is dependent on the initial starting point.

A different procedure is the Monte Carlo simulation. When the search space is un-

known, this method might be good to use. In this technique, a huge number of

random points are generated. Then, the frequency distribution of those points is

investigated[36].

The advantages of deterministic and random-search methods are combined in the Ge-

netic Algorithm(GA). Principles of genetics are exploited in GA for the optimization

theory[37]. First of all, the creation of an initial population of "explorers", which

are positioned in the search space occurs. Then, each explorer discovers the value

of the response function at its particular place and supplies it to a fitness function.

The algorithm repeatedly modifies a population with respect to the value of the fit-

ness function. At each step, the genetic algorithm randomly selects individuals from

the current population and uses them as parents to produce the children for the next

generation. Over consecutive generations, the population "evolves" toward an opti-

mal solution[38]. The "evolution" process creates three types of children for the next

generation as itemized below:[39]

16



Figure 2.6: GA Children Creation

• Elite child: Current generation’s best fitness valued individuals survive.

• Crossover child: A pair of parents are combined. The idea is to create a child

which has better properties (in terms of fitness function) than the two parents.

• Mutation child: A single parent becomes the child by introducing random fluc-

tuations.

The creation procedure of the children is illustrated in Figure 2.6

The average performance of individuals in a population is expected to be increased

since the ones with the good results are kept and the bad results are eliminated. A ba-

sic genetic algorithm flowchart is represented in the Figure 2.7 which taken from [40].
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Figure 2.7: GA Children Creation [40]

GA is highly advantageous when solving problems that are not well suited for stan-

dard optimization algorithms, including problems in which the objective function is

discontinuous, non-differentiable, stochastic, or highly nonlinear[38]. This method

is able to find an optimum in huge search spaces. The differences from traditional

optimization methods are given below[41]:

• GAs do not search only a single point but a population of points in parallel.

• GAs do not use deterministic transition rules but probabilistic ones.

• GAs work on an encoding of the design variable set rather than on the variables

themselves

• GAs do not require derivative information or other auxiliary knowledge. Only

the objective function and corresponding fitness levels influence the search.
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2.5.1 Single-Objective Function

In the design procedure, more than one performance measure might be desired to be

checked simultaneously. Then, these metrics can be implemented in the fitness func-

tion either together or separately. When different performance measures are united,

it becomes a single-objective optimization problem. A single optimization problem

with several metrics can be expressed as a weighted sum as in expression 2.7.

F (x) = α1f1(x) + α2f2(x) + ...+ αnfn(x) (2.7)

where x is a design parameter set, F (x) is a combined fitness function, fi(x) is the

i’th objective function and αi is a constant weight factor for fi(x).

GA has been mainly applied to single-objective optimization problems[42]. Although

this is easy to use, there are some drawbacks. First of all, some undesired solution set

might be chosen as the optimal result by the algorithm if the weights are not selected

carefully. Secondly, the direction of search in the GA is fixed in the multi-dimensional

objective space[42]. At the end of the algorithm, a single result is given as the best

result to the user.

2.5.2 Multi Objective Function (Pareto Optimality)

When more than one performance measure is considered, another option is to design

the fitness function as a multi-objective problem. In this method, independent fitness

functions are combined into one vector instead of representing a scalar value. A

multi-objective optimization problem is expressed in 2.8.

G(x) = [g1(x), g2(x), ..., gn(x)] (2.8)

where x is a design parameter set, G(x) is a multi-objective fitness function, gi(x) is

the i’th objective function.

Multi-Objective optimization does not give a single result like single-optimization but

a set of optimal result values. The user is supposed to select from that set.
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2.6 Manufacturing Method

3D printing is an easy and fast way to manufacture the part that is going to be man-

ufactured is relatively small-sized. In the mechanism that this thesis focuses on, the

possible maximum length of any part is less than 7 mm due to boundaries. Also, the

required internal stresses that would occur while the mechanism is in motion will not

be high. So, from the viewpoint of material, plastics will be suitable, especially PLA.

There are some examples in the literature where these types of products are printed

in 3D[43].

2.7 Contributions

• The mechanism synthesis is done with the Global Isotropy Index(GII) index.

• The under-actuated mechanism synthesis with the usage of the Virtual Work

method.

• Easy way to transition to under-actuation: breaking a linkage.
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CHAPTER 3

METHODOLOGY

In this chapter, mathematical modeling of the considered index finger mechanisms

is given. At first, a fully-actuated mechanism is introduced. Then, a methodology,

"Transition to the Under-actuation" is given with an easy example; from a 4-bar mech-

anism to a 5-bar mechanism. Finally, an under-actuated mechanism family which is

generated from the designed and tested fully-actuated mechanism is presented. Posi-

tion, velocity, and force equations are derived for the purpose of mechanism synthesis,

and the design methodology and design metrics are detailed in both fully-actuated and

under-actuated mechanisms. The mechanism types are shown in Table 3.1.

Table 3.1: Mechanism Types

Mechanism Type dof doa Focused Parameter

Fully-actuated 2 2 N.A.

Under-actuated ver.1 3 2 a6

Under-actuated ver.2 3 2 a8

Under-actuated ver.3 3 2 a3

Under-actuated ver.4 3 2 β2

3.1 Fully-Actuated Mechanism

3.1.1 Description of the Mechanism

The fully-actuated mechanism considered in the thesis is given in Figure 3.1. It is a

planar mechanism including a human index finger. The represented proximal, middle
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and distal phalanges are the links B0E0, E0F0 and F0K0, respectively. The mecha-

nism has 11 links, 14 joints, and 4 loops. All links are connected with revolute joints.

Figure 3.1: Fully actuated index exoskeleton mechanism - 2 dof 3 phalanges

By using Kutzbach Grübler’s Formula for planar mechanisms[44], the degree of free-

dom (dof ) of the mechanism can be found as below:

N = 3(l − 1)− 2j

= 3(11− 1)− (2)(14) = 2
(3.1)

where

l: number of links

j: number of joints.
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The number of Loops can be found below:

L = j − l + 1 = 14− 11 + 1 = 4 (3.2)

The number of independent variables can be found below:

V = 2L+N = (2)(4) + 2 = 10 (3.3)

For a fully-actuated system, the degree of actuation(doa) of the mechanism should be

equal to the number of dof of the mechanism. For this purpose, 2 rotary actuators are

placed at points A0 and H0.

The position variables of the defined mechanism in Figure 3.1 can be shown as fol-

lows:

V ∗ = [θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ11, θ12] (3.4)

Also, the design vector can be shown as follows:

S = [a11, a12, a2, a3, a41, a42, a5, a51, a6, a71, a72, a8, a9, b2, b3, b41, b42, β1, β2, θG]

(3.5)

In the mechanism, the human index finger phalanges angles θ4, θ7 and θ11 are defined

as primary variables. To reduce the dof and doa, the last phalanx joint, namely DIP, is

considered to have a relationship with its previous joints θ4 and θ7, namely MCP and

PIP, respectively. The Equation (3.6) is complied from [11, 45, 46]. While θ4 and θ7

can be controlled independently, θ11 is defined as a function of θ4 and θ7 as follows:

θ11 =
5

3
(θ7)−

2

3
(θ4) (3.6)

Hence, the consequent primary and secondary variables are shown in Equations 3.7

and 3.8, respectively.

V1
∗ = [θ4, θ7, θ11] (3.7)

V2
∗ = [θ2, θ3, θ5, θ6, θ8, θ9, θ12] (3.8)

The dependent variable θ10 is a function of θ6 and β1.

θ10 = f(θ6, β1) = θ6 + π − β1 (3.9)
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3.1.2 Design Methodology

In the design, the structure parameters are optimized, which are given in Equation

3.5. The pseudo-code of the design procedure is given in the Figures 3.2 and 3.3. In

the flow chart, there are two separate parts. In the first part, the design for the first

2 finger segments, proximal and middle phalanges are completed. The first part is

shown in the Figure 3.2. Then generation for the distal phalange is completed as in

the Figure 3.3. The mechanism schema that is going to be designed only for the fully

actuated part is given in Figure 3.4. The design parameters are:

S1 = [a11, a12, a2, a3, a41, a42, a5, a51, a6, a71, a72, a8, a9, β2, θG] (3.10)

where a42 and a72 are given as inputs, since they are the half lengths of the human

index finger proximal and distal phalanges, respectively. Then, in the second part of

the design, the algorithm works for the 3. phalanx, distal phalanx, in which the design

parameters are:

S2 = [b2, b3, b41, β1] (3.11)

where b42 is given as input since it is the half length of the human index finger distal

phalanx.
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Figure 3.2: Design Flow Chart for Fully-Actuated Mechanism, Part 1
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Figure 3.3: Design Flow Chart for Fully-Actuated Mechanism, Part 2
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Figure 3.4: Fully actuated index exoskeleton mechanism - 2 dof 2 phalanges
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3.1.3 Mechanism Synthesis

This section deals with the derivation of mathematical models for the fully-actuated

mechanism.

Note that the dof of the revised 2 phalanges mechanism is the same as the 3 phalanges

mechanism. In this revised mechanism, there are 9 links and 11 joints. The number

of loops is decreased to 3. Mathematical proof is given below:

N = 3(l − 1)− 2j

= 3(9− 1)− (2)(11) = 2
(3.12)

where

l: number of links

j: number of joints.

The number of Loops can be found below:

L = j − l + 1 = 11− 9 + 1 = 3 (3.13)

The number of independent variables can be found below:

V = 2L+N = (2)(3) + 2 = 8 (3.14)

3.1.3.1 Position Analysis

The following complementary equations can be written in order to express the posi-

tion of the end-effector in terms of the relevant primary and secondary variables and

to set up all the necessary relationships among the primary and secondary variables.

P = f(x, y) (3.15)

G(x, y) = 0 (3.16)
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The symbols in the above equations have the following meanings[47]. P is a column

matrix that represents the position of the end-effector in the task space, x is the pri-

mary variable vector, y is the secondary variable vector, and G is a differentiable and

continuous function.

Loop Closure Equations

The Loop Closure Equations (LCE’s) are written in Equations 3.17.

L1 ⇒
−−−→
A0AB =

−−−−−−−→
A0CB0DB

L2 ⇒
−−−−−−→
A0H0HG =

−−−−−→
A0ABG

L3 ⇒
−−−−−−→
DBB1FE =

−−−−−→
DE0FE

L4 ⇒
−−−−→
FERP =

−−−−−−→
FF0JPR

(3.17)

Thus, detailed equations can be written as follows:

L1 ⇒ a2e
iθ2 + a3e

iθ3 = (−a11i+ a12) + a42e
iθ4 + a41e

i(θ4+
π
2
) (3.18)

L2 ⇒ aGe
iθG + a9e

iθ9 + a8e
iθ8 = a2e

iθ2 + a3e
iθ3 + a51e

i(θ5+β2) (3.19)

L3 ⇒ a41e
i(θ4+

π
2
) + a5e

iθ5 + a6e
iθ6 = a42e

iθ4 + a72e
iθ7 + a71e

i(θ7+
π
2
) (3.20)

L4 ⇒ a71e
i(θ7+

π
2
) + b2e

iθ10 + b3e
iθ12 = a72e

iθ7 + b42e
iθ11 + b41e

i(θ11+
π
2
) (3.21)

It is possible to write the above LCE’s(3.18, 3.19, 3.20, 3.21) in a matrix form as

below:

G =



0

0

0

0

0

0

0

0


=



δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8


(3.22)
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where

δ1 =+ a12 − a2 cos(θ2)− a3 cos(θ3) + a42 cos(θ4)− a41 sin(θ4)

δ2 =− a11 − a2 sin(θ2)− a3 sin(θ3) + a42 sin(θ4) + a41 cos(θ4)

δ3 =+ a2 cos(θ2) + a3 cos(θ3) + a51 cos(θ5 + β2)− aG cos(θG)

− a8 cos(θ8)− a9 cos(θ9)

δ4 =+ a2 sin(θ2) + a3 sin(θ3) + a51 sin(θ5 + β2)− aG sin(θG)

− a8 sin(θ8)− a9 sin(θ9)

δ5 =+ a41 sin(θ4) + a42 cos(θ4)− a5 cos(θ5)− a6 cos(θ6)

+ a72 cos(θ7)− a71 sin(θ7)

δ6 =− a41 cos(θ4) + a42 sin(θ4)− a5 sin(θ5)− a6 sin(θ6)

+ a72 sin(θ7) + a71 cos(θ7)

δ7 =+ a71 sin(θ7) + a72 cos(θ7)− b2 cos(θ10)− b3 cos(θ12)

+ b42 cos(θ11)− b41 sin(θ11)

δ8 =− a71 cos(θ7) + a72 sin(θ7)− b2 sin(θ10)− b3 sin(θ12)

+ b42 sin(θ11) + b41 cos(θ11)

Position of the End Effector

In the 2 dof - 3 phalanges mechanism, which is shown in Figure 3.1, the end-effector

is point K0. The position of that point is given in Equation 3.23.

P
∗
=

p1∗
p2

∗

 =

+a12 + 2a42 cos(θ4) + 2a72 cos(θ7) + 2b42 cos(θ11)

−a11 + 2a42 sin(θ4) + 2a72 sin(θ7) + 2b42 sin(θ11)

 (3.23)

However, the mechanism is simplified to the 2 phalanges as in Figure 3.4. Thus, the

position of the considered end-effector is point F0. The position of the end-effector

that is going to be used in the first part of the design procedure is given in the expres-

sion 3.24.

P =

p1
p2

 =

+a12 + 2a42 cos(θ4) + 2a72 cos(θ7)

−a11 + 2a42 sin(θ4) + 2a72 sin(θ7)

 (3.24)
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In the mechanism, the angles θ4 and θ7 are defined as primary variables. For the

second part of the design methodology that is shown in Figure 3.3, the angle θ11 is

calculated in order to find the structure parameters for the second part of the design

procedure. Hence, the consequent secondary variables are found as follows:

From 3.18, real and imaginary parts can be written as follows:

a2 cos θ2 + a3 cos θ3 = +a12 + a42 cos θ4 − a41 sin θ4 (3.25)

a2 sin θ2 + a3 sin θ3 = −a11 + a42 sin θ4 + a41 cos θ4 (3.26)

Then,

a3 cos θ3 = x1 − a2 cos θ2 (3.27)

a3 sin θ3 = y1 − a2 sin θ2 (3.28)

where
x1 = +a12 + a42 cos θ4 − a41 sin θ4

y1 = −a11 + a42 sin θ4 + a41 cos θ4

Then, θ2 is derived as follows:

θ2 = Ψ1 + σ1γ1 (3.29)

where
Ψ1 = atan2(y1, x1)

f1 = (x1
2 + y1

2 + a2
2 − a3

2)/(2a2)

g1 =

√
x1

2 + y12 − f1
2

γ1 = atan2(g1, f1)

σ1 = ±1

With the availability of θ2, Eqs. 3.27 and 3.28, θ3 can be found without any additional

sign variable as follow:

θ3 = atan2[(y1 − a2 sin θ2), (x1 − a2 cos θ2)] (3.30)

From 3.20, real and imaginary parts can be written as follows:

−a41 sin θ4 + a5 cos θ5 + a6 cos θ6 = a42 cos θ4 + a72 cos θ7 − a71 sin θ7 (3.31)
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+a41 cos θ4 + a5 sin θ5 + a6 sin θ6 = a42 sin θ4 + a72 sin θ7 + a71 cos θ7 (3.32)

Then,

a6 cos θ6 = x3 − a5 cos θ5 (3.33)

a6 sin θ6 = y3 − a5 sin θ5 (3.34)

where
x3 = +a41 sin θ4 + a42 cos θ4 + a72 cos θ7 − a71 sin θ7

y3 = −a41 cos θ4 + a42 sin θ4 + a72 sin θ7 + a71 cos θ7

Then, θ5 is derived as follows:

θ5 = Ψ3 + σ3γ3 (3.35)

where
Ψ3 = atan2(y3, x3)

f3 = (x3
2 + y3

2 + a5
2 − a6

2)/(2a5)

g3 =

√
x3

2 + y32 − f3
2

γ3 = atan2(g3, f3)

σ3 = ±1

With the availability of θ5, Eqs. 3.33 and 3.34, θ6 can be found without any additional

sign variable as follow:

θ6 = atan2[(y3 − a5 sin θ5), (x3 − a5 cos θ5)] (3.36)

From 3.19, real and imaginary parts can be written as follows:

aG cos θG + a9 cos θ9 + a8 cos θ8 = +a2 cos θ2 ++a3 cos θ3 + a51 cos(θ5 + β2)

(3.37)

aG sin θG + a9 sin θ9 + a8 sin θ8 = +a2 sin θ2 ++a3 sin θ3 + a51 sin(θ5 + β2)

(3.38)

Then,

a9 cos θ9 = x2 − a8 cos θ8 (3.39)

a9 sin θ9 = y2 − a8 sin θ8 (3.40)

32



where
x2 = +a2 cos θ2 ++a3 cos θ3 + a51 cos(θ5 + β2)− aG cos θG

y2 = +a2 sin θ2 ++a3 sin θ3 + a51 sin(θ5 + β2)− aG sin θG

Then, θ8 is derived as follows:

θ8 = Ψ2 + σ2γ2 (3.41)

where
Ψ2 = atan2(y1, x1)

f2 = (x2
2 + y2

2 + a8
2 − a9

2)/(2a8)

g2 =

√
x2

2 + y22 − f2
2

γ2 = atan2(g2, f2)

σ2 = ±1

With the availability of θ8, Eqs. 3.39 and 3.40, θ9 can be found without any additional

sign variable as follow:

θ9 = atan2[(y2 − a8 sin θ8), (x2 − a8 cos θ8)] (3.42)

From 3.21, real and imaginary parts can be written as follows:

−a71 sin θ7 + b2 cos θ10 + b3 cos θ12 = a72 cos θ7 + b42 cos θ11 − b41 sin θ11 (3.43)

+a71 cos θ7 + b2 sin θ10 + b3 sin θ12 = a72 sin θ7 + b42 sin θ11 + b41 cos θ11 (3.44)

Then, with the use of the Equation 3.9,

b3 cos θ12 = x4 + b42 cos θ11 − b41 sin θ11 (3.45)

b3 sin θ12 = y4 + b42 sin θ11 + b41 cos θ11 (3.46)

where
x4 = +a71 sin θ7 − b2 cos θ10 + a72 cos θ7

y4 = −a71 cos θ7 − b2 sin θ10 + a72 sin θ7

Then, θ11 is derived as follows:

θ11 = Ψ4 + σ4γ4 (3.47)
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where
x∗
4 = +x4b42 + y4b41

y∗4 = −x4b41 + y4b42

Ψ4 = atan2(y
∗
4, x

∗
4)

f4 = (x4
2 + y4

2 + b42
2 + b41

2 − b3
2)/(2)

g4 =

√
(x∗

4)
2 + (y4∗)2 − f4

2

γ4 = atan2(g4, f4)

σ4 = ±1

With the availability of θ11 and Equations 3.45 and 3.46, θ12 can be found without

any additional sign variable as follow:

θ12 = atan2[(y4 + b42 sin θ11 + b41 cos θ11), (x4 + b42 cos θ11 − b41 sin θ11)] (3.48)

3.1.3.2 Velocity Analysis

The velocity equations are obtained by taking the derivative of position equations

with respect to time. Just like previously done in the position analysis chapter, the 2

dof - 3 phalanges mechanism, which is shown in Figure 3.1, the end-effector is point

K0. Then, velocity of that point is expressed in the expression 3.49.

d

dt
(P

∗
) =

v1∗
v2

∗

 = 2

−(a42 sin θ4)θ̇4 − (a72 sin θ7)θ̇7 − (b42 sin θ11)θ̇11

+(a42 cos θ4)θ̇4 + (a72 cos θ7)θ̇7 + (b42 cos θ11)θ̇11

 (3.49)

However, the mechanism is simplified to the 2 phalanges as in Figure 3.4. Thus, the

velocity of the considered end-effector is given in the expression 3.50.

d

dt
(P

∗
) =

v1∗
v2

∗

 = 2

−(a42 sin θ4)θ̇4 − (a72 sin θ7)θ̇7

+(a42 cos θ4)θ̇4 + (a72 cos θ7)θ̇7

 (3.50)

The velocity equation for all loops can be written easily by taking the derivation of

Equation 3.22. The result is given in Equation 3.51.
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d

dt
(G) = =



0

0

0

0

0

0

0

0


=



γ1

γ2

γ3

γ4

γ5

γ6

γ7

γ8


(3.51)

where

γ1 =+ (a2 sin θ2)θ̇2 + (a3 sin θ3)θ̇3 − (a42 sin θ4 + a41 cos θ4)θ̇4

γ2 =− (a2 cos θ2)θ̇2 − (a3 cos θ3)θ̇3 + (a42 cos θ4 − a41 sin θ4)θ̇4

γ3 =− (a2 sin θ2)θ̇2 − (a3 sin θ3)θ̇3 − (a51 sin(θ5 + β2))θ̇5

+ (a8 sin θ8)θ̇8 + (a9 sin θ9)θ̇9

γ4 =+ (a2 cos θ2)θ̇2 + (a3 cos θ3)θ̇3 + (a51 cos(θ5 + β2))θ̇5

− (a8 cos θ8)θ̇8 − (a9 cos θ9)θ̇9

γ5 =+ (a41 cos θ4 − a42 sin θ4)θ̇4 + (a5 sin θ5)θ̇5 + (a6 sin θ6)θ̇6

− (a72 sin θ7 + a71 cos θ7)θ̇7

γ6 =+ (a41 sin θ4 + a42 cos θ4)θ̇4 − (a5 cos θ5)θ̇5 − (a6 cos θ6)θ̇6

+ (a72 cos θ7 − a71 sin θ7)θ̇7

γ7 =+ (a71 cos θ7 − a72 sin θ7)θ̇7 + (b2 sin θ10)θ̇10 + (b3 sin θ12)θ̇12

− (b42 sin θ11 + b41 cos θ11)θ̇11

γ8 =+ (a71 sin θ7 + a72 cos θ7)θ̇7 − (b2 cos θ10)θ̇10 − (b3 cos θ12)θ̇12

+ (b42 cos θ11 − b41 sin θ11)θ̇11

From 3.51, velocity equations can be written as follows:

Velocity equation for Loop 1:+a3 sin θ3 −(a42 sin θ4 + a41 cos θ4)

−a3 cos θ3 +(a42 cos θ4 − a41 sin θ4)

θ̇3
θ̇4

 =

−a2 sin θ2

+a2 cos θ2

[
θ̇2

]
(3.52)
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Velocity equation for Loop 2:+a51 sin(θ5 + β2) −a8 sin θ8

−a51 cos(θ5 + β2) +a8 cos θ8

θ̇5
θ̇8



=

−a2 sin θ2 −a3 sin θ3 +a9 sin θ9

+a2 cos θ2 +a3 cos θ3 −a9 cos θ9



θ̇2

θ̇3

θ̇9


(3.53)

Velocity equation for Loop 3:+a6 sin θ6 −(a72 sin θ7 + a71 cos θ7)

−a6 cos θ6 +(a72 cos θ7 − a71 sin θ7)

θ̇6
θ̇7


=

−(a41 cos θ4 − a42 sin θ4) −a5 sin θ5

−(a41 sin θ4 + a42 cos θ4) +a5 cos θ5

θ̇4
θ̇5

 (3.54)

Velocity equation for Loop 4:−(b42 sin θ11 + b41 cos θ11) +b3 sin θ12

+(b42 cos θ11 − b41 sin θ11) −b3 cos θ12

θ̇11
θ̇12


=

−(a71 cos θ7 − a72 sin θ7) −b2 sin θ10

−(a71 sin θ7 + a72 cos θ7) +b2 cos θ10

 θ̇7

θ̇10

 (3.55)

The purpose of the velocity derivation is to use them in the Jacobian matrix. Thus,

each velocity variable must be defined in terms of motor velocities which are θ2 and

θ9.

From Equation 3.52, velocity equations for Loop 1 are derived as follows:

θ̇3
θ̇4

 =

j1
j2

[
θ̇2

]
(3.56)

where j1
j2

 =

+a3 sin θ3 −(a42 sin θ4 + a41 cos θ4)

−a3 cos θ3 +(a42 cos θ4 − a41 sin θ4)

−1 −a2 sin θ2

+a2 cos θ2


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From Equation 3.53, velocity equations for Loop 2 are derived as follows:

θ̇5
θ̇8

 =

 j7 j8 j9

j10 j11 j12



θ̇2

θ̇3

θ̇9

 (3.57)

where j7 j8 j9

j10 j11 j12


=

+a51 sin(θ5 + β2) −a8 sin θ8

−a51 cos(θ5 + β2) +a8 cos θ8

−1 −a2 sin θ2 −a3 sin θ3 +a9 sin θ9

+a2 cos θ2 +a3 cos θ3 −a9 cos θ9


From Equation 3.54, velocity equations for Loop 3 are derived as follows:θ̇6

θ̇7

 =

j3 j4

j5 j6

θ̇4
θ̇5

 (3.58)

wherej3 j4

j5 j6


=

+a6 sin θ6 −(a72 sin θ7 + a71 cos θ7)

−a6 cos θ6 +(a72 cos θ7 − a71 sin θ7)

−1 −(a41 cos θ4 − a42 sin θ4) −a5 sin θ5

−(a41 sin θ4 + a42 cos θ4) +a5 cos θ5


From Equation 3.55, velocity equations for Loop 4 are derived as follows:θ̇11

θ̇12

 =

j13 j14

j15 j16

 θ̇7

θ̇10

 (3.59)

wherej13 j14

j15 j16


=

−(b42 sin θ11 + b41 cos θ11) +b3 sin θ12

+(b42 cos θ11 − b41 sin θ11) −b3 cos θ12

−1 −(a71 cos θ7 − a72 sin θ7) −b2 sin θ10

−(a71 sin θ7 + a72 cos θ7) +b2 cos θ10


The following equations can be derived for future calculations from Equations 3.56,

3.57, 3.58 and 3.59.
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θ̇3 = j1θ̇2

θ̇4 = j2θ̇2

θ̇5 = j7θ̇2 + j8θ̇3 + j9θ̇9

= (j7 + j8j1)θ̇2 + j9θ̇9

θ̇8 = j10θ̇2 + j11θ̇3 + j12θ̇9

= (j10 + j11j1)θ̇2 + j12θ̇9

θ̇6 = j3θ̇4 + j4θ̇5

= [j3j2 + j4(j7 + j8j1)]θ̇2 + (j4j9)θ̇9

θ̇7 = j5θ̇4 + j6θ̇5

= [j5j2 + j6(j7 + j8j1)]θ̇2 + (j6j9)θ̇9

(3.60)

3.1.3.3 Jacobian Matrix

The relationship in velocities of end effector and motors are related by the Jacobian

matrix. In other words, it is the matrix that transmits the end-effector velocity to the

required actuator velocities, VF0 and [θ̇2 and θ̇9], respectively.

XF0 = (−a11i+ a12) + 2a42e
iθ4 + 2a72e

iθ7 (3.61)

d(XF0)

dt
= VF0 = i2[θ̇4a42e

iθ4 + θ̇7a72e
iθ7 ]

= i2[θ̇4a42(cos θ4 + i sin θ4)θ̇7a72(cos θ7 + i sin θ7)]

(3.62)

The above equation can be written in matrix form as follows:

VF0 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

θ̇4
θ̇7

 (3.63)

where; from Equation 3.60;θ̇4
θ̇7

 =

 j2 0

j5j2 + j6(j7 + j8j1) j6j9

θ̇2
θ̇9

 (3.64)

Then the velocity of the end effector can be written as follows:

VF0 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

 j2 0

j5j2 + j6(j7 + j8j1) j6j9

θ̇2
θ̇9

 (3.65)
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Then, the Jacobian matrix is written below:

J =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

 j2 0

j5j2 + j6(j7 + j8j1) j6j9

 (3.66)

3.1.3.4 Derivation of Motor Torques

Virtual Work Method is used to calculate the required motor torques. By this method,

the forces and torques that act on the mechanism are related. The mechanism shown

in Figure 3.4 which is considered for the design procedure is updated with the forces

and torques acting on the mechanism as in Figure 3.5. In the mechanism, there are

motor torques acting at the points A0 and H0. Also, there is a pinching force acting

on the point F0. Lastly, passive torques that are produced by the movement of the

finger are acting on the points B0 and E0.

By the Virtual Theorem method the following equation can be written:

δW = δWA0 + δWH0 + δWMCP + δWPIP + δWFF0
= 0 (3.67)

where
δWA0 = TA0 δθ2

δWH0 = TH0 δθ9

δWMCP = TMCP δθ4

δWPIP = TPIP δθ7

δWFF0
=

−−→
FF0 .

−−→
δrF0

In the above Equation 3.67 the variables are defined as follows:

• TA0: The torque value applied by the motor at point A0.

• TH0: The torque value applied by the motor at point H0.

• TMCP : The torque value applied by the finger joint MCP at point B0.

• TMCP : The torque value applied by the finger joint MCP at point B0.

• FF0: A force acting on the end-effector at point F0.
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Figure 3.5: Fully actuated index exoskeleton mechanism - with loads
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The derivation of the passive torque values is adapted from [11] as follows:

TMCP = TMCPstatic −BMCP θ̇4 −KMCP θ4

TPIP = TPIPstatic −BPIP (θ̇7 − θ̇4)−KPIP (θ7 − θ4)
(3.68)

The variables in the Equation 3.68 are detailed in the following Equations 3.69 and

3.70. The spring and damping coefficients are given in the units of [Nm/rad] and

[Nms/rad], respectively.

KMCP = 1.02(θ4)
2 − 0.54θ4 + 0.45

KPIP = 1.06(θ7 − θ4)
2 − 0.76(θ7 − θ4) + 0.40

BMCP = 0.0142

BPIP = 0.0105

(3.69)

And the static torque values are as follows:

TMCPstatic = −0.071(θ4)
3 + 0.145(θ4)

2 − 0.154(θ4) + 0.029

TPIPstatic = 0.056(θ7 − θ4)
3 + 0.016(θ7 − θ4)

2 − 0.132(θ7 − θ4) + 0.015
(3.70)

Note that the unit for all torque values is [Nm].

The force applying on point FF0 is perpendicular. With the knowledge of this infor-

mation, the following equations for
−−→
FF0 and

−−→
δrF0 can be written as follows:

−−→
FF0 = |FF0|ei(θ7+π/2)

⇒ FF0,X = |FF0|(− sin θ7) and FF0,Y = |FF0|(cos θ7)
(3.71)

−→rF0 = (−a11i+ a12) + 2a42e
iθ4 + 2a72e

iθ7

⇒ δrF0,X = −2a42 sin(θ4)δθ4 − 2a72 sin(θ7)δθ7 and

δrF0,Y = +2a42 cos(θ4)δθ4 + 2a72 cos(θ7)δθ7

(3.72)

Then, δWFF0
can be represented by using Equations 3.71 and 3.73 as follows:

δWFF0
= |FF0|2[a42(sin(θ4) sin(θ7) + cos(θ4) cos(θ7))δθ7 + a72δθ7]

= |FF0|2[a42 cos(θ4 − θ7)δθ4 + a72δθ7]
(3.73)
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Then, the Equation 3.67 can be updated as follows:

δW =TA0 δθ2 + TH0 δθ9 + TMCP δθ4 + TPIP δθ7

+ |FF0|2[a42 cos(θ4 − θ7)δθ4 + a72δθ7] = 0
(3.74)

The Equation 3.74 is given as follow:

δW =TA0 δθ2 + TH0 δθ9

+ [TMCP + 2|FF0|a42 cos(θ4 − θ7)]δθ4

+ [TPIP + 2|FF0|a72]δθ7] = 0

(3.75)

In order to define δθ4 and δθ7 in terms of δθ2 and δθ9, the 3.60 can be used. Then, the

Equation 3.75 becomes as follows:

δW =TA0 δθ2 + TH0 δθ9

+ [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)δθ2

+ [TPIP + 2|FF0|a72][(j5j2 + j6(j7 + j8j1))δθ2 + (j6j9)δθ9] = 0

(3.76)

Finally, from Equation 3.76, two scalar equalities are obtained as follows:

TA0 + [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)

+ [TPIP + 2|FF0|a72](j5j2 + j6(j7 + j8j1)) = 0
(3.77)

and

TH0 + [TPIP + 2|FF0|a72](j6j9) = 0 (3.78)

The Equations 3.77 and 3.78 can be used to estimate motor torque value in the mech-

anism.
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3.1.3.5 Phalanx Sizes and Task Space

Since the mechanism includes a finger, the size of the phalanges affect the motion of

the mechanism. The phalanges lengths a42, a72 and b42 would be used from literature

[11] as in the Table 2.1. However the phalanges sizes of the users who are supposed

to use the mechanism are different from the literature. In order to obtain a robust

mechanism, the updated phalanges sizes are shown in Table 3.2.

Table 3.2: Phalanges Sizes in milimeters

Phalanx Name Proximal Middle Distal

Nominal 40 30 20

Maximum 50 37.5 25

Minimum 32 24 16

Table 3.3: Primary and Secondary Positions

Kinematic Loop Given Found

Loop 1 θ4 θ2, θ3

Loop 2 θ2, θ3, θ5 θ8, θ9

Loop 3 θ4, θ7 θ5, θ6

Loop 4 θ7, θ11 θ10, θ12

Task-Space of the mechanism is constrained by finger joint angles, which are θ4, θ7

and θ11. It is necessary to define the task space in order to design the mechanism.

The mechanism in the case is where the last loop (Loop 4), namely distal phalange,

is ignored. So, only θ4 and θ7 constraint the mechanism. Since the mechanism is

synthesized via inverse kinematic equations, the phalanx angles(θ4, θ7) are needed to

be defined. For this purpose, an 8-pointed task space is structured which is a general

range of motion of an index finger which includes not only a pinching movement but

also many movement that finger is able to make. The analysis is done on those points.

The joint angles are given in Table 3.4.
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Table 3.4: MCP(θ4) and PIP(θ7) joint angles in Task Space

Point Number θ4 θ7

1 30◦ 20◦

2 30◦ −30◦

3 15◦ −20◦

4 0◦ −15◦

5 −15◦ −45◦

6 −30◦ −75◦

7 −45◦ −90◦

8 −60◦ −105◦

3.1.3.6 Defining the Design Metric

The GII(Global Isotropy Index) is defined as the singular value decomposition of the

Jacobian [28], as follows:

For each state defined in Table 3.4, the Jacobian is calculated. From the Jacobian,

singular value decomposition is generated. Since the size of the matrix is 2 by 2, for

a single Jacobian, two singular values are created. For 8 states, it means 16 singu-

lar values are obtained. From the overall 16 values, the ratio of the minimum and

maximum gives the isotropy value for the whole task space.

3.1.3.7 Design by the Genetic Algorithm

The algorithm basically is used to optimize the design vector by maximizing the GII

value for the whole task space. In order to decrease the sensitivity of the human index

finger on the mechanism, finger phalanges size is defined as a 3x1 vector and imple-

mented in the code. In each element of the phalange size, the algorithm runs to find

optimal values of the design vector. When this procedure is completed for each ele-

ment, a vector of the fitness function is calculated. The multi-objective optimization

problem is solved within the boundaries.
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3.2 Transition to Under-actuation: From 4 bar to 5 bar

In order to be able to specify and determine the methodology for the under-actuated

mechanism syntheses, a simple example is addressed, which is a 4-bar mechanism.

In this case, the first loop of the fully-actuated mechanism in Figure 3.1 is considered.

A closer look is given in Figure 3.6.

Figure 3.6: First Loop of the Mechanism; A Four Bar Mechanism

The four-bar mechanism can be detailed easily as follows:

For position analysis: Loop Closure Equation:

−−−→
A0AB =

−−−−−−−→
A0CB0DB (3.79)

LCE ⇒ a2e
iθ2 + a3e

iθ3 = (−a11i+ a12) + a42e
iθ4 + a41e

i(θ4+
π
2
) (3.80)
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The position expression for 3.80 is already derived as it is done for 3.18.

Figure 3.7: First Loop; A Five Bar Mechanism

The five-bar mechanism can be detailed easily as follows:

For position analysis: Loop Closure Equation:

−−−−−→
A0AEB =

−−−−−−−→
A0CB0DB (3.81)

LCE ⇒ a2e
iθ2 + a31e

iθ31 + a32e
iθ32 = (−a11i+ a12) + a42e

iθ4 + a41e
i(θ4+

π
2
)

(3.82)

The spring angle θspr can be defined as follows:

θspr = θ32 − θ31 + π (3.83)

Then, angle θ32 can be defined as follows:

θ32 = θ31 + θspr − π (3.84)
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Then, Equation 3.82 becomes as follow:

LCE ⇒ a2e
iθ2 + a31e

iθ31 + a32e
i(θ31+θspr−π) = (−a11i+ a12) + a42e

iθ4 + a41e
i(θ4+

π
2
)

(3.85)

Real and Imaginary parts of the Equation 3.85 are as follows:

a2 cos θ2 + a31 cos θ31 − a32 cos (θ31 + θspr) = +a12 + a42 cos θ4 − a41 sin θ4

(3.86)

a2 sin θ2 + a31 sin θ31 − a32 sin (θ31 + θspr) = −a11 + a42 sin θ4 + a41 cos θ4

(3.87)

In the Equations 3.86 and 3.87, there are 3 unknowns; θ2, θ31 and θspr when θ4 is

given. Since there are two equations with three unknowns, it is not possible to solve

the variables analytically. Thus, the methodology is given as follows:

1) Define θspr symbolically and solve for θ2 and θ31.

2) Derive velocity equations and obtain Jacobian constants.

3) Use the Virtual Work method and obtain a new equation to use.

4) Find θspr numerically.

5) Solve everything once again numerically.

6) Obtain performance measure.

Then, by defining θspr as a symbolic variable, the following equations are derived:

a2 cos θ2 = x5 − a31 cos θ31 + a32 cos (θ31 + θspr)

= x5 − a31 cos θ31 + a32[cos (θ31) cos (θspr)− sin (θ31) sin (θspr)]
(3.88)

a2 sin θ2 = y5 − a31 sin θ31 + a32 sin (θ31 + θspr)

= x5 − a31 sin θ31 + a32[sin (θ31) cos (θspr) + cos (θ31) sin (θspr)]
(3.89)

where
x5 = +a12 + a42 cos θ4 − a41 sin θ4

y5 = −a11 + a42 sin θ4 + a41 cos θ4

Then, Equations 3.88 and 3.89 become as follows:

a2 cos θ2 = x5 + cos θ31k1 + sin θ31k2 (3.90)

47



a2 sin θ2 = y5 + sin θ31k1 + cos θ31k2 (3.91)

where

k1 = −a31 + a32 cos(θspr)

k2 = −a32 sin(θspr)

Taking squares of the Equations 3.90 and 3.91 and summing them together yields to

the following equation:

θ31 = 2tan−1(
−B1 ±

√
B1

2 − 4A1C1

2A1

) (3.92)

where

K1 = x5
2 + y5

2 + k1
2 + k2

2 − a2
2

K2 = 2(x5k1 − y5k2)

K3 = 2(x5k2 + y5k1)

A1 = K1 −K2

B1 = 2K3

C1 = K1 +K2

With the availability of θ31, Eqs. 3.90 and 3.91, θ2 can be found without any additional

sign variable as follow:

θ2 = atan2[(y5 + sin θ31k1 + cos θ31k2), (x5 + cos θ31k1 + sin θ31k2)] (3.93)

Note that, the position solutions for θ2 and θ31 are functions of θspr.

3.3 Under-Actuated Mechanism Family

3.3.1 Description of the Mechanism Versions

For the under-actuation, 4 different possible configurations derived from the fully-

actuated mechanism are considered. Those are called "Version" from 1 to 4 and given

below in the Figures 3.8, 3.9, 3.10, 3.11.
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Figure 3.8: Under-actuated Mechanism Version 1

Link a6 is "broken" to two links a61 and a62.

A torsional spring is attached at joint J .
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Figure 3.9: Under-actuated Mechanism Version 2

Link a8 is "broken" to two links a81 and a82.

A torsional spring is attached at joint K.
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Figure 3.10: Under-actuated Mechanism Version 3

Link a3 is "broken" to two links a31 and a32.

A torsional spring is attached at joint L.
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Figure 3.11: Under-actuated Mechanism Version 4

Constant angle β2 is changed to a variable angle θspr.

A torsional spring is attached at joint B.

The considered under-actuated mechanism options are given in Figures 3.8, 3.9, 3.10,
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3.11. The difference between these under-actuated mechanisms and the fully-actuated

mechanism is the addition of a degree of freedom to the mechanism. For versions 1,

2, and 3; there are two new links and a torsional spring added instead of a link.

However, a ternary link is broken into two independent inks and a torsion spring is

placed between them for version 4. A general summary of the conversion from fully

to under-actuation is shown in the list below:

• version 1: . . . . . . . . . . . . . . . . . . . a6 ⇒ a61, a62 and θspr1

• version 2: . . . . . . . . . . . . . . . . . . . a8 ⇒ a81, a82 and θspr2

• version 3: . . . . . . . . . . . . . . . . . . . a3 ⇒ a31, a32 and θspr3

• version 4: . . . ternary link (a5 and a51) ⇒ a5, a51 and θspr4

The degree of freedom of the under-actuated mechanisms is calculated given the fact

that all mechanisms have 10 links and 12 joints.

N = 3(l − 1)− 2j

= 3(10− 1)− (2)(12) = 3
(3.94)

where

l: number of links

j: number of joints.

The number of Loops can be found as:

L = j − l + 1 = 12− 10 + 1 = 3 (3.95)

The number of independent variables can be found as:

V = 2L+N = (2)(3) + 3 = 9 (3.96)

In these mechanisms, the doa is 2, which are at the points A0 and H0 while the dof is

3. So, in order to be able to control the mechanism, there is a torsional spring added

at points J , K, L, and B for each version, respectively.

53



The position variables of the defined mechanism in Figures 3.8, 3.9, 3.10 and 3.11

can be shown as follows:

V1 = [θ2, θ3, θ4, θ5, θ61, θ62, θ7, θ8, θ9] (3.97)

V2 = [θ2, θ3, θ4, θ5, θ6, θ7, θ81, θ82, θ9] (3.98)

V3 = [θ2, θ31, θ32, θ4, θ5, θ6, θ7, θ8, θ9] (3.99)

V4 = [θ2, θ3, θ4, θ5, θ51, θ6, θ7, θ8, θ9] (3.100)

Also, the design vector for each version can be shown as follows:

S1 = [a11, a12, aG, a2, a3, a41, a42, a5, a51, a61, a62, a71, a72, a8, a9, β2, θG, θspr1free , K1]

(3.101)

S2 = [a11, a12, aG, a2, a3, a41, a42, a5, a51, a6, a71, a72, a81, a82, a9, β2, θG, θspr2free , K2]

(3.102)

S3 = [a11, a12, aG, a2, a31, a32, a41, a42, a5, a51, a6, a71, a72, a8, a9, β2, θG, θspr3free , K3]

(3.103)

S4 = [a11, a12, aG, a2, a3, a41, a42, a5, a51, a6, a71, a72, a8, a9, θG, θspr4free , K4]

(3.104)

The consequent primary variables are the same as in the fully-actuated model.

3.3.2 Design Methodology

In the design of an under-actuated mechanism, as in the fully-actuated one, the struc-

ture parameters are optimized, which are given in Equations 3.101, 3.102, 3.103

and 3.104. A basic flowchart, a pseudo-code of the design procedure for the under-

actuation design procedure is represented in Figure 3.12. In the flow chart, obtaining

an analytical solution can not be achieved before including force equations. There-

fore, all position analysis and force equations are obtained in terms of θspr. Then
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an equation is obtained which is only a function of θspr as in the Equations 3.190,

3.195, 3.200 and 3.205. The solution of that equation gives the numerical value of

θspr. Then everything is calculated once again so that the GII value is obtained. In

brief, the force equations are used in order to extract the necessary equation to solve

the variable θspr.
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Figure 3.12: Under-actuated Design Flow Chart
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3.3.3 Mechanism Synthesis

3.3.3.1 Position Analysis

Loop Closure Equations

For the position analysis of each under-actuated mechanism version, the Loop Clo-

sure Equations (LCE’s) are written in Equations 3.105, 3.106, 3.107, 3.108.

Version 1:

L1 ⇒
−−−→
A0AB =

−−−−−−−→
A0CB0DB

L2 ⇒
−−−−−−→
A0H0HG =

−−−−−→
A0ABG

L3 ⇒
−−−−−→
DBIJE =

−−−−−→
DE0FE

(3.105)

Version 2:

L1 ⇒
−−−→
A0AB =

−−−−−−−→
A0CB0DB

L2 ⇒
−−−−−−−−→
A0H0HKG =

−−−−−→
A0ABG

L3 ⇒
−−−−−→
DBIJE =

−−−−−→
DE0FE

(3.106)

Version 3:

L1 ⇒
−−−−−→
A0ALB =

−−−−−−−→
A0CB0DB

L2 ⇒
−−−−−−→
A0H0HG =

−−−−−→
A0ABG

L3 ⇒
−−−−−→
DBIJE =

−−−−−→
DE0FE

(3.107)

Version 4:

L1 ⇒
−−−→
A0AB =

−−−−−−−→
A0CB0DB

L2 ⇒
−−−−−−→
A0H0HG =

−−−−−→
A0ABG

L3 ⇒
−−−−→
DBIE =

−−−−−→
DE0FE

(3.108)

Note that, the differences between the fully-actuated mechanism LCE’s and the under-

actuated mechanism LCE’s is on the loops in which the addition of the degree of

freedom is occured. For version 1; it is at Loop 3. For version 2; it is at Loop 2. For

version 3; it is at Loops 1 and 2. However, in the final version, there is no change in

LCE’s but the structure parameter β2 is now became a variable with a new represen-

tation as θspr4. So, the detailed expressions are given for each version as follows:
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For version 1:

L3 ⇒ a41e
i(θ4+

π
2
) + a5e

iθ5 + a61e
iθ61 + a62e

iθ62 = a42e
iθ4 + a72e

iθ7 + a71e
i(θ7+

π
2
)

(3.109)

For version 2:

L2 ⇒ aGe
iθG + a9e

iθ9 + a81e
iθ81 + a82e

iθ82 = a2e
iθ2 + a3e

iθ3 + a51e
i(θ5+β2)

(3.110)

For version 3:

L1 ⇒ a2e
iθ2 + a31e

iθ31 + a32e
iθ32 = (−a11i+ a12) + a42e

iθ4 + a41e
i(θ4+

π
2
)

(3.111)

L2 ⇒ aGe
iθG + a9e

iθ9 + a8e
iθ8 = a2e

iθ2 + a31e
iθ31 + a32e

iθ32 + a51e
i(θ5+β2)

(3.112)

For version 4:

L2 ⇒ aGe
iθG + a9e

iθ9 + a8e
iθ8 = a2e

iθ2 + a3e
iθ3 + a51e

i(θ5+θspr4) (3.113)

The position of the end-effector is the same as in the fully-actuated mechanism as it

was given in the Equation 3.24. The expression is given once again below:

P =

p1
p2

 =

+a12 + 2a42 cos(θ4) + 2a72 cos(θ7)

−a11 + 2a42 sin(θ4) + 2a72 sin(θ7)


For version 1, from Equation 3.109, real and imaginary parts can be written as fol-

lows:

−a41 sin θ4 + a5 cos θ5 + a61 cos θ61 + a62 cos θ62 = a42 cos θ4 + a72 cos θ7

− a71 sin θ7
(3.114)
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+a41 cos θ4 + a5 sin θ5 + a61 sin θ61 + a62 cos θ62 = a42 sin θ4 + a72 sin θ7

+ a71 cos θ7
(3.115)

The spring angle θspr1 can be defined as follows:

θspr1 = θ62 − θ61 + π (3.116)

Then, angle θ62 can be defined as follows:

θ62 = θ61 + θspr1 − π (3.117)

Then, the following equations are derived:

a5 cos θ5 = x6 − a61 cos θ61 + a62 cos (θ61 + θspr1)

= x6 − a61 cos θ61 + a62[cos (θ61) cos (θspr1)− sin (θ61) sin (θspr1)]

(3.118)

a5 sin θ5 = y6 − a61 sin θ61 + a62 sin (θ61 + θspr1)

= y6 − a61 sin θ61 + a62[sin (θ61) cos (θspr1) + cos (θ61) sin (θspr1)]

(3.119)

where
x6 = +a42 cos θ4 + a41 sin θ4 + a72 cos θ7 − a71 sin θ7

y6 = +a42 sin θ4 − a41 cos θ4 + a72 sin θ7 + a71 cos θ7

Then, Equations 3.118 and 3.119 become as follows:

a5 cos θ5 = x6 + cos θ61k3 + sin θ61k4 (3.120)

a5 sin θ5 = y6 + sin θ61k3 + cos θ61k4 (3.121)

where
k3 = −a61 + a62 cos(θspr1)

k4 = −a62 sin(θspr1)

Taking squares of the Equations 3.120 and 3.121 and summing them together yields

to the following equation:

θ61 = 2tan−1(
−B2 ±

√
B2

2 − 4A2C2

2A2

) (3.122)
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where
K4 = x6

2 + y6
2 + k3

2 + k4
2 − a5

2

K5 = 2(x6k3 − y6k4)

K6 = 2(x6k4 + y6k3)

A2 = K4 −K5

B2 = 2K6

C2 = K4 +K5

With the availability of θ61, Equations 3.120 and 3.121, θ5 can be found without any

additional sign variable as follow:

θ5 = atan2[(y6 + sin θ61k3 + cos θ61k4), (x6 + cos θ61k3 + sin θ61k4)] (3.123)

Note that, the position solutions for θ5 and θ61 are functions of θspr1.

For version 2, from Equation 3.112, real and imaginary parts can be written as fol-

lows:

aG cos θG + a9 cos θ9 + a81 cos θ81 + a82 cos θ82 = +a2 cos θ2 + a3 cos θ3

+ a51 cos(θ5 + β2)

(3.124)
aG sin θG + a9 sin θ9 + a81 sin θ81 + a82 sin θ82 = +a2 sin θ2 + a3 sin θ3

+ a51 sin(θ5 + β2)

(3.125)

The spring angle θspr2 can be defined as follows:

θspr2 = θ82 − θ81 + π (3.126)

Then, angle θ82 can be defined as follows:

θ82 = θ81 + θspr2 − π (3.127)

Then, the following equations are derived:

a9 cos θ9 = x7 − a81 cos θ81 + a82 cos (θ81 + θspr2)

= x7 − a81 cos θ81 + a82[cos (θ81) cos (θspr2)− sin (θ81) sin (θspr2)]

(3.128)
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a9 sin θ9 = y7 − a81 sin θ81 + a82 sin (θ81 + θspr2)

= y7 − a81 sin θ81 + a82[sin (θ81) cos (θspr2) + cos (θ81) sin (θspr2)]

(3.129)

where
x7 = +a2 cos θ2 + a3 cos θ3 + a51 cos(θ5 + β2)− aG cos θG

y7 = +a2 sin θ2 + a3 sin θ3 + a51 sin(θ5 + β2)− aG sin θG

Then, Equations 3.128 and 3.129 become as follows:

a9 cos θ9 = x7 + cos θ81k5 + sin θ81k6 (3.130)

a9 sin θ9 = y7 + sin θ81k5 + cos θ81k6 (3.131)

where
k5 = −a81 + a82 cos(θspr2)

k6 = −a82 sin(θspr2)

Taking squares of the Equations 3.130 and 3.131 and summing them together yields

the following equation:

θ81 = 2tan−1(
−B3 ±

√
B3

2 − 4A3C3

2A3

) (3.132)

where
K7 = x7

2 + y7
2 + k5

2 + k6
2 − a9

2

K8 = 2(x7k5 − y7k6)

K9 = 2(x7k6 + y7k5)

A3 = K7 −K8

B3 = 2K9

C3 = K7 +K8

With the availability of θ81, Equations 3.130 and 3.131, θ9 can be found without any

additional sign variable as follow:

θ9 = atan2[(y7 + sin θ81k5 + cos θ81k6), (x7 + cos θ81k5 + sin θ81k6)] (3.133)

Note that, the position solutions for θ9 and θ81 are functions of θspr2.

For version 3, from Equation 3.111, real and imaginary parts can be written as fol-

lows:

a2 cos θ2 + a31 cos θ31 + a32 cos (θ32) = +a12 + a42 cos θ4 − a41 sin θ4 (3.134)

61



a2 sin θ2 + a31 sin θ31 + a32 sin (θ32) = −a11 + a42 sin θ4 + a41 cos θ4 (3.135)

The spring angle θspr3 can be defined as follows:

θspr3 = θ32 − θ31 + π (3.136)

Then, angle θ32 can be defined as follows:

θ32 = θ31 + θspr3 − π (3.137)

Then, the following equations are derived:

a2 cos θ2 = x8 − a31 cos θ31 + a32 cos (θ31 + θspr3)

= x8 − a31 cos θ31 + a32[cos (θ31) cos (θspr3)− sin (θ31) sin (θspr3)]

(3.138)

a2 sin θ2 = y8 − a31 sin θ31 + a32 sin (θ31 + θspr3)

= y8 − a31 sin θ31 + a32[sin (θ31) cos (θspr3) + cos (θ31) sin (θspr3)]

(3.139)

where

x8 = +a12 + a42 cos θ4 − a41 sin θ4

y8 = −a11 + a42 sin θ4 + a41 cos θ4

Then, Equations 3.138 and 3.139 become as follows:

a2 cos θ2 = x8 + cos θ31k7 + sin θ31k8 (3.140)

a2 sin θ2 = y8 + sin θ31k7 + cos θ31k8 (3.141)

where

k7 = −a31 + a32 cos(θspr3)

k8 = −a32 sin(θspr3)

Taking squares of the Equations 3.140 and 3.141 and summing them together yields

the following equation:

θ31 = 2tan−1(
−B4 ±

√
B4

2 − 4A4C4

2A4

) (3.142)
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where
K10 = x8

2 + y8
2 + k7

2 + k8
2 − a2

2

K11 = 2(x8k7 − y7k8)

K12 = 2(x8k8 + y7k7)

A4 = K10 −K11

B4 = 2K12

C4 = K10 +K11

With the availability of θ31, Equations 3.140 and 3.141, θ2 can be found without any

additional sign variable as follow:

θ2 = atan2[(y8 + sin θ31k7 + cos θ31k8), (x8 + cos θ31k7 + sin θ31k8)] (3.143)

Note that, the position solutions for θ2 and θ31 are functions of θspr3.

For version 4, from Equation 3.113, real and imaginary parts can be written as fol-

lows:

aG cos θG + a9 cos θ9 + a8 cos θ8 = +a2 cos θ2 + a3 cos θ3 + a51 cos θ51 (3.144)

aG sin θG + a9 sin θ9 + a8 sin θ8 = +a2 sin θ2 + a3 sin θ3 + a51 sin θ51 (3.145)

The spring angle θspr4 can be defined as follows:

θspr4 = θ51 − θ5 (3.146)

Then, angle θ51 can be defined as follows:

θ51 = θ5 + θspr4 (3.147)

So, the Equations 3.144 and 3.145 becomes as follows:

aG cos θG + a9 cos θ9 + a8 cos θ8 = +a2 cos θ2 + a3 cos θ3 + a51 cos(θ5 + θspr4)

(3.148)

aG sin θG + a9 sin θ9 + a8 sin θ8 = +a2 sin θ2 + a3 sin θ3 + a51 sin(θ5 + θspr4)

(3.149)
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Then, the following equations are derived:

a9 cos θ9 = x9 − a8 cos θ8 (3.150)

a9 sin θ9 = y9 − a8 sin θ8 (3.151)

where
x9 = +a2 cos θ2 + a3 cos θ3 + a51 cos(θ5 + θspr4)− aG cos θG

y9 = +a2 sin θ2 + a3 sin θ3 + a51 sin(θ5 + θspr4)− aG sin θG

Then, θ8 is derived as follows:

θ8 = Ψ5 + σ5γ5 (3.152)

where
Ψ5 = atan2(y9, x9)

f5 = (x9
2 + y9

2 + a8
2 − a9

2)/(2a8)

g5 =

√
x9

2 + y92 − f5
2

γ5 = atan2(g5, f5)

σ5 = ±1

With the availability of θ8, Equations 3.150 and 3.151, θ9 can be found without any

additional sign variable as follow:

θ9 = atan2[(y9 − a8 sin θ8), (x9 − a8 cos θ8)] (3.153)

Note that, the position solutions for θ9 and θ8 are functions of θspr4.

3.3.3.2 Velocity Analysis

The velocity equations are obtained by taking the derivative of position equations

with respect to time. In this mechanism, end-effector velocity is the same as in the

fully-actuated mechanism as in Equation 3.62. The expression is given once again as

follows:

d(XF0)

dt
= VF0 = i2[θ̇4a42e

iθ4 + θ̇7a72e
iθ7 ]

= i2[θ̇4a42(cos θ4 + i sin θ4)θ̇7a72(cos θ7 + i sin θ7)]
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Velocity equation for version 1 (Loop 3)

−a61 sin θ61 + a62 sin(θ61 + θspr1) +(a72 sin θ7 + a71 cos θ7)

+a61 cos θ61 − a62 cos(θ61 + θspr1) −(a72 cos θ7 − a71 sin θ7)

θ̇61
θ̇7



=

+(a41 cos θ4 − a42 sin θ4) +a5 sin θ5 −a62 sin(θ61 + θspr1)

+(a41 sin θ4 + a42 cos θ4) −a5 cos θ5 +a62 cos(θ61 + θspr1)




θ̇4

θ̇5

θ̇spr1


(3.154)

Velocity equation for version 2 (Loop 2)

+a51 sin(θ5 + β2) −a81 sin θ81 + a82 sin(θ81 + θspr2)

−a51 cos(θ5 + β2) +a81 cos θ81 − a82 cos(θ81 + θspr2)

 θ̇5

θ̇81



=

−a2 sin θ2 −a3 sin θ3 +a9 sin θ9 +a82 sin(θ81 + θspr2)

+a2 cos θ2 +a3 cos θ3 −a9 cos θ9 −a82 cos(θ81 + θspr2)




θ̇2

θ̇3

θ̇9

θ̇spr2


(3.155)

Velocity equations for version 3 (Loop 1 and Loop 2)

Velocity equation for Loop 1 is expressed in the Equation 3.156.

+a31 sin θ31 − a32 sin(θ31 + θspr3) −(a42 sin θ4 + a41 cos θ4)

−a31 cos θ31 + a32 cos(θ31 + θspr3) +(a42 cos θ4 − a41 sin θ4)

θ̇31
θ̇4


=

−a2 sin θ2 −a32 sin(θ31 + θspr3)

+a2 cos θ2 +a32 cos(θ31 + θspr3)

 θ̇2

θ̇spr3

 (3.156)

Velocity equation for Loop 2 is expressed in the Equation 3.157.
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+a51 sin(θ5 + β2) −a8 sin θ8

−a51 cos(θ5 + β2) +a8 cos θ8

θ̇5
θ̇8


=

−a2 sin θ2 −a31 sin θ31 + a32 sin(θ31 + θspr3) +a9 sin θ9 +a32 sin(θ31 + θspr3)

+a2 cos θ2 +a31 cos θ31 − a32 cos(θ31 + θspr3) −a9 cos θ9 −a32 cos(θ31 + θspr3)




θ̇2

θ̇31

θ̇9

θ̇spr3


(3.157)

Velocity equation for version 4 (Loop 2)

+a51 sin(θ5 + θspr4) −a8 sin θ8

−a51 cos(θ5 + θspr4) +a8 cos θ8

θ̇5
θ̇8



=

−a2 sin θ2 −a3 sin θ3 +a9 sin θ9 −a51 sin(θ5 + θspr4)

+a2 cos θ2 +a3 cos θ3 −a9 cos θ9 +a51 cos(θ5 + θspr4)




θ̇2

θ̇3

θ̇9

θ̇spr4


(3.158)

From Equations 3.154, 3.155, 3.156, 3.157 and 3.158; velocity derivations in order to

calculate Jacobian matrix for each version are shown in the Equations 3.159, 3.161,

3.163, 3.166 and 3.168:

For the first version, the only difference is at Loop 3. So, only Loop 3’s derivation is

expressed in the Equation 3.159.

θ̇61
θ̇7

 =

j17 j18 j19

j20 j21 j22




θ̇4

θ̇5

θ̇spr1

 (3.159)
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where

j17 j18 j19

j20 j21 j22

 =

−a61 sin θ61 + a62 sin(θ61 + θspr) +(a72 sin θ7 + a71 cos θ7)

+a61 cos θ61 − a62 cos(θ61 + θspr) −(a72 cos θ7 − a71 sin θ7)

−1

+(a41 cos θ4 − a42 sin θ4) +a5 sin θ5 −a62 sin(θ61 + θspr)

+(a41 sin θ4 + a42 cos θ4) −a5 cos θ5 +a62 cos(θ61 + θspr)



The following equations can be derived for future calculations from Equations 3.56,

3.57, and 3.159.

θ̇3 = j1θ̇2

θ̇4 = j2θ̇2

θ̇5 = j7θ̇2 + j8θ̇3 + j9θ̇9

= (j7 + j8j1)θ̇2 + j9θ̇9

θ̇8 = j10θ̇2 + j11θ̇3 + j12θ̇9

= (j10 + j11j1)θ̇2 + j12θ̇9

θ̇61 = j17θ̇4 + j18θ̇5 + j19θ̇spr1

= [j17j2 + j18(j7 + j8j1)]θ̇2 + (j18j9)θ̇9 + j19θ̇spr1

θ̇7 = j20θ̇4 + j21θ̇5 + j22θ̇spr1

= [j20j2 + j21(j7 + j8j1)]θ̇2 + (j21j9)θ̇9 + j22θ̇spr1

(3.160)

For the second version, the only difference is at Loop 2. So, only Loop 2’s derivation

is expressed in the Equation 3.161.

 θ̇5

θ̇81

 =

j23 j24 j25 j26

j27 j28 j29 j30




θ̇2

θ̇3

θ̇9

θ̇spr2

 (3.161)
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wherej23 j24 j25 j26

j27 j28 j29 j30

 =

+a51 sin(θ5 + β2) −a81 sin θ81

−a51 cos(θ5 + β2) +a81 cos θ81

−1

−a2 sin θ2 −a3 sin θ3 +a9 sin θ9 +a82 sin(θ81 + θspr2)

+a2 cos θ2 +a3 cos θ3 −a9 cos θ9 −a82 cos(θ81 + θspr2)



The following equations can be derived for future calculations from Equations 3.56,

3.161, and 3.58.

θ̇3 = j1θ̇2

θ̇4 = j2θ̇2

θ̇5 = j23θ̇2 + j24θ̇3 + j25θ̇9 + j26θ̇spr2

= (j23 + j24j1)θ̇2 + j25θ̇9 + j26θ̇spr2

θ̇81 = j27θ̇2 + j28θ̇3 + j29θ̇9 + j30θ̇spr2

= (j27 + j28j1)θ̇2 + j29θ̇9 + j30θ̇spr2

θ̇6 = j3θ̇4 + j4θ̇5

= [j3j2 + j4(j23 + j24j1)]θ̇2 + (j4j25)θ̇9 + (j4j26)θ̇spr2

θ̇7 = j5θ̇4 + j6θ̇5

= [j5j2 + j6(j23 + j24j1)]θ̇2 + (j6j25)θ̇9 + (j6j26)θ̇spr2

(3.162)

Then, for the third version, the derivation is expressed as follows:

θ̇31
θ̇4

 =

j31 j32

j33 j34

 θ̇2

θ̇spr3

 (3.163)

and

θ̇5
θ̇8

 =

j35 j36 j37 j38

j39 j40 j41 j42




θ̇2

θ̇31

θ̇9

θ̇spr3

 (3.164)
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where j31 j32

j33 j34

 =

+a31 sin θ31 −(a42 sin θ4 + a41 cos θ4)

−a31 cos θ31 +(a42 cos θ4 − a41 sin θ4)

−1

−a2 sin θ2 −a32 sin(θ31 + θspr3)

+a2 cos θ2 +a32 cos(θ31 + θspr3)


andj35 j36 j37 j38

j39 j40 j41 j42

 =

+a51 sin(θ5 + β2) −a8 sin θ8

−a51 cos(θ5 + β2) +a8 cos θ8

−1

−a2 sin θ2 −a31 sin θ31 + a32 sin(θ31 + θspr3) +a9 sin θ9 +a32 sin(θ31 + θspr3)

+a2 cos θ2 +a31 cos θ31 − a32 cos(θ31 + θspr3) −a9 cos θ9 −a32 cos(θ31 + θspr3)


The following equations can be derived for future calculations from Equations 3.163,

3.164 and 3.58.

θ̇31 = j31θ̇2 + j32θ̇spr3

θ̇4 = j33θ̇2 + j34θ̇spr3

θ̇5 = j35θ̇2 + j36θ̇31 + j37θ̇9 + j38θ̇spr3

= (j35 + j36j31)θ̇2 + j37θ̇9 + j38θ̇spr3

θ̇8 = j39θ̇2 + j40θ̇31 + j41θ̇9 + j42θ̇spr3

= (j39 + j40j31)θ̇2 + j41θ̇9 + j42θ̇spr3

θ̇6 = j3θ̇4 + j4θ̇5

= [j3j33 + (j4)(j35 + j36j31)]θ̇2 + (j4j37)θ̇9 + (j3j34 + j4j38)θ̇spr3

θ̇7 = j5θ̇4 + j6θ̇5

= [j5j33 + (j6)(j35 + j36j31)]θ̇2 + (j6j37)θ̇9 + (j5j34 + j6j38)θ̇spr3

(3.165)

The above equation can be simplified by redefining Equation 3.164 as follows:θ̇5
θ̇8

 =

j51 j52

j53 j54

θ̇4
θ̇9

 (3.166)

j51 j52

j53 j54

 =

+a51 sin(θ5 + β2) −a8 sin θ8

−a51 cos(θ5 + β2) +a8 cos θ8

−1

−(a42 sin θ4 + a41 sin(θ4 +
π
2
)) +a9 sin θ9

+(a42 cos θ4 + a41 cos(θ4 +
π
2
)) −a9 cos θ9


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Then, the following set of solutions are obtained as follows:

θ̇31 = j31θ̇2 + j32θ̇spr3

θ̇4 = j33θ̇2 + j34θ̇spr3

θ̇5 = j51θ̇4 + j52θ̇9

= (j51j33)θ̇2 + j52θ̇9 + (j51j34)θ̇spr3

θ̇8 = j53θ̇4 + j54θ̇9

= (j53j33)θ̇2 + j54θ̇9 + (j53j34)θ̇spr3

θ̇6 = j3θ̇4 + j4θ̇5

= [j3j33 + (j4)(j51j33)]θ̇2 + (j4j52)θ̇9 + (j3j34 + j4(j51j34))θ̇spr3

θ̇7 = j5θ̇4 + j6θ̇5

= [j5j33 + (j6)(j51j33)]θ̇2 + (j6j52)θ̇9 + (j5j34 + j6(j51j34))θ̇spr3

(3.167)

Finally, for the last version, the derivation is expressed as follows:

θ̇5
θ̇8

 =

j43 j44 j45 j46

j47 j48 j49 j50




θ̇2

θ̇3

θ̇9

θ̇spr4

 (3.168)

where

j43 j44 j45 j46

j47 j48 j49 j50

 =

+a51 sin(θ5 + θspr4) −a8 sin θ8

−a51 cos(θ5 + θspr4) +a8 cos θ8

−1

−a2 sin θ2 −a3 sin θ3 +a9 sin θ9 −a51 sin(θ5 + θspr4)

+a2 cos θ2 +a3 cos θ3 −a9 cos θ9 +a51 cos(θ5 + θspr4)



The following equations can be derived for future calculations from Equations 3.56,

3.168, and 3.58.
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θ̇3 = j1θ̇2

θ̇4 = j2θ̇2

θ̇5 = j43θ̇2 + j44θ̇3 + j45θ̇9 + j46θ̇spr4

= (j43 + j44j1)θ̇2 + j45θ̇9 + j46θ̇spr4

θ̇8 = j47θ̇2 + j48θ̇3 + j49θ̇9 + j50θ̇spr4

= (j47 + j48j1)θ̇2 + j49θ̇9 + j50θ̇spr4

θ̇6 = j3θ̇4 + j4θ̇5

= [j3j2 + j4(j43 + j44j1)]θ̇2 + (j4j45)θ̇9 + (j4j46)θ̇spr4

θ̇7 = j5θ̇4 + j6θ̇5

= [j5j2 + j6(j43 + j44j1)]θ̇2 + (j6j45)θ̇9 + (j6j46)θ̇spr4

(3.169)

3.3.3.3 Jacobian Matrix

The end-effector position in matrix form was defined in Equation 3.63 as follows:

VF0 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

θ̇4
θ̇7

 (3.170)

From Equations 3.160, 3.162, 3.165 and 3.169; calculation of Jacobian matrices for

each version are derived as follows:

Version 1

From Equation 3.160;θ̇4
θ̇7

 =

 j2 0 0

j20j2 + j21(j7 + j8j1) (j21j9) j22




θ̇2

θ̇9

θ̇spr1

 (3.171)

Then the velocity of the end effector can be written as follows:

VF0 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

 j2 0 0

j20j2 + j21(j7 + j8j1) (j21j9) j22




θ̇2

θ̇9

θ̇spr1


(3.172)
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Then, the Jacobian matrix is written below:

J1 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

 j2 0 0

j20j2 + j21(j7 + j8j1) (j21j9) j22


(3.173)

Version 2

From Equation 3.162;

θ̇4
θ̇7

 =

 j2 0 0

j5j2 + j6(j23 + j24j1) (j6j25) (j6j26)




θ̇2

θ̇9

θ̇spr2

 (3.174)

Then the velocity of the end effector can be written as follows:

VF0 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7


 j2 0 0

j5j2 + j6(j23 + j24j1) (j6j25) (j6j26)




θ̇2

θ̇9

θ̇spr2


(3.175)

Then, the Jacobian matrix is written below:

J2 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

 j2 0 0

j5j2 + j6(j23 + j24j1) (j6j25) (j6j26)


(3.176)

Version 3

From Equation 3.167;

θ̇4
θ̇7

 =

 j33 0 j34

j5j33 + (j6)(j51j33) (j6j52) (j5j34 + j6j51j34)




θ̇2

θ̇9

θ̇spr3

 (3.177)
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Then the velocity of the end effector can be written as follows:

VF0 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7


 j33 0 j34

j5j33 + (j6)(j51j33) (j6j52) (j5j34 + j6j51j34)




θ̇2

θ̇9

θ̇spr3


(3.178)

Then, the Jacobian matrix is written below:

J3 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7


 j33 0 j34

j5j33 + (j6)(j51j33) (j6j52) (j5j34 + j6j51j34)

 (3.179)

Version 4

From Equation 3.169;

θ̇4
θ̇7

 =

 j2 0 0

j5j2 + j6(j43 + j44j1) (j6j45) (j6j46)




θ̇2

θ̇9

θ̇spr4

 (3.180)

Then the velocity of the end effector can be written as follows:

VF0 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7


 j2 0 0

j5j2 + j6(j43 + j44j1) (j6j45) (j6j46)




θ̇2

θ̇9

θ̇spr4


(3.181)

Then, the Jacobian matrix is written below:

J4 =

−2a42 sin θ4 −2a72 sin θ7

+2a42 cos θ4 +2a72 cos θ7

 j2 0 0

j5j2 + j6(j43 + j44j1) (j6j45) (j6j46)


(3.182)
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3.3.3.4 Force Analysis

By the Virtual Theorem method the following equation can be written:

for i = 1, 2, 3, 4 (Each version)

δWi = δWA0 + δWH0 + δWMCP + δWPIP + δWFF0
+ δWTspr,i

= 0
(3.183)

where δWA0 , δWH0 , δWMCP , δWPIP and δWFF0
are defined in fully-actuated mecha-

nism. δWTspr,i
can be defined as follows for each under-actuated mechanism version:

δWTspr,i
= Tspr,i δθspr,i (3.184)

where

Tspr,i = −Ki(θspr − θspr,ifree)

In the above Equation 3.183 the variables are defined as follows:

• TA0: The torque value applied by the motor at point A0.

• TH0: The torque value applied by the motor at point H0.

• TMCP : The torque value applied by the finger joint MCP at point B0.

• TPIP : The torque value applied by the finger joint PIP at point E0.

• FF0: A force acting on the end-effector at point F0.

• Tspr,i: The torque acting by the spring on the point J , K, L and B for each

version, sequentially.

With the addition of δWTspr,i
in the Virtual Work theorem, the equation becomes as

follow:

δWi =TA0 δθ2 + TH0 δθ9

+ [TMCP + 2|FF0|a42 cos(θ4 − θ7)]δθ4

+ [TPIP + 2|FF0|a72]δθ7] + Tspr,i δθspr,i = 0

(3.185)

In order to define δθ4 and δθ7 in terms of δθ2, δθ9 and δθspr,i the Equations 3.160,

3.162, 3.165 and 3.169 can be used. Then, the Equation 3.185 becomes for each

version as follows:
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Version 1

δW1 =TA0 δθ2 + TH0 δθ9

+ [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)δθ2

+ [TPIP + 2|FF0|a72][[j20j2 + j21(j7 + j8j1)]θ̇2 + (j21j9)θ̇9 + j22θ̇spr1]

+ Tspr1δθspr1 = 0

(3.186)

Then, from Equation 3.186, three scalar equalities are obtained as follows:

TA0 + [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)

+ [TPIP + 2|FF0|a72]([j20j2 + j21(j7 + j8j1)) = 0
(3.187)

,

TH0 + [TPIP + 2|FF0|a72](j21j9) = 0 (3.188)

and

Tspr1 + [TPIP + 2|FF0|a72](j22) = 0 (3.189)

The Equations 3.187 and 3.188 can be used to estimate motor torque values in the

first version of the under-actuated mechanism. The Equation 3.189 can be used to

find θspr1 numerically as follows:

−K1(θspr1 − θspr1free) + (TPIP + 2|FF0 |a72)j22 = 0

⇒θspr1 =
(TPIP + 2|FF0|a72)j22

K1

+ θspr1free (3.190)

Version 2

δW2 =TA0 δθ2 + TH0 δθ9

+ [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)δθ2

+ [TPIP + 2|FF0|a72][[j5j2 + j6(j23 + j24j1)]θ̇2 + (j6j25)θ̇9 + (j6j26)θ̇spr2]

+ Tspr2δθspr2 = 0

(3.191)
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Then, from Equation 3.191, three scalar equalities are obtained as follows:

TA0 + [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)

+ [TPIP + 2|FF0|a72]([j5j2 + j6(j23 + j24j1)) = 0
(3.192)

,

TH0 + [TPIP + 2|FF0 |a72](j6j25) = 0 (3.193)

and

Tspr2 + [TPIP + 2|FF0|a72](j6j26) = 0 (3.194)

The Equations 3.192 and 3.193 can be used to estimate motor torque values in the

second version of the under-actuated mechanism. The Equation 3.194 can be used to

find θspr2 numerically as follows:

−K2(θspr2 − θspr2free) + (TPIP + 2|FF0|a72)(j6j26) = 0

⇒θspr2 =
(TPIP + 2|FF0|a72)(j6j26)

K2

+ θspr2free (3.195)

Version 3

δW3 =TA0 δθ2 + TH0 δθ9

+ [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j33δθ2 + j34δθspr3)

+ [TPIP + 2|FF0|a72]

[[j5j33 + (j6)(j51j33)]δθ2 + (j6j52)δθ9 + (j5j34 + j6(j51j34))δθspr3]

+ Tspr3δθspr3 = 0

(3.196)

Then, from Equation 3.196, three scalar equalities are obtained as follows:

TA0 + [TMCP + 2|FF0 |a42 cos(θ4 − θ7)](j33)

+ [TPIP + 2|FF0 |a72][j5j33 + (j6)(j51j33)] = 0
(3.197)
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,

TH0 + [TPIP + 2|FF0|a72](j6j52) = 0 (3.198)

and
Tspr3 + [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j34)

+ [TPIP + 2|FF0|a72](j5j34 + j6(j51j34)) = 0
(3.199)

The Equations 3.197 and 3.198 can be used to estimate motor torque values in the

third version of the under-actuated mechanism. The Equation 3.199 can be used to

find θspr3 numerically as follows:

−K3(θspr3 − θspr3free) + [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j34)

+ [TPIP + 2|FF0 |a72](j5j34 + j6(j51j34)) = 0

⇒ θspr3 =
[TMCP + 2|FF0|a42 cos(θ4 − θ7)](j34)

K3

+
[TPIP + 2|FF0|a72](j5j34 + j6(j51j34))

K3

+ θspr3free

(3.200)

Version 4

δW4 =TA0 δθ2 + TH0 δθ9

+ [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)δθ2

+ [TPIP + 2|FF0|a72][[j5j2 + j6(j43 + j44j1)]θ̇2 + (j6j45)θ̇9 + (j6j46)θ̇spr4]

+ Tspr4δθspr4 = 0

(3.201)

Then, from Equation 3.201, three scalar equalities are obtained as follows:

TA0 + [TMCP + 2|FF0|a42 cos(θ4 − θ7)](j2)

+ [TPIP + 2|FF0|a72]([j5j2 + j6(j43 + j44j1)) = 0
(3.202)

,

TH0 + [TPIP + 2|FF0|a72](j6j45) = 0 (3.203)

77



and

Tspr4 + [TPIP + 2|FF0|a72](j6j46) = 0 (3.204)

The Equations 3.202 and 3.203 can be used to estimate motor torque values in the

fourth version of the under-actuated mechanism. The Equation 3.204 can be used to

find θspr4 numerically as follows:

−K4(θspr4 − θspr4free) + (TPIP + 2|FF0|a72)(j6j46) = 0

⇒θspr4 =
(TPIP + 2|FF0|a72)(j6j46)

K4

+ θspr4free (3.205)

Note that right sides of the Equations 3.190, 3.195, 3.200 and 3.205 are the functions

of θspr,i. So, the solutions of the Equations 3.190, 3.195, 3.200 and 3.205 give the

θspr,i values numerically. After a θspr,i value is found numerically, the whole proce-

dure can be applied once again to find all the results numerically.

After finding θspr numerically, the system solution becomes just like in the fully-

actuated one.
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CHAPTER 4

GENETIC ALGORITHM RESULTS

In this chapter, there are 3 sections. Firstly, a fully-actuated mechanism optimization

is carried out. Secondly, a methodology is invented for the under-actuated mechanism

synthesis by solving a symbolical equation. For this purpose, the most straightfor-

ward possible problem is defined which is a transition problem from 4 bar to 5 bar

mechanism. Finally, under-actuated mechanisms are optimized using the proposed

method. There are 4 versions in the under-actuated mechanism family. Each version

is conducted and a selection is performed between those alternatives.

The GII value is desired to be maximized for each state in the task space. The op-

timization algorithm worked for minimizing, thus the fitness function is defined as

"1-GII", where the best solution is GII being equal to 1, gives the result of 0. There-

fore, the algorithm is used to find the value of 0, where the GII is the value of 1. In

the algorithm, finger segment length and fingertip positions (task space) are used as

inputs which are shown in the Tables 3.2 and 3.4, respectively.

4.1 Fully-Actuated Mechanism

There are four parts in this section. In the first part, a single-optimization problem is

conducted without including the sensitivity metric, only mean values of phalanges are

used. Then, in the second part, a single-optimization problem including sensitivity is

presented which means a set of finger sizes is considered. In the third part, a multi-

objective problem is conducted in order to explicit the result obtained in the single-

optimization with sensitivity. Finally, a selection is carried out from the alternatives.

The lower and upper boundaries for each structure parameter are defined in the Table
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4.1.

Table 4.1: Lower and Upper Boundaries of the Design Vector

Parameter Lower Boundary Upper Boundary Unit

a11 15 30 mm

a12 20 45 mm

a2 20 60 mm

a3 30 70 mm

a41 15 35 mm

aG 30 40 mm

a5 30 70 mm

a51 20 60 mm

a6 30 70 mm

a71 15 35 mm

a8 30 70 mm

a9 20 55 mm

θG 0 45 deg

β2 0 90 deg

4.1.1 Single Objective Optimization - Without Sensitivity

For this purpose, a fixed phalange length value is selected, which is the mean value

in Table 3.2. The values are given in the below expression:

a42 = 40/2 = 20 mm and a72 = 30/2 = 15 mm (4.1)

Genetic algorithm search is given in Figure 4.1. There are 300 generations completed

with a high population size of 750 samples. An integer searching is implemented in

order to speed up the optimization process. The results are given in the Table 4.2.

The mechanism is animated for each state. Only one state is shown in Figure 4.2.

The estimated actuator torques, finger joint passive torques, actuator angles(θ2 and

θ9), and transmission angles are depicted in Figure 4.3.
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Figure 4.1: Single Optimization GA
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Table 4.2: Fully-Actuated, Single-Optimization Without Sensitivity, Structure Param-

eter Results

Parameter Result Unit

a11 15 mm

a12 31 mm

a2 60 mm

a3 40 mm

a41 15 mm

aG 30 mm

a5 57 mm

a51 51 mm

a6 32 mm

a71 32 mm

a8 43 mm

a9 52 mm

θG 31 deg

β2 36 deg

GII 0.35 -

All of the graphs look within the desired ranges in Figure 4.3. The optimized mech-

anism is feasible for the given finger sizes. However, a robust mechanism is desired.

The mechanism is supposed to be suitable for different phalanges sizes. Unfortu-

nately, when the mechanism is checked if it is convenient for the minimum and max-

imum finger sizes defined in Table 3.2, it is detected that the mechanism is not ap-

plicable since the mechanism is very sensitive to the variation of the phalanges size.

Then, it is decided to define another single-objective problem in which the sensitivity

is considered.
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Figure 4.2: Single Optimization Animation - Without Sensitivity

4.1.2 Single Objective Optimization - With Sensitivity

A single-objective fitness function is defined such that 3 different phalanges sizes

are considered. All 3 possibilities on the finger size are checked and the worst one

from those 3 is wanted to be maximized. The one with the worst GII result is always

wanted to be maximized in the design algorithm.

Genetic algorithm search is given in Figure 4.4. There are 300 generations to be

completed with a high population size of 750 samples. However, the algorithm finds

an optimal result before reaching the generation number of 300. An integer search is

implemented in order to speed up the optimization process as in the without sensitivity

part. The results are given in Table 4.3.

Even though it looks like the GII value is less than the single-optimization result,

the GII value is almost the same when the finger phalange sizes vary. Therefore, the

mechanism is not sensitive to phalanges length. The mechanism is animated for each

state. Only one state is shown in Figures 4.5 and 4.6.
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Table 4.3: Fully-Actuated, Single-Optimization With Sensitivity, Structure Parameter

Results

Parameter Result Unit

a11 37 mm

a12 39 mm

a2 46 mm

a3 56 mm

a41 29 mm

aG 39 mm

a5 42 mm

a51 38 mm

a6 31 mm

a71 35 mm

a8 46 mm

a9 55 mm

θG 15 deg

β2 32 deg

GII 0.19 -
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Figure 4.3: Single Optimization Animation - Without Sensitivity, Angles and Torques

Finger angles and motor angles for the 8 states are given in the part a. Forward and

backward transmission angles are represented for the each loop in the part b,c and

d. The area between the horizontal dashed red lines show the desired transmission

angle range in parts b,c and d. In the part e, calculated motor torque values are

given for the each state. In the part f, calculated finger joint torque values are shown.
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Figure 4.4: Single Optimization GA with Sensitivity
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Figure 4.5: Single Optimization Animation - With Sensitivity

The change of the GII value with the variation of phalanges sizes is given in Figure

4.7. A zoomed version of this Figure is given in 4.8. The overall change in the GII is

very small with a value of 0.006.

4.1.3 Multi Objective Optimization

A multi-objective fitness function is defined such that the GII value is maximized for

3 different phalanges sizes as in Table 3.2. The upper and lower boundaries of the

structure parameters are the same as the single-objective optimization problem as in

Table 4.1. The results are given below. An integer search is desired, unfortunately,

MATLAB does not allow to use of integer search in multi-objective problems.

The Pareto-front solution is given in Figure 4.9. An optimal solution is selected from

the solution set. Selected results are in Table 4.4.

The mechanism is animated for each state. Only one state is shown in Figures 4.10,

4.11.
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Figure 4.6: Single Optimization Animation - With Sensitivity, Angles and Torques

Finger angles and motor angles for the 8 states are given in the part a. Forward and

backward transmission angles are represented for the each loop in the part b,c and

d. The area between the horizontal dashed red lines show the desired transmission

angle range in parts b,c and d. In the part e, calculated motor torque values are

given for the each state. In the part f, calculated finger joint torque values are shown.
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Figure 4.7: Sensitivity Check for phalanges sizes with respect to GII
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Figure 4.8: Sensitivity Check for phalanges sizes with respect to GII, zoomed
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Figure 4.9: Multi Optimization 3D Plot
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Table 4.4: Fully-Actuated, Multi-Optimization, Structure Parameter Results

Parameter Result Unit

a11 23.7 mm

a12 40.4 mm

a2 51.4 mm

a3 50.1 mm

a41 24.8 mm

aG 34.9 mm

a5 64.2 mm

a51 54.3 mm

a6 42.6 mm

a71 33.4 mm

a8 37.3 mm

a9 45.5 mm

θG 2 deg

β2 88.5 deg

GII [0.18, 0.15, 0.18] -
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Figure 4.10: Multi Objective Optimization Animation

4.2 Transition from 4bar to 5 bar

In this section θspr is found numerically. As it was detailed in Chapter 3, in order to

synthesize the mechanism, θspr is needed to be defined as a symbolic variable. Then,

everything is calculated as a function of this value. At the end of the Virtual Work

method, a function of θspr is obtained which is given as:

−K(θspr − θsprfree) = −(TPIP + 2|FF0|a72)j22 (4.2)

The equation is needed to be solved so that θspr gets obtained its numerical value. For

this purpose, Matlab’s "vpasolve" function is used. It is an equation solver in order to

find a numerical solution. The θspr values are found as it is shown in the below Figure

4.12.

From the Figure 4.12, there is a intersection between the left and right side of the

Equation in 4.2 for each state in the task-space. That intersection point is the θspr for

that state.
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Figure 4.11: Multi Objective Optimization Animation, Angles and Torques

Finger angles and motor angles for the 8 states are given in the part a. Forward and

backward transmission angles are represented for the each loop in the part b,c and

d. The area between the horizontal dashed red lines show the desired transmission

angle range in parts b,c and d. In the part e, calculated motor torque values are

given for the each state. In the part f, calculated finger joint torque values are shown.
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Figure 4.12: Finding θspr numerically
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4.3 Under-Actuated Mechanism

For the under-actuated mechanism optimization, the fully-actuated mechanism out-

puts are used which are shown in the Table 4.3. There are 4 versions for the under-

actuated mechanisms. They are given as follows.

4.3.1 Version 1

At loop 3, the link a6 is broken to two as a61 and a62 with a torsional spring be-

tween these new links with a coefficient of K1 and a free spring angle θspr1free . The

boundaries for the new search parameters are given as:

Table 4.5: Lower and Upper Boundaries of the Structure Parameters of Under-

Actuated Mechanism

Parameter Lower Boundary Upper Boundary Unit

a61 15 45 mm

a62 15 45 mm

thspr1free 30 150 deg

K1 6/π ≈ 1.9 60/π ≈ 19.1 Nm/rad

The genetic algorithm search is given in Figure 4.13. The solution set is in the Table

4.6. Animation of the mechanism is represented in Figure 4.14.

Table 4.6: Under-Actuated Mechanism Version 1 Results

Parameter Result Unit

a61 25 mm

a62 48 mm

thspr1free 60 deg

K1 5.1 Nm/rad

GII 0.2038 -
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Figure 4.13: Under-Actuated Version 1 Genetic Algorithm
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Figure 4.14: Under-Actuated Version 1 Animation, A State

4.3.2 Version 2

At loop 2, the link a8 is broken into two as a81 and a82 with a torsional spring be-

tween these new links with a coefficient of K2 and a free spring angle θspr2free . The

boundaries for the new search parameters are given in Table 4.9.

The genetic algorithm search is given in Figure 4.15. The solution set is in the Table

4.8. A particular state of the mechanism is represented in Figure 4.16.
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Figure 4.15: Under-Actuated Version 2 Genetic Algorithm
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Table 4.7: Lower and Upper Boundaries of the Structure Parameters of Under-

Actuated Mechanism

Parameter Lower Boundary Upper Boundary Unit

a81 40 65 mm

a82 20 50 mm

thspr2free 30 150 deg

K2 6/π ≈ 1.9 60/π ≈ 19.1 Nm/rad

Table 4.8: Under-Actuated Mechanism Version 2 Results

Parameter Result Unit

a61 64 mm

a62 20 mm

thspr2free 30 deg

K2 17.8 Nm/rad

GII 0.1985 -

4.3.3 Version 3

At loop 1, the link a3 is broken into two as a31 and a32 with a torsional spring be-

tween these new links with a coefficient of K3 and a free spring angle θspr3free . The

boundaries for the new search parameters are given below:

The genetic algorithm search is given in Figure 4.17. The solution set is in the Table

4.10. A particular state of the mechanism is represented in Figure 4.18.
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Figure 4.16: Under-Actuated Version 2 Animation, A State
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Figure 4.17: Under-Actuated Version 3 Genetic Algorithm
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Table 4.9: Lower and Upper Boundaries of the Structure Parameters of Under-

Actuated Mechanism

Parameter Lower Boundary Upper Boundary Unit

a31 25 65 mm

a32 25 65 mm

thspr3free 30 150 deg

K3 6/π ≈ 1.9 60/π ≈ 19.1 Nm/rad

Table 4.10: Under-Actuated Mechanism Version 3 Results

Parameter Result Unit

a31 35 mm

a32 26 mm

thspr3free 135 deg

K3 10.4 Nm/rad

GII 0.2156 -

4.3.4 Version 4

In this version, the ternary link is broken into two links by defining a constant angle

β2 as a variable. So, a torsional spring is added between the links a51 and a5 with a

coefficient of K4 and a free spring angle θspr4free . The boundaries for the new search

parameters are given below:

Table 4.11: Lower and Upper Boundaries of the Structure Parameters of Under-

Actuated Mechanism

Parameter Lower Boundary Upper Boundary Unit

thspr4free 30 150 deg

K4 6/π ≈ 1.9 60/π ≈ 19.1 Nm/rad

The genetic algorithm search is given in Figure 4.19. The solution set is in the Table

4.12. A particular state of the mechanism is represented in Figure 4.13.
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Figure 4.18: Under-Actuated Version 3 Animation, A State

Table 4.12: Under-Actuated Mechanism Version 4 Results

Parameter Result Unit

thspr4free 45 deg

K4 12.2 Nm/rad

GII 0.1927 -

104



Figure 4.19: Under-Actuated Version 4 Genetic Algorithm
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Figure 4.20: Under-Actuated Version 4 Animation, A State

4.3.5 Overview

An overview of the fully-actuated and under-actuated results is given in Table 4.13.

For the under-actuated mechanism family, four solutions are constructed as thor-

oughly illustrated in Table 4.13. From these versions, the one with the best result

in terms of the highest GII value difference occurrence is selected, which is version

3.
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Table 4.13: Results of Mechanism Optimization, GII values

Phalange Size Fully v0 Under v1 Under v2 Under v3 Under v4

Minimum 0.1936 0.2038 0.1985 0.2156 0.1927

Nominal 0.1946 0.2381 0.2377 0.2484 0.2260

Maximum 0.1944 0.2357 0.2622 0.2163 0.2300

Worst Case 0.1936 0.2038 0.1985 0.2156 0.1927
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CHAPTER 5

MECHANISM REALIZATION AND PRODUCTION

The AutoDesk Fusion 360 CAD program is used for mechanical engineering. Ball

bearings are used for revolute joint connections. The mechanism is manufactured

using a 3D printer.

5.1 Fully-actuated Mechanism

There are two parts in this section. At first, a prototype is manufactured. While this

process is going, some challenges are encountered, such as the collusion of the links

and the connection method between the user’s finger and the mechanism. Those are

overcome early in the development of the first prototype. Then, a second prototype

is manufactured with coupled motors, which is presented in the second part of this

section.

5.1.1 Prototype 1

For prototype purposes, rapid manufacturing is conducted without the addition of

motors. The structure parameters are selected from the multi-optimization problem

as in Table 4.4. The mechanism is shown in Figures 5.1, 5.2 and 5.3.

Results have been tested with a large range of phalanges sizes from a42 = 25 and

a72 = 16. Singularity has not been observed within the defined task space. The

pictures are presented in Figures 5.4 and 5.5.
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Figure 5.1: Fully-Actuated Prototype 1 Isometric View 1

Figure 5.2: Fully-Actuated Prototype 1 Front View
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Figure 5.3: Fully-Actuated Prototype 1 Isometric View 2

Figure 5.4: Manufactured Fully-Actuated Prototype 1 View 1
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Figure 5.5: Manufactured Fully-Actuated Prototype 1 View 2
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5.1.2 Prototype 2

For the final fully-actuated prototype, the addition of motors is performed. In this

case, the solution set from the single-optimization with sensitivity problem with a

better GII value is carried out. The results in Table 4.3 are used for this prototype.

The mechanism is shown in Figures 5.6, 5.7, 5.8. and 5.9.

Figure 5.6: Fully-Actuated Prototype 2 View 1
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Figure 5.7: Fully-Actuated Prototype 2 View 2

114



Figure 5.8: Manufactured Fully-Actuated Prototype 2 View 1
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Figure 5.9: Manufactured Fully-Actuated Prototype 2 View 2
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5.2 Under-actuated Mechanism

The under-actuated mechanism is derived from the fully-actuated one. Version 3

from the under-actuated mechanism family is selected for the final product. A torsion

spring is used in order to be able to control the mechanism. Also, a potentiometer is

needed in the under-actuated mechanism so that the kinematics of the mechanism can

be studied. The potentiometer that is desired to be used is given in Figure 5.10.

Figure 5.10: Potentiometer

Installation of the potentiometer results as a new adaptor named an "Under-actuated

Adaptor". The adaptor is shown in Figures 5.11 and 5.12. The design of the torsion

spring is dependent on the potentiometer’s size. In this case, the outer diameter of the

rod is 13.4 mm. So, the inner diameter of the spring is good to be 15.5 mm, which is

%115 larger than the rod size. Four different torsion springs with wire diameters of
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Figure 5.11: Under-actuated Adaptor

1.25, 1.5, 1.75, and 2 mm are manufactured. A cross-section view of the adaptor is

given in Figure 5.12. In Figure 5.13, the easy-switch apparatus, a fixer is shown that

is used to switch the mechanism from fully-actuated to under-actuated or vice-versa.

The assembly of the adaptor is presented in Figures 5.14, 5.15 and 5.16. Finally, the

under-actuated mechanism is shown in Figures 5.17, 5.18 and 5.19.

118



Figure 5.12: Under-actuated Adaptor Cross-Section
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Figure 5.13: Under-actuated Adaptor Fixer
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Figure 5.14: Under-actuated Adaptor View 1

121



Figure 5.15: Under-actuated Adaptor View 2

Figure 5.16: Under-actuated Adaptor View 3
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Figure 5.17: Under-Actuated Mechanism View 1

Figure 5.18: Under-Actuated Mechanism View 2
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Figure 5.19: Under-Actuated Mechanism View 3

Figure 5.20: Manufactured Under-Actuated Mechanism
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Discussion

It takes far more channeling to design an under-actuated mechanism than a fully-

actuated one. Since the degree of actuation is less than the degree of freedom, it is

not possible to define an under-actuated mechanism without using force equations.

Therefore, the force equations are used to get this essential equation. These mecha-

nisms can be sensitive to the environment because of this property.

Theoretically, the under-actuated mechanism should promote greater motor learning.

This hypothesis has to be examined in real-world patient scenarios. Another impor-

tant point is that a single-objective function only comes up with one solution, while

a multi-objective function comes up with more than one solution. The designer has a

selection from these solution sets. However, when the single-optimization problem is

clearly specified, it can be used quite effectively. Additionally, the final product can

be made using PLA additive manufacturing (3D printing). They are easy to make and

incredibly stiff. Research involving actual patients, however, may have a different

result.

6.2 Conclusion

In this thesis paper, a family of mechanisms is designed that is going to be used

for rehabilitation purposes. The Global Isotropy Index is used to find the optimal

mechanism. Primarily, a fully-actuated mechanism is produced. The fully-actuated

mechanism is then used to design a family of under-actuated mechanisms with tor-
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sional springs. A conventional mechanical torsion spring is used. Mechanism links

are manufactured using 3D printers. An easy switch method is adapted to the mech-

anism so that it is possible to use the same mechanism not only in the fully-actuated

type but also in the under-actuated type.

6.2.1 Future work

The following is a list of the upcoming works that would advance this thesis:

• In order to determine how accurate the virtual work calculations are, testing

using motors must be performed.

• It is necessary to examine the differences between fully-actuated and under-

actuated systems with real patient studies.

• In order to create a more user-friendly design, the data of the hand and fingers

that are used as input for 3D design should be improved, such as finger segment

diameters and palm altitude.

• Customizing the selection, crossover, and mutation functions allows for the

specification of GA problems. Perfectly tailored functions may almost certainly

ensure that the whole search space is checked.

• A topological optimization for the 3D design would be beneficial to reduce the

mechanism’s overall mass.

• It is possible to construct a compliant mechanism as an alternative to traditional

springs.

• Instead of having a robust design for different users, the mechanism might work

better if it had a few links that could be changed for different patients.
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