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ABSTRACT 

 

ASSESSMENT OF RANDOM FOREST METHOD IN PIXEL-BASED 

SNOW COVER CLASSIFICATION IN EUROPEAN ALPS,  

TATRA MOUNTAINS AND KAÇKAR MOUNTAINS 

 

 

 

Aksu, Cansu 

Master of Science, Geodetic and Geographic Information Technologies 
Supervisor: Prof. Dr. Sevda Zuhal Akyürek 
Co-Supervisor: Asst. Prof. Dr. Semih Kuter 

 

 
November 2022, 234 pages 

 

 

For most countries in the Northern Hemisphere, the amount of usable water 

throughout the year is roughly determined by the amount of snow. Climate change 

and increasing demand on drinking and industrial water due to population growth 

make the monitoring of snow cover even more crucial than it was in the past. Today, 

to observe the amount of snow cover, different algorithms are being used on remote 

sensing data for classification of snow, aside from in-situ data collection techniques. 

This study presents the evaluation of  the performance of Random Forest (RF) 

algorithm for snow cover classification on Sentinel-2 imagery over three selected 

mountainous regions: Alpine Region, Tatra Mountains, and Kaçkar Mountains, with 

different input combinations as independent variables (i.e., predictors). The 

combinations have been evaluated for three different times of the year for a much 

better assessment – to observe the differences in when snow cover starts to form 

(November to December), the time with roughly the maximum amount of snow is 

observed (January to March), and the time when it starts to melt (April to June). The 

confusion matrices, overall accuracy (OA) and Kappa coefficient were used for 



 
 

vi 
 

accuracy assessment. Overall, principle component bands combination (Pca) yielded 

the most accurate results. Pca combination also provided the shortest computation 

time out of all combinations, excluding the process of obtaining principal 

components, as the combination has the least amounts of input to the RF model, as 

compared to the other combinations. The overall results revealed that RF algorithm 

works well with appropriate numbers of principal component bands with NDSI, 

NDVI and NDWI indices for complex terrains over mountainous areas. 

Keywords: Sentinel-2, Remote Sensing of Snow, Classification, Machine Learning, 

Snow Hydrology, Random Forest 
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ÖZ 

 

AVRUPA ALPLERİ, TATRA DAĞLARI VE KAÇKAR DAĞLARINDA 

PİKSEL TABANLI KAR ÖRTÜSÜ SINIFLANDIRMASINDA  

RANDOM FOREST METODUNUN DEĞERLENDİRİLMESİ 

 

 

Aksu, Cansu 
Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Prof. Dr. Sevda Zuhal Akyürek 
Ortak Tez Yöneticisi: Dr. Öğr. Üy. Semih Kuter 

 

 

Kasım 2022, 234 sayfa 

 

Kar miktarı, Kuzey yarımküredeki çoğu ülke için yıl boyunca kullanılabilir su 

miktarını kabaca belirler. İklim değişikliğinin yanı sıra içme ve sanayi suyuna olan 

talebin sürekli artmasına sebep olan küresel nüfus artışı, kar örtüsünü izlemeyi 

geçmişte olduğundan daha önemli hale getirmektedir. Günümüzde kar örtüsü 

miktarını gözlemlemek için, yerinde veri elde etme tekniklerinin yanı sıra, kar 

sınıflandırması için uzaktan algılama verileri üzerinde farklı algoritmalar 

kullanılmaktadır. Bu çalışma, seçilen üç dağlık bölgede (Alp ler Bölgesi, Tatra 

Dağları ve Kaçkar Dağları) uzaktan algılama verileri (Sentinel-2) üzerinde kar örtüsü 

sınıflandırması için Random Forest (RF) algoritmasının bağımsız değişkenlerle 

oluşturulmuş farklı girdi kombinasyonları ile performansını değerlendirmesini 

sunmaktadır. Girdi kombinasyonlarının daha iyi değerlendirilmesi için yılın üç farklı 

zamanı baz alınmıştır - kar örtüsünün oluşmaya başladığı zaman (Kasım-Aralık), 

kabaca en fazla karın gözlemlendiği zaman (Ocak’tan Mart'a kadar) ve karın erimeye 

başladığı zaman (Nisan'dan Haziran'a kadar). Değerlendirme sonuçları için hata 

matrisleri ile genel doğruluk ve Kappa katsayısı kullanılmıştır. Genel olarak, 

atmosferik ve topografik düzeltme yapılan bantlardan elde edilen ilk üç temel bileşen 
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bantı ile NDSI, NDVI ve NDWI kombinasyonunun (Pca) en doğru sonuçları verdiği 

gözlemlenmiştir. Pca yönteminin ayrıca, temel bileşenleri elde etme süreci hariç, 

tüm kombinasyonlar arasında en kısa hesaplama süresine sahip olduğu tespit 

edilmiştir. Bu  kombinasyon aynı zamanda RF modeli için, diğer kombinasyonlara 

kıyasla, en az miktarda girdi değişkenine sahiptir. Elde edilen bu sonuçlar, RF’in, 

dağlık bölgelerdeki karmaşık arazi yapıları söz konusu olduğunda, NDSI, NDVI ve 

NDWI indisleri ile uygun sayıda temel bileşen girdisi ile iyi şekilde çalıştığını 

göstermektedir. 

 

Anahtar Kelimeler: Sentinel-2, Karın Uzaktan Algılaması, Sınıflandırma, Makine 

Öğrenmesi, Kar Hidrolojisi, Random Forest 
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CHAPTER 1  

1 INTRODUCTION 

The amount of snow cover is crucial for humans and all life forms in the Northern 

Hemisphere, which has 98% of the total snow cover on Earth (Wang et al., 2018). 

The runoff stemming from snowmelt is deemed as main water resource (Mankin et 

al., 2015), especially in high altitude locations of North America, Europe and Asia 

(Takala et al., 2011). The area covered with snow directly correlates with the amount 

of snow precipitation as well as the temperature, which affects the melting rate of 

snow on the ground. As temperature and snow precipitation influence the snow cover 

amount greatly, it is accepted as a key weather and climate indicator (Robinson et 

al., 1993). Not only the snow precipitation amount is affected by the changes in 

climate, the amount of snow cover also influences the climate. There are several 

reasons for the local climate conditions to be affected by the amount of snow cover, 

to give specific examples: i) the surface albedo can rise with the availability of highly 

reflective fresh snow cover, ii) due to its high thermal emissivity, snow behaves like 

a thermal insulator, and iii) melting snow acts as a place that latent heat can submerge 

(Cohen & Rind, 1991; Armstrong & Brodzik, 2001). In addition to all these, the 

carbon balance, as well as the soil respiration along with the thickness of the active 

layer (thawing seasonally) of the soil in permafrost locations is a direct consequence 

of the snow season length and the period of time which snowmelt occurs (Grogan & 

Jonasson, 2006; Takala et al., 2011). Thus, snow cover information contributes to 

the research of hydrological, climatological and greenhouse gas cycle in the mid and 

upper latitudes of the Northern Hemisphare (Takala et al., 2011; Tekeli et al., 2005). 

A study by Wang et.al. (2018) indicates that there is a downward trend of snow cover 

area in Northern Hemisphere in recent years, which is in line with the results received 

from other studies, investigated in various time frames (Bormann et al., 2018; 

Brown, 2000; Brown & Robinson, 2011;McCabe & Wolock, 2010; Kunkel et al., 
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2016;  Armstrong & Brodzik, 2001). Since the characteristics of snow are significant 

for investigating climate conditions and climate change, as well as determining the 

maximum amount of total runoff (Jonas et al., 2009), it is important to monitor the 

extent of snow accurately and continuously (Takala et al., 2011; Robinson et al., 

1993). Such monitoring is conducted by satellites as well as in situ station networks. 

Monitoring of snow by remote sensing has been increasing, and seen as a necessity 

for wide spatial extent of the snow (Robinson et al., 1993). Snow data obtained from 

existing stations within the area of interest, especially for locations with complex 

terrain, are usually limited (Basang et al., 2017).  

Snow cover monitoring with satellite based approaches have been adopted for almost 

60 years (Akyürek & Şorman, 2002; Tekeli et al., 2005). Today , snow cover maps 

can be achieved with adequate temporal resolution, even daily , with multispectral 

sensors like Moderate Resolution Imaging Spectroradiometer (MODIS) (Parajka & 

Blöschl, 2006), and sensors like National Oceanic and Atmospheric Association  

(NOAA) Advanced Very High-Resolution Radiometer (AVHRR) (Liu et al., 2013), 

and with adequate spatial resolution, with satellites such as Landsat and Sentinel 

(Gascoin et al., 2019).  

Snow covered area (SCA), which has been acknowledged as a crucial hydrological 

parameter, has been used for predicting streamflow as early as 1940s with aerial 

photography, and in the beginning stages of using satellite data, by establishing 

classification algorithms (Maurer et al. 2003). There are two different features that 

can be derived from optical remote sensing data, that is denoted as SCA, which are 

(i) binary snow cover maps (snow/nosnow) (Hall et al., 1995; Hall et al., 2002; 

Maurer et al., 2003), and (ii) fractional snow-covered area (fSCA) (subpixel snow 

cover mapping) (Metsämäki et al., 2005; Painter et al., 2003). In this study, a version 

of binary snow cover (no-snow cover is further classified) is implemented. 

Nowadays, both of these classifications have been obtained by machine learning 

algorithms (Czyzowska-Wisniewski et al., 2015; Dobreva & Klein, 2011; Kuter 
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2021; Kuter et al., 2018; Kuter et al., 2022; Liang et al., 2017; Liu et al., 2020a; 

Moosavi et al., 2014; Zhu et al., 2012). 

Features of snow other than SCA and fSCA are also obtained by processing satellite 

data, such as snow depth, and snow water equivalent, generally retrieved from 

microwave data (Foster et al., 2005; Tait, 1998; Liu et al., 2013), which are used to 

ascertain the quantity of runoff in mountainous regions (Jonas et al., 2009). Snow 

grain size and snow albedo (i.e., reflected solar radiation through snow which 

correlates to surface temperature, which, in turn, directly affects the climate) can also 

be acquired by means of remote sensing (Painter et al. 2003; Painter et al. 2009; Guo 

& Yang, 2022).  

The visible part of the electromagnetic spectrum is generally employed for snow 

cover detection since the reflection of snow is high in visible wavelenghts (Dietz et 

al., 2012; Tekeli et al., 2005), yet there are some limitations while only relying on 

the visible bands. Clouds and low brightness (shadows) can restrict or even block 

the snow cover data within the satellite imagery (Robinson et al., 1993). The dense 

forests in the area of interest can mask the snow from the view of the satellite, leading 

to underestimation of the actual snow cover extent (Robinson et al., 1993; Bitner et 

al., 2002). The solutions that have been offered in literature to mitigate these 

problems are explored in detail in Section 2.2. 

Fast technological developments in the applications of collection and recording of 

data for the last two decades have influenced the start of the period of “big digital 

data”, which led to studies on forming and finding competent and desirable 

algorithms of data mining, for obtaining relevant and convenient information (Çevik 

et al. 2017; Chowdhury et al. 2022; Tsai et al. 2015). In parallel to these 

developments, data-driven machine learning algorihtms have been evolved and 

improved in order to manage this big digital data (Kuter et al. 2022; Tsai et al. 2015). 

Remote sensing applications were not an exception, as machine learning algorithms 

have begun to be widely used with satellite data as well (Maxwell et al., 2018) since 
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the 60s (Holloway & Mengersen, 2018). One of the best indicators of the extensive 

approval of machine learning approaches in remote sensing applications is their 

usage with operational land-cover mapping, such as 2001 National Land-Cover 

Database (NLCD), which is generated by decision trees (Homer et al. 2004; Maxwell 

et al., 2018). In recent years, the accuracy that has been obtained via machine 

learning algorithms have been yielding impressive results, especially compared to 

the traditional parametric classifiers (Talukdar et al., 2020; Maxwell et al., 2018; 

Kuter, 2021; Pal & Mather, 2005).  

Snow cover classification through remote sensing data has also been achieved by 

machine learning algorithms, along with other methods (Tsai et al., 2019a). It has 

been reported in various studies that machine learning exceeds other common 

approaches those are used in snow cover mapping, such as statistical regression 

analysis and spectral unmixing, especially for RF and Support Vector Machine 

(SVM) algorithms (Hou et al., 2020; Liu et al., 2020a; Hou et al., 2021; Baba et al., 

2020; Tsai et al., 2019a). 

In this study, RF algorithm is used to classify snow cover, as well as clouds, water 

bodies, and land over three different mountainous regions, namely, European Alps, 

Tatra Mountains and Kaçkar Mountains from Sentinel-2 imagery by considering the 

snow’s different morphological phases, i.e., 1) fresh snow, 2) fully-formed snow 

pack, and 3) melting snow. This thesis aims to investigate the accuracy of RF model 

with different input combinations (cf. Chapter 3) and mainly seek solutions to the 

following issues those are often encountered when mapping snow cover with optical 

remote sensing data: 

• Shadows those are mostly prominent with the remote sensing data of 

mountainous regions, causing misclassification, and  

• Clouds in satellite images those are often misidentified as snow. 
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The thesis starts with Chapter 1, which presents an introduction and the goal of the 

study. This Chapter also demonstrates the organizational schema of the whole thesis.  

Chapter 2 reviews the recent and relevant literature. The materials and methods that 

are used in the thesis are given in detail in Chapter 3. The selected study areas, the 

inputs and their various combinations, the approaches that are employed while 

obtaining the input data along with the results are described.  In Chapter 4, the results 

are given and discussed. And finally, Chapter 5 concludes the thesis, summarizing 

the work that has been utilized with potential future directions and prospects.
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Background on Snow Hydrology 

Study of snow hydrology considers the contributions of snow within hydrologic 

cycle, namely melting of snow, the movement of water from snowmelt within the 

snow, as well as snowmelt adding to runoff (Singh et al., 2011). The snow hydrology 

elements are snow cover, snow depth, snow water equivalent, snow stratigraphy, 

snow albedo, snow-soil interface (Rango, 1993). Figure 2.1 demonstrates the snow 

hydrology components and processes (Beria et al., 2018). 

 

Figure 2.1. Snow hydrology components and processes (Beria et al., 2018)  
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When snow precipitation occurs, snow starts to accumulate, then redistribution and 

melt of the snow occur, leading to surface runoff (Beria et al., 2018). Snow 

accumulation causes snow grain size and shape to transform. This causes snow to 

subliminate, and its vapor to exchange with the atmosphere (Colbeck, 1982). Wind 

can redistribute the accumulated snow on the ground. Redistribution of snow can 

also be triggered by avalanches, which happen due to snowpacks being layered in a 

structurally weak formation. Wind-induced redistribution can cause snowflakes to 

shatter upon impacting the surface (Comola et al., 2017). This produces smaller ice 

fragments, as well as sublimination of the snow. Evaporation of snow is also more 

likely to occur with the presence of wind (Beria et al., 2018). When snowmelt occurs, 

it either contributes to surface runoff, infiltrates into the subsurface and contributes 

to groundwater or other processes in the subsurface, or it re-freezes. The trees also 

impact the snow cycle such that in forest areas, trees can block snow (Hedstrom & 

Pomeroy, 1998). The snow intercepted by tree canopy either subliminates or goes 

underground by snow throughfall of snowmelt stemflow. 

In today’s world, snow hydrology is deemed as a very important subject since 

snowmelt contribution to downstream is crucial for many regions (Li et al., 2021; Qi 

et al., 2022; Nollin, 2010). History of snow cover study was dominated by two 

subjects: water resources and avalanches. Although there were methodical 

examinations of snow before 1900s, there were few tools to conduct serious research. 

One of the earliest snow hydrology studies that was in 17th century by the natural 

scientist Antonio Vallisnieri. He speculated that the runoff from springs came from 

rain and snowmelt (Luzzini, 2011). Physical and quantitative observations of snow 

cover were more possible after year 1936, when International Glaciology Society 

was established, and many more international organizations and societies formed by 

snow scientists followed. Untill 1960s, many studies were conducted in detail to 

analyse snow’s physical behaviour, as laboratories for snow research began to be 

established. Starting from 1970s, more advanced techniques and tools were involved 

in the research as computers started to become available (Colbeck, 1987), and remote 

sensing has significantly advanced the observation of snow cover (Rango, 1993). 
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2.2 Applications of Snow Cover Determination with Remote Sensing 

Implementations 

The snow cover is identified by a few specific occurrences as well as phases that can 

be determined by satellite-based observations, which have significance in especially 

mountainous zones (i.e., Alpine Region) (Barry et al., 1995). In recent years, snow 

cover mapping, and detection of snow cover and its properties for hydrological 

models have been more frequently used along with traditional methods (i.e., snow 

pits, probing, ultrasonic snow depth sensors) (Dong, 2018; Schaffhauser et al., 2008). 

Since data collection by traditional methods, especially in higher elevations, both 

demands a large amount of time, not feasible, and the obtained data are a point 

assessment of snow which might not embody the properties of a whole area covered 

by snow (Snehmani et al., 2015).  

Satellite detection of snow was first employed in eastern Canada in the year of 1960 

by the TIROS-1 satellite (Akyürek & Şorman, 2002). Although remote sensing 

techniques were used to detect snow cover in 60s, it had not yet presented sufficient 

results (Colbeck, 1987). Landsat 1 was first launched to orbit in 1972 (Williams et 

al., 2006). NOAA-AVHRR, Geostationary Operational Environmental Satellite 

(GOES) series, and Special Sensor Microwave Imagers (SSM/I) of Defense 

Meteorological Satellite Program (DMSP) were started to be used in the late 60s and 

70s (Hao et al., 2021; Foster et al., 2009; Barry et al., 1995; Armstrong & Brodzik, 

2001). All of these instruments have provided a large archive of remote sensing data 

and extensively used for snow cover mapping (Hao et al., 2021; Rößler & Dietz, 

2022; Dech et al., 2021; Akyürek & Şorman, 2002; Lucas & Harrison, 1990; Foster 

& Rango, 1982). SPOT-VEGETATION (VGT) has been operational since 1998 and 

it has aided in snow detection of numerous studies as well (Delbart et al., 2006; 

Dankers & De Jong, 2004). By Terra satellite, which was launched on December 18, 

1999, the MODIS started compiling data on February 24, 2000 (Klein, 2003), and 

since then, it has been used for monitoring of snow cover (Tekeli et al., 2005). Due 

to the technical limitations of Landsat and NOAA-AVHHR, MODIS - Earth 
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Observation System-Terra (TERRA) became more preferable. Landsat does not 

provide daily data, as its temporal resolution is 16 days. Although daily data is 

available for AVHRR, it requires processing for the classification of snow from other 

characteristics. Additionally, the geolocation accuracy of MODIS- TERRA is an 

upgrade over NOAA-AVHRR’s (Tekeli et al., 2005).   

Sentinel-2A was launched in June 2015, which makes the Sentinel-2 constellation a 

relatively new source of remote sensing data (Languille et al., 2015). Sentinel-2 

grants a higher temporal resolution (5 days with twin satellites, 2A and 2B) as 

compared to Landsat, and it has high spatial resolution of 10, 20 and 60 meters 

(Gascon et al., 2009). Setinel-2 data have been widely used in remote sensing 

applications including snow cover mapping for its high temporal and spatial 

resolution, in addition being free of charge, i.e., Theia Snow Collection (Gascoin et 

al., 2019). 

The methods and data for deriving snow cover from remote sensing applications 

have varied throughout the years. The high reflectance of snow in the visible bands 

and low reflectance in the infrared bands have led to the development of Normalized 

Difference Snow Index (NDSI), which can separate snow from other land covers 

(Dong, 2018; Bian et al., 2016). Microwave remote sensing data have also been 

broadly used to detect snow cover since 1970s, as its ability of identifying snow 

cover is not influenced by clouds or shadows (Dong, 2018); Barry et al., 1995). 

Another approach that is frequently used to determine snow cover is integrating the 

NDSI with threshold classification method (Luo et al., 2022). Spectral mixture 

analysis (Painter et al., 1998; Hao et al., 2019) and other thresholding methods (Luo 

et al., 2008) are also some of the common methods of distinguishing snow cover. 

Another widely employed approach, nowadays, in snow cover mapping is the use of 

machine learning algorithms (Tsai et al., 2019b). It has been disclosed in many 

studies that machine learning classification algorithms surpass other methods of 

snow cover identification in remote sensing (Hou et al., 2020; Liu et al., 2020b; Hou 
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et al., 2021; Baba et al., 2020; Tsai et al., 2019a). The most extensively used machine 

learning algorithms are SVM (Forman & Reichle, 2015; Liu et al., 2020b; Nijhawan 

et al., 2018a), support vector regression (SVR) (Kuter, 2021; Xiao et al., 2018), 

decision trees (DT) (Balk & Elder, 2000; Gharaei-Manesh et al., 2016) and RF (Liu 

et al., 2020b; Nijhawan et al., 2018a; Kuter, 2021). Artificial neural networks (ANN) 

have also been employed for the purpose of classifying snow (Gharaei-Manesh et 

al., 2016). 

2.2.1 Limitations and Proposed Solutions on Snow Cover Determination 

in Literature 

Snow cover is mainly determined by the visible bands, as the reflection of snow is 

high in the visible portion of the electromagnetic spectrum, especially for fresh snow 

(Dietz et al., 2012), but there are some limitations with this approach. Cloud cover, 

as well as shadows casted by clouds and complex topography may put a limitation 

on the correct detection of snow cover from the visible bands (Snehmani et al., 2015; 

Dietz et al., 2012; Barry et al., 1995). Although differentiating cloud from other land 

cover types is not an issue, snow can show similar characteristics in the visible and 

thermal bands (Dietz et al., 2012). Cloud cover and shadow problem can be solved 

by numerous methods, for instance, by the use of satellite microwave data (Barry et 

al., 1995) and cloud/shadow masking algorithms from different sources (Skakun et 

al., 2022). Especially for clouds and mountainous regions with slope-casted 

shadows, microwave radiometers are great devices for deducing land cover, 

specifically for snow cover. Microwave emissivity of snow is highly reliant on the 

water content and freshness of the snow (Schanda et al., 1983). Synthetic aperture 

radar (SAR) can obtain high resolution data at either night or daytime, without the 

interference of cloud and mountain shadows, unlike other microwave sensors 

(Snehmani et al., 2015).  

In addition to microwave data, other cloud and shadow masking techniques have also 

been established to overcome these issues (Skakun et al., 2022; Luo et al., 2008) 
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such as NDSI, which can differentiate snow from clouds, with the exception of ice 

clouds (Dong, 2018; Bian et al., 2016).  Machine learning algorithms, which have 

already been extensively adopted in snow cover mapping due to their higher 

accuracy as compared to some other commonly used approaches (Hou et al., 2020; 

Liu et al., 2020; Hou et al., 2021; Baba et al., 2020; Tsai et al., 2019b), are also used 

to tackle these issues in various studies with varying but sufficient results (Skakun 

et al., 2022; Chai et al., 2019; Jeppesen et al., 2019; Gomez-Chova et al., 2017). In 

addition to the efforts on masking the clouds and shadows with machine learning 

and deep learning algorithms, there are also various existing masking algorithms that 

have been developed over the years, such as Fmask (Zhu et al., 2012), Sen2Cor 

(Main-Knorn et al., 2017) and MAJA (Rouquié et al., 2017) with sufficient labelling 

accuracy for cloud, as well as other land cover types (i.e., snow, vegetation, water 

etc.) (Zekoll et al., 2021; Baetens et al., 2019).  
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CHAPTER 3  

3 MATERIALS AND METHODS 

In this study, to test the capabilities of the RF algorithm, Sentinel-2 data from 

different mountainous regions are used and different input combinations have been 

formed for detection of four classes: Cloud, No-snow (Land), Snow and Water. The 

No-snow (Land) class is denoted as the class that contains every element that is not 

snow, not cloud or not water. It contains different land cover classes, as explained in 

detail in Section 3.1.1.  

The Sentinel-2 data were obtained from Copernicus Open Access Hub (Copernicus 

Open Access Hub, n.d.; Tona & Boa, 2018). 

The band designation of Sentinel-2 is shown in Table 3.1 (Main-Knorn et al., 2017). 

In this study, Band 2, 3, 4, 5, 6, 7, 8a, 11 and 12 have been used (mentioned as Band 

2-12). Band 2, 3 and 4 been resampled to 20 meters of resolution for the purpose of 

this study with Sen2Cor (cf. Section 3.2.2).
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Table 3.1.Spectral bands of Sentinel-2A (Main-Knorn et al., 2017) 

Sentinel-2A Bands Original Resolution (m) Central Wavelength 
(µm) 

Band 1 60 0.443 

Band 2 10 0.490 

Band 3 10 0.560 

Band 4 10 0.665 

Band 5 20 0.705 

Band 6 20 0.740 

Band 7 20 0.783 

Band 8 10 0.842 

Band 8a 20 0.865 

Band 9 60 0.945 

Band 10 60 1.375 

Band 11 20 1.610 

Band 12 20 2.190 

 

The RF classification algorithm is applied to the selected spatial subsets on 9 

Sentinel-2 images, each of which has an area of 20 × 20 km2 (1001 × 1001 pixels) 

(i.e., there are 9 spatial subsets in total) with the following input combinations: 

• The composition of resampled Sentinel bands (Band 2-Band 12) and NDSI, 

NDVI and NDWI, is named as “Sc_only”, 

• The composition of atmospherically and topographically corrected Sentinel 

bands (Band2-Band12) and NDSI, NDVI and NDWI, is named as 

“Atmo_topo”, 

• The composition of atmospherically and topographically corrected Sentinel 

bands (Band2-Band12), NDSI, NDVI and NDWI and digital elevation model 

(DEM) is named as “Dem” 

• The composition of the first three principal components of principal 

component analysis (PCA) with NDSI, NDVI and NDWI, is named as “Pca”. 
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The definitions of the compositions are presented in Table 3.2. The approaches to 

attain some of the inputs are described in the subsequent sections of this chapter. The 

spectral bands used in all above-mentioned input combinations have been 

atmospherically and topographically corrected, except for Sc_only. 

 

Table 3.2. Main input combinations. 

Combination 
name 

Content of the  Combination 

Sc_only Band 2-7, Band 8a, Band 11, Band 12, NDSI, NDVI and NDWI 

Atmo_topo Band 2-7, Band 8a, Band 11, Band 12, NDSI, NDVI and NDWI 

Dem Band 2-7, Band 8a, Band 11, Band 12, NDSI, NDVI and 
NDWI, elevation data 

Pca First three principal components from principal component 

analysis (PCA) (derived from Band 2-7, Band 8a, Band 11, 
Band 12), NDSI, NDVI and NDWI 

 

The initial classification results are assessed with OA and Cohen’s Kappa 

coefficient. Two additional input combinations are also applied to the images which 

produced the best and worst accuracy metrics (Table 3.3): 

• The three principal components as well as slope and aspect data derived 

from DEM named as “Pca_plus”, and 

• The three principal components, slope and aspect data, as well as elevation 

data acquired from DEM named as “Pca_plus2”
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Table 3.3. Additional input combinations 

Combination 
name 

Content of the Combination 

Pca_plus First three principal components (derived from Band 2-7, Band 
8a, Band 11, Band 12), NDSI, NDVI and NDWI, aspect and 
slope data 

Pca_plus2 First three principal components (derived from Band 2-7, Band 
8a, Band 11, Band 12), NDSI, NDVI and NDWI, aspect, slope 
and elevation data 

 

All of the combinations mentioned above are applied on all of the 9  Sentinel-2 

images, with number of training data of 300 per class, and 1000 per class (i.e., 2 

different training sample size for every image with every method). The process of 

selection of training/testing datasets is explained in detail in Section 3.5.2. 

The Pca input combination is conducted on the full tile area (i.e., 100 × 100 km2 of 

full tile area) of the 9 Sentinel-2 images, as Pca input combination generally yielded 

the best accuracy assessment results (cf. Chapter 0). 

The methodology used in this study is summarized in the flowchart in Figure 3.1.



 

17 
 

 

F
ig

u
r
e
 3

.1
. 
T

h
e
 f

lo
w

c
h

a
rt

 o
f 

th
e
 m

e
th

o
d

o
lo

g
y
 u

se
d

 i
n

 t
h

e
 s

tu
d

y
 

 

 

The RF classification, preparation of training and test datasets, PCA and calculation 

of the normalized band indices have been conducted with Python codes (cf. 



 

18 
 

Appendix A, Appendix B), whereas attaining slope and aspect data, in addition to 

randomly sampled test data for accuracy assessment, have been done with the aid of 

ArcMap 10.7 software. 

In the subsequent sections, the study areas, the selected satellite image datasets, the 

image preprocessing stages, PCA, the RF classification algorithm, the selection 

process of training and test datasets, and the employed statistical metrics for accuracy 

assessment are explained in detail.  

3.1 Study Areas and Satellite Image Dataset 

For this study, three different mountainous regions are selected: European Alps, 

Tatra Mountains and Kaçkar Mountains. For each region, single Sentinel-2 tile with 

an area of 100 × 100 km2 is chosen.  

The selected study areas can be seen in Figure 3.2.  

 

 

Figure 3.2. The locations of the selected Sentinel-2 tiles. 
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The three mountainous regions are chosen for this study to observe the differences 

in the behavior of RF algorithm in different climates, different snow durations and 

different snow depths. In Kuter et al. (2022), the effectiveness of EUTMETSAT H35 

fractional snow cover area product is validated with different data sources. This 

study further investigates the weaknesses of the detection of snow cover area in these 

regions with different methods. 

The Alpine Region comprises of eight countries in Europe: Austria, France, 

Germany, Italy, Liechtenstein, Monaco, Slovenia, and Switzerland. The chosen area 

is mostly at the northeast of Italy and is within the borders of Austria and 

Switzerland. The mean elevation of the tile from Alpine Region is calculated  as 1695 

m. The peak elevation of Alps, in general, exceeds 4800 m. The Alps are 

characterized by distinct climatic gradients, occurrences of extreme precipitation 

followed by hazardous events, and permanent snow and ice cover in higher altitudes 

of the mountain range (Gobiet et al., 2014). 

The study of Valt and Cianfarra (2010) has analyzed the snow duration (number of 

snow days with snow depth > 1 cm) and accumulated snowfall with the data gathered 

from 18 stations located in the Italian Alps for 60 and 50 years, respectively (between 

the years of 1950 and 2009, and 1960 and 2009). Both analyses have been conducted 

for the entire snow season, which is from December to April, as well as for spring 

season (from March to April) and in the case of accumulated snowfall, for winter 

season (from December to February) separately. The analyses have also been done 

for two different elevation ranges, which are denoted as between 800 m to 1500 m 

and 1500 m and above. According to the results of the study, there has not been a 

significant change in mean snow duration (for decades). For 800-1500 m elevation, 

the mean duration is between 92-111 days, and for 1500 m elevation and above, the 

mean duration is between 140-148 days, for the entire snow season in Italian Alps. 

There is an observed variation; however, in the mean accumulated snowfall. For 800-

1500 m elevation, the mean accumulated snowfall changes from 102 to 158 cm, and 
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for 1500 m elevation and above, the mean snowfall varies from 199 to 280 cm, for 

winter season in Italian Alps. 

A study has determined the temperature changes in Eastern Alps at high and low 

elevations from 1975 to 2010 with the help of global radiation and remote sensing 

data (Tudoroiu et al., 2016). According to the study, there has been a warming trend 

in both higher and lower elevations over the years. The annual median temperature 

was reported from 6 oC to 8 oC in higher altitudes, and in between 10 to 12 oC in 

lower altitudes. 

Tatra Mountains forge a natural border between Slovakia and Poland. The mean 

elevation of the tile located in Tatra Mountains is 706 m. Peak elevation of Tatra is 

2655 m above sea level (Lapin et al., 2007). Tatra Mountains are the highest 

mountains within the Carpathian Range, consisting of subalpine and alpine zones. 

Snow season is usually depicted as October to June (Singh, 2013).  

The study of Lapin et al. (2007) has observed the duration of snow as well as 

maximum snow depth for Tatra Mountains considering between the years of 1921 

and 2006, using data from 5 in situ stations. It is reported that, in higher elevations, 

the duration of snow is almost as high as 60% of the year (i.e., approx. 220 days) in 

snow season (July-June is considered). Maximum snow depth varies from as low as 

5 cm to higher than 160 cm, as observed in the snow season. Annual average 

temperature is measured in between 0.5 and 3.5 oC at the meteorological station of 

Skalnate´ pleso, with the elevation of 1750 m from the year of 1965 to 2002, 

demonstrating a sharp rise in recent years (Singh, 2013). 

Kaçkar Mountains is a mountain range located in the northeastern Turkey, in 

Trabzon and Rize provinces, close to the coast of Black Sea. The mean elevation of 

the tile from Kaçkar Mountains is 2112 m. The peak elevation of the mountains is 

reported as 3932 m, and it is accepted as the highest mountain range in Eastern Black 

Sea region of Turkey (Bayrakdar & Özdemir, 2014). The mountains are located close 

to the area of the moisture supply of the Black Sea, and therefore, the annual 

precipitation is approximately 2000 mm, which is much higher within the valleys of 
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Kaçkar than the annual average precipitation of Turkey (Reber et al., 2022). The only 

few glaciers remaining in Northeastern Anatolia are located in Kaçkar mountains 

(Reber et al., 2022). 

For all three regions, ERA5-Land snow depth data, temperature and precipitation 

data have been presented in Chapter 4 for better comparability of the climate 

parameters of these regions. 

Out of the six seasonal snow cover classes that are proposed by Sturm et al. (1995), 

seasonal snow on all three Sentinel-2 tiles have been classified as “maritime snow” 

as can be seen in Figure 3.3. 

 

 

Figure 3.3. Seasonal snow cover types of Sentinel-2 tiles (Sturm et al., 1995). 

 

The satellite image dataset of the study consists of 9 Sentinel-2 Level 1-C images for 

the 3 selected areas that are described in Section 3.1. For each study area, one 

Sentinel-2 image for the period when the snow cover starts to accumulate (from 

November to December), one for the period when the amount of snow is at climax 

(from January to March) and finally, one for the period when the snow starts to melt 
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(from April to June) have been used. Sentinel-2 products are composed of 100 km  

× 100 km tile grids, which have specific tile numbers. The tile numbers, as well as 

the corresponding dates of acquisition are given in Table 3.4. 

 

Table 3.4. The tile numbers and dates of Sentinel-2 products 

Location  Tile Number Date of acquisition 

Alpine Region 32TPS 5 December 2018 

24 January 2019 

13 June 2019 

Tatra Mountains 34UCV 29 November 2018 

23 January 2020 

8 April 2019 

Kaçkar Mountains 37TFE 19 December 2019 

19 March 2018 

8 April 2018 

 

The Sentinel-2 L1C raw data consist of 13 bands (cf. Table 3.1).  

3.1.1 Land Cover 

Some studies suggest that land cover affects the detectability of snow cover, 

especially in forest land cover type (Hall et al., 2001; Robinson et al., 1993; Bitner 

et al., 2002). The distribution of land cover classes and the changes in these classes 

between the years of 2018 and 2019 in all three Sentinel-2 tiles that have been 

observed for this study are presented in Figure 3.4 -Figure 3.9 and  Table 3.5. Land 

cover class distribution have been obtained from Google’s Dynamic World (DW) 

land cover products (Dynamic World, n.d.; Brown et al., 2022) , and the percentage 

of the land covers are calculated by the help of QGIS software. To present the trees 
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land cover, snow-free season was obtained for land cover data (from May to 

December). 
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Table 3.5. The percentage of the land cover distribution of Sentinel-2 tiles in 2018 
and 2019 (May-December). 

Land Cover Class 

Location of the Sentinel-2 Tile 

European Alps Tatra Mountains Kaçkar 
Mountains 

2018 2019 2018 2019 2018 2019 

water 1.6 1.2 0.8 0.8 0.5 0.6 
trees 60.2 57.9 74.9 75.0 8.2 7.2 

grass 11.7 11.9 11.2 11.5 20.2 9.0 
flooded vegetation 0.0 0.0 0.0 0.0 0.0 0.0 
crops 1.0 1.5 6.4 6.2 15.9 20.8 
shrubs and scrub 7.0 5.2 0.9 0.7 29.5 30.1 

built-up 3.2 3.4 5.7 5.8 1.6 1.6 
bare 9.0 3.5 0.1 0.1 24.1 29.0 
snow and ice 6.3 15.5 0.0 0.0 0.1 1.6 

 

The most dominant land cover feature in both tiles from Alpine Region and Tatra 

Mountains is trees land cover class. The tree distribution in the tile from Kaçkar 

Mountains, differing from the other two regions, have been overshadowed by shrubs 

and scrub class, then followed by bare class. 

Land cover change between 2018-2019 in three tiles is illustrated in Figure 3.10. 
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a) 

b) 

c) 

Figure 3.10. The percentage comparison of land cover classes of the Sentinel-2 
tiles for the years of 2018 and 2019 for a) European Alps b) Tatra Mountains and 
c) Kaçkar Mountains 

As can be seen in Figure 3.10, there is not a significance change in land covers 

between the years of 2018 and 2019 for all tiles. 
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In this study, four classes have been considered for RF algorithm: Cloud, No-snow 

(Land), Snow and Water. Under No-snow (Land) class, the following land cover 

classes are considered: trees, grass, crops, shrubs and scrub, bare and built-up. 

3.2 Image Pre-Processing Stages 

In this study, the Sentinel-2 bands (Band 2, 3 and 4) are resampled to 20 m resolution 

via the Sentinel-2’s Level 2A Processor Sen2Cor (Main-Knorn et al., 2017). The 

resampling process of Sen2Cor employs cubic spline method. The NDSI, NDVI and 

NDWI are produced from the resampled data. Then, Sentinel-2 bands are 

atmospherically and topographically corrected again using Sen2Cor (Main-Knorn et 

al., 2017).  

The bands are then used as input to RF model for different predictor variable 

combinations that are described in Table 3.2 and Table 3.3. 

3.2.1 Normalized Band Indices  

This study makes use of three different indices, retrieved from the Sentinel-2 bands, 

in all input combinations for the RF classification algorithm, to differentiate the four 

classes: Cloud, No-snow (Land), Snow and Water. These indices are: NDSI, NDVI 

and NDWI.  

NDSI divides the visible (VIS) and near infrared (NIR) or short-wave infrared 

(SWIR) bands to differentiate clouds from snow cover. In terms of snow cover 

mapping, NDSI-based approaches have broadly been conducted all around the 

world, and yielded highly accurate results (Luo et al., 2022), including using the 

index as an input variable for RF and other machine learning algorithms.  

The NDSI is formed by the generalized calculation below (Nagajothi et al., 2019; 

Hall & Riggs, 2011): 
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NDSI= 

(Green-SWIR)

(Green+SWIR)
 (Eq 3.1) 

 

where, for Sentinel-2 data, the green band is band 3 and the SWIR band is band 11. 

NDVI is a commonly used index to differentiate vegetation from other land cover 

types, formed by NIR and red band (Jin et al., 2018). For better mapping of snow 

cover, in the conditions where snow is at dense vegetation, shadows and low 

illuminated areas, NDVI, combined with NDSI is used to determine snow, and 

provide adequate results (Klein et al., 1998). NDVI is frequently used to differentiate 

cloud from other land covers, as cloud pixel values are zero for both NDVI and NDSI 

(Ghasemian & Akhoondzadeh, 2018).  

The NDVI is realized by the following equation (Ghasemian & Akhoondzadeh, 

2018): 

 

 
NDVI= 

(NIR-Red)

(NIR+Red)
 

(Eq 3.2) 

 

where the red band corresponds to band 4 whereas NIR band corresponds to band 8 

for Sentinel-2. 

NDWI is the most widely used method to detect surface water features for satellite 

images (McFeeters, 1996; Burton-Johnson et al., 2016; Acharya et al., 2018).  

The NDWI is obtained through the following calculation (McFeeters, 1996): 

 
NDWI= 

(Green-NIR)

(Green+NIR)
 (Eq 3.3) 

 

where green band is band 3, whereas NIR band is band 8 for Sentinel-2. 
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3.2.2 Atmospheric and Topographic Correction with Sen2Cor  

The reflectance of the objects detected by satellites are often subjected to 

atmospheric absorption and scattering, instigating distortion of the actual reflectance 

of the objects, thus affecting the data gathered from remotely sensed images (Mahiny 

& Turner, 2007). For this reason, atmospheric correction is advised for classification 

and change detection operations and generally yields better results than non -

atmospherically corrected data (Song et al., 2001). 

Topographic correction attributes to rectification of the different solar reflectance as 

a result of the irregular surfaces on the terrain. This difference in reflectance results 

in a high diversity of reflectance values for similar vegetation categories. This also 

causes areas with shadow showing less than expected reflectance values as well as 

illuminated areas giving more than expected reflectance (Riano et al., 2003). 

Therefore, topographic correction is also essential for correct handling of terrain 

incident angles and shadows, especially in areas with rough terrain, and thus, 

yielding to more accurate reflectance values (Padró et al., 2018; Riano et al., 2003).  

It is reported that the accuracy results of classification conducted on atmospherically 

and topographically corrected images resulted well (Vanonckelen et al., 2013). To 

that end, both atmospheric and topographic corrections are worthwhile to execute 

before any land cover classification application. 

Atmospheric and topographic correction in Sen2Cor is mainly based on ATCOR 

algorithm (Richter et al., 2006). In several radiometric correction processes, such as 

Sen2Cor, topographic correction is applied by utilizing a DEM as secondary data 

(Padró et al., 2018). In Sen2Cor, SRTM DEM data with 90 m resolution is used for 

topographic correction automatically (as preferred in this study), but it can be 

changed within the application (Mueller-Wilm, 2020).  Topographic correction is 

done with empirical bidirectional reflectance distribution function (BRDF) method 

with three adjustable variables. Topographic correction is executed when the 

elevation difference of the granule is bigger than 50 meters or at least 1% of the 

pixels of an image have a slope more than 6 degrees, since the effect of the terrain 
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irregularity can be examined when slope value is equal to or surpasses the threshold 

of 7 degrees. Sen2Cor does not conduct topographic correction in flat locations to 

prevent artefacts (Louis, 2021). 

The predominant Level-2A processing phases of Sen2Cor are presented in Figure 

3.11. Level-2A processing is implemented to the Top-of-Atmosphere (TOA) 

reflectances of Sentinel Level-1C data. The processing of Sentinel-2 products begins 

with cloud detection and scene classification. Then, aerosol optical thickness (AOT) 

and water vapor (WV) are retrieved from the L1C data. Finally, TOA reflectance 

values are transformed to Bottom-of-Atmosphere (BOA) reflectances. In addition to 

the main processing steps, Sen2Cor also consists of additional steps that are optional, 

such as cirrus correction, terrain correction, adjacency correction and empirical 

BRDF corrections (Main-Knorn et al., 2017). 

 

 

 

Figure 3.11. Sen2Cor main processing steps (Main-Knorn et al., 2017)  

 

In this study, Sen2Cor is used for both atmospheric and topographic correction with 

the aid of SNAP (Sentinel Application Platform) software. SNAP is a free open-

source toolbox for Sentinel image processing and Sentinel time series images, 
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developed by European Space Agency (ESA) (European Space Agency, n.d.; 

Gomarasca et al., 2019). 

3.2.2.1 Scene Classification Layer (SCL) 

The Scene Classification Layer (SCL) is obtained from the pre-processing phase of 

Sen2Cor, while Level-1C product is converted to Level-2A (Main-Knorn et al., 

2017). SCL consists of 11 classes, which are given together with their associated 

color codes in Figure 3.12. 

 

 

Figure 3.12. The class labels and their color codes in Sentinel-2's SCL (Main-

Knorn et al., 2017) 

 

In this study, SCL is used in selection of test datasets: 

• Cloud class is extracted from SCL attributes 8 and 9, 

• No-snow (Land) class is extracted from SCL attributes 4 and 5, 

• Snow class is extracted from SCL attribute 11, and 
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• Water class is extracted from SCL attribute 6.  

There have been observed accuracy issues of SCL in other studies (Raiyani et al., 

2021), as well as in this study. For that reason, the extracted attributes are further 

visually checked and adjusted manually, with the help of ArcGIS 10.7 software, 

especially for the attributes selected as Water class and No-snow (Land) class, to 

obtain more accurate results. 

3.3 Digital Elevation Model (DEM) 

DEM is a measurable depiction of terrain, and it is crucial for Earth science, 

hydrological applications and analysis of remote sensing data in general. DEM can 

be obtained by employing photogrammetry, interf erometry, ground and laser 

surveying, as well as other methods (Mukherjee et al., 2013). DEMs were started to 

be produced in the 1960s. The elevation of the surface can be obtained by employing 

two different angles in the visible or near-infrared regions of the electromagnetic 

spectrum (Bühler et al., 2011). 

Topography affects snow cover distribution; therefore, DEM assists in improving 

the accuracy of snow cover classification (Tsai et al., 2019b). In this study, DEM 

data is obtained for the three regions from SRTM data (FABDEM, n.d.; Hawker et 

al., 2022) and resampled to 20 m resolution to be used in several input combinations, 

with cubic spline method. The slope and aspect data, and hypsometric curves have 

been obtained in ArcMap 10.7 software. The visual representation of elevation, slope 

and aspect data, and hypsometric curves derived from the resampled SRTM DEMs 

for all three study areas is shown in Figure 3.13. These DEMs have also been 

automatically used as input for topographic correction by the SNAP toolbox (cf. 

Section 3.2.2).
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3.4 Principal Component Analysis (PCA) 

PCA is used as a procedure of re-articulating the data content of a multispectral set 

on a number of images (i.e., m) as a set of m number of principal components. There 

are three procedures to compute principal components in remote sensing, which are 

(i) Obtaining covariance/correlation matrix with the aid of input image data sets, (ii) 

Obtaining eigenvalues and eigenvectors that are orthogonal to each other and (iii) 

obtaining principal components (Eklundh & Singh, 1993). 

Principal components possess two notable features:  

• The principal components are statistically unrelated (or orthogonal to each 

other) 

• The principal components have maximum variance, which implies that the 

principal components are derived in the decreasing sequence of variability 

(Mather & Koch, 2011; Eklundh & Singh, 1993). 

The PCA has been employed in remote sensing applications for a variety of goals 

(Rodarmel & Shan, 2002). In this study, PCA is employed in several input 

combinations, as the usage of the first several principal component images can result 

in higher accuracy in remote sensing classification applications (Rodarmel & Shan, 

2002).  

In this study, the first three PCA components are derived with the aid of sci-kit learn 

library of Python (The relevant Python script can be observed in Appendix C). The 

dataset for the PCA is determined as the 9 bands of Sentinel-2 L2A data, which 

atmospherically and topographically corrected with the help of Sen2Cor. The bands 

are as follows: band 2-7, band 8A, band 11 and band 12 (cf. Table 3.1). 

3.5 Random Forest (RF) 

RF is a supervised classification and regression algorithm presented by Breiman in 

2001 (Breiman, 2001). RF consists of an ensemble of Classification and Regression 
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Trees (CARTs). It is primarily rooted in the bagging concept of Breiman (Breiman, 

1996), also known as “bootstrap aggregation”. Each tree in ensemble of bootstrap 

aggregation consists of a bootstrap element randomly selected with a substitute from 

the training data. The trees are accumulated (averaged) to yield the “bagged” 

estimation (Cutler, 2010). 

A critical asset of RF is the out-of-bag (OOB) error. OOB is generally regarded as 

an acceptable estimator of the error expected for unseen data. OOB data attributes to 

the observations that are not included in the building process of some of the trees. 

OOB dataset is applied internally with the aid of the algorithm in the role of a 

validation dataset in the course of the training process. The relevant OOB error of an 

RF model is basically the mean error frequency that is calculated during the 

observations derived out of the set are determined with the usage of trees as they are 

OOB (Boulesteix et al., 2012).  

A few noteworthy features that established RF as attractive in engineering and 

scientific studies and applications can be outlined as follows: 

• RF, as an algorithm, is applicable for multi-class classification in addition to 

regression problems, 

• RF can model interactions between predictor variables, 

• The algorithm is fast due to the fact that only a subset of features is necessary 

for the algorithm during the training,   

•  Model tuning is dependent on one or two parameters alone: The number of 

trees in the forest and the number predictors that are randomly picked at each 

individual split,  

• An elemental estimate of the generalization error, OOB error, is given,  

• High dimensional complex datasets can be managed due to the fact that the 

algorithm trains on subsets of data,  

• The algorithm grants means of variable importance (Cutler et al., 2012). 
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3.5.1 Training of the RF Models 

The RF algorithm makes use of three essential model tuning parameters. The 

parameters are following:  

• The number of trees: Ntree, 

• The number of predictor variables that is randomly picked at individual 

splits: Mtry, and, 

• The minimum number of observations for each tree: Lsize. 

Ntree has an inverse proportional relation with the variance of the RF model. The 

generalization error of an RF model ultimately converges to a limit as Ntree number 

rises, as also Breiman states that Strong Law of Large Numbers omit the possibility 

of overfitting for RF (Breiman, 2001). This indicates that a selection of Ntree number 

that is considerably large will not yield to an overfitting (Biau & Scornet 2016). In 

literature, for satellite imagery, a broad extent of Ntree number have been used, from 

as small as 50 to as big as 5000 (Colditz 2015; Guan et al. 2013; Houborg & McCabe 

2018; Nitze et al. 2015; Pelletier et al. 2016), although the acceptable number of  

Ntrees is deemed as 500. The reason for it is that the generalization error often 

reaches to a stability as Ntree number goes up to 500 (Lawrence et al. 2006). Thus, 

in this study, Ntree is taken as 500 with every different input combination. 

Mtry is generally denoted as the singular feature that RF is affected (Cutler et al. 

2012). Mtry is the number of input variables that are randomly selected, and the split 

where the best is determined only in this subset of data (Tyralis & 

Papacharalampous, 2017). As observed with the study Díaz-Uriarte and De Andres 

(2006) presented the susceptibility of overfitting because of the selection of Mtry is 

negligible. The default number of Mtry is denoted as the square root of the total 

number of variables for classification. This default number of Mtry is generally used 

in classification tasks in remote sensing applications (Belgiu & Drăguţ, 2016; 

Houborg and McCabe 2018).  
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The number that is used as default for Lsize is 1 for classification (Biau & Scornet 

2016; Cutler et al. 2012). The default number of Lsize is denoted as a good selection; 

however, there is lack of strong proof on the matter (Díaz-Uriarte & De Andres, 

2006). This default number is also often recognized when it comes to the 

classification of satellite data (Abdel-Rahman et al. 2014, Mutanga et al. 2012). 

In this study, the default values for Mtry and Lsize is used for all input combinations. 

The classification was done for four class labels: Cloud, No-snow (Land), Snow and 

Water. The training dataset that was prepared with the expert judgement was broken 

down into two subsets as 70% of the dataset for training and 30% for testing, by 

simple random sampling, the most basic random sampling technique, where every 

sample has an equal chance of being chosen that are independent from other samples 

(Wadoux et al., 2019)  The RF model is then conducted with the different 

combinations of inputs with the aid of sklearn.ensemble.RandomForestClassifier, a 

sci-kit learn Python library (the relevant code can be found in Appendix D) 

3.5.2 Selection of Training and Testing Datasets 

For remote sensing applications, various methodologies are employed to obtain 

training and testing datasets: 

• Collecting in-situ data 

• Collecting data as polygons with the help of a GIS application, and 

• Seeding of training data (Jensen, 2006) 

In this study, selection of training and test datasets for all of the 9 images is conducted 

via polygon shapefiles with the aid of ArcMap for the classification with the four 

classes: Cloud, No-snow (Land), Snow and Water. The data are collected depending 

on the expert visual analyses on the Sentinel-2 images, which are atmospherically 

and topographically corrected by Sen2Cor. The dataset is then divided into two 

subsets as 70% (training), and 30% (testing). The training and test datasets are then 

formed with the Python code presented in Appendix A. This code extracts the input 
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data (for all the input combinations) to the manually drawn polygons, to later derive 

randomly picked samples of training and test datasets of (i) 300 samples for each 

class, and (ii) 1000 samples for each class (for every input combination), and 

prepares the training and test datasets for the RF model. The reason for choosing 300 

samples for each class is that, the number of training samples per class is usually 

chosen in between 10* number of bands to 30* number of bands while classifying 

remote sensing images (Van Niel et al., 2005), whereas the reason for choosing 1000 

samples to train for each class is to observe whether there is a significant change in 

accuracy when increasing the size of the usual training sample per class by more than 

three times.  

3.6 Accuracy Assessment 

Thematic maps obtained by the classification of remote sensing images eventually 

inherit errors. These errors might be coming from the data receiving process, or due 

to unwanted atmospheric effects, and some of the errors may remain even after 

atmospheric and topographic correction (Jensen, 2006). Errors of human 

interpretation are also possible. Thus, a detailed accuracy assessment should be 

conducted on the classified image (Jensen, 2006). An accuracy assessment is 

employed with the presence of classified data and ground reference data. In this 

section, the test data and the related statistical metrics employed for the accuracy 

assessment are presented. 

3.6.1 Test Data  

An accuracy assessment should be conducted with an unbiased test dataset. The ideal 

test dataset should be obtained as ground reference test points or polygons, as Jensen 

(2006) suggests, but it is unfortunately not possible for every study. For that reason, 

in this study, the test data points for all classes are obtained randomly from the SCL 

with the help of ArcMap 10.7 software (for details of SCL, cf. Section 3.2.2.1).  
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The sample sizes for the test data are obtained in accordance with the sample size 

based on multinominal distribution formula (Ozdarici Ok & Akyurek, 2012; Jensen, 

2006) 

 

 
N= 

BΠi(1-Πi)

bi
2

 (Eq 3.4) 

 

where: 

• N is the sample size 

• i refers to the amount (in proportion) from the population within the ith class 

out of k classes that possess the percentage of the population nearest to 50% 

• bi is the aspired precession for this class 

• B refers to the upper (α/k) × 100th percentile of the chi-square (χ2) 

distribution with one degree of freedom (confidence level) 

• k is the class number (Ozdarici Ok & Akyurek, 2012). 

• In this study, the confidence level (B) is depicted as 95% whereas the 

precision is depicted as 5% (Jensen, 2006). Thus, B and b become 7.568 and 

0.05, respectively. 

In accordance with the findings of Hashemian et al. (2004) regarding the sampling 

of test data, 70 samples per class is observed to yield more accurate results when the 

image size is 512 × 512 pixels or larger. The study (Hashemian et al., 2004) indicates 

that this result is consistent with the recommendation of Congalton (1991) of using 

75 to 100 number of sample size while employing classification models on larger 

areas in remote sensing. In this study, the RF classification algorithm is conducted 

on all 1001 × 1001 spatial subsets for all input combinations. For full tiles (i.e. 5490 

× 5490 pixels), a minimum of 100 samples is determined for each class, for the best-

case input combination. 



 

45 
 

3.6.2 Employed Statistical Metrics for Accuracy Assessment 

The relation between the classified and the ground reference data (i.e. test data) can 

be observed by obtaining a confusion matrix (i.e., error matrix) (Jensen, 2006). In 

this study, confusion matrix along with the Cohen’s Kappa coefficient and overall 

accuracy (OA) are employed. A confusion matrix consists of two dimensions, one 

dimension is denoted to the true values of the classes, and the other represents the 

predicted values (Deng et al., 2016). Structure of a sample confusion matrix is given 

in Table 3.6 

 

Table 3.6. Structure of a confusion matrix (Deng et al., 2016) 

 

Predicted 

A1 Aj An 

A
c
tu

a
l 

A1 N11 N1j N1n 

Aj Ni1 Nij Nin 

An Nn1 Nnj Nnn 

 

The assessment of overall performance of the classifier can be obtained by OA. It 

depicts the percentage of total correctly classified pixels (Jog & Dixit, 2016). The 

calculation of OA is shown below: 

 

 
Overall Accuracy= 

Number of correctly classified pixels

Number of classified pixels
 (Eq 3.5) 

 

Kappa coefficient is a discrete multivariate method, discovered by Cohen (1960), 

which measures the agreement between two evaluators, which are test values and 

predicted values in terms of classification. A value of Kappa greater than 0.80 are 

denoted to show a strong agreeement, values between 0.80-0.40 present moderate 
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agreement, and finally, values below 0.40 indicate poor agreement (Congalton, 

2001). 

The formula of Kappa coefficient is as follows: 

 

 
Kappa Coefficient = 

N ∑ xii
k
i=1 - ∑ xi+× x+j

k
i=1

N
2
-∑ xi+× x+j

k
i=1

 
(Eq 3.6) 

 

where k is the number of classes, xii is the number of observations in row 𝑖 and 

column i in the confusion matrix, xi+ and x+j are the marginal totals for row i and 

column j, and N is the total number of samples (Congalton & Green, 2009). 
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CHAPTER 4  

4 RESULTS AND DISCUSSIONS 

20 km × 20 km area of 9 Sentinel 2 images from three different tile locations over i) 

European Alps, ii) Tatra Mountains, and iii) Kaçkar Mountains are classified with 

RF algorithm as four land cover classes (Cloud, No-snow, Snow, Water) with 

different input combinations, and with different numbers of training data, i.e., 300 

and 1000. The input combinations are denoted as: 

• Sc_only 

• Atmo_topo 

• Dem 

• Pca 

• Pca_plus (only for the images with best and worst accuracies), and 

• Pca_plus2 (only for the images with best and worst accuracies), 

which are described in detail in Chapter 3. The full areas of the tiles are then 

classified with the input combination of Pca. 

In the subsequent sections, the atmospheric and topographic correction assessment 

is presented, the classified images for each input combination are shown, and finally, 

the accuracy assessment results are discussed. 

A flowchart of the discussions that are derived from the obtained results are 

presented in Figure 4.1.
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4.1 Atmospheric and Topographic Correction Assessment 

The two fundemental effects of the atmosphere, i.e. absorption and scattering, should 

be corrected in remotely sensed images in order to obtain more accurate analysis 

results (Lu et al., 2002). The topographic correction, similarly, should be employed  

to attain better results in classification of satellite data.Topographic correction fixes 

the irregularity of the terrain as well as the shadow areas due to the shape of the 

terrain (Riano et al., 2003). In this study, atmospheric and topographic correction 

have been applied with the help of Sen2Cor interface (cf. Section 3.2.2.1). 

The study of Vanonckelen et al. (2013) validates the effect of atmospheric and 

topographic correction of land cover classes through comparing means of each land 

cover class and band wavelengths. In this study, a 1000 m × 1000 m pure snow area 

has been acquired from each of the 9 Sentinel 2 images, and then the mean 

reflectance values of the area in Band 2, Band 3 and Band 4 (i.e., visible bands) of 

raw and atmospherically and topographically corrected data are compared, with the 

aid of a Python script (cf. Appendix E). The results of the comparisons can be 

observed in Figure 4.2 -Figure 4.4.
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Snow can possess a reflectance up to or over 80% in the visible bands (Hall et al., 

2002). A study conducted by Singh & Chaudhary (2010) examines the reflectance 

of snow with differing grain sizes using hyperspectral satellite imagery and the 

resultant reflectance profiles are given in Figure 4.5.  

 

 

Figure 4.5. Reflectance values of snow with varying grain sizes (Singh & 

Chaudhary, 2010) 

 

The results in Figure 4.2 - Figure 4.4 show that the data have been atmospherically 

and topographically corrected, given that results are similar to what is obtained by 

Singh & Chaudhary (2010) for visible bands in Figure 4.5. 

4.2 Classification Results 

The classified images that are 20 km × 20 km spatial subsets of Sentinel 2 tiles for 

all input combinations, as well as the whole tiles classified with Pca input 

combination are presented in this section, side by side with the original false-color 

RGB images (R: band 11, G: band 8A, B: band 3).  
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The classified tiles of Alpine Region are shown in Figure 4.6 - Figure 4.8. The 

classified images of Tatra Mountains are presented in Figure 4.9 - Figure 4.11. The 

classified subsets along with the whole classified tile of Kaçkar Mountains are given 

in Figure 4.12 - Figure 4.14 

The best accuracy is achieved with the Pca input combination with 1000 training 

samples for each class (i.e., method Pca_1000) in most of the scenes. Thus, the 

whole tiles are classified with the input combination of Pca_1000. The details of the 

accuracy assessment results are discussed in the next section (i.e., Section 0).  
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Figure 4.6. Classified images of partial tiles of Alps Region (5 December 2018) for 

different input combinations 
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Figure 4.7. Classified images of partial tiles of Alps Region (24 January 2019) for 

different input combinations 
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Figure 4.8. Classified images of partial tiles of Alps Region (13 June 2019) for 

different input combinations 
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Figure 4.9. Classified images of partial tiles of Tatra Mountains (29 November 

2018) for different input combinations 
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Figure 4.10. Classified images of partial tiles of Tatra Mountains (23 January 

2020) for different input combinations 
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Figure 4.11. Classified images of partial tiles of Tatra Mountains (8 April 2019) 

for different input combinations 
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Figure 4.12. Classified images of partial tiles of Kaçkar Mountains (19 December 
2019) for different input combinations 
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Figure 4.13. Classified images of partial tiles of Kaçkar Mountains (19 March 

2018) for different input combinations 
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Figure 4.14. Classified images of partial tiles of Kaçkar Mountains (8 April 2018) 
for different input combinations 
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4.3 Accuracy Assessment Results 

The accuracy assessment is conducted by collecting random test data using SCL of 

Sen2Cor and with the aid of ArcMap 10.7 software. The number of test data is 

sampled by multinominal distribution formula, and the details are explained in 

Section 3.6.1. The test data in each spatial subsample of 20 km × 20 km area are 

represented in Table 4.1, whereas the sample sizes of the test data employed in the 

accuracy assessment of full tiles are shown in Table 4.2. 
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Table 4.1 Number of test samples per class for 20 km × 20 km subsets of Sentinel-

2 images, calculated by multinomial distribution formula (Ozdarici Ok & Akyurek, 

2012; Jensen, 2006) 

  Number of Points (classes) 

Location 

 

Date 

 

Cloud No snow 

(Land) 

Snow Water Total  

ALPS 

REGION 

5 

December 

2018 

100 415 100 100 745 

24 

January 

2019 

100 100 360 100 755 

13 June 

2019 

100 450 120 100 660 

TATRA 

MOUNTAINS 

29 

November 

2018 

100 100 100 100 440 

23 

January 

2020 

100 205 270 100 740 

8 April 

2019 

100 440 100 100 710 

KAÇKAR 

MOUNTAINS 

19 

December 

2019 

100 100 365 100 450 

19 March 

2019 

100 440 100 100 600 

8 April 

2018 

165 235 135 100 685 
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Table 4.2 Number of test samples per class for full Sentinel-2 tiles, calculated by 

multinomial distribution formula (Ozdarici Ok & Akyurek, 2012; Jensen, 2006) 

  Number of Points (classes) 

Location 

 

Date 

 

Cloud Nosnow 

(Land) 

Snow Water Total  

ALPS 

REGION 

5 

December 

2018 

105 125 130 100 545 

24 

January 

2019 

100 450 100 100 625 

13 June 

2019 

100 435 100 100 595 

TATRA 

MOUNTAINS 

29 

November 

2018 

100 230 100 100 670 

23 

January 

2020 

120 210 105 100 655 

8 April 

2019 

100 450 100 100 690 

KAÇKAR 

MOUNTAINS 

19 

December 

2019 

100 140 430 100 735 

19 March 

2019 

100 250 345 100 750 

8 April 

2018 

100 425 100 100 740 
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The minimum number of test samples for each class is 100, as explained in Section 

3.6.1. The classified data for each input combination along with the random test data 

are then used for the accuracy assessment. The confusion matrix and the obtained 

OA and Kappa coefficient metrics (cf. Section 3.6.2), are given in Figure 4.15-Figure 

4.23 for the corresponding spatial subset, for the input combinations presented in 

Table 3.2 (Sc_only, Atmo_topo, Dem, Pca). Both confusion matrices and OA and 

Kappa coefficient values have been obtained by the Python script presented in 

Appendix  F. 
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Figure 4.15. Confusion matrices, OA and Kappa coefficient values of spatial 

subset for Alps Region on 5 December 2018 for main input combinations 
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Figure 4.16. Confusion matrices, OA and Kappa coefficient values of spatial 
subset for Alps Region on 24 January 2019 for main input combinations 
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Figure 4.17. Confusion Matrices, OA and Kappa coefficient values of spatial 
subset for Alps Region on 13 June 2019 for main input combinations 
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Figure 4.18. Confusion matrices, OA and Kappa coefficient values of spatial 
subset for Tatra Mountains on 29 November 2018 for main input combinations 
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Figure 4.19. Confusion matrices, OA and Kappa coefficient values of spatial 
subset for Tatra Mountains on 23 January 2020 for main input combinations 
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Figure 4.20. Confusion matrices, OA and Kappa coefficient values of spatial 

subset for Tatra Mountains on 8 April 2019 for main input combinations 
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Figure 4.21. Confusion matrices, OA and Kappa coefficient values of spatial 
subset for Kaçkar Mountains on 19 December 2019 for main input combinations 
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Figure 4.22. Confusion matrices, OA and Kappa coefficient values of spatial 

subset for Kaçkar Mountains on 19 March 2018 for main input combinations 
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Figure 4.23. Confusion matrices, OA and Kappa coefficient values of spatial 
subset for Kaçkar Mountains on 8 April 2018 for main input combinations 
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For the additional input combinations that are shown in Table 3.3, the confusion 

matrices and the obtained OA and Kappa coefficients of two images that have 

yielded the best and worst accuracy results can be observed in Figure 4.24 and Figure 

4.25. 

The OA and Kappa coefficient results of all classified spatial subsets are shown in 

Table 4.3. 
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Figure 4.24 Confusion matrices, OA and Kappa coefficient values of spatial subset 
for Kaçkar Mountains on 8 April 2018 for main input combinations 
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Figure 4.25. Confusion matrices, OA and Kappa coefficient values of spatial 

subset for Tatra Mountains on 8 April 2019 for additional input combination 
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The full tiles are assessed by randomly selecting ground truth data from SCL, with 

the same method as applied on spatial subsets (cf. Section 3.6). The confusion 

matrices of full tiles classified with the Pca method is presented in Figure 4.26, 

whereas the OA and Kappa coefficient values of the classified full tiles are shown in 

Figure 4.27. 
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4.4 Discussion of the Results 

As mentioned in detail in Chapter 3, the 20 km × 20 km subsets of the 9 Sentinel 2 

images are classified with RF algorithm with different input combinations. The input 

combinations giving the best and worst results, with respect to the obtained OA and 

Kappa coefficient values for each subset, are presented in Table 4.4, excluding the 

results of pca_plus and pca_plus2, as these combinations have been conducted after 

determining the best and worst statistical metric results out of all subsets. The input 

combination that yields the best result has been determined as Pca with training 

sample size of 1000 per class, whereas the input combination yielding the worst 

performance has been concluded as Dem with 300 training samples. 
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The most accurate results, in general, have been obtained over the subset of Tatra 

Mountains for 8 April 2019. The least accurate results have been observed over the 

subset of Tatra Mountains on 23 January 2020, considering the input combination of 

Pca with training data size of 1000, since it has been determined to be the best input 

combination in general. 

The feature importance of RF for the input combinations have been presented in 

Appendix I. In general: 

• ndsi feature, overall, generates very high importance. Bands 7,8A and 11 

are also features with overall high importance. 

• pca1 (first principal component) feature have very high importance for Pca 

input combination 

• dem feature (elevation data) has very low importance, mostly the lowest 

importance out of all features for Dem input combination, which can be the 

cause of worse accuracy results. 

Considering the results of feature importances, a base study is conducted, 

considering only of NDSI accuracy assessment results. Only classes that were 

considered are “snow” and “nosnow”, different from other input combinations. 

“snow” class is denoted where NDSI >= 0.4 and “nosnow” class is denoted where 

NDSI < 0.4 (Zhang et al., 2019). The Python code for the classification is given in 

Appendix A. The accuracy assessment is conducted by collecting random test data 

using SCL of Sen2Cor and with the aid of ArcMap 10.7 software, same with other 

input combinations. Number of test samples per class which are calculated by 

multinomial distribution formula (Ozdarici Ok & Akyurek, 2012; Jensen, 2006) is 

given in Appendix N. OA and Kappa coefficient results of this study is presented in 

Appendix K. According to the results, although in some spatial subsets, NDSI have 

a very high accuracy (i.e., Alps region, 13 June 2019 subset), overall, the obtained 

results are lower compared to results of RF input combinations, especially 

considering Pca input combination. 
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Pca_plus and Pca_plus2 methods have been conducted on both tiles after  

determining the overall best and worst accuracy metrics across all image subsets. 

The comparison of OA and Kappa coefficient values of Pca_plus, Pca_plus2 and 

other input combinations of both tiles are available in Figure 4.28. 
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(a) 

(b) 

Figure 4.28. The comparison of OA (a) and Kappa coefficient (b) values of all input 

combinations conducted on the partial tiles of Tatra Region, with the dates of a) “8 

April 2019” and b) “23 January 2020” 
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As can be observed from Figure 4.28, the Pca_plus2 method yields almost the same 

result as the Pca method, the best method, for the tile of 8 April 2019; however, it 

does not exhibit a significant difference from Pca method. Since both Pca_plus2 and 

Pca_plus methods yield worse results as compared to some other input combinations 

for the 23 January 2020 subset, Pca method is decided to be the best method to use 

out of all different input combinations. Thus, all tiles are fully subjected to RF 

classification with Pca input combination. The OA and Kappa coefficient values of 

the classified tiles can be seen in Figure 4.27. According to the accuracy assessment, 

the tile from Alps region acquired on 5 December 2018 yielded the best results with 

OA value of 0.94, and Kappa value of 0.92. On the other hand, the tile from Kaçkar 

Mountains on 19 December 2019 achieved the worst results with OA value of 0.84, 

and Kappa coefficient value of 0.76.  

An input combination of only the first three principal components have also been 

assessed, to see the effect of NDSI, NDVI and NDWI. The results are shown in 

Appendix L. The accuracy assessment results of the input combination (with training 

sample size of 1000) have yielded slightly higher accuracy assessment results than 

Pca input combination with same training sample size, on same spatial subsets. 

Although that is the case, it is still decided that Pca input combination with the 

indices NDSI, NDVI and NDWI, is considered to be the best out of all input 

combinations. 

For the RF-classified full tiles, the regions and the phases of the snow cover are then 

compared (i.e., when snow starts to form, snow amount at its peak, and when snow 

melts) in Figure 4.29. To make these comparisons, the means of the OA and Kappa 

coefficient values have been attained per region.  
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Figure 4.29. Average OA and Kappa coefficient values of the regions 

 

According to the results, the region with the best values is Alps Region and the worst 

is Kaçkar Mountains. The general expectation is, when snow is at its peak, the 

accuracy of snow mapping is at its highest, compared to the beginning and end of 

the snow season (Romanov et al., 2002; Parajka & Blöschl, 2006), and in this study 

the only region that fulfills that expectation is Kaçkar Mountains. In Alps Region, 

the best results are obtained at the beginning of the snow season, and in Tatra 

Mountains, the end of the snow season is when the results have been better than other 

parts of the season. Incidentally, the land cover type with the largest area in Alps 

region and Tatra mountains tiles is trees, while Kaçkar Mountains’ tile has the least 

tree cover (trees land cover) area out of all tiles (cf. Section 3.1.1). It might be 

concluded that, since dense forests may lead misrepresentation of the snow-covered 

area (Luo et al., 2022; Robinson et al., 1993; Bitner et al., 2002), the accuracy results 

of the tiles over Alps Region and Tatra Mountains are skewed.  Snow cover mapping 

over forested areas is discussed in more detail in Section 4.4.3 in terms of the scope 

of this study. 
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Several studies for snow cover mapping with RF algorithm are observed to point out 

the similarities and/or differences in results. Nijhawan et al. (2018b) combined 

several algorithms to enhance the accuracy of the obtained snow cover maps. One of 

the base classifiers of this study was RF algorithm, and the OA result was 87.34%. 

The algorithms were trained on multispectral Landsat ETM+ data. Compared to the 

best obtained accuracy assessment result of this thesis (Alps region, 5 December 

2018, OA: 0.94 with Pca input combination), the result obtained for this study is a 

bit low. Similarly, Haq et al. (2021) compared three classification algorithms on 

Hyperion images. OA of RF algorithm was found as 90.98%. 

The confusion matrices of the spatial subsets have been observed in Section 0 (Figure 

4.15 -Figure 4.23). Table 4.5 examines the classes that are mostly misclassified and 

what these classes are mostly misclassified as, for all spatial subsets and all input 

combinations.  Table 4.6 presents the same for full tiles.  
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Table 4.6. The most misclassified classes for all input combinations in classified 
full tiles 

Location Date Misclassified Classes 

ALPS REGION 5 December 2018 Cloud miscl. No snow  

24 January 2019 Snow miscl. No snow  

13 June 2019 Cloud miscl. No snow  

TATRA MOUNTAINS 29 November 2018 Snow miscl. No snow  

23 January 2020 Snow miscl. No snow  

8 April 2019 Cloud miscl. No snow  

KAÇKAR MOUNTAINS 19 December 2019 Cloud miscl. No snow  

19 March 2018 Cloud miscl. No snow  

8 April 2018 Cloud miscl. No snow  

 

The most frequent misclassifications observed in this study are discussed below. 

Snow Misclassified as No-snow (Land) 

Snow misclassified as No-snow (Land) class is one of the most common 

misclassifications that have been observed in this study, especially for the tiles from 

Alps Region and Tatra Mountains. As explained in the beginning of Chapter 3, No-

snow (Land) class is denoted as more of a composite of land cover classes that do 

not consist of snow, water or cloud, which naturally contains the trees land cover 

type. Trees cover is the most frequent land cover type in Alps Region and Tatra 

Mountain tiles, in both years of 2018 and 2019 (cf. Section 3.1.1). Trees, especially 

dense forests, are commonly noted as a limitation in the literature while mapping 

snow cover from remote sensing data (Robinson et al., 1993; Bitner et al., 2002) such 

that snow can be underrepresented in forests. It is guessed that this limitation is the 
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cause of the misclassification of snow as No-snow (Land) class. It can be noted that 

the Pca input combination decrease the extent of the issue but it is not valid for a ll 

the instances. The extent of forests minimizing the snow cover representation is 

discussed in Section 4.4.3 as a limitation for this study and as a possible future 

research based on this thesis, with visual examples. 

Cloud Misclassified as No-snow (Land) 

Another common misclassification, for this study, is cloud class being wrongly 

denoted as No-snow (Land) class, especially for the tiles located in Kaçkar 

Mountains. There have been many studies to either determine or to eliminate cloud 

cover from remote sensing data by developing and examining various techniques, 

including RF (Deng et al., 2016; Ghasemian & Akhoondzadeh, 2018). In these 

studies, results obtained with RF algorithms generate good accuracy, but usually 

paired with another method, such as K-means clustering method, segmentation and 

thresholding. Therefore, to avert misclassification of cloud cover, RF can be used 

along with one of these methods, or another method to achieve better accuracy in the 

future. Furthermore, Ghasemian and Akhoondzadeh (2018) state that while RF 

algorithm yields better results than other methods in literature, it still does not 

consider textural features. Therefore, it can be said that the misrepresentation of 

cloud might stem from this, and in future works, features of cloud cover might be 

implemented to the input algorithms as proposed in this study. 

The examples of misclassification between Cloud and No-snow (Land) can be 

observed in Figure 4.30 - Figure 4.32. The fully classified images with Pca input 

combination are selected from Table 4.6, where the most misclassified classes are 

Cloud with No-snow (Land). The red rectangles in the Figures are to emphasize the 

locations where Cloud class is misrepresented as No-snow (Land).
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Water Misclassified as No-snow (Land) 

Water class being misclassified as No-snow (Land) class, and vice versa, have 

regularly been observed in this study. There are studies showing that the water bodies 

can be very well determined with the aid of RF (Gislason et al., 2006). In this study, 

selected tiles are from regions with complex topographies, and Water class, more 

often than not, consists of narrow rivers in the areas of interest. This may be the cause 

of misclassification between those two classes, especially within areas of small water 

bodies and mountain shadows (Ko et al., 2015).  For this study, it can be noted that 

the Pca combination is observed to ease this problem the most out of all input 

combinations, with almost all spatial subsets. Unlike with the case with spatial 

subsets, water class has not been misclassified with the No-snow (Land) class as 

much, and it is observed that the Pca mostly eliminates the confusion between water 

and shadow areas, but there are also some areas which is not the case. The examples 

of misclassification between water and shadowy areas are presented in Figure 4.33-

Figure 4.35. The misclassified areas are emphasized with white or red rectangles. 

QGIS Google Terrain base map is used to underline the fact that the areas that are 

emphasized in the figures are not water.    
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Snow class in shadow areas, on the other hand, have been classified  well with Pca 

input combination. Examples of well-classified areas which have been presented in 

Figure 4.36 - Figure 4.38, are emphasized with red rectangles. DEMs (hillshade) are 

used in these figures to show the difference in elevation.
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For randomly sampled training data, visually checked and manually adjusted SCL 

was used (cf. Section 3.2.2.1). SCL have been observed to perceive a lot of shadow 

areas as water, and the layer have been especially altered for that reason. Some 

example shadowy areas of original, untouched SCL compared with fully classified 

images with Pca input combination (with training sample size of 1000) have been 

given in Figure 4.39 - Figure 4.42, with shadowy areas emphasized with red and 

white rectangles. 
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Although the issue of cloud and snow confusion is common (Snehmani et al., 2015; 

Dietz et al., 2012; Barry et al., 1995), in this study, it was not a considerable concern, 

for all input combinations in most cases. The reason for this might be that RF 

algorithm, and other machine learning algorithms in general, surpass other 

approaches when it comes to alleviate this problem (Wang et al., 2022). 

300 samples for each class were employed because the number of training samples 

per class is usually chosen in between 10x number of bands to 30x number of bands 

with remotely sensed images (Van Niel et al., 2005). The sample size that is three 

times larger of the usually chosen size is also tested in this study, and it is found that 

training sample size has a modest effect on the accuracy of RF algorithm. Although 

without exceptions, 1000 per class as training size have yielded better results in all 

input combinations than the number of training data of 300 per class, for spatial 

subsets. A study conducted by Li et al. (2014) studied the accuracy of classification 

on Landsat images with different training sample sizes, ranging from 20 to 240 per 

class, for a 4-band dataset and a 6-band dataset, with different algorithms. The study 

indicates that, RF is one of the mostly affected algorithms when it comes to training 

sample sizes, and the accuracy is observed to increase with the size of training 

samples, similar to the results achieved in this study.  

The obtained ratio of eigenvalues for Pca input combination on full tiles (cf. 

Appendix J) show that the first principal component has the most impact for all of 

the images. The ratio of first principal component is generally above 0.90. 

4.4.1 Runtime of Input Combinations 

In this study, most of the work have been done within the Python environment, 

including RF classification for all input combinations. The average runtimes of RF 

algorithm for different input combinations are compared in Figure 4.42 for image 

subsets. It should be noted that the runtime of the code for obtaining the first three 
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principal components are added to the total runtime for Pca, Pca_plus and Pca_plus2 

methods. 

 

 

Figure 4.42. Total runtimes (in seconds) for all input combinations with image 

subsets 

 

Obtaining principal components causes the biggest difference in runtime. Aside from 

that, RF algorithm runtime only slightly changes with different input combinations. 

It is observed that number of training samples also alters the runtime, yet slightly. 

The number of inputs seems to be more crucial when it comes to runtime while 

training sample size is 1000 per class, where the number of inputs are, with 

exceptions, proportional to the runtime. However, when the number of training data 

is 300 per class, the number of inputs is noted to be not as important. The full tiles 

are expectedly taking a much longer time to be classified than the image subsets. 

Each spatial subset has roughly 1/25 of the area of a full tile, and a runtime of, 

approximately, 1/15, as compared to the Pca method runtime with training size of 

1000 per class. 
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4.4.2 Climatological Attributes of the Regions and the Effect on the 

Accuracy of the Results 

The study of Kuter et al. (2022) shows that different regions with the same snow 

classification algorithm show some significant changes in the accuracy, and this 

might be attributed to the different characteristics of the terrain (Deems et al., 2013), 

as well as different climatological properties of the regions. In Section 3.1, the three 

areas of interest for this study have been briefly introduced with their characteristics, 

such as average precipitation, temperature, and snow depth for snow season for that 

region and/or annually, from different studies. In order to compare the climatic 

characteristics of the regions more effectively, ERA5-Land monthly reanalysis data 

was used for the timeframe between January 1990 to June 2022 for snow depth (in 

meters), 2 m temperature, which is the air temperature 2 meters above the surface (in 

Kelvin), and total precipitation (in meters) (Muñoz Sabater, 2021). The mean values 

that were obtained for the study areas (i.e., for full tiles) for each region monthly, 

with the aid of a Python script (cf. Appendix G), are presented in Table 4.7 - Table 

4.9 (with no-data values omitted from the equation where necessary). The mean 

values of snow depth and total precipitation have been converted from meters to mm, 

and the mean values of 2 m temperature have been converted from Kelvin to oC. 
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Table 4.7.The average snow depth (cm) values derived from ERA5-Land monthly 
reanalysis data for the study areas (January 1990 to June 2022) 

Months 

Location 

Alpine Region Tatra Mountains Kaçkar Mountains 

January 97.2 N/A 3.5 

February 104.9 0.1 9.8 

March 109.4 0.7 10.2 

April 104.0 N/A 4.5 

May 80.8 N/A 0.1 

June 71.4 N/A 0.0 

July 70.2 N/A 0.0 

August 70.1 N/A 0.0 

September 70.2 N/A 0.0 

October 70.4 N/A 0.0 

November 72.5 N/A 0.0 

December 85.9 N/A 0.4 
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Table 4.8.The average 2 m temperature (oC) values derived from ERA5-Land 
monthly reanalysis data for the study areas (January 1990 to June 2022) 

Months 

Location 

Alpine Region Tatra Mountains Kaçkar Mountains 

January -7.6 -4.3 -8.9 

February -5.7 -3.0 -7.1 

March -1.9 0.6 -3.0 

April 1.7 6.0 2.0 

May 6.4 11.0 7.6 

June 10.7 14.7 12.2 

July 12.7 16.4 15.6 

August 12.5 16.2 16.0 

September 8.6 11.5 12.1 

October 4.3 6.6 6.4 

November -1.6 1.8 -1.0 

December -6.5 -3.0 -6.8 
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Table 4.9.The average total precipitation (mm) values derived from ERA5 Land 
monthly reanalysis data for the study areas (January 1990 to June 2022) 

Months 

Location 

Alpine Region Tatra Mountains Kaçkar Mountains 

January 1.7 2.1 1.9 

February 2.0 2.3 2.0 

March 2.4 2.3 2.5 

April 3.6 2.5 3.1 

May 4.6 3.6 3.5 

June 5.2 3.8 2.5 

July 5.1 4.0 1.8 

August 4.8 3.3 1.5 

September 3.8 3.0 1.2 

October 3.9 2.4 1.8 

November 4.3 2.3 1.9 

December 2.5 2.2 1.7 

 

From Table 4.7, it can be observed that, the average snow depth of Alps Region tile 

is substantially higher than the other regions. Tatra Mountains tile, also, observed to 

have little to no snow depth. It was observed from the original Sentinel-2 images 

that, Tatra Mountains have significantly less snow cover than the other two regions, 

and from ERA5 Land monthly reanalysis data, snow depth is only present in the 

months of February and March. These results also might be because of the ERA5-

Land monthly reanalysis products have a native spatial resolution of 9 km (Muñoz 
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Sabater, 2021), which might have produced some skewed data. It is also reported in 

some studies that ERA5-Land Monthly reanalysis products can yield to less accurate 

results in comparison to other similar products (Jiang et al., 2021; Renfrew et al., 

2021). In Table 4.8, it can be seen that Tatra Mountains are also warmer than the 

other two study areas in winter months compared to the other two study areas, which 

can be the reason of less snow cover and depth compared to the other two regions.  

The results show that, Alps Region have mostly permanent snow cover all year 

round, whereas Tatra and Kaçkar Mountains only have seasonal snow. Alpine 

Region also have slightly more total average precipitation than the other two area of 

interests, as can be seen from Table 4.8, which is likely the cause of permanent snow 

(Saavedra et al., 2017). High permanent snow depth amount can be the cause of 

higher accuracy results of Alpine Region. 

4.4.3 Limitations and Future Work 

In this study, some challenging aspects of mapping snow cover has been reduced, 

such as cloud cover misrepresented as snow and vica versa due to the visible 

reflectance similarities of both, as well as mountain shadows in complex terrains 

(Snehmani et al., 2014; Dietz et al., 2012; Barry et al., 1995). One difficult element 

to consider for the detection of snow cover has been left out of the  scope of this 

study, which is the detection of snow cover in forested areas. It should be considered 

as a limitation rather than a problem at optical wavelengths due to the canopy 

interference of dense forest stands, which causes the snow cover to be 

underrepresented (Luo et al., 2022; Robinson et al., 1993; Bitner et al., 2002). It is 

perceived, from the obtained results, that the Pca input combination yields more 

improved results in forests than other combinations. However, it does not totally 

solve the problem. It is demonstrated by Klein et al. (1998) and Nolin (2010) that the 

forest areas with snow cover generates lower NDSI values than normal. Although 

Klein et al. (1998) finds that the combined NDSI and NDVI approach is more helpful 

in terms of snow cover mapping, the combination of these two indices is not yielding 
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adequate results in dense forest areas (Luo et al., 2022; Rittger et al., 2013).  

Therefore, Pca input combination falling short at snow cover mapping in forest areas 

is due to the fact that it contains both indices in addition to the first three principal 

components and NDWI.   

To examine the issue of misrepresentation of snow in the presence of forests further, 

Fractional Snow Cover on Ground (FSCOG) layer of Copernicus High Resolution 

Snow & Ice Monitoring Service, which is canopy-adjusted fractional snow cover 

(FSC) at 20 m resolution, derived from Sentinel-2 products (Barrou Dumont et al., 

2021) have been used. The layers have been classified into four classes: snow, no-

snow, cloud and no-data (if available) with the help of a Python script (cf. Appendix 

H), and then compared with the classified full tiles (with Pca combination). It is 

observed that the snow is underrepresented in some areas with trees land cover in all 

of the fully classified images. The example locations where underestimation of snow 

in trees land cover occurs have been demonstrated with the images of fully classified 

tiles alongside with the original false color RGB Sentinel 2 images, Google’s DW 

land cover maps, and FSCOG layers in Figure 4.43- Figure 4.48 for once for each 

year (2018 and 2019). The red rectangles in the Figures indicate the snow cover areas 

that are underestimated due to trees land cover. 
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Additionally, it has been observed that, FSCOG layers have a tendency to 

overestimate cloud cover in some locations, especially in areas with snow. Figure 

4.45 shows this overestimation clearly, comparing FSCOG with the original false 

color RGB image. 

In the example locations that are selected in Figure 4.43 - Figure 4.48, percentage of 

land cover areas (obtained from DW land cover products, cf. Section 3.1.1) have 

been calculated within only the snow areas. The results of the calculation are shown 

in Table 4.10. The snow areas have been determined from the fully classified images 

with Pca input combination with 1000 training sample size. The calculation of land 

cover is done with the aid of ArcMap 10.7 software. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
127 

Table 4.10. Percentage of land cover within the snow area (for selected locations in 
Figure 4.43 - Figure 4.48) 

Land Cover 

Class 

Location and Date of Classified Sentinel-2 Image  

Alps Region Tatra Mountains Kaçkar Mountains 
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trees 76.6 84.3 5.1 87.6 75.0 12.8 

grass 14.6 11.2 27.8 6.3 3.5 0.4 

crops 0.0 0.0 65.2 0.0 0.0 0.2 

shrubs and scrub 5.2 4.5 0.0 6.0 18.4 66.1 

built-up 3.7 0.0 2.0 0.1 0.0 0.0 

bare 0.0 0.1 0.0 0.0 3.2 20.5 

 

It is observed from Table 4.10 that, trees land cover is the most prominent among all 

of the land covers in almost all of the selected locations with underestimated snow 

areas. 
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CHAPTER 5  

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Detection of snow parameters is essential. Accurate classification of snow cover 

through remote sensing is crucial since it is a much cheaper and easier alternative 

than the other methods which are currently used for snow cover mapping at both 

regional and global scales.  

The main goal of this study was to evaluate the performance of RF algorithm for 

determination of snow cover with different input combinations of Sentinel-2 bands 

(as raw or atmospherically and topographically corrected reflectances), well-known 

normalized band indices, principal component bands, and DEM data, as well as with 

different number of training samples per class, on three different regions with 

different climatic properties, and three different phases of snow cover (snow cover 

starting to form, snow amount at its peak and lastly, snow starting to melt).  

Out of the all three regions, Alps Region yielded the most accurate results, while 

Kaçkar Mountains yielded the worst. Kaçkar Mountains produce the best results 

when the peak amount of snow occurs, which is expected, but Tatra Mountains and 

Alps Region do not. The reason for it is concluded as the difference in the amount 

of forest cover: Alps Region and Tatra Mountains have significantly more forest than 

Kaçkar Mountains, which has distorted the results, since forest areas often cause 

underestimation of snow cover. 

Training sample size of 1000 have generally resulted much better accuracy over 

training sample size of 300, with all of the input combinations. It is determined, with 

this study, that RF is sensitive to the number of training samples with classification 

of remote sensing data. 
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The input combination with best accuracy results were determined as Pca, the 

combination with NDVI, NDSI and NDWI and first three principal components 

derived from Sentinel-2 bands. Since Pca input combination consists of the least 

number of inputs out of all combinations, this result is foreseen to be very beneficial 

for future RF classification with remote sensing, as the smaller number of inputs are 

causing RF algorithm to have less runtime. Pca combination is also the best out of 

all combinations to minimize the confusion between snow and shadow, water and 

shadow and cloud and snow. Pca underestimates snow cover in forest areas, but the 

underestimation of snow cover in forests is better than the other input combinations. 

This study recommends another approach combined with RF classification by Pca 

input combination to overcome this problem. 

All of the Python scripts that are used in this study can be found in: 

https://github.com/cansuaksu. 

5.2 Recommendations for Future Work 

Pca input combination minimizes the underestimation of snow in forested areas, but 

it does not totally eliminate the problem. Therefore it is proposed, for future studies 

based on this thesis, to have an additional approach along with RF algorithm and the 

Pca input combination (first three principal components derived from 

atmospherically and topographically corrected Sentinel-2 bands, NDVI, NDSI and 

NDWI as inputs), to improve the snow cover identification over forested areas. Other 

studies suggest some tecniques to mitigate this problem, such as linear mixture or 

nonlinear mixture analysis (Painter et al., 2003;Rosenthal & Dozier, 1996) and 

extracting ground-object endmembers (Hao et al., 2019). It is proposed, by Kuter et 

al. (2018) that Multivariate Adaptive Regression Splines yields decent results in 

forest land cover, with the exception of evergreen forest type while determining 

snow cover. For evergreen conifereous forests, Wang et al. (2015) presents 

Normalized Difference Forest Snow Index (NDFSI) for better differentiation of 

snow-covered forests, while Wang et al. (2020) uses an approach of combined 

https://github.com/cansuaksu
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NDFSI and NDSI for the same goal. These are some of the approaches that might be 

considered for increasing the accuracy of snow detection over forest land cover in 

future endeavors based on this thesis. 
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APPENDICES 

A. Python Script for Obtaining Training and Test Datasets 

import rasterio.mask 

from shapely.geometry import shape, mapping 

from shapely.ops import unary_union 

import fiona 

import itertools 

import pandas as pd 

import numpy as np 

import glob 

import os 

 

'''THIS SCRIPT IS FOR THE INPUT COMBINATIONS OF ATMO_TOPO AND 

SC_ONLY. SIMILAR ''' 

 

'''BEFORE THIS SCRIPT, GETTING A COMPOSITE IMAGE VIA ARCMAP IS 

NEEDED''' 

 

 

path = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

23_Jan_2020_sc_only/" 

 

def get_test_data(path): 

    with fiona.open(path + "/Test_Region/Clip_Frame.shp", "r") as shapefile: 

        for feature in shapefile: 

            shapes = [feature["geometry"]] 
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    with rasterio.open(path + "/S2_Bands_TIFF/Composite.tif") as src: 

        out_image, out_trasform = rasterio.mask.mask(src, shapes, crop="True") 

        out_meta = src.meta 

 

    out_meta.update({ 

        'driver': 'Gtiff', 

        'height': out_image.shape[1], 

        'width': out_image.shape[2], 

        'transform': out_trasform 

    }) 

 

    with rasterio.open(path + "/Test_Region/Composite_Clipped.tif", "w", 

**out_meta) as dst: 

        dst.write(out_image) 

    array = rasterio.open(path + "Test_Region/Composite_Clipped.tif").read() 

    shape_list = list(array.shape) 

    array = array.reshape(shape_list[0], shape_list[1] * shape_list[2]) 

    array = array.transpose() 

    df = pd.DataFrame(array,columns=['band2', 'band3', 'band4', 'band5', 'band6', 

'band7', 'band8a', 'band11', 'band12','ndsi', 'ndvi', 'ndwi']) 

    df.to_csv(path + "Test_Region/Test_Data_original.csv", index=False) 

 

# 

# get_test_data(path) 

 

 

def training_polygons(path, choice="Cloud"): 

    with fiona.open(path+"/Training_Polygons/" + choice + ".shp") as input: 

        # preserve the schema of the original shapefile, including the crs 
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        meta = input.meta 

        with fiona.open(path+ "/Training_Polygons/" + choice + "_dissolve.shp" ,'w', 

**meta) as output: 

            # groupby clusters consecutive elements of an iterable which have the same 

key so you must first sort the features by the 'STATEFP' field 

            e = sorted(input, key=lambda k: k['properties']['Id']) 

            # group by the 'STATEFP' field 

            for key, group in itertools.groupby(e, key=lambda x: x['properties']['Id']): 

                properties, geom = zip(*[(feature['properties'], 

shape(feature['geometry'])) for feature in group]) 

                # write the feature, computing the unary_union of the elements in the 

group with the properties of the first element in the group 

                output.write({'geometry': mapping(unary_union(geom)), 'properties': 

properties[0]}) 

 

    with fiona.open(path+ "/Training_Polygons/" + choice + "_dissolve.shp", "r") as 

shapefile: 

        for feature in shapefile: 

            shapes = [feature["geometry"]] 

 

    with rasterio.open(path + "/S2_Bands_TIFF/Composite.tif") as src: 

        out_image, out_trasform = rasterio.mask.mask(src, shapes, crop="True") 

        out_meta = src.meta 

 

    out_meta.update({ 

        'driver': 'Gtiff', 

        'height': out_image.shape[1], 

        'width': out_image.shape[2], 

        'transform': out_trasform 

    }) 
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    with rasterio.open(path +"Training_Polygons/python/Composite_Polygons/" + 

choice + ".tif", "w", **out_meta) as dst: 

        dst.write(out_image) 

 

# training_polygons(path, choice="Water") 

 

arr = rasterio.open(path + 

"/Training_Polygons/python/Composite_Polygons/Water.tif").read() 

# print(arr) 

nodata=arr[0][0][0] ###For obtaining nodata. 

print(nodata) 

 

def training_polygon_to_csv(path, choice="Cloud", choice2=1): 

    array= rasterio.open(path + "/Training_Polygons/python/Composite_Polygons/" 

+ choice + ".tif").read() 

    shape_list = list(array.shape) 

    array = array.reshape(shape_list[0], shape_list[1]*shape_list[2]) 

    array = array.transpose() 

    df = pd.DataFrame(array, columns = ['band2','band3','band4', 'band5', 'band6', 

'band7', 'band8a', 'band11', 'band12','ndsi', 'ndvi', 'ndwi']) 

    df.drop(df.loc[df['band2'] == nodata].index, inplace=True) 

    df.insert(0, "class", choice2) 

    df.to_csv(path + "/Training_Polygons/python/Composite_Polygons/" + choice + 

".csv", index=False) 

# 

# training_polygon_to_csv(path, choice="Water", choice2=4) 

 

def sample_csv(path, choice="Cloud", sample_num=1000): 

    total_training = pd.read_csv(path + 
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"/Training_Polygons/python/Composite_Polygons/" + choice + ".csv") 

 

    total_training= total_training.sample(sample_num) 

    total_training.to_csv(path + "/Training_Polygons/Original/" + choice + "_" + 

str(sample_num) + ".csv", index=False) 

 

# sample_csv(path, choice="Water", sample_num=1000) 

 

def concat_csvs(path, sample_num=1000): 

    files = os.path.join(path + "/Training_Polygons/Original/" , "*" + 

str(sample_num) + ".csv") 

 

    # list of merged files returned 

    files = glob.glob(files) 

 

 

    df = pd.concat(map(pd.read_csv, files), ignore_index=True) 

    df.to_csv(path + "/Training_Polygons/Original/Training_Data" + "_" + 

str(sample_num) + ".csv", index=False) 

# # 

# concat_csvs(path, sample_num=1000)
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B. Python Script for Obtaining Normalized Band Indices 

import rasterio 

import os 

import numpy as np 

import pandas as pd 

 

# NDWI (Sentinel 2) = (B3 – B8) / (B3 + B8) 

# NDVI (Sentinel 2) = (B8 – B4) / (B8 + B4) 

# NDSI (Sentinel 2) = (B3 – B11) / (B3 + B11) 

 

'''THIS CODE IS FOR OBTAINING NDSI, NDVI AND NDWI FROM 

SENTINEL-2 BANDS THAT ARE CONVERTED FROM .JP2 FORMAT TO 

.TIFF BEFOREHAND''' 

 

path = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

23_Jan_2020_sc_only/" 

 

b_3 = rasterio.open(path + 'S2_Bands_TIFF/B03.tif').read() 

b_8 = rasterio.open(path +"S2_Bands_TIFF/B08A.tif").read() 

b_4 = rasterio.open(path +'S2_Bands_TIFF/B04.tif').read() 

b_11 = rasterio.open(path + 'S2_Bands_TIFF/B11.tif').read() 

b_12= rasterio.open(path + 'S2_Bands_TIFF/B12.tif').read() 

 

b_3_r = rasterio.open(path + 'S2_Bands_TIFF/B03.tif') 

b_4_r = rasterio.open(path + 'S2_Bands_TIFF/B04.tif') 

 

 

outpath = path + 'S2_Bands_TIFF/' 
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b_3= b_3.astype(float) 

b_8= b_8.astype(float) 

b_11= b_11.astype(float) 

b_4= b_4.astype(float) 

b_12 = b_12.astype(float) 

b_3[b_3==0] = 0.0000001 

b_8[b_8==0] = 0.0000001 

b_4[b_4==0] = 0.0000001 

b_11[b_11==0] = 0.0000001 

 

 

ndvi = np.zeros(b_3_r.shape, dtype=rasterio.float32) 

ndvi = (b_8.astype(float)-b_4.astype(float))/(b_8+b_4) 

 

print(ndvi.shape) 

ndvi=ndvi.reshape(5490,5490) 

 

kwargs = b_4_r.meta 

kwargs.update( 

    dtype=rasterio.float32, 

    count=1, 

    compress='lzw') 

 

with rasterio.open(os.path.join(outpath, 'NDVI.tif'), 'w', **kwargs) as dst: 

    dst.write_band(1, ndvi.astype(rasterio.float32)) 

 

ndwi = np.zeros(b_3_r.shape, dtype=rasterio.float32) 

ndwi = (b_3.astype(float)-b_8.astype(float))/(b_3+b_8) 

 

print(ndwi.shape) 
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ndwi=ndwi.reshape(5490,5490) 

 

kwargs = b_3_r.meta 

kwargs.update( 

    dtype=rasterio.float32, 

    count=1, 

    compress='lzw') 

 

with rasterio.open(os.path.join(outpath, 'NDWI.tif'), 'w', **kwargs) as dst: 

    dst.write_band(1, ndwi.astype(rasterio.float32)) 

 

ndsi = np.zeros(b_3_r.shape, dtype=rasterio.float32) 

ndsi = (b_3.astype(float)-b_11.astype(float))/(b_3+b_11) 

print(ndsi.shape) 

ndsi=ndsi.reshape(5490,5490) 

 

kwargs = b_3_r.meta 

kwargs.update( 

    dtype=rasterio.float32, 

    count=1, 

    compress='lzw') 

 

with rasterio.open(os.path.join(outpath, 'NDSI.tif'), 'w', **kwargs) as dst: 

    dst.write_band(1, ndsi.astype(rasterio.float32)) 
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C. Python Script for Obtaining PCA Bands 

from sklearn.decomposition import PCA 

import skimage 

import os 

import rasterio 

import numpy as np 

import time 

 

''' COMPOSITE RASTER SHOULD BE OBTAINED BEFOREHAND''' 

 

start = time.time() 

 

path_composite = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

8_Apr_2019_atmo_topo/S2_Bands_PCA/Comp_PCA.tif" 

save_path = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

8_Apr_2019_atmo_topo/S2_Bands_PCA/" 

 

meta_data = rasterio.open(path_composite) 

comp_array = rasterio.open(path_composite).read() 

# print(comp_array.shape) # 6, 5490, 5490 

comp=np.reshape(comp_array,(6,5490*5490)) 

 

comp_final = np.transpose(comp) 

# comp_final[np.isnan(comp_final)] = 32767 

pca = PCA(n_components = 3) 

 

a=pca.fit_transform(comp_final) 
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pca1_np = a[:,0] 

pca1 = np.reshape(pca1_np, (5490,5490)) 

kwargs = meta_data.meta 

 

with rasterio.open(os.path.join(save_path, 'PCA1_runtime.tif'), 'w', **kwargs) as 

dst: 

    dst.write_band(1, pca1) 

 

pca2_np = a[:,1] 

pca2 = np.reshape(pca2_np, (5490,5490)) 

 

with rasterio.open(os.path.join(save_path, 'PCA2_runtime.tif'), 'w', **kwargs) as 

dst: 

    dst.write_band(1, pca2) 

 

pca3_np = a[:,2] 

pca3 = np.reshape(pca3_np, (5490,5490)) 

 

with rasterio.open(os.path.join(save_path, 'PCA3_runtime.tif'), 'w', **kwargs) as 

dst: 

    dst.write_band(1, pca3) 

 

end = time.time() 

print((end - start)/60) 
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D. Python Script for RF Classification 

import rasterio 

import pandas as pd 

import numpy as np 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import train_test_split 

import time 

 

'''THIS CODE IS FOR ATMO_TOPO AND SC_ONLY INPUT 

COMBINATIONS ONLY''' 

start = time.time() 

 

img_path= 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

8_Apr_2019_sc_only/Test_Area/" 

train_path= 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

8_Apr_2019_sc_only/Training_Polygons/Original/Training_Data_1000.csv" 

save_path= 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

8_Apr_2019_sc_only/220610_Classified_01/" 

# img = rasterio.open(img_path).read() 

# print(img.shape) 

def random_forest_og(img_path, train_path, save_path, sample_size = 300, 

choice="atmo_topo"): 

    img = rasterio.open(img_path) 

    img_as_array = img.read() 

    input_crs = img.crs 

    input_gt = img.transform 
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    df_train = pd.read_csv(train_path) 

 

    # Initialize our model with 500 trees 

    X = df_train.drop('class', axis = 1) 

    y = df_train['class'] 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) 

    # Fit our model to training data 

    rf = RandomForestClassifier(n_estimators=500, oob_score=True) 

    rf_model = rf.fit(X_train, y_train) 

    arr1 = img_as_array.reshape(12,1001*1001).transpose() 

    class_prediction = rf_model.predict(arr1) 

    class_prediction = class_prediction.reshape(1001,1001) 

    class_prediction = class_prediction.astype(np.float32) 

    with rasterio.open( 

        save_path + '/RF_classification_'+ choice +'_'+ str(sample_size) +'runtime.tif', 

        'w', 

        driver='GTiff', 

        height=img.shape[0], 

        width=img.shape[1], 

        count=1, 

        dtype=np.float32, 

        crs=input_crs, 

        transform=input_gt, 

    ) as dest_file: 

        dest_file.write(class_prediction, 1) 

    dest_file.close() 

random_forest_og(img_path, train_path, save_path,sample_size=1000, 

choice='atmo_topo') 

end = time.time() 

print((end - start)/60) 
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# print(save_path + '/RF_classification_'+ "atmo_topo" +'_'+ str(1000) +'new.tif')
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E. Python Script for Checking Atmospheric and Topographic Correction 

import rasterio 

import fiona 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import rasterio.mask 

import glob 

import os 

 

'''A POLYGON REPRESENTING PURE SNOW COVER SHOULD BE 

OBTAINED BEFOREHAND''' 

 

path= 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

23_Jan_2020_atmo_topo" 

path_sc= 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

23_Jan_2020_sc_only" 

 

 

 

def pure_snow_polygon(path, path_sc, band_choice = "B02"): 

    #THIS CODE IS FOR ATMOSPHERICALLY AND TOPOGRAPHICALLY 

CORRECTED IMAGES 

    with fiona.open(path+"/Atmo_Topo_Check/puresnow.shp", "r") as shapefile: 

        for feature in shapefile: 

            shapes = [feature["geometry"]] 
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    with rasterio.open(path + "/S2_Bands_TIFF/"+ band_choice + ".tif") as src: 

        out_image, out_trasform = rasterio.mask.mask(src, shapes, crop="True") 

        out_meta = src.meta 

 

    out_meta.update({ 

        'driver': 'Gtiff', 

        'height': out_image.shape[1], 

        'width': out_image.shape[2], 

        'transform': out_trasform 

    }) 

    with rasterio.open(path +"/Atmo_Topo_Check/" + band_choice + 

"_puresnow.tif", "w", **out_meta) as dst: 

        dst.write(out_image) 

    #THIS CODE IS FOR ORIGINAL/RESAMPLED ONLY IMAGES 

 

 

    with fiona.open(path+"/Atmo_Topo_Check/puresnow.shp", "r") as shapefile: 

        for feature in shapefile: 

            shapes = [feature["geometry"]] 

 

    with rasterio.open(path_sc + "/S2_Bands_TIFF/"+ band_choice + ".tif") as src: 

        out_image, out_trasform = rasterio.mask.mask(src, shapes, crop="True") 

        out_meta = src.meta 

 

    out_meta.update({ 

        'driver': 'Gtiff', 

        'height': out_image.shape[1], 

        'width': out_image.shape[2], 

        'transform': out_trasform 

    }) 
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    with rasterio.open(path +"/Atmo_Topo_Check/" + band_choice + 

"_puresnow_sconly.tif", "w", **out_meta) as dst: 

        dst.write(out_image) 

 

def plot_mean(path): 

    b_2 = rasterio.open(path + "/Atmo_Topo_Check/" + 

'B02_puresnow.tif').read().flatten() 

    b_3 = rasterio.open(path + "/Atmo_Topo_Check/" + 

'B03_puresnow.tif').read().flatten() 

    b_4 = rasterio.open(path + "/Atmo_Topo_Check/" + 

'B04_puresnow.tif').read().flatten() 

 

    b2 = rasterio.open(path + "/Atmo_Topo_Check/" + 

'B02_puresnow_sconly.tif').read().flatten() 

    b3 = rasterio.open(path + "/Atmo_Topo_Check/" + 

'B03_puresnow_sconly.tif').read().flatten() 

    b4 = rasterio.open(path + "/Atmo_Topo_Check/" + 

'B04_puresnow_sconly.tif').read().flatten() 

 

    #nodata= -32768 

 

    b_2 = b_2[b_2!=-32768] 

    b_3 = b_3[b_3!=-32768] 

    b_4 = b_4[b_4!=-32768] 

    b2 = b2[b2!=-32768] 

    b3 = b3[b3!=-32768] 

    b4 = b4[b4!=-32768] 

 

    mean_b_2= np.mean(b_2)/10000 

    mean_b_3= np.mean(b_3)/10000 
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    mean_b_4= np.mean(b_4)/10000 

 

    mean_b2= np.mean(b2)/10000 

    mean_b3= np.mean(b3)/10000 

    mean_b4= np.mean(b4)/10000 

 

 

    x = ["band2(blue)","band3(green)","band4(red)"] 

    y1=[mean_b_2,mean_b_3,mean_b_4] 

    y2=[mean_b2,mean_b3,mean_b4] 

 

    sns.lineplot(x=x, y=y1, legend="brief", label= "Atmospheric & Topographic 

Correction",color="red") 

    sns.lineplot(x=x, y=y2, legend="brief", label="Original", color="blue") 

    sns.set(rc = {'figure.figsize':(10,20)}) 

    plt.legend(loc="center") 

    plt.yticks(np.arange(min(y2)+0.0003, max(y1), 0.02)) 

    plt.suptitle('TATRA - 23 January 2020') #change it as you go 

    plt.xlabel('Sentinel-2 Bands') 

    plt.ylabel('Reflectance Values') 

    # function to show the plot 

    # plt.show() 

    

plt.savefig("E:/TEZ/Presentations/070722/atmo_topo/Tatra_23_Jan_2020_new.png

") 

 

# band_names = ['B02', 'B03', 'B04'] 

# 

# for name in band_names: 

#     pure_snow_polygon(path, path_sc, band_choice=name) 
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plot_mean(path)
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F. Python Script for Obtaining Accuracy Assessment Metrics 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import cohen_kappa_score 

 

 

path = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/02_TATRA/Work_Folder/

8_Apr_2019_atmo_topo" 

 

def colors_from_values(values, palette_name): 

    # normalize the values to range [0, 1] 

    normalized = (values - min(values)) / (max(values) - min(values)) 

    # convert to indices 

    indices = np.round(normalized * (len(values) - 1)).astype(np.int32) 

    # use the indices to get the colors 

    palette = sns.color_palette(palette_name, len(values)) 

    return np.array(palette).take(indices, axis=0) 

 

def conf_matrix_batch(path=path): 

    path_read = path + "/Accuracy_Assessment/ALL/" 

    # df_atmo_topo_1000 = pd.read_csv(path_read + 

"classified_atmo_topo_1000.csv") 

    # df_atmo_topo_300=pd.read_csv(path_read + "classified_atmo_topo_300.csv") 

    # df_sc_1000=pd.read_csv(path_read + "classified_sc_1000.csv") 
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    # df_sc_300 = pd.read_csv(path_read + "classified_sc_300.csv") 

    # df_dem_1000 = pd.read_csv(path_read + "classified_dem_1000.csv") 

    # df_dem_300 = pd.read_csv(path_read + "classified_dem_300.csv") 

    # df_pca_1000 = pd.read_csv(path_read + "classified_pca_1000.csv") 

    # df_pca_300 = pd.read_csv(path_read + "classified_pca_300.csv") 

    df_pca_plus_1000 = pd.read_csv(path_read + "classified_pca_plus_1000.csv") 

    df_pca_plus_300 = pd.read_csv(path_read + "classified_pca_plus_300.csv") 

    df_pca_plus2_1000 = pd.read_csv(path_read + 

"classified_pca_plus_10002.csv") 

    df_pca_plus2_300 = pd.read_csv(path_read + "classified_pca_plus_3002.csv") 

 

    df_gt = pd.read_csv(path_read + "groundtruth.csv") 

 

    # cf_matrix_atmo_topo_1000 = confusion_matrix(df_gt, df_atmo_topo_1000) 

    # cf_matrix_atmo_topo_300 = confusion_matrix(df_gt, df_atmo_topo_300) 

    # cf_matrix_sc_1000 = confusion_matrix(df_gt, df_sc_1000) 

    # cf_matrix_sc_300 = confusion_matrix(df_gt, df_sc_300) 

    # cf_matrix_dem_1000 = confusion_matrix(df_gt, df_dem_1000) 

    # cf_matrix_dem_300 = confusion_matrix(df_gt, df_dem_300) 

    # cf_matrix_pca_1000 = confusion_matrix(df_gt, df_pca_1000) 

    # cf_matrix_pca_300 = confusion_matrix(df_gt, df_pca_300) 

    cf_matrix_pca_plus_1000 = confusion_matrix(df_gt, df_pca_plus_1000) 

    cf_matrix_pca_plus_300 = confusion_matrix(df_gt, df_pca_plus_300) 

    cf_matrix_pca_plus2_1000 = confusion_matrix(df_gt, df_pca_plus2_1000) 

    cf_matrix_pca_plus2_300 = confusion_matrix(df_gt, df_pca_plus2_300) 

 

    # cm_df_atmo_topo_1000 = pd.DataFrame(cf_matrix_atmo_topo_1000, 

    #                                     index=["cloud", "land", "snow", "water"],  

    #                                     columns=["cloud", "land", "snow", "water"]) 

    # 
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    # cm_df_atmo_topo_300 = pd.DataFrame(cf_matrix_atmo_topo_300, 

    #                                     index=["cloud", "land", "snow", "water"],  

    #                                     columns=["cloud", "land", "snow", "water"]) 

    # 

    # cm_df_sc_1000 = pd.DataFrame(cf_matrix_sc_1000, 

    #                                     index=["cloud", "land", "snow", "water"],  

    #                                     columns=["cloud", "land", "snow", "water"]) 

    # 

    # cm_df_sc_300= pd.DataFrame(cf_matrix_sc_300, 

    #                                     index=["cloud", "land", "snow", "water"],  

    #                                     columns=["cloud", "land", "snow", "water"]) 

    # cm_df_dem_1000 = pd.DataFrame(cf_matrix_dem_1000, 

    #                                     index=["cloud", "land", "snow", "water"],  

    #                                     columns=["cloud", "land", "snow", "water"]) 

    # cm_df_dem_300 = pd.DataFrame(cf_matrix_dem_300, 

    #                                     index=["cloud", "land", "snow", "water"],  

    #                                     columns=["cloud", "land", "snow", "water"]) 

    # 

    # cm_df_pca_1000 = pd.DataFrame(cf_matrix_pca_1000, 

    #                                     index=["cloud", "land", "snow", "water"],  

    #                                     columns=["cloud", "land", "snow", "water"]) 

    # cm_df_pca_300 = pd.DataFrame(cf_matrix_pca_300, 

    #                                     index=["cloud", "land", "snow", "water"], 

    #                                     columns=["cloud", "land", "snow", "water"]) 

 

    cm_df_pca_plus_1000 = pd.DataFrame(cf_matrix_pca_plus_1000, 

                                  index=["cloud", "land", "snow", "water"], 

                                  columns=["cloud", "land", "snow", "water"]) 

    cm_df_pca_plus_300 = pd.DataFrame(cf_matrix_pca_plus_300, 

                                 index=["cloud", "land", "snow", "water"], 
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                                 columns=["cloud", "land", "snow", "water"]) 

    cm_df_pca_plus2_1000 = pd.DataFrame(cf_matrix_pca_plus2_1000, 

                                  index=["cloud", "land", "snow", "water"], 

                                  columns=["cloud", "land", "snow", "water"]) 

    cm_df_pca_plus2_300 = pd.DataFrame(cf_matrix_pca_plus2_300, 

                                 index=["cloud", "land", "snow", "water"], 

                                 columns=["cloud", "land", "snow", "water"]) 

 

    fig, axes = plt.subplots(nrows=2, ncols=2, figsize= (12,12)) 

 

    # sns.heatmap(cm_df_atmo_topo_1000, annot=True, fmt='g', 

ax=axes[0,0]).set(title="Atmo_Topo_1000") 

    # sns.heatmap(cm_df_sc_1000, annot=True, fmt='g', 

ax=axes[0,1]).set(title="SC_1000") 

    # sns.heatmap(cm_df_dem_1000, annot=True, fmt='g', 

ax=axes[0,2]).set(title="DEM_1000") 

    # sns.heatmap(cm_df_pca_1000, annot=True, fmt='g', 

ax=axes[0,3]).set(title="PCA_1000") 

    sns.heatmap(cm_df_pca_plus_1000, annot=True, fmt='g', ax=axes[0, 

0]).set(title="PCA_PLUS_1000") 

    sns.heatmap(cm_df_pca_plus2_1000, annot=True, fmt='g', ax=axes[0, 

1]).set(title="PCA_PLUS2_1000") 

 

    # sns.heatmap(cm_df_atmo_topo_300, annot=True, fmt='g', 

ax=axes[1,0]).set(title="Atmo_Topo_300") 

    # sns.heatmap(cm_df_sc_300, annot=True, fmt='g', 

ax=axes[1,1]).set(title="SC_300") 

    # sns.heatmap(cm_df_dem_300, annot=True, fmt='g', 

ax=axes[1,2]).set(title="DEM_300") 

    # sns.heatmap(cm_df_pca_300, annot=True, fmt='g', 
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ax=axes[1,3]).set(title="PCA_300") 

    sns.heatmap(cm_df_pca_plus_300, annot=True, fmt='g', ax=axes[1, 

0]).set(title="PCA_PLUS_300") 

    sns.heatmap(cm_df_pca_plus2_300, annot=True, fmt='g', ax=axes[1, 

1]).set(title="PCA_PLUS2_300") 

 

    fig.suptitle("TATRA - 8 April 2019") 

    fig.tight_layout() 

    plt.show() 

 

 

 

def acc_kappa(path): 

    path_read = path + "/Accuracy_Assessment/ALL/" 

    # df_atmo_topo_1000 = pd.read_csv(path_read + 

"classified_atmo_topo_1000.csv") 

    # df_atmo_topo_300 = pd.read_csv(path_read + 

"classified_atmo_topo_300.csv") 

    # df_sc_1000 = pd.read_csv(path_read + "classified_sc_1000.csv") 

    # df_sc_300 = pd.read_csv(path_read + "classified_sc_300.csv") 

    # df_dem_1000 = pd.read_csv(path_read + "classified_dem_1000.csv") 

    # df_dem_300 = pd.read_csv(path_read + "classified_dem_300.csv") 

    # df_pca_1000 = pd.read_csv(path_read + "classified_pca_1000.csv") 

    # df_pca_300 = pd.read_csv(path_read + "classified_pca_300.csv") 

    df_pca_plus_1000 = pd.read_csv(path_read + "classified_pca_plus_1000.csv") 

    df_pca_plus_300 = pd.read_csv(path_read + "classified_pca_plus_300.csv") 

    df_pca_plus2_1000 = pd.read_csv(path_read + 

"classified_pca_plus_10002.csv") 

    df_pca_plus2_300 = pd.read_csv(path_read + "classified_pca_plus_3002.csv") 

    df_gt = pd.read_csv(path_read + "groundtruth.csv") 
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    # overall_acc_atmo_topo_1000 = accuracy_score(df_gt, df_atmo_topo_1000) 

    # kappa_atmo_topo_1000 = cohen_kappa_score(df_gt, df_atmo_topo_1000) 

    # 

    # overall_acc_atmo_topo_300 = accuracy_score(df_gt, df_atmo_topo_300) 

    # kappa_atmo_topo_300 = cohen_kappa_score(df_gt, df_atmo_topo_300) 

    # 

    # overall_acc_sc_1000 = accuracy_score(df_gt, df_sc_1000) 

    # kappa_sc_1000 = cohen_kappa_score(df_gt, df_sc_1000) 

    # 

    # overall_acc_sc_300 = accuracy_score(df_gt, df_sc_300) 

    # kappa_sc_300 = cohen_kappa_score(df_gt, df_sc_300) 

    # 

    # overall_acc_dem_1000 = accuracy_score(df_gt, df_dem_1000) 

    # kappa_dem_1000 = cohen_kappa_score(df_gt, df_dem_1000) 

    # 

    # overall_acc_dem_300 = accuracy_score(df_gt, df_dem_300) 

    # kappa_dem_300 = cohen_kappa_score(df_gt, df_dem_300) 

    # 

    # overall_acc_pca_1000 = accuracy_score(df_gt, df_pca_1000) 

    # kappa_pca_1000 = cohen_kappa_score(df_gt, df_pca_1000) 

    # 

    # overall_acc_pca_300 = accuracy_score(df_gt, df_pca_300) 

    # kappa_pca_300 = cohen_kappa_score(df_gt, df_pca_300) 

 

    overall_acc_pca_plus_1000 = accuracy_score(df_gt, df_pca_plus_1000) 

    kappa_pca_plus_1000 = cohen_kappa_score(df_gt, df_pca_plus_1000) 

 

    overall_acc_pca_plus_300 = accuracy_score(df_gt, df_pca_plus_300) 

    kappa_pca_plus_300 = cohen_kappa_score(df_gt, df_pca_plus_300) 
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    overall_acc_pca_plus2_1000 = accuracy_score(df_gt, df_pca_plus2_1000) 

    kappa_pca_plus2_1000 = cohen_kappa_score(df_gt, df_pca_plus2_1000) 

 

    overall_acc_pca_plus2_300 = accuracy_score(df_gt, df_pca_plus2_300) 

    kappa_pca_plus2_300 = cohen_kappa_score(df_gt, df_pca_plus2_300) 

 

    # Numbers of pairs of bars you want 

    N = 4 

    # Y values 

    list_overall_acc = [overall_acc_pca_plus_1000, overall_acc_pca_plus_300, 

overall_acc_pca_plus2_1000, overall_acc_pca_plus2_300] 

    list_kappa = [kappa_pca_plus_1000, kappa_pca_plus_300, 

kappa_pca_plus2_1000, kappa_pca_plus2_300] 

    # list_overall_acc = [overall_acc_atmo_topo_1000, overall_acc_atmo_topo_300, 

overall_acc_sc_1000, overall_acc_sc_300, 

    #                     overall_acc_dem_1000, overall_acc_dem_300, 

overall_acc_pca_1000, overall_acc_pca_300] 

    # list_kappa = [kappa_atmo_topo_1000, kappa_atmo_topo_300, 

kappa_sc_1000, kappa_sc_300, kappa_dem_1000, kappa_dem_300, 

    #               kappa_pca_1000, kappa_pca_300] 

 

    # X values 

 

    # x_values = ['Atmo_Topo_1000', 'Atmo_Topo_300', 'SC_1000', 'SC_300', 

'DEM_1000', 'DEM_300', 'PCA_1000', 'PCA_300'] 

    x_values = ['PCA_PLUS_1000', 'PCA_PLUS_300', 'PCA_PLUS2_1000', 

'PCA_PLUS2_300'] 

 

    # Position of bars on x-axis 
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    ind = np.arange(N) 

    plt.figure(figsize=(20, 10)) 

    width = 0.22 

 

    plt.bar(ind, list_overall_acc, width, label='Overall Accuracy', color="#FE5E03") 

    plt.bar(ind + width, list_kappa, width, label='Kappa Coefficient', 

color="#03FEE1") 

 

    plt.xlabel('Methodology') 

    plt.ylabel('Overall Accuracy and Kappa Coefficient Values') 

    plt.title("TATRA - 8 April 2019") 

    plt.xticks(ind + width / 2, x_values) 

    plt.ylim(min(list_kappa) - 0.1, max(list_overall_acc) + 0.1) 

    # plt.yticks(np.arange(min(list_kappa)+0.1,max(list_overall_acc), 0.01)) 

 

    # Finding the best position for legends and putting it 

    plt.legend(loc='best') 

    plt.show() 

 

 

def to_csv(path): 

    path_read = path + "/Accuracy_Assessment/ALL/" 

    df_atmo_topo_1000 = pd.read_csv(path_read + 

"classified_atmo_topo_1000.csv") 

    df_atmo_topo_300 = pd.read_csv(path_read + "classified_atmo_topo_300.csv") 

    df_sc_1000 = pd.read_csv(path_read + "classified_sc_1000.csv") 

    df_sc_300 = pd.read_csv(path_read + "classified_sc_300.csv") 

    df_dem_1000 = pd.read_csv(path_read + "classified_dem_1000.csv") 

    df_dem_300 = pd.read_csv(path_read + "classified_dem_300.csv") 

    df_pca_1000 = pd.read_csv(path_read + "classified_pca_1000.csv") 
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    df_pca_300 = pd.read_csv(path_read + "classified_pca_300.csv") 

    # df_pca_plus_1000 = pd.read_csv(path_read + "classified_pca_plus_1000.csv") 

    # df_pca_plus_300 = pd.read_csv(path_read + "classified_pca_plus_300.csv") 

    # df_pca_plus2_1000 = pd.read_csv(path_read + 

"classified_pca_plus_10002.csv") 

    # df_pca_plus2_300 = pd.read_csv(path_read + "classified_pca_plus_3002.csv") 

 

    df_gt = pd.read_csv(path_read + "groundtruth.csv") 

 

    overall_acc_atmo_topo_1000 = accuracy_score(df_gt, df_atmo_topo_1000) 

    kappa_atmo_topo_1000 = cohen_kappa_score(df_gt, df_atmo_topo_1000) 

 

    overall_acc_atmo_topo_300 = accuracy_score(df_gt, df_atmo_topo_300) 

    kappa_atmo_topo_300 = cohen_kappa_score(df_gt, df_atmo_topo_300) 

 

    overall_acc_sc_1000 = accuracy_score(df_gt, df_sc_1000) 

    kappa_sc_1000 = cohen_kappa_score(df_gt, df_sc_1000) 

 

    overall_acc_sc_300 = accuracy_score(df_gt, df_sc_300) 

    kappa_sc_300 = cohen_kappa_score(df_gt, df_sc_300) 

 

    overall_acc_dem_1000 = accuracy_score(df_gt, df_dem_1000) 

    kappa_dem_1000 = cohen_kappa_score(df_gt, df_dem_1000) 

 

    overall_acc_dem_300 = accuracy_score(df_gt, df_dem_300) 

    kappa_dem_300 = cohen_kappa_score(df_gt, df_dem_300) 

 

    overall_acc_pca_1000 = accuracy_score(df_gt, df_pca_1000) 

    kappa_pca_1000 = cohen_kappa_score(df_gt, df_pca_1000) 
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    overall_acc_pca_300 = accuracy_score(df_gt, df_pca_300) 

    kappa_pca_300 = cohen_kappa_score(df_gt, df_pca_300) 

 

    # overall_acc_pca_plus_1000 = accuracy_score(df_gt, df_pca_plus_1000) 

    # kappa_pca_plus_1000 = cohen_kappa_score(df_gt, df_pca_plus_1000) 

    # 

    # overall_acc_pca_plus_300 = accuracy_score(df_gt, df_pca_plus_300) 

    # kappa_pca_plus_300 = cohen_kappa_score(df_gt, df_pca_plus_300) 

    # 

    # overall_acc_pca_plus2_1000 = accuracy_score(df_gt, df_pca_plus2_1000) 

    # kappa_pca_plus2_1000 = cohen_kappa_score(df_gt, df_pca_plus2_1000) 

    # 

    # overall_acc_pca_plus2_300 = accuracy_score(df_gt, df_pca_plus2_300) 

    # kappa_pca_plus2_300 = cohen_kappa_score(df_gt, df_pca_plus2_300) 

 

    dict_ult = {'Name': ['Overall Accuracy', 'Kappa'], 'Atmo_Topo_1000': 

[overall_acc_atmo_topo_1000, kappa_atmo_topo_1000],'Atmo_Topo_300': 

[overall_acc_atmo_topo_300, kappa_atmo_topo_300], 'SC_1000': 

[overall_acc_sc_1000, kappa_sc_1000], 'SC_300':[overall_acc_sc_300, 

kappa_sc_300], 'DEM_1000': [overall_acc_dem_1000,kappa_dem_1000], 

'DEM_300': [overall_acc_dem_300, kappa_dem_300], 'PCA_1000': 

[overall_acc_pca_1000, kappa_pca_1000], 'PCA_300': 

[overall_acc_pca_300,kappa_pca_300] } 

 

    df = pd.DataFrame(dict_ult) 

    df.to_csv("E:/TEZ/Presentations/140722/Alps_24_Jan_2019_jun.csv") 

 

conf_matrix_batch(path) 

# acc_kappa(path) 

# to_csv(path)
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G. Python Script for Obtaining Monthly Average Values from ERA5-Land 

Monthly Reanalysis Data 

from shapely.geometry import mapping 

import xarray as xr 

import rioxarray 

import geopandas as gpd 

import numpy as np 

import pandas as pd 

import statistics as st 

 

 

shp_path_alps='D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/04_Sentinel

_2_Tiles_Borders/T32TPS_Alps.shp' 

shp_path_tatra='D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/04_Sentinel

_2_Tiles_Borders/T34UCV_Tatra.shp' 

shp_path_turkey='D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/04_Sentin

el_2_Tiles_Borders/T37TFE_Turkey.shp' 

list_range = list(range(776,865)) #covering from January 1990 to December 2021 

 

 

#lists for individual months - needed to get the mean of the months for 31 years for 

each region 

list_january = list (range(480,865,12)) 

list_february = list (range(480+1,865,12)) 

list_march = list (range(480+2,865,12)) 

list_april = list (range(480+3,865,12)) 

list_may = list (range(480+4,865,12)) 

list_june = list (range(480+5,865,12)) 

list_july = list (range(480+6,865,12)) 
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list_august = list(range(480+7,865,12)) 

list_september = list (range(480+8,865,12)) 

list_october = list (range(480+9,865,12)) 

list_november = list (range(480+10,865,12)) 

list_december = list (range(480+11,865,12)) 

 

 

 

 

#region= "alps", "tatra", "turkey" 

def get_raster_sde(i): 

# Open the NetCDF 

 

    sde_full = xr.open_dataset('E:/indirilenler/sde_full.nc') 

    sde= sde_full['sde'] 

    sde.rio.write_crs("epsg:4326", inplace=True) 

#(Optional) convert longitude from (0-360) to (-180 to 180) (if required) 

    sde.coords['longitude'] = (sde.coords['longitude'] + 180) % 360 - 180 

    sde = sde.sortby(sde.longitude) 

 

#Define lat/long 

    sde = sde.rio.set_spatial_dims('longitude', 'latitude') 

    sde[i].rio.to_raster("E:/indirilenler/sde/sde_" + str(i) + ".tiff", compress='LZMA', 

tiled=True, dtype="int32") 

 

 

 

def clip_and_get_mean_sde(shp_path, i): 

    sde_alps_try = rioxarray.open_rasterio("E:/indirilenler/sde/sde_"+str(i)+".tiff", 

                                    masked=True).squeeze() 
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    shapes_alps = gpd.read_file(shp_path) 

    sde_clipped = sde_alps_try.rio.clip(shapes_alps.geometry.apply(mapping), 

shapes_alps.crs) 

    sde_array = sde_clipped.to_masked_array().flatten().compressed() 

    sde_array = list(sde_array) 

    # return sde_array 

    return np.mean(sde_array) 

 

# '''GET RASTERS FIRST''' 

# for i in list_range: 

#     get_raster_sde(i) 

#     print("done:" + str(i)) 

 

'''MEAN OF MONTHS FOR ALPINE REGION''' 

 

# mean_list_sde_alps_january=[] 

# for i in list_january: 

#     mean_list_sde_alps_january.append(clip_and_get_mean_sde(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_february=[] 

# for i in list_february: 

#     mean_list_sde_alps_february.append(clip_and_get_mean_sde(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_march=[] 

# for i in list_march: 

#     mean_list_sde_alps_march.append(clip_and_get_mean_sde(shp_path_alps, i)) 
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#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_april=[] 

# for i in list_april: 

#     mean_list_sde_alps_april.append(clip_and_get_mean_sde(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_may=[] 

# for i in list_may: 

#     mean_list_sde_alps_may.append(clip_and_get_mean_sde(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_june=[] 

# for i in list_june: 

#     mean_list_sde_alps_june.append(clip_and_get_mean_sde(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_july=[] 

# for i in list_july: 

#     mean_list_sde_alps_july.append(clip_and_get_mean_sde(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_august=[] 

# for i in list_august: 

#     mean_list_sde_alps_august.append(clip_and_get_mean_sde(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_alps_september=[] 

# for i in list_september: 

#     
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mean_list_sde_alps_september.append(clip_and_get_mean_sde(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_sde_alps_october=[] 

# for i in list_october: 

#     mean_list_sde_alps_october.append(clip_and_get_mean_sde(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_sde_alps_november=[] 

# for i in list_november: 

#     mean_list_sde_alps_november.append(clip_and_get_mean_sde(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_sde_alps_december=[] 

# for i in list_december: 

#     mean_list_sde_alps_december.append(clip_and_get_mean_sde(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# alps_sde= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 'July', 

'August', 'September', 'October', 'November', 'December'], 

#         'Means': [st.mean(mean_list_sde_alps_january), 

st.mean(mean_list_sde_alps_february), st.mean(mean_list_sde_alps_march), 

st.mean(mean_list_sde_alps_april), st.mean(mean_list_sde_alps_may), 

st.mean(mean_list_sde_alps_june), st.mean(mean_list_sde_alps_july), 

st.mean(mean_list_sde_alps_august), st.mean(mean_list_sde_alps_september), 
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st.mean(mean_list_sde_alps_october), st.mean(mean_list_sde_alps_november), 

st.mean(mean_list_sde_alps_december)]} 

# alps_sde 

=pd.DataFrame(alps_sde).to_csv("E:/indirilenler/sde/alps_sde_means.csv") 

 

'''MEAN OF MONTHS FOR TATRA MOUNTAINS''' 

# 

# mean_list_sde_tatra_january=[] 

# for i in list_january: 

#     mean_list_sde_tatra_january.append(clip_and_get_mean_sde(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_tatra_february=[] 

# for i in list_february: 

#     mean_list_sde_tatra_february.append(clip_and_get_mean_sde(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_tatra_march=[] 

# for i in list_march: 

#     mean_list_sde_tatra_march.append(clip_and_get_mean_sde(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_tatra_april=[] 

# for i in list_april: 

#     mean_list_sde_tatra_april.append(clip_and_get_mean_sde(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 
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# mean_list_sde_tatra_may=[] 

# for i in list_may: 

#     mean_list_sde_tatra_may.append(clip_and_get_mean_sde(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_tatra_june=[] 

# for i in list_june: 

#     mean_list_sde_tatra_june.append(clip_and_get_mean_sde(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_tatra_july=[] 

# for i in list_july: 

#     mean_list_sde_tatra_july.append(clip_and_get_mean_sde(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_tatra_august=[] 

# for i in list_august: 

#     mean_list_sde_tatra_august.append(clip_and_get_mean_sde(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_tatra_september=[] 

# for i in list_september: 

#     

mean_list_sde_tatra_september.append(clip_and_get_mean_sde(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_sde_tatra_october=[] 

# for i in list_october: 
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#     mean_list_sde_tatra_october.append(clip_and_get_mean_sde(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_sde_tatra_november=[] 

# for i in list_november: 

#     

mean_list_sde_tatra_november.append(clip_and_get_mean_sde(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_sde_tatra_december=[] 

# for i in list_december: 

#     

mean_list_sde_tatra_december.append(clip_and_get_mean_sde(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# tatra_sde= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 'July', 

'August', 'September', 'October', 'November', 'December'], 

#         'Means': [st.mean(mean_list_sde_tatra_january), 

st.mean(mean_list_sde_tatra_february), st.mean(mean_list_sde_tatra_march), 

st.mean(mean_list_sde_tatra_april), st.mean(mean_list_sde_tatra_may), 

st.mean(mean_list_sde_tatra_june), st.mean(mean_list_sde_tatra_july), 

st.mean(mean_list_sde_tatra_august), st.mean(mean_list_sde_tatra_september), 

st.mean(mean_list_sde_tatra_october), st.mean(mean_list_sde_tatra_november), 

st.mean(mean_list_sde_tatra_december)]} 

# tatra_sde 

=pd.DataFrame(tatra_sde).to_csv("E:/indirilenler/sde/tatra_sde_means.csv") 

# print(mean_list_sde_tatra_january) 

# print(mean_list_sde_tatra_february) 
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# print(mean_list_sde_tatra_march) 

# print(mean_list_sde_tatra_april) 

# print(mean_list_sde_tatra_may) 

# print(mean_list_sde_tatra_june) 

# print(mean_list_sde_tatra_july) 

# print(mean_list_sde_tatra_august) 

# print(mean_list_sde_tatra_september) 

# print(mean_list_sde_tatra_october) 

# print(mean_list_sde_tatra_november) 

# print(mean_list_sde_tatra_december) 

'''MEAN OF MONTHS FOR KAÇKAR MOUNTAINS''' 

 

# mean_list_sde_kackar_january=[] 

# for i in list_january: 

#     

mean_list_sde_kackar_january.append(clip_and_get_mean_sde(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_february=[] 

# for i in list_february: 

#     

mean_list_sde_kackar_february.append(clip_and_get_mean_sde(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_march=[] 

# for i in list_march: 

#     

mean_list_sde_kackar_march.append(clip_and_get_mean_sde(shp_path_turkey, i)) 
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#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_april=[] 

# for i in list_april: 

#     mean_list_sde_kackar_april.append(clip_and_get_mean_sde(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_may=[] 

# for i in list_may: 

#     mean_list_sde_kackar_may.append(clip_and_get_mean_sde(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_june=[] 

# for i in list_june: 

#     mean_list_sde_kackar_june.append(clip_and_get_mean_sde(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_july=[] 

# for i in list_july: 

#     mean_list_sde_kackar_july.append(clip_and_get_mean_sde(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_august=[] 

# for i in list_august: 

#     

mean_list_sde_kackar_august.append(clip_and_get_mean_sde(shp_path_turkey, 
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i)) 

#     print("done:" + str(i)) 

# 

# mean_list_sde_kackar_september=[] 

# for i in list_september: 

#     

mean_list_sde_kackar_september.append(clip_and_get_mean_sde(shp_path_turke

y, i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_sde_kackar_october=[] 

# for i in list_october: 

#     

mean_list_sde_kackar_october.append(clip_and_get_mean_sde(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_sde_kackar_november=[] 

# for i in list_november: 

#     

mean_list_sde_kackar_november.append(clip_and_get_mean_sde(shp_path_turkey

, i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_sde_kackar_december=[] 

# for i in list_december: 

#     

mean_list_sde_kackar_december.append(clip_and_get_mean_sde(shp_path_turkey
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, i)) 

#     print("done:" + str(i)) 

# 

#kackar_sde= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 'July', 

'August', 'September', 'October', 'November', 'December'], 

#         'Means': [st.mean(mean_list_sde_kackar_january), 

st.mean(mean_list_sde_kackar_february), st.mean(mean_list_sde_kackar_march), 

st.mean(mean_list_sde_kackar_april), st.mean(mean_list_sde_kackar_may), 

st.mean(mean_list_sde_kackar_june), st.mean(mean_list_sde_kackar_july), 

st.mean(mean_list_sde_kackar_august), 

st.mean(mean_list_sde_kackar_september), 

st.mean(mean_list_sde_kackar_october), 

st.mean(mean_list_sde_kackar_november), 

st.mean(mean_list_sde_kackar_december)]} 

# kackar_sde 

=pd.DataFrame(kackar_sde).to_csv("E:/indirilenler/sde/kackar_sde_means.csv") 

 

def get_raster_t2m(i): 

#Open the NetCDF 

 

    sde_full = xr.open_dataset('E:/indirilenler/t2m_full.nc') 

    sde= sde_full['t2m'] 

    sde.rio.write_crs("epsg:4326", inplace=True) 

#(Optional) convert longitude from (0-360) to (-180 to 180) (if required) 

    sde.coords['longitude'] = (sde.coords['longitude'] + 180) % 360 - 180 

    sde = sde.sortby(sde.longitude) 

 

#Define lat/long 

    sde = sde.rio.set_spatial_dims('longitude', 'latitude') 

#Save individual rasters 
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    sde[i].rio.to_raster("E:/indirilenler/t2m/t2m_" + str(i) + ".tiff", 

compress='LZMA', tiled=True, dtype="int32") 

 

def clip_and_get_mean_t2m(shp_path, i): 

    sde_alps_try = rioxarray.open_rasterio("E:/indirilenler/t2m/t2m_"+str(i)+".tiff", 

                                    masked=True).squeeze() 

    shapes_alps = gpd.read_file(shp_path) 

    sde_clipped = sde_alps_try.rio.clip(shapes_alps.geometry.apply(mapping), 

shapes_alps.crs) 

    sde_array = sde_clipped.to_masked_array().compressed() 

    sde_array = list(sde_array) 

    return np.mean(sde_array) 

 

# '''GET RASTERS FIRST''' 

# for i in list_range: 

#     get_raster_t2m(i) 

#     print("done:" + str(i)) 

'''MEAN OF MONTHS FOR ALPINE REGION''' 

 

# mean_list_t2m_alps_january=[] 

# for i in list_january: 

#     mean_list_t2m_alps_january.append(clip_and_get_mean_t2m(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_alps_february=[] 

# for i in list_february: 

#     mean_list_t2m_alps_february.append(clip_and_get_mean_t2m(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 
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# 

# mean_list_t2m_alps_march=[] 

# for i in list_march: 

#     mean_list_t2m_alps_march.append(clip_and_get_mean_t2m(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_alps_april=[] 

# for i in list_april: 

#     mean_list_t2m_alps_april.append(clip_and_get_mean_t2m(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_alps_may=[] 

# for i in list_may: 

#     mean_list_t2m_alps_may.append(clip_and_get_mean_t2m(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_alps_june=[] 

# for i in list_june: 

#     mean_list_t2m_alps_june.append(clip_and_get_mean_t2m(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_alps_july=[] 

# for i in list_july: 

#     mean_list_t2m_alps_july.append(clip_and_get_mean_t2m(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_alps_august=[] 

# for i in list_august: 

#     mean_list_t2m_alps_august.append(clip_and_get_mean_t2m(shp_path_alps, 
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i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_alps_september=[] 

# for i in list_september: 

#     

mean_list_t2m_alps_september.append(clip_and_get_mean_t2m(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_t2m_alps_october=[] 

# for i in list_october: 

#     mean_list_t2m_alps_october.append(clip_and_get_mean_t2m(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_t2m_alps_november=[] 

# for i in list_november: 

#     

mean_list_t2m_alps_november.append(clip_and_get_mean_t2m(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_t2m_alps_december=[] 

# for i in list_december: 

#     

mean_list_t2m_alps_december.append(clip_and_get_mean_t2m(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# alps_t2m= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 'July', 
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'August', 'September', 'October', 'November', 'December'], 

#         'Means': [st.mean(mean_list_t2m_alps_january), 

st.mean(mean_list_t2m_alps_february), st.mean(mean_list_t2m_alps_march), 

st.mean(mean_list_t2m_alps_april), st.mean(mean_list_t2m_alps_may), 

st.mean(mean_list_t2m_alps_june), st.mean(mean_list_t2m_alps_july), 

st.mean(mean_list_t2m_alps_august), st.mean(mean_list_t2m_alps_september), 

st.mean(mean_list_t2m_alps_october), st.mean(mean_list_t2m_alps_november), 

st.mean(mean_list_t2m_alps_december)]} 

# alps_t2m 

=pd.DataFrame(alps_t2m).to_csv("E:/indirilenler/t2m/alps_t2m_means.csv") 

 

'''MEAN OF MONTHS FOR TATRA MOUNTAINS''' 

# 

# mean_list_t2m_tatra_january=[] 

# for i in list_january: 

#     mean_list_t2m_tatra_january.append(clip_and_get_mean_t2m(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_tatra_february=[] 

# for i in list_february: 

#     

mean_list_t2m_tatra_february.append(clip_and_get_mean_t2m(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_tatra_march=[] 

# for i in list_march: 

#     mean_list_t2m_tatra_march.append(clip_and_get_mean_t2m(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 
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# 

# mean_list_t2m_tatra_april=[] 

# for i in list_april: 

#     mean_list_t2m_tatra_april.append(clip_and_get_mean_t2m(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_tatra_may=[] 

# for i in list_may: 

#     mean_list_t2m_tatra_may.append(clip_and_get_mean_t2m(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_tatra_june=[] 

# for i in list_june: 

#     mean_list_t2m_tatra_june.append(clip_and_get_mean_t2m(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_tatra_july=[] 

# for i in list_july: 

#     mean_list_t2m_tatra_july.append(clip_and_get_mean_t2m(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_tatra_august=[] 

# for i in list_august: 

#     mean_list_t2m_tatra_august.append(clip_and_get_mean_t2m(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_tatra_september=[] 

# for i in list_september: 

#     
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mean_list_t2m_tatra_september.append(clip_and_get_mean_t2m(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_t2m_tatra_october=[] 

# for i in list_october: 

#     mean_list_t2m_tatra_october.append(clip_and_get_mean_t2m(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_t2m_tatra_november=[] 

# for i in list_november: 

#     

mean_list_t2m_tatra_november.append(clip_and_get_mean_t2m(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_t2m_tatra_december=[] 

# for i in list_december: 

#     

mean_list_t2m_tatra_december.append(clip_and_get_mean_t2m(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# tatra_t2m= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 'July', 

'August', 'September', 'October', 'November', 'December'], 

#         'Means': [st.mean(mean_list_t2m_tatra_january), 

st.mean(mean_list_t2m_tatra_february), st.mean(mean_list_t2m_tatra_march), 



 

 

 
203 

st.mean(mean_list_t2m_tatra_april), st.mean(mean_list_t2m_tatra_may), 

st.mean(mean_list_t2m_tatra_june), st.mean(mean_list_t2m_tatra_july), 

st.mean(mean_list_t2m_tatra_august), st.mean(mean_list_t2m_tatra_september), 

st.mean(mean_list_t2m_tatra_october), st.mean(mean_list_t2m_tatra_november), 

st.mean(mean_list_t2m_tatra_december)]} 

# tatra_t2m 

=pd.DataFrame(tatra_t2m).to_csv("E:/indirilenler/t2m/tatra_t2m_means.csv") 

 

'''MEAN OF MONTHS FOR KAÇKAR MOUNTAINS''' 

 

# mean_list_t2m_kackar_january=[] 

# for i in list_january: 

#     

mean_list_t2m_kackar_january.append(clip_and_get_mean_t2m(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_kackar_february=[] 

# for i in list_february: 

#     

mean_list_t2m_kackar_february.append(clip_and_get_mean_t2m(shp_path_turkey

, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_kackar_march=[] 

# for i in list_march: 

#     

mean_list_t2m_kackar_march.append(clip_and_get_mean_t2m(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 
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# 

# mean_list_t2m_kackar_april=[] 

# for i in list_april: 

#     

mean_list_t2m_kackar_april.append(clip_and_get_mean_t2m(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_kackar_may=[] 

# for i in list_may: 

#     

mean_list_t2m_kackar_may.append(clip_and_get_mean_t2m(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_kackar_june=[] 

# for i in list_june: 

#     

mean_list_t2m_kackar_june.append(clip_and_get_mean_t2m(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_kackar_july=[] 

# for i in list_july: 

#     mean_list_t2m_kackar_july.append(clip_and_get_mean_t2m(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_t2m_kackar_august=[] 

# for i in list_august: 

#     

mean_list_t2m_kackar_august.append(clip_and_get_mean_t2m(shp_path_turkey, 

i)) 
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#     print("done:" + str(i)) 

# 

# mean_list_t2m_kackar_september=[] 

# for i in list_september: 

#     

mean_list_t2m_kackar_september.append(clip_and_get_mean_t2m(shp_path_turk

ey, i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_t2m_kackar_october=[] 

# for i in list_october: 

#     

mean_list_t2m_kackar_october.append(clip_and_get_mean_t2m(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_t2m_kackar_november=[] 

# for i in list_november: 

#     

mean_list_t2m_kackar_november.append(clip_and_get_mean_t2m(shp_path_turke

y, i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_t2m_kackar_december=[] 

# for i in list_december: 

#     

mean_list_t2m_kackar_december.append(clip_and_get_mean_t2m(shp_path_turke

y, i)) 
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#     print("done:" + str(i)) 

# 

# kackar_t2m= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 

'July', 'August', 'September', 'October', 'November', 'December'], 

#         'Means': [st.mean(mean_list_t2m_kackar_january), 

st.mean(mean_list_t2m_kackar_february), st.mean(mean_list_t2m_kackar_march), 

st.mean(mean_list_t2m_kackar_april), st.mean(mean_list_t2m_kackar_may), 

st.mean(mean_list_t2m_kackar_june), st.mean(mean_list_t2m_kackar_july), 

st.mean(mean_list_t2m_kackar_august), 

st.mean(mean_list_t2m_kackar_september), 

st.mean(mean_list_t2m_kackar_october), 

st.mean(mean_list_t2m_kackar_november), 

st.mean(mean_list_t2m_kackar_december)]} 

# kackar_t2m 

=pd.DataFrame(kackar_t2m).to_csv("E:/indirilenler/t2m/kackar_t2m_means.csv") 

 

 

def get_raster_tp(i): 

#Open the NetCDF 

 

    sde_full = xr.open_dataset('E:/indirilenler/tp_full.nc') 

    sde= sde_full['tp'] 

    sde.rio.write_crs("epsg:4326", inplace=True) 

#(Optional) convert longitude from (0-360) to (-180 to 180) (if required) 

    sde.coords['longitude'] = (sde.coords['longitude'] + 180) % 360 - 180 

    sde = sde.sortby(sde.longitude) 

 

#Define lat/long 

    sde = sde.rio.set_spatial_dims('longitude', 'latitude') 

    sde[i].rio.to_raster("E:/indirilenler/tp/tp_" + str(i) + ".tiff", compress='LZMA', 
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tiled=True, dtype="float64") 

 

def clip_and_get_mean_tp(shp_path, i): 

 

 

    sde_alps_try = rioxarray.open_rasterio("E:/indirilenler/tp/tp_"+str(i)+".tiff", 

                                    masked=True).squeeze() 

    shapes_alps = gpd.read_file(shp_path) 

    sde_clipped = sde_alps_try.rio.clip(shapes_alps.geometry.apply(mapping), 

shapes_alps.crs) 

    sde_array = sde_clipped.to_masked_array().compressed() 

    sde_array=list(sde_array) 

    return np.mean(sde_array) 

 

# '''GET RASTERS FIRST''' 

# for i in list_range: 

#     get_raster_tp(i) 

#     print("done:" + str(i)) 

 

 

'''MEAN OF MONTHS FOR ALPINE REGION''' 

 

# mean_list_tp_alps_january=[] 

# for i in list_january: 

#     mean_list_tp_alps_january.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_february=[] 

# for i in list_february: 

#     mean_list_tp_alps_february.append(clip_and_get_mean_tp(shp_path_alps, i)) 
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#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_march=[] 

# for i in list_march: 

#     mean_list_tp_alps_march.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_april=[] 

# for i in list_april: 

#     mean_list_tp_alps_april.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_may=[] 

# for i in list_may: 

#     mean_list_tp_alps_may.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_june=[] 

# for i in list_june: 

#     mean_list_tp_alps_june.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_july=[] 

# for i in list_july: 

#     mean_list_tp_alps_july.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_august=[] 

# for i in list_august: 

#     mean_list_tp_alps_august.append(clip_and_get_mean_tp(shp_path_alps, i)) 
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#     print("done:" + str(i)) 

# 

# mean_list_tp_alps_september=[] 

# for i in list_september: 

#     mean_list_tp_alps_september.append(clip_and_get_mean_tp(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_tp_alps_october=[] 

# for i in list_october: 

#     mean_list_tp_alps_october.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_tp_alps_november=[] 

# for i in list_november: 

#     mean_list_tp_alps_november.append(clip_and_get_mean_tp(shp_path_alps, 

i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_tp_alps_december=[] 

# for i in list_december: 

#     mean_list_tp_alps_december.append(clip_and_get_mean_tp(shp_path_alps, i)) 

#     print("done:" + str(i)) 

# 

# alps_tp= {'Months': ['January', 'February', 'March', 'April', 'May',  'June', 'July', 

'August', 'September', 'October', 'November', 'December'], 

#         'Means': [np.nanmean(mean_list_tp_alps_january), 

st.mean(mean_list_tp_alps_february), st.mean(mean_list_tp_alps_march), 
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st.mean(mean_list_tp_alps_april), st.mean(mean_list_tp_alps_may), 

st.mean(mean_list_tp_alps_june), st.mean(mean_list_tp_alps_july), 

st.mean(mean_list_tp_alps_august), st.mean(mean_list_tp_alps_september), 

st.mean(mean_list_tp_alps_october), st.mean(mean_list_tp_alps_november), 

np.nanmean(mean_list_tp_alps_december)]} 

# alps_tp =pd.DataFrame(alps_tp).to_csv("E:/indirilenler/tp/alps_tp_means.csv") 

 

'''MEAN OF MONTHS FOR TATRA MOUNTAINS''' 

 

# mean_list_tp_tatra_january=[] 

# for i in list_january: 

#     mean_list_tp_tatra_january.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_february=[] 

# for i in list_february: 

#     mean_list_tp_tatra_february.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_march=[] 

# for i in list_march: 

#     mean_list_tp_tatra_march.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_april=[] 

# for i in list_april: 

#     mean_list_tp_tatra_april.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_may=[] 
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# for i in list_may: 

#     mean_list_tp_tatra_may.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_june=[] 

# for i in list_june: 

#     mean_list_tp_tatra_june.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_july=[] 

# for i in list_july: 

#     mean_list_tp_tatra_july.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_august=[] 

# for i in list_august: 

#     mean_list_tp_tatra_august.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_tatra_september=[] 

# for i in list_september: 

#     mean_list_tp_tatra_september.append(clip_and_get_mean_tp(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_tp_tatra_october=[] 

# for i in list_october: 

#     mean_list_tp_tatra_october.append(clip_and_get_mean_tp(shp_path_tatra, i)) 

#     print("done:" + str(i)) 
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# 

# 

# mean_list_tp_tatra_november=[] 

# for i in list_november: 

#     mean_list_tp_tatra_november.append(clip_and_get_mean_tp(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_tp_tatra_december=[] 

# for i in list_december: 

#     mean_list_tp_tatra_december.append(clip_and_get_mean_tp(shp_path_tatra, 

i)) 

#     print("done:" + str(i)) 

# 

# tatra_tp= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 'July', 

'August', 'September', 'October', 'November', 'December'], 

#         'Means': [np.nanmean(mean_list_tp_tatra_january), 

st.mean(mean_list_tp_tatra_february), st.mean(mean_list_tp_tatra_march), 

st.mean(mean_list_tp_tatra_april), st.mean(mean_list_tp_tatra_may), 

st.mean(mean_list_tp_tatra_june), st.mean(mean_list_tp_tatra_july), 

st.mean(mean_list_tp_tatra_august), st.mean(mean_list_tp_tatra_september), 

st.mean(mean_list_tp_tatra_october), st.mean(mean_list_tp_tatra_november), 

np.nanmean(mean_list_tp_tatra_december)]} 

# tatra_tp =pd.DataFrame(tatra_tp).to_csv("E:/indirilenler/tp/tatra_tp_means.csv") 

 

'''MEAN OF MONTHS FOR KAÇKAR MOUNTAINS''' 

 

# mean_list_tp_kackar_january=[] 

# for i in list_january: 

#     mean_list_tp_kackar_january.append(clip_and_get_mean_tp(shp_path_turkey, 
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i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_kackar_february=[] 

# for i in list_february: 

#     

mean_list_tp_kackar_february.append(clip_and_get_mean_tp(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_kackar_march=[] 

# for i in list_march: 

#     mean_list_tp_kackar_march.append(clip_and_get_mean_tp(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_kackar_april=[] 

# for i in list_april: 

#     mean_list_tp_kackar_april.append(clip_and_get_mean_tp(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_kackar_may=[] 

# for i in list_may: 

#     mean_list_tp_kackar_may.append(clip_and_get_mean_tp(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_kackar_june=[] 

# for i in list_june: 

#     mean_list_tp_kackar_june.append(clip_and_get_mean_tp(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 
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# mean_list_tp_kackar_july=[] 

# for i in list_july: 

#     mean_list_tp_kackar_july.append(clip_and_get_mean_tp(shp_path_turkey, i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_kackar_august=[] 

# for i in list_august: 

#     mean_list_tp_kackar_august.append(clip_and_get_mean_tp(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# mean_list_tp_kackar_september=[] 

# for i in list_september: 

#     

mean_list_tp_kackar_september.append(clip_and_get_mean_tp(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_tp_kackar_october=[] 

# for i in list_october: 

#     mean_list_tp_kackar_october.append(clip_and_get_mean_tp(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# 

# mean_list_tp_kackar_november=[] 

# for i in list_november: 

#     

mean_list_tp_kackar_november.append(clip_and_get_mean_tp(shp_path_turkey, 
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i)) 

#     print("done:" + str(i)) 

# # 

# mean_list_tp_kackar_december=[] 

# for i in list_december: 

#     

mean_list_tp_kackar_december.append(clip_and_get_mean_tp(shp_path_turkey, 

i)) 

#     print("done:" + str(i)) 

# 

# kackar_tp= {'Months': ['January', 'February', 'March', 'April', 'May', 'June', 'July', 

'August', 'September', 'October', 'November', 'December'], 

#         'Means': [np.nanmean(mean_list_tp_kackar_january), 

st.mean(mean_list_tp_kackar_february), st.mean(mean_list_tp_kackar_march), 

st.mean(mean_list_tp_kackar_april), st.mean(mean_list_tp_kackar_may), 

st.mean(mean_list_tp_kackar_june), st.mean(mean_list_tp_kackar_july), 

st.mean(mean_list_tp_kackar_august), st.mean(mean_list_tp_kackar_september), 

st.mean(mean_list_tp_kackar_october), st.mean(mean_list_tp_kackar_november), 

np.nanmean(mean_list_tp_kackar_december)]} 

# kackar_tp 

=pd.DataFrame(kackar_tp).to_csv("E:/indirilenler/tp/kackar_tp_means.csv")
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H. Python Script for the Reclassification of FSCOG Data 

import numpy as np 

# define location for raster 

fsc_path = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/Snow_oC_uC/FSC/" 

sog_raster_path = 

'FSC_20190304T095656_S2B_T34UCV_V100_1/FSC_20190304T095656_S2B_

T34UCV_V100_1/FSC_20181214T095652_S2B_T34UCV_V100_1_FSCOG.tif' 

 

# use rasterio to open the raster for reading 

 

import gdal 

 

#1. 

tiff_file = gdal.Open(fsc_path + sog_raster_path) 

#2. 

geotransform = tiff_file.GetGeoTransform() 

projection = tiff_file.GetProjection() 

band = tiff_file.GetRasterBand(1) 

xsize = band.XSize 

ysize = band.YSize 

#3. 

array = band.ReadAsArray() 

tiff_file = None #close it 

band = None #close it 

#4. 

array = np.where(np.logical_and(array>=0 , array<=100) , 1 , array) #snow 

array = np.where(array==255, 4, array) #nodata 

array = np.where(array==205, 3, array) #cloud or cloud shadow 
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array = np.where(array==0, 2, array)  #nosnow 

 

 

print(array) 

#5. 

output_raster_name = "tatra_14_Dec_2018_sog.tiff" 

driver = gdal.GetDriverByName('GTiff') 

new_tiff = driver.Create(output_raster_name,xsize,ysize,1,gdal.GDT_Float32) 

new_tiff.SetGeoTransform(geotransform) 

new_tiff.SetProjection(projection) 

new_tiff.GetRasterBand(1).WriteArray(array) 

new_tiff.FlushCache() #Saves to disk 

new_tiff = None #closes the file 

 

#1. 

tiff_file2 = gdal.Open(fsc_path + toc_raster_path) 

#2. 

geotransform2 = tiff_file2.GetGeoTransform() 

projection2 = tiff_file2.GetProjection() 

band2 = tiff_file2.GetRasterBand(1) 

xsize2 = band2.XSize 

ysize2 = band2.YSize 

#3. 

array2 = band2.ReadAsArray() 

tiff_file2 = None #close it 

band2 = None #close it 

#4. 

array2 = np.where(np.logical_and(array>0 , array<=100) , 1 , array) 

array2 = np.where(array==255, 4, array) 

array2 = np.where(array==205, 3, array) 
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array2 = np.where(array==0, 2, array) 

 

 

print(array) 

#5. 

output_raster_name2 = "tatra_14_Dec_2018_toc.tiff" 

driver2 = gdal.GetDriverByName('GTiff') 

new_tiff2 = driver.Create(output_raster_name2,xsize2,ysize2,1,gdal.GDT_Float32) 

new_tiff2.SetGeoTransform(geotransform2) 

new_tiff2.SetProjection(projection2) 

new_tiff2.GetRasterBand(1).WriteArray(array2) 

new_tiff2.FlushCache() #Saves to disk 

new_tiff2 = None #closes the file 
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I. Feature Importance of RF 
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TATRA MOUNTAINS     NOVEMBER     
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TATRA MOUNTAINS    APRIL     
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J.  Ratio of Eigenvalues of Pca Input Combination (for full tiles) 
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K. Base Study (NDSI) Accuracy Assessment Results 
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L. Input Combination of Only First Three Principal Components - Accuracy 

Assessment Results 
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M. Python Script for Classification of NDSI 

mport numpy as np 

# define location for raster 

 

import rasterio.mask 

from shapely.geometry import shape, mapping 

from shapely.ops import unary_union 

import fiona 

import itertools 

import pandas as pd 

import numpy as np 

import glob 

import os 

import gdal 

 

 

path = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/03_TURKEY/Work_Folde

r/8_Apr_2018_atmo_topo" 

ndsi_path = 

"D:/Drivers/GGIT/SK_TEZ_110622/Cansu_Tez_Draft/03_TURKEY/Work_Folde

r/8_Apr_2018_atmo_topo/S2_Bands_TIFF/NDSI.tif" 

output_path = "E:/TEZ/NDSI/03_TURKEY/8_Apr_2018/" 

 

 

def get_test_data(path,ndsi_path,output_path): 

    with fiona.open(path + "/Test_Region/Clip_Frame1.shp", "r") as shapefile: 

        for feature in shapefile: 

            shapes = [feature["geometry"]] 
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    with rasterio.open(ndsi_path) as src: 

        out_image, out_trasform = rasterio.mask.mask(src, shapes, crop="True") 

        out_meta = src.meta 

 

    out_meta.update({ 

        'driver': 'Gtiff', 

        'height': out_image.shape[1], 

        'width': out_image.shape[2], 

        'transform': out_trasform 

    }) 

 

    with rasterio.open(output_path + "NDSI_clipped.tif", "w", **out_meta) as dst: 

        dst.write(out_image) 

 

# 

get_test_data(path,ndsi_path,output_path) 

 

 

# use rasterio to open the raster for reading 

 

 

def classify(output_path): 

    #1. 

    tiff_file = gdal.Open(output_path + "NDSI_clipped.tif") 

    #2. 

    geotransform = tiff_file.GetGeoTransform() 

    projection = tiff_file.GetProjection() 

    band = tiff_file.GetRasterBand(1) 

    xsize = band.XSize 

    ysize = band.YSize 

    #3. 
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    array = band.ReadAsArray() 

    tiff_file = None #close it 

    band = None #close it 

    #4. 

    array = np.where(array>0 , 1 , array) #snow 

    array = np.where(array<=0, 0, array) #nosnow 

    #5. 

    output_raster_name = "NDSI_class.tiff" 

    driver = gdal.GetDriverByName('GTiff') 

    new_tiff = driver.Create(output_path + 

output_raster_name,xsize,ysize,1,gdal.GDT_Float32) 

    new_tiff.SetGeoTransform(geotransform) 

    new_tiff.SetProjection(projection) 

    new_tiff.GetRasterBand(1).WriteArray(array) 

    new_tiff.FlushCache() #Saves to disk 

    new_tiff = None #closes the file 

classify(output_path)
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N. Number Of Test Samples Per Class for 20 Km × 20 Km Subsets of 

Sentinel-2 Images, Calculated By Multinomial Distribution Formula 

(Ozdarici Ok & Akyurek, 2012; Jensen, 2006) for NDSI Accuracy 

Assessment 
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