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ABSTRACT 

 

 

SUPPORTING THE DEVELOPMENT OF A SECOND-GRADE 

CLASSROOM‘S CONCEPTIONS OF MULTIPLICATION THROUGH A 

HYPOTHETICAL LEARNING TRAJECTORY  

 

 

KANDĠL, Semanur 

Ph.D., The Department of Elementary Education 

Supervisor: Prof. Dr. Mine IġIKSAL BOSTAN 

 

 

December 2022, 386 pages 

 

 

The first aim of this study is to develop, test, and revise a Hypothetical Learning 

Trajectory and corresponding instructional sequence for teaching multiplication 

in second grade. The second aim is to document second graders‘ classroom 

mathematical practices that emerged related to conceptualizations of 

multiplication and to use those practices for making revisions to the HLT and the 

instructional sequence. An instructional sequence was developed in line with 

Realistic Mathematics Education theory to achieve these goals. This sequence 

was implemented and revised in a design experiment in a year with a design 

research perspective. Data were collected from a second-grade classroom in a 

public school in the Çankaya District of Ankara with the collaboration of the 

classroom teacher. The emergent perspective, which coordinates social and 

individual perspectives and supports collective learning, was used as an 

interpretive framework for data collection and analysis.  

 

The data collected through the video recordings of class sessions, students‘ 

written works, and the researcher‘s field notes were analyzed by adapting 
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Toulmin‘s argumentation model to establish classroom mathematical practices. 

Five classroom mathematical practices emerged related to students‘ 

conceptualizations of multiplication concepts. The study has important 

implications for students, teachers, mathematics education researchers, and 

educational resource designers in practical and theoretical ways. 

 

 

Keywords: Classroom Mathematical Practices, Multiplication, Realistic 

Mathematics Education, Design Research, Hypothetical Learning Trajectories 
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ÖZ 

 

 

ĠLKOKUL 2. SINIF ÖĞRENCĠLERĠNĠN DOĞAL SAYILARLA ÇARPMA 

ĠġLEMĠNĠ KAVRAYIġLARININ ÖĞRENME ROTASI ĠLE 

DESTEKLENMESĠ 

 

 

KANDĠL, Semanur 

Doktora, Ġlköğretim Bölümü 

Tez Yöneticisi: Prof. Dr. Mine IġIKSAL BOSTAN 

 

 

Aralık 2022, 386 sayfa 

 

 

Bu çalıĢmanın ilk amacı, ikinci sınıfta çarpma öğretimi için varsayıma dayalı bir 

öğrenme rotası ve buna karĢılık gelen etkinlik dizisi geliĢtirmek, test etmek ve 

revize etmektir. ÇalıĢmanın ikinci amacı ise, ikinci sınıf öğrencilerinin çarpma 

iĢlemini kavramsallaĢtırmaları ile ilgili ortaya çıkan sınıf içi matematiksel 

uygulamalarını ortaya koymak ve bu uygulamalar doğrultusunda varsayıma 

dayalı öğrenme rotasına ve öğretim dizisine yönelik düzenlemeler yapmaktır. Bu 

hedeflere ulaĢmak için Gerçekçi Matematik Eğitimi teorisine uygun bir etkinlik 

dizisi geliĢtirilmiĢtir. Bu etkinlik dizisi, tasarım tabanlı araĢtırma perspektifiyle 

bir öğretim deneyi ile uygulanmıĢ ve revize edilmiĢtir. ÇalıĢmanın verileri, 

Ankara ilinin Çankaya ilçesinde bir devlet okulunda bulunan bir ikinci sınıftan, 

sınıf öğretmeni iĢbirliği ile toplanmıĢtır. Verilerin toplanması ve analizinde 

kolektif öğrenmeyi destekleyen ve sosyal ile biliĢsel perspektiflerin 

koordinasyonuna iĢaret eden GeliĢen BakıĢ Açısı, yorumlayıcı bir çerçeve olarak 

kullanılmıĢtır. 
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Sınıf oturumlarının video kayıtları, öğrencilerin yazılı çalıĢmaları ve 

araĢtırmacının alan notları aracılığıyla toplanan veriler, sınıf içi matematiksel 

uygulamaları oluĢturmak için Toulmin'in argümantasyon modelinin uyarlaması 

ile analiz edilmiĢtir. Öğrencilerin çarpma iĢlemi konusunu 

kavramsallaĢtırmalarıyla ilgili beĢ sınıf içi matematiksel uygulama ortaya 

çıkmıĢtır. ÇalıĢmanın öğrenciler, öğretmenler, matematik eğitimi araĢtırmacıları 

ve eğitim kaynakları tasarımcıları için hem pratik hem de teorik açıdan önemli 

çıkarımları bulunmaktadır. 

 

 

Anahtar Kelimeler: Sınıf içi Matematiksel Uygulamalar, Çarpma, Gerçekçi 

Matematik Eğitimi, Tasarım AraĢtırması, Varsayıma Dayalı Öğrenme Rotaları 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Multiplication is one of the basic arithmetic concepts in primary school 

mathematics (National Council of Teachers of Mathematics [NCTM], 2000; 

Ministry of National Education [MoNE], 2018). In mathematics instruction, 

multiplication is often introduced as the third arithmetic operation after students 

learn basic addition and subtraction concepts. It is constructed on addition and 

defined as repeated addition, in which a number of collections of the same size 

are put together (Anghileri, 2006; Fishbein et al., 1985; Fosnot & Dolk; 2001; 

Greer, 1992; Nesher, 1988, 1992; Schwartz, 1988; Vergnaud, 1983). In this way, 

students gain the advantage of procedural connection between operations and use 

repeated addition to solve multiplication problems (Anghileri, 2006; Nunes & 

Bryant, 1996). Therefore, repeated addition is viewed as the basic intuitive 

model of multiplication (Fishbein et al., 1985; Freudenthal, 1973).  

 

As an operation, multiplication is initially introduced as repeated addition; 

however, it differs from addition with some special characteristics (Fosnot & 

Dolk; 2001; Greer, 1992; Nesher, 1988, 1992; Schwartz, 1988; Vergnaud, 1983). 

Addition is a unary operation that manipulates quantities with similar units. For 

instance, an addition problem may involve adding three to seven apples, which 

results in ten apples. On the other hand, multiplication is a binary operation 

through which two quantities with different units are manipulated (Anghileri, 

2006; Barmby et al., 2009). The result is a new unit or relationship that is not 

immediately apparent from the factors (multiplier and multiplicand) (e.g., three 

bags, four apples per bag, 12 apples). Therefore, while multiplying via repeated 

addition, one should be able to think simultaneously across units (Lamon, 1994). 
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In fact, multiplication is not exclusive to the repeated addition of equal groups. 

There are many more uses for multiplication. Mathematical concepts are 

multifaceted as they have several meanings and interpretations depending on the 

situation (Chin & Pierce, 2019). In this sense, multiplicative situations have been 

analyzed, and various multiplication models have been revealed (Fishbein et al., 

1985; Greer, 1992; Nesher, 1988, 1992; Schwartz, 1988; Vergnaud, 1983). 

According to the classification of Greer (1992), multiplication is used to solve 

problems related to equal groups, multiplicative comparison, rectangular 

area/array, and Cartesian product. An example of an equal group model is three 

bags of seven apples, while a rectangular array could be three rows of seven 

apples placed on a tray. An example for multiplicative comparison model is that 

Adam has three times as many apples as Eva, who has seven apples. As for the 

rectangular area, an example would be the continuous measuring of length by 

multiplication, which transforms into the measurement of the area. Finally, for 

example, possible combinations of three shirts and seven skirts are related to the 

Cartesian product model of multiplication (Greer, 1992). Therefore, various 

problems that are heavily dependent on instructional setting and linguistic cues 

can be solved using multiplication (Nesher, 1988). It can be stated that 

multiplication has different meanings when context changes. 

 

Having such a wide and rich range of definitions, multiplication is given a large 

place in mathematics education programs as an essential concept (NCTM, 2000; 

MoNE, 2018). Multiplication is a crucial skill for students to become ready for 

life in the mathematics environment of the 21st century (NCTM, 2000), and 

mathematics education programs aim to develop the fundamental verbal and 

numerical reasoning skills students will need in everyday life (MoNE, 2018). 

The programs further aim to develop the necessary mathematical competence so 

that students can solve a series of problems encountered in daily life. For this 

reason, curriculum objectives related to multiplication include solving real-life 

problems in various contexts.  
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In addition to its role in finding solutions to daily problems, multiplication also 

builds a firm foundation for the development of further topics both conceptually 

and procedurally (Steel & Funnell, 2001). It is a crucial mathematical concept 

that has a significant role in the conceptual development of future topics. Due to 

their relations to fractions, measurement, ratios and rates, and proportional 

reasoning; whole number multiplication and division comprise a web of related 

concepts (De Corte & Verschaffel, 1996; Hino & Kato, 2019; Verschaffel et al., 

2007). If students conceptually understand basic multiplication facts in the 

primary grades, they will be much better prepared for these related concepts 

(Wong & Evans, 2007; Vergnaud, 1988). Hence, the conceptualization of 

multiplication is highly important for constructing many mathematical concepts 

built on each other.  

 

Moreover, multiplication as a skill (Shanty & Wijaya, 2012) is vital for all 

domains of mathematics. If students strive with multiplication algorithms or 

number combinations and fail to grasp the underlying concepts, they also have 

difficulty grasping the tasks related to further topics (Flores et al., 2014). In other 

words, many tasks in mathematical domains and a wide range of subject areas 

require recalling fundamental multiplication facts as a lower-order component of 

the overall task. Basic knowledge and abilities related to operations help students 

concentrate on more sophisticated tasks, like problem-solving (Kilpatrick et al., 

2001). Otherwise, the student's focus during problem-solving will be on 

fundamental abilities rather than the task at hand, taking attention away from the 

learning objectives of the assignment if they lack procedural fluency and the 

capacity to remember knowledge from memory (Mercer & Miller, 1992). Thus, 

if fundamental multiplication facts are not learned in primary school, it is 

doubtful they will be adequately practiced in secondary school (Steel & Funnell, 

2001). In other words, if students do not have a solid mathematical base in 

multiplication, it will affect their performance in future mathematics classes. 

 

In line with its importance, multiplication is included in educational programs as 

a mathematics topic from the second grade on (MoNE, 2018; NCTM, 2000; 
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Olfos et al., 2021). However, the studies related to students' understanding of 

multiplication have shown that students have problems understanding and 

processing multiplication. It is seen that students cannot express a given model 

as multiplication, model a multiplication, evaluate the effect of "0" and "1" in 

multiplication, memorize the multiplication table, distinguish addition and 

multiplication, comprehend commutative and distributive properties in 

multiplication, decide on the operation to solve a given problem, and process 

multiplication (Ekici & Demir, 2018; Kubanç & Varol, 2017; Sidekli et al., 

2013; Üçüncü, 2010). Unfortunately, students overgeneralize the rules of 

addition and subtraction to multiplication as well (Kubanç & Varol, 2017). 

Hence, they have difficulties in performing multiplication operations correctly 

and understanding the operation conceptually.  

 

Most of the studies in the literature were conducted by asking the participants to 

pose problems to reveal their conceptual understandings or misunderstandings 

(Cai et al., 2015; Tichá & Hošpesová, 2013), and it was revealed that most 

students could not pose an appropriate problem for a given operation (Doğan & 

Doğan, 2019; Drake & Barlow, 2007; Graeber & Tirosh, 1990; Kılıç, 2013; 

Tertemiz, 2017) since they had difficulty connecting multiplication to everyday 

activities (Doğan & Doğan, 2019; Kılıç, 2013; Tertemiz, 2017). For this reason, 

in addition to learning how to do multiplication procedurally, students also need 

to learn the language that is connected with it and how to recognize it in real-life 

contexts (Calabrese et al., 2020). Studies revealed that only a small portion of 

students can write an appropriate problem, but only related to repeated addition 

(Graeber & Tirosh, 1990; Tertemiz, 2017). The reason for using the repeated 

addition model is generally attributed to the fact that students are predominantly 

exposed to the equal groups model in early education and daily life (English, 

1998; Verschaffel et al., 2007). Therefore, in addition to emphasizing the 

relationship between multiplication and real-world experiences, it is 

recommended to introduce other models of multiplication, connecting them with 

realistic scenarios. 
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The specified difficulties and limitations students encounter in multiplication 

might stem from various factors affecting their comprehension of this operation. 

The studies related to multiplication revealed that these factors include scarce 

sources of curriculum (Remillard, 2005; Valverde et al., 2002) and 

representations (Bruner, 1964; Goldin & Shteingold, 2001), students' limited 

knowledge of fundamental concepts (Carpenter et al., 1989; Fischbein et al., 

1985), and weak knowledge of teachers on the topic (Shulman, 1986). For this 

reason, in order to support the meaningful learning of multiplication, these 

factors should be taken into account. Otherwise, these factors may obstruct 

students' conceptual understanding of multiplication.  

 

Research studies on students' conceptualization of multiplication have 

demonstrated that it is essential to provide meaningful multiplication learning. 

Difficulties in assisting students' learning point to the need for a deeper 

understanding of how to encourage students' knowledge of multiplication. 

Hence, the question of how to teach multiplication meaningfully arises. 

Clements and Sarama (2004) suggest providing students with well-sequenced 

instructional tasks to develop the concepts related to numbers and operations. In 

parallel to this suggestion, the current study aims to develop an instructional 

sequence composed of mathematical tasks to build a conceptual understanding of 

multiplication for second graders.  

 

The Hypothetical Learning Trajectory (HLT) might be a practical framework to 

trace students' initial and evolving understanding of multiplication throughout a 

series of lessons, with an instructional emphasis on Realistic Mathematics 

Education (RME). The study of learning trajectories can help gain a deeper 

understanding into students' thinking and learning, enable to employ more 

efficient instructional strategies, and direct the development of better curricula 

and standards (Clements & Sarama, 2004; Gravemeijer, 2004; Simon, 1995; 

Simon & Tzur, 2004). In line with these powerful aspects of learning trajectories, 

it may be effective to employ the collective mathematical practices approach in 
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order to notice students' mathematical thinking in a learning environment and 

portray their collective growth (Lobato & Walters, 2017). 

 

According to this viewpoint, an HLT contains a series of mathematical practices 

used in the classroom together with a hypothesis regarding their progression 

from earlier practices (Cobb, 1999). Students participate in classroom 

mathematical practices by conducting social interactions. In this way, collective 

argumentation is developed where students and teachers make mathematical 

claims and then support those claims or arguments with justification 

(Krummheuer, 1995; Lobato & Walters, 2017). Through the argumentation 

process, students also reflect on conflicts, which leads to the stages of revision, 

retraction, and replacement. In addition to collective argumentation and its role 

in classroom mathematical practices (Lobato & Walters, 2017), proposing 

hypotheses and convincing arguments is an important part of mathematical 

thinking and reasoning, according to the Principles and Standards for Classroom 

Mathematics (NCTM, 2000). Therefore, by participating in the argumentation 

process in such a setting, students can understand that claims need to be 

supported or disproved by evidence and come to an understanding of what 

constitutes an acceptable argument in the mathematics classroom (NCTM, 

2000). The Turkish mathematics education program (2018) emphasizes the 

significance of nurturing students to ask questions, verbally communicate their 

thinking, and produce evidence-supported statements (MoNE, 2018). Thus, 

allowing students to attend learning environments that would enhance their 

reasoning and communication skills in mathematics is crucial. 

 

It is important to promote students' collective ways of thinking and learning 

through collective argumentation and to enable them to investigate informal 

tools and advance to more formal mathematics by negotiating, collaborating, and 

discussing (Gravemeijer et al., 2000). To this end, it is also essential to create an 

instructional sequence composed of high-demanding tasks, which ensures a 

collective argumentation environment and students' growth in increasingly 

sophisticated ways (Clements & Sarama, 2004). According to recent research, 
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the design and implementation of instructional sequences can be influenced by 

the domain-specific instructional theory of Realistic Mathematics Education 

(Gravemeijer et al., 2003a, 2003b; Stephan & Akyüz, 2012). In a classroom 

context, students and the teacher participate in a collective reinvention process, 

where they formulate hypotheses and then defend or disprove them to develop 

taken-as-shared meanings (Gravemeijer et al., 2000). Therefore, it is significant 

to create instructional sequences that start from practical situations and proceed 

toward the target formal mathematics in order to promote the collective 

reinvention process from an RME perspective (Gravemeijer et al., 2000; 

Gravemeijer & Stephan, 2002).  

 

To sum up, multiplication has a rich content, with different meanings in different 

contexts. With the various models it includes, multiplication is highly important 

for constructing many mathematical concepts built on each other and for solving 

problems on these concepts by processing multiplication. However, studies have 

revealed that students are generally capable of only repeated addition as the 

primitive model of multiplication, and they have problems understanding and 

processing multiplication and connecting multiplication with real-life situations. 

The challenges and restrictions students encounter when multiplying may result 

from a variety of factors that affect their understanding of this operation. Given 

these possible factors that might be the barriers to the conceptualization of 

multiplication, it is suggested to provide students with well-sequenced 

instructional tasks to develop the concepts related to multiplication. Moreover, it 

is recommended to use RME as an effective theory enabling students to open 

their eyes to the world of mathematics that naturally occurs around them in order 

to give meaning to the operation by connecting it with realistic scenarios. 

 

1.1. Purposes and Research Questions of the Study 

 

This study has multiple objectives as follows: (1) to develop, test, and revise a 

classroom HLT and related instructional sequence for teaching multiplication to 

second-graders; (2) to document students' collective development of 
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mathematical concepts related to multiplication (i.e., documenting mathematical 

practices). To illustrate how the instructional sequence and the HLT can be 

helpful in teaching and learning multiplication, the first purpose is to develop an 

HLT and a local instructional theory that would go along with it. It seeks to 

combine the critical elements and viewpoints of HLT and RME in this process. It 

is aimed to construct teaching on the knowledge of students' informal methods of 

thinking about multiplication and those methods' developmental patterns in 

young children. The aspects being investigated within the context of the first 

purpose are, more specifically, the initial points of departure and informal tools 

for the teaching and learning of multiplication, as well as how students rely on 

their informal knowledge and informal use of tools as they try to mathematize 

(horizontally and vertically) these initial situations. 

 

In line with the second purpose, how the hypothesized learning trajectory takes 

place in the classroom environment is investigated by documenting the 

classroom mathematical practices. The analysis for this purpose focuses on the 

potential and obstacles that the conjectured instructional sequence presents to 

facilitate the collective mathematization of students. To support the validity of 

the suggested local instructional theory for teaching multiplication and to suggest 

improvements to the HLT and the instructional sequence, the study tries to 

gather evidence from the classroom experiments conducted by using the HLT 

and the instructional sequence. Hence, for these purposes, the research questions 

that guide the study are formulated as follows: 

 

1-What would an optimal HLT and instructional sequence for multiplication 

look like?   

 

2-What are the mathematical practices as students engage in the instructional 

sequence for multiplication? 
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 What are the mathematical ideas that support the mathematical practices 

developed by students during the implementation of instructional 

sequence for multiplication? 

 

The answer to the first research question is spread throughout the thesis. Chapter 

3 explains how the HLT and instructional sequence were developed and revised 

throughout the implementation. In Chapter 4, classroom mathematical practices 

and taken-as-shared ideas, which is the answer to the second research question, 

are presented. Then, in Chapter 5, the actual HLT is presented in the light of 

Chapter 4, again related to the first research question. The next section clarifies 

the reasoning behind doing this study in light of the purposes and research 

questions. 

 

1.2. Significance of the Study 

 

The study aims to support the objectives and scarce resources of mathematics 

curricula on multiplication through real-world contexts, by applying an 

educational sequence created using the Realistic Mathematics Education (RME) 

theory. The study is planned to be carried out as design research, incorporating 

both instructional design and classroom-based research (Cobb et al., 2001). A 

crucial aspect of design research is the broad scope of processes and contexts. In 

this sense, the study seeks to document what resources and prior knowledge 

students bring to a task, how students and teachers interact, how records and 

inscriptions are created, how conceptions emerge and change, what resources are 

used, and how teaching is accomplished throughout instruction, by examining 

student work, video records, and classroom assessments (Confrey, 2006, p. 135). 

It can be stated that at this point of the study, classroom-based research comes to 

the fore. In the scope of the current study, it is also planned to develop, test, and 

refine conjectures about the learning trajectory in multiplication as the researcher 

collaborates with the teacher or acts as the teacher and assembles extensive 

evidence on what students, teachers, and researchers learn from the process. 

Following this part of the study, it is aimed to conduct further analysis on all the 
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products of the process, including research reports and iterations of the tasks, 

materials, and instrumentation.  

 

With the detailed documentation on the design and analysis process, this 

dissertation study is expected to provide theoretical and practical implications for 

the field of mathematics education. It may contribute to theory in terms of design 

research, RME theory, and the literature related to multiplication, while also 

contributing to the practices of multiplication instruction, collective 

argumentation, and instructional sequence from the perspectives of students, 

teachers, teacher educators, mathematics education researchers, and educational 

resource designers.  

 

The current design of the study has a major impact on the HLT and related 

instructional sequence on multiplication specific to second-grade students. 

Although there are several available learning trajectories on multiplication and 

related concepts (e.g., Götze & Baiker, 2021; Kennedy et al., 2008; Mendes et 

al., 2021; Wright et al., 2014), these trajectories are too general and independent 

of grade level. Most of these learning trajectories focus on developing an 

understanding of multiplication. Unfortunately, they do not offer suggestions on 

how to teach multiplication, specifically in second-grade classrooms. 

Additionally, most of the big ideas included in the available trajectories are new 

for second-grade students in Turkey. Therefore, they should be adapted for these 

students, considering the objectives in the Turkish curriculum. Instructional 

activities should be adapted to the Turkish context to be clear and understandable 

for the students. This study has the potential to close this gap by giving teachers 

a thorough understanding of the central concepts and fundamental principles of 

multiplication as well as of the instructional tasks and resources needed to help 

students develop those concepts in increasingly sophisticated ways. 

 

It is also crucial for the teacher to understand the students' ways of thinking 

(Butterfield et al., 2013). The idea is that instructors design different tasks 

according to their individual students' perspectives (Sarama & Clements, 2009), 
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and this task differentiation enables students with different learning styles to 

achieve the common goals of a class (Mousley et al., 2004). It is also claimed 

that teachers' understanding of how students think and learn improves their 

instruction, which in turn improves students' math achievement (Carpenter et al., 

1999). In this sense, learning trajectories offer crucial insight into instructor 

expertise. For instance, thanks to the design research process of this study, 

teachers may improve their awareness of students' learning and their ability to 

use didactic discourse to support students' engagement and empowerment in 

mathematics. Such improvements can encourage a more realistic, context-

sensitive teaching and learning perspective (Kwon et al., 2013). Therefore, it can 

be stated that the design research process and context might offer an informative 

framework for blending teachers' practical knowledge with research-based 

techniques and producing creative design concepts to enhance learning. 

 

In order to create a productive design through research-based techniques, the 

practicality of the instructional sequence should be evaluated, and the sequence 

should be revised if necessary and possible. In this sense, it is suggested to reveal 

both the classroom mathematical practices of the classroom community and the 

mathematical reasoning of individuals (Cobb, 2003; Stephan et al., 2003). A way 

to document the mathematical practices of a community is to analyze the 

argumentation in whole-class discussions (Cobb & Yackel, 1996). During the 

argumentation process, social and socio-mathematical norms play a key role in 

managing classroom discussions and in the evolution of taken-as-shared ideas. 

The present study revealed that the social and socio-mathematical norms of the 

classroom where the study was conducted are parallel with the norms established 

in previous studies (Andreasen, 2006; Gruver, 2016; Miller, 2016; Stephan, 

1998; Wheeldon, 2008). These norms might enable to create an argumentative 

environment and observe the development of classroom mathematical practices 

through discussion in a classroom community. Without these norms, the actual 

learning trajectory would simply consist of the teacher's predetermined list of 

class activities (Lobato & Walters, 2017). Other instructors can also examine 

these norms and use them in their classrooms directly or by revising them. They 
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can see the consequences of these norms on maintaining collective 

argumentation and involving students in classroom mathematical practices. 

 

In addition to the norms of sustaining argumentation, it is widely known that 

prior experience, knowledge, and cultural background play important roles in 

developing students‘ understanding (Ausubel, 1968; Hart, 1988). It is vital to 

comprehend how students with various knowledge and cultural backgrounds 

develop mathematically (Daro et al., 2011). Although the relationship between 

students' academic and cultural backgrounds and mathematical development is 

not investigated in the scope of the current study, how multiplication develops in 

the current case of a Turkish school setting is provided in detail. It is believed 

that this might improve the understanding of how mathematics develops in 

different environments. 

 

The current study might contribute to the objectives of mathematics education in 

Turkey. One of these possible contributions is the conceptualization of the 

commutative property of multiplication. An array model is suggested in the 

literature as the most effective representation to teach the commutative property 

of multiplication (Greer, 1992; Outhred & Mitchelmore, 2004; van de Walle et 

al., 2020). According to the theory, an array is a composite of composites, which 

is one of the semantic structures related to multiplication (Outhred & 

Mitchelmore, 2004). The mathematical objectives and textbooks for second 

graders in Turkey show that the only representation of multiplication is equal 

grouping (MoNE, 2018). However, moving items into rows and columns 

provides more opportunities to explore the commutative rule than static pictures 

(Anghileri, 2006). Thus, it can be stated that the array model helps students 

interpret multiplication with its properties, especially the commutative property. 

The present study might play an essential role in introducing multiplication as an 

array and documenting students' reactions and conceptualizations during the 

implementation of the instructional sequence. Therefore, the use of the array 

model in the current design might be a sample practice for teachers, which might 

guide them to use the model in their classrooms.  
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Another contribution to national mathematics instruction might be the use of 

activities involving equal groupings and sharing to provide students with an 

environment where they can learn an appropriate language for multiplication by 

connecting with counting patterns (Anghileri, 1995). Equal grouping activities 

planned to be used in this study might have a crucial role in developing a 

multiplicative language and conceptualizing multiplication and division. 

Furthermore, the specific phrases that are used to handle real-world issues 

improve the use of more formal terminology to experience the connections 

between multiplication and division (Anghileri, 1995). Therefore, using 

composing and decomposing activities within the instructional sequence might 

contribute to bridging multiplication and division. These tasks might be sample 

practices for developing multiplication while preparing students for other related 

topics like measurement, fractions, rates, and proportional reasoning. 

 

In addition, in line with didactical phenomena, teachers are responsible for using 

and promoting students' informal understandings of linking composite units, 

unitizing, and building-up strategies in mathematically relevant directions 

(Freudenthal, 1983; Lamon, 1995). Unfortunately, research on proportional 

reasoning revealed that teachers have difficulty teaching proportional reasoning 

and they view the topic as procedural, superficial, and isolated from other topics 

(Sowder et al., 1998). Thus, teachers should improve their subject matter 

knowledge and pedagogical content knowledge of proportional reasoning, 

considering the role of multiplication in understanding proportional reasoning. In 

parallel with this suggestion, the current study might help teachers to have an 

insight into students' informal knowledge and the evolution of related concepts 

like proportional reasoning in a classroom context and in an increasingly 

sophisticated way in the light of the reinvention and mathematization process 

through the theory of RME. With this study, the readiness and performance of 

second graders for other topics might be observed by documenting their 

mathematical practices. Moreover, it is believed that the current study might help 

improve teachers' awareness of students' conceptual progressions, the 

connections between topics, and the resources and activities they need to 
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enhance students' mathematical development. The study has the potential to 

bridge the theoretical and practical issues of learning multiplication by 

presenting the findings on the designed instruction and students' informal ways 

of thinking that are fundamental skills for other concepts. 

 

Another area where the current study can make a useful contribution is the use of 

problem posing tasks in the second-grade classrooms. Although the use of 

problem posing activities is strictly emphasized in the curriculum (MoNE, 2018; 

NCTM, 2000), the objectives in the second grade curriculum in Turkey do not 

include problem-posing in multiplication (MoNE, 2018). Turkish students are 

expected to pose multiplication problems in the third grade. In this sense, the 

current study might play an essential role in providing a sample instructional 

sequence enriched with problem posing tasks for second graders. Moreover, few 

researchers have tried to describe the dynamics of classroom instruction where 

students engage in problem posing activities (Cai et al., 2015). This study might 

fill this gap by identifying and describing how tasks should be implemented in 

the classroom and how classroom discussions should be managed by revealing 

the dynamics of classroom discussion and culture. This research might also 

provide an insight into the readiness and competence of second graders in 

problem posing by documenting their mathematical practices in multiplication.  

 

Problem-posing activities are recommended to help students connect 

multiplication and real-world issues and foster deeper knowledge (English, 

1997). Besides, these activities are used to encourage students to create their 

problems based on various contexts (NCTM, 2000). As problem posing involves 

cognitively challenging tasks for mathematical communication (Cai & Hwang, 

2002), problem posing activities and discussions that would create a shared 

understanding are thought to be useful in helping students share their ideas and 

in gaining new insights on multiplication (Cai et al., 2015). In light of this, the 

study used problem posing activities in line with the theory of Realistic 

Mathematics Education. It is believed that the current study might provide 

evidence on the cognitive processes of students while they are posing problems 



15 

and recording mathematical practices in order to comprehend the reasons and 

explanations that evolve within a classroom community. 

 

Overall, it can be stated that the current study outlines potential contributions to 

educational settings from the perspectives of students, teachers, educators, and 

educational resource designers. In addition to educational settings, the design of 

the current study contributes to the literature in terms of domain-specific 

institutional theory. It is important to note that this study aims to create a local 

instructional theory for teaching multiplication, utilizing the RME theory as a 

model and a guideline. In the study, RME has been developed as a local 

instructional theory for multiplication (Gravemeijer & Stephan, 2002). Local 

instruction theories can be the foundation for developing a more sophisticated 

version of the general theory since they include newly developed examples of 

how RME might be worked out (Gravemeijer & Stephan, 2002). In light of this, 

the results of this study might contribute to the development of the RME theory 

since a theory in use is rebuilt and how RME can influence the creation of an 

HLT for multiplication is revealed. 

 

1.3. Definition of Important Terms 

 

In this section, definitions of the key concepts used in this study are provided 

conceptually and operationally to clarify terms and avoid uncertainty. 

 

Hypothetical Learning Trajectory (HLT) was first used by Simon (1995) as a 

hypothesis about the direction that learning might take. In addition to various 

definitions (Confrey et al., 2014; National Research Council [NRC], 2007), 

Clements and Sarama (2004) explain hypothetical learning trajectories as 

"descriptions of children's thinking and learning in a specific mathematical 

domain and a related, conjectured route through a set of instructional tasks 

designed to engender those mental processes or actions hypothesized to move 

children through a developmental progression of levels of thinking, created with 

the intent of supporting children's achievement of specific goals in that 
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mathematical domain" (p. 83). In addition to this definition, Stephan (2015) uses 

the term classroom learning trajectory (CLT) which refers to "the hypothesized 

learning route developed by a class of students as they interact with one another 

and a teacher rather than an individual learning trajectory which is created by an 

individual in a one-on-one experiment with a teacher or researcher" (p. 907). 

That is to say, CLT entails speculating about the mathematical concepts taken-

as-shared and people's participation and contribution ways (i.e., the class's 

mathematical practices and the variety of students' thinking). The current study 

used the viewpoints related to classroom learning trajectories to define and 

interpret hypothetical learning trajectories. Furthermore, the hypothetical 

learning trajectory developed by Stephan and her colleagues (2003) was used as 

a framework for the HLT developed in this study. In line with this framework, 

the HLT table was arranged according to the following categories: big ideas, 

tools, imagery, activity/taken-as-shared interests, possible topics of mathematical 

discourse, and possible gestures and metaphors (Rasmussen et al., 2004; Stephan 

et al., 2003) that would support students' learning of multiplication.  

 

Instructional sequence is a local instructional theory that should provide settings 

for students to model their informal mathematical activities (Gravemeijer, 1994). 

It includes a sequence of instructional tasks that support the learning goals of the 

hypothetical learning trajectory. The current study developed and implemented 

an instructional sequence to promote students' conceptual learning of 

multiplication by requiring them to mentally and externally apply the actions. In 

this sense, instructional tasks related to skip counting, composing equal groups, 

iterating equal groups, forming rectangular arrays, and representing 

multiplication in realistic contexts were developed and sequenced in the light of 

the HLT.  

 

Realistic Mathematics Education (RME) is an instructional theory developed at 

the Freudenthal Institute (Cobb, 2000; Gravemeijer, 2004). In this approach, 

teachers apply problem-solving methods, involve students in real-life scenarios, 

and encourage them to apply problem-solving skills by comparing and 
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discussing solutions in small groups and during whole-class interaction. 

Eventually, children apply mathematical ideas individually and collectively (van 

den Heuvel-Panhuizen, 2008; Freudenthal, 1983). In the current study, three 

heuristics—guided reinvention, didactical phenomenology, and emergent 

models—were used to apply RME (Gravemeijer et al., 2003a; Gravemeijer, 

2004). It was intended to assist students through mathematical tasks by providing 

problem scenarios with the possibility to reinvent mathematics following guided 

reinvention. Teachers encouraged their students to mathematize situations to 

develop mathematics to solve difficulties. According to didactical 

phenomenology, real-life contexts that students experience daily were used for 

the mathematical task. For the emergent models heuristic, the HLT was 

constructed by anticipating students' informal mathematical activities shifting 

into a model for more formal multiplicative reasoning. 

 

Argumentation refers to a social phenomenon in which students present 

justifications for their actions and adjust their intentions. It is also called 

"collective argumentation" (Krummheuer, 1995). In the current study, the 

perspective of Krummheuer (1995) was followed to support a classroom 

community's collective ways of reasoning and learning in a collective 

argumentation setting by giving them opportunities to explore informal material 

and advance to more formal mathematics by participating in negotiation, 

collaboration, and discussion processes.  

 

Classroom mathematical practice (CMP) is the normative way of acting, 

communicating, and symbolizing mathematically at a given moment 

(Gravemeijer & Cobb, 2006). They are taken-as-shared ways of reasoning and 

arguing mathematically in a social learning environment (Cobb et al., 1997). In 

the current study, classroom mathematical practices refer to reasoning, 

explaining, and justifying related to mathematical ideas on multiplication that are 

taken-as-shared by the classroom community. They are more localized to the 

classroom and are formed collaboratively by students and teachers through 

debate; they emerge from the classroom rather than being imported from 
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elsewhere (Stephan & Cobb, 2003). Moreover, they are specific to the 

mathematical topic (multiplication) at hand, not to more general social practices. 

 

1.4. My Motivation to Conduct the Study 

 

One year before this research, a design project aimed to develop a mathematics 

learning trajectory in the "numbers and operations" learning area for first-grade 

students based on the Realistic Mathematics Education approach (Çakıroğlu et 

al., 2019) was conducted with a collaborating teacher in her classroom. My 

advisor and I were also part of the research team on this project. For this project, 

the research team participated in the lessons shaped by the hypothetical learning 

trajectory over two semesters. The teacher and students evolved social and 

sociomathematical norms with the design team's help during this one-year 

project. The data was collected through formal and informal interviews, 

observations, design team meetings, tests, and field notes. Both qualitative and 

quantitative analysis methods were used to assess students' mathematical 

competencies.  

 

The students had difficulties with addition and subtraction. However, their 

progress at the end of the project was terrific. This situation has motivated me. I 

wondered if the same improvement would be available for multiplication. I knew 

that many people recall how stressful it was to learn the multiplication table. The 

variety of challenges students could encounter while learning to multiply 

numbers is also well known to educators and researchers. As an eager and 

ongoing learner of students' learning, I have found myself conjecturing new 

insights related to multiplication. For that reason, I wanted to conduct a similar 

study for multiplication. When I shared my thoughts with the collaborating 

teacher, I saw that she was willing to participate in such design research for the 

following year with her students. Therefore, knowing the significance of 

designing instruction on multiplication, this dissertation was developed and 

conducted on the previous research as capable of prior knowledge of students 

and classroom norms.  
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

The initial purpose of this study is to develop a hypothetical learning trajectory 

(HLT) and related instructional sequence in order to teach multiplication in the 

second grade, also named as ‗the purpose of development‘. In connection with 

this goal, the second purpose is to document the classroom mathematical 

practices used by second graders concerning their conceptualizations of 

multiplication and to use those practices to update the HLT and the instructional 

sequence which is called ‗the purpose of documentation‘ for the ease of 

recognition. For these purposes, this chapter is devoted to reviewing the related 

literature to offer a rationale for carrying out this research and justifying the 

theoretical viewpoint enabling the interpretation of the findings. 

 

Before going into the details of the current study's methodology, this chapter 

clarifies the critical ideas by making references to the relevant literature relevant 

with the purposes of the study. In the first section, the conceptual analysis of the 

domain is explained in detail in order to provide a basis for the purpose of 

development and gain insight for interpreting students‘ arguments for the 

purpose of documentation. It gives information about conceptual models related 

to multiplication, their place in mathematics education programs, and students' 

conceptual structures and methods by presenting international and local studies 

on multiplication. The second part reveals possible factors influencing children's 

conceptual construction of multiplication that should be considered while 

developing the design germane to the purpose of development. The third part 

introduces the definition of Hypothetical Learning Trajectory and previously 

developed HLTs in multiplication to explain the nature of the design developed 

for the purpose of development. Consequently, the collective mathematical 

practices approach and Realistic Mathematics Education as a domain-specific 
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instructional theory are explained to clarify the classroom mathematical practices 

for the purpose of documentation. Subsequently, a summary of these sections is 

presented to outline the underlying rationale of this research at the end of this 

chapter. 

 

2.1. Theoretical Background for Multiplication  

 

In this section, theoretical approaches related to multiplication are presented to 

understand multiplication, its properties, and the related structures of the models. 

In correspondence with these approaches, the conceptual models of 

multiplication in mathematics education programs are explained. Then, the 

students‘ strategies to process multiplication are presented by examining the 

relevant literature. Finally, the empirical findings of international and national 

studies investigating students‘ knowledge of the multiplication concept are 

presented and discussed in terms of students‘ performance on multiplication 

tasks, difficulties, and misconceptions.  

 

2.1.1. Historical Background of Theoretical Perspectives on Multiplicative 

Reasoning and Multiplication 

 

Multiplicative reasoning involves complex definitions and quantitative reasoning 

(Carpenter et al., 1999). The majority of number-related concepts like fractions, 

percentages, ratios, rates, similarity, trigonometry, proportion, area and volume, 

probability, and data analysis are supported by multiplicative relationships 

(proportionality), as may be seen by a casual glance at the mathematics 

curriculum in schools (Mulligan & Watson, 1998). Multiplicative reasoning 

comprises the ability to think creatively and flexibly while working with a wide 

range of numbers, solving problems involving multiplication (or division), and 

successfully communicating this reasoning through written algorithms, diagrams, 

symbols, and written language (Siemon et al., 2005).  
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Theories surrounding multiplicative reasoning have evolved through the research 

on multiplication and division word problems revived in the early 1980s. 

Researchers (Bell et al., 1984; Fischbein et al., 1985; Greer, 1992; Nesher, 1988, 

1992; Schwartz, 1988; Vergnaud, 1983) have conducted significant studies to 

assess the comprehension of ideas of multiplication and division. In these 

studies, the researchers worked through word problems to examine students' 

cognitive processes in the contexts representing the various meanings of the 

operation and documented several approaches related to multiplication. Before 

interpreting these approaches, it should be clarified that the researchers called 

multiplication and division word problems "multiplicative word problems." 

(Nesher, 1988, 1992). 

 

This is because multiplication and division share an underlying logical structure, 

namely multiplicative structure. The difference between multiplication and 

division in the same context is what is given and what is asked. The information 

given in a division problem always contains the string that was the question 

component in the related multiplication problem (Nesher, 1992). For instance, 

the division version of a multiplication problem can start with, "There are a total 

of 30 glasses in the boxes." The information in the division problem text splits 

off into two directions from this point. One of these directions is the presenting 

problem: "I want to put ten glasses in each box. How many boxes do I use?". 

This problem is called quotitive division, which means dividing the sum by the 

group size to determine the total number of groups (sometimes termed 

measurement division, reflecting its conceptual links with the operations of 

measurement) (Greer, 1992). The other direction is to present the problem as "I 

have three boxes. How many glasses do I put in each box?". This problem is 

called partitive division, and it is common practice to divide the total by the 

number of groups to determine the number in each group (Greer, 1992). It is also 

known as equity with social connotations and is called fair sharing (van de Walle 

et al., 2020). In both situations, it is assumed that the glasses are distributed 

equally among the boxes. 
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The approaches associated with multiplicative cases, including multiplication 

and division and their relationships, are introduced in the following sections to 

give information related to basic situations modeled by multiplication. Nesher 

(1992) classified and ordered the multiplicative models under three approaches. 

The first approach (Fischbein et al., 1985) deals with multiplicative cases from 

the point of view of primitive intuitive models. The second approach employs 

the multiplicative conceptual field to classify multiplication situations by 

dimensional analysis (Schwartz, 1988; Vergnaud, 1983; 1988). The third 

approach is the textual approach, which focuses on the verbal formulation of the 

problems to construct a mathematical model of semantic analysis (Nesher, 1988; 

1992). Overall, each approach employs a distinctive mode of reasoning in 

describing different types of multiplicative contexts. They are explained in the 

following sections in detail. 

 

2.1.1.1. The First Approach: Primitive Implicit Models 

 

The first major approach to multiplication which is from a primitive implicit 

models‘ perspective is derived from the theoretical work by Fischbein, Deri, 

Nello, and Marino (1985), who asserted that ―each fundamental operation of 

arithmetic generally remains linked to an implicit, unconscious, and primitive 

intuitive model‖ (p. 4). They claimed that this constrains students' predictions of 

the operation required when solving multiplication problems. They hypothesized 

that repeated addition served as the earliest intuitive paradigm for multiplication. 

With this assumption, they conducted research with students between the ages of 

10 and 15. They used an instrument containing 12 whole number and decimal 

multiplication problems to observe how students dealt with these problems. At 

the end of the study, they concluded that the decimal's position in a 

multiplication problem's structure plays a crucial role in determining the correct 

operation. When the multiplier is a decimal, the multiplication problem gets 

more challenging. And thus, making it violate the repeated addition model. The 

repeated addition interpretation states that 2 x 4 equals either 4 + 4 or 2 + 2 + 2 + 

2 and therefore is not viewing multiplication as commutative. According to this 
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viewpoint, any positive quantity may be used as the operand, but the operator 

must only be a whole number. While it is difficult to imagine taking a quantity of 

0.42 g times, it is simple to imagine 3 times 0.42 = 0.42 + 0.42 + 0.42, even if 

the operation cannot be done. However, this interpretation causes the 

misconception that multiplication always "makes bigger" because the operator is 

a whole number. In 1985, Fischbein and his colleagues interpreted the sources of 

these primitive models and presented two possible explanations. First, a model 

represents how the related topic or operation was initially taught in school. 

Second, students use primitive models since people take the situations as models 

that they find behaviorally meaningful.  

 

Several researchers also investigated multiplicative contexts and split them into 

symmetrical and asymmetrical circumstances (Bell et al., 1989). In asymmetrical 

situations like repeated addition, different roles are assigned to the multiplier and 

multiplicand, the two factors that make up the multiplication (e.g., liters times 

cost per liter). Bell, Greer, Mangan, and Grimison (1989) listed examples of 

asymmetric multiplicative situations (Figure 2.1). 

 

 

Figure 2.1. A classification of asymmetric multiplicative situations (Bell et al., 

1989, p. 435). 
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When Figure 2.1 is examined, it is seen that the researchers also included two 

more columns for multiplicand and multiplier. Because of the problem 

structures, the multiplier has an active role in the multiplicand. For instance, in 

the problem related to the change of size (different units), each inch represents 

4.6 meters. Since the model is 3.2 inches long, it represents 3.2 times 4.6 meters. 

Precisely, 4.6 meters is repeated, not 3.2 inches. When these problems are 

parsed, it is also seen that it is possible to write partition and quotation problems 

for each multiplication problem. Thus, it should be noted that the asymmetry of 

multiplication is significant since it causes children to associate division with 

two primitive models of division; quotitive and partitive (Fischbein et al., 1985). 

As indicated, asymmetric situations were used to replicate earlier experiments in 

which the values were changed in both the multiplicand and multiplier positions. 

In addition to asymmetric cases, there are also symmetric cases mentioned by 

Greer (1992). The area and possible combinations (e.g., how many different 

outfits can one arrange from four shirts and three skirts?) do not fall under the 

repeated addition model (Nesher, 1992). In symmetrical cases, the roles of the 

two factors are easily interchangeable (e.g., length times width for computing 

area). In order to investigate these cases, Verschaffel, De Corte, and Van Collie 

(1988) studied symmetrical problems and found that the effect of varying 

numbers holds only for asymmetrical problems in which the multiplier and 

multiplicand have distinctively different roles. In symmetrical cases, such as 

finding the area of a rectangle, changing the type of multiplier did not affect the 

problem's difficulty. In this sense, it was hypothesized that there might be 

additional models of multiplication than the repeated addition model that impose 

constraints distinct from those discovered for the asymmetrical problems 

(Verschaffel et al., 1988). 

 

2.1.1.2. The Second Approach: Dimensional Analysis 

 

Vergnaud (1983, 1988) and Schwartz (1988) revealed another approach to 

research on models of multiplication. They (a) view simple word problems 

involving multiplication as a subset of a larger multiplicative conceptual field 
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that includes ratio, rational numbers, vector space, and other concepts, and (b) 

deal with the dimensions and unit structure of these problems. Vergnaud (1983) 

defined three main classes of problems within multiplicative structures: 

isomorphism of measures, the product of measures, and multiple proportions. 

 

Isomorphism of measures refers to viewing a multiplicative connection as a four-

place relation rather than a three-place relation or a binary operation. For 

example, consider the following problem: ―Each cat has three kittens; how many 

kittens would four cats have altogether?‖ Typically, we would treat this kind of 

problem as a three-place relationship among ―kittens,‖ ―cats,‖ and ―kittens per 

cat.‖ According to Vergnaud‘s analysis, this problem involves two primary 

dimensions: Ml (cats) and M2 (kittens), each containing two numbers, as shown 

in the mapping table below: 

 

 

Figure 2.2. Schematic representations of multiplicative problems used by 

Vergnaud (1988) 

According to Figure 2.2, Vergnaud placed "1" in the table in addition to the two 

numbers (4 and 3). One of the measures in such problems always includes 1 to 

represent the basis for its ratio. The problem reflects the ratio of 1 cat to 3 kittens 

while stating, "Each cat has three kittens." So, "each" represents "1" to decide the 

ratio. In the problem, the ratio of 1 cat to 3 kittens is given, and the ratio of 4 cats 

to how many kittens is asked. Within each dimension, there is a scalar 

enlargement or decrement (between 1 & 4 or 3 & ?). Between the two 

dimensions, Ml and M2, a mapping function maintains a constant ratio (between 

1 & 3 and 4 & ? respectively). In this type of problem, there are no restrictions 

on the numbers used; the quantities within each measure space may be expressed 

as integers, fractions, or decimals (Greer, 1992). 
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A product of measures refers to the Cartesian composition of two measure 

spaces (Ml and M2) into a third measure (M3), as in the following example: 

"What is the area (M3) of a rectangle of length (Ml) 5 cm and width (M2) 3 

cm?" Length and width are two spaces mapped to the third space, area. This 

problem requires dealing with double proportions rather than with a single 

proportion, as in the isomorphism of measures problems. As shown in Figure 

2.3, each unit area is also stated as 1 unit square. 

 

 

Figure 2.3. Schematic representation of product of measures.  

Multiple proportions refer to a measure space (M3) being proportional to two 

different independent measures (M1 and M2). For example, a family of 4 people 

wants to spend 13 days at a resort. The cost per person per day is $35. What will 

the total cost of the holiday be? (Greer, 1992). This problem can be decomposed 

into simpler problems falling within the classes already defined in the following 

way, for example, 

 

4 people x 13 days = 52 person-days 

 

$35 per person-day x 52 person-days = $1820 

 

Multiple proportion problems involve magnitudes that have intrinsic meaning; 

none of them can be reduced to the product of the others (Nesher, 1992). In 

addition to the approach of Vergnaud (1983, 1988), Schwartz (1988) proposed a 

second-dimensional analysis for multiplication word problems, which is related 

to the distinction between intensive (I) and extensive (E) quantities. While 

extensive quantity refers to a single entity derived from the environment by 

counting or measuring (e.g., six books), intensive quality (I) involves a ratio, 
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which is a relationship between two extensive quantities (e.g., 12 bottles per 

box). According to this distinction, Schwartz categorized multiplication word 

problems into the following three groups: 

 

Multiplication I x E. Such problems are the most common multiplication word 

problems, corresponding to Vergnaud's isomorphism of measures problems. It 

can also be presented as repeated addition when one of the numbers is an integer 

(Nesher, 1992). For instance, in the problem of four cats and three kittens for 

each, the intensive quantity, three kittens per cat, corresponds to one cat and 

three kittens in Vergnaud's mapping table. The result of an I x E multiplication 

problem is an E quantity of the same kind that initially appeared in the intensive 

quantity. All the problems given as examples of asymmetric situations (Figure 

2.1) on primitive implicit models fall under Schwartz's I x E category.  

 

Multiplication E x E. Such problems correspond to Vergnaud's product of 

measures problems, which are Cartesian product or area. Two extensive 

measures are multiplied to form a third measure. For instance, five shirts (E1) 

and two pairs of pants (E2) can be combined to form 10 possible outfits (E3). In 

the analyses of Fischbein and his colleagues (1985), such problems are 

considered symmetrical.   

 

Multiplication I x I. Such problems are common in science, including the 

multiplication of two intensive quantities. For example, 3 km per hour times 5 

hours per day makes 15 km per day. These problems are more complicated than 

other problems for students (Nesher, 1988).   

 

The choice of operation becomes more evident once the students qualitatively 

examine the dimensions and fill the mapping table with the provided dimensions 

and numerical data. Hence, students can avoid falling into the numerical errors 

stated in the study of Fischbein and others (1985). To direct students' attention 

away from quantitative concerns to qualitative ones, teachers can give students 

tools like a mapping table. Using such tools, teachers can help students move 
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away from the repeated addition model of multiplication and give them a more 

comprehensive understanding of this operation (Nesher, 1992). 

 

On the other hand, Vergnaud's (1983; 1988) and Schwartz's (1988) approaches 

focus on dimensional analysis rather than textual analysis as in they do not focus 

on what a child must do to discriminate the crucial dimensions of the problem. 

However, a child's process of creating the structure of the dimensions in question 

from the verbal text is crucial in solving multiplication word problems. In this 

sense, Nesher (1988; 1992) focused on textual analysis, as explained in the 

following section. 

 

2.1.1.3. The Third Approach: The Textual Approach 

 

The textual approach presents the importance of analysis of verbal formulation 

of the problem (Nesher, 1988; 1992) in which, students can determine which 

relevant dimensions need to be considered in the solution only after reading and 

understanding the text. For this reason, it is crucial to investigate the textual level 

of the problems. Nesher (1988, 1992) examined multiplicative cases and 

identified three subtypes: mapping rule multiplication, multiplicative compare, 

and Cartesian multiplication. Similarly, Greer (1992) classified multiplication 

problems as equal groups, multiplicative comparison, and Cartesian product but,  

he also defined one more model, rectangular area/array, in addition to Nesher's 

multiplication models. Most researchers identified these four distinct classes of 

multiplication structure in their studies (English & Halford, 1995; Greer, 1992). 

 

Mapping rule multiplication refers to repeated addition, mentioned as an implicit 

model and the I x E structure of Schwartz (1988). For instance, a mapping rule 

problem can be "There are five shelves of books in Dan's room. Dan put eight 

books on each shelf. How many books are there in his room?" 

 

As in the case of an addition, a minimal multiplication problem consists of three 

propositions (strings) in the underlying structure. The three strings are used to 
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define the logical requirements for a minimum, well-formed multiplication 

problem text. The first string declares in general terms that there are n1 Xs 

(shelves) for which there are Ys (books), and there is a relationship between the 

Xs and the Ys. The second string presents a general mapping rule: it says that 

there are precisely n2 Ys (8 books on each shelf) which describes a mapping 

between each shelf and eight books, typical of this problem. And lastly, the third 

string asks how many Ys (books) there are for all the Xs (shelves). 

 

Multiplicative compare refers to "change of size with the same units" cases (Bell 

et al., 1989). In particular, a multiplicative compare problem can be "Dan has 

five marbles. Ruth has four times as many marbles as Dan. How many marbles 

does Ruth have?". In this problem, the first string says that there is a referent set 

that Dan has five marbles. The second string says that there is a specific function 

that maps each of Dan's marbles to four of Ruth's marbles. The third string, the 

question component in multiplication problems, asks how many marbles Ruth 

has. In here, children must understand that the problem (in a specific verbal 

formulation) has a direction that is not interchangeable ("Ruth has four times as 

many marbles as Dan" is different from "Dan has four times as many marbles as 

Ruth"). Moreover, the quantities of the compared objects do not have to be 

similar for multiplicative compare problems as Dan's marbles could be compared 

to Ruth's stamp collection. 

 

Cartesian multiplication refers to E X E structure defined by Schwartz (1988). 

As a sample problem, a combination of clothes can be asked: "Ruth has four 

skirts and three blouses. How many different combinations of skirt and blouse 

outfits can Ruth make?" This kind of problem also consists of three strings. The 

first sentence represents the first two strings since it describes two independent 

sets of objects that are blouses and skirts and the third string is the question 

component, asking how many outfits can be combined with blouses and skirts. 

This class of problems is less known and is exercised in elementary and middle 

schools. It involves multiplying two different dimensions to get a third one. 

Since there is no mapping rule or comparison function to act as a verbal cue for 



30 

multiplication, children may mistakenly believe that this sort of problem is an 

addition problem due to the structure of the first two strings. 

 

Cartesian multiplication problems are symmetrical problems (Bell et al., 1989) 

where two factors can be replaced easily but in caution that it does not mean 

changing the context from "2 pairs of shorts and three shirts" to "3 pairs of shorts 

and two shirts" making these two cases give quite different sets of outfits 

(Hiebert & Behr, 1988). Symmetry refers to the interchanging multiplier and 

multiplicand. In this case (2 pairs of shorts and three shirts), one can start with 

shorts and combine each short with three shirts (Figure 2.4a), while one can start 

with shirts and combine each shirt with two shorts (Figure 2.4b). 

 

 

Figure 2.4. Two pictorial representations for the combination of 2 pairs of shorts 

and 3 shirts 

According to the textual approach, problems with mapping rules should be the 

simplest ones. The students can understand the dynamic process where two 

provided quantities play and convert it to repeated addition. Teachers should be 

cautious and discuss the mapping rule rather than treat multiplication as just 

repeated addition. Otherwise, students could not conceptualize multiplication as 

a distinct operation. Compare problems are more demanding than mapping rule 

problems and that is why understanding the asymmetric relationship between the 

compared and the referent quantity is necessary to overcome such difficulties. 

The child may find it challenging to determine which direction is correct. The 

most complicated type is Cartesian multiplication problems where the first two 

strings (Ruth has four skirts and three blouses) in such problems are identical to 

the first two propositions in additive compare problems as both types of 
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problems declare the numbers of two quantities. For this reason, students may 

treat Cartesian multiplication problems as addition problems.  

 

Rectangular area/array contexts are symmetrical (Bell et al., 1989), where two 

factors can be replaced easily. Greer (1992) added this case and explained that a 

rectangular array has m rows and n columns. In contrast to earlier models, which 

called for object visualization, this sort of question does not as the students must 

use more abstract thinking to deal with the problem, including the rectangular 

model. For instance, ―What is the area of a rectangle 6 cm long by 3 cm wide?‖ 

is a sample problem for this category. The format of an array draws attention to 

the binary input needed for multiplication (Barmby et al., 2009) where the 

product in the area model has a different unit from the units of two factors. In 

this sense, the area model should be explicit for students regarding the units. For 

example, in Figure 2.5 below, the area model on the left comprises three units 

along the left side and six units along the top. When multiplied together, the total 

area is 18-unit squares. 

 

 

Figure 2.5. A model for the commutative property for multiplication (van de 

Walle et al., 2020, p.164) 

As a symmetrical model, array representation facilitates the learning of 

commutativity. Using an array and allowing children to arrange and rearrange 

sets of items is one method to examine the commutative rule as a more abstract 

idea, as in Figure 2.5. In comparison to static images, which can often be 

challenging to observe in two different ways, moving objects into rows and 

columns will offer a better opportunity to investigate the commutative rule (as 

rows of one number and, at the same time, columns of another number) 
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(Anghileri, 2006; Barmby et al., 2009; Greer, 1992; Sowder et al., 2010; van de 

Walle et al., 2020). 

 

In conclusion, several researchers analyzed multiplication word problems from 

different theoretical approaches. They described the primary categories of basic 

multiplication models in these contexts to highlight these variations, as 

summarized in Table 2.1 below. 

 

Table 2.1. Models of multiplication from different theoretical perspectives 

Fischbein et al. 

(1985) 

Repeated Addition 

(asymmetrical)  

Symmetrical situations  

Nesher (1988) Mapping rule 
Multiplicative 

Compare 
Cartesian multiplication 

 

Vergnaud (1983) Isomorphism of measures Product of measures 
Multiple 

proportion 

Schwartz (1988) I x E S x E E x E I x I 

Greer (1992) 

Equal groups 

(Repeated addition 

and rate) 

Multiplicative 

comparison 

Cartesian 

product 

Rectangular 

area / array 
 

 

Studies examining issues from various viewpoints are intertwined rather than 

presented linearly. Indeed, they all must contribute to the solution of 

multiplicative problems. Although, it should be kept in mind that children 

initially encounter a problem in its verbal formulation, and their problem-solving 

activity starts with this text. As a result, teaching students how to discern a 

mathematical structure in a text is crucial. So, textual analysis must be used in 

this situation to consider the full text, not just a few essential words. 

 

The analyses of the multiplicative models revealed that it might be beneficial to 

use more than one model of multiplication while teaching multiplication in the 

classroom. Students may learn more about the commutative property using 

symmetrical models (Graeber & Tirosh, 1988). Thus, from a practical 
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perspective, researchers may see the structures that a person who has acquired a 

particular degree of cognitive development may resolve (Nesher, 1992). In other 

words, solving difficulties can be thought as creating a pre-existing schema to 

solve different kinds of word problems. Therefore, it is recommended to arrange 

multiplication word problems according to their basic structure and incorporate 

them into math education programs consequential. In an essence, mathematics 

education programs in several countries are examined to reveal the models 

related to multiplication in the following section. 

 

2.1.2. The Importance of Multiplication and Its Place in Mathematics 

Education Programs 

 

Multiplication is one of the most important mathematical concepts since a brief 

look at the mathematics curriculum in schools reveals that nearly all number-

related topics are supported by multiplicative relationships (proportionality) 

(e.g., fractions, percentages, ratio, rates, similarity, trigonometry, rates of 

change) (MoNE, 2018; White & Mitchelmore, 2005). For this reason, during the 

instruction of multiplication, the purpose is to make students multiplicative 

thinkers who are familiar with how multiplication works and who can solve 

multiplication problems with ease (MoNE, 2018; Smith & Smith, 2006). Hence, 

educational programs should assist all learners in grasping what operations 

represent and how they are connected (MoNE, 2018; NCTM, 2000). 

 

Regarding "number and operations" in Principles and Standards for School 

Mathematics (2000), students should comprehend multiplication-related 

scenarios, including groups of objects equally. Students should start learning the 

fundamentals of multiplication from kindergarten through grade two. They can 

identify multiplication with the repeated joining (addition) of groups of equal 

size by working in instances where there are equal subgroups within a collection 

(NCTM, 2000). Regarding the scope of the current study, the objectives related 

to multiplication in the mathematics curriculums of Turkey and several countries 

were examined.  
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The Turkish Mathematics Education Program (2018) includes 19 objectives 

directly related to multiplication. Three of these objectives are in second grade, 

six of them in the third grade, six of them in the fourth grade, and four of them in 

the fifth grade. According to the Turkish Mathematics Education Program, 

multiplication is introduced in the second grade for the first time. Second-grade 

students deal with the concept of multiplication by multiplying two one-digit 

whole numbers, defining multiplication as the repeated addition of equal groups, 

and solving multiplication problems that require a one-step operation. They also 

experience and explain the commutative law and multiplication properties of 1 

and 0. The multiplication tables until 5 (included) are created using a hundred 

charts in the second grade. The whole multiplication table is created in the third 

grade. Students are introduced the multiplicative comparison meaning of the 

operation in the third grade. They discover the rules of multiplication with 10 

and 100. In this grade, students multiply two-digit numbers with numbers that 

have at most two digits and multiply three-digit numbers with one-digit numbers. 

Students are also expected to discover the change in the product when the factor 

is increased or decreased by 1 unit. After that, they work on multiplication 

problems that require two-step operations. Next, fourth-grade students deal with 

the multiplication of three-digit numbers and the rules of multiplying with 5, 10, 

25, 50, 100, and 1000. Here, students are expected to estimate the results of 

multiplication in the fourth grade. Additionally, they multiply three numbers and 

explain the associative law of multiplication. In the fifth grade, students find the 

missing factor in multiplication operations by associating multiplication with 

division by constructing the inverse relationship between these two operations. 

Moreover, they work on estimation activities in this grade. 

 

In addition to the Turkish Mathematics Education Program (2018), the analysis 

of multiplication in different countries made by Olfos, Isoda, and Estrella (2021) 

was taken advantage of in order to see how multiplication instruction is 

organized globally across national curriculum standards (programs). Singapore, 

Japan, Portugal, the United States, Mexico, Brazil, and Chile are the nations 

selected to be compared. These nations are two from Asia, one from Europe, two 
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from North America, and two from South America consecutively. The 

comparison highlights the variations in different nations' multiplication programs 

concerning the order of the descriptions and the methods of explanation (Olfos et 

al., 2021).   

 

In the first or second grade, counting by twos or fives is introduced in every 

country, as shown in Table 2.2 below. Except for Singapore and the USA, most 

nations start teaching multiplication in the second grade. In all countries, 

multiplication is modeled as repeated addition. In the USA, repeated addition is 

first introduced in second grade, but a definition of multiplication is given in 

third grade. Singapore starts teaching multiplication by 40 in the first grade. 

Mexico and Turkey do not describe multiplication as a group of groups or length 

based on unit length in a tape diagram. All countries except Turkey introduce 

multiplication with various models in addition to repeated addition. These 

countries use the length model or array or both in the first three grades. The 

Turkish mathematics education program does not include multiplication as 

length based on unit length in a tape diagram or rectangular array. Every country 

introduces students to the rectangular area in the upper grades. Only in Portugal 

are discussions about combinatorics. 
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Table 2. 2. Grade levels in which different countries introduce various models of 

multiplication 

 

From the implicit model approach (Fischbein et al., 1985), the table also reveals 

that all countries introduce models representing both symmetry and asymmetry 

of multiplication. All countries except Turkey present at least one of the 

symmetric models (array, area, combinatorics) in the second or third grade. On 

the other hand, Turkish students are presented with a symmetrical model (area) 

in the fourth grade and are taught multiplication as repeated addition of equal 

groups in the second grade, then, multiplicative comparison, which is another 

asymmetric model, in the third grade.  

 

The comparison in Table 2.2 demonstrates how and when multiplication is 

taught in each country. Different instructional methodologies and materials are 

used in these countries. In the light of these comparisons, various issues can be 

subject to research such as how the various interpretations support 

comprehending multiplication, is repeated addition the only way to solve a 

problem involving multiplication, is multiplication best explained by the 

utilization of equal amounts in a group, is an array model a suitable substitute for 

a group of groups, so on and forth. As these issues had a critical role in 

interpreting the instructional practices in educational documents and the schools 
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and directing future studies, the literature on how to teach multiplication should 

be elucidated.  

 

Fosnot and Dolk (2001) listed ‗big ideas‘ that are the fundamental, structuring 

ideas of mathematics principles that define mathematical order in their books on 

constructing multiplication. These ideas are called "big" because they are 

essential to mathematics and represent significant advances in children's 

conceptual growth. From this perspective, they state the importance of unitizing 

in multiplication by consolidating a group as a unit. Thenceforth, they emphasize 

the importance of the distributive property of multiplication in relation to 

addition and subtraction. Understanding the structure of the part/whole 

relationships involved is necessary to realize that 9x4 can be solved by adding 

4x4 and 5x4 or any combination of groups of four that sum up to nine groupings 

(Piaget, 1965). In this case, the nine groups comprise the entire system, with the 

parts being combinations of five and four groups, six and three groups, seven and 

two groups, eight and one group, and the inversion of these combinations. It is 

suggested to create an array to investigate the associative property of 

multiplication in a context that makes sense to students. For instance, students 

can be asked to find how many muffins the baker has, as in Figure 2.6 below. 

Students are asked questions related to the muffins that are sold and left, in 

which they are expected to discover that the muffins in the second and third trays 

are equal to the amount in the first tray. 
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Figure 2.6. An array model for the distributive property for multiplication in a 

realistic context. 

Moreover, understanding the commutative property—5x3=3x5—and the 

associative property—(2x3)x5=2x(3x5)—are also big ideas. These aspects of 

multiplication can be observed and investigated in a two-dimensional graph 

paper array (commutative property) (Figure 2.5) or three-dimensional boxes 

(associative property) (Figure 2.7). As an example, it is suggested to create a 

three-dimensional array, as in Figure 2.7, to discover the associative property for 

multiplication. It does not matter whether the first or last pair is multiplied first 

as 4 x (2 x 3) is the same as (4 x 2) x 3. In this manner, comprehending arrays—

and volume, for that matter—is a significant idea in and of itself. For this reason, 

Fosnot and Dolk (2001) also stress the importance of understanding arrays since 

they suggest designing instruction for multiplication around these big ideas. 
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Figure 2.7. A three-dimensional array model for the associative property for 

multiplication 

Similarly, Kennedy, Tipps, and Johnson (2008) also provide a sequence for 

developing concepts and skills for multiplication and division by using a 

framework with three columns: concepts, skills, and connections. The sequence 

starts with number concepts 1-100, including skills of skip counting, recognizing 

groups of objects, and thinking in multiples. Then, the activities followed with 

the numbers between 1 and 1000 related to the skills of representing numbers 

with base-10 materials, exchanging rules and games, and regrouping and 

renaming. Later, students are expected to work on numbers more significant than 

1000. After dealing with the concepts related to the numbers, students work on 

multiplication facts, including stories and actions for joining equal-sized sets 

(repeated addition), arrays and area (geometric interpretation), and Cartesian 

combinations as well as being able to represent multiplication with materials, 

pictures, and number sentences. In parallel with multiplication, students work on 

multiplication facts, including stories and actions for repeated subtraction, 

division, and partitioning. In addition, students represent division with materials, 

pictures, and number sentences. After working on realistic mathematical tasks on 

multiplication and division, students are expected to deal with basic facts for 

multiplication and division and operations with larger numbers. During the 

implementation of the tasks on these concepts, the skills related to fact fluency, 

estimation, and the use of technology are targeted to be developed.  

4 x (2 x 3)  

4 groups of 2 x 3 

 4 x 2 x 3 

 

(4 x 2) x 3 

(4 x 2) groups of 3 

 



40 

Another sample instructional model was obtained from the EngageNY 

mathematics curriculum resources provided on the webpage of the New York 

State Education Department (2014). These resources were developed by New 

York State Common Core (NYSCC) (2014) and released as free curriculum 

files. Among these resources, a module for foundations of multiplication and 

division is developed around four topics: formation of equal groups (Topic A); 

arrays and equal groups (Topic B); rectangular arrays as a foundation for 

multiplication and division (Topic C); and the meaning of even and odd numbers 

(Topic D). 

 

In Topic A which is formation of equal groups, students start by creating equal 

groups with concrete materials, learning to manipulate a given number of objects 

to create equal groups (for example, they are expected to create three groups of 5 

or 5 groups of 3 when given 15 objects), and moving onto pictorial 

representations, where they might start by circling a group of 5 stars, adding 5 

more, then adding 5 again, before moving onto pictorial representations from 

which they calculate the sum and connect their illustrations to the relevant 

repeated addition equation. Students can either add stepwise to the prior addends 

to calculate repeated addition sums, or they can pair the addends and then add 

them all together (NYSCC, 2014). In Topic B, students make arrays out of the 

equal groups they formed in Topic A, where a row or a column is viewed as the 

new unit being counted. For instance, in order to create an array of 3 columns of 

2 counters, or six counters, students might arrange one column of 2 counters, 

then another, and so on and construct several number phrases that add up to the 

same total as they compose and decompose arrays such as, 2+ 2+ 2 = 6 and 3+3 

= 6. Students transition to the pictorial level as Topic B advances in order to 

express arrays and distinguish rows from columns by dividing equal groups 

horizontally and vertically (e.g., three columns of 2 or 2 rows of 3), then 

continue their work with arrays in Topic C to improve their spatial reasoning 

abilities in preparation for the area subject in Grade 3. They tile a rectangle using 

identical-sized squares without any gaps or overlaps and then count to determine 

how many squares make up the rectangle. Following that, pupils break down 



41 

rectangles after they have composed them. By doing this, they learn that the row 

and column are made up of several squares or composite units that are the 

components of the rectangle. In this way, students relate repetitive additions to 

the model throughout the entire topic where they are urged to think creatively 

and consider how an array might be built or divided (NYSCC, 2014). In Grade 2, 

students do not multiply or divide; instead, this lesson builds the groundwork for 

the connections between the two operations. A whole can be divided into equal 

parts, just as equal parts can be combined to produce a whole. Finally, Topic D is 

all about even- and double-digit integers. They discover the subsequent 

explanations of even numbers. 

 

 An even number appears as we skip-count by twos 

 The number is even when all objects have been paired with one another. 

 Doubles, or numbers that are twice a whole number, are even. 

 An even number has the last digit of 0, 2, 4, 6, or 8. 

 

The final section of the module explores the results of a repeated addition when 

two even numbers, two odd numbers, or an odd number and an even number are 

added (for example, 3 + 3 is even, but 3 + 3 + 3 is odd). 

 

These (what are they in summary) sample instructional documents emphasized 

that students should be taught the meaning of multiplication and fundamental 

multiplication properties, such as the commutative property. They also state 

using symmetric models of multiplication as arrays (Fosnot & Dolk, 2001; 

Kennedy et al., 2008; NYSCC, 2014), area and Cartesian combinations 

(Kennedy et al., 2008) in addition to repeated addition. It is seen that, as stated in 

historical background and previous research, various models are suggested in 

educational documents considering the properties of multiplication.  

 

Therefore, the use of multiplication models in classrooms is presented and 

interpreted to develop instruction for teaching multiplication in second grade. 
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While designing an instruction, it is crucial to know about students to understand 

their conceptions of the idea (Hill et al., 2008). In other words, how students 

understand a content domain is a fundamental factor in teaching it. To this end, 

students‘ computational strategies are presented in order to have a deeper 

understanding related to students‘ comprehension of multiplication in the 

following session. 

 

2.1.3. Children’s Strategies for Single-Digit Multiplication 

 

The nature of multiplication requires a higher level of sophistication in thinking 

about numbers and procedures (Jacob & Willis, 2001; Schwarz, 1988; Vergnaud, 

1983). Various research studies have identified the stages that children go 

through as they develop an understanding of multiplication concepts (Anghileri, 

1989; Jacob & Willis, 2001; Kouba, 1989; Mulligan & Mitchelmore, 1997). 

Despite a growing amount of research, there are still significant differences 

between researchers' descriptions of specific strategies and terminology. In this 

regard, Sherin and Fuson (2005) tried to agree on the taxonomy of multiplication 

strategies and they presented a taxonomy that can be used to clarify the nature of 

the learning tasks involved in multiplication, building on the work of other 

scholars. Figure 2.8 gives an overview of relevant studies and highlights the 

taxonomic schemes from the most relevant and essential papers (Anghileri, 

1989; Cooney et al., 1988; Kouba, 1989; Lefevre et al., 1996; Lemaire & Seigler, 

1995; Mulligan & Mitchelmore, 1997; Siegler, 1988). As in the figure, students' 

solutions for multiplicative cases vary from counting all the objects by ones to 

hybrid counting. This section explains the literature about students' strategies for 

multiplication in detail. 
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Figure 2.8. Overview of strategy taxonomies from selected articles (Sherin & 

Fuson, 2005, p.361). 

In the first strategy, the count-all strategy, a person carries out the calculation 

from 1 to the product (Anghileri, 1989; Kouba, 1989; Mulligan & Mitchelmore, 

1997). Children count one-to-one in this phase (Jacob & Willis, 2003). When the 

operands are huge, count-all solutions can be the most time-consuming and 

challenging to implement correctly. Instead of this, three distinct counts must be 

coordinated in order to perform a count-all computation. Consider the task of 

multiplying 4 and 3 as an example. Rhythmic counting is counting the total made 

by counting 3s four times. This strategy requires enacting and coordinating the 

four counting sequences shown in Figure 2.9. To make it clear, (1) students need 

to count from 1 to 4 to keep track of the number of groups; (2) then, count from 

1 to 3 four times to keep track of where we are within each group; and (3) 

finally, count from 1 to 12, thus keeping track of the running total. 
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Figure 2.9. The three coordinated counting sequences for multiplying 4 x 3 

Children in the count-all stage must understand that a collection can be counted 

in several ways while maintaining the same quantity. They should also be aware 

that even if a collection is rearranged, the quantity will not change (Jacob & 

Willis, 2003). These students require activities that force them to organize 

collections, so that skip counting is more effective than counting by ones. In this 

sense, students are recommended to use equal groups in arrays' rows and 

columns (Anghileri, 1989; Fosnot & Dolk, 2001). 

 

In the additive calculation strategy, students use addition-related procedures in a 

more sophisticated way. Students already have resources that can serve as the 

foundation for quicker and simpler methods than count-all strategies since they 

have prior learning experiences related to addition. They use repeated addition 

and doubling to collect equal-size groups (Kouba, 1989; Lefevre et al., 1996; 

Mulligan & Mitchelmore, 1997). For instance, students multiply 3 x 5 by first 

adding 5 + 5 to get 10, then 10 + 5 to get 15. This strategy has features that 

clearly distinguish it from the strategies of count-all. Students do not present 

every value between 1 and 15; instead, they jump from 5 to 10 to 15. In 

multiplicative words, students in the phase of additive composition can identify 

equal groups and use the groups to count more quickly through repeated 

addition. Before repeatedly adding to determine how many, they might still need 

to spread out the items in the groupings (Jacob & Willis, 2003). They still do not 

understand that the groups can be tallied by themselves. They ignore the 

multiplier's function because they are focused on the multiplicand. 
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When solving simple multiplication problems, children that employ additive 

reasoning can arrange the objects as the problem specifies and count them. 

However, they might only count by twos or threes. Given that there are existing 

groups, in reality, they do not need to keep a count of the number. All they need 

to do is to concentrate on the multiplicand and count as they do not have to build 

the multiplier themselves (Jacob & Willis, 2003). Children's tasks change 

completely when tools are not made available to them because they need to keep 

track of how many groups there are in some way. Children may be forced to 

create the multiplier on their own, learn to count groups, and then, learn to count 

the groups and the number in each group (Jacob & Willis, 2003). 

 

In the count-by strategy, students practice transitional counting and skip counting 

using number sequences (Anghileri, 1989; Kouba, 1989; Lefevre et al., 1996; 

Mulligan & Mitchelmore, 1997). In this phase, they can keep track of two things 

(i.e., group number and size) at once. Students can record or verbally state the 

multiplication fact as well as visualize the groups, but they must compute the 

solution using a counting sequence based on multiples of one of the factors in the 

issue. A pupil can draw, count with one's fingers, or utilize tally marks to keep 

track of the count such as counting by 4s six times while using their fingers to 

help, as in Figure 2.10 below. 

 

 

Figure 2.10. The two sequences to be coordinated for multiplying 6 x 4 

While students use count-by strategies, they get the advantage of number 

sequences. Most students who can recall the systematic order of words and their 

connection to numbers can learn the skills necessary for counting. Counting in 

multiples also requires memorizing regular word sequences with a recognizable 

rhythm and pattern (Anghileri, 1995). These counts provide a strong foundation 

upon which multiplication and division concepts can be developed when they are 
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connected to repeated groups of objects or equal spaces on the number line. In 

this sense, instead of teaching the children how to do written math, they should 

be encouraged to think critically, look for patterns, predict outcomes, and talk 

about the connections that might be made (Anghileri, 2006). Hence, making 

students practice skip-counting and composing number sequences is crucial. 

 

In patter-based strategy, parallel with count-by sequences and strategies, 

students use numerous patterns, including Nx1=N and the 9's patterns, that are 

number-specific resources (Sherin & Fuson, 2005). The 0's pattern, 1's pattern, 

and 10's pattern are a few of these patterns. With the help of these three subtypes 

of patterns, pupils can achieve specific outcomes quickly and covertly (Cooney 

et al., 1988; Lefevre et al., 1996). These pattern-based tactics may be challenging 

to discern from taught product strategies because they are linked to students' 

quick answers. However, as these techniques are based on a fundamentally 

distinct number-specific resource, it makes sense to treat them as a separate 

category (from learned product) (Sherin & Fuson, 2005).  

 

Learned-products strategies are associated with an extensive collection of 

number-specific resources as the multiplication triad (Sherin & Fuson, 2005). 

Students answer the questions as they remember without counting. These 

strategies are called known multiplication fact, recalled number fact, or retrieval 

in different studies (Anghileri, 1989; Cooney et al., 1988; Kouba, 1989; Lefevre 

et al., 1996; Mulligan & Mitchelmore, 1997). According to Figure 2.8, Lemaire 

and Siegler (1995) divided the learned product category into two parts: 

"retrieval" and "writing problem," the latter of which is a smaller category. The 

only way this approach differs from retrieval is that the learner writes out the two 

multiplicands (for example, 8x4) before voicing the solution. Both categories are 

treated as learned-product strategies in the scope of the current research.  

 

Finally, in hybrid strategies, students use combinations of the strategies above 

(Cooney et al., 1988; Kouba, 1989; Lefevre et al., 1996; Mulligan & 

Mitchelmore, 1997; Sherin & Fuson, 2005). In principle, many possible 
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combinations of current methods exist to create hybrid strategies. As an example, 

students can multiply 6x5 by starting from 5x5=25 and then counting from 26 to 

30 on their fingers. In another way, they can start from 5x5=25 but add on the 

last multiple of 5 using additive resources. This strategy is thus described as an 

instance of learned product + additive calculation. 

 

In conclusion, an effort to get an agreement on the taxonomy of single-digit 

multiplication strategies is made in this section. The intention is to create a 

thoroughly explained plan and minimize the possibility of misinterpretation. Due 

to these attempts, many instances are provided and explored in depth. It has been 

shown that children use diverse strategies throughout their learning period. 

Students start by employing counting techniques, move on to strategies based on 

repeated addition, and then use multiplication-related properties, like 

commutativity and basic facts, to solve multiplication problems (Mulligan & 

Mitchelmore, 1997). Students' computational strategies related to multiplication 

are sensitively dependent on specific details of instruction (Sherin & Fuson, 

2005). For this reason, these strategies should be kept in mind while developing 

instruction to provide an environment for students to develop their strategies and 

interpret their reasoning. Along with these strategies, studies related to students' 

conceptualization of multiplication are reviewed in the following section for 

detailed information. 

 

2.1.4. Previous Research Studies on Multiplication in International and 

National Arena 

 

Students build their first understanding of multiplication through practice with 

whole-number multiplication. They commonly discover that multiplication is 

repeated addition (Thompson & Saldanha, 2003). In this reasoning, 

multiplication usually includes groupings of objects with the same number in 

each group (Greer, 1992; van de Walle et al., 2020). Fischbein and his team 

(1985) pointed out that students start to believe that the multiplier (group 

number), which indicates how many times a quantity must be added, must also 
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be a whole number. Therefore, when students face a multiplier which is any 

other kind of number (e.g., a decimal or a fraction), they may not be able to 

translate the multiplicative situation into a "times" situation resembling the 

repeated addition operation as it would be awkward to say "1.23 times 4". These 

empirical findings of the study (Fischbein et al., 1985) were replicated by many 

other researchers several times (e.g., De Corte et al., 1988; Graeber & Tirosh, 

1990).  

 

For instance, De Corte, Verschaffel, and Van Coillie (1988) studied how well 

students perform when using various multipliers (integers, decimals larger than 

1, and decimals smaller than 1) and worked with 116 students from five sixth-

grade classrooms in two Flemish schools. They used a survey, including 16 

multiplication word problems. While eight problems had an asymmetrical 

structure, the other eight problems were symmetrical. For the asymmetrical 

structure, the rate problem type was chosen (e.g., Pete buys a rope of 5.7 meters. 

One meter of rope costs 14.5 Bfr. How much does he pay?). For the symmetrical 

structure, they preferred area problems (e.g., the dimensions of a tennis net are 

0.8 and 7 meters. What is the area of that tennis net?). All symmetrical and 

asymmetrical problems differed only concerning the type of the multiplier or the 

multiplicand (either an integer, a decimal larger than 1, or a decimal smaller than 

1). The study's findings are parallel to those in the study of the team of 

Fischbein. It is revealed that students' performances are strongly affected by the 

nature of the multiplier (whether it is an integer, a decimal larger than 1 or a 

decimal smaller than 1). On the other hand, the nature of the multiplicand has 

little or no effect on the problem's difficulty.  

 

Graeber and Tirosh (1990) interviewed fourth and fifth graders using eight tasks 

involving multiplication and eight similar tasks involving division. For this 

study, only the three multiplication tasks are discussed here. In the first task, 

each student is shown a card with the equation 4 x 5 = 20 written on it and asked 

to define multiplication by identifying the terms associated with the numbers 4, 

5, and 20. The second task asks students to use a 7x7 grid to show 3x4=12. In the 
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third task, students write a word problem for the sentence 5 x 6 = 30. Graeber 

and Tirosh (1990) found that 65% of the students defined multiplication in terms 

of repeated addition whereas, twenty percent of the students either gave an 

incoherent definition or no definition. One of the students defined multiplication 

to check division and in contrast, the other students defined multiplication as 

being vaguely related to addition or being vaguely related to groups. In the 

second task, 63% of the students were successful at representing either 3 x 4 or 4 

x 3 on the grid. Finally, 75% of the students successfully wrote word problems 

with minimal help from the interviewer. Each problem reflected either the union 

of equivalent groups or an example of repeated addition. The findings show that 

students can represent multiplication as a rectangular array but, they define 

multiplication as repeated addition and equal groups thus and so posing repeated 

addition and equal group problems.  

 

While constructing multiplication on repeated addition of equal groups, teachers 

should be careful not to cause misconceptions in the future. For instance, Lo, 

Grant, and Flowers (2008) detected misconceptions stemming from the 

overgeneralization of addition strategies. They conducted a study with 

prospective elementary teachers and reported their challenges as they revisited 

whole number multiplication through a sequence of tasks. The prospective 

teachers were asked to develop and justify reasoning strategies for the 

multiplication of two-digit numbers. The following was the erroneous method 

that was most frequently observed: 18 x 26 = (10 x 20) + (8 x 6). When asked to 

explain their reasons, many participants responded that their argument was valid 

because the same strategy worked for addition: 18 + 26 = (10 + 20) + (8 + 6), 

and thus should have worked for multiplication. Moreover, another error was 

treating each number's increase or decrease as an independent change in the 

multiplication problem. Students were asked to evaluate 36 x 17 by starting with 

40 x 20.  Three different errors were observed. These are subtracting 3x40 and 

4x17 from 800, 3x20 and 4x40 from 800, and 3x36 and 4x17 from 800. 

Prospective teachers treated the subtracting two operations (e.g., 3x40 and 4x17) 

from 800 independently. The participants did not consider that each subtraction 
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affects the other one. Hence, it can be concluded that overgeneralization of 

addition (and subtraction) may cause misconceptions related to the multiplication 

of multi-digit numbers. 

 

When all these studies are examined, it is apparent that there are various tools to 

measure the comprehension of multiplication. One of these assessment tools is 

problem writing (problem posing). Drake and Barlow (2007) conducted a study 

with forty-five sixth-grade students and asked them to write a problem that could 

be solved by the expression 4x8. Six types of problems were detected. Eleven 

percent of the students used the numbers 4, 8, and/or 32 but did not correctly 

represent the multiplication fact in any way (e.g., Jimmy needed help to solve 

this math problem: You have Tom's four tires, and you buy Rob's eight rims, and 

[it] equals [what?]). Interestingly, 7 percent of the sixth graders provided 

problems that represented division (e.g., four dogs, and all of them have puppies. 

There are 32 puppies in all. How many puppies did each dog have?). Thirty-one 

percent of the students successfully created a multiplication scenario yet failed to 

correctly represent four as the multiplier and eight as the multiplicand (Amy has 

eight fish tanks for sale. Each tank comes with four fish. How many altogether? 

(thirty-two)). Thirteen percent of the students created problems by accurately 

representing a multiplication scenario but failing to ask an appropriate question 

(There were four groups of rescue workers with eight people in each group. How 

many people were in each group?). Other students correctly represented 4x8 and 

have included a question that calls for product 32 (There are four rows of 8 dogs. 

How many dogs are there?). Through these problems written by the students, the 

researchers gained insight into the students' understanding of multiplication.  

 

Parallel to this study, problem writing is also popular in Turkey to measure 

students' ways of thinking and depth of understanding related to the topic. For 

instance, Kılıç (2013) examined how elementary students performed on tasks 

that involved problem-posing and operations using natural numbers. For this 

purpose, students were given a problem-posing test that included 4 cases. The 

participants were 270 fifth graders and 182 fourth graders. According to the 
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findings of the study, it can be concluded that almost half of the students in each 

grade had difficulty posing multiplication problems. The most common error 

was that students tended to pose problems requiring two different operations 

(e.g., division and addition) simultaneously. Besides, in that study, some issues 

as posing problems using different arithmetic operations, using missing data, not 

giving any answer, using decimal numbers, writing mathematical exercises, and 

posing problems for different mathematical topics have emerged. 

 

In another study, Doğan and Doğan (2019) investigated the characteristics of the 

multiplication and division operations problems by fifth-grade students and the 

meanings the students attributed to these operations. The participants of the 

study consisted of 95 fifth-grade students. The data was obtained from the 

structured problems posed by the students for multiplication and division 

operations and semi-structured interviews with 12 students. The study's findings 

showed that the students preferred scaling (i.e., multiplicative comparison) for 

multiplication and equal sharing for division structures. It also became clear that 

students had a great deal of difficulty posing problems involving multiplication 

and division and most students had problems relating operations to everyday 

activities. Additionally, it was shown that students posed problems for other 

operations, used irrelevant data, were unable to create questions, and shared less 

or more for division. After conducting the interviews, it was determined that the 

challenges might have resulted from students' erroneous understandings of the 

operations for multiplication and division. Furthermore, it was observed that 

students attributed meaning to operations that were irrelevant in real life. 

 

Similarly, Tertemiz (2017) explored the meanings associated with the 

mathematical problems generated by children in primary school that call for the 

application of mathematical operations with natural numbers. The data were 

gathered using a semi-structured form that included problem statements. The 

participants were 65 participants from the first grade, 85 from the second grade, 

90 third from the third grade, and 88 fourth-grade students. The mathematical 

problems that the participants generated were examined. The findings revealed 
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that regardless of grade level, most participants were significantly more 

successful in creating mathematical problems that called for addition and 

subtraction rather than multiplication and division. Moreover, it was discovered 

that participants evaluated multiplication and division as equal groups in terms of 

the meanings connected to mathematical issues. 

 

In addition to interpreting students' understanding of multiplication through the 

problems they posed, other studies also explore students' performances in terms 

of errors and misconceptions while multiplying. In this sense, Üçüncü (2010) 

developed an achievement test and implemented it for 998 students in the 2nd to 

5th grades. She examined how students make multiplications and how they 

model the operations of multiplication. In this way, she found that students have 

errors in expressing the given model as multiplication, modeling multiplication, 

evaluating the effect of "0" in multiplication, memorizing the multiplication 

table, distinguishing addition and multiplication, problem posing on 

multiplication, comprehending commutative and distributive properties in 

multiplication, multiplying with 10, 100, and 1000, deciding the operation for 

given problem and processing procedural multiplication. 

 

In another study, Kubanç and Varol (2017) conducted a study to determine the 

misconceptions and mistakes that the second (n=36) and third (n=36) grade 

students in a primary school experienced in verbal arithmetic problems requiring 

multiplication, together with their reasons. While the document analysis 

technique, which is a qualitative research method, was used to detect errors, 

clinical interviews were conducted with students to determine the reasons for the 

errors. The data obtained were first classified according to the correct, incorrect, 

and blank answers the children gave to the problems. Then, the wrong answers to 

the questions were classified according to the four error types determined by the 

researcher, and descriptive analysis was performed. As a result of the research, 

making subtraction instead of multiplication, adding instead of multiplication, 

generalizing the rules of addition and subtraction to multiplication, continuing 

the process without shifting the digits, and incomprehension of the rule of 
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multiplication by 0 and 1 were the most common mistakes that students 

exhibited in questions requiring multiplication. 

 

Ekici and Demir (2018) also surveyed the mathematical errors the fourth graders 

make when using their mathematical language skills to solve story problems. 

They utilized an instrument containing ten problems for their work with the 

seven students. According to the Newman Error Analysis methodology, they 

completed the appropriate applications. According to the survey's results, the 

fourth graders struggled to read, comprehend what they read, and articulate what 

they read in their own words. Since they had difficulty understanding the 

problems, they could not identify the proper pattern to solve them. In addition, 

they made up their operations using the numbers they saw in the questions. As 

their lack of knowledge of four operations might cause them to make errors, they 

mainly avoided multiplication operations. 

 

In the same grade level, Sidekli, Gökbulut, and Sayar (2013) researched the 

difficulties of four operations in mathematics lessons experienced by 4th-grade 

students in a primary school to overcome these difficulties. They developed an 

achievement test that consisted of 5 items for each operation with whole 

numbers. It was observed that the students could not answer any of the questions 

in the multiplication part. It was determined that the main reason for this was that 

the students made mistakes in the addition process and did not gain the 

comprehension of the multiplication process as the shortest way to the addition 

process. Other findings showed that the students had difficulty in the division 

process because they could not do the multiplication. 

 

Gürsel (2000) conducted a study with thirty 6th, 7th, and 8th-grade students 

working with middle school students. He used an instrument including 64 

questions related to multiplication with single-digit, two-digit, and three-digit 

whole numbers. He detected seven types of errors in multiplication. Two of them 

were related to conceptual errors, such as adding instead of multiplying and 

failing to understand how to multiply by 0. The other five errors were related to 
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the multiplication procedure, so students were confused about the numbers and 

their digits while multiplying.  

 

In conclusion, various studies were conducted to understand students' 

identification of multiplication, interpretation related to multiplication situations, 

multiplication strategies, errors, and misconceptions. Considering these studies, 

it is seen that students' conceptions of multiplication are mainly limited to 

repeated addition and equal groups. Their interpretation of multiplication causes 

various misconceptions, even for the following topics such as multiplying multi-

digit numbers. For this reason, it is crucial to develop meaningful learning 

environments related to multiplication.  

 

While developing effective learning environments, it is important to determine 

the factors which affect students‘ learning. In this regard, numerous research has 

identified potential variables that may play a significant role in influencing the 

development of multiplication (Goldin & Shteingold, 2001; Remillard, 2005; 

Tobin, 1987; Usiskin, 1985; Valverde et al., 2002). These variables could be 

considered when creating and carrying out educational programs (Wawan & 

Retnawati, 2022). Proportionately, the critical factors are presented in the 

following section in detail to show their relationship between conceptualization 

of multiplication. 

 

2.2. Factors Affecting Development of Multiplication Concept 

 

Research suggests that several factors may influence the multiplication 

knowledge the children display. Below, the most important factors found in the 

literature are discussed. These factors can be classified under three umbrella 

terms: curriculum resources and representations, students, and teacher 

knowledge. First, the educational resources (curriculum and textbooks) and 

representations (language) offered to the children may affect their performance 

in multiplication. Secondly, students' pre-instructional knowledge (prior 

knowledge, number sense, and repeated addition) may have an influence. 
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Finally, the teacher's knowledge can potentially support students' learning. Each 

factor is explained in detail. 

 

2.2.1. Curriculum Resources and Representations 

 

Leaning on the work of Pepin and Gueudet (2020), the phrase curriculum 

resources is used to include all the material resources created and used by 

teachers and students in their interactions with mathematics during/for teaching 

and learning, both within and outside the classroom. Hence, curriculum 

resources include curricular guidelines, textbooks, and representations. 

 

2.2.1.1. Curriculum Guidelines 

 

A curriculum is a way of organizing content and goals for teaching and learning 

in schools. It shapes our identity and future by influencing what teachers teach 

and, in turn, what students learn (Walker, 2003). The curriculum has a 

significant role in teaching mathematical content in line with the objectives of 

teaching mathematics (Remillard, 2005; Valverde et al., 2002). In the scope of 

the current study, the Turkish mathematics education program (MoNE, 2018) 

was examined in terms of teaching multiplication. 

 

As explained above, Turkish students are taught multiplication as repeated 

addition in the second grade and as a multiplicative comparison in the third 

grade. These models are asymmetrical, which means they do not view the 

commutative property. As a symmetric model, students are presented with the 

area of a rectangle in fourth grade. However, this is not specified to be 

introduced as a model of multiplication but as a new concept. Considering the 

importance of teaching multiplication via both asymmetric and symmetric 

models in presenting all the properties of multiplication and preventing possible 

misconceptions (Bell et al., 1989; Fischbein et al., 1985; Verschaffel et al., 

1988), the Turkish mathematic education program was found limited in terms of 

models used to teach multiplication compared to those in other counties and the 
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theoretical perspectives. The limitation related to the curriculum may cause 

students to have difficulty and misconceptions related to multiplication. 

Mathematics textbooks are also examined in the next section for a deeper 

investigation related to curriculum resources. 

 

2.2.1.2. Textbooks 

 

In school mathematics, textbooks are considered a mediator between the 

intended curriculum and the attained curriculum (Schmidt et al., 1997). 

Mathematics textbooks are crucial instances of mathematics curricula since they 

operationalize curricular objectives for what to teach and how much emphasis is 

given to mathematical topics. Consequently, textbooks impact what teachers 

teach, how they teach, and what students learn (Tobin, 1987; Usiskin, 1985). In 

that prospect, mathematics textbooks used in the schools at the time of the 

current research were reviewed to get the general structure of multiplication 

instruction in Turkish classrooms.  

 

In the second-grade mathematics textbook (Atlı et al., 2018), multiplication is 

presented as the repeated addition of equal groups, as in Figure 2.11. Objects are 

placed in groups equally, and students are asked to find the total number of 

objects by repeated addition and multiplication. 

 

 

Figure 2.11. Repeated addition of equal groups in 2. Grade Mathematics 

textbook (Atlı et al., 2018, p.165) 
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As stated in the curriculum, students are also introduced to the commutative 

property in this book. While presenting this property, repeated addition is used as 

a model, as in Figure 2.12. However, 3x5 and 5x3 do not represent the same 

situation according to the representations of fish in the figure. As priorly noted, 

repeated addition does not view multiplication as commutative because of its 

asymmetric nature and hence making the book limited in explaining 

commutativity in multiplication. 

 

 

Figure 2.12. Commutative property of multiplication in 2
nd

 Grade Mathematics 

textbook (Atlı et al., 2018, p.170) 

In the third-grade mathematics textbook (Doğan & GezmiĢ, 2018), multiplicative 

comparison is introduced using oranges in bags in Figure 2.13. In each step, one 

bag with two oranges is added. Repeated addition is used, and representation is 

directly explained. For instance, the oranges in the 3rd step are equal to 3 (step 

number) and as many as 2 (oranges in each step). Then, each step is represented 

as the product of step number and two. The textbook directly states what to do 

when students face a multiplicative comparison word problem. 
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Figure 2.13. Multiplicative comparison in 3
rd

 Grade Mathematics textbook 

(Doğan, & GezmiĢ, 2018, p. 105). 

In the fourth-grade mathematics textbook (Özçelik, 2018), the area formula of a 

rectangle is introduced. Students are asked to draw a rectangle, as in Figure 2.14 

and are asked to answer these questions: "What are the sides' lengths (units) of 

the rectangle? Count the squares in the rectangle and write them down. Multiply 

the long and short sides of the rectangle and write it down. Specify the 

relationship between the numbers written down. According to this relationship, 

write a statement related to finding the area of a rectangle. Share this common 

statement with your friends". As can be seen, students are directed to find the 

area formula of a rectangle. It should be noted that students may observe 

commutativity in this activity since the order of multiplier and multiplicand is 

not specified. This activity can be revised, and some other questions can be 

included as students can be asked to voice how they multiplied the long and 

short sides. In this case, while some say 3x6, others say 6x3. This situation can 

be discussed and associated with the commutative property in multiplication. 
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Figure 2.14. Activity on the area of rectangle in 4
th

 Grade Mathematics textbook 

(Özçelik, 2018, p. 249). 

To sum up, it is seen that the textbooks are parallel with the objectives in the 

Turkish mathematics education program and scarce to teach multiplication and 

fundamental multiplication properties.  

 

2.2.1.3. Representations 

 

The purpose of learning mathematics is to get familiar with the mathematical 

concepts and structures contained in the content being studied and determine the 

relationship between mathematical notions and structure (Bruner, 1964). 

Ostensibly, Bruner (1964) emphasizes the importance of representations and 

materials in mathematics education. Multiple representations are crucial in 

carrying students from an operational to a structural view (Sfard, 1991). These 

representations support the development of a concept by highlighting its various 

features (Goldin & Shteingold, 2001). Representations in mathematics education 

refer to internal and external manifestations of mathematical concepts. Internal 

representations, including mental images and problem-solving approaches, are 

the pictures we conjure up in our brains for mathematical concepts and 

procedures. Students' visual images illustrating their spatial conceptions are 

internal representations while external representations are those used to explain 

concepts to others through drawing, writing, and building models out of physical 

objects (Goldin & Shteingold, 2001). Whereas thinking about mathematical 

ideas involves internal representations, expressing mathematical ideas requires 
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external representations such as spoken words, written symbols, pictures, or 

physical objects (Hiebert & Carpenter, 1992). 

 

Studies about multiplication with younger children highlight the role of 

representation in development at an early age (Anghileri, 1989; Clark & Kamii, 

1996; Steffe, 1994). According to Jerome Bruner's learning theory, teaching 

materials must be presented to develop students' mathematics learning, inasmuch 

as the students' cognitive/knowledge development stage since using materials in 

a structured pattern makes the students' knowledge easier to recall and lasts 

longer. Bruner suggests that providing concrete objects for students to handle is 

the first stage of development. In the second phase, students should use visuals 

like pictures and images of objects rather than concrete objects. Finally, in the 

third stage, students start manipulating symbols. Therefore, by connecting 

different representations (concrete and pictorial, real-world and symbolic), 

instructional activities progressively move from concrete to abstract so, the 

students should be presented with tasks to enable them to make a transition 

between concrete and abstract levels. Therefore, students can reflect on their 

conceptualization of multiplication (internal representation) via various external 

representations in which they capacitate students to reflect on themselves while 

enabling the teacher to understand the students' comprehension (Bruner, 1964). 

For this reason, representations are crucial factors affecting the instruction of 

multiplication. 

 

2.2.1.4. Language 

 

Another critical issue for the instruction of multiplication is language, which is a 

type of representation (Anghileri, 2006; 2008). To understand the multiplicative 

scenarios and distinguish them from those that suggest an addition, subtraction, 

or division operation, students need to have enough experience interpreting word 

problems that describe multiplicative situations. The language and meanings of 

the multiplicative situations and their units must also be associated with the 

meanings of standard multiplication notation, such as 7x5=35. Although students 
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experience multiplicative situations in daily life, it is not easy and obvious for 

them to recognize the multiplication process in these situations (Calabrese et al., 

2020). The difficulty of connecting multiplication in realistic situations stems 

from the inconsistency between the vocabulary used in multiplication operations 

and daily language.  

 

In mathematics terminology, there are many words used in real life (Brumbaugh 

et al., 2005). However, the term "multiply" is not used within typical scenarios 

but in multiplication operations (Anghileri, 2006). In multiplication, a factor 

times a factor yields a product. The word "times" is no longer linked merely to 

the idea of events but is related to multiplication. "Product" represents more than 

something associated with a brand name or store item. "Factor" refers to 

something beyond an idea or point to be considered (Brumbaugh et al., 2005). 

The vocabulary used in the real world related to multiplication should be taught 

in mathematics classrooms in addition to conceptual and procedural knowledge 

of multiplication (Calabrese et al., 2020). Consequently, instructors are 

suggested to utilize problem-posing strategies to gain insight into how students 

conceptualize multiplication and improve their understanding of multiplication 

(Calabrese et al., 2020). 

 

Educators frequently employ problem-solving techniques to teach and assess 

students' comprehension of multiplication. A different approach to teaching 

multiplication and examining student understanding is to employ problem posing 

or having students build word problems (Dickman 2014; Lin 2004). Posing 

problems provide an opportunity to transform their knowledge by using 

multiplicative language. For instance, Haylock and Cockburn (2013) conducted a 

study with children aged 9 to 11 years and asked them to write a story that goes 

with '9 x 3'. They revealed that many children struggle to understand 

multiplication in real-world terms. When given this task, very few children came 

up with convincing scenarios, such as "I had nine cats, and they all had three 

kittens." Only a tiny percentage of them appeared to have distinct mental 

frameworks that they could associate with multiplication. Children seemed to 
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have no conceptual understanding of what occurs when two numbers are 

multiplied. If this is the case, then it is the responsibility of those who teach 

multiplication in the early years of primary schooling to establish a foundation of 

experience and to offer images that can be connected to the language and 

symbols of multiplication (Haylock & Cockburn, 2013).  

 

To sum up, language as a verbal representation of multiplication is an important 

factor that affects students' understanding of the concept. For this reason, it is 

suggested to contemplate the fact that while teaching multiplication, enriching 

curriculum resources by linking multiplicative language and real-life via various 

activities such as problem posing is essential for the cause. Therefore, this 

section addresses the issues related to the curriculum resources. In the following 

sections, the issues related to the interactions of students and teachers with the 

curriculum resources on multiplication are presented as the factors affecting the 

development of multiplication. 

 

2.2.2. Student Knowledge 

 

In this section, the issues associated with students‘ competencies related to 

number sense and prior knowledge that constitutes a base for multiplication are 

addressed to ratify the critical issues in developing a conceptual understanding of 

multiplication. Additionally, the consequences of overgeneralization of repeated 

addition are propounded as an obstacle to the conceptualization of multiplication. 

 

2.2.2.1. Students’ number sense levels 

 

Number sense is the ability to use multiple relationships among numbers and 

operations flexibly, using benchmarks to judge number magnitude and recognize 

unreasonable results (Andrews & Sayers, 2015; McIntosh et al., 1992; NCTM, 

2000). In a more advanced level of number sense, students understand place 

value, compose and decompose whole numbers, and grasp the meanings of four 

operations through formal education. Furthermore, students can comprehend the 
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commutative, associative, and distributive properties and apply these principles 

to solve problems (National Mathematics Advisory Panel, 2008). For example, 

students with developed number sense can use the distributive property (or 

splitting property) to find six eights by adding on five eights (6 × 8 = 5 × 8 + 8 = 

48) (van den Heuvel-Panhuizen, 2008). Furthermore, they can double six eights 

to find twelve eights (12x8=96) and can further find that "12x80 is 96 tens, 

which is 960" (National Mathematics Advisory Panel, 2008). In summary, 

students retain some basic facts and use these facts to figure out additional or 

more complex information through mental strategies. 

 

The development of number sense is crucial for mathematics education since the 

lack of understanding of what numerals mean causes barriers to learning 

mathematics (Ekenstam, 1977). It is also stated in the report of the National 

Mathematics Advisory Panel (2008) that poor number sense makes it 

challenging to learn algorithms and number facts and limits the use of strategies 

to verify whether solutions to problems are acceptable. Students' weak number 

sense might be the reason why children struggle to acquire mathematics in early 

grades (Jordan et al., 2010; Yılmaz, 2017). Considering this, it is crucial to focus 

on developing number sense in early grades as a foundation of mathematical 

competency in the upper grades. 

 

In this strand, students learn various ways to express numbers, operations, and 

the connections between them, which helps them better understand. By learning 

to count in different ways, they acquire a deep understanding of the four 

fundamental operations and develop their computational speed and accuracy 

using various tools and techniques (Resnick, 1989). While designing an 

environment for teaching operations considering number sense, key components 

are suggested as an understanding of operations' effect, awareness of operations' 

mathematical properties, and awareness of the relationship between operations 

(McIntosh et al., 1992). In order to acquire these components, it is suggested to 

provide rich activities for making connections, exploring and discussing 

concepts, and ensuring an appropriate sequence of concepts (Griffin, 2004). 
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Therefore, students should be provided with numerous opportunities to create 

their number-working skills while learning multiplication. 

 

2.2.2.2. Students’ prior knowledge for multiplication 

 

According to constructivism, children construct new knowledge by building on 

prior knowledge and their own experiences (von Glasersfeld, 1996). They 

actively participate in the instruction rather than passively absorbing the 

knowledge from the teacher. While students build on their existing knowledge, 

the teacher facilitates their construction of mathematical knowledge (Carpenter 

et al., 1989). As a result, misconceptions from earlier classes or a lack of 

understanding of earlier knowledge restrict mathematical development. 

 

Multiplication is initially constructed on repeated addition (Fischbein et al., 

1985). In this regard, students‘ knowledge of addition is essential as a 

fundamental concept for developing multiplication. Any misconception or 

misunderstanding related to addition automatically affects students‘ 

understanding and processing of multiplication. Moreover, as stated in the 

multiplication strategies, students multiply two numbers via counting strategies 

(Sherin & Fuson, 2005) and therefore their comprehension of number relations 

and counting skills play an essential role in multiplication. In this perspective, 

the limited prior knowledge causes problems in understanding multiplication. 

 

2.2.2.3. Students’ overgeneralization of addition 

 

According to the famous quote by Abraham Maslow, ―If the only tool you have 

is a hammer, you tend to see every problem as a nail.‖  which describes a 

tendency to rely too heavily on an instrument that is familiar or beloved. 

Similarly, students may overgeneralize addition and have misconceptions about 

multiplication (Lesh et al., 2003; Lo et al., 2008). For instance, students may 

generalize the properties of addition incorrectly to multiplication (e.g., 18 x 26 = 

(10 x 20) + (8 x 6)), since students are familiar with addition and construct 
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multiplication on addition (Lo et al., 2008). However, as an operation, 

multiplication differs from addition in several special ways due to its complexity 

(Downton & Sullivan, 2017; Steffe, 1994). 

 

The addition is a unary operation that manipulates quantities with similar units. 

For instance, an addition problem may involve adding two to seven apples, 

resulting in a total of nine apples where the scenario has homogeneous units. On 

the other hand, multiplication is a binary operation through which two quantities 

with different units are manipulated (Barmby et al., 2009; Smith & Smith, 2006). 

For instance, a multiplication problem may involve finding the total number of 

cookies on four plates if there are three cookies on each plate. The scenario is 

more complex and abstract than the scenarios in addition and subtraction 

problems since the two input variables have different units, such as plates and 

cookies. The quantities that are multiplied together differ from one another while 

still being dependent on one another. In this case, the total number of cookies 

depends on the number of plates. This understanding reveals a critical distinction 

between addition and multiplication (Schoenfeld et al., 2017). Therefore, 

compared to addition, multiplication involves the ability to coordinate groups of 

units on a more abstract level (Clark & Kamii, 1996; Downton & Sullivan, 2017; 

Steffe, 1994).  

 

Furthermore, it calls for flexible and effective dealing with a wide range of 

numbers and scenarios since multiplication is viewed with different models as 

context changes (Barmby et al., 2009; Greer, 1992; van de Walle et al., 2020; 

Steffe, 1994). The meaning of multiplication varies in terms of context. As an 

instance, the process of combining shirts and skirts (Cartesian product) does not 

reflect addition in nature. Unfortunately, many educators believe that 

multiplication is just an extension of addition since it is possible to solve whole-

number multiplication problems using repeated addition. This situation may 

cause students to over-rely on addition properties while interpreting 

multiplication as it may also limit students‘ conceptualization of multiplication 

concepts. 
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2.2.3. Teacher Knowledge 

 

According to social constructivist viewpoints, teachers in control of creating and 

implementing lessons that encourage students to actively engage in their 

learning. The teacher should assess the progress of the classroom community by 

keeping track of taken-as-shared ideas through dialogic discussions with the 

whole class, in small groups, and individually (Cobb & Yackel, 1996). However, 

implementing a discourse community is not as easy as explained since it requires 

teachers to have well-developed subject matter and pedagogical content 

knowledge, self-efficacy, and the ability to manage classroom discussions (Hill 

et al., 2008). The lack of teacher capabilities also causes problems related to 

students' actions and cognitions in the classroom environment. 

 

Commensurably, it is undeniable that teachers' expertise significantly impacts 

the effectiveness of mathematics instruction and students' success because the 

teacher's knowledge directly influences what students learn (Shulman, 1986). For 

this reason, teachers must gain a profound grasp of the concepts to implement 

the mathematics education programs as expected. Even the most excellent 

curriculum only offers a set of tools but, the teacher brings these tools to real life 

in the classroom as well as determining when, how, and why to employ them 

(Griffin, 2004).  

 

Furthermore, teachers' limited knowledge also limits students' development as 

less qualified teachers frequently focus on facts, rules, and procedures and 

heavily rely on their lesson plans (Shulman, 1986). For this reason, teacher 

knowledge related to multiplication dramatically impacts students' meaningful 

learning of multiplication.  

 

Therefore, the literature related to students' conceptualization of multiplication 

shows that there are possible factors that can prevent the development of the 

concept. These factors include scarce sources of curriculum guidelines, students' 

limited knowledge of fundamental concepts, and weak knowledge of teachers on 
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the topic. Since many students face one or more obstacles that prevent them from 

conceptualizing multiplication, these issues should be considered and removed 

during instruction, or else, the limitations of these issues constitute barriers to 

students' conceptual understanding of multiplication.  

 

In conclusion, the meanings of multiplication, its place in mathematics lessons, 

students' strategies to multiply, the most common misconceptions and errors 

related to multiplication, and possible factors causing these problems were 

described up to this point. It is posited that students have serious problems with 

understanding and processing multiplication. Unfortunately, curriculum 

resources are limited in supporting students' comprehension of the concept and 

can be suggested to develop an alternative instructional model corresponding to 

the possible obstacles preventing students' conceptualization of multiplication. In 

order for this, the current study aims to develop a hypothetical learning trajectory 

leaning on the information up to this point, providing a comprehensive 

background. In the following section, Hypothetical Learning Trajectories are 

explained by concentrating on their various definitions and the contexts in which 

they are applied and used. 

 

2.3. Hypothetical Learning Trajectories 

 

As in national and international mathematics education programs, constructivist 

viewpoints have begun to rule the educational field, and more and more in-depth 

information on learning and students has become available (Simon, 1995). 

Worldwide, mathematics education has been considerably transformed due to 

these shifting perspectives on learning (National Council of Teachers of 

Mathematics [NCTM], 1989). However, there is a gap between constructivism 

theory and practice since constructivism "does not tell us how to teach 

mathematics" and does not enforce any specific methods of education (Simon, 

1995). To make it clear, by the end of the lesson, it is anticipated that every 

student will have a consistent understanding of what "it" is. As they are supposed 

to follow the same path; the only individual differences would be that some 
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children follow the path more slowly than others, necessitating additional time or 

remediation (Fosnot & Dolk, 2001). Hence, students are believed to follow a 

linear path. However, an important finding is that children do not all think the 

same way. Based on this concern, Simon (1995) suggests that teachers should 

create mathematics classes following applicable research results on student 

thinking and learning and predicted reasoning and he also proposes creating and 

applying Hypothetical Learning Trajectories to integrate research and 

educational practice. 

 

The learning trajectory is hypothetical since we can never be sure of what 

students will do or whether or how they will develop new interpretations, ideas, 

or techniques before they work on a topic. Teachers anticipate specific 

approaches from their students while solving a problem. Alternatively, to put it 

more precisely, their expectations vary depending on the child. Simon (1995) 

illustrates this learning trajectory with the analogy of a sailing voyage to make it 

clear: 

 

You may initially plan the whole journey or only part of it. You set out sailing 

according to your plan. However, you must constantly adjust because of the 

conditions that you encounter. You continue to acquire knowledge about sailing, 

about the current conditions, and about the areas that you wish to visit. You 

change your plans with respect to the order of your destinations. You modify the 

length and nature of your visits as a result of interactions with people along the 

way. You add destinations that prior to the trip were unknown to you. The path 

that you travel is your [actual] trajectory. The path that you anticipate at any 

point is your ―hypothetical trajectory.‖ (136–37) 

 

Simon (1995) emphasizes that since the actual learning trajectory cannot be 

known, HLTs are purely hypothetical. He describes learning trajectories as 

predictions about the direction in which learning might occur and continues by 

recommending that they contain the learning objectives, the learning activities, 

and the thinking and learning in which students may engage. The learning 

process entails how students' thinking and knowledge will be developed through 

these activities, while the learning aim specifies the direction to be taken (Simon, 

1995). Teachers, like sailors, require a broad strategy to direct the ideas they 
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draft for students as well as having to adapt their overall approach to 

accommodate each student's potential for learning, any thoughts or doubts that 

may surface, and any unexpected circumstances that may develop (Simon, 

1995). Like a sailor, teachers plan each step of their journey while considering 

the potential course of events and the circumstances brought on by the execution 

of earlier steps. Therefore, clarifying the vital turning points that establish the 

stages of a nonlinear path is the first step in creating the overall strategy for the 

"journey" (learning multiplication). 

 

In another metaphor, Confrey (2006) defines a learning trajectory as a stream's 

flow, as in Figure 2.15 below. In this analogy, students start with their prior 

knowledge and move along a trajectory to new concepts. They go through 

landmarks and circumnavigate obstacles along the trajectory as it is confined to a 

domain by the stream's bounds. Landmarks represent fundamental ideas that 

develop and get better over time. Landmarks and obstacles are decided based on 

an analysis of the related literature. Respectively, the critical ideas and models 

related to teaching and learning multiplication, possible misconceptions, and 

potential barriers to the conceptualization of multiplication were examined and 

revealed in the previous sections. These issues were used while developing a 

hypothetical learning trajectory. 

 

 

Figure 2.15. A conception of a learning trajectory within a conceptual corridor 

(Confrey, 2006) 
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Moreover, in Figure 2.15, the black dotted line represents a class' progress along 

the learning trajectory. Building on this metaphor, we assert that the curriculum 

can be used to symbolize the flow of the stream, particularly as it approaches a 

landmark or must contend with a barrier. As a result, two classrooms using 

different curricula to approach a landmark notion may be experiencing the 

landmark differently, impacting how they advance through the remaining 

portions of the trajectory. The landmarks pupils visit and the ones they skip 

depend on the curriculum's covering of its subject matter. In this regard, the 

objectives in the curriculum (MoNE, 2018) and some additional big ideas should 

be determined to develop a learning trajectory. 

 

Hypothetical learning trajectories (HLTs) were initially developed to organize 

and describe the pedagogical reasoning required in teaching mathematics for 

understanding. In the corpus of research, the term "HLT" has been interpreted in 

several ways (Clements & Sarama, 2004; Gravemeijer, 2004; Gravemeijer et al., 

2003a; Simon, 1995; Simon & Tzur, 2004). For instance, Clements and Sarama 

(2004) define hypothetical learning trajectories as "descriptions of children's 

thinking and learning in a specific mathematical domain and a related, 

conjectured route through a set of instructional tasks designed to engender those 

mental processes or actions hypothesized to move children through a 

developmental progression of levels of thinking, created with the intent of 

supporting children's achievement of specific goals in that mathematical domain" 

(p. 83). Another definition of HLT is made by the National Research Council 

(2007) as "descriptions of the successively more sophisticated ways of thinking 

about a topic that can follow one another as children learn about and investigate 

a topic over a broad span of time" (p. 214). Similarly, Confrey et al. (2014) 

explain learning trajectories as "research-based frameworks developed to 

document in detail the likely progressions, over long periods of time, students' 

reasoning about big ideas in mathematics" (p. 720).  

 

Although there are various definitions, most of them concur that the HLT 

comprises three aspects: (1) the learning objectives, (2) the task-based 
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instructional sequence to support those objectives, and (3) the projected student 

developmental progressions as a result of the task-based instructional sequence. 

The HLT is initially created as a set of instructional tasks with expectations for 

how the class would participate in the instruction while thinking and learning 

(Clements & Sarama, 2004; Gravemeijer, 2004; Gravemeijer et al., 2003a; 

Simon, 1995; Simon & Tzur, 2004). Confrey (2006) states that instruction 

should also include tasks, tools, modes of interaction, and evaluation techniques 

to help children shift from informal to formal knowledge.  

 

As an example, in parallel to these components, Stephan and her colleagues 

(2003) developed a classroom learning trajectory (CLT) for integer addition and 

subtraction, which is provided in Figure 2.16. This instructional theory that 

emerged from five cycles of classroom-based experiments in the case of the 

integers, a Design Research Program is arranged in a table that is divided into 

five categories (Stephan et al., 2003) which are the tools, imagery, activity/taken-

as-shared interests, possible topics of mathematical discourse, and possible 

gestures and metaphors (Rasmussen et al., 2004) that would support students' 

learning of integer operations. The instructional theory has been divided into six 

phases to outline the suggested adjustments in mathematical thinking that the 

teacher-researchers intend to assist in their classrooms. Each phase corresponds 

to hypotheses, taken-as-shared activities and goals that are anticipated that would 

manifest as students worked through the difficulties (Stephan & Cobb, 2013). 

 

 

Figure 2.16. A portion of the CLT table for integer addition and subtraction 

(Stephan & Cobb, 2013, p.284). 
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Similarly, the learning trajectory created for the current study is a CLT that 

contains the same components (i.e., tools, imagery, activity/taken-as-shared 

interests, potential subjects for mathematical discourse, and potential gesturing 

and metaphors). The relevant educational sequence students would engage with 

is also established to assist their growth along the anticipated trajectory. There 

are, however, some distinctions as well. Firstly, in keeping with Simon's (1995) 

suggestion that learning trajectories should include learning goals, the CLT 

created in this work includes big ideas as learning goals. Secondly, tools and 

images are displayed in the same column because they are related. They are not 

given separately since the students used visual representations in the 

instructional tasks as tools such as providing students with pictures of objects in 

the composing and decomposing activities. Students circled these images to 

make equal groups and counted these equal groups repeatedly. Hence, the 

images related to the context of the tasks became the students' tools for solving 

the problems.  

 

Up to this point, various means of HLTs have been discussed as well as having 

explained various definitions and applications of HLTs in this context. A review 

of HLTs created for multiplication or other similar disciplines is presented in the 

following section to reveal a rationale for the goals in the HLT and describe the 

convergences of the HLT created for this study in the previous studies. 

 

2.3.1. Hypothetical Learning Trajectories in Multiplication 

 

Mendes, Brocardo, and Oliveira (2021) developed a multiplication learning 

trajectory for third graders and it comprises modifications due to 10 task 

sequences tested in a classroom and school-specific circumstances. They also 

draw attention to the task contexts, which incorporate elements of multiplication 

learning. The HLT framework comprises three columns, including sequences of 

tasks, learning milestones, and contexts and numbers. Their trajectory uses five 

different types of tasks, including multiplication tasks where the calculation by 

groups is made evident, tasks whose context is related to the rectangular array, 
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tasks with numbers in decimal representation, division tasks where 

multiplication is favored, revealing the relation between two operations and 

multiplication tasks where multiplication is selected, showing the relation 

between two operations. These tasks in the sequences were designed around the 

learning milestones, which are the consolidation of understanding of a group as a 

unit, the distributive property of multiplication in relation to addition and 

subtraction, the commutative property of multiplication, the associative property 

of multiplication, knowledge of the inverse relationship between multiplication 

and division, and comprehension of the proportional reasoning of multiplication. 

When it comes to context and numbers presented in the trajectory, initially, 

examples with multiples of 2, 3, 5, and 6 are used. The use of those multiples is 

then "revisited" to accommodate multiples of 4, 10, and 12. To develop the 

concept of inverse relationship between multiplication and division, the 

numerical set is limited to natural numbers, and the groups of 6, 8, and 10 are 

used again (sequences 7 and 9). This numerical "revisiting" is a sequential chain 

that repeats itself when new learning milestones are introduced. Also, the 

decimal 1.25 and multiples of 10 are used to introduce the proportional meaning 

of multiplication; these numbers were previously thought of as a reference 

(sequence 10) as this serves as the foundation for developing relationships with 

new number values. 

 

In some other study, Götze and Baiker (2021) described a learning trajectory in 

four main phases: (1) direct counting, (2) rhythmic or skip counting, (3) additive 

thinking (possibly by saying the count-by sequence), and (4) multiplicative 

thinking (Anghileri, 1989; Battista, 1999; Downton & Sullivan, 2017; Larsson, 

2016; Ruwisch, 1998; Siemon et al., 2005; Simon & Blume, 1994; Sherin & 

Fuson, 2005; Stefe, 1992; Sullivan et al., 2001; Thompson & Saldanha, 2003). In 

this sequence, repeated addition is initially thought to be more sophisticated than 

counting all or counting in multiples. However, equating repeated addition with 

multiplication is restrictive because this way of thinking is no longer possible 

beyond natural numbers (Thompson & Saldanha, 2003). In contrast, 

multiplicative thinking implies the identification of the various meanings of the 



74 

multiplier and the multiplicand and involves the ability to coordinate bundled 

units more abstractly than additive thinking (Clark & Kamii, 1996; Downton & 

Sullivan, 2017; Larsson, 2016; Singh, 2000; Steffe, 1992). 

 

In their learning trajectory of multiplication, consisting of six activities, 

Hendriana, Prahmana, and Hidayat (2019) start the instruction with games to 

support understanding of the multiplication concept. In these activities, students 

begin learning multiplication by grasping the fundamentals of addition using the 

term "box." For instance, 2x3 indicates that there are two boxes, each containing 

three items. After that, students are expected to memorize the multiplication of 

numbers 1, 10, 9, 2, and 5. By utilizing the finger method, singing a number 

song, a pattern of multiplication numbers, and other techniques, children can 

master the multiplication section by learning how to multiply the numbers 1, 10, 

9, 2, and 5. Similarly, the trajectory includes activities related to the patterns of 

multiplying two same numbers, such as 3×3 and 10x10. After that, activities for 

using multiplication characteristics as a commutative operation and for 

memorizing the multiplication of numbers 8, 7, and 6 are used. Finally, teachers 

are suggested to evaluate the students' multiplication problems in both formal 

and informal forms via evaluation activities. 

 

Wright, Stanger, Stafford, and Martland (2014) also propose a learning trajectory 

for early multiplication and division. This trajectory includes a list of sequential 

topics. The first one is counting by 2s, 5s, 10s, and 3s to improve students' ability 

to skip count. The second topic is multiplication, where items and groups are 

visible and since all the groups and the items in groups provide students, they 

can count by ones, skip count the groups, or use more advanced strategies. In the 

further topic, students are provided equal groups with covers for each group. 

They are told how many items there are in each group, and the cover is removed 

to show the items when they cannot comprehend these items. More descriptively, 

students are given cards containing repeated equal groups, like six groups of 2 

dots. On each card, small lids are used to screen each group separately. Students 

are told how many dots are contained on each card. Then, they are asked to find 
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how many dots there are altogether. Each of the six lids is lifted if the child 

cannot solve the task. In the following topic, students are given equal-sized 

groups with small lids on each and a larger lid that covers all the groups. 

Students are explained that the large lid has six groups of 2. Students are asked 

how many dots there are and how many small lids there are. As the students 

struggle, the large lid and the small lid are lifted, respectively. For the next step, 

students work on cards with dots. They are asked questions related to them with 

the help of lids to make them experience quotitive division (number in each 

group given) and partitive division (number of groups given). In other words, 

students can process multiplication and division using the same tools from which 

they can simultaneously be taught both multiplication and division. In the 

upcoming topic, students arrange dots and construct arrays to represent 

multiplication and are asked to find how many dots there are in the array. After 

this, they are asked to find how many rows or columns there are in the array to 

practice division using arrays. Then, tasks including basic multiplication facts 

involving 2, 10, and 5 as multipliers are used to gain fact fluency. As another 

topic, relational thinking is emphasized under two sub-topics: commutative and 

distributive principles, and multiplication and division as inverse.  

 

Therefore, the literature review on the previously published HLTs in 

multiplication demonstrates that the development of multiplication goes along a 

route from additive to multiplicative thinking. Almost all of them include the big 

ideas related to skip counting, equal grouping, commutative property, and array 

models. With this respect, it is suggested to use physical objects or pictures to 

form equal groups to count the whole, solve contextual problems with materials, 

pictures, and number sentences, and the composing and decomposing activities 

to reveal the inverse relationship between multiplication and division. 

Unfortunately, most of the big ideas included in these trajectories are new for 

second-grade students in Turkey (e.g., teaching multiplication and division 

simultaneously and using an array). Ergo, they should be adopted for these 

students considering the objectives. Also, the instructional activities should be 
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adapted to the Turkish context to be clear and comprehensible for the students in 

a realistic context. 

 

Besides, it was discovered that the HLTs that were already in place mainly 

emphasized the progressive growth of people. In other words, none of the studies 

mentioned above—although they may be beneficial in informing those—

describes communal development in increasingly sophisticated ways. It is 

suggested to focus on justification and explanation that develop within a 

classroom community (Cobb et al., 2001). In that respect, there is a gap related 

to the existence of an HLT developed within an approach of collective 

mathematical practices. With all said and given, this study might contribute to 

the literature by outlining a group of students' collective developmental path by 

documenting their classroom mathematical practices. In the next section, 

collective mathematical practices approach to learning trajectories is explained in 

detail. 

 

2.3.2. Collective Mathematical Practices Approach to Learning Trajectories 

 

There are various HLTs for a variety of mathematical ideas like verbal and 

object counting, early addition and subtraction, integer addition and subtraction, 

geometric measurement, spatial thinking, composition, and decomposition of 

shapes (Clements & Sarama, 2004; Gravemeijer et al., 2003a; Stephan & Akyüz, 

2012). Each study related to learning trajectories (LT) addresses a different 

approach to LTs. Within this context, Lobato and Walters (2017) reviewed the 

literature systematically. They presented a taxonomy of seven approaches to 

LTs, including (1) cognitive levels, (2) levels of discourse, (3) schemes and 

operations, (4) hypothetical learning trajectory, (5) collective mathematical 

practices, (6) disciplinary logic and curricular coherence, and (7) observable 

strategies and learning performances. While most of these methods rely on the 

progressive development of mathematical learning at the individual level, the 

fifth approach to LT (i.e., Collective mathematical practices) explains the 

collective development of a community of learners (Lobato & Walters, 2017). 
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In this section, the approach related to collective mathematical practices is 

explained in detail with the interpretive and instructional frameworks directing 

the approach and its characteristics, purposes, and benefits. The trajectories in 

the approach related to collective mathematical practices show how a community 

has developed (Lobato & Walters, 2017). The emergent perspective, an 

interpretive framework in which individual constructions are coordinated with 

collective constructs (Cobb & Yackel, 1996), serves as a major source of 

inspiration for this line of research. First, this framework will be explained in 

detail.  

 

Before going into details of the emergent perspective, the terms collective and 

taken-as-shared should be defined to prevent misunderstandings in this section. 

The term "collective" is used to describe a quality of a group rather than most 

students in the classroom. To clarify, Lobato and Walters (2017) use the 

metaphor of a married relationship where the wife is active and disorganized, 

and the husband is systematic and severe. They are comical together, which is a 

quality neither of them possesses on their own. Similarly, teachers view each 

class as a social group with features that set it apart from other classes and go 

beyond the traits of the specific students who make up the class. Additionally, 

the phrase ―taken-as-shared‖ is used to underline that the claim does not belong 

to one individual's understanding but rather to ways of operating that no longer 

need justification. It shows the idea's institutionalization in the classroom 

community's microculture (Rasmussen & Stephan, 2008). Keeping these 

definitions and explanations in mind, the interpretive framework and the current 

approach will be more explicit. 

 

In the interpretive framework, the two theories, namely interactionist theories 

which emphasize learning through collective classroom or communal processes 

(Bauersfeld et al., 1988) and constructivist theories which specify individual 

students' reorganizing their learning through these communal processes (von 

Glasersfeld, 1998) are coordinated (Cobb & Yackel, 1996). In other words, the 

emergent perspective is a social constructivist theory that combines individual 
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and collective learning through social interactions within the classroom 

environment, as shown in Figure 2.17. 

 

  SOCIAL PERSPECTIVE PSYCHOLOGICAL PERSPECTIVE 

Classroom social norms Belief about own role, others‘ role, and the 

general nature of mathematical activity in 

school 

Socio-mathematical norms Mathematical beliefs and values 

Classroom mathematical 

practices 

Mathematical conceptions and activity 

Figure 2.17. An interpretive framework for analyzing communal and individual 

mathematical activity and learning (Cobb & Yackel, 1996, p.177) 

There are two theoretical viewpoints in Figure 2.17; social perspective and 

psychological perspective. A social perspective refers to the interactionist view 

of learning as a social accomplishment, whereas a psychological perspective 

refers to the psychological constructivist view of individual and self-regulated 

activities in a social context (Cobb & Yackel, 1996). From the social perspective, 

there are three constructs denoting three aspects of a classroom: classroom social 

norms, socio-mathematical norms, and classroom mathematical practice. 

 

 In addition, psychological constructs which are related to these social constructs, 

including their individual aspects, are listed under the psychological perspective. 

Therefore, in each row, there is a relationship between the aspects of the 

classroom microculture and individual's activities in this classroom culture 

(Cobb & Yackel, 1996). Briefly, according to this perspective, norms and beliefs 

develop as complementary (Hershkowitz & Schwarz, 1999). 

 

Classroom social norms, as a subconstruct of social perspective, are 

characteristics of the classroom community and regularities in a classroom 

activity that the teacher and students jointly establish through negotiation (Cobb 
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& Yackel, 1996; Cobb et al., 2001; Stephan et al., 2003). These norms refer to 

taken-as-shared communication ways within the classroom. Social norms and 

beliefs are reflexively related such that neither exists independently of the other. 

In other words, students reorganize their individual beliefs about their roles, 

others' roles, and the general nature of the mathematical activity as they negotiate 

and renegotiate social norms before and during the instructional processes (Cobb 

& Yackel, 1996).   

 

The interpretive framework's second aspect concerns socio-mathematical norms 

specific to mathematics and mathematical activities (Cobb & Yackel, 1996). 

Socio-mathematical norms include "a different mathematical solution, a 

sophisticated mathematical solution, an efficient mathematical solution, and an 

acceptable mathematical explanation" (Cobb & Yackel, 1996, p. 178) where 

students correlate teacher's and others' mathematical beliefs and values as 

psychological constructs for socio-mathematical norms that establish their 

mathematical disposition (Bowers et al., 1999; Cobb & Yackel, 1996). 

  

The third aspect of the social perspective is classroom mathematical practices 

related to the mathematical development of a classroom community (Cobb & 

Yackel, 1996). Mathematical practices are defined as the taken-as-shared ways 

of reasoning and arguing mathematically while engaging in pedagogical content 

tools based on the connection of social and socio-mathematical norms (Cobb et 

al., 2001). Classroom mathematical practices emerge within the classroom 

discussion on situations, problems, and ways of solving them, including aspects 

of symbolizing and notating (Cobb et al., 1997). Viewed against the background 

of classroom social and socio-mathematical norms, which are more general, the 

mathematical practices can be seen as content-specific mathematical 

interpretations that become normative through social interactions within the 

classroom (Stephan & Cobb, 2003; Cobb & Yackel, 1996). For example, using 

an array model for multiplying two numbers in second grade can be a 

mathematical practice.  
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According to this perspective, there is a robust connection between societal and 

individual processes since the two cannot be separated since each is necessary 

for the other to exist. On one hand, each student's growth is examined concerning 

their involvement in and contribution to the newly formed collective 

mathematical practices. On the other hand, mathematical practices are the taken-

as-shared methods by which a community develops its mathematical reasoning 

and argumentation (Cobb et al., 2001; Stephan, 1998). Since students contribute 

to the evolution of the classroom's mathematical practices as they rearrange their 

mathematical activities, we can say that the relationship between the individual 

and the social process is vital, even though practices represent what is taken to be 

shared learning within a community. In other words, it is believed that there is a 

reflexive relationship between collective mathematical practices and individual 

pupils' conceptual growth. 

 

The collective mathematical practices approach to learning trajectories 

incorporates how most teachers see their classrooms—as collectives—which is 

one of its key advantages (Lobato & Walters, 2017). Teachers are aware that 

each class might have a unique personality and that each class's mathematical 

growth can be described. Cobb and Yackel (1996) describe how they 

transitioned from conducting individual research to working in classrooms. At 

first, they attempted to explain how children's conceptual arrangements changed 

due to their interactions with the instructor and their classmates and they soon 

realized that there were missing patterns in social behavior, including those 

relating to the responsibilities and roles of students and teachers, as well as 

changes in reasoning over time that at first required students to explain them but 

eventually became accepted as practices that did not require justification. 

 

Additionally, researchers discovered that the development of instructional theory 

and design was not adequately served by individualistic psychological theories 

of learning (Lobato & Walters, 2017). Fundamentally, continuous instructional 

development efforts are influenced by students' mathematical development as it 

occurs in the social environment of the classroom (Cobb, 2003). To put it 
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another way, one technique to determine if an instructional sequence is effective 

is to record the mathematical practices used in the classroom and the various 

ways students participate in and contribute to them. A large portion of the studies 

related to learning trajectories in the collective mathematical practices approach 

has been conducted within the domain-specific instructional theory of realistic 

mathematics education (RME) (Lobato & Walters, 2017). In the following 

section, this theory is explained in detail. 

 

2.3.3. Realistic Mathematics Education (RME)  

 

Realistic Mathematics Education (RME) is grounded in understanding 

mathematics as a human activity, which is about the process of mathematizing 

reality (Freudenthal, 1968). It was developed as an alternative method of 

mathematics instruction to traditional teaching methods in the Netherlands 

(Streefland, 1991). It is believed that no subject should be taught to students as a 

ready-made product (Freudenthal, 1973). Contrary to "ready-made products," 

Freudenthal (1973) proposes "the process of reinvention" as a teaching approach 

that focuses on comprehending and evaluating mathematics as a human activity, 

particularly as a student's activity. Students are suggested to learn mathematics 

by mathematizing subject matter from real contexts and their mathematical 

activities (Gravemeijer, 1994). 

 

Mathematizing is related to organizing for generality, certainty, exactness, and 

brevity (Gravemeijer et al., 2000). Through these goals, learners show their 

creativity and construct models to generalize conjectures (Freudenthal, 1973). To 

give an instance, students analyze and discover properties of the parallelogram in 

such a way that one of them emerges as the foundation for the rest. Then, they 

formalize the definition of a parallelogram by arranging its properties. This 

process is called the mathematization of the parallelogram's conceptual domain. 

Mathematizing is crucial for mathematics education since it helps students 

become familiar with the related concepts and their existence in daily life. On top 

of that, it relates to the reinvention process, a procedure whereby learners 
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articulate their informal understandings and insights. Thus, mathematizing while 

working on problems that are experientially real to learners is the core of the 

reinvention process (Freudenthal, 1973; Gravemeijer et al., 2000). 

 

Mathematization is distinguished as vertical and horizontal mathematization 

(Treffers, 1987), as represented in Figure 2.18 below and horizontal 

mathematization refers to explaining and solving a problem using informal 

knowledge which makes problems manageable for mathematical solutions. On 

the other hand, vertical mathematization refers to converting informal strategies 

to mathematical language or an appropriate algorithm by processing fairly 

sophisticated mathematics. Namely, extracting the required information from a 

given problem and using informal strategies refers to horizontal mathematization 

whereas representing the problem by using symbols and representing it as an 

equation refers to vertical mathematization (Gravemeijer et al., 2000). 

 

 

Figure 2.18. Representation of horizontal and vertical mathematization (Treffers, 

1987) 

Both vertical and horizontal mathematization give insight on how to reinvent 

through progressively mathematizing in a classroom setting. However, 

mathematization does not suggest explicit heuristics to direct how to design 

instruction in line with RME theory. In this regard, Gravemeijer and his 

colleagues delineated three core heuristics which are guided reinvention through 
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progressive mathematization, didactical phenomenology, and emergent models 

(Gravemeijer et al., 2003a; Gravemeijer, 2004). 

 

The first heuristic, guided reinvention, provides a solution to the problem of 

bridging the gap between informal and formal mathematics (Gravemeijer & 

Doorman, 1999). This heuristic guides instructional designers to consider the 

potential obstacles while developing a learning trajectory. With this insight, the 

designers wonder if students may acquire an understanding of the topic by taking 

a comparable developmental course. Another function of the reinvention 

principle is to reveal students' informal interpretations and solutions that may 

conjecture more formal mathematical reasoning. Therefrom, the process of 

reinvention might begin with the students' initial informal thinking (Gravemeijer, 

1994). Accordingly, the developers start by exposing the history of the topic and 

students' informal strategies and interpretations as a source of the targeted 

learning trajectory. After that, they try to conjecture a tentative and revisable 

learning trajectory along which collective reinvention (as a process of 

progressive mathematization) might be supported. 

 

The second heuristic, didactical phenomenology, is closely related to the first. 

The didactical phenomenology heuristic focuses explicitly on identifying 

specific activities in sequence to support the students' mathematical 

development, leading to the instructional sequence of tasks and activities 

(Gravemeijer, 2004; Gravemeijer & Doorman, 1999). This heuristic establishes 

the conditions in which students can work together to find progressively 

sophisticated answers to problems based in reality. These initial settings, where 

students collectively work on the given problem, play an essential role in 

promoting horizontal mathematization that encourages further vertical 

mathematization. 

 

The third RME heuristic, emergent models, is related to the role of emergent 

models in the mathematical growth of individual students' learning and 

classroom community. It focuses on the informal use of students' models and 
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supports the transition from a model of to a model for by using symbols 

corresponding to their reasoning styles (Gravemeijer et al., 2000). In this sense, 

students should be allowed to utilize and create their own models when solving 

problems. As an analogy, while working on a problem related to a double-decker 

bus, students can use a rack functioning as a model of the passengers on two 

decks. In further activities, students may use a rack as a model for reasoning 

number relations (e.g., 10+6 =9+7). This situation means that the rack's role 

shifted from being a model of the given scenario to functioning as a model for 

numerical reasoning. 

 

2.4. Summary of the Literature 

 

The literature review in this chapter is organized into three main sections, 

including theoretical background related to conceptual models and understanding 

of multiplication, factors affecting the development of multiplication concepts, 

and hypothetical learning trajectories. The studies in this chapter provide 

essential insights into the structures related to multiplication, students' 

understanding of multiplication, and hypothetical learning trajectories as an 

alternative framework for teaching multiplication. 

 

Collectively, multiplication is a critical concept having a place in the 

mathematics education area. It has a significant role in promoting many number-

related concepts like fractions, percentages, ratios, rates, similarity, trigonometry, 

proportion, area and volume, probability, and data analysis (Behr et al., 1992; 

Christou et al., 2005; Lamon, 2007; Lesh et al., 1988; Mulligan & Watson, 

1998). Due to this importance, much research has been done on multiplication. 

The features and models related to multiplication via word problem structures 

have been revealed (Fischbein et al., 1985; Nesher, 1988, 1992; Schwartz, 1988; 

Vergnaud, 1983; 1988). Also, the studies on multiplication structures stated that 

symmetric and asymmetric models should be used collaboratively for 

meaningful learning to fulfill the properties related to multiplication (Bell et al., 

1989; Graeber & Tirosh, 1988; Verschaffel et al., 1988).  
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The mathematics education programs were investigated and compared according 

to multiplication models where the analysis revealed that all the documents 

except those in Turkey include multiple models to teach multiplication concepts 

(Olfos et al., 2021). Both asymmetric and symmetric models were preferred to 

present multiplication and its properties. On the contrary, Turkish resources 

represent multiplication as an asymmetric structure (repeated addition and 

multiplicative comparison) (MoNE, 2018). Hence, the Turkish mathematics 

education program was found scarce to teach multiplication and fundamental 

multiplication properties. Also, studies related to students' understanding of 

multiplication show that students' conception of multiplication is mainly limited 

to repeated addition and equal groups (e.g., Kubanç & Varol, 2017; Sidekli et al., 

2013; Tertemiz, 2017; Üçüncü, 2010). Besides, these students were discovered 

to have difficulty connecting multiplication to everyday activities (e.g., Doğan & 

Doğan, 2019; Kılıç, 2013; Tertemiz, 2017).  

 

These findings show that there are problematic issues related to both teaching 

and learning multiplication. In addition to the limitations that stem from 

depending on multiplication on repeated addition, other factors also affect the 

conceptual development of multiplication that stem from curriculum sources and 

representations (Anghileri, 2006; Goldin & Shteingold, 2001; MoNE, 2018; 

Pepin & Gueudet, 2020; Tobin, 1987; Usiskin, 1985), students' knowledge 

(Ekenstam, 1977; Fischbein et al., 1985; Jordan et al., 2010; Lo et al., 2008; 

Yılmaz, 2017), and teacher knowledge (Griffin, 2004; Shulman, 1986). Thence, 

considering all the problems related to teaching and learning multiplication and 

possible obstacles to the development of the concept, there is a gap in the 

literature regarding a well-developed instructional model for teaching 

mathematics.  

 

Complementary to the necessity of an alternative framework for teaching and 

learning, it is suggested to use a hypothetical learning trajectory (Simon, 1995) 

and implement it in a classroom environment to document classroom 

mathematical practices for testing its effectiveness in learning and refining the 
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HLT (Lobato & Walters, 2017; Rasmussen & Stephan, 2008). Unfortunately, the 

previously published HLTs in multiplication are not suitable for second-grade 

students in Turkey since they are not parallel with the Turkish mathematics 

education program (e.g., Mendes et al., 2021; Wright et al., 2014) as well as not 

describing communal ways of development. Therefore, it was concluded that 

there is a need for an HLT adapted to the Turkish context realistically to be clear 

and understandable for the second-grade students in a classroom to fill the gap in 

the literature. In order to meet the necessity of developing an HLT and related 

instructional sequence, RME theory was decided to be used as assigned in many 

studies related to learning trajectories (Lobato & Walters, 2017).   
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CHAPTER III 

 

 

METHODOLOGY 

 

 

The aims of this study are (1) to develop, test, and revise a Hypothetical 

Learning Trajectory and corresponding instructional sequence for teaching 

multiplication in second grade, and (2) to document second graders‘ classroom 

mathematical practices that emerged through a five-week instructional sequence 

about multiplication. To achieve these goals, this study seeks the answer to the 

following research questions: 

 

1- What would an optimal HLT and instructional sequence for 

multiplication look like?   

2- What are the mathematical practices as students engage in the 

instructional sequence for multiplication? 

 What are the mathematical ideas that support the mathematical 

practices developed by students during the implementation of 

instructional sequence for multiplication? 

 

In order to answer these research questions, design research was conducted to 

provide a precise and deep understanding of an optimal HLT and instructional 

sequence for multiplication and classroom mathematical practices through a 

collective learning environment of second graders within the context of 

multiplication. In this chapter, the methodological approach of the study, the 

context and participants of the study, data collection procedures, data collection 

tools, and data analysis methods are explained in detail. Under the data 

collection procedure section, the development, implementation, and modification 

procedures related to the initial hypothetical learning trajectory are documented 

in detail to answer the first research question. Finally, at the end of the chapter, 
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the issues regarding trustworthiness, the role of the researcher, the limitations of 

the study, and ethical considerations are provided. 

 

3.1. Design of the Study 

 

The purposes of this study are to develop a Hypothetical Learning Trajectory and 

corresponding instructional sequence for teaching multiplication in second grade, 

and to document second graders‘ classroom mathematical practices that emerged 

as the teacher and the students interact around the instructional sequence. These 

purposes of the study require researchers and practitioners to create progressively 

feasible and effective interventions with the enhanced articulation of principles 

that underlie their effectiveness by carefully analyzing progressive 

approximations of ideal interventions in the targeted environments. Therefore, 

the design research approach was adopted in this study as it intends to develop 

new theories, artifacts, and practices that account for and potentially influence 

learning and teaching in naturalistic situations (Barab & Squire, 2004). In this 

section, brief information about design research, and the reasons to employ 

design research are presented by connecting it to the current study.  

 

Design experiments, in their most basic form, require both "engineering" specific 

kinds of learning and carefully examining those forms of learning within the 

context defined by the means of support as in the current study (Cobb et al., 

2003). This designed context is put to the test and revised, and the subsequent 

iterations serve a similar purpose as systematic variation in experiments. In this 

respect, design research methodologies met the purpose of this study. That is to 

say, it was planned to develop, test and revise a Hypothetical Learning 

Trajectory on multiplication in second grade. In order to test the HLT and related 

instructional sequence, it was decided to implement the instructional sequence in 

the real classroom environment by handling the classroom complexity, which is 

a hallmark of educational environments.  
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The term ―complexity‖ is related to the tasks presented to students to solve, the 

types of discourse that are encouraged, the norms of participation that are 

established, the tools/materials that are provided, and the teacher‘s practices to 

orchestrate relationships between these various aspects in the classroom (Cobb et 

al., 2003). In this sense, it was targeted to understand the learning ecology by 

designing its elements and anticipating how they interact to enhance learning 

through the hypothesized learning trajectory on multiplication. Therefore, it was 

planned to develop the multiplication tasks with the collaborating teacher by 

taking her practices to implement these tasks into account. Related tools and 

materials were selected or created to provide for students. Moreover, guiding 

questions to encourage classroom discourse during the implementation of the 

instruction were determined. Finally, it was planned to implement all these 

constructs in the classroom environment with the help of social and 

sociomathematical norms that had already been established by the classroom 

community. Considering these components of a classroom complexity, design 

research was thought to be an effective approach for this study, because it takes a 

variety of factors, including the study's goals and nature, into account.  

 

Design research is carried out in a variety of settings that differ both in nature 

and scope (Cobb et al., 2003). In this sense, the type of the current design 

research is a classroom teaching experiment whose purpose is to investigate and 

develop effective methods to assist students in learning a specific topic by a 

research team collaborating with the teacher (Cobb et al., 2003). As for a 

classroom teaching experiment, the research team collaborated with the teacher 

who takes part in the research team to take the responsibility of teaching 

multiplication in this study. Therefore, the team consisted of three people; a 

professor of Mathematics education, the researcher and the collaborating teacher. 

The team members planned to carry out this design research consisting of a 

cyclical process of ongoing analysis of student reasoning on multiplication tasks 

and revision of instructional tasks and the possible paths that students‘ learning 

might take to understand multiplication. 
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In addition to all of the foregoing, design research has several features. First, as a 

common feature, design research is theory-oriented that aims to develop theories 

about learning and tools that can be used to support them (Cobb, et al., 2003; 

Design-Based Research Collective, 2003; McKenney & Reeves, 2012; van den 

Akker et al., 2006; Wang & Hannafin, 2005). In this sense, the purpose of this 

study is to look at how the teaching and learning process of multiplication is 

planned and implemented in the light of the ideas, theories, and findings in the 

related literature. Therefore, it was believed that the design team would develop 

an instruction theory and instructional means (e.g. tools, and accompanying 

learning activities) that would support second-grade students‘ learning of 

multiplication. Consequently, the current study was constructed as a means of 

doing formative research in order to evaluate and modify educational designs 

related to the instruction of multiplication based on theoretical principles 

gathered from previous studies. 

 

Second, according to the interventionist nature of design research, the process 

begins with the identification of significant educational problems requiring 

comprehensive solutions that are acceptable for scientific investigation as well as 

the understanding of their causes (Cobb, et al., 2003; McKenney & Reeves, 

2012; van den Akker et al., 2006). From this point of view, the current study 

started with critical problems related to teaching and learning multiplication. As 

suggested in design research, this study required a research team to participate in 

the creative activity of producing solutions based on current scientific 

information, empirical testing, and project participants' craft wisdom (McKenney 

& Reeves, 2012). Therefore, this team was expected to design an intervention for 

teaching multiplication in second grade by documenting the design procedure 

and the outcomes of the intervention by conducting retrospective analyses. 

 

Third, design research emphasizes the importance of collaboration between the 

participants and the researchers (Cobb, et al., 2003; McKenney & Reeves, 2012; 

Wang & Hannafin, 2005). Direct theory application without the interaction of 

practitioners is usually not possible due to the dynamic and complicated 
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relationship between theory and practice; hence, researchers and practitioners 

should work collaboratively (Wang & Hannafin, 2005). That is to say, 

practitioners should be involved in the design processes and work together with 

the researchers. In the current study, the teacher of the second-grade classroom 

that had been chosen to conduct the teaching experiment was included in the 

design team. She attended in reviewing the literature, developing the HLT and 

related instructional sequence on multiplication, implementing the instructional 

sequence in the classroom, observing students‘ learning, and evaluating the 

design of the instruction. She also contributed to the research and research team 

with her pedagogical content knowledge. She shared her experiences with the 

participating students, knowledge of students, and knowledge of multiplication 

considering her teaching experiences with the design team. The design was 

shaped in line with her guidance. Moreover, the team members also contributed 

to the teacher, especially in terms of orchestrating classroom discourse. Lest the 

teacher tended to give the answer and the solution strategy to the students 

directly, she was trained to use guiding questions to maintain a discussion 

environment and facilitate students to generate their formal knowledge related to 

multiplication collaboratively.  

 

Fourth, in line with the iterative process of design research, ideas and 

interventions grow throughout the time as a result of several iterations of study, 

development, testing, and refinement (Design-Based Research Collective, 2003; 

McKenney & Reeves, 2012). Through the cycles of invention and revision, new 

hypotheses are produced and tested while old ones are tested and refuted (Cobb, 

et al., 2003). In this study, a longer macro-cycle and daily mini-cycles were used 

considering design study approach. The design research helped us in enacting 

and refining the instruction, observing the effects of the refinements on students' 

learning, and examining both confirmed resolution of the issues as well as 

additional learning challenges through daily mini-cycles. That is to say, after 

each lesson the teacher and the researcher were having a short conversation 

about what went as planned and what did not. If the lesson had not been as 

envisioned by the team, the tasks for the following day were revised considering 
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the issues that emerged in the previous lesson. For instance, the task related to 

composing an array by drawing did not work as was expected and students were 

all confused. After that lesson, the design team decided that it was too early for 

the array concept to be introduced through visuals and pictures to the students, 

thus concrete materials were developed for the students to compose arrays and 

discuss the rows and columns. Through this iterative process, the instruction of 

multiplication was revised and refined by an understanding of students‘ learning 

processes of multiplication. Therefore, the team simultaneously made 

adjustments to their hypothetical learning trajectory and related instructional 

sequence while implementing the multiplication tasks through daily mini-cycles. 

 

As stated before, the current study targets to develop, test, and revise a 

Hypothetical Learning Trajectory and corresponding instructional sequence for 

teaching multiplication in second grade, and to document second graders‘ 

classroom mathematical practices that emerged within the whole class discourse 

over the course of several weeks of instruction. This twofold purpose is met with 

the nature of design research whose goal is to establish ideas regarding domain-

specific learning as well as tools to promote that learning (Bakker & van Eerde, 

2015). In the light of design research, it was planned to create educational 

products as an HLT related to teaching the domain of multiplication in second-

grade classrooms and to build theoretical understandings of how this HLT might 

be useful in education as a result of this work. Hence, it was aimed to establish a 

local instruction theory that encompasses both students' learning processes of 

multiplication as well as the instructional tasks and instruments created to 

support their learning of this concept. In this sense, it was decided to use 

enactments related to the multiplication task sequence in a second-grade 

classroom to generate information that can be applied to educational practices. 

By doing so, it was aimed to fill the gap in the literature and theory related to 

knowledge on designing a learning environment about multiplication by taking 

second grade students‘ thinking into consideration, and to improve policy and 

practice related to the domain of multiplication. 
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In conclusion, the purposes and features of design research and the reasons for 

choosing design research as the most appropriate methodology for the current 

study were explained in this section. After deciding to use a design research 

methodology, the study was organized around the three phases of design 

research; preparing for the experiment, experimenting in the classroom, and 

conducting retrospective analyses (Gravemeijer & Cobb, 2006). In the following 

subsections, brief information about how to employ the phases of design 

research in this study is presented.  

 

3.2. Context and Participants of the Study 

 

This study was conducted in a second-grade classroom in a primary school 

consisting of 23 students and a primary school teacher within the Çankaya 

district in Ankara, Turkey. The study was conducted for the topic of 

multiplication. For that reason, the instruction was developed around the 

objectives related to multiplication in this grade level. The Turkish mathematics 

education program includes three objectives for multiplication in second grade as 

in Table 3.1. 

 

Table 3. 1. Objectives related to multiplication in second grade (MoNE, 2018) 

 
 

The Turkish Middle School Curriculum (2018) devotes 20 class hours for the 

development of multiplication and 16 class hours for the development of division 

in second grade (MoNE, 2018). Although the instructional sequence took more 

time than required in the mathematics curricula, the teacher spent just 5 more 

class hours on the instruction of division after the design experiment since 

students had already been engaged in partitioning activities in the instructional 
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sequence for multiplication. Therefore, it was tolerated that the instructional 

sequence took approximately 5 weeks. 

 

The classroom was selected based on the purposive sampling strategy. The 

criterion in choosing the classroom was the teacher‘s willingness to take part in 

the study. Besides, she was experienced in attending classroom teaching 

experiments and collaborating with the research team since she had taken part in 

a design research a year before with her students. The teacher and her students 

had already set norms and were familiar with collaborative learning 

environments with ambition, responsibility, and readiness. 

 

The design experiment of the study was conducted in this teacher's classroom 

that included 8 girls and 15 boys starting in February 2018. Students‘ 

developmental age levels according to pretest scores on the Number Knowledge 

Test are provided in Table 3.2 below. There was one boy who was on the 

spectrum for autism. All the students knew that and helped him during the 

teaching experiment. One other student was in the level of 5-6 years. The teacher 

also stated that this student had learning disabilities, but was not diagnosed for it. 

Four of the students were known to perform below their grade level. On the 

contrary, three students were known to perform above the second-grade level. 

The remaining (N = 14) students were known to perform at their age level. 

 

Table 3. 2. Demographics of students according to the Number Knowledge Test 

# of 

Students 

Developmental Age Score  

(Chronological Age Equivalents) 

Grade Level 

Equivalent 

1 3-4 years Preschool 

1 5-6 years K-1 

4 6-7 years 1-2 

14 7-8 years 2-3 

1 8-9 years 3-4 

2 9-10 years 4-5 
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When the teaching experiment started, students had just learned addition and 

subtraction. It was the first time that they learned about the multiplication 

concept. Pre- and post-tests were given to all students before and after the 

experiment. The same test was used for both the pretest and the posttest. 

Moreover, 10 students were chosen for pre-and post-interviews based on the 

teacher's recommendation and their responses to the pre-test.  

 

The collaborating teacher was a primary teacher for 23 years. It was her fourth 

time teaching in second-grade classroom. She followed the training that was 

given by the research team prior to the implementation process, and she was 

responsible for applying the instructional sequence for multiplication in the 

classroom, directing classroom argumentations on the tasks, and encouraging 

students to share and discuss their works and ideas. She orchestrated classroom 

activities as whole-class and pair argumentations that were all consistent with the 

educational sequence and HLT. Krummheuer (1995) suggests that the teacher 

―should try to push the communication as close as possible towards a point of 

breakdown‖ (p. 263) to promote the justifications, clarifications, and evaluation 

of arguments. In line with this suggestion, the teacher also encouraged students 

to engage in discussion and directed the classroom debates to ensure that 

students understood the context as it was intended. Moreover, in design studies, 

the teacher cannot simply declare specific criteria for what types of answers are 

acceptable and expect students to follow those recommendations. Instead, when 

the teacher and students participate in discussions, socio-mathematical norms are 

constantly negotiated and redefined (Gravemeijer & Cobb, 2006). In the current 

study, the norms were sustained and students were facilitated to participate in the 

implementation of the instructional sequence actively. 

 

The teacher was also responsible for the formative evaluation of the design as a 

member of the design team. She was involved in all the phases of developing, 

implementing, and analyzing the design. Her professional experiments and 

student knowledge played a significant role in developing tasks, selecting the 
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tools, interpreting students‘ reactions and gestures, understanding their 

reasoning, and analyzing the discussion sessions in the classroom. 

 

3.3. Data Collection Procedures 

 

As aforementioned, a design research study entails three phases: "1) preparing 

for the experiment, (2) experimenting in the classroom, and (3) conducting 

retrospective analyses" (Gravemeijer & Cobb, 2006, p. 19). In the following 

sections, the procedures followed, and the steps taken in each of these phases 

within the context of this study are described in detail. 

 

3.3.1. Phase one-Preparing for the experiment 

 

The critical issue from a design research perspective is to clarify the study's 

theoretical goal (Gravemeijer & Cobb, 2006). In other words, the design should 

be started by explaining how to set learning goals, also known as instructional 

endpoints, and instructional beginning points. For this purpose, it is suggested to 

analyze the study's needs and context, conduct literature research, and develop a 

conceptual or theoretical framework (Plomp, 2013). More specifically, a review 

of the literature as well as (previous and/or current) initiatives that have 

addressed questions similar to those addressed in the study is the critical attempt 

to create a framework and the intervention's first blueprint as a result (Plomp, 

2013). Therefore, the primary work of this study was the review of literature in 

order to identify and clarify learning objectives related to multiplication for the 

second graders. 

 

Initially, a research team was built to work together and specify the learning 

goals through a literature review. The team comprised the advisor (expert), the 

researcher, and the teacher. It was crucial to include the teacher in the team since 

one of the most important features of educational design research is practitioner 

involvement (Nieveen & Folmer, 2013). While anticipating the evolution of 

students‘ thinking and understanding in order to plan revisable instructional 
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activities (Gravemeijer & Cobb, 2006), the teacher‘s knowledge of her students 

and teaching experiences played a significant role. All of the working and 

discussion sessions of the team members were audio recorded.  

 

The team started the work with an examination of the Turkish Middle School 

Mathematics Curriculum (MoNE, 2018) in order to reveal the scope of the 

program in the means of multiplication. There are three main objectives for 

multiplication in the second grade in the program (Table 3.1). The first one is 

explaining multiplication as repeated addition. This objective is also supported 

by an additional explanation of working with concrete materials. The second one 

is performing multiplication with whole numbers. This objective includes 

identifying the symbolic representation (x) of multiplication, multiplying the 

numbers up to 10 with 1,2,3,4 and 5, noticing that the change in the orders of 

multiplier and multiplicand does not change the product (commutativity), 

creating multiplication tables until 5 (included) by using hundred charts and 

explaining the effect of 1 and 0 in multiplication (identity and zero properties). 

Finally, the third objective was to solve multiplication problems including one-

step operations (MoNE, 2018). The team also examined the objectives related to 

multiplication in the third grade since the instruction in the second grade plays a 

crucial role as it is a prerequisite for the following year to be built on. In the third 

grade, the comparison meaning of multiplication is presented to students. After, 

they create whole multiplication tables and explain the effect of change in 

multiplier on the product considering multiplication tables until 5s. Students 

multiply with two-digit numbers. Finally, they also experience problem posing in 

this grade level (MoNE, 2018).  

 

When these objectives were listed, a discussion started in the research team 

about how to start the instruction. According to the order of the objectives in the 

curriculum, it was expected to start with providing concrete materials in equal 

groups and direct students to repeated addition. However, it did not feel right to 

the members. The excerpt taken from the related part of the audio recordings of 

the team meeting is given below: 
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Researcher: I am not sure about starting with repeated addition. There must be 

some other concepts that are prerequisites for repeated addition. I mean what 

should these students know to be able to proceed with repeated addition? 

Imagine a scenario involving ―3+3+3+3‖. How do they solve it? 

 

Teacher: By counting 3 by 3. When we ask them to use repeated addition 

symbolically to add equal groups, they skip count the repeated number. 

Actually, there is an objective related to skip counting with 2,3,4,5, and 10 in 

the second-grade mathematics program, but in the first semester. We will 

implement the developed instructional sequence in the second semester. I am 

not sure whether they will remember or forget skip counting. 

 

The professor: Skip counting should be noted as a prerequisite for the 

instruction of multiplication. Let‘s look at the literature to have an answer to our 

concern about starting with directly repeated addition. 

 

After this discussion, various mathematics education programs, previously 

developed learning trajectories, and related literature were examined by the team. 

It was seen that skip counting was introduced prior to additive thinking in the 

other learning trajectories related to multiplication (Götze & Baiker, 2021; 

Kennedy et al., 2008; Kling & Bay-Williams, 2015; Wright et al., 2014). 

Moreover, the related literature suggests that students‘ counting in multiples (for 

example, 2, 4, 6, 8, or 3, 6, 9, 12, etc.) helps them to learn consistent sequences 

of words with a rhythm and pattern that can become extremely familiar. By 

doing so, students can link these counts to repeated groupings of objects 

(Anghileri, 1995; 2008). Hence, this knowledge can be expanded to improve 

understanding of multiplication facts (Anghileri, 2008; Hulbert et al., 2017). 

Therefore, the initial learning goal was determined as skip counting in the 

hypothetical learning trajectory in this study. In order to support this goal, 

activities related to counting forward and backward, and the orders of the 

numbers were developed. Students were provided a hundred charts and were 

encouraged to use their fingers. In order to support students‘ reasoning, they 

were asked to question the relationship between the order of numbers in a 

number sequence.  

 

In addition to the Turkish Middle School Mathematics Curriculum (MoNE, 

2018), various mathematics teaching programs were also examined. Similar to 
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Turkey, situations for adding equal quantities are provided and repeated addition 

meaning of multiplication is presented in second-grade classrooms in Chile, 

Mexico, Brazil, Portugal, Japan, and the USA (Olfos et al., 2021). Furthermore, 

in addition to the activities related to the repeated addition of equal quantities, 

students also work on the activities related to groups as a unit or group of groups 

without repeated addition in Chile, Portugal, and Japan. That is to say, students 

focus on composing equal groups and count them as units which is essential for 

multiplicative reasoning. In this sense, New York State Common Core 

Mathematics Curriculum (NYSCC, 2014) provides various activities related to 

the formation of equal groups before presenting repeated addition to find the 

total number of objects. It is suggested to give students concrete objects and 

pictures of objects to form equal groups and specify how many groups there are 

and how many objects there are in each group (NYSCC, 2014). After reviewing 

the literature about equal grouping as the initial model for multiplication in 

instruction (Anghileri, 1989; Greer, 1992; Izsák, 2005; Schoenfeld et al.,2017), 

the research team decided to spend some time to compose equal groups in order 

to gain students‘ recognizing groups of objects and thinking in multiples. 

Therefore, equal grouping of given objects or pictures of objects was determined 

as another learning goal in this study to develop an understanding of a group as a 

unit. 

 

While discussing giving place to the idea of equal grouping, another issue 

emerged. The team pointed out the importance of language that should be used 

while envisioning the tasks related to grouping objects and pictures equally. It 

was known that although students experience multiplicative situations in daily 

life, it is not easy and obvious for them to recognize the multiplication process in 

these situations because of the inconsistency between the vocabulary used in 

multiplication operations and the daily language (Anghileri 2000; Calabrese et 

al., 2020). The arguments of the team members related to this issue are given 

below: 
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Teacher: I imagine equal grouping tasks. Assume that we give students some 

objects in groups and ask the number of groups, the number of objects in each 

group and total number of objects. Which terms will we use? It is important. We 

should also specify the interrogative sentence. 

 

Researcher: In these tasks we cannot use the term ―multiply‖. We will start with 

daily language related to multiplication like ―each,‖ ―times,‖ ―sets,‖ or ―groups‖. 

For example, there will be 3 groups and four items in each group. They should 

call this situation as ―3 groups of 4‖, ―3 sets of 4‖ or ―4 taken 3 times‖. We 

should state these wordings to be able to make them aware of the language used 

in everyday conversations.  

 

Teacher: You are right. On the following day, they will use 3x4 to represent 

these groups. Unfortunately, the term ―multiply‖ is not used within typical 

scenarios of daily life but in multiplication operations. We should note that we 

must be careful while shifting from daily language to formal multiplication 

language. We should state the relationship and give these terms intertwined.  

 

Hence, in addition to conceptual and procedural knowledge of multiplication, the 

team noted that multiplication-related vocabulary used in the real world should 

be taught in mathematics classrooms. Moreover, the team stated that daily 

language should be supported by the formal language of multiplication. 

Therefore, developing an appropriate language for multiplication was noted as 

the general goal to be considered during the instruction. 

 

After developing skip counting skills, working in equal groups, and associating 

appropriate language, the team thought that the students might be ready for 

repeated addition meaning of multiplication which is the first objective of the 

Turkish mathematics education program. It was decided that students should use 

an operation to be able to find the total number of objects in equal groups. At 

that point, students might use addition which is the most appropriate operation 

they have already leant. Although there is a conceptual distinction between 

multiplication and addition, it is suggested that both operations have a procedural 

link (Nunes & Bryant, 1996). Most of the studies support using repeated addition 

as a way of introducing multiplication procedurally and making connections 

between the existing and new knowledge (Anghileri, 1989; Götze & Baiker, 

2021; De Corte & Verschaffel, 1996; Fosnot, 2007; Fosnot & Dolk, 2001; 

Haylock, 2010; Kennedy et al., 2008; Mulligan, 1992; Nunes & Bryant, 1996; 
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NYSCC, 2014; Squire et al., 2004). The team members decided to represent 

repeated addition in order to shift from the idea of equal grouping to a procedural 

idea of repeated addition. Team members highlighted the importance of using 

repeated addition to solve multiplication sums since multiplication is more 

distributive compared to addition. Hence, multiplication as repeated addition is 

defined as another learning goal in the learning trajectory for multiplication. 

 

So far, the learning goals related to grouping things into groups, counting these 

groups rhythmically, skip counting, and using repeated addition as a calculation 

are explained. The team members decided to introduce multiplication 

symbolically by associating with the equal groups in repeated addition. They 

argued that students must have adequate experience placing objects into groups 

in order to comprehend the role of equal groups in multiplicative circumstances 

and to generate motivation for multiplying equal groups rather than counting all 

of the objects in the issue. It was planned to introduce multiplication sign, 

multiplier, multiplicand, and product in an operation. At that point, it was noted 

that the role of each component in a number sentence should be stated. In other 

words, the multiplier indicates the number of groups, and the multiplicand 

indicates the number of objects in each group, yielding the total amount as the 

product. For that reason, the team defined performing multiplication 

symbolically as another learning goal in this learning trajectory. 

 

As it can be seen, while deciding on the learning goals, the team followed the 

mathematics education program (MoNE, 2018) and detected the limitations 

related to the objectives and gaps between the objectives in the program. In the 

program, it is stated that students will be able to notice that the change in the 

orders of multiplier and multiplicand does not change the product which means 

commutativity. However, it is not sufficient to know multiplication as equal 

groups or repeated addition (Thompson & Saldanha, 2003) since the repeated 

addition model for multiplication is asymmetrical (Greer, 1992); and the factors 

have different roles, which makes commutativity covert (Lo et al., 2008). At that 

point, a symmetrical model should be used. In mathematics education programs 
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in Mexico, Japan, the USA, Chile and Brazil, array diagrams or rectangular 

shapes are used in teaching multiplication (Olfos et al., 2021). The researcher 

and the professor had already known that array model is suggested as a 

symmetrical model of multiplication to facilitate the learning of commutativity 

(Schliemann et al., 1998), and they had to convince the teacher of the necessity 

of this model. The related part of the team meeting is given below:  

 

Teacher: Why don‘t we give some examples like 3x4 and 4x3 and ask to answer 

them. Then, we compare and contrast these two operations. They realize that the 

product remains the same when we change multiplier and multiplicand. Why do 

we use another model? By the way, I do not know the array model that you 

mentioned.  

 

Researcher: It is also a way to teach. However, it remains unclear why the 

product does not change. In three bags of four apples, three (bags) is the 

multiplier and four (apples) the multiplicand; it is not evident that four bags of 

three apples would be as many. Imagine the bags and apples. The 

representations are different in these two situations. Or can you show that 2x4 

and 4x2 give the same result considering 2+2+2+2 and 4+4?  

 

Teacher: You are right. I have never taught from this point of view. Up to now, I 

have directly given that multiplication is commutative. What about this new 

model? Can you show me?   

 

After this conversation, the array model and commutativity were introduced to 

the teacher. She was convinced that array was an appropriate model for 

discovering the commutative property of multiplication. Therefore, array models 

were included in the HLT as a definition of multiplication as an array. It was 

planned to develop an environment to arrange objects in arrays with rows and 

columns by using counters on squared papers. Consequently, the team 

anticipated that students can infer why multiplication is commutative by using 

arrays. Hence, the commutative property via array representation of 

multiplication was noted down as an important learning goal for this learning 

trajectory. 

 

It is inevitable to mention the multiplication table under the topic of 

multiplication. As stated in the mathematics education program, second-grade 

students are expected to create multiplication tables up to 5 (including 5) by 
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using hundred charts and operation tables. The responsibility of the construction 

of the multiplication table was planned to be given to the students. Students can 

build these tables by applying what they have learned. They can use various 

representations like drawing groups or arrays and skip count. Furthermore, they 

can find each product by adding the multiplicand to the previous product in the 

table, so they will not need to add or count from the beginning to find the next 

product in the table. The team members thought students might generate various 

strategies and develop mathematical ideas while working on multiplication 

tables. Therefore, creating multiplication table was stated as another learning 

goal for this learning trajectory for multiplication. 

 

Finally, under the objective related to multiplying numbers, the mathematics 

education program clarifies that second-grade students will be able to explain the 

effect of 1 and 0 in multiplication (MoNE, 2018). That is, it is indicated to 

identify identity property which states that when you multiply a number by 1, the 

result is the same as the original, and zero property which states that when you 

multiply a number by 0, the result is always 0. Students frequently have 

difficulty understanding factors of 0 and, to a lesser extent, 1. This is because the 

students are presented a collection of operations for them to see the pattern and 

rules for factors of 0 and 1, but they are not provided with the reason behind it 

(van de Walle et al., 2020). The team members decided to make up a number of 

interesting word problems involving 0 or 1, and discuss the results. They thought 

that these problems can help students reason these properties. Moreover, they 

also believed that modeling the multiplication with 1 and 0 by equal groups or 

arrays would be an enjoyable activity. Under the topic of multiplication, 

Therefore, they planned to include identity and zero property as two learning 

goals in the learning trajectory for multiplication.  

 

In addition to specifying learning goals, it is also necessary to decide on an 

instructional design theory because a classroom teaching experiment was chosen 

as the type of Design Research methodology for this study. For that reason, the 
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domain-specific theory of Realistic Mathematics Education was chosen as a 

theoretical framework to design instructional activities. 

 

3.3.1.1. Realistic Mathematics Education (RME) 

 

Realistic Mathematics Education (RME) was used to design and implement the 

HLT and the instructional activities. The team followed three RME heuristics 

that are domain-specific to mathematics in order to support students‘ progressive 

mathematization through the mathematical ideas specified for the HLT. These 

heuristics are guided reinvention, didactical phenomenology, and emergent 

models (Gravemeijer et al., 2003a; Gravemeijer, 2004) as explained in Chapter 2 

above. 

 

In the first heuristic of guided reinvention through progressive mathematization, 

the team discussed students‘ prior knowledge to construct a bridge between 

informal and formal mathematics. For instance, the instructional sequence 

initially started with skip counting activities to develop students‘ counting skills 

that is prerequisite of multiplication strategies (see the activities in pages 1–4 in 

Appendix E). Moreover, the instructional sequence was developed to help 

students solve the contextual problems in the light of the bridge between 

informal and formal knowledge by highlighting the role of the guided 

reinvention principle. In this precedent, the students had the chance to experience 

the processes of independently learning the repeated addition and multiplication 

concepts that were part of the RME-based instructional sequence. For instance, 

the students had to work through a number of the contextual problems that 

prompted them to perceive the concept of multiplication via equal grouping that 

covers a form before they could do so. First, they focused on context-based 

problems that could be handled by applying their informal knowledge of skip 

counting (see contextual problems in pages 5–18 in Appendix E). The students 

dealt instinctively with the idea of repeated addition at this point by counting the 

equal groups via skip counting. They then solved the context-related equal 

grouping problems by using repeated addition symbolically (see contextual 
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problems in pages 19–23 in Appendix E). These problems were developed for 

students to employ symbolic representations of the context while developing 

counting methods. After that, students dealt with problems to apply 

multiplication formally by connecting with repeated addition (see contextual 

problems in pages 24–31 in Appendix E). Finally, the students used the counters, 

dots and small square units to form rectangular array that helped them 

comprehend the notion of multiplication through area model (see contextual 

problems in pages 32–44 in Appendix E). Therefore, in line with the guided 

reinvention heuristic, the classroom teaching experiment conducted for this study 

encouraged students to mathematize situations to develop the mathematics they 

needed to solve problems. 

 

Based on the principle of didactical phenomenology, it is implied that all 

contextual problems in RME-based instruction should be created using 

phenomena that have meaning for the students. For the RME-based instructional 

sequence on multiplication, the team members created daily context problems 

that are experientially real to the students (such as balls in boxes, bottles on 

shelves, apples eaten every day, and oranges on trees). Furthermore, as 

mentioned in the preceding section, the settings in the contextual problems must 

be significant and offer a chance for the students to interpret them 

mathematically. In other words, didactical phenomenology looks for contextual 

problems for which a situation-specific strategy can be generalized and situations 

that result in similar problem-solving techniques that can serve as the foundation 

for vertical mathematization (Gravemeijer, 1994; 1999). In this sense, the 

problems were developed to enable students to make connections between skip 

counting, repeated addition, and multiplication, respectively. To this end, the 

problems were designed around realistic contexts that are meaningful to the 

students. Furthermore, problem-posing activities where the tasks were presented 

without a context, and students were encouraged to create one were also included 

in the instructional sequence (e.g., activities on pages 22-23 in Appendix E) 
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The third RME heuristic emphasizes the importance of the teaching tools in 

building mathematical practices and participating in the reinvention process. In 

other words, the tools should support students' development of mathematical 

practices throughout the instructional sequence, from models of their informal 

mathematical activity to models for formal mathematical reasoning (Gravemeijer 

et al., 2003; de Beer et al, 2017). This change is seen as a means for pupils to 

build mathematical relationships and activities with the model. As a result, rather 

than creating a model, the goal is to reify the process of mathematical activity 

and reasoning (Gravemeijer, 1999). With this respect, various tools, including 

tangible items, images, graphs, symbols, and notations in the educational 

sequence, can be employed. In the current study, the team envisioned shifting 

students‘ informal mathematical activities into a model for more formal 

multiplicative reasoning. The team members decided to use concrete objects and 

pictures of the objects to help students model their reasoning via these 

representations as seen in Figures 3.1, 3.2, 3.4 and 3.4. For instance, when 

students draw equal groups to be able to count all the objects, they may use these 

groups to interpret a multiplication operation via skip counting. That is to say, in 

the scenarios of multiplication problems, students may use the boxes, plates, and 

trees language in a problem involving objects like toys, cookies, and oranges in 

equal sizes. The context of the problem provides students with models to be used 

in problem-solving. At the formal level, students may begin to talk about 

repeated addition and multiplication strategies rather than using the groups like 

boxes, plates, and trees as a model. Hence, the model was no longer required for 

students to reason mathematically. Furthermore, it was decided to provide blank 

areas in the activity sheets to give students spaces to reflect their imagery. 

Through this way, it was thought that students‘ connections and transitions can 

be understood. Therefore, while developing the instructional sequence and 

implementing in the classroom, it was considered to assist students to model 

their own informal mathematical processes with the goal of eventually 

developing a model for more formal multiplication. 
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To sum up, while developing the HLT and instructional sequence tasks 

implemented in this study, three heuristics of RME (i.e., guided reinvention, 

didactical phenomenology, emergent models) were used. The instruction 

constructed on the aforementioned learning goals was shaped and enriched in 

line with RME theory. Therefore, a hypothetical learning trajectory was 

developed as explained in the following section. 

section. 

 

3.3.1.2. Hypothetical Learning Trajectory (HLT)  

 

As explained in detail above, learning goals related to multiplication were 

determined in the light of the studies in the literature, previously developed 

learning trajectories, and the mathematics education program. These goals were 

interpreted and sequenced through principles of Realistic Mathematics Education 

(RME). Based on the information from this variety of sources and the theoretical 

framework, a hypothetical learning trajectory for multiplication was planned to 

be developed. While designing the HLT and instructional sequence, the means of 

support defined by Cobb (2003) was found important to be considered. He 

discusses four means of support as instructional tasks: the tools students use, the 

nature of the classroom discourse, and the classroom activity structure in 

teaching experiments. 

 

Instructional tasks refer to the activities, in which students engage in order to 

strengthen their reasoning skills. These activities should be designed to help 

students develop their conceptual understanding in the form of problem 

situations that are challenging for them (Cobb, 2003). Hence, instructional 

activities were developed with the aim of evoking students‘ attention and 

creating a discussion to push conceptual development even further. The tools and 

imagery were chosen carefully in the development process of the activities so 

that it could enhance the permanence of knowledge. This was done to support 

the students to reason with tools and imagery as they structure their 

multiplication concepts through emergent models. During the implementation of 
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the activities, it was suggested to set an environment for the classroom discourse 

based on norms to be explained in the following part. In this sense, possible 

discussion topics were included in the HLT. Finally, activity structure refers to 

how the classroom is organized (Cobb, 2003). In the line of this means of 

support, students were planned to work individually on the instructional 

activities and then share their reasoning with others during classroom discourse. 

Therefore, the design research team decided to add the components of 

―activities‖, ―tools/imagery‖ and ―possible topics of mathematical discourse‖ to 

the HLT table. 

 

Finally, in addition to the big ideas related to multiplication (i.e., means of 

support and RME), HLT frameworks used for the studies in the literature were 

examined (e.g., Gravemeijer et al., 2003a; Rasmussen et al., 2004; Stephan & 

Akyüz, 2012; Stephan & Cobb, 2003). Possible gestures and metaphors were 

also included in the HLT. Therefore, an initial HLT for multiplication in second 

grade was developed as given in Figure 3.1 
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Figure 3. 1. Phase 1 of the initial HLT for the multiplication instructional 

sequence 



110 

 

 

 

 

 

Figure 3. 2. Phase 2 of the initial HLT for the multiplication instructional 

sequence 
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Figure 3. 3. Phase 3 of the initial HLT for the multiplication instructional 

sequence 
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Figure 3. 4. Phase 4 of the initial HLT for the multiplication instructional 

sequence 
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Big ideas in the HLT table were broken into four phases in order to specify the 

shifts in students‘ mathematical reasoning along this HLT. The first phase of the 

learning trajectory included the goal of having students skip counting and also 

develop number sequences considering guided reinvention heuristic of RME 

theory. Instructional activities related to skip counting forward, finding the order 

of numbers in a number sequence, finding the number whose order is known in a 

number sequence, using informal tools like fingers effectively, and reasoning the 

relationship between two numbers in a number sequence were developed. 

Students were provided the hundredth chart each for 2, 3, 4, and 5 to skip count. 

For instance, after students colored the numbers while counting by 2s, they were 

asked two types of questions related to the order of numbers as ―What is the 7th 

number while you count by 2s starting at 2?‖ and ―What is the order of 12 while 

counting by 2s starting at 2?‖. It was planned to gain prerequisite knowledge of 

skip counting for multiplication to be able to reinvent the repeated addition and 

multiplication concepts on skip counting strategies. 

 

The second phase of the learning trajectory included the goal of having students 

use additive composition and many-to-one correspondence (Figure 3.2). Equal 

grouping activities were developed for students to use skip counting in order to 

count a collection of objects. For this purpose, students are provided pictures of 

objects so that they can form equal groups and count the objects in these groups 

through skip counting as in Figure 3.5 below. To direct the students to look for 

different arrangements of the objects, they are asked whether they can count the 

objects differently. In this phase, students use skip counting to find the total 

number of objects rather than using an operation symbolically. With this respect, 

students are encouraged to use math drawings to form equal groups and find the 

total number of objects by using these groups as model for counting through the 

third heuristic of RME theory. Therefore, students are expected to gain an 

understanding of counting objects in equal groups via skip counting as a 

meaning of multiplication. At the end of each task, students represent the given 

situation in the form of ―… times …makes …‖. For instance, for the eggs given 

in Figure 3.5 below, students are expected to conclude that 8 times 4 makes 32.  
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Figure 3. 5. Sample pictures from equal grouping activities 

In this phase, students are asked to use number sentences to find the total number 

of objects. They are expected to write repeated addition as an operation to find 

the sum of objects in equal groups. The aim of this activity is to use visuals 

related to equal groups as the concrete 

 

examples of formal mathematics to be taught for repeated addition considering 

emergent modeling in RME. It is also intended that equal group models are used 

to re-invent more formal mathematics in the RME approach. With this purpose, 

students are asked a verbal question to discuss and find a taken-as-shared idea of 

finding the number of objects in equal groups by formulating in repeated 

addition. After discussing this idea, students are presented with activities as 

given Figure 3.6 below. Templates for repeated addition are provided on the 

activity sheets in order to be satisfied all the students can make a connection 

between equal group representation and repeated addition. That is to say, group 

size is repeatedly added as much as the group number. 

 

            

Figure 3. 6. Sample activities related to representing equal groups via repeated 

addition 
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In the following activities, in order to strengthen students‘ understanding of the 

connections between multiple representations as pictorial, symbolic, and real-life 

representations, the forms of the tasks are changed. The first type of task related 

to the second phase (Figure 3.7) includes problems that require representing the 

problem via drawing visuals and solving it via repeated addition. As it is seen, 

space is provided for students to draw equal groups considering the context of 

the problem. It is intended to use equal group representations as models for 

repeated addition in line with the RME approach. At the end of each problem, 

students represent the given problem in the form of ―… times …makes …‖ as in 

all activities. 

 

   

Figure 3. 7. Sample activity related to problem solving via repeated addition 

The second type of task related to the second phase in the HLT requires students 

to pose repeated addition problems for the given pictures and number sentences 

as in Figure 3.8 below. For instance, students are given a picture of bottles on 

shelves and write a problem for this picture and solve it by repeated addition. 

Moreover, students are asked to pose a problem for the given number sentence to 

connect it with real-life representation. Students are asked to draw visuals related 

to their original problems to use as a model for in explaining and justifying their 

reasoning while posing the problem. It is intended that models grounded in the 
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contexts are created by students and used to re-invent more formal mathematics 

in the RME approach. 

 

     

Figure 3. 8. Sample activities related to posing repeated addition problems for a 

given picture and number sentence 

The third phase of the learning trajectory included the goal of having students 

formalize multiplication (Figure 3.3). In this phase, students are introduced to 

multiplication symbolically and analyze components and properties of 

multiplication operation by modeling with equal groups and arrays. Students 

formalize multiplication as a number sentence symbolically. The first number is 

defined as the multiplier while the second one is defined as the multiplicand. 

Students match the number sentence with the given equal group representation 

so that the multiplier represents the group number while the multiplicand 

represents the group size as shown in Figure 3.9. In these activities related to 

modeling multiplication as equal groups; the tasks are developed for students to 

represent the given problem via pictorial and symbolic representation and solve. 

As in the Figure 3.9, the visual directions in the tasks are removed step by step. 

That is to say, in the first task, the leaves (groups) and the ladybugs (elements) 

are given visually in addition to the problem contexts. In the second task, the 

plates (groups) are given, but the cookies on the plates are not given. Finally, in 

the third task, neither the trees nor the oranges are given. Students are asked to 

draw them. The explanations related to the components of the multiplication 
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operation are also removed in the third task. The purpose of changing the 

structure of visuals in the tasks is to reduce the directions and enable students to 

make reasoning related to the given tasks. Furthermore, it is asked to solve given 

problem via repeated addition in addition to multiplication. Therefore, students 

are expected to use visuals and repeated addition as a model for higher-level 

mathematical reasoning related to multiplication considering the RME approach. 

 

 

Figure 3. 9. Sample activities for formalizing multiplication in given equal 

groups 

In this phase, multiplication is also presented in the array model. At the 

beginning of the activities, students are explained the terms of column and row 
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in order to maintain a language to use and understand each other. As in Figure 

3.10 below, pencils are asked to be placed in the cells given on the right to obtain 

a rectangular shape. Students are made sure that there are an equal number of 

objects in each row or column. The relationship between the arrays and 

multiplication is discussed. In the given task, rows are defined as groups while 

the columns are presented as the group size. For the first task related to array, it 

was decided to make students focus on rows to be sure that all the students can 

use the terminology related to arrays and multiplication. It was planned that 

students assign the number of rows as the multiplier while they assign the 

number of columns as multiplicand. 

 

  

Figure 3. 10. The first task on introduction to array representation in the third 

phase 

After being sure that students can make connections between arrays and 

multiplication, the tasks related to representing given arrays as multiplication 

symbolically and representing given number sentences of multiplication as 

arrays are presented to the students as given in Figure 3.11 below. The purpose is 

to make students gain conceptual understanding and fluency in modeling 

multiplication with array representation. In these activities, students are asked to 

explain how they show multiplier and multiplicand on the arrays. It is 

emphasized for students to circle the groups to be able to see whether they group 
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the dots in rows or columns. A discussion environment is maintained between 

the ones who group the dots in rows horizontally and the ones who group the 

dots in columns vertically. Then, students are expected to conclude that they can 

name both rows and columns as multipliers as they wish.  

 

  

Figure 3. 11. Sample tasks for modeling multiplication on array model 

In the following activities, students are asked to use arrays as a model for higher-

level mathematical reasoning. That is to say, students are asked to model given 

problems on arrays to support their solutions via multiplication as in Figure 3.12 

below. For this purpose, spaces are provided in the activity sheets for students to 

work on modeling their reasoning via arrays. Students are expected to show the 

consistency between the operations that they used and the models they made. In 

other words, students should show the multiplier and the multiplicand in line 

with the context of the problem, and the number sentence they used.   



120 

 

Figure 3. 12. Sample task for problem-solving by modeling multiplication on 

array model 

At the end of this phase, students are expected to make reasoning of 

multiplication in array models. It is crucial since students are expected to 

interpret commutativity in multiplication by using arrays. It is envisioned that 

students can observe commutativity until this phase. However, to be able to 

represent commutativity, it is important to meet them with arrays. In this sense, 

an activity related to commutativity was developed as in Figure 3.13 below. The 

purpose is to make students realize that the difference is the direction of 

grouping dots since the multiplier and the multiplicand are replaced.  

 

 

Figure 3. 13. Sample task for commutativity in multiplication via modeling with 

array model 
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The fourth phase of the HLT is related to representing multiplication in real-life 

contexts (Figure 3.4). This phase included the goals of having students represent 

multiplication as repeated addition in real-life contexts and using multiplicative 

language appropriately. Students are expected to match real phenomena 

including repeated addition of equal groups with multiplication. Up to this phase, 

students work on activities given in real-life contexts. Students represent the 

given contexts with the symbolic representation of multiplication which is a 

number sentence in the form of ―…x…=…‖. Moreover, students are asked to 

represent the given pictures via the language of equal grouping. As it is 

explained in the second phase above, students group given objects equally and 

define these objects by using the words like ―groups‖ and ―each‖. For instance, 

in the activities given in Figure 3.14 below, statements are given below the 

pictures for students to fill. Students analyze and express the objects in groups 

considering the number of groups and group sizes. 

 

        

Figure 3. 14. Sample activities related to representing objects with equal group 

language 

In the following activities, students are asked to pose problems to see their 

understanding of multiplication by observing how they interpret multiplication 

considering real-life representation. Until these activities, students were 

presented tasks developed in realistic contexts considering didactical 

phenomenology heuristic of RME theory. The stories of the tasks were selected 

to be meaningful for the students. At that point, it was decided to ask students to 

develop their own stories to be able to observe and measure their ability to 
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connect mathematics with real-life situations. Students are expected to set their 

groups as group numbers and group size in order to write a story reflecting 

multiplication as repeated addition in a real-life context. For instance, in order to 

observe students‘ understanding related to zero property in multiplication, they 

are asked to pose problems for given number sentences as in Figure 3.15. As 

seen in this figure, two types of tasks are developed one where zero is the 

multiplicand and the other where zero is the multiplier. Students are expected to 

reflect their knowledge related to zero property considering the roles of 

multiplier and multiplicand. After students pose problems, they should be asked 

how they can be sure that this is a multiplication problem in order to get detailed 

information related to their thinking. Students‘ problems are discussed 

considering whether they are mathematically correct and contextually realistic. 

 

  

Figure 3. 15. Sample activities related to posing multiplication problems for 

given number sentences related to zero property. 

In this phase, students are also supposed to use multiplicative language while 

representing the given symbolic representation of multiplication in a real-life 

context. Everyday words like ‗grouping‘ and ‗each‘ have early associations with 

the processes that will become multiplication. Hence, students are expected to 

use this terminology while building realistic contexts which represent 

multiplicative meaning. Structuring multiplicative language is a critical idea that 

is developed from the beginning of the HLT to the end. At the end of the 

intervention, students are expected to connect formal multiplication with 

informal multiplicative language in real life. That is to say, this idea is not 
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targeted to be developed via a few activities, but via the whole instructional 

sequence.  

 

To sum up, in the light of the HLT for multiplication, an instructional sequence 

was developed in order to support students to develop their understanding related 

to the big ideas. The activities were developed according to the heuristics of 

RME theory. That is to say, the essential mathematical ideas that were described 

in the HLT were embedded in realistic tasks in order to promote students' 

processes of mathematization and reinvention. These tasks were ordered to be 

experientially real for students. Moreover, they were enriched by considering the 

use of models as students‘ conceptualizations progressed from informal to 

formal mathematical activities as given in HLT. Finally, the HLT and 

instructional sequence were developed to serve four phases as explained above 

by providing sample tasks. All of the activities in the instructional sequence are 

available in Appendix X. After all the preparations related to the development of 

HLT and the instructional sequence were done, the design experiment started.  

 

3.3.2. Phase 2. Design experiment 

 

A teaching experiment entails a cycle of designing instructional sequences, 

putting those sequences to the test in a classroom setting, and assessing the 

learning shown in Figure 3.16. Based on the analysis, the sequence is revised, 

and the procedure is repeated (Gravemeijer et al., 2003b). In order to obtain 

insight into the quality of the interventions and design principles, as well as to 

make decisions related to revisions, empirical data is required. Therefore, 

formative evaluation is an important part of the design experiment (Nieveen & 

Folmer, 2013). The formative assessment results provide the foundation for both 

of a design research study's outputs: enhancing the intervention to a high-quality, 

completed intervention, and sharpening the underlying tentative design 

principles to a final set of design principles. Hence, the second phase consists of 

actually conducting the design experiment. The microcycles of the design 

experiment serve as the foundation for developing the local teaching theory, 
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which includes ongoing studies of students' individual and collective activities, 

as well as classroom social characteristics (Gravemeijer & Cobb, 2006). 

Therefore, after completing the first phase, this study was conducted in a 

macrocycle which is comprised of many microcycles to develop a stronger local 

instructional theory. This design experiment which took place over five weeks 

revealed how the hypothesized instructional sequence functions in the 

complicated environment of a classroom. 

 

 

Figure 3. 16. Phases of the Design Cycle (Stephan, 2003, p.29) 

As in Figure 3.16 above, the hypothetical learning trajectory and related 

instructional sequence for multiplication was developed by the domain-specific 

instructional theory of Realistic Mathematics Education. Through the classroom-

based research, this instructional sequence was implemented in a classroom of 

second graders. During the implementation, considering collective reinvention, 

the design team paid attention to creating a classroom environment where 

students engage in whole-class conversations. That is to say, students engaged in 

the processes of conjecturing, explaining, and justifying, which is referred to as 

collective mathematizing (Gravemeijer et al., 2000). As stated by NCTM (2000), 

students were promoted to make conjectures and construct arguments and also 

respond to others' arguments while engaging in the instructional sequence of 

multiplication. Therefore, the design team focused on providing students with 
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learning environments that would support their way of argumentation. In this 

sense, the broader aspects of the social environment in which students 

participated are documented in the following section considering the interpretive 

framework. 

 

3.3.2.1. Interpretive Framework 

 

The interpretative framework based on an emergent perspective was employed to 

make sense of students' learning while we are in a classroom and organize 

individual and collective mathematical learning analyses in this study (Cobb & 

Yackel, 1996). As explained previously, the social perspective includes three 

subconstructs as classroom social norms, sociomathematical norms, and 

classroom mathematical practices. The classroom social norms had already been 

established in the classroom in which the current study was conducted. These 

norms are explaining and justifying solutions, listening to their friends and 

interpreting others‘ solutions as well as indicating agreement or disagreement, 

and questioning.   

 

The social norm that students should explain solutions and justify their reasoning 

had already been negotiated by the classroom community before this study 

began, because the collaborating teacher and students joined another teaching 

experiment the year before and they experienced and sustained these social 

norms. During the implementation phase, students were asked to explain and 

defend their reasoning by describing how they chose the methods of problem-

solving they would employ and the solution they came up with. They were given 

problem-solving situations to encourage mathematical thinking in realistic 

contexts. Whole class discussions were held with the intention of involving 

students and inspiring them to explain their ideas clearly through argumentation. 

Interactions through argumentation gave students the chance to evaluate their 

strategies, defend their decisions, and impart knowledge to others. 
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The other social norm, which is established prior to the instructional sequence 

for multiplication, is listening to their friends and interpreting others‘ solutions, 

and expressing agreement or disagreement. The goal of the students' 

interpretation of others' strategies was to help them compare and contrast their 

own thinking with that of others and to provide visual or verbal interpretations. 

First and foremost, they had a duty to pay attention and carefully follow the 

discussion. The teacher asked students whether they understand the strategies of 

others and whether they agree with the others‘ methods. The teacher also asked 

why they agreed or disagreed with them. When they stated that they did not 

concur with the answer of someone, they were asked to explain their reasoning 

and convince this student that his/her answer is wrong. For instance, Esra posed 

an addition problem when they were asked to pose a multiplication problem. The 

others explained to Esra that her problem requires addition, not multiplication. 

Moreover, they helped her to revise her problem. That is to say, this social norm 

is related to not only interpreting the solutions of others but also helping them to 

revise their solutions if necessary.  

 

The final social norm is questioning. Prior to the implementation of the 

instructional sequence for multiplication, students were familiar with questioning 

by the teacher, not by the others. During the implementation of this study, 

students started asking questions or requesting clarification when something is 

unclear. Students were aware that they were in a collective learning environment 

and responsible for their own learning. For that reason, they took responsibility 

for interpreting others‘ methods. Consequently, to be able to interpret, they had 

to understand their methods. When they could not understand, they asked 

questions like ―What do you mean?‖, ―Can you repeat it?‖, and ―How did you 

find it?‖.  These questions led to further explanation and clarification. Therefore, 

questioning to understand the mathematical processes and building their own 

meaning was established as a social norm in the participating classroom in this 

study.  
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The second aspect of the interpretive framework concerns sociomathematical 

norms that were specific to mathematics and mathematical activities (Cobb & 

Yackel, 1996). During this teaching experiment, students were mainly expected 

to offer an acceptable mathematical solution as the key concern of 

sociomathematical norms. The teacher encouraged students to share different 

solutions via different representations, explanations, and justifications for their 

solutions with mathematical reasoning, provide conjectures and establish claims 

and warrants to feed the argumentation process.  

 

Sociomathematical norms were established as they related to criteria for what 

counted as acceptable mathematical solutions to the problems in the instructional 

sequence. Remembering the part of the social norms from earlier, the students 

were required to justify and explain their mathematical procedures in class. 

Students‘ explanations were counted as acceptable if they focused on both the 

mathematics and what the numbers in the calculations meant in the image 

qualified. That is to say, students did not only multiply two numbers but also 

explained and justified the roles of these numbers as multipliers and multiplicand 

during the implementation.  

 

The other sociomathematical norm is related to sharing different solutions. 

Actually, students were used to sharing and discussing different solutions in the 

classroom as they did in the previous project. During the implementation of the 

instructional sequence for multiplication, the teacher frequently asked if other 

students had a different solution or a different solution technique.  When the 

students were working individually, the teacher strolled about the classroom 

looking for these different solutions and solution methodologies. If students did 

not volunteer, the teacher asked those who solved in a different way. After a 

while, it was observed that students were eager to find a different solution and 

share with others to see their reflections. It was also remarkable that the students 

were reflecting positively by appreciating the different solutions. Therefore, 

sharing different solutions was established as a sociomathematical norm in the 

classroom. 
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The third aspect of social perspective is classroom mathematical practices which 

is related to the second purpose of the current study.  This study was conducted 

as a design research whereas classroom mathematical practices and learning 

trajectory of the classroom community were examined and taken into 

consideration. The classroom mathematical practices emerged in this study are 

documented with taken-as-shared ideas in the section of Findings. 

 

To sum up, in this study, a local instructional theory including students' 

reasoning multiplication was conjectured using RME as a design theory for the 

development of the instructional tasks was developed as explained in the first 

phase. Then the developed instructional sequence was implemented in the 

classroom for five weeks including 26 class hours (i.e., 1 hour each day). The 

experiment of the study took place in the second-grade class of the collaborating 

teacher. The classroom events that took place as students and the teacher 

interacted around these activities were analyzed in line with the theoretical lenses 

of the Emergent Perspective and Realistic Mathematics Education during the 

experiment. These analyses revealed the need for daily or weekly revisions to the 

instructional sequence as micro-cycles. These revisions are explained in the 

following section. 

 

3.3.2.2. Revisions to the instructional sequence during and after the 

experiment 

 

As it is explained, the second phase is a classroom teaching experiment where 

the research team tests and revises their initial hypotheses about how the 

anticipated sequence will really be realized. In line with the inherently iterative 

nature of Design Research, daily minicycles are implemented during the second 

phase at the micro level (Gravemeijer et al., 2003b). As shown in Figure 3.17, 

the researchers make recommendations about daily changes of the educational 

activities using informal evaluations of students' mathematical thinking. These 

daily analyses of students' mathematical activities are therefore used to shape the 

instructional sequence. These analyses are also conducted against the backdrop 
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of a hypothesized learning trajectory. Furthermore, changes to the sequence 

influence students' next mathematical task (Gravemeijer et al., 2003b). 

 

 

Figure 3. 17. Minicycles in Design Research (Gravemeijer et al., 2003b, p.115) 

Considering the ongoing analysis of classroom sessions for modifying and 

refining the conjectures, classroom-based analyses came to the fore to interpret 

the initial instructional sequence for multiplication. In keeping with the nature of 

design research, the team conducted debriefing sessions after each minicycle of 

the experiment in order to assess the learning of students as it took place in 

normative ways. Through this process, the team continued ongoing analysis to 

improve the HLT and the instructional sequence to make a stronger case for the 

next day. The activities were revised and improved to assist students in 

transitioning from informal to formal reasoning while also incorporating tool 

use. For instance, in the first week of the experiment, three types of activities on 

equal grouping related to the second, third and fourth types of tasks were 

implemented in the classroom. However, it was observed that students could not 

distinguish three types of equal grouping tasks and they were confused. For that 

reason, the team decided to spend more time on each type of activity. As it is 

stated to gain students the ability of multiplication with 2, 3, 4, and 5, all the 

activities were developed for the numbers of 2, 3, 4, and 5 since the objectives 
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related to multiplication in second grade are restricted to multiples of these 

numbers. Sample activities are given below in Figure 3.18. 

 

 

Figure 3. 18. Equal grouping activities for number 4 about division as 

measurement, division as partition, and multiplication as equal groups 

respectively. 

During the implementation, it was seen that some of the students were counting 

all the objects one by one to find the total number of objects. The purpose was to 

encourage students to use skip counting instead of counting each object. For this 

purpose, the team decided to provide closed groups whose elements are not 

visible. The elements in the first group were visible since the group was open, 

while the ones in closed groups were invisible as in Figure 3.19. Furthermore, 

templates of the related operations were provided in the first version of the 

activities as in Figure 3.19. These templates were removed not to direct students 

and limit their thinking about writing number sentence for the given picture or 

problem. All the activities were revised in this respect. 

 

 

Figure 3. 19. Revisions on a sample activity 
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In addition to presenting instructional tasks in the form of realistic problems, 

students were also expected to pose their own realistic problems in this study. 

However, the team members were not sure whether students were ready for 

writing contextually realistic problems as problem posing activities that require 

higher-order thinking skills on the topic. They decided to observe students and 

involve problem-posing activities when they were ready. In this sense, students 

were presented with an activity to see their conceptualization of related issues 

and capability of posing problems. This first activity was presented as a picture 

in which there were four shelves and 5 bottles on each shelf. Students were asked 

to pose a repeated addition problem according to this picture. During this 

activity, students presented their problems and discussed the appropriateness, 

representativeness, and components of these problems considering the picture. It 

was observed that students developed mathematically rich arguments while 

posing problems. In addition to its power in terms of the conceptual development 

of students, it was also observed that students were highly motivated and enjoyed 

it. Therefore, after this lesson, the team members set a meeting and decided to 

include activities on problem posing in the learning trajectory. They developed 

problem posing tasks in line with both RME and Bruner‘s Theory of Learning 

(1964), which emphasize that instructional activities progressively move from 

concrete to abstract and connect different representations (concrete and pictorial, 

real-world and symbolic). Thus, students were asked to write word problems 

based on given pictures and multiplication operations. In this sense, problem 

posing tasks were classified as translating and comprehending quantitative 

information (Christou et al., 2005). Translating tasks required students to pose an 

appropriate problem from graphs, diagrams, or tables while comprehending tasks 

required students to pose problems from given mathematical equations or 

operations as in Figure 3.20 given below. In this respect, problem posing tasks 

were developed for each big idea state in the HLT for multiplication. 
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a b 

Figure 3. 20. Sample (a) translating and (b) comprehending tasks 

Furthermore, the tasks related to composing array were complicated for students. 

There were many terms which were new for students like column, row and array. 

Another limitation of the tasks was that they were presented in activity sheet 

requiring drawing. Therefore, activities failed in helping students to see an array 

as the collection of equal groups. After the lesson, the team members discussed 

on the limitations of the tasks and further implementations. They decided to 

develop concrete materials to compose array. Students were provided counters to 

construct arrays as in Figure 3.21. They worked on concrete tools to construct 

array effectively, however these materials were limited in representing their 

works to others during discussion session. In this sense, students were provided 

reusable squared cards to draw arrays on as in Figure 3.21. They were asked to 

use these card to show their work while discussing and reasoning the given tasks.  
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Figure 3. 21. Revisions on the task of introduction to array  

At the beginning of the experiment, activities were planned to be reflected on the 

board via projector. Unfortunately, the projector had been broken at the time of 

implementation. For that reason, the materials designed on power point 

presentation were cancelled and concrete materials were developed instead. For 

instance, in addition to concrete objects and squared cards, a large squared table 

(array panel) and sticky counters were designed for the teacher and students to be 

able to compose arrays that can be seen by everyone as in Figure 3.22. 

 

            

Figure 3. 22. Array panel and counters to stick on it 

In conclusion, during the implementation, various revisions were made in the 

instructional sequence in order to increase the construct validity and practicality 

of the experiment. In terms of construct validity which refers to the logical 

design of the intervention (Plomp, 2013), invisible equal groups were used; 
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problem posing activities were developed for each big idea; operation templates 

were removed. On the other hand, in terms of practicality which refers to the 

usability of the intervention in the settings for which it has been designed and 

developed (Plomp, 2013), concrete materials of counters, array panel, and 

squared cards were developed.  

 

3.3.3. Phase 3. The retrospective analysis 

 

After the design experiment was completed, a retrospective analysis of the entire 

data was conducted. Retrospective analysis is recommended based on many 

factors (Cobb, 2003; Cobb et al., 2001; Gravemeijer, 2004). The first of these is 

that the methodology should make it possible to record the collective 

mathematical learning of the students. In this study, classroom videos were 

analyzed and students‘ classroom mathematical practices were documented. In 

this way, the study also enabled the documentation of individual students' growth 

as community members.  

 

The second criterion for conducting a retrospective analysis is that the results 

should provide feedback that can be used to improve the educational design. 

That is to say, researchers can build an instructional sequence comprised of 

beneficial activities during the retrospective analysis phase of the teaching 

experiment (Gravemeijer, 2004). Then, the teaching sequence is redesigned 

based on the findings of this retrospective research (Gravemeijer et al., 2003b; 

Steffe & Thompson, 2000). In this study, a retrospective analysis was conducted 

on the entire data after the design experiment was implemented. The documented 

classroom mathematical practices led to the process of making final revisions for 

the best case HLT and the instructional sequence (local instruction theory). In the 

Conclusion and Discussion section, the final revisions are explained. 
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3.4. Data Collection Tools 

 

Design research usually triangulates numerous sources and types of data to 

connect intended and unexpected results to enactment processes. Methods that 

document enactment processes provide crucial evidence for establishing warrants 

for claims about why certain outcomes occurred (Design-Based Research 

Collective, 2003). Moreover, triangulating data from multiple sources promotes 

improving the reliability of findings and measures through ongoing analyses 

over the cycles of enactment, and using standardized measures or instruments 

(Design-Based Research Collective, 2003). In this regard, multiple data 

collection tools such as video recordings of classroom sessions, pre-and post-

tests, pre-and post-interviews, students‘ written works, the researcher‘s field 

notes, and audio recordings of the daily debriefing and research team meetings 

were used in this study. The relationships between the research questions and the 

data collection tools are displayed in Table 3.3 below. Each of these data sources 

is explained clearly in the next subsections. 

 

Table 3. 3. The relation between the research questions and the data collection 

tools 

The Research Question Data Collection Tool 

What would an optimal HLT and 

instructional sequence for multiplication 

look like?   

Pre- and Post-tests 

Pre- and post-interviews 

Procedural fluency tests 

Written works 

Audio recordings of debriefing 

and research team meetings 

Researcher‘s field notes 

What are the mathematical practices as 

students engage in the instructional 

sequence for multiplication? 

Video recordings of classroom 

sessions 

Written works 

Researcher‘s field notes 
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3.4.1. Video recordings of classroom sessions 

 

The main data source to document classroom mathematical practices is the 

records of classroom sessions. Each classroom implementation in this design 

research was videotaped. One camera was used to capture as many of the 

classroom activities as possible. Two voice recorders were also used in case the 

camera did not record all the sound in the classroom. During whole-class 

discussions, one camera and additional voice recorders were on to capture the 

process of implementing the instructional sequence, the teacher‘s instructional 

activities, students‘ mathematical reasoning and learning, social and 

sociomathematical norms, culture and environment of the classroom, 

formal/informal tools and interactions among them. Finally, all the records were 

transcribed to be analyzed. 

 

3.4.2. Pre- and Post-tests 

 

Students must be provided numerous opportunities to create their own strategies 

while dealing with numbers to construct their own computation techniques, give 

more meaning to operations and gain confidence in standard algorithms (van de 

Walle et al., 2020). By doing so, students can improve their skills related to 

counting, recognizing number patterns, comparing numbers, and estimating, thus 

number sense (Berch, 2005). Students can deepen their number sense as they 

employ operations and diverse solution strategies for operations. For instance, 

counting in twos, threes, or fives is frequently underestimated in the classroom, 

yet such patterns of numbers are common among children and are critical for 

establishing number sense (Anghileri, 2006). In this regard, the current study is 

crucial in developing students‘ number sense by supporting students with 

counting activities enriched with RME theory and introducing multiplication 

considering its various meanings and relationship with other operations. 

Therefore, in order to interpret students‘ learning and subsequently enhance and 

revise the design, the Number Knowledge Test was used as pre-and post-test. 
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The Number Knowledge Test (NKT) which was translated into Turkish by 

Çakıroğlu and his team (Çakıroğlu et al., 2019) was developed by Okamoto and 

Case (1996) to measure the intuitive knowledge of numbers that the average 

child has available at the age-levels of 4, 6, 8 and 10 years. This test helps to 

assess students' procedural and conceptual knowledge of whole numbers, 

comprehension of magnitude, counting abilities, and basic arithmetic operations. 

The NKT analyzes various aspects of a student's numerical proficiency, 

including the application of numbers to basic arithmetic concepts and operations, 

unlike single proficiency assessments that assess discrete skills and abilities in 

numerical proficiency. Each item was evaluated out of 1 point. For all two-part 

items, students were expected to answer both (a) and (b) must be answered 

correctly to earn a point. The test is divided into four levels, each with a different 

level of difficulty and analysis. Sample items for each level are provided in Table 

3.4 below. Therefore, the test was used to determine students‘ levels of number 

knowledge before and after the design experiment. 

 

Table 3. 4. Sample Items for the Levels of the Number Knowledge Test 

Levels  # of 

Items 

Sample Items Decision 

Preliminary  1 Let‘s see if you can count from 1 to 10  

Level 0 5 (Show stacks of counters, 5 vs. 2, same color.) 

Which pile has more? 

Go to Level 1 if 3 

or more are correct 

Level 1 9 What number comes two numbers after 7? Go to Level 2 if 5 

or more are correct 

Level 2 9 Which number is closer to 21: 25 or 18? Go to Level 3 if 5 

or more are correct 

Level 3 7 Which difference is smaller, the difference 

between 99 and 92 or the difference between 25 

and 11? 

 

 

Pretest was used to understand students‘ initial level of number sense in order to 

reveal their intuitive ways of reasoning on numbers and number relations and 

build the instruction on those. On the other hand, the post-test was used to obtain 
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insight into students' learning after the experiment to examine how their 

reasoning processes had changed.  

 

3.4.3. Pre- and post-interviews 

 

In addition to the Number Knowledge Test, an interview protocol was developed 

by the research team in order to conduct before and after the implementation. 

The purpose of this interview was to investigate students‘ performance on 

multiplication tasks each of which was developed in a different semantic 

structure of multiplication. Totally 6 multiplication problems were developed by 

Mulligan and Mitchelmore (1997) in various semantic structures which are 

equivalent groups, rate, comparison, array, and Cartesian product (Figure 3.23). 

 

 

Figure 3. 23. Problem set for multiplication (Mulligan & Mitchelmore, 1997).  

After the implementation of the Number Knowledge Test as the pretest, 

interviews were conducted with 10 students who comprise approximately half of 

the students in the classroom. These students were chosen according to the 

teacher‘s advice considering students‘ communication abilities and willingness 

to work with the researcher. Interviews session was held after the pretest in order 

to examine students' intuitive knowledge related to multiplication and informal 

ways of reasoning and tools. Each student was interviewed separately by the 

researcher. The paper with the questions on it was given to the student. Students 
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were asked to read and explain the problem. Then, they were given time to solve 

the problem. Students were asked to explain the way they thought and solved the 

problem. The interview sessions were video-recorded. The pre-interviews helped 

the team to see students‘ conceptualization and interpretation of the 

multiplicative situations presented in real-life contexts. Students‘ early 

understanding of multiplication was taken into consideration in developing the 

instructional sequence. Moreover, post-interviews were conducted again after the 

post-test to gain insight into students' knowledge of semantic structures of 

multiplication after the experiment in order to see changes in their understanding 

of multiplicative situations and using tools if exist. Students‘ performance and 

reflection were examined in order to refine the instructional sequence. 

 

3.4.4. Procedural fluency tests 

 

Knowledge of processes, as well as when and how to utilize them effectively, 

and the ability to conduct them flexibly, accurately, efficiently, and 

appropriately, is referred to as procedural fluency (NRC, 2001; van de Walle et 

al., 2020). Gaining procedural fluency is crucial for students since students have 

difficulty in understanding mathematical concepts or solving mathematics 

problems if they lack procedural fluency (NRC, 2001). In this regard, it is aimed 

to improve students‘ procedural fluency in multiplication by supporting their 

conceptual understanding of multiplication and the meaning of multiplication 

considering daily experiences by the instructional sequence. In order to assess 

the effectiveness of the implementation, procedural fluency tests were used as 

the measurement tool. These tests included a collection of multiplication 

operations (see Appendix F). Students were applied to each multiplication 

fluency test after learning symbolic multiplication every three days. Totally 7 

tests were used and students were given 2 minutes for each. The number of 

operations that were answered correctly was evaluated by the research team. 

Moreover, the mean of the students‘ scores was interpreted through the 

following tests. In this sense, students‘ performances on these tests were 
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considered for daily revisions to develop students‘ procedural fluency in addition 

to conceptual understanding in multiplication.   

 

3.4.5. Written works 

 

During the classroom implementations, students were provided activity sheets 

related to the tasks in the instructional sequence. After each lesson, students‘ 

written works were scanned to keep as a copy and the original sheets were given 

back to the students. These written works were examined after each 

implementation in order to evaluate the implementation regarding students‘ 

performance and revise the further implementations. Moreover, they played an 

important role in providing a clue during the analysis of video records for 

triangulation. This data was used for trustworthiness issues in the study. That is 

to say, they helped to understand students‘ reasoning and arguments during 

classroom discussions and clarified students‘ contributions to the classroom 

mathematical practices in detail. 

 

While watching and analyzing the classroom videos, sometimes students‘ 

arguments were unclear to the researchers. During such times, they turned back 

to the written works of the students to understand their explanations. These 

written works enlightened and supported their claims. The researchers got the 

advantage of these documents to be able to make comments related to the 

students and interpret their arguments. Furthermore, the findings of the study 

were enriched with sample works of the students as in the section of Findings.  

 

3.4.6. Audio recordings of debriefing and research team meetings 

 

The researcher conducted short debriefing sessions with the collaborating teacher 

before, during, and immediately after each classroom session in order to 

establish a shared understanding of what was happening in the classroom. Before 

the implementation, they negotiated the purpose of the following lesson, follow-

up questions, and envision related to students‘ progression. Moreover, the 
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teacher and the researcher met after each lesson in order to discuss what went 

well and what should have been improved. Thus, the essential revisions related 

to the HLT and the instructional sequence were discussed. In addition to these 

debriefing sessions, the research team also met weekly in order to decide on 

modifications and revisions considering the week‘s results and the goal of 

implementation for the next week. All team meetings were audiotaped.  

 

Furthermore, the team continued these meetings after the classroom teaching 

experiment. They discussed the analyses of classroom mathematical practices 

together in order to verify or refute the argumentation schemes. Finally, they 

revised the implemented HLT through retrospective analyses and got the final 

version of the HLT for multiplication in second grade. This procedure is 

explained in the section of Conclusion and Discussion. 

 

3.4.7. Researcher’s field notes 

 

In this study, field notes were recorded to determine whether the teaching and 

learning processes were enacted in class as intended. In educational research, 

these usually mean the detailed notes researchers take in the educational setting 

(classroom or school) as they observe what is going on or as they interview their 

informants. They are the researchers‘ written account of what they hear, see, 

experience, and think in the course of collecting and reflecting on their data see 

(Fraenkel et al., 2012). In this sense, during the implementation of the 

instructional sequence, the researcher recorded what she observed in order to 

document the class activities. The researcher used an informal language like 

writing a diary just to give feedback to herself and also design team. For 

instance, for the activity related to array, the researcher made comments given in 

the second column of Table 3.5.  
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Table 3. 5. The example of the field notes from the 18
th

 lesson 

Task Observations & Comments  

 

We used arrows to direct students to group the dots 

vertically. We expected students to count row. 

However, some students grouped the dots as columns 

like this: 

We directed students to think in 

rows. However, we also approved 

the students who think in columns. 

Because it is also possible to group 

the dots horizontally. Thus, why did we direct them to 

rows through arrows? I think, we shouldn‘t show the 

way of grouping the dots. We should leave them free. 

Therefore, we can make the ones who think vertically 

and those who think horizontally share their solutions 

and discuss. We should discuss on my observation as 

the design team. 

*The activity took 20 minutes. It is more than expected. 

*Two students realized and told the researcher that it 

does not matter how to circle the dots. He said that the 

product is same for both vertical and horizontal 

grouping.  

 

The duration of the activity, the mathematical activity that was going place, and 

the notes regarding the discourse were all written down in the field notes. The 

goal was to record as much of the classroom discussion as possible to support the 

video recordings for triangulation. Moreover, these field notes were presented to 

the team as a starting point for formative evaluation. In the light of these notes, 

the team made refinements in the instruction when it was needed. 
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3.5. Data Analysis 

 

The purpose of this section is to describe a method for monitoring and 

documenting students' collective activity which refers to the classroom 

community‘s normative ways of reasoning.  While methodologies to document 

learning of individuals are available in the literature in detail, the methodologies 

to describe the intellectual activities of classroom cultures are so limited 

(Rasmussen & Stephan, 2008). In this respect, design research has theoretical 

and pragmatic concerns on documenting collective ways of reasoning that 

progress as students involve in mathematical activities. In order to reveal 

students‘ normative ways of reasoning, a large amount of data like video and 

audio records of classroom sessions and audio records of meetings with research 

team was collected through variety of data collection tools in this study. While 

these data were being continuously evaluated as part of the ongoing analysis 

process, the retrospective analysis was processed to understand the taken-as-

shared ways of learning of a classroom community and document the 

mathematical practices.  

 

As it is stated previously, the research question seeks for classroom 

mathematical practices that emerged as second grade students engaged in the 

instructional sequence for multiplication. In order to answer the question, 

classroom discussions and students‘ arguments were planned to be analyzed as 

the retrospective analysis. With this purpose, the classroom videos were 

transcribed and organized properly as the starting point. To be able to analyze 

classroom discourse sessions, it was planned to use an argumentation model. 

Eventually, Toulmin‘s argumentation model adapted by Rasmussen and Stephan 

(2008) in order to analyze classroom argumentation and their three-phase method 

to document taken-as-shared ideas and mathematical practices were used. This 

process of analysis method includes three phases. In the first phase, the 

videotapes of every class session were watched, and the instances in which a 

claim is made were noted, and the whole class discussions were coded according 
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to Toulmin‘s argumentation model. Therefore, it is important to explain this 

model at first. 

 

Each phase is unique and requires different actions in themselves. In the first 

phase, the videotapes of each classroom implementation were transcribed to be 

analyzed through a retrospective analysis process in order to understand the 

taken-as-shared ideas that emerged during classroom implementations and 

document the mathematical practices. Classroom discussions were coded 

according to adaptation of Toulmin‘s argumentation model (1958, 2003) serving 

as an analytic tool to examine the structure of the arguments. At that point, it is 

crucial to describe and clarify this model. 

 

Toulmin‘s basic argumentation model has three components: claim (C), data (D), 

and warrant (W) (2003) as in Figure 3.24. The first component, a claim, is the 

conclusion of the discussions offered as correct by the learners. In another 

saying, a claim is the students‘ statement or opinion, which serves as the 

principal expression of the argument and stemmed from the data. To reach the 

claim, students use the data which serves as the foundation of the argument. 

Hence, the data which grants the argument some validity justifies the main point 

of view. The connection between the data and the claim is set with the warrant 

by explaining and justifying why the data are considered to support the 

claim. Moreover, the arrow in the Figure 3.24. represents the direction of 

evolution of the claim taking the step from one to the other. The warrant is 

placed immediately below the arrow as the explanation of the relationship 

between data and claim (Toulmin, 2003). 
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Figure 3. 24. Schematic representation of Toulmin's basic model and an 

exemplary argument (Toulmin, 2003, p. 92). 

In addition to the basic model, Toulmin explains more detailed components for 

more complex arguments. These are qualifier (Q), rebuttal (R), and backing (B) 

(Toulmin, 2003). A qualifier refers to the strength conferred by the warrant, 

while a rebuttal (R) denotes conditions in which the warrant's general authority 

would have to be overruled. Moreover, backing supports the authority and 

currency of a warrant (Toulmin, 2003). The places of all components (D, C, W, 

Q, R and B) in an argumentation scheme are represented in Figure 3.25 below. 

 

Figure 3. 25. Schematic representation of Toulmin's extensive model of 

argumentation (Toulmin, 2003, p. 97). 

As in Figure 3.25, a qualifier is inserted in front of the claim since it shows the 

degree of force which the data confer on the claim to advantage the warrant. On 

the other hand, a rebuttal is inserted below the qualifier since it may refute the 

claim. Finally, a backing is placed under the warrant as funding. A sample 

argumentation including all the components of an argument is given in Figure 

3.26 below.  
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Figure 3. 26. Sample argument with all elements of an argument (Toulmin, 2003, 

p. 97). 

Despite the fact that Toulmin (1958) provides this argumentation model for the 

area of law and for individual argumentation processes, he emphasizes this 

model can be used in other areas since some aspects of it are field independent. 

Depending on this idea, Krummheuer (1995) adapted Toulmin‘s model to 

investigate collective argumentation in classroom settings. This adapted model 

has two critical features. One of these features is that the improvement of an 

argumentation theory is specified for mathematics education. The other one is 

that the reasoning is expanded from an individual to a collective level. That is to 

say, Krummheuer focused on the social dimensions of the argumentation process 

in the mathematics classrooms, viewing it as a social phenomenon in which 

students provide justifications for their reasoning and make changes to their 

arguments (Krummheuer, 1995). This model of argumentation involves four 

components of conclusions (or claims), data, warrants, and backing as in Figure 

3.27 below. 
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Figure 3. 27. Schematic representation of the model of argumentation in 

mathematics education (Krummheuer, 1995, p. 248). 

As seen in Figure 3.27, the conclusion and the data in the adjacent boxes have 

arrows moving from one to the other to indicate the relationship between them. 

The warrant is displayed below the conclusion and data, providing justification 

for the connection between the pair above. Moreover, it should be noted that the 

term "since" clarifies how the warrant might be interpreted in the context of the 

argument (Whitenack & Knipping, 2002).  Finally, the backing is contained in 

the box underneath the warrant, indicating the role of the backing in providing 

additional support for the backing. The term "on account of" exemplifies how 

support can be identified during a debate.  

 

The model of a sample argument is provided in Figure 3.28 below. According to 

this argument, suppose that during a whole-class discussion students are asked to 

explain their solution for 4x4. 

 

They explain that 4x4=16 because 8+8 is 16 considering two sets of fours as 

eight. The first part of this statement (4x4=16) is the conclusion (claim), that is, a 

mathematical claim while the second part of the statement (8+8=16) is the data, 

the initial information that supports or grounds their conclusion. If the 

connection between data and conclusion is not clear to others and they question 



148 

how the data support the conclusion, the warrant is presented. In the given 

example, students explain that 4x4 represents four sets of fours meaning there 

are two more sets of fours. The other explanations of the students below about 

showing their fingers offer additional information (backing) to support the data 

(Krummheuer, 1995). The interesting part of argumentation is that the backing is 

like a general claim of the students and does not require extra support since 

students' backing is what they believe to be mathematically correct (Whitenack 

& Knipping, 2002).   

 

 

Figure 3. 28. Schematic representation of argument from class example 

(Krummheuer, 1995, p. 245). 

Parallel to Krummheuer‘s (1995) approach, the videotapes of each classroom 

implementation in this study were watched, and discussions were coded 

according to the components of the argumentation model. Claim, data, and 

warrants were specified for each argumentation scheme. All these inferences 

were discussed by the research team systematically until agreeing to maintain 

reliability. Therefore, an argumentation log ordering all the argumentation 

schemes in succession across all whole-class discussions was obtained.  
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In the second phase, the obtained argumentation log was analyzed through the 

following lessons to determine whether the mathematical thinking became the 

groups‘ taken-as-shared ideas (Rasmussen & Stephan, 2008). To be able to 

decide on this, Rasmussen and Stephan (2008) defined two criteria: 

 

1 When the backings and/or warrants for an argumentation no longer 

appear in students' explanations (i.e., they become implied rather than 

stated or called for explicitly, no member of the community challenges 

the argumentation, and/or if the argumentation is contested and the 

student's challenge is rejected), we consider that the mathematical idea 

expressed in the core of the argument stands as self-evident. 

 

2 When any of the four parts of an argument (the data, warrant, claim, or 

backing) shifts position (i.e., function) within subsequent arguments and 

is unchallenged (or, if contested, challenges are rejected), the 

mathematical idea functions as if it were shared. For example, when 

students use a previously justified claim as unchallenged justification (the 

data, warrant, or backing) for future arguments, we would conclude that 

the mathematical idea expressed in the claim has become a part of the 

group's normative ways of reasoning (p. 200). 

 

During the analysis, these two instances were looked for in order to determine if 

an idea became taken-as-shared thus forming a mathematical practice. 

Rasmussen and Stephan (2008) propose the researchers a mathematical ideas 

chart for each class session in order to identify classroom mathematical practices 

effectively. These mathematical ideas chart includes three columns: ―(a) a 

column for the ideas that now function as if shared, (b) a column of the 

mathematical ideas that were discussed and that we want to keep an eye on to see 

if they function subsequently as if they were shared, (c) a third column of 

additional comments‖ (p. 200). There is an example represented in Table 3.6 

produced for the current study below. This table is only one of the charts that 

were created for each day of the experiment. On subsequent days, the entire set 
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of tables was utilized to see if the concepts in the second column (i.e., keep an 

eye on) shifted to the first column (i.e., taken-as-shared). The results about the 

mathematical ideas being taken-as-shared were reached as a result of comparing 

the elements of the mathematical ideas chart. Finally, fifteen taken-as-shared 

ideas were identified over the five-week instruction.  

 

Table 3. 6. Sample mathematical ideas chart 

Ideas that function 

as-if-shared 

Ideas to keep-an-eye-on Additional comments 

Reasoning the effect of 

change in the order of 

numbers skip counted  

Some of the students 

apply counting on 

strategy instead of 

counting all the groups 

or number from the 

beginning of counting 

process while others 

cannot use their 

previous knowledge, but 

count all counting 

process.                                                                                                                                                                                                            

It is related with 

reasoning the effect of 

change in the first 

number (multiplier) in a 

multiplication operation 

 

In the third phase of the analysis, the mathematical ideas charts were collected, 

and taken-as-shared ideas were listed to be organized according to common 

mathematical activities serving as classroom mathematical practices (Rasmussen 

& Stephan, 2008). Classroom mathematical practices were characterized as this 

general mathematical activity. For instance, it was observed that the students 

started skip counting by using their fingers fluently and effectively to find the 

ordered or grouped numbers. Later on, they shifted from counting all the 

numbers in a counting sequence to find the ordered numbers to counting on the 

number whose order they know. Then, they made connections between different 

place of two numbers in a number sequence. They developed a strategy to find 
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the order of numbers in a number sequence by reasoning the order of previously 

established numbers. Therefore, these two mathematical ideas were put together 

and organized around the common activity of reasoning with fingers to skip 

count as they emerged and became taken-as-shared. Thus, the first mathematical 

practice in this study was called ―using skip counting to find the total number of 

groupable objects‖. Finally, fifteen taken-as-shared ideas that were identified at 

the end of the second phase were classified and five classroom mathematical 

practices, including the one mentioned above, were documented in this study. 

All of these taken-as-shared ideas and classroom mathematical practices were 

explained in detail in the section of Findings. 

 

3.6. Trustworthiness 

 

One of the main purposes of researchers is to consider validity and reliability 

issues for all kinds of studies. In short, validity refers to whether or not we are 

measuring what we plan to measure while reliability refers to the researcher's 

independence (Bakker & van Eerde, 2015). These concepts of validity and 

reliability in qualitative research differ slightly from those in quantitative 

research, as they do in the current study. In a qualitative study, these terms are 

replaced respectively with credibility, transferability, dependability, and 

confirmability (Lincoln & Guba, 1985). They are discussed in this section 

considering how they were addressed in this study. 

 

First, credibility, which is related to internal validity, is defined as "belief in the 

'truth' of an inquiry's conclusions for the respondents with whom and in the 

context in which the inquiry was conducted" (Lincoln & Guba, 1985, p. 218). 

That is to say, credibility is about how well the findings of the study match the 

reality (Merriam, 2009). It also refers to the quality of data collections and 

arguments (Bakker & van Eerde, 2012). Four different types of methods were 

employed to ensure the internal validity of the current investigation. One of them 

is prolonged interaction engagement, which calls for spending a lot of time with 

participants in order to accurately comprehend their behaviors and discourses 
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(Creswell & Miller, 2000; Lincoln & Guba, 1985; Merriam, 2009). This method 

helps understanding the culture of the participants, detect misinformation given 

by distortions either of the self or of the respondents, and create trust. For the 

current study, it can be said that the researcher was familiar with the students and 

the classroom teacher. One year before the current study, another design research 

was conducted in this classroom when the students were first graders. The 

researcher spent 2 semesters with the students for that project. The researcher 

was familiar with the students‘ cognitive and affective levels, their capabilities, 

characters, and their reactions since she was with them from the time they just 

started school. The students and the teacher were familiar with the researcher 

too. They were used to her presence in the classroom while she was setting the 

camera, walking around, and asking questions. It can be claimed that their 

accepting the presence of the researcher in the classroom helped to reduce the 

observer effect which means the impact that an observer's presence might have 

on a subject's behavior (Fraenkel et al., 2012). As a result, prolonged 

engagement enabled both the researcher and the participants to get used to and 

understand each other. This relationship helped them to implement the 

instructional sequence in the classroom effectively and interpret the arguments in 

the classroom accurately.  

 

Another method for establishing credibility is peer debriefing (Creswell & 

Miller, 2000; Lincoln & Guba, 1985; Merriam, 2009). In the current study, 

members of the research team were involved in all the stages of the study. While 

the teacher was the facilitator in the classroom, the first researcher was also in 

the classroom and took field notes while participating in discussion sessions. 

After the lessons, they discussed what worked and what did not work in the 

classroom and also the field notes. They also shared and discussed their 

decisions with the second researcher who is the professor of Mathematics 

Education. Moreover, a detailed peer examination was held with the involvement 

of team members by scanning some of the raw data and assessing whether the 

findings were plausible based on the data. 
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The other method for establishing credibility is triangulation which is the most 

well-known method of ensuring a study's internal validity (Creswell & Miller, 

2000; Lincoln & Guba, 1985; Merriam, 2009). A variety of triangulations are 

supported by the literature, including multiple methods, multiple sources of data, 

multiple investigators, and multiple theories (Denzin, 1978). In the current study, 

data triangulation was employed to assure validating and cross-checking 

findings. Various tools such as interviews, observation, and field notes were used 

to collect data in order to develop and test the conjectures of the study. 

Additionally, the professor in the design team closely monitored the process of 

data collection and interpretation during the team meetings and provided her 

insightful thoughts on methodological and analytical concerns. In addition to 

data triangulation, investigator triangulation was also used in the current study. 

All the members of the team joined in the analyses of the big data collected 

through these tools to maintain credibility. They discussed the argumentation 

schemes, and following it, they either came to a consensus on them or came up 

with new argumentation schemes as a matter of reliability. At this point, it 

should be stated that the investigator triangulation decreased the observer bias, 

which refers to the potential for particular traits or viewpoints of observers to 

influence what they see (Fraenkel et al., 2012). 

 

While collecting data, the researcher‘s position is also taken into consideration to 

ensure credibility (Merriam, 2009). Being involved in a design research team has 

several benefits. For instance, it may offer more accurate information about the 

complexity of the problem at hand, and more intensive discussions about the 

intervention's requirements (Nieveen & Folmer, 2013). In line with this 

characteristic of design research, the researcher had an interventionist role in the 

study. As a result, she was responsible for recording and observing teaching-

learning sessions, taking notes, interacting with students and the teacher, leading 

argumentations in cooperation with the teacher, and intervening in the flow of 

instruction when students required additional answers or had some questions. 
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Indeed, the researcher was an active participant in all phases of the study. This 

active involvement in preparing for the experiment, implementing the 

experiment, and retrospective analysis enabled the researcher to grasp the study 

as a whole and to analyze the study based on her own experiences in the field. 

While this is considered to be a valuable experience for the researcher, there is a 

contrasting idea suggesting that the researcher may become overly 'connected' to 

the design, resulting in a less objective approach to problems and responses from 

respondents (Nieveen & Folmer, 2013). Thus, this may cause being biased 

during the evaluation; however, various ways of triangulation were used in the 

current study to eliminate the probable bias of the researcher. 

 

In this study, the researcher attempted to read up on various types of qualitative 

research, as well as significant problems affecting research quality. Moreover, it 

should be underscored that the researcher was not the only one who designed the 

HLT and the instructional sequence and collected and analyzed the data. As 

previously explained, all the members were involved in all the steps of the study. 

Thus, the past experience and disposition of the researcher were not the concern 

for the current study. Moreover, as the researchers conducted another study in 

the previous year, they were familiar with the nature of classroom teaching 

experiments and unbiased in each part of the study. 

 

Second, transferability, which is related to external validity, refers to the 

applicability of the design experiment in other settings (Bakker & van Eerde, 

2015; McKenney & Reeves, 2012; Merriam, 2009). Transferability is established 

by providing a detailed account of the environment, period, and people involved 

in it, so that others who might be interested in applying the findings elsewhere 

can assess the likelihood of doing so (Merriam, 2009). In this sense, thick 

descriptions of the study's methodology and findings are provided. For instance, 

data collection tools and procedures are explained comprehensively in detail in 

the related sections above. Although the participants, classroom, and school are 

particular to this study, their characteristics are also delineated clearly for further 

research. Moreover, interpretive frameworks, the context of the study, revised 
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HLT and instructional sequence, and the way of analysis are provided in the 

method section in detail in order to assist the researchers in estimating the extent 

to which the stated scenario can be transferred to their own studies. Transcripts 

from the classroom and team meetings are provided in order to make the context 

and the theoretical claims clear and comprehensible. In this sense, the limitations 

are also mentioned to reveal the threats to generalizability. Indeed, the current 

study is presented in detail considering each step. 

 

Third, dependability, which is related to reliability, refers to the consistency 

between the data and the inferences drawn from the data (Merriam, 2009). 

Merriam (2009) offered four suggestions for boosting a qualitative research 

study's dependability: audit trials, peer review, triangulation, and researcher 

position. Peer review, triangulation, and the researcher position were attained in 

this study. Two members of the team coded and interpreted the data together 

through negotiating. Moreover, randomly selected portions of the data were 

examined by a colleague to sustain dependability. All of these ideas were 

previously covered in order to guarantee the study's credibility. In a qualitative 

study, an audit trail is followed to explain how data were gathered, categories 

were created, and choices were made throughout the investigation in detail. The 

researcher keeps a research journal or makes memos on the study process as it is 

being carried out in order to build this trail (Merriam, 2009). In this sense, the 

researcher took notes during the teaching experiment and shared these notes with 

team members in daily and weekly meetings. These field notes and records of 

the meetings were kept as advised by Merriam (2009). The transcripts of these 

meetings are also provided in the related section of the methodology chapter.  

 

Similarly, confirmability, which is related to internal reliability, refers to the 

consistency in the study. Since the results of qualitative investigations may vary 

from person to person, this issue is viewed as troublesome (Merriam, 2009). In 

this sense, an audit trail is suggested to maintain confirmability (Merriam, 2009; 

Patton, 2002). To preserve the confirmability, as explained above, a full 

collection of documentation is provided. The data gathering and analysis 
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procedure are explained in this context, and operational and technical details are 

documented. Moreover, all these techniques used for credibility and 

dependability also supported and contributed to the confirmability of the study.   

 

3.7. Role of the researcher 

 

One advantage of the design research methodology is that it encourages the 

researcher to take on a variety of roles (Zhang et al., 2013). In this structure, the 

researcher was intimately involved in all aspects of the design and evaluation of 

the HLT and the instructional sequence. This means that she had several roles in 

this study. 

 

In other words, the researcher -as a member of the design team- served as a 

designer, implementer, and evaluator in the process of developing and evaluating 

the intervention. Moreover, she took on responsibilities like observer and 

facilitator in classroom observation. She attended all the classroom sessions to 

observe the students and the teacher and took notes. During the implementation, 

she facilitated students besides the teacher and assisted the teacher to apply the 

intervention as it should be. Thus, the researcher endeavored to gain deeper 

insights into the strong and weak sides of the intervention. 

 

In addition to obtaining a lot of information about the intervention, the researcher 

gained various new competencies from her responsibilities and deepened her 

understanding of the implementation. The researcher was ready to perform the 

additional roles of designer, advisor, and facilitator while maintaining focus on 

her primary duty as a researcher. She was tolerant with the frequently 

unavoidable blurred lines between her roles and kept the research design flexible 

because the project process required it. Moreover, she permitted the study to be 

impacted by the needs and wishes of the partners when a collaboration that is 

typically ongoing for a long time is present.  
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3.8. Limitations 

 

In this section, information related to the limitations of this study is provided. To 

begin with, the findings of the current study are less generalizable with the other 

contexts since it was conducted as qualitative research. On the other hand, the 

cyclical nature of design research allows for some generalizability. Thus, the 

generalizability of the study can be increased by developing and using the cycles 

with other second graders from other schools. 

 

Furthermore, the evolution of mathematical practices was analyzed by using 

Toulmin's argumentation model (1958). This model helps to document 

collaborative, taken-as-shared mathematical ideas, not individual learning. In this 

sense, it should be stated that individual student learning was used to investigate 

whole-class interactions, despite the fact that individual student learning analysis 

is beyond the scope of this study.  

 

Also, another limitation would be that the study was conducted with only one 

macrocycle. It would be appropriate to conduct a pilot study to get more accurate 

findings prior to the main study. However, design research had been conducted 

with the collaborating teacher and her classroom instead, which eventually 

played the role of a pilot study. Consequently, the instructional sequence of the 

study was carefully planned over a long period of time by consulting with other 

mathematics teachers, and researchers and asking for their feedback.  

 

3.9. Ethical Considerations 

 

Before starting the design experiment, the compulsory permissions were taken 

from Middle East Technical University Human Subjects Ethics Committee (see 

Appendix A) and the Head of Elementary Mathematics Education program of 

the university. After the approval of the related departments in the university, 

official permissions were taken from the Ministry of National Education (see 

Appendix B) since the study was planned to be conducted in a public school. 
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After getting the necessary permissions, the collaborating teacher and the 

principal of the school were informed about the nature of the design experiment. 

They were ensured that their identities would be kept private. To keep their 

rights, the informed consent form was used (see Appendix C). 

 

Moreover, students were informed about the lessons and data collection 

procedures. In order to get permission from the parents of the students, a 

classroom meeting was held with parents, collaborating classroom teacher, and 

the   researcher. Parents were informed about the nature of the design, the 

purpose of the study, the data collection procedure, and confidentiality. They 

consented for their children‘s participation in the study since they were satisfied 

with the design experiment conducted in the previous year.  In order to collect 

data via audio and video recordings, the parent permission form was used (see 

Appendix D). 
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CHAPTER IV 

 

 

FINDINGS 

 

 

The first purpose of this study is to develop, test, and revise a Hypothetical 

Learning Trajectory for teaching multiplication in second grade. For this 

purpose, an HLT was developed and tested through a classroom teaching 

experiment. The HLT was revised through daily implementations. These 

procedures and the initial HLT are provided in Chapter 3 in detail. Furthermore, 

the HLT was revised in the light of the classroom mathematical practices 

analyses. The revised HLT is also given in Chapter 5.  

 

The second purpose is to document second graders‘ classroom mathematical 

practices (CMPs) that emerged through a five-week instructional sequence about 

multiplication. This chapter is devoted to the second purpose to explain the 

findings related to classroom mathematical practices extracted by Toulmin‘s 

model of argumentation. In this sense, mathematical ideas‘ charts were evaluated 

to examine students‘ mathematical ideas that became taken-as-shared and 

classroom mathematical practices over the course of 26 class periods. 

 

Collective argumentations and activities that evolve in the classroom were 

analyzed through a three-phase approach (Rasmussen & Stephan, 2008). 

Particularly, students‘ ways of reasoning with informal knowledge, using 

intuitive models related to multiplicative reasoning, communicating, connecting 

to realistic situations, and mathematization during social interactions within the 

classroom are examined and documented. Several taken-as-shared ideas (TAS) 

and five mathematical practices were obtained over five-week instruction.  

 

Five mathematical practices arose throughout the course of the 26 days of the 

classroom teaching experiment. The method by which these practices were 
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developed was highly complicated because the mathematical ideas they 

contained emerged in a network-like fashion rather than linearly. In other words, 

while the instructional sequence invited students to create a web of ideas, there 

was not always a clear distinction between practices. For example, during the 

same class period, more than a particular mathematical idea emerged and 

contributed to a different practice.  Due to this, the classroom mathematical 

practices overlapped, as shown in Figure 4.1 below.  

 

 

Figure 4. 1. Overlapping classroom mathematical practices. 

According to the figure, there are bars for each classroom mathematical practice. 

The position of the bars shows the days when the particular ideas of the related 

practice were first initiated and when these ideas were taken-as-shared. For 

instance, on the third day of the teaching experiment, an aspect of the first 

mathematical practice was taken as shared while an aspect of the second 

mathematical practice was first initiated. On the same day, an aspect of the third 

mathematical practice was in the process of becoming taken-as-shared. Because 

of this complexity, these five mathematical practices are covered separately in 

order to make the chapter easier to read.  

 

These taken-as-shared ideas and mathematical practices (Table 4.1) are described 

in the following part in detail. For each taken-as-shared idea, Toulmin‘s Analysis 

scheme was provided. In addition, the researcher also produced illustrations of 

the students' justifications and reasoning in order to make the mathematical ideas 

more clear. All the illustrations are the researcher‘s works.  
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Table 4. 1. Five classroom mathematical practices and taken-as-shared ideas 

supporting these practices 

 

 

 

 

CMP 1: Reasoning with fingers to skip count 

Idea 1: Skip counting by using ordinal aspects of fingers 

Idea 2: Finding the order of numbers in a number sequence by reasoning the 

order of previously established numbers  

CMP 2: Partitioning objects into equal groups to add them repeatedly 

Idea 3:  Reorganizing collections by using math drawings in order to use skip 

counting to find the total number of objects.  

Idea 4:  Equipartitioning collections into equal-sized groups through building 

up strategies 

Idea 5:  Halving to reproduce equal-sized groups 

Idea 6: Distributing left over numbers (remainder) to equal groups by 

conserving equality  

CMP 3: Iterating linked units by using pictures and fingers 

Idea 7: Skip counting the groups (composite units) in order to iterate 

Idea 8: Assigning hands (5 or 10 fingers) as composite units to iterate 

Idea 9: Double matching collection of equal groups to iterate on via pictorial 

representation 

CMP 4: Analyzing components and properties of multiplication operation by 

modeling with equal groups and arrays 

Idea 10:  Interpreting the meaning of multiplier and multiplicand in equal 

group representation 

Idea 11:  Connecting repeated addition and multiplication operations by 

interpreting multiplier and multiplicand  

Idea 12:  Reasoning the effect of change in multiplier on the product 

Idea 13:  Analyzing arrays by interpreting rows and columns as multipliers 

and multiplicands 

Idea 14:  Reasoning commutative property by using arrays  

CMP 5: Writing contextually realistic problems by coordinating the 

relationship among multiplicative representations 

Idea 15:  Analyzing the multiplier and multiplicand to pose multiplication 

problems on known contexts 

Idea 16:  Interpreting the multiplier and multiplicand to pose multiplication 

problems as repeated addition 

Idea 17:  Interpreting the multiplier and multiplicand to pose multiplication 

problems as rate 

Idea 18:  Focusing on structure and keywords in the problems to 

conceptualize multiplication 
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4.1. Classroom Mathematical Practice 1: Reasoning with fingers to skip 

count  

 

The first mathematical practice emerged as students engaged in the instructional 

sequence conducted in light of the designed HLT: reasoning with fingers to skip 

count. In this practice, students skip counted using their fingers to represent the 

order of verbal count, construct and recite number sequences, and establish a 

relationship between the two numbers in the sequence by comparing their places 

(order). Specifically, two ideas became taken-as-shared as the students engaged 

in counting and finding the number of objects, especially in the first two weeks 

of the instruction: 

 

 Skip counting by using ordinal aspects of fingers  

 Finding order of numbers in a number sequence reasoning the order of 

previously established numbers 

 

The importance of skip counting is stated as to be built upon to strengthen 

understanding of multiplication facts. For that reason, students begin to skip 

counting even in kindergarten and become familiar with the rhythm and order of 

these series of numbers (Schoenfeld et al., 2017). In the mathematics education 

program in Turkey, students count by 1s, 5s and 10s in the first grade, by 2s, 3s, 

4s, 5s, and 10s in the second grade, and by 6s, 7s, 8s and 9s in the third grade. 

For that reason, the instructional sequence started with skip counting exercises 

related to 2s, 3s, 4s and 5s. That is to say, students were asked to count by 2s 

(within 20), 3s (within 30), 4s (within 40), and 5s (within 50). These activities 

aimed to promote their ability and fluency in skip-counting to gain their skip 

counting ability and make them ready for the following activities and reasoning. 

While engaging in these activities, follow-up questions were posed by the 

teacher, and students developed various strategies, justifications, and reasoning. 

It was observed that students accompanied verbal counting by their fingers. They 

used their fingers as representatives of ordinal numbers.  
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4.1.1. Idea 1: Skip counting by using ordinal aspects of fingers 

 

The first mathematical idea included in the first mathematical practice emerged 

at the beginning of instruction while students engaged in skip counting activities. 

On the first day, students were provided a hundred charts for each skip counted 

numbers of 2, 3, 4 and 5 separately. They were asked to skip count by 2s, 3s, 4s 

and 5s and color the numbers in these number sequences. After finishing, they 

counted loudly (verbal counting) and checked whether they colored right or 

wrong. Following that, students were asked questions related to orders of 

numbers in a number sequence like ―what is the 6th number when you count on 

by 3s starting at 3‖. While answering this type of question, students counted their 

fingers. Below is a dialogue showing how students used their fingers:  

 

Teacher: What is the 7th number you count on by 2s starting at 2? 

Zehra:14 

Teacher: How did you find it? 

Gökhan: I counted on by 2s with my fingers until the seventh finger. 

2,4,6,8,10,12,14. I found 14. 

Birce: Each finger represents 2. Counting seven fingers, I can find the seventh 

finger as 14.  

 

As can be seen, students used their fingers to represent the orders of numbers. At 

first, they closed their hands. While they counted by 2s orally, they opened and 

showed one finger for each number they voiced. They counted by 2s until 

opening the seventh finger. When they voiced the seventh finger, they stopped. 

They gave this final (seventh) number as the answer. As another way, some of 

the students used the hundred chart to find the answer as below: 

 

Mahmut: Teacher, can we use the hundred chart? We colored the hundred chart 

(See Figure 4.2 below). We can count the seventh colored cell and find 14. 

Teacher: Sure, you can use it. If you have filled the chart correctly, you can find 

the answer on your chart. Otherwise, you may find the wrong answer.  

(A few students agreed with Mahmut. They stated that they counted the cells on 

the chart)  

Zehra: Mahmut, I think you should use your fingers. You cannot find this chart 

all the time. However, your fingers are always with you. It is more practical to 

count with fingers. 
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(Most of the students agreed with Zehra since they found the seventh number by 

counting their fingers) 

  

 

Figure 4. 2. Mahmut‘s way of finding the seventh number on hundred chart 

As can be understood from the dialogue, Zehra commented on Mahmut‘s 

solution and directed him to count his fingers instead of a hundred charts. 

Moreover, most of the students approved Zehra‘ explanation. In the following 

question, the teacher and the first researcher observed that the ones who had used 

the hundred chart were trying to count their fingers. They followed how finger 

counting was taken-as-shared by the classroom community daily. Students 

helped each other to their fingers to skip count. Their counting methods for 2s, 3, 

4, and 5s are illustrated below (Figure 4.3). 

 

  

  

Figure 4. 3. Skip counting with fingers  

On the second day, the teacher asked each student to answer the questions in the 

booklet and explained to the class that he was observing each student's reasoning 
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and interaction within the classroom. As shown below, students helped each 

other count through the verbal chain of multiple numbers. 

 

Classroom: Kadir, it's your turn. 

Kadir: I couldn't do it (What is the 6th number when you count on by 4s starting 

at 4) 

Ajda: It's easy. You can do it. 

Ilker: You will count your fingers. 

Meliha: Kadir, start with 4 and count by 4s. Tell us the sixth number.  

 

In the other questions, it was observed that most of the students were using their 

fingers while counting. This reasoning was noted down to keep whether it will 

be taken as shared in the classroom community in the following days.  

 

On the second day, the form of the questions also changed. Instead of asking just 

the nth number while skip counting, the order of a given number while skip 

counting was asked. An example related to this type of question and classroom 

dialogue is given below: 

 

Teacher: What is the order of 15 while counting on by 3s starting at 3? 

Doğan: We should count 15 fingers by 3s. It is 45. 

Ali: I am confused. Teacher, can you ask again?  

Teacher: What is the order of 15 while counting on by 3s starting at 3? 

Hakan: We won't count 15 fingers.  

Birce: 3, 6, 9, 12, 15 (counts by 3s and opens one finger for each number). 15 is 

the 5th number because I found 15 in the 5th finger. We used the same method, 

actually. 

Hakan: It is the reverse of the previous questions. We should count until 15. 

Ali: It is given to counting by 3s. We will count by 3s but until 15. 

  

As can be deduced from the dialogue, Hakan realized that the form of the 

question was more complicated and reversed than the previous ones. However, 

the roles of the fingers and the numbers voiced did not change. Birce used her 

fingers as the order of the numbers counted gain. She opened a finger for each 

number as before. When a Toulmin analysis was conducted on this dialogue, 

Birce's solution was considered as data to the claim "15 is the 5th number". The 

explanation of Hakan and Ali about counting by 3s by using fingers was 
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regarded as a warrant to Birce's data and claim. This interpretation is presented 

with Toulmin's analysis scheme presented in Figure 4.4 below: 

 

 

Figure 4. 4. Toulmin‘s Analysis scheme regarding skip counting fluently by 

using fingers 

Students were asked questions directly related to skip counting, and the order of 

numbers skip counted in the first two days. Such questions aimed to prepare 

students for the following activities and encourage them for faster and flexible 

counting. As can be deduced, students used their fingers to follow the order of 

numbers skip counted. The mathematical idea related to skip counting with 

fingers fluently was noted to keep an eye on to see if it will be shared in the 

following lessons. 

 

In the following lessons, it was observed that students were using their fingers to 

find the total number of objects asked in the problems. After reading and 

understanding the problem, students decided on the role of the numbers in the 

problem as skip counted number and the ordinal number. For instance, in the 

following activity, students were given repeated addition operation ―3 + 3 + 3 + 

3 + 3 + 3 + 3 =…‖ to solve. Students decided that the fingers represent the 

number of threes. They showed seven fingers and counted them by 3s to find the 

total sum (see Figure 4.5). 

Data: 3, 6, 9, 12, 15 

(counts by 3s and 

opens one finger for 

each number).  

Claim: 15 is the 5th 

number  

Warrant: It is reverse of the previous 

questions. We should count until 15 

(Hakan). It is given to count by 3s. We will 

count by 3s but until 15 (Ali). 

Claim: I found 15 

in the 5th finger. 
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Figure 4. 5. Toulmin‘s Analysis scheme regarding skip counting fluently by 

using fingers to solve repeated addition. 

In the following days, students did not question the idea of skip counting fingers. 

Students' grade-level fluency standard of skip-counting had been promoted with 

the help of the sequence of activities over the learning trajectory. Moreover, 

argumentation analyses showed that this idea became taken-as-shared since 

students no longer had to justify the role of fingers and the number skip counted. 

Furthermore, students used this claim as data in their arguments related to the 

following ideas mentioned below. Students focused on the reasoning procedures 

of the activities, not on the counting procedure. 

  

4.1.2. Idea 2. Finding the order of numbers in a number sequence by 

reasoning the order of previously established numbers 

 

In the first lesson, students practiced skip counting, as explained above. Students 

were asked questions related to the numbers and their place (order) in a number 

sequence. They developed the idea of skip counting with fingers. They used their 

fingers to represent the order of voiced numbers while skip counting. During 

working on the sequenced activities, they improved this idea as the data for a 

further argument. It was observed that students also used their fingers in a more 

advanced way. For instance, on the first day, after answering the question "What 

is the 7th number when you count by 4s starting at 4?" students were asked, 

"What is the 8th number when you count by 4s starting at 4?". While some 

Data: There are 7 times 

3 to add repeatedly 

Claim: 7 times 3 makes 18.  

Warrant: We can skip 

count 

Warrant: Each finger represents 3. 

If we count 7 fingers by 3s, 7th 

finger gives the answer 
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students started counting from 4 until the 8th finger (32), the others just added 4 

to 28. Those students used the previous question's answer to find the solution 

instead of counting eight fingers starting from 4 again. As illustrated below 

(Figure 4.6), they explained the difference between 7 and 8 as 1 representing one 

more finger. Then, they added 4 to 28 since one finger means counting one more 

4. 

 

 

Figure 4. 6. Illustration of finding 8
th

 number by connecting with 7
th

 number 

while counting 4s   

They focused on the order of counted numbers in two questions and compared 

them. Then, they interpreted the difference between the ordinal numbers and the 

effect of the difference. This interpretation is presented in Toulmin's analysis 

scheme presented in Figure 4.7 below: 

 

 

Figure 4. 7. Toulmin‘s Analysis scheme regarding the order of numbers skip 

counted 

As can be deduced from the figures and argumentation scheme, the previous idea 

(TAS 1) regarding skip counting fluently by using fingers was taken as shared 

since it shifted place from claim to data, warrants and backing related to this idea 

Data: 7
th

 number when 

counting by 4s is 28. 

Claim: 8
th

 number when 

counting by 4s is 32.   

Warrant: Since the 7th number is 28, we should 

count one more finger to find the 8th number. 

Then we should add one more 4 to 28. 



169 

(TAS 2). That is to say, students found the seventh number by counting seven 

fingers by 4s and claimed that it is 12. Then they used this claim as the data for 

the further argument and built on this data to find the eighth number. Students‘ 

interpretations related to the order of the numbers were observed even in the 

following lessons. In the second lesson, it was decided to ask such questions and 

observe their reasoning in this regard. It was seen that students interpreted the 

effect of fingers on the result by making a connection between previous 

questions, as can be seen below: 

 

Teacher: What is the 6th number when you count by 3s starting at 3? 

Esra: 3, 6 ,9,12,15,18 (she counted 6 fingers as TAS 1) 

Teacher: What is the 7th number when you count by 3s, starting at 3? 

Gökhan: 3,6,9,12,15,18,21,24 (he counted 8 fingers as TAS 1) 

Ajda: 24? How did you find 24? You counted one finger extra since you were 

fast. 

Gökhan: If I counted one extra, I should subtract 3 from 24. It makes 21. 

Birce: Actually, there is no need to count seven fingers. We know that 6th 

number is 18. For the 7th number, we should count one more finger. After 18, it 

makes 21.  

 

In this exercise, two different reasoning ways (warrants) emerged by Gökhan and 

Birce (Figure 4.8). Gökhan made a connection between the 8th and 7th fingers. 

Since he counted eight fingers, he decided to subtract one finger to find 7th 

finger. Hence, he made an operation by thinking backward. On the other hand, 

Birce pursued an operation by thinking forward. She knew that the six fingers 

make 18. Then she added one more 3 to 18 to find the 7th number. Both students 

accepted that each finger represents 3 (TAS 1) and compared the positions of the 

fingers. They used the values they knew by comparing them with the new 

situation. 
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Figure 4. 8. Finger counting strategies of Gökhan and Birce respectively.  

In the same way, the teacher continued to ask new questions and let students 

make connections between them; 

 

Teacher: What is the 10th number when you count by 3s? 

Esra: 3, 6 ,9,12,15,18,21, 24, 27, 30 (she counted 10 fingers as TAS 1) 

Teacher: Then, tell me the 33rd number. 

Eyüp: It takes too much to count 33 fingers. 

Teacher: Is there another way other than counting that many fingers? 

Ali: 10th number is 30. We can use it. 

Teacher: ıf 10 fingers make 30, we should add two groups of ten fingers, too. 

Ajda: It makes 90. If we count 3 threes, it becomes 99. 

 

Only a few students could interpret the ordinal number of 33 as 3 tens and 3 

threes in this question. The teacher helped them to calculate and reason. It was 

seen that the ordinal number was high for students to manage mentally without 

formal information of proportional reasoning. For that reason, the research team 

in the classroom decided to use lower values since it was confusing for the others 

who did not grasp this idea. The idea had not been taken-as-shared but examined 

for the following questions and activities. 

 

The teacher asked questions with small numbers to involve all the students into 

classroom discussion. She asked questions related to counting by 5s, as can be 

seen below: 

 

Teacher: What is the 7th number when you count by 5s starting at 5? 

Mahmut: 5, 10, 15, 20, 25, 30, 35 (she counted 7 fingers) 

Teacher: What is the 9th number when you count by 5s? 

https://www.seslisozluk.net/respectively-nedir-ne-demek/
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Karan: We know that 7th number is 35. For the 9th number, we should count 

two more fingers. 35 plus 10 makes 45. 

Egemen: Why did you add 10? 

Karan: We should count two more fingers. 5-10 (he pointed two fingers) 

Ajda: I found 45 by adding 20 to 25. 

Ali: 20 and 25? How? 

Ajda: I know that 5th number is 25. For the 9th number, I count four more 

fingers. Four fingers make 20. Then, 25 +20 makes 45. 

Doğan: Cool. 

Ali: I found the most interesting strategy. 

Teacher: Why do you think that it is the most interesting strategy? 

Ali: Because, I did not use addition. I used subtraction.  

Zehra: How? 

Ali: Actually it is very easy. I know that 10th number is 50. For the 9th number, 

we should count backward one finger. It means that I will get a five from 50. It 

makes 45. 

 

In this exercise, again two different directions emerged as counting forward and 

backward. While some of the students counted on known facts, some of them 

counted backward from known facts. To make it clear, the strategies of Karan, 

Ajda and Ali to find the number in a number sequence reasoning the order of 

previously established numbers are illustrated below (Figure 4.9) 

 

   

Figure 4. 9. Finger counting strategies of Karan, Ajda and Ali respectively.  

In this idea, students compared the ordinal numbers (fingers) and commented on 

the numbers in a number sequence by reasoning the difference between the 

orders of numbers. They found the numbers in a number sequence by 

constructing on previously established numbers in this sequence. In the in 

followowing days, students did not question how to compare the ordinal 

numbers to make a connection between numbers in a number sequence. Hence, 

warrants were dropped off. Furthermore, students extended this idea to another 

taken-as-shared idea related to the effect of change in multiplier on product 

https://www.seslisozluk.net/respectively-nedir-ne-demek/
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(TAS12). Therefore, it was decided that the current idea was taken-as-shared by 

the students.  

 

4.2. Classroom Mathematical Practice 2: Partitioning objects into equal 

groups to add them repeatedly 

 

The second mathematical practice that emerged as students engaged in the 

instructional sequence was about students‘ thinking to form equal groups by 

partitioning the given number of objects. In this practice, students focused on 

forming equal groups which enable them to count easily and practically by skip 

counting. They grouped objects through reorganizing, equipartitioning, and 

halving by using pictures of the objects or drawing these objects in equal groups. 

Specifically, four ideas became taken-as-shared as the students engaged in this 

practice, especially during the first two weeks of the instruction: 

 

 Reorganizing collections by using math drawings in order to use skip 

counting to find the total number of objects.  

 Equipartitioning collections into equal-sized groups through building up 

strategies 

 Halving to reproduce equal-sized groups 

 Distributing left over numbers (remainder) to equal groups by conserving 

equality 

 

The second mathematical practice is critical since it emerged as the foundation of 

other mathematical topics like division, fraction, and proportional reasoning. 

Conjecturing this evolution, composing activities were presented with 

decomposing activities. That is to say, students were given a collection of objects 

and asked how many objects there were. While they developed various ways of 

counting, the teacher encouraged them to count differently. Hence, students 

formed various equal groups to skip count them. 
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4.2.1. Idea 3. Reorganizing collections by using math drawings in order to 

use skip counting to find the total number of objects 

 

In the third lesson, students were given pictures of some objects. They were 

asked to find the total number of these objects. They immediately started 

counting them. When they were asked to share their answers, they explained 

their thinking by using the given drawings. It was seen that students tended to 

divide the objects into equal groups to use skip counting. To state this idea and 

discuss with the classroom community, students were asked to generate different 

counting strategies for finding the total number. Students circled the objects in 

the given picture and made equal groups. They focused on the number of the 

groups and the number of elements in each group. Then, they skip counted the 

objects in these groups. For instance, students were given pictures of 16 balls and 

asked how many balls there were. Students' reasoning and drawings (Figure 

4.10) are given below:  

 

Teacher: How many balls are there? 

Halil: I found 16. There are two rows of balls. I circled the 2 balls; one from top 

row and one from bottom row. I made 8 groups of 2 balls. Then, I skip counted 

them by 2s. 

(9 students agreed with him and stated that they used the same strategy, too) 

Teacher: Is there anyone who counted by ones? 

(3 students held their hands) 

Ali: We can count by ones. However, it will be easier to count them as groups. 

Teacher: Is there a different solution?  

Zehra: I found 16 but in a different way. I circled each row as a group. I got 2 

groups of 8. I added 8 to 8. 

Egemen: We can make groups of 3. 

Gökhan: I tried it. But, we cannot put all of the balls into groups of trees (He 

drew circles as shown in Figure 10 below). We can get five groups of 3 and one 

ball as extra. We can use skip counting like 3, 6, 9, 12,15. Then, we should add 

1 to 15 and find 16. We can find the total number but cannot use only skip 

counting. We should also consider the remaining balls. 

Birce: Moreover, we don't say 16 while counting by 3s. (this explanation was 

noted to be kept an eye on. In the following lessons, this idea became taken-as-

shared as TAS 4) 

Eyüp: What about 6? Can we count by 6? 

Doğan: Let's try (he drew circles to show). If we circle six balls to make a 

group, we get four balls as left over. It is possible to find it by counting by six 

and then adding 4. However, it may not be obvious. If we could equally put all 
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the objects in the groups, it would be easier to find the total number of things by 

skip counting.  

 

 

Figure 4. 10. Students' drawings on the given picture of balls 

As can be deduced from the dialogue, students were just asked to find the total 

number of objects. They were not directed to use equal groups. Intuitively, they 

focused on forming equal groups in the given picture. They circled and skip 

counted the groups by touching on each group. In this sense, two different 

strategies emerged equal groups and equal groups with remaining balls. The ones 

who could divide the balls into equal groups without remaining directly used 

skip counting (see the drawings of Halil and Zehra in Figure 4.10). 

 

On the other hand, the ones who formed equal groups with the remaining made 

an extra calculation (addition) (see the drawings of Gökhan and Doğan in Figure 

4.10). They skip counted the equal groups and found the number of balls in these 

groups. Then, they added the remaining balls to this number to find the total 

number of the balls. Both drawing strategies with/without remaining served for 

students to make practical counting instead of counting by ones. 

Halil‘s drawing: 

Zehra‘s drawing: 

Gökhan‘s drawing: 

Doğan‘s drawing: 
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In the fourth lesson, they were given pictures of 12 strawberries and asked how 

many strawberries there were. Students were given the picture of strawberries. 

They worked on this representation and formed groups as in Figure 4.11 below: 

 

 

Figure 4. 11. Students' drawings on the given picture of strawberries 

As shown in Figure 4.11, students divided all the strawberries into equal groups 

without remainder. They used these groups to skip count and found the total 

number of strawberries. Moreover, some of them discovered that reversing the 

numbers of groups and elements in each group results in forming equal groups. 

That is to say, the objects grouped as six sets of two elements can be grouped as 

two sets of six elements. It means that some of the students intuitively felt the 

commutative property of multiplication. For that reason, this valuable sense was 

noted to be observed in the following activities.  

 

Students‘ arguments are presented in the argumentation analysis scheme in 

Figure 4.12 below. 
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Figure 4. 12. Toulmin's Analysis scheme regarding the usage of math drawings. 

As can be seen in Figure 4.12, students recognized that they could use the groups 

to count more effectively via skip counting and repeated addition. In this idea, it 

was observed that students take the objects in the groups out before they skip 

count or constantly add to figure out how many. They had not yet grasped the 

concept of counting groups. They focused on items in each group (multiplicand). 

They were not aware of the multiplier's role. 

 

In the fifth lesson, students were given a picture with 18 bees. They were asked 

how many bees there were. Students' drawings (Figure 4.13) and dialogue related 

to these drawings are given below:  

 

Teacher: How many bees are there? 

Zuhal: I found 18. I grouped the bees into nine groups and 2 bees in each group. 

Then, I counted by 2s. 

Birce: If it can be counted by 2, we can count by 9, too. I divided them into 

groups of 9 bees. Now, I have two groups. 9+9 makes 18.  

Ali: I drew groups of 3 bees. Since there are three rows, I picked a bee from 

each row. It made six groups and three bees for each group.  

Ajda: I used the rows, too. I circled each row as a group. Therefore, I found 

three groups with six bees in each. 

Data: I formed equal 

groups of 3 strawberries 

(Zuhal) 

Claim: There are 12 

strawberries. 

Warrant: We can count 

the strawberries as 3-6-9-

12. 

Data: I made groups of 6 

strawberries (Ajda)  

Warrant: There are 2 groups. 

6 and 6 (showed two fingers) 

make 12 (Egemen)  

Data: Reverse is possible 

as 6 groups of 2 

strawberries (Ali)  
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Melek: I drew circles with five bees each since it is easy to count by 5. I had 

three groups which include 5,10,15 bees. There are three more bees. 15+3 

makes 18.  

Zehra: What about counting by 8? I want to try it. (She circled two groups of 

eight bees). We can count by eight as 8,16. There are two remaining bees. If we 

add two bees to 16, it makes 18 bees. 

Hakan: I want to try 4. (He did not draw groups. He counted his fingers as 

4,8,12,16,20). I didn't say 18, which is between 16 and 20. We cannot perfectly 

group 18 bees as fours. There will be two remaining bees. 

 

 

Figure 4. 13. Students' drawings on the given picture of bees 

It can be understood from the dialogue and the drawings that students tended to 

group the objects to count them quickly. They grouped them as the number of 

elements they felt comfortable counting. For instance, Zuhal circled the bees by 

2s. Birce took advantage of Zuhal's work since she knew that the reverse 

grouping is also valid (warrant) by replacing the group number and group size. 
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Furthermore, Ali and Ajda considered the placement of the bees in the picture 

and grouped these bees according to their sequencing (warrant). 

 

On the other hand, Melek and Zehra used grouping with remainders. They used 

skip counting and the addition of remainders. Hence, all of these students used 

skip counting (claim) instead of counting by ones to find the number of objects 

in the picture. While making this claim, they used their drawings as data to 

provide them with equal groups to skip-count. They explained the procedures 

and reasoning they developed as a warrant to support the claim. Finally, all the 

students accepted that some objects could be counted as groups to find the total 

number practically. As long as the groups are equal, it is possible to use skip 

counting by considering the remainder if it exists. It was observed that this idea 

was taken-as-shared by the students. That is to say, students used drawing to 

construct their units and interpret the total number of objects in terms of these 

units. 

 

Moreover, while working on the pictures, students developed another idea. As 

seen in Hakan's explanation in the dialogue above, he did not draw and count 

equal groups. He tried to skip count until he said 18. He realized that it is not 

possible to say 18. He concluded that 18 could not be divided into groups of 4 

without a remainder. Hence, he stated divisibility intuitively, although he had not 

been introduced to the concept of divisibility. This idea was noted to be observed 

in the following lesson. Arguments related to this idea are examined below (TAS 

4). 

 

4.2.2. Idea 4: Equipartitioning collections into equal-sized groups through 

building up strategies 

 

In the first week, students were given a collection of objects and asked to find 

how many objects there were. Through engaging in these activities, students 

began to use more efficient strategies to count multiple objects, which involves 

breaking numbers down equally (equipartitioning) and putting them back 
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together (skip counting). The concept of equipartitioning developed in parallel 

with that of skip counting. Students used skip counting to equipartition the 

objects. For instance, in the fifth lesson, students were given a picture of 18 bees 

and asked how many bees there were. Students‘ drawings and their explanations 

to support their claims are presented above. They created equal groups and 

composed them to find the total number of objects. While discussing their work, 

they were asked to group given objects differently and find the total number. It 

was observed that students considered divisibility without knowing about 

divisibility. As it was stated at the end of TAS 3, verbal questions were asked to 

students to reveal their finger counting method considering divisibility. 

Classroom discussion related to such verbal questions is given in the dialogue 

below: 

 

Teacher: You know that there are 18 bees here. Assume that this picture is not 

given, and you don‘t have a chance to draw or use a pencil. How would you 

group 18 bees equally without remaining? 

Ajda: I can place them into groups of 3. Because, while counting by 3s, we say 

18. 

Esra: Really? It would be so difficult to count 18 fingers by 3s. 

Birce: No, Esra. Not 18 fingers. We will count our fingers by 3s until saying 18. 

Let me show you. 3,6,9,12,15,18 (she opened a finger for each number). Can 

you see? I said 18 on the 6th finger. It means 18 bees can be shared into six 

groups of 3 bees.  

Ali: We say 18 while counting 6 by 6. 6, 12, 18. Three groups of 6 bees. The 

reverse of Ajda‘s groups. 

Teacher: What else? 

Eyüp: What about 5? 5,10,15,20. 

Meliha: You did not say 18. We cannot perfectly group 18 bees as fives.  

Teacher: Why do you use skip counting? Do you think that this method always 

works? 

Doğan: If objects are placed as equal groups, we can find the total number of the 

object by skip counting. For that reason, if we can find the total number by skip 

counting, it means that there are equal groups.  

 

Students used skip counting to be able to distribute objects into equal groups. 

They moved through the abstract level since they did not use pictures, or 

drawings but counted fingers. They supported their claims by skip counting their 

fingers until they pronounced the given number. For instance, Birce counted by 

3s until saying 18. She opened one finger for each number she voiced. She said 
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18 on the 6th finger. Then, she concluded that 18 bees could be distributed into 

six groups; each including three bees. In this method, skip-counted numbers 

represented the number of objects in each group, while fingers represented the 

groups. In fact, they developed this method to divide the given number into its 

divisors without knowing what they were exactly doing. 

 

Moreover, reversing the number of groups and elements in each group emerged 

in this lesson too. Ali used Ajda‘s groups and came up with a new grouping. He 

needed to use skip-counting to support this claim. The researchers noted his way 

of getting new groups by reversing the numbers. It showed that students started 

developing the knowledge of commutativity intuitively. Hence, they used skip 

counting to show that reversing group number and group size results in obtaining 

equal groups. That is to say, students claimed various equal grouping strategies. 

Students‘ reasoning related to equipartitioning objects via skip counting is 

presented in the argumentation analysis scheme in Figure 4.14 below:  

 

Figure 4. 14. Toulmin‘s Analysis scheme regarding equipartitioning objects by 

using skip counting 

Most of the students accepted skip counting as sharing method. They were asked 

to explain and discuss the generalizability of this method. Doğan, explained this 

Data: While counting by 3s, 

we say 18 (Ajda) 
Claim: 18 bees can be divided 

into 6 groups of 3 bees. 

Warrant: While counting by 3s with our 

fingers, we say 18 on the 6
th
 finger (Birce) 

Backing: If we can find the total number 

by skip counting, it means that there are 

equal groups (Doğan) 
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way by considering composing equal groups to find the total number of objects 

in these groups. In the previous activities, they counted fingers representing the 

groups to find the total number. They also used the same method to find the 

number of fingers (groups). That is to say; they skip counted until saying the 

total number. Then, they decided that the number of counted fingers represented 

the number of groups. Hence, students introduced their claims of 

equipartitioning objects by iterating the group size. 

 

On the fourth day, students were given a picture of nine flowers and three vases 

to place flowers in the vases equally. Students used given pictures or skip 

counting to distribute the flowers. After that, they were directed with follow up 

questions, as in the given dialogue below:  

 

Teacher: Can you place given flowers into given vases equally? 

Karan: We can. There are three rows of flowers. I put flowers in each row into a 

vase. There will be three flowers in each vase (Figure 4.15). 

Ali: There are nine flowers. I counted until nine with my fingers. I said nine on 

the 3rd finger. There will be 3 flowers in each vase. 

Teacher: If one of the vases is broken, can you equally place the flowers into the 

other vases? 

Birce: We cannot. If we take three flowers from the broken vase, we should 

equally place them into two vases.  If we divide them into two vases, there will 

be a remaining flower (she showed her three fingers and closed two of them to 

state they were placed in two vases).  

Teacher: Do you agree with her? 

Halil: I agree. I shared nine flowers into 2. I counted by 2s as 2,4,6,8 (he 

counted his four fingers). We cannot share equally. There will be four flowers in 

each vase and one flower remaining. 

  

 

Figure 4. 15. Karan‘s drawings on the given picture to share flowers. 

As can be deduced from the dialogue above, Ali used skip counting until the 

total number. After that, students were asked to consider the case that one of the 
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vases was broken. In this case, Halil shared nine flowers in two vases via 

counting by 2s. It was found remarkable. He could have answered this question 

like Birce, since there were few flowers, and given pictures of flowers and vases 

made the answer visible. However, Halil preferred skip counting to equipartition, 

which means he internalized this idea. Moreover, it should be pointed out that 

Birce also used a build-up strategy by adding the flowers in the broken vase on 

the other vases. Their arguments are presented in the argumentation analysis 

scheme in Figure 4.16 below: 

 

Figure 4. 16. Toulmin‘s Analysis scheme regarding equipartitioning objects by 

build-up strategies using skip counting.  

On the fifth day, students were given a picture of 36 birds and asked how many 

birds there were. Students used math drawings to form equal groups and counted 

these groups to find the total number practically. There were different grouping 

strategies. Students divided the birds into equal groups with or without 

remaining. The teacher asked verbal questions to encourage students to develop 

mental strategies and discuss in the classroom, as it can be seen in the dialogue 

below: 

 

 

Data: There are 3 flowers in 

the broken vase (Birce) 
Claim: We cannot share flowers 

equally. 

Warrant: If we divide them into 2 vases, 

there will be a remaining flower (Birce) 

Backing: I counted by 2s as 2,4,6,8 (he 

counted his 4 fingers). There will be 4 

flowers in each vase and 1 flower remaining 

(Halil) 
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Teacher: Assume that you have 36 birds. You want to put them in cages four by 

4. How many cages do you need? 

Melek: 9 cages. If we count by 4 with our fingers, we say 36 on the 9th finger.  

Teacher: Is there another way to place birds in the cages equally? 

Gökhan: We can place them two by 2. We can count 36 by twos. 

Teacher: Do you need more cages or fewer cages? 

Gökhan: Fewer. 

Classroom: More.  

Birce: Since we will place fewer birds in each cage, we need more cages. 

Ajda: This is division. 

Zehra: We divide the birds into cages. This is a division problem. 

Teacher: We haven‘t called it up to now, but it is division. What else? How can 

you place the birds? 

Birce: 3 by 3. We say 36 while counting by 3. It makes 12 cages of 3 birds. 

 

As can be seen in the dialogue above, students used skip counting to add the 

birds repeatedly until they had 36 to equipartition the birds. After a while, the 

students discovered that the operation they had performed was division. 

Although they had not been introduced to multiplication (symbolically) and 

division concepts, they realized that the questions posed to them were division 

problems. Students were asked these problems using the verbs ―distribute, share, 

place," not ―divide.‖ However, they realized that they were dividing the objects. 

While finding equal groups, they found the divisors of 36. They proposed their 

claims related to equipartitioning given collections. They supported these claims 

by proposing warrants of skip counting. 

 

On the sixth day, students were given a picture of 15 balloons and five children. 

They were asked to share these balloons with children equally. Classroom 

dialogue related to this activity is given below: 

 

Teacher: As you can see in the picture, there are 15 balloons. How many 

balloons does each child take if we share these balloons with five children? 

Ilker: 3 balloons. I counted by 5s until 15. (He showed three fingers).  

Teacher: Assume that there are three children instead of 5 children; how many 

balloons does each child take? 

Hakan: 5 ballons. The reverse of the previous.  

Zuhal: We can count by 3s. We count five fingers until 15. 

Ajda: There is one more way. We should take six balloons given to two children 

in the previous question. I shared six balloons with three children. 3,6 (she 

counted her two fingers). It means two more balloons will be given to three 

children. There will be five balloons of each (Figure 4.17) 
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Figure 4. 17. Illustration of Ajda‘s explanation 

As in the problem of the broken vase, alternative problems were asked by 

making the given problem more complicated. Students used the same strategies 

as in the dialogue, which became taken-as-shared by the classroom. Students 

adapted to this idea of equipartitioning objects by regrouping the objects through 

build-up strategies. They could have adapted it to even more complicated 

situations. In the following lessons, it was observed that students used this idea 

without proposing warrants since it had already been taken-as-shared. To satisfy 

their claims, they did not need to explain the relationship between composing 

and decomposing or finger counting procedures.  

 

4.2.3. Idea 5: Halving to reproduce equal-sized groups 

 

In the first week, students worked on counting multiple objects by dividing them 

into equal groups. The students developed another idea of halving the objects 

during these activities. This idea started with dividing given pictures into halves 

getting the advantage of an alignment of the objects. The first argument related 

to this idea was observed in the activity in which there are pictures of 16 balls. 

As explained above, students were encouraged to find the total number of balls 

using different strategies. In this lesson, Karan developed the idea of halving as 

given below: 

 

Zehra: I found 16 but in a different way. I circled each row as a group. I got two 

groups of 8. I added 8 to 8. 

Zuhal: I used the same method. I counted eight fingers on eight and found 16. 

Karan: I found a new solution. If we divide Zehra's drawing into two, we get the 

group of four (He drew an imaginary vertical line on Zehra's drawing with his 
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finger) (Figure 4.18). It makes four groups of four. I can count by 4s and find 

16.  

(2 students agreed with him and stated that they used the same strategy, too)  

 

 

Figure 4. 18. Students' halving strategies on the given pictures of balls 

It was noted that halving might be conceptualized and internalized by others, and 

it might be a taken-as-shared idea through argumentation in the classroom. For 

instance, students were given pictures of 12 strawberries and asked to calculate 

how many strawberries there were. Students‘ reasoning related to the halving 

strategy is given in the dialogue below: 

 

Zehra: I circled each row as a group. I got two groups of 6. I added 6 to 6. 

Egemen: I found a new solution. If we divide Zehra's groups into two groups, 

we get four groups of three. I can count three by three and find 12 (Figure 4.19). 

 

 

Figure 4. 19. Illustration of halving strategies of Zehra and Egemen. 

As illustrated above (Figure 4.19) to make it clear, students used given visual 

representations to form equal groups. They broke the visuals in half as an act of 

subdivision. Even they applied multiple subdivisions to create new groups. After 

the first subdivision, the halves were used to find the total number of objects by 

addition. On the other hand, after the second subdivision, the quarters were used 

to find the total number of objects by skip counting. In the following days, 

students developed this idea by moving towards an abstract level without using 

visuals. During the discussion on the activity related to counting 36 birds, 
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students shared their strategies to equipartition the birds. They used build-up 

strategies to decide on the groups and the number of birds in each group (TAS 

4). Moreover, there were some students used halving to reproduce equal-sized 

groups. These students used skip counting as a warrant to support their claims, as 

in the excerpt below. 

 

Zehra: We can decompose 36 into 30 and 6. Then, 30 birds and six birds can be 

divided into two. Half of 30 is 15. I put 15 birds in each two groups. Then, I 

share six birds into these groups as three by 3. It means that there are 18 birds in 

each group. 

Hakan: Zehra claimed that 36 birds could be shared as 18 birds. I know that half 

of 18 is 9. If we divide the groups into two, there will be four groups of 9 birds.  

Birce: You are right. We can find 36 by counting 9, 18, 27, and 36. 

  

Students explained their reasoning verbally without drawing. To make it 

understandable, their reasoning is illustrated below in Figures 4.20 and 4.21 

according to their explanations. They applied multiple subdivisions so that they 

found quarters of the whole. 

 

 

Figure 4. 20. Illustration of halving strategies of Zehra. 
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Figure 4. 21. Illustration of halving strategies of Hakan. 

As seen in the dialogue and the illustrations, students halved the groups to 

regroup the objects by halving the group's size and doubling the number of 

groups. The argument of Hakan is presented in the argumentation analysis 

scheme in Figure 4.22 below to make it clear: 

 

 

Figure 4. 22. Toulmin‘s Analysis scheme regarding halving to reproduce equal-

sized groups 

Therefore, students supported their claims with the previous idea of 

equipartitioning collections into equal-sized groups through building-up 

strategies. This situation revealed that a previously justified claim shifted place 

Claim: 36 birds can be 

divided into 4 groups 

of 9 birds (Hakan) 

Warrant: Half of 18 is 9. If we divide 

the groups of 18 birds into two, it 

makes 4 groups of 9 birds (Hakan) 

Data: 36 birds can be 

divided into 2 groups of 

18 birds (Zehra).  

Backing: We can find 36 by 

counting as 9, 18, 27, 36 (Birce) 
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to become warrant. Moreover, students did not challenge the idea of halving the 

collections on the following days. Students divided the groups into two as long 

as they had an even number of objects. That is to say, they used halving to 

regroup the objects. Hence, it ass evident that the idea of halving to reproduce 

equal-sized groups was taken-as-shared. At that point, students split the groups 

of objects into equal parts whose denominators are two (fraction) intuitively. 

 

4.2.4. Idea 6: Distributing left over numbers (remainder) to equal groups by 

conserving equality 

 

During the activities related to regrouping objects, students developed grouping 

strategies by making connections between different groups. When students were 

asked to group the objects differently, they made reasoning considering 

previously formed groups to form new groups. During such activities, students 

tried various numbers as group size and sometimes they couldn‘t partition the 

objects without remainder. At that point, teacher encouraged them to question 

these conditions. While discussing on these groups with left overs, students 

developed another idea related to distributing the left over. For instance, as 

explained above in the sections related to TAS 3, students shared 18 objects into 

equal groups. Some of the students built a bridge between different groups. 

Students‘ explanations related to this idea are selected and given in the dialogue 

below: 

 

Teacher: How can you share 18 bees equally? 

Ali: We say 18 while counting 6 by 6. 6, 12, 18. 3 groups of 6 bees. 

Zuhal: Maybe, we can divide them into groups of 8 bees. 

Zehra: I tried it. It is not possible. While counting by 8, we say 8 and 16. We 

have two groups of 8 and 2 extra bees. But we can share the remaining 2 bees 

one by one to these groups with 8 bees. In this case, there will be 2 groups with 

9 bees in each (Figure 4.23). 

Esra: I couldn‘t understand. 

(Zehra used the picture of bees and showed the groups by drawing on the 

booklet). 

Ajda: We say 36 while counting by 9s.  

Eyüp: Can we share as 5 bees? 5-10-15-20. No, we cannot. 

Melek: I grouped as fives. It makes 3 groups of 5. And there will be 3 remaining 

bees. 
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Karan: It makes 5, 5, 5, and 3 bees. I have an idea. If we share 3 bees, it makes 3 

groups of 6. But Ali found it before. 

Teacher: Ali found by skip counting. Your strategy is different. Can you explain 

again? 

Karan: If we make groups of 5, it makes 4 groups of 5, 5, 5 and 3 bees. 

Actually, it makes 3 equal groups of 5 bees and 3 bees as remaining. If we 

distribute 3 bees one by one to three groups of 5 bees, it becomes 4 groups of 6 

bees (Figure 4.23). 

(Karan explained his friends by drawing on the board) 

Ali: Karan didn‘t give up. Placed the remaining bees too. 

 

As can be inferred from the dialogue, Zehra and Karan used the answers of 

others as data and made new claims related to grouping 18 bees equally. They 

explained their claims by drawing on the booklet and the board, as illustrated in 

Figure 4.23. Zehra used the wrong claim of Zuhal. She refuted the claim by 

using skip counting (rebuttal) as presented in the argumentation analysis scheme 

in Figure 4.24 below. Then, she used this wrong claim as data to make a new 

claim. She used the equal groups with the remaining bees and shared the 

remaining bees with equal groups by ensuring equality. She presented warrants 

to explain the equality of the groups. In the same way, Karan used the claim of 

Eyüp as data and made a new claim. He provided justification to others as 

warrant by drawing on the board. The reasoning of both Zehra and Karan was 

dependent on the claims of others, although they were wrong. They refuted these 

claims and took advantage of these claims to produce new and correct claims. 

that is to say, they interpreted the left over bees and distributed them on the 

groups by conserving equality.  

 

Figure 4. 23. Illustration of claimes explained by Zehra and Karan. 
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Figure 4. 24. Toulmin‘s Analysis scheme regarding distributing left over bees on 

equal groups by conserving equality  

In the fifth lesson, students were asked to group 36 birds equally, as explained 

before in the TAS 4 and 5. Different than the claims and explanations in the 

dialogues given above, the claims related to this idea (TAS 6) are provided in the 

dialogue below: 

 

Teacher: How can you group 36 birds equally? 

Simge: I distribute them 10 by 10. 

Ali: Simge, you can distribute 30 birds as 10 by 10. What about 6 birds? They 

will be out of groups. 

Teacher: Can you help Simge?  

Doğan: I want to help. I am thinking. We can group as 10-10-10 and 6. There 

are 3 groups of 10 birds. Let‘s try to put 6 birds into three groups equally. It 

means that we should add 2 more birds in these groups. It makes 12 birds in 

each group. 

Teacher: Lets count by 12 and check your answer. 12, 24, 36. Well done. 

 

Students explained their reasoning verbally without drawing. To make it 

understandable, their reasoning is illustrated below in the Figure 4.25 in the light 

of their explanations.  

Data: 18 bees can be 

divided into groups 

of 8 bees (Zuhal) 

Warrant: We say 16 while counting by 8. 

There will be 2 remaining bees. If we share 

2 bees with two groups of 8 bees, there will 

be 9 bees in each group (Zehra) 

Claim: 18 bees can be 

divided into 2 groups 

of 9 bees (Zehra) 

Backing: We say 36 while 

counting by 9s (Ajda) 



191 

 

Figure 4. 25. Illustration of Doğan‘s reasoning 

As it can be deduced from the dialogue of students and illustration of their 

reasoning, students developed an idea of making a connection between different 

grouping strategies. Students used previous claims and developed them to pose 

new claims. Students were encouraged to feel confident and think flexibly. When 

someone made a wrong claim, the teacher asked the others for help to correct the 

wrong claim. Students created a relationship with numbers and talked about 

them. They did not use given pictures or math drawings to show whether their 

claim was true. They computed mentally and thought fluently about numbers. 

They used the claims of others as data, as can be seen in Toulmin‘s analysis 

scheme regarding this idea presented in Figure 4.26 below.  

 

 

Figure 4. 26. Toulmin‘s Analysis scheme regarding distributing left over birds on 

equal groups by conserving equality  

Data: I distribute 36 

birds 10 by 10. 

(Simge) 

Warrant: If we share as 10 birds, we get 6 birds 

out of groups. If we distribute 6 birds to the 

groups of 10 birds, we add 2 more and get 12 birds 

in each group (Doğan) 

Claim: 36 birds can be 

divided into 3 groups of 

12 birds (Doğan) 

Backing: Lets count by 12 as 

12, 24, 36 (Teacher) 
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Students provided warrants to explain the relationship between the data and the 

claim. They used the remaining birds, which are out of equal groups. They 

distributed these remaining birds into equal groups by sustaining the equality of 

these groups. To support their warrants, they used skip counting and showed 

whether the objects were equipartitioned. In the following days, students 

internalize this idea to equalize the groups by distributing the left over objects. 

No one questioned how to regroup the objects by using left overs in other 

activities. They did not provided explanations to connect data and claim. That is 

to say, they did not use warrants anymore, which means that the idea became 

taken as shared. Moreover, they used these claims as data in the following 

lessons. Hence, the idea of distributing the left over objects was taken-as-shared 

so that students administered it in the following lessons without questioning. 

 

4.3. Classroom Mathematical Practice 3: Iterating linked units by using 

pictures and fingers  

 

Students had partitioned objects into equal groups to add them repeatedly in the 

second practice. The third practice is about composing these groups. That is to 

say, the third mathematical practice that emerged as students engaged in the 

instructional sequence was about students‘ reasoning about composing groups of 

objects by using pictures and fingers. In this practice, students use their fingers 

and pictures to iterate composite units and make sense of covariation by double-

matching on pictures. Specifically, three ideas became taken-as-shared as the 

students engaged in this practice, especially on the first two weeks of the 

instruction: 

 

 Skip counting the groups (composite units) in order to iterate 

 Assigning hands (5 or 10 fingers) as composite units to iterate 

 Double matching collection of equal groups to iterate on via pictorial 

representation 
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The third mathematical practice is critical since it is about processing 

multiplication operations. When students‘ ways of reasoning while composing 

objects were examined, two critical abilities of students were detected as 

unitizing and iterating. Students started to collect objects by iterating units 

through skip counting. In the following lessons, students assigned unit of units 

(composite unit) and extended their counting by operating with this linked 

composite unit. At that point, follow-up questions posed to students without 

changing the realistic context of the tasks helped students to question, examine 

relations between different groupings and extend their build-up strategies 

through forming composite units.  

 

4.3.1. Idea 7: Skip counting the groups (composite units) in order to iterate 

 

In the following lessons, students were asked problems for independent practice. 

They were expected to apply their real-world experiences and the day‘s learning. 

It was observed that students used their fingers to find the total number of 

objects asked in the problems. After reading and understanding the problem, 

students decided on the role of the numbers in the problem as skip counted 

number and the ordinal number. For instance, in the ninth lesson, students were 

asked to solve the problem of ―Selay plants two trees every month. How many 

trees does Selay plant in 9 months?‖. Students worked on the problem by 

themselves at first. While they were solving the problem, it was observed that 

students were engaging with their fingers, and their lips were moving 

rhythmically that meant they were counting their fingers. Then, they shared and 

discussed their solutions with others as in the dialogues given below: 

 

Esra: I found 18. I drew two trees for each month and counted them (see Figure 

4.27a).  

Teacher: Can you explain how you counted?  

Esra: 1, 2, 3, …., 18. (She counted all trees by ones). 

Doğan: Esra, there is an easy counting method. You can count by twos. 

(Esra tried to count by twos on her drawing. However, she confused the trees 

and could not count) 

Hakan: I grouped trees 2 by 2 (see Figure 4.27b). It helped me to count. I have 

nine groups. It means that I will count nine fingers. I counted my nine fingers as 
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2,4,6,8,1012,14,16,18. On the ninth finger, I said 18. It means that there are 18 

trees.  

Halil: I used my fingers to represent the months as well. 

Teacher: How did you count your fingers? 

Halil: I counted by twos, skip count. 

Teacher: Why did you count by 2s instead of by 1s? 

Karan: Counting by ones is a waste of time. To count by ones, we have to draw 

all the trees. Instead of spending time drawing, I imagined my fingers as 

months. It is given that there must be two trees each month. Therefore, I realized 

that I should count my nine fingers by 2s. 

 

a b 

 

Figure 4. 27. Drawings of Esra (a) and Hakan (b) 

As observed, students said that they used skip counting with fingers. Most of the 

students concentrated on months as equal groups and realized that they could 

skip count their fingers to find the total number of trees. Some of them 

discovered this situation after drawing trees for each month. Even those who 

drew trees used their fingers instead of counting the groups on their drawings. 

They named each finger as a month or group. This interpretation is revealed in 

Toulmin's analysis scheme presented in Figure 4.28 below: 

 

 

Figure 4. 28. Toulmin‘s Analysis scheme regarding skip counting fluently by 

using fingers to solve problem 

Data: We have 9 groups. 

There are 2 trees in each. 

Claim: Selay plants 18 

trees in 9 months. 

Warrant: My fingers represent the 

groups/months. I used 9 fingers. I 

counted these nine fingers by 2s. I 

found 18 on the ninth finger. 

Warrant: 9 times 2 makes 

18. The ninth number is 18. 
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In the following activities, students approached the multiplication problems as 

equal group problems. Hence, they specified the groups and elements in each 

group via drawings and verbal explanations. After a while, students did not 

question how to decide on the groups. They just stated how many fingers they 

counted and how they counted. Students used directly skip counting to solve the 

problems by conceptualizing the groups as units to iterate. To be more clear, 

students assigned each finger as a unit which is critical didactical activity in 

development of proportional reasoning. Therefore, students no longer had to 

justify the components of equal groups. It was seen that warrants were dropped 

off day by day.  

 

In addition to classroom activities taking place in the instructional sequence, it 

was observed that students used this idea where it is necessary in daily situations 

they experienced. One day, students were wasting wet wipes in the classroom 

and the teacher warned them: 

 

Teacher: Please don‘t waste wet wipes. 3 people can share one wet wipe.  

Birce: Then, we need 8 wipes.  

Teacher: How did you decide? 

Birce: There are 24 students in this classroom. I counted 3 by 3 until 24 with my 

fingers. I reached to 24 on the 8th finger. This means 8 wet wipes will be 

enough for all of us. 

 

In this situation, Birce used skip counting to find the answer of ―if we need a wet 

wipe for 3 students, then how many wet wipes do we need for 24 students‖. It 

was more than skip counting. She used one wet wipe as a composite unit which 

represent the pieces for each three students. Then she took it as one thing and 

iterated it by keeping track of how many times she will count until 24. This 

situation took our attention since it was related to creating composite unites and 

iterating by skip counting. Students internalized the idea and started using it in 

daily life. It was observed that students used skip counting to find the total 

number of objects as long as they are presented in equal groups. In the following 

tasks, the warrants were dropped off since students did not question each other 

anymore to provide warrant.  
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4.3.2. Idea 8: Assigning hands (5 or 10 fingers) as composite units to iterate 

 

As it is explained above, in order to support students‘ fluency in formal 

multiplication, students worked on skip counting exercises. They were posed 

problems related to the order of numbers which are skip counted. In the flow of 

the lesson, the form of the questions also changed. Instead of asking just the nth 

number while skip counting, the order of a given number was also asked. For 

instance, students were asked to find the order of 44 while counting on by 4s 

starting at 4. Most of the students used their fingers for skip counting as in the 

previous ideas (TAS 1&2). Surprisingly, Doğan developed composite units to 

iterate informally by using his hand and fingers. Classroom dialogue related to 

this question is given below: 

 

Teacher: What is the order of 44 while counting on by 4s starting at 4? 

Zehra: We can count until 44. On the 11th finger, we say 44. 

Teacher: Do you agree with Zehra? 

Doğan: I found 11, but in a different way. I did not count all the fingers. I know 

that five fingers make 20 if we count as 4,8,12,16,20 (TAS1). After that, there is 

no need to count. If I include one more hand (5 fingers), it makes 40. To reach 

44, I need a four which means one finger. I have two hands and a finger which 

means 11 fingers (Figure 4.29). 

Birce: I liked this solution.  

Teacher: Is there a different solution that you want to share? What do you 

remember about counting by 4? 

Egemen: 10th number is 40.  

Ali: For 44, we need one more 4, which is represented by a finger. It makes 

10+1=11. 

 

 

Figure 4. 29. Illustration of Doğan‘ using his hand as a composite unit 
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As can be followed from the dialogue, students used the claims established in the 

first idea (TAS 1). Another striking point in this dialogue is that Doğan assigned 

each hand (5 fingers) as composite unit to iterate. He took each hand (five 

fingers) as a composite unit representing 20. He iterated this unit to reach 40. 

Then he added one more unit (one finger) representing 4. He intrinsically 

developed the ability of unitizing and composite units by using the claims of 

previous questions as data. As he did, others also developed reasoning strategies 

not to count all the numbers starting from 4. They revealed the relationship 

between the order of the numbers in the previous and current questions as 

explained with Toulmin's analysis scheme presented in Figure 4.30 below: 

 

 

Figure 4. 30. Toulmin‘s Analysis scheme regarding to find the order of numbers 

skip counted 

Asking questions related to skip counting helped students to make a connection 

between known and unknown values. They convinced each other that it was a 

waste of time to count from the beginning. They made reasoning (warrant) to 

find the answer by choosing the most appropriate knowledge as the data. In the 

Data: Counting 

5 fingers makes 

20 (Doğan) 
Claim: 44 is the 11

th
 

number when 

counting by 4s. 

Warrant: 1 hand makes 20, 

2 hands make 40, and 1 

finger makes 4. 

Data: We know the 

10
th
 number when 

counting by 4s is 40 

(Egemen) 

Warrant: 40 means 10 fingers. To 

make it 44, we need to add 4 which 

means one more finger (Ali) 
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dialog below, there are samples related to reasoning the effect of change in the 

order of numbers skip counted during the fluency question period: 

 

Teacher: What is the 10th number when you count by 5s? 

Yalçın: 5,10,15,20,25,30,35,40,45,50 (He counted 10 fingers; TAS 1) 

Hakan: Yalçın, you don‘t need to count all of them. We know that one hand 

makes 25 (he raised one hand and counted five fingers as 5,10,15,20,25). 10th 

number means two hands (he raised two hands). Then we add 25 to 25, which 

makes 50. 

Teacher: What is the 12th number when you count by 5s? 

Zuhal: If the 10th number is 50, we should count two more 5s on 50. (She 

counted two fingers by showing) 55, 60. The 12th number is 60 (TAS 2). 

Teacher: What is the 20th number? 

Ömür: If the 10th number is 50 (Data), we should add one more 50 for the 20th 

number. 50+50 makes 100. 

Ali: If one 10 makes 50 (he showed his two hands), then two 10s make 100. The 

20
th
 number is 100. 

Teacher: What is the order of 40 while counting on by 5s? 

Zehra: 5,10,15,20,25,30,35,40 (she counted her fingers until 40). 8th number 

(TAS 1). 

Teacher: What is the order of 55 while counting on by 5s? 

Burak: 40 is the 8th number (Data). We should count on 40 until 55 as 45,50, 55 

(He counted three fingers). If we count three more fives on 40, it makes 55 

(Warrant). 8+3 makes 11 (TAS 2). 

Teacher: What is the 20th number? 

Melek: If 11
th
 number is 55, 15

th
 number is 75 (TAS 2). 

Birce: If one hand makes 25, three hands make 75. 

Eyüp: Three hands? 

Melek: 15 fingers mean three hands. 

 

As it can be seen in the dialogue, teacher directed questions related to finding 

orders of numbers in a number sequence while skip counting. They were 

reasoning the order of previously established numbers as in the TAS 2. There 

were many arguments related to TAS 2 as they are specified in parenthesis in the 

dialogue. It was remarkable to observe students‘ development through the taken-

as-shared ideas and classroom mathematical practices. During the classroom 

discussions that some of them moved forward in their reasoning so that they 

were using their hands as composite units. As it is seen that Yalçın found 10
th

 

number by counting ten fingers which is the basic strategy (TAS 1). On the other 

hand, Hakan preferred a more practical strategy considering each hand as 

representation of 25. That is to say, used his hand as a composite unit which is a 

composition of five fingers. Then, he iterated this unit as it is interpreted with 
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Toulmin's analysis scheme supported with illustrations in Figure 4.31 below. In a 

similar way, Birce used each hand as Hakan did and iterated her hand three times 

to find the 15
th

 number as it is interpreted with Toulmin's analysis scheme 

supported with illustrations in Figure 4.32 below. It was also observed that think 

in terms of hands was being followed by others. That is to say, when Eyüp asked 

why Birce counted three hands, Melek explained Birce‘ reasoning as 15 fingers 

mean three hands. At that point, design team realized that other students could 

share the idea of determining each hand as composite unit.  

 

 

Figure 4. 31. Toulmin‘s Analysis scheme regarding assigning one hand (5 

fingers) as composite units to iterate (two times) 

 

Data: One hand makes 25 

(Hakan) 

Claim: 10
th
 number 

is 50 (Yalçın) 

Warrant: 10th number means two 

hands. We add 25 to 25 (Hakan) 
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Figure 4. 32. Toulmin‘s Analysis scheme regarding assigning one hand (5 

fingers) as composite units to iterate (three times) 

Moreover, while some of them iterated each hand as a composite unit, some 

iterated two hands as composite units. When the teacher asked the 20
th

 number, 

Ali used Hakan‘ claim (two hands make 50) as data and established a new claim. 

Ali claimed that 20 fingers make four hands and two hands should be iterated 

two times. Thus, he iterated 50 (two hands) two times and found 100 as it is 

interpreted with Toulmin's analysis scheme supported with illustrations in Figure 

4.33 below. 

 

Data: One hand makes 25 

(Hakan) 

 

Claim: 15
th
 number 

is 75 (Birce) 

Warrant: Three hands make 75 (Birce).  

 

Backing: 15 fingers mean three hands (Melek) 
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Figure 4. 33. Toulmin‘s Analysis scheme regarding assigning two hands (10 

fingers) as composite units to iterate (two times) 

At the beginning of the sixth lesson, students were asked such questions to check 

students‘ fluency and reasoning related to skip counting. Sample dialogue from 

this exercise is given below: 

 

Teacher: There are 22 students in this classroom. If everyone holds one hand, 

how many fingers do we see? 

Eyüp: If we count by 5, it makes 110. 

Birce: 2 students sit at each desk. There are 11 desks. Counting by 10, there are 

110 at 11 desks. 

Hakan: 10 fingers on two hands and 10 toes on two feet. All of them are 440.  

 

As deduced from the dialogue, students enriched their ability to skip counting. 

They made claims about the effect of change in the order of numbers skip 

counted. They used their previous claims to construct composite units to iterate 

and answer the questions related to larger numbers. It was observed that they 

could develop flexible and creative ways to manage numbers and counting. After 

a while, they explained their claims without presenting warrant/backing. Since 

warrants were dropped off, it was concluded that the idea was taken-as-shared. 

Moreover, there is also evidence in the following days that this idea shifted place 

Data: Two hands make 

50 (Hakan) 

 

Claim: 20
th
 number is 

100 (Ömür) 

Warrant: Two 10s make 100 (Ali) 
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from claim to data and was repeatedly used as data for different claims. It was 

revealed that the more students engaged in activities related to counting, skip 

counting, matching and grouping, the more they developed multiplicative 

thinking. In this way, students‘ strategies of assigning composite units developed 

and became more sophisticated as it can be seen in TAS 9. 

 

4.3.3. Idea 9: Double matching collection of equal groups to iterate on via 

pictorial representation 

 

In the ninth lesson, during the classroom discussions, the idea of double 

matching collection of equal groups to iterate on via pictorial representation 

which is related to covariational reasoning emerged. Students took the advantage 

of pictures of equally grouped objects to double match them. 

 

For instance, students were given a picture of 5 coops and 4 chickens in each 

coop. In the picture, chickens on the first coop were given while the other coops 

were closed. The reason for hiding the chickens in the other 4 coops was to avoid 

counting all chicken by ones since it might have been easier for some students to 

count 20 chickens by ones. Instead, they were desired to gain abstract counting 

without seeing chickens but knowing that there were 4 chickens in each coops. 

Therefore, students were explained that there were 5 coops as in the picture and 

4 chickens in each coop. Students were asked to find total number of chickens 

and answer follow-up questions as in the dialogue below: 

 

Teacher: How many chickens are there in 5 coops? 

Mahmut: 20 chickens. I counted the coops by 4s.  

Teacher: Is there anyone who used a different method? 

Birce: I counted my five fingers by 4s. 

(Some of the students stated that they counted their fingers while the others 

counted the coops as illustrated in Figure 4.34) 

Teacher: If there were 10 coops, how many chickens would be in them? 

Birce: 20+20 makes 40 chickens. 

Burak: Why did you add 20 to 20?   

Birce: There are 20 chicken in 5 coops. To get 10 coops, we should add 5 more 

coops. Actually, we double the numbers. If we add 5 more coops, we also add 

20 chickens. For that reason, I added 20 to 20. 
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(Teacher also explained the same method by drawing as illustrated below in 

Figure 4.35 to make it clear). 

Researcher: If there were 15 coops, how many chickens would be in them? 

Doğan: Birce found that there would be 40 chickens in 10 coops. For 15 coops, 

we should add 5 more coops which means adding 20 chickens. 40+20 makes 60 

chickens. 

(Teacher explained the same method by drawing on the board). 

Teacher: Assume that there are 80 chickens. How many coops would you build 

for these chickens? 

Melek: Can we use your drawing on the board? Otherwise, it will be hard for me 

to draw. 

Teacher: Sure, you can. 

Birce: Teacher, I used your drawing and found 20 coops. 

Zuhal: How can we use this drawing? (She turned back and asked the others). I 

am confused.  

Ilker: Zuhal, there are 15 coops and 60 chickens on the board. To get 80 

chickens, we should add 20 more chickens. We know that there are 20 chickens 

in 5 coops. It means that we should build 5 more coops. 

Birce: Finally, we need 15+5 coops. 

(Teacher explained the same method by drawing on the board). 

 

 

Figure 4. 34. Illustration of counting chickens in 5 beehives. 

As Mahmut explained, most students found the chickens in 5 coops by counting 

by 4s. These students traced the coops to count 5 times 4 (TAS 7). On the other 

hand, as Birce explained, some of them traced their fingers instead of the picture 

to count 5 times 4. The answer to this question played a crucial role in making 

reasoning for the following questions. Students considered 5 coops as composite 

units and iterated to answer the questions. They made reasoning about the 

relationship between the coops and the relationship between chickens in all cases 

as illustrated in Figure 4.35. Students asked the teacher to help and support their 

claims by doubling the pictures of coops on the board. These pictures made 

composite units more clear and helped them to construct a double-matching 

procedure. 

 4              8             12             16             20          

12 
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Figure 4. 35. Illustration of explanations emerged during classroom discussion 

When students were asked to find the chickens in 10 coops, Birce interpreted the 

relationship between 5 coops of chickens and 10 coops of chickens. She stated 

that 5 more coops should be included to get 10 coops which means doubling 

both coops and chickens. Then she claimed that there were 40 (20+20) chickens. 

When they were asked to find the chickens in 15 coops, Doğan provided a 

relation between 15 coops and 10 coops by considering the claims of Mahmut 

(there are 20 chickens in 5 coops) and Birce (there are 40 chickens in 10 coops). 

Doğan claimed that there are 60 chickens in 15 coops by adding 5 coops to 10 

coops. He operated with the composite unit as Birce did. Students realized that 

adding 5 coops means adding 20 chickens. They interpreted the change in the 

number of coops and reflection to the number of chickens. To see whether 

students could build the same relationship in reverse of this situation, students 

were given the number of chickens and the number of coops were asked. They 

offered to use the pictures to reason the relationship between known and 

unknown situations. They knew that there were 60 chickens in 15 coops. Ilker 

explained that there must be 20 more chickens to get 80 chickens. He expressed 

that 20 chickens require 5 coops, as in the first question. He added 5 coops and 

claimed that there needs to be 20 coops for 80 chickens. The students' 

explanations were also interpreted according to Toulmin‘s analysis scheme 

presented in Figure 4.36 below. 
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Figure 4. 36. Toulmin‘s Analysis scheme regarding students‘ reasoning related 

to chicken-coop task 

In the eleventh day, another activity related to introducing multiplication 

symbolically was presented to students. They were asked to find the number of 

ladybugs on the leaves using multiplication (Figure 4.37). They found that there 

are 12 ladybugs on 4 leaves which is explained below in TAS 10. The focus of 

the current idea is the answers of students to follow-up questions as in the 

dialogue below: 

 

Teacher: If there were 8 leaves, how many ladybugs would be on them? 

Meliha: Four more leaves. 

Ajda: If we double the leaves, we also double the ladybugs. 

Ali: 24 ladybugs. 

Teacher: How do you show it via multiplication operation? 

Birce: 8x3 is equal to 24 

Teacher: Assume that there are 48 ladybugs. How many leaves would you need 

for these ladybugs? 

Doğan: I don‘t know how to count by 12s. 

Teacher: Why do you want to count by 12s. 

Doğan: If I count by 12s until 48, I can add four leaves for them. 

Birce: I found something. 24+24 makes 48. Can we use it? 

Hakan: We can double the picture. 

Ajda: You are right; we should double 8 leaves. 16 leaves.  

(Teacher drew on the board students‘ reasoning as in Figure 4.37). 
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Figure 4. 37. Drawings related to double matching of leaves and ladybugs  

As it can be seen in the dialogue and the drawing related to the process of double 

matching leaves and ladybugs, students developed a relationship between the 

numbers in the question and those they have already known which are the claims 

of previous questions. For instance, when students were asked to find the 

ladybugs on 8 leaves, they used their previous claim that there are 12 ladybugs 

on 4 leaves as it is interpreted with Toulmin's analysis scheme in Figure 4.38. In 

this argument, students discovered the double relationship between the leaves, 

then they doubled the ladybugs, too. In contrast, the second question, students 

discovered the double relationship between the ladybugs, then they doubled the 

leaves, too. 

 

 

Figure 4. 38. Toulmin‘s Analysis scheme regarding students‘ reasoning related 

to ladybug-leave task 

Data: There 

are 12 

ladybugs on 4 

Claim: There are 

24 ladybugs on 8 

leaves (Ali). 

Warrant: If we 

double the leaves, 

we also double the 

ladybugs (Ajda). 

Claim: We need 

16 leaves for 48 

ladybugs (Ajda). 

 

Warrant: 24+24 

makes 48 (Birce). 

Backing: We can double 

the picture (Hakan). 
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Therefore, students interpreted the ratio between the groups to compare the 

objects in these groups or vice versa. They worked simultaneously with both 

components (group number and group size) in a double-matching process 

(covariance). This idea was emerged frequently in the classroom by students to 

develop multiplicative reasoning in the following tasks. After a while, they used 

this idea as both data and warrants for further claims. This helped us conclude 

that this idea became a taken-as-shared idea for the students. For that reason, 

they were not questioned anymore to make them provide a warrant. 

 

4.4. Classroom Mathematical Practice 4: Analyzing components and 

properties of multiplication operation by modeling with equal groups and 

arrays 

 

The fourth practice that emerged as students engaged in the instructional 

sequence refers to the meaning of multiplication. In this practice, students 

focused on actions (i.e., "groups of," "set of," "building arrays") that relate to 

repeated addition and multiplication concepts. Here, the goal was for students to 

define equal groups as a starting point to represent given multiplicative 

situations. That is to say, students developed an understanding related to the 

components of multiplication (multiplier, multiplicand and product) by making 

connection between equal group representation, array models, and repeated 

addition.    

 

4.4.1. Idea 10: Interpreting the meaning of multiplier and multiplicand in 

equal group representation 

 

Activities in the learning sequence were constructed on real-life situations from 

the beginning of this teaching experiment. The target was to familiarize students 

with the contexts and feel free to develop their strategies. The tasks including 

equal groups were presented in the classroom. Students developed various ways 

of reasoning such as skip counting and repeated addition. After a while, students 

were introduced to multiplication symbolically. The relationship between the 
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components of multiplication operation and equal group representation through 

pictures and drawings was interpreted. That is to say, while the group number is 

defined as the multiplier, group size is defined as the multiplicand. On the 

eleventh day, students were presented an activity related to multiplication 

operation. Students were asked to find the number of ladybugs on the leaves 

using multiplication (Figure 4.39). Students interpreted the given picture in the 

activity as equal groups, as can be deduced from the dialogue below: 

 

Melek: There are four leaves and three ladybugs on each leaf.  

Egemen: Leaves are given as groups in the picture. It means four groups and 3 

ladybugs in each group. 

Hakan: 4 x 3 gives the number of ladybugs. 

Ali: Hakan is right. It makes 4 times 3. The first number in the operation 

represents the number of groups while the second number represents the number 

of elements in each group. 

 

 

Figure 4. 39. Picture relayed to ladybugs on the leaves. 

Students wrote multiplication operation in the order they read equal groups like 

―4 groups of 3‖ and ―4 times 3‖. Firstly, they decide on the groups, then they 

interpreted the multiplication operation as multiplier and multiplicand to place 

the number of groups and group size respectively. Students could make a 

connection between the groups and the multiplication operation. They reflected 

equal groups to multiplication. 

 

On the same day, students were presented a problem: "A mother wants to give 2 

cookies to each child. If there are 5 children, how many cookies should the 

mother have?". It was stated that they should use an operation. Students took 

their time to work on the problem as they wished. The teacher and the researcher 

walked around the desks and watched what they were doing. It was observed that 

students were comparing their drawings related to cookies with their mates. 
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After they expressed that they finished, classroom discussion started. Students 

used their drawings to satisfy their solutions. Most of the students drew cookies 

and explained their drawings as equal groups. They drew 2 cookies for each 

child. They circled cookies two by two and stated that each group would be 

given to a child. After they discussed the groups, they explained the operations 

they used (Figure 4.40). Students who used multiplication claimed that there are 

5 times 2 which means 5x2. They used the group of two cookies as composite 

units and iterated these units through multiplication.  

 

       

Figure 4. 40. Drawings connected to repeated addition and multiplication 

Equal groups in multiplication operations are not evident as much as they are in 

pictures and repeated addition operations. In order to see their interpretation 

related of multiplication, students were asked to pose problems. For instance, on 

the thirteenth day, students were asked to pose a problem for the operation 5x4. 

In this activity, students focused on the meaning of multiplication operation as 

"…. times …". That is to say; students interpreted 5x4 as "five times four" where 

five stands for the number of groups (multiplier) and four stands for the size of 

the group (multiplicand). Some of the students supported their interpretations 

and claims by drawing equal groups related to their problems. These students 

shared their reasoning in the classroom discussion as in the dialogue below: 

 

Teacher: Did you pose a problem? Who wants to share with us? 

Karan: There are 5 bird cages in a pet shop. If there are 4 birds in each cage, 

how many birds are there in the pet shop? 

Teacher: Do you think that this problem is appropriate for 5x4? 

Karan: 5x4 means 5 times 4. I need five groups. I thought of the cages as 

groups. I drew 5 cages (He showed his drawing given in Figure 4.41). I need 4 

objects in each group. I drew 4 birds in each cage. Therefore, I believe that I 

posed a correct problem. 

Egemen: Group number and group size are correct. Then, the problem is 

appropriate for the operation. 

Melek: I agree with Karan. I thought as he did.  
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Teacher: Melek, can you share yours? 

Melek: I have 5 knitting yarns and 4 needles on each yarn. How many needles 

do I have? 

Eyüp: How many yarns did you say? 

Melek: 5 yarns (showed her drawing in Figure 4.42). I represented the groups 

with 5 yarns and 4 needles for each yarn. 

 

As Karan and Melek explained in the dialogue, some of the students used 

drawing to clarify their interpretation of equal groups needed for the given 

operation. They used the drawing as warrants to support their claims. They 

emphasized the groups and elements in each group in their problems by using 

these drawings. Hence, they used a visual representation of the given operation 

as warrants while they used real-life representation as to the claim of the posed 

problem. These visual representations played an essential role in connecting 

operations and the components of problems in the tasks related to problem-

solving and posing. During these activities, students analyzed the operations and 

the contexts of the problems to define equal groups. Students did not use 

drawing in the following lessons to visualize the given multiplicative situations 

or discuss the givens by asking explanations. They analyzed the given 

multiplicative situations as groups and elements of each group without using 

another representation. 

 

 

Figure 4. 41. Karan‘s drawing related to his problem for 5x4. 
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Figure 4. 42. Melek‘s drawing related to her problem for 5x4. 

In the same lesson, there were a few students who posed problems for 4x5 

instead of 5x4. At that point, their drawing played a crucial role to make their 

thinking explicit. Sample dialogue from classroom discussion is given below 

 

Eyüp: There were four fish ponds. I saw five fish in each fish pond. How many 

fish did I see?  

Zehra: Wait a minute. I am not sure whether it fits 5x4. 

Eyüp: I drew it (Showing his booklet). There are four equal groups with an 

equal number of fish in each group (Figure 4.43).  

Birce: Eyüp, this drawing represents 4x5. We have 5x4 to pose a problem which 

means five times four. The results are equal, but operations are different. You 

should draw five fish ponds and four fish in each. You did the opposite.  

 

 

Figure 4. 43.  Eyüp‘s drawing from his booklet 

 As in the excerpt, students denoted the multiplier as the number of groups and 

the multiplicand as the group size. They discussed the components of equal 

groups in detail by using visual representations as warrants to support their ideas 

as given in the Toulmin's analysis scheme presented in Figure 4.44 below.  
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Figure 4. 44. Toulmin‘s Analysis scheme interpreting the meaning of multiplier 

and multiplicand in equal group representation of 5x4. 

It should be noted that students started talking about commutativity although 

they did not learn about it formally. Birce explained that they find the same 

product with 5x4 and 4x5. However, they did not question or, try to prove the 

reason for this situation. The researcher noted this to question and observe in the 

following days.  

 

In the same lesson, students were asked a story problem which is "Planting Tree" 

which is "Selay plants two trees every month. How many trees does Selay plant 

in 9 months?". As described above, students drew trees and wrote number 

sentences to connect these drawings. They interpreted the months as equal 

groups and drew figures to represent trees. These drawings helped them to see 

the equal groups visually. Then they concluded that there are 9 groups with 2 

trees. Therefore, they wrote 9 times 2 and collected them by using multiplication 

as they explained below: 

 

Melek: Firstly, I drew potted plants (She showed them on her booklet as shown 

in Figure 4.45). I drew 9 pots and 2 trees in each pot. For that reason, I 

multiplied 9 and 2.  

Emin: I drew nine sets of twos. I wrote on them "1st month, 2nd month …" (He 

showed on her booklet as shown in Figure 4.46). I drew 2 flowers in each. 

Zuhal: You drew equal groups. 

Birce: I drew, too. (She showed on her booklet as in Figure 4.47). I drew balls 

representing the trees. Look at my drawing. I found the sum of the number of 

trees by multiplication.  

Teacher: Why did you draw?  

Data: 5x4 

Claim: ―There were four 

fish ponds. I saw five fish 

in each fish pond. How 

many fish did I see?‖ is 

not an appropriate 

problem for 5x4 

Warrant: 5x4 means five 

times four. (Birce) 
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Karan: It is enjoyable. I like painting. Moreover, it helped me to see the groups.  

Egemen: We can see the groups directly. The number of months is the 

multiplier; the number of trees is the multiplicand. 

Birce: I drew to make my solution understandable. 

Halil: I used skip counting but drew groups, too. I saw how many fingers I 

should count clearly on the drawing (TAS 7). 

   

 

Figure 4. 45. Melek‘s drawing related to ―Planting Tree‖ problem 

 

Figure 4. 46. Emin‘s drawing related to ―Planting Tree‖ problem 
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Figure 4. 47. Birce‘s drawing related to ―Planting Tree‖ problem 

As they explained, students drew pictures of trees to represent the problem 

visually. They applied this representation to make the problem clear and visible 

for themselves. They matched the terms (months and trees) in the problems with 

the terms of multiplier and multiplicand. It helped them see equal groups and 

decide on the operation to make calculations. Students used multiplication since 

there were equal groups on their drawings. They supported their claims that they 

can find the total number of trees with multiplication by using the visuals they 

drew, as in the Toulmin's analysis scheme presented in Figure 4.48 below: 

 

 

Figure 4. 48. Toulmin‘s Analysis scheme regarding interpreting the meaning of 

multiplier and multiplicand in equal group representation of months and trees. 

Data: Two trees are 

planted every month.  

There are 9 months 

Claim: I multiplied 

9 and 2 (Melek) 

Warrant: I drew 9 pots and 2 trees 

in each pot (Melek). I drew nine 

sets of twos (Emin).  

Backing: The number of months is 

the multiplier; the number of trees 

is the multiplicand (Egemen). 
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In the following activities, classroom discussions were observed on how students 

interpret given situations as equal groups. Students did not question how to 

decide on the multiplier and multiplicand in the visuals of given tasks. For 

instance, on the fourteenth day, a picture of jars of candies was given and 

students were asked to pose a problem related to the picture as in the Figure 4.49.  

 

 

Figure 4. 49. Picture of the jars of candies given on the fourteenth day. 

Classroom discussion showed that students directly focused on posing problems 

related to 8x4. No one questioned why the problems were posed for 8x4. 

Argumentation analyses showed that this idea became taken-as-shared since 

students no longer had to explain the components of equal groups to justify why 

they used 8x4. That is to say, they did not need to specify the number of jars as 

the multiplier and candies as the multiplicand. It has been seen that warrants 

were dropped off day since that day.  

 

4.4.2. Idea 11: Connecting repeated addition and multiplication operations 

by interpreting multiplier and multiplicand 

 

Students discovered that multiplicative situations comprise making relationships 

between the number of groups (multiplier) and the size of the groups 

(multiplicand). Initially, students used drawings in their booklets to show how 

they had modeled groups of objects having the same number in each group. They 

used pictures in tasks to circle groups with equal amounts of objects if a picture 

was given. Hence, they could skip-count these groups to find the total number of 

objects. After a while, students used repeated addition to find the total number of 

objects. They started the tasks by looking for regularity in repeated reasoning 

since they recognized that they were repeatedly adding the same number 

(multiplicand). For instance, in the ninth lesson, students were given pictures of 



216 

frogs placed on 3 lily pads 2 by 2. Students were asked how many frogs there 

were. They counted frogs by 2s and said 6. Then, they were asked to use an 

operation to satisfy their claims. Students had been used to skip count the given 

objects, not using number sentences to represent this procedure. Through the 

discussion in the classroom, they could decide to write number sentence 

representing repeated addition symbolically as in Figure 4.50.  

 

 

Figure 4. 50. Using repeated addition to find the total number of objects in equal 

groups. 

 As it is explained in TAS 10, students were introduced to multiplication on the 

eleventh day. After that day, they were expected to use multiplication to find the 

total number of objects in equal groups. It was observed that students tended to 

use both repeated addition and multiplication. For instance, in the twelfth day, 

students were given a task including a problem about oranges on the trees. The 

problem was "There are 4 orange trees in Selda's garden. If there are 5 oranges in 

each tree, how many oranges are there in the garden?". Students shared their 

solution with the others as in the dialogue below:  

 

Teacher: How can you find the answer? 

Classroom: By addition (They said altogether) 

Teacher: Will you add 4 by 4? 

Classroom: No. 5 by 5. 

Teacher: Can someone explain? 

Hakan: I drew 4 trees and 5 oranges on each tree (see Figure 4.51).  

Zehra: We should find the sum of oranges in all the trees. 

Zuhal: I used repeated addition as 5+5+5+5 (see Figure 4.51). 

Birce: I used multiplication as 4x5. 

Yalçın: There are 4 groups which means 4 times 5. 

Ali: It doesn't matter. We can use both repeated addition and multiplication. 
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Figure 4. 51. Sample drawings by Hakan and Zuhal. 

As noticed in the dialogue clearly, students claimed that they could use both 

operations of repeated addition and multiplication. For both operations, they 

focused on specifying equal groups to be able to write number sentences. While 

they interpreted equal groups as multiplier and multiplicand for multiplication, 

they added multiplicand repeatedly for repeated addition. To be able to see their 

conception of the relationship between repeated addition and multiplication, 

students were given a picture (Figure 4.52).  

 

 

Figure 4. 52. Picture of birds on trees used on the twelfth day. 

Students were asked to find the total number of birds by both repeated addition 

and multiplication (Figure 4.53) and explain how they write the number 

sentences.  

 

 

Figure 4. 53. Zehra‘s solution for birds on trees. 
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Students shared their solutions with the others as in the dialogue below:  

 

Esra: We are given ―6 times 2‖ in the picture. We will multiply 6 with 2. 

Teacher: What about repeated addition? 

Halil: It is clear that we will write 6 times to and collect them.  

Teacher: When we look at the multiplication, we see both 6 and 2. However, in 

the repeated addition we use only 2. Where is 6 in repeated addition? 

Hakan: We use 6, too. 

Teacher: I cannot see it in the number sentence. 

Doğan: We use it to decide how many times we should write 2. 

Teacher: Can you show me the multiplier and multiplicand in repeated addition? 

Ajda: The multiplicand is the number we write, and the multiplier is the hidden 

number. 

Doğan: We write multiplicand repeatedly as much as the multiplier. 

 

As it can be seen in the dialogue, students could represent given situations in 

number sentences of repeated addition and multiplication. The teacher asked 

follow-up questions to see whether students are aware of the relationship 

between two operations. Students could interpret the roles of multiplier and 

multiplicand in repeated addition. To be sure whether this idea became taken-as-

shared, the researcher and the teacher decided to continue observing the 

reasoning of the students in the following lessons. 

 

On the thirteenth day, students were given number sentences related to repeated 

addition and asked to convert them to multiplication. For instance, they were 

asked to write ―3+3+3+3+3+3+3‖ as a multiplication sentence. They connected 

repeated addition and multiplication by interpreting multiplier and multiplicand, 

as in the Toulmin's analysis scheme presented in Figure 4.54 below: 
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Figure 4. 54. Toulmin‘s Analysis scheme regarding connecting repeated addition 

and multiplication operations by interpreting multiplier and multiplicand. 

Students discussed the components of repeated addition as multiplier and 

multiplicand to be able to write it in the form of multiplication. In the following 

activities, classroom discussions were observed to see how students connect 

repeated addition and multiplication. Argumentation analyses showed that this 

idea became taken-as-shared since students no longer had to justify how they 

make connection between the data and claim. It was seen that warrants were 

dropped off day by day.  

 

4.4.3. Idea 12: Reasoning the effect of change in multiplier on the product 

 

Starting from the third day, students engaged in the tasks related to equal 

grouping. They were asked to find the total number of objects which were given 

in equal groups or grouped equally by the students. While engaging in such 

activities, students discussed follow-up questions verbally as planned by the 

researchers before implementing the HLT. Students made reasoning by 

considering the effect of change in the number of equal groups. In other words, 

students connected what is known and what is asked. For instance, on the 

seventh day, students discussed the total number of marbles where there were 5 

plates and 5 marbles in each plate. Students found that there were 25 marbles by 

Data:  

3+3+3+3+3+3+3=… 
Claim: 7x3 

Warrant: 7 groups and 3 in 

each group (Eyüp). 

Backing: Group number is 

multiplier; group size is 

multiplicand (Ali). 

Warrant: 7 times 3 (Esra). 
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using skip counting. After that, students were directed follow-up questions as in 

the dialogue below: 

 

Teacher: How many marbles would be if there were 6 plates of marbles? 

Meliha: There would be 30 marbles.  

Teacher: How did you find? 

Meliha: I counted 6 fingers by 5s. 

Hakan: I didn‘t count all the fingers. I know that there are 25 marbles in 5 

plates. We add 1 plate to make them 6 plates. Since there are 5 marbles in each 

plate, we add 5 marbles to 25 marbles. 25+5 makes 30 (Figure 4.55). 

Teacher: Did you understand Hakan‘ explanation? Do you agree with him? 

Birce: I can‘t believe that I could not discover this method. I counted 6 fingers. 

Thanks Hakan.  

Teacher: Next question is coming. How many marbles would be if there were 7 

plates of marbles? 

Halil: 35 marbles. I counted by 5s. 

Esra: I used skip counting, too. 

Zehra: I used Hakan‘ method. We have 5 plates of marbles. We know that there 

are 25 marbles. If we add 2 more plates, it makes 7 plates. Adding two plates 

means that we add 10 marbles to 25 marbles. We have 35 marbles in 7 plates 

(Figure 4.55). 

 

As can be inferred from the dialogue, two students used the number of marbles 

in 5 plates as data for the following claims. They constructed their claims on 25 

marbles in 5 plates by making sense of multiplicative reasoning. When they were 

asked to find the number of marbles on 6 plates, Hakan made reasoning by 

considering the plates added. Instead of counting 6 fingers and claiming that 

there would be 30 marbles in 6 plates as most of the students did, he applied 

what he had already known. He compared the previous situation with the new 

situation. He discovered that the difference is a plate with 5 marbles in it. He 

explained this situation as warrant to find the number of marbles by adding 5 to 

25 marbles. In the same way, Zehra approached the questions related to the 

marbles in 7 plates by analyzing the difference between the situation of 5 plates. 

She focused on the marbles in 2 plates added to 5 plates to make them 7 plates. 

She provided warrant that adding 10 to 25 marbles gives the answer since adding 

2 plates means adding 10 marbles. Hence, both Hakan and Zehra approached the 

question as a more advanced version of the previous one while the others 

approached it as a new situation as shown in Figure 4.55 below. 
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Figure 4. 55. Illustration of Hakan‘s and Zehra‘s reasoning 

Students‘ reasoning related to the change in group number took attention of the 

teacher and the researcher. This situation was noted to be observed in the 

following lessons. In the ninth lesson, tasks including pictures of objects in equal 

groups were presented to students to find the total amount of objects. After they 

completed the tasks and discussed them in the classroom, the teacher asked 

follow-up questions using the same context as asked above. In the first task, 

there were 5 beehives and 3 bees on each hive. Students counted by 3s and found 

the total amount of bees. After they stated that there were 15 bees on 5 hives, the 

teacher asked follow-up questions as in dialogue below:  

 

Teacher: If I add 2 more beehives, what can you say about the number of bees? 

Ajda: There are 15 bees on 5 beehives. I counted by 3s on 15 (Figure 4.56). 

Teacher: What did you find? 

Ajda: 15, 18, 21. There would be 21 bees. 

Ali: I found 21 bees, too. However, I didn‘t count by 3s.  

Doğan: I counted 7 fingers as by 3s. Ali, how could you find without counting 

by 3s? 

Ali: We add 2 more beehives. It means that we will add 6 more bees. 15+6 

makes 21 (Figure 4.56). 

Ajda: Even more practical than my solution. 
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Figure 4. 56. Illustration of Ajda‘s and Ali‘s reasoning 

As seen in the dialogue, students used the counting-on strategy instead of 

counting by starting from the first hive. Students kept the number of bees on 5 

hives in mind and used this number as the initial number to count on. While 

counting, they considered the hives as a composite unit of 3 bees. They kept 

track of how many times hives were added, adding 3 bees with each hive. As can 

be understood from Figure 4.56, Ajda iterated the hives and added 3 to 15 for 

each hive added. On the other hand, Ali did not add the bees separately. He 

computed the bees on two hives first. Then, he added the total number of bees on 

new hives to 15 bees. Hence, they made their claims by reasoning the change of 

hives as the warrant.  

 

As it can be seen in the excerpts above students focused on the change in group 

numbers. The team interpreted this idea as a clue for students‘ reasoning for the 

change of multiplier since group numbers represent the multipliers in 

multiplication. So, the team members wondered whether students would make 

this reasoning for multiplication in the following lessons. For that reason, they 

asked follow-up questions to observe students‘ thinking through classroom 

discussions. For instance, as it is explained above, a picture of jars of candies 

was given and students were asked to pose a problem related to the picture on the 

fourteenth day (Figure 4.57). There were 8 jars and 4 candies in each jar. They 

found that there were 32 candies via 8x4. Then, the teacher asked what-if 

questions to students as in the dialogue given below: 
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Teacher: What if there were 7 jars of candies? 

Eyüp: It makes 7x4. We can count by 4s. 

Halil: Or, in order to go from 8 to 7 (he showed his 8 fingers, then closed one 

finger), we can subtract 4 from 32. It is 28. 

Esra: Subtraction is more practical than counting. 

Teacher: What if there were 11 jars of candies? 

Mahmut: 11x4 

Egemen: We can count on 32. 

Hakan: You will count three times 4 on 32? 

Egemen: Yes, it makes 44. 

Ali: I counted on 40. 

Teacher: Can you explain Ali: 

Ali: I know that 10x4 makes 40. For 11, I counted one more 4 on 40. 

 

 

Figure 4. 57. Illustration of students‘ reasoning for the jar of candies. 

As can be deduced from the dialogue, students used the known facts to make 

reasoning related to the multiplier. To make it clear, the researcher illustrated 

students‘ solutions as in the Figure 4.57 above. While they used 8x4 to find 7x4, 

they used 8x4 and 10x4 to find 11x4. To be able to do that they interpreted the 

change in the multiplier. They added to or subtracted from the product of known 

fact to be able to decide on the new product. Halil subtracted 4 from 32 once 

since the difference between 8 and 7 is one. On the other hand, Egemen added 4 

on 32 three times since he interpreted the difference between 8 and 11 as 

increasing the number of jars. In a similar way, Ali added 4 on 40 once since he 

started with 10x4 and interpreted the difference between 10 and 11. That is to 
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say, students interpreted the difference in multiplier to be able to reach the new 

product as in the Toulmin's analysis scheme presented in Figure 4.58 below. 

 

 

Figure 4. 58. Toulmin‘s Analysis scheme regarding reasoning the effect of 

change in multiplier on the product. 

As in this lesson, students interpreted the difference between the multipliers of 

two operations and make a connection between the products of two operations. 

This idea was emerged frequently in the classroom discussions in the following 

lessons while multiplying two numbers. After a while, students just stated that 

they connected the given operation with an operation they have already known. 

They did not provide a warrant since the others did not ask. That is to say, the 

warrants were dropped off in the further lessons. This helped us conclude that 

this idea became a taken-as-shared idea for the students. For that reason, they 

were not questioned anymore to make them provide a warrant.  

Data: 8x4=32 Claim: 7x4=28 

Warrant:  We can 

subtract 4 from 32 

(Halil) 

Warrant: We can 

count three times 4 

on 32 (Egemen) 

Backing:  Subtraction 

is more practical than 

counting (Esra) 

Data: 8x4=32 Claim: 11x4=44 

Warrant: I counted one 

more 4 on 40 (Ali) 

Data: 10x4=40 Claim: 11x4=44 
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4.4.4. Idea 13: Analyzing arrays by interpreting rows and columns as 

multipliers and multiplicands 

 

In the first week, students worked on the tasks related to counting objects in 

pictures to decide how many objects there were. During these activities, ideas 

about partitioning objects into equal groups and iterating linked units emerged. 

Students supported these ideas by providing warrants as explained above in the 

sections of CMP 2 and CMP 3. While they were explaining their reasoning 

related to their claims, it attracted attention that students took advantage of the 

arrangement of objects. The majority of the students considered how the objects 

were organized linearly. They interpreted the rows and lines on which objects 

were properly aligned. Sample drawings and students' interpretations are 

provided below in Figure 4.59. Their perceptions regarding the order of objects 

showed that students were tended to align objects by organizing them. Moreover, 

they used the term "row" which is used in array representation, to define the 

groups. It was noted down as a clue for students' sense of array representation 

informally.  

 

 

Figure 4. 59. Students' intuitive explanations related to array representation 



226 

In the following lessons, students were encouraged to use multiple modes of 

representation to reflect their thinking of multiplicative relationships and 

envision equal-sized groups. Some of the students intrinsically made productive 

use of the array as a multiplicative model involving the same number of objects 

in each row and column. On the eleventh day, students interpreted the number 

sentence of "3+3+3+3+3+3" as "six times three" where six stands for the number 

of groups (multiplier) and three stands for the size of the group (multiplicand), as 

in the dialogue given below: 

 

Karan: I drew six shelves and aligned apples in them. Each shelf represents a 

group of 3 apples (Figure 4.60).  

Melek: I drew a table and arranged balls on this table (Figure 4.60).  

Doğan: You made three groups with six balls in each. It represents "6+6+6". 

The result does not change, but it does not reflect the given operation either.                                    

Ali: Doğan, how do you know her groups? Maybe she grouped vertically. 

Birce: Instead of grouping rows, we can group columns. Columns have equal 

size of objects too.   

 

 

Figure 4. 60. Array representations for ""3+3+3+3+3+3" 

As in the excerpt, students started arranging objects in rows and columns to get 

equal numbers of objects in each row and column. Students were not directed to 

specify groups through rows or columns. They were free to form equal groups as 

they wished but respected the given multiplicative situation. Hence, they 

modeled given operations on the array with rows and columns representing the 

two inputs of a binary operation. They used these models to define equal groups 

through collective discourse. Students constructed a meaningful mental model of 

the array that intuitively reflects important mathematical ideas related to 

multiplication. This model defined equal groups, made sense of multiplicative 
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situations, and structured their solutions' thinking and approaches. However, it 

was observed that students had difficulty aligning the objects in their 

representation perfectly. For that reason, they were provided a squared base in 

the activity sheet.  

 

Students were provided a squared base in activity sheets to observe whether this 

idea would become taken as shared during the conversation in the following 

days. They were expected to specify rows and columns as aligned parallel to the 

sides of the rectangle by filling unit squares in a rectangle. On the sixteenth day, 

students were given a picture of 15 pencils and asked to write a multiplication 

operation related to that picture. While some of the students circled the given 

pencils to form equal groups, some of them used the squared area to align pencils 

in rows or columns, as can be deduced from the dialogue and Figure 4.61 below: 

 

Melek: I think we can find 15 by multiplying 3 and 5 because 3 times 5 makes 

15. 

Teacher: How did you decide that? 

Melek: We need equal groups. I placed the pencils in squares. I tried to make 

them equal in each row. I could place them equally on 3 rows.  

Ali: Rows represent equal groups.  

(Students who used the squared base, in the same way, stated that they agree 

with Melek) 

Halil: I placed them on rows too. However, I used 5 rows as the inverse of 

yours. I drew 3 pencils in each row.  

(Students who used the squared base, in the same way, stated that they agree 

with Halil) 

Zuhal: What is your claim? 

Halil: My claim is that 5 times 3 makes 15.  

Esra: I claimed the same operation, but I did not used the squared base. I circled 

the pencils to form equal groups. Can you show how you drew? Next time, I 

will try to make like you did.  

Teacher: Is there another claim about finding 15 pencils due to multiplication 

operation? 

Doğan: No, we can find 15 in the verbal chain while skip counting by 3s and 5s.  

Birce: I tried to move pencils to get new equal groups, but I couldn't. Because 

rectangular shape of the pencils became deformed which means that the groups 

are not equal anymore.     

  

Some of the students used the squared base to form equal groups in rectangular 

borders, as Melek and Halil explained in detail. They claimed that 15 could be 

found as the result of 3x5 and 5x3 as illustrated in the Figure 4.61. They placed 
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the pencils in the squared cells and specified the rows as groups. They used the 

equal groups in these representations to write a multiplication operation whose 

first number represents the number of groups (number of rows) and the second 

number represents pencils in each row.   

 

 

Figure 4. 61. Sample array representations from students written works. 

As summarized by Toulmin's analysis scheme in Figure 4.62 below, students 

administered to array representation to form equal groups which carry meaning 

of multiplication. Students intuitively made sense of composite units (rows) in 

array representation. In Figure 4.61 above, students circled the pencils in each 

row representing composite units. Their drawings and representations played a 

role in defining equal groups to support their claims. They were also aware of the 

rectangular nature of the array model, which requires equal amounts of objects in 

each row and column. They made reasoning that rectangular border of an array is 

deformed if the groups do not include equal amounts of objects. 
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Figure 4. 62. Toulmin's Analysis scheme regarding composing arrays from rows 

to illustrate equal groups 

Each student was provided personal reusable squared sheets to show equal 

groups in the following days. Moreover, a large squared panel and circular 

stickers were prepared to form rectangular arrays to share with others (Figure 

4.63). These tools helped students share their reasoning easily and make the 

groups visible and understandable for others.  

 

 

Figure 4. 63. Personal squared sheets and squared panel. 

On the nineteenth day, a problem-solving task was presented in the classroom. 

Students were asked to work on the problem: "Aslı saw 6 mouse holes in the 

garden. If there are 3 mice in each hole, how many mice are there in 6 holes?". 

While students were working on the problem, the researcher and teacher walked 
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around the desks and watched students. It was seen that most of the students got 

the advantage of the squared base to form rectangular arrays to represent mice 

and holes. While some of them used columns as composite units, others used the 

rows as composite unite representing equal groups as in Figure 4.64. Students 

discussed on the problem by using their arrays as in the dialogue below: 

 

Esra: I drew in squares and found 18 mouse holes. 

Zuhal: I multiplied 6 and 3 since there are 6 times 3 in the array I composed. 

Birce: Can you show your array? 

Zuhal: I placed 3 dots in each row (showing her booklet). There are 6 rows. I 

grouped each row. Consequently, I counted by 3s and found 18. 

Teacher: What do dots and groups represent in the array? 

Zuhal: Dots mean mice. My groups mean mouse holes. 

Ajda: I drew in the same way.  

Teacher: Did you draw dots to represent mice as Zuhal did? 

Ajda: Same. Since there are 3 mice in each hole, I drew dots 3 by 3 and skip 

counted. 

Meliha: I counted by 3 as you did since there are equal amounts of dots in each 

row. 

Ilker: Not only rows, but also columns should include equal number of dots. 

Birce: I counted as you did. But, I circled my groups differently. 

Egemen: How did you do Birce? Can you show yours? 

(Birce showed her booklet in which she circled columns as groups) 

Burak: She drew as I did. I considered the columns as groups too.  

Eyüp: I always use the columns as groups. 

Teacher: Does it matter to use rows or columns? 

Hakan: I think, it doesn't matter. We all found the same result by multiplying 6 

and 3. 

Teacher: Why? 

Kadir: We can skip-count both vertically and horizontally.  

Zehra: We can form equal groups by rows and columns since the array is 

rectangular-shaped. 

 

 

Figure 4. 64. Sample arrays to form equal groups by rows and columns 
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Students claimed that there are 18 mice in 6 holes by processing the operation of 

"6x3". They supported their claims with the array representations they drew, 

summarized in Toulmin's analysis scheme in Figure 4.65 below. Students 

administered these array models to specify the number of groups and elements in 

each group to decide on the operation to make a claim related to the answer to 

the problem. Two types of representation emerged as warrant to their claims. 

While some used array vertically to group columns, the others used array 

horizontally to group rows. They also discussed that the directions of groups do 

not matter since the array model is rectangular, which means including equal 

columns and equal rows. For that reason, they did not question the direction of 

grouping. They were aware that it is possible to count the columns as groups, 

too. Therefore, they used the givens in the problem as data and composed arrays 

in the light of these given numbers by considering the context of the problem. 

These array models played a crucial role in supporting their claims related to the 

number of mice. Arrays helped them visualize the equal groups of mice and 

generate a multiplication operation that is 6 times 3. These models made the 

multiplier and multiplicand more clear.   

 

 

Figure 4. 65. Toulmin's Analysis scheme regarding composing arrays from rows 

and columns to illustrate equal groups 

Data: There are 3 

mice in each hole. 

There are 6 mouse 

holes. 

Claim: 6 times 3 

makes 18 mice. 

Backing: That means 6 

groups of 3. 

Warrant: There are 6 

columns in the array 

and 3 dot in each 

column.  

Claim: 6x3=18 mice. 

Warrant: There 

are 6 rows in 

the array and 3 

dot in each row.  
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In the following lessons, students made reasoning by using array models to 

specify equal groups. For instance, on the 22nd day, students were asked to pose 

a problem related to the multiplicative operation of "9x4". As shown in Figure 

4.66 below, students constructed rectangular arrays drawing dots in squares, and 

counted the number of dots on each side to find the total number of dots. 

Students structured the array as a combination of composite units. That helped 

them skip counting of these composite units to find the total number of dots. 

 

             

Figure 4. 66. Sample arrays to represent ―9x4‖ 

Students arranged the dots to represent "9x4" and identified equal groups. While 

some of them specified equal groups horizontally (row), others specified 

vertically (column) by circling. Students were not directed to form groups along 

rows or columns. They engaged on rectangular arrays through classroom 

discourse and decided that the direction of grouping does not matter as long as 

they formed equal groups. Hence, students developed array representation by 

abstraction from pictorial representation collectively.  

 

As Steffe (1992) stated, students recognized and produced composite units 

corresponding to equivalent groups as essential understandings of multiplication. 

In the following lessons, it was observed that students did not question how to 

decide on the groups by using an array. They checked whether the groups 

defined on the array represent the given multiplicative situation. Students used 
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this idea as data in their arguments in the following lessons without the need for 

backings to become taken-as-shared. 

 

4.4.5. Idea 14: Reasoning commutative property by using arrays 

 

In the light of instructional sequence and students‘ reasoning, the research team 

focused on reasoning the commutative property of multiplication by interpreting 

multiplicative situations and representations. In the previous parts, it is seen that 

some of the students made sense of the commutative property of multiplication. 

For instance, some of them discovered that reversing the numbers of groups and 

elements in each group on the fourth day can form new equal groups. That is to 

say, the objects grouped as 6 sets of 2 elements can also be grouped as 2 sets of 6 

elements. In the same way, students used others‘ claims related to equal 

grouping to reverse and get new equal groups in the fifth and sixth days. It 

means that some of the students intuitively understood the commutative property 

of multiplication. For that reason, this valuable sense was noted to be observed in 

the following activities. 

 

In the eighth lesson, the teacher wrote a phrase on the board as ―5 times 3‖. Then 

asked what it means ―5 times 3‖. All the students quickly answered as 15. The 

teacher completed the phrase as ―5 times 3 makes 15‖. Then asked students to 

pose a problem about it. Students were given 2 minutes to think about it. Then 

classroom discussion started as in the dialogue below: 

 

Doğan: I have 5 boxes. There are 3 toys in each. I put them together. They were 

15. 

Teacher: How can you turn it into a problem? You can ask ―How many toys are 

there totally‖. 

Zehra: I have 3 boxes. There are 5 pencils in each. I counted them by 5s and 

found 15. 

Teacher: To make it a problem, you can ask total number of pencils instead of 

calculating it. 

Birce: Friends came together to the park. They composed 5 groups. There were 

3 kids in each group. How many kids are there totally? 

(Various problems were posed. Most of the students used the context of boxes 

with an equal number of objects in them) 
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Teacher: Let‘s look at the problems posed by Doğan and Zehra. (She wrote the 

problems on the board as in Figure 4.67). Are these problems same? 

 

    

Figure 4. 67. Two types of problem discussed on the board (original version) and 

its‘s translated version. 

Classroom: Not same, but similar. 

Teacher: What is the similarity? What is the difference? 

Eyüp: There are boxes in both problems. 

Zuhal: There are 5 and 3. 

Zehra: In the first problem posed by Doğan, we multiply 5 and 3. In the second 

problem, we multiply 3 and 5. Both make 15. 

Teacher: Is there ―5 times 3‖ in Doğan‘s problem? 

Classroom: Yes. 

Teacher: Is Zehra‘s problem convenient? 

Classroom: Yes. 

Teacher: Can you show me ―5 times 3‖ in Zehra‘s problem? 

 

 (At that point, the classroom split into two as the ones who think Zehra‘s 

problem is convenient and the ones who think Zehra‘s problem is not 

convenient. The ones supporting Zehra claimed that she also used 3 and 5 in the 

problem and found 15 as a result. On the other hand, the others claimed that the 

problem does not include ―5 times 3‖ although the answer is correct.) 

 

Zehra: My problem represents ―3 times 5‖. However, the results are the same.  

Teacher: There is an idea in the classroom that the appearances of the groups are 

different. However, the answers to both problems are the same. Why? 

Birce: The number of boxes decreased, but objects in each box increased. Thus, 

there are still 15 objects. 

Teacher: 2 boxes are removed you say. What if we remove 3 boxes? Can we 

keep total number of objects as 15 again? 

Birce: No. I couldn‘t build relationship between the amount of decrease and 

increase. 

Zehra: Places of the numbers changed. They are replaced.  

Teacher: Why did total number remain same when the numbers were replaced? 

(They tried to make interpret the change in the number of boxes and objects in 

each box.) 
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Halil: Result does not change when the numbers are replaced, because it is a 

rule. 

Teacher: Which rule? How did you get this rule? 

Hakan: Because reasons (also known as because is why). 

 

It was striking that most of the students accepted the idea that reversing the 

group number and group size does not affect the total number of objects that can 

be called commutative property in multiplicative situations. Although students 

had not experienced any operation related to repeated addition and 

multiplication, they discovered this property in grouping activities. They 

supported their claims by counting the groups to find the total amounts. Some of 

them emphasized that they have already known that since they experienced it in 

the previous lessons. Students proposed different reasoning to be able to support 

their claims. They convinced each other that ―5 times 3‖ and ―3 times 5‖ are 

different in meaning but the same in the total. They supported their claims with 

the warrant that replacing the numbers does not affect the result. They accepted 

this warrant as a fact or property as in the dialogue. Students avoided specifying 

the reasons since they did not know why it was always true. They could not 

explain why the result does not change when the numbers are replaced. 

However, they knew that it always works. 

 

In the following lessons, it was seen that the number of students who used this 

―rule‖ in their arguments was increasing. Although they could not prove why it 

always works, they could show by giving examples. Hence, they accepted this 

sense of commutativity as taken-as-shared idea day by day. For instance, as it 

was mentioned in the part of TAS 6, students were asked to pose a problem 

related to ―5x4‖. Students were expected to write a story including 5 groups with 

4 objects each. During this activity, Eyüp posed a problem, and others reflected 

on it as in the dialogue below: 

 

Eyüp: There are four fish ponds. I saw five fish in each fish pond. How many 

fish did I see?  

Zehra: Wait a minute. I am not sure whether it fits 5x4. 
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Birce: Eyüp, this drawing represents 4x5. We have 5x4 to pose a problem which 

means five times four. The results are equal, but operations are different. You 

should draw five fish ponds and four fish in each. You did the opposite.  

  

As in the excerpt, students intuitively discovered the commutative property of 

multiplication. They knew that Eyüp‘s problem gives the same answer since he 

just replaced the numbers, which is related to the idea of making sense of 

commutative property. They reached this knowledge as a result of their 

experiences. However, they could not prove or explain by providing a reason for 

this property. For that reason, the research team developed exercises related to 

composing arrays to give them a chance to see this property visually on arrays. 

On the seventeenth day, students were given counters and asked to compose 

arrays on squared paper. Then they were asked to show multiplication operations 

on the array symbolically. As in Figure 4.68, students were provided concrete 

counters, activity sheets, and personal reusable squared papers to hold and show 

others their arrays. 

 

 

Figure 4. 68. Sample array activity and students‘ works 

Various representations emerged. While some of them circled the counters 

vertically to specify equal groups in multiplication, some circled horizontally. 

Arrays were also varied in terms of commutativity. For instance, while some of 

them made 6 groups of 2 counters with 12 counters, others made 2 groups of 6 

counters. That is to say, for multiplication operations, including 2 and 6, four 

types of arrays were composed by the students as illustrated in Figure 4.69. 

Students shared their models and multiplication operation with the others. 

During the classroom discussion, students analyzed these array models and 

discussed whether the representations and related operations were consistent or 

not. 
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Figure 4. 69. Four types of array models for multiplication of 2 and 6 which are 

illustrated by the researcher. 

Students focused on the groups on presented arrays to decide on the multiplier 

and multiplicand to check the written operation. Some of them composed array 

but did not specify the groups. In such situations, students asked each other to 

circle the groups on the arrays to see the groups and compare them with the 

operation. That is to say; they asked each other to specify the directions of the 

groups as vertical (columns) or horizontal (rows). While analyzing the arrays, the 

ones who wrote the same operations compared their arrays and groups. They 

realized that they could write the same operations although the directions of 

groups were different (Figure 4.69). Students experienced that they could 

compose various arrays as long as they were rectangular. They shared various 

types of arrays and operations. However, they did not specify commutativity. 

 

After this lesson, it was seen that all the students were capable of composing an 

array and interpreting the array's components as groups and elements in each 

group as it was targeted. After being convinced that students conceptualized 

array models, the research team decided students to interpret array models in 

detail. With this purpose, in the following days (18th and 20th days), students 

were given array models and asked to write a multiplication operation for given 

array and specify it as "…times… makes …" as in Figure 4.70. Students were 

given readymade arrays not to distract them by drawing and composing. Thus, 

students had much more time to work and discuss arrays. 
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Figure 4. 70. Sample items related to array activities 

The dialogue related to the discussion of the items in Figure 4.70 is given below: 

 

Doğan: I wrote 10x2 (The ones who wrote the same operation approved Doğan) 

Birce: I wrote as 2x10. You might have grouped rows. 

Doğan: Did you group columns? 

Birce: Yes. 

Ali: I grouped columns, too.  

Teacher: Does it matter to groups rows or columns? 

Hakan: No, just the places of numbers in the operation change. 

Teacher: What about the following array? 

Halil: 5x4 makes 20 (The ones who wrote the same operation approved Halil) 

Doğan: I wrote the reverse as 4x5. (Birce approved him, too). Birce, did you 

group rows this time? You used columns before. 

Birce: Sometimes I group rows, sometimes columns. As I wish. 

Teacher: Is it crucial?  

Ali: We can group as we wish. The result does not change. 

Teacher: Why doesn't it change? 

Doğan: It is a rule. 

Hakan: We didn't touch the counters. We didn't add or remove any counter.  

Teacher: Can you show this rule on arrays? 

Ajda: Some of us used columns, some of us used rows. We all found 20. 

Birce: I got it. We just change our perspective. Changing direction doesn't 

change the result. 

Teacher: Can you see the rule here? As you said, replacing the multipliers 

doesn't affect the result. We call it as commutative property of multiplication. 

We couldn't see it in the pictures we drew in previous lessons. However, you 

could easily observe on an array. 
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Figure 4. 71. Works of Doğan, and Birce respectively. 

As the students discussed it, students made reasoning about grouping the 

counters in the arrays and writing a multiplication operation related to these 

groups. They again stated that they could group the counters vertically or 

horizontally as they had always done. As it can be seen in Figure 4.71, Doğan 

preferred grouping the rows while Birce grouped the columns. They wrote 

reverse operations but found the same results. They emphasized that they could 

group the counters as they wished since the result was not affected. The crucial 

part of this discussion is that students made reasoning about the commutativity 

property of multiplication on array representation. They were asked why the 

direction of grouping does not affect the result to make them provide reasoning 

about their claims. They could clearly explain on the array models that they did 

not add or remove any counter in the array. They just changed their perceptions 

that while some focused on the columns, others focused on the rows. The models 

remained the same. After explaining their claims, the teacher rephrased students' 

claims by expressing that it was called the commutative property of 

multiplication. Toulmin's analysis scheme presented in Figure 4.72 below 

summarizes students' claims and supports. 
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Figure 4. 72. Toulmin's Analysis scheme regarding reasoning commutative 

property by using arrays. 

On the 22th day, students were given an array model consisting of 7 rows and 3 

columns and asked to pose a multiplication problem related to this array. Many 

problems were posed in various contexts. Students shared their problems with 

others to get their opinions. They focused on equal groups in the array model, 

multiplication operation, and context of the problem simultaneously. They 

interpreted whether the number of equal groups is consistent in these 3 types of 

representations. Students accepted the idea related to commutativity on array 

models as taken-as-shared idea so that they did not question it anymore, as it can 

be clearly seen in the dialogue below: 

 

Eyüp: I am reading my problem. I have 3 boxes. There are 7 balls in each box. 

How many boxes do I have? (Figure 4.73) I solved by multiplying 3 and 7. 

Birce: Did you group the columns? 

Eyüp: Yes. Columns are my boxes. 

Doğan. It is good. 

Melek: Can I read mine? I buy 3 marbles in each day. How many marbles do I 

buy in 7 days? I multiplied 7 and 3 since I grouped the rows (Figure 4.73). 

Hakan: Correct for your array.  

(All the students shared their problems) 

Teacher: I see two types of operation in the classroom. 3x7 and 7x3. 

Zehra: It is too normal. There are two types of grouping; rows and columns. 

Teacher: Is it acceptable? 

Hakan: Sure, it is commutative property. 

Claim: Changing 

direction doesn‘t change 

result/ Replacing the 

multipliers doesn‘t affect 

the result. 

Warrant: It is a rule. Warrant: We didn‘t add or 

remove any counter. 

Data: Arrays can be 

grouped as rows or 

columns. 

Backing: We change our perspective 

(changing direction) 
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Figure 4. 73. Works of Eyüp, and Melek respectively. 

As observed in this lesson, students conceptualized the idea of commutativity by 

using array models. Students did not question the ones who used reverse 

operations or reverse grouping in their problem contexts. They knew that there 

were two ways to group objects in array. They did not ask for reasoning about 

this issue which means that this idea became taken-as-shared by students.  

 

4.5. Classroom Mathematical Practice 5: Writing contextually realistic 

problems by coordinating the relationship among multiplicative 

representations 

 

The fifth practice emerged as students engaged in the instructional sequence 

involved writing problem context for a given situation. Students were asked to 

write realistic word problems based on given pictures, models, repeated addition, 

and multiplication operations. It was expected to support students to make 

connections between given representations and real-life representations. Students 

engaged in problem posing tasks individually. Then, they shared in whole-class 

discussions and questioned the appropriateness of the problems posed. Students 

embedded the equal groups they defined as Practice 4 in multiplication 

situations. The context of the problem was formed within words where the group 

number and group size are made explicit in a real-life story. Students shifted 
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from sharing strategy talk to a more demanding procedural emphasis on the 

action in the problem structure during the classroom discourses. Four 

mathematical ideas became taken as-shared as students engaged with problem-

posing tasks: 

 

 Analyzing the multiplier and multiplicand to pose multiplication 

problems on known contexts 

 Interpreting the multiplier and multiplicand to pose multiplication 

problems as repeated addition  

 Interpreting the multiplier and multiplicand to pose multiplication 

problems as rate 

 Focusing on structure and keywords in the problems to conceptualize 

multiplication 

 

4.5.1. Idea 15: Analyzing the multiplier and multiplicand to pose 

multiplication problems on known contexts 

 

In this instructional sequence, activities are developed in real-life contexts in the 

light of RME theory to make students feel familiar with the tasks. Students 

worked on the tasks, including various realistic multiplicative situations. 

According to the sequence of activities, after students practiced problem-solving 

activities, they were introduced to problem-posing activities produced from 

multiplicative situations. When they started problem-posing tasks, it was 

observed that students modified their experiences from problem-solving 

activities to new situations to pose a problem. Students reformulated already 

solved problems or problems posed by others in previous lessons to generate a 

new problem by changing what is given. In other words, students used the same 

contexts for different numbers. For instance, on the eighth day, students were 

asked to pose a problem for the phrase "5 times 3". It was seen that students used 

the contexts and pictures from the previous tasks like fruits in plates, toys in 

boxes, objects in baskets as in Figure 4.74.  
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Figure 4. 74. Sample visuals used in the tasks to represent equal groups 

To pose a problem, students analyzed the phrase "5 times 3" as 5 groups and 3 

objects in each group. Then, they selected context to modify for this phrase. 

Some of the modified problems posed by students are given in the dialogue 

below: 

 

Doğan: I have 5 boxes. There are 3 toys in each. I put them together. They were 

15. 

Teacher: How can you turn it to a problem? You can ask "How many toys are 

there totally". 

Zehra: I have 3 boxes. There are 5 pencils in each. I counted them by 5s and 

found 15. 

Teacher: To make it a problem, you can ask total number of pencils instead of 

calculating it. 

Eyüp: There are 3 oranges in 5 boxes. I added all oranges to find how many 

oranges there are. 

Teacher: You have 5 boxes and 3 oranges in each. How many oranges are there 

in these boxes? You should make an interrogative sentence that asks a question. 

Ajda: There are 5 plates. There are 3 apples in each plate. How many apples are 

there? 

 

As in the dialogue, students preferred boxes and plates to place objects in them. 

That is to say; they used the context they had experienced before. It was 

observed that once one student used boxes as groups, others started using boxes 

by changing the objects in them. As in the example above, after Doğan had used 

toys in boxes, others changed them into pencils and oranges. It was the first time; 

they had asked to pose a problem. They could write stories for their problems by 

modifying previous problems. However, they had difficulty making an 

interrogative sentence at the end of the problem. They explained the equal 

groups and elements as the context of the problem and found the total number of 

objects. The teacher facilitated them to make a sentence at the end to emphasize 

that it was a problem. Students' tendency to take advantage of previously known 

contexts was observed in the following lessons.   
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On the eleventh day, students were asked to pose a problem related to repeated 

addition of "3+3+3+3+3+3+3". Students generated their problems and discussed 

these problems with others. During the discussion session, various ways of 

reasoning emerged. As one of these ways, students attempted modifying 

previously solved and posed problems to generate a new problem for the given 

operation as in the dialogue below: 

 

Karan: There are 7 shelves. There are 3 apples in each shelf. How many apples 

are there? 

Teacher: Did you listen to Karan? What do you think about his problem?  

Zehra: It is convenient for the given operation. As we did yesterday, 7 shelves 

are the groups. 

Eyüp: It is a good problem since we worked on a task related to shelves and 

bottles in the last lesson. 

Doğan: I want to read mine. There are 3 pencils in each plate. If I have 7 plates, 

haw many pencils do I have? 

Birce: Did you put pencils in plate? Isn't it weird? 

Hakan: Do you think that Doğan's problem is weird? I put toys in the plates. 

(Everyone laughed loudly) 

Teacher: Approximately half of you put objects in plates. Why did you prefer 

plates? 

Esra: You asked us problems about plates previously. 

Yalçın: We put fruits in the plates and represented with multiplication. For that 

reason, I used plates and put marbles in them. 

 

Students had worked on a task that included a picture of bottles on shelves to 

pose a problem the day before. As it can be seen in the dialogue, Karan used the 

same context since it was examined, discussed, and accepted as a relevant 

problem. The others also supported his claim by summarizing the previous 

activity. In the same way, Doğan used the well-known context of plates with 

objects in. Birce criticized him since putting pencils in plates was nonsense. 

However, others supported Doğan by sharing the weird objects they had put in 

plates in their problems. Although the contexts were weird, they were realistic in 

the light of RME since they could imagine the story in the problem. Hence, 

students used pre-used and analyzed stories to get new problems by changing the 

numbers. They supported their claims by specifying their previous experiences 

and showing the relevance of their problems, as summarized in the 

argumentation scheme in Figure 4.75 below. 
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Figure 4. 75. Toulmin's Analysis scheme regarding modifying the shelf-bottle 

problem to pose a new problem for repeated addition operation. 

On the thirteenth day, students were given a multiplication operation to pose a 

problem. They were asked to pose problems according to "5x4=……" and the 

conversation continued as follows: 

 

Meliha: There will be five groups and four things in each group. 

Egemen: I do four pushups each day. How many pushups do I do in five days? 

Zehra: Egemen posed such a problem before. He likes doing pushups. 

Zuhal: I posed the same problem too. I remembered the problem Egemen wrote 

yesterday. I changed the numbers in his problem and wrote this problem. 

Teacher: Is it valid for the given operation? 

Zuhal: I named the groups as days and the things in each group as pushups. It 

must be convenient. 

Doğan: Egemen's previous problem was right; this is also true. 

 

Argumentation dialogue shows that students equated multiplicative situations 

with contexts like drinking milk daily, doing pushups, apples on plates. They 

constructed problems on given operations or pictures through these contexts. In 

the excerpt, although the students were not asked to change the givens on a 

specific problem, they used the stories used in the previous lessons and replaced 

the numbers in those problems and the numbers in the given operation. This 

approach provided making conjecture and producing new perspectives about 

Data: 

―3+3+3+3+3+3+3‖ 

Claim: There are 7 

shelves. There are 3 

apples in each shelf. 

How many apples are 

there? (Karan) 

Backing: We posed problem related to 

shelves and bottles in the last lesson (Eyüp) 

Backing (Previous problem): There are 4 shelves. There 

are 5 bottles in each shelf. How many bottles are there?  

Warrant: 7 shelves are 

the groups (Zehra) 
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problem outcomes. Students used well-accepted contexts to pose new problems 

on given operations without judging since the context and structure of the 

previous lessons' problems were discussed and accepted as taken-as-shared 

ideas. They focused on interpreting consistency between numbers of groups and 

elements on the operation and the numbers in the problem, as shown in the 

argumentation scheme in Figure 4.76 below. 

 

  

Figure 4. 76. Toulmin's Analysis scheme regarding modifying pushup problem 

to pose a new problem for the given multiplication operation. 

As in the given dialogue, students memorized the previously posed problems. 

Furthermore, they called some problems with the person's name who used it first. 

For instance, they called the daily pushup problem Egemen's problem. The 

following days, they used the same context and supported their claim by 

emphasizing that this is Egemen's problem and previously accepted as an equal-

group.  

 

Students were asked to pose a problem for a given array model on the twenty-

second day. The given array model was ungrouped to make them feel free to 

group the array as they wished. While some of them grouped the columns (3x7), 

others grouped the rows (7x3). As it was explained in the previous section (TAS 

11), students did not focus and discuss the grouping procedure. They focused on 

the context and consistency between the groups in the problem and array. Some 
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of the students used a known context by adapting it according to the given array, 

as shown in the argumentation scheme in Figure 4.77 below.  

 

 

Figure 4. 77. Toulmin's Analysis scheme regarding modifying daily routine 

problems to pose a new problem for a given array model. 

Students used the problem related to the daily routine, which is drinking water 

every day. Students changed water with daily activities like drinking milk, eating 

candy or fruit. They supported their claims by reminding previously solved or 

posed problems. They also stated that they do the same thing every day to 

represent equal groups. This issue is also explained in the following parts (TAS 

14).  

 

Students were introduced to various tasks during problem-posing activities to 

pose problems for a given picture, operation, or array model. In all types of 

activities, students provided various explanations to their claims. One 

explanation was related to modifying known problems for new situations to 

generate another problem. Students chose known contexts to be on the safe side. 
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It was the most used reasoning to make a claim. After a while, no one discussed 

such problems since they had already discussed and accepted these stories. It was 

seen that the idea of modifying known stories for the new situations was taken-

as-shared idea for the classroom. 

 

4.5.2. Idea 16: Interpreting the multiplier and multiplicand to pose 

multiplication problems as repeated addition 

 

As stated before, students met with problem-posing tasks on the eighth day. 

After that day, students were provided activities related to problem posing and 

problem-solving.  They shared and reflected on their problems and discussed 

them. While students talked about the problems posed, it was observed that they 

started to show their creativity on the story of the problems posed so that 

contexts of the problems varied and departed further from traditional word 

problems found in textbooks. After analyzing these problem contexts, two types 

of problems emerged as repeated addition problem including concrete groups of 

objects (TAS 16) and rate problems including abstract groups of actions (TAS 

17).  

 

In the first type of problem, students generated groups in which objects can be 

placed. As in the eighth lesson in which students had faced with problem-posing 

activities first time, students preferred mats like boxes and plates to put objects 

in them. They also selected concrete objects like an orange, apple, strawberry, 

pencil, ball, and toy that can be grouped on mats. It took the research team's 

attention, and this idea was noted to be observed for the following lessons. 

Students were given a picture/model or an operation to pose a problem. In such 

situations, students initially interpreted the given representation in the task as 

multiplier and multiplicand. Then, wrote a story problem about the multiplier 

and multiplicand. They started the story by specifying the group number 

(multiplier). After that, they explained how many items there are in each group 

(multiplicand).  
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On the tenth day, students were asked to pose a problem related to given picture. 

Students generated their problems considering shelves as groups. During this 

lesson, students were not just dependent on the given picture. Some of them 

changed the picture to pose their problem as summarized in the argumentation 

scheme in Figure 4.78 below. 

 

 

Figure 4. 78. Toulmin's Analysis scheme regarding constructing problems on 

bottle-shelf picture 

As seen in Figure 4.78, students defined shelves as equal groups in both pictures. 

Then, they posed repeated addition problem related to the shelves and bottles in 

each shelf. They supported their problems by specifying equal group 

representation of multiplication. In the following lessons, students created 

contexts that include concrete groups like closed boxes, bags, baskets as units. 

They developed an understanding that any unit can be counted like five-fours 

through skip counting. At that point, while a student posed a problem, others 

divided the problem into components as a multiplier (number of groups) and a 

multiplicand (group size) to state the model of the problem as repeated addition 



250 

of equal sets. Students were used to generating equal groups and finding the total 

number by adding the number of elements in each group as times as the number 

of groups. Therefore, they tended to decide on the groups and elements placed in 

these groups at first.  

 

On the twenty-second day, students worked on two types of problem posing 

tasks. In the first one, students were given an array model with seven rows and 

three columns. They were asked to pose problems related to the given model. 

Sample problems from this lesson and their interpretations are summarized in the 

argumentation scheme in Figure 4.79 below. 

 

 

Figure 4. 79. Toulmin's Analysis scheme regarding constructing repeated 

addition problems on array model 
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Students grouped the objects in the array model as rows or columns. They used 

their representations related to the groups in the array as warrants to their claims. 

The others evaluated the problems by comparing them with the groups in the 

representation. In this lesson, a second type of problem posing task was used. 

Students were given the operation of ―9x4‖ and asked to pose problems for this 

operation (Figure 4.80).  

 

 

Figure 4. 80. Toulmin's Analysis scheme regarding constructing repeated 

addition problems on 9x4 

As it is seen in the scheme above, students interpreted the multiplier and 

multiplicand in the given operation. They decided on the number of groups and 

group size with respect to the multiplier and multiplicand. After that, they used 

these numbers and generated repeated addition problems. They started the 

problem by specifying the number of groups which represents how many times 

the unit (multiplicand) is iterated. After a while, students did not propose any 

warrant since the others did not ask. Dropping off of warrants in students‘ 

answers showed that the idea of interpreting the multiplier and multiplicand to 

place in a real-life context for a repeated addition problem was taken-as-shared.  
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4.5.3. Idea 17: Interpreting the multiplier and multiplicand to pose 

multiplication problems as rate 

 

As stated above, in addition to writing problems on concrete objects, writing 

problems on actions and daily routines emerged in the classroom as another 

reasoning for problem-posing on multiplication. While most of the classroom 

tended to name the groups as closed shapes, some of the students called these 

groups the period like an hour, day, week, and month. The first example of this 

type of problem emerged on the tenth day by Melek. While most of the students 

used the context of bottles on shelves, she enriched the context with action. She 

posed a problem: "How many bottles of water does my brother who drinks 5 

bottles of water every day drink in 4 days?". It was surprising for both 

researchers and students. Although there was a readymade context in the picture 

as ―there are 4 shelves and 5 bottles on each shelf‖, Melek generated a problem 

including actions. She discussed her problem by defining equal groups in the 

picture as in the argumentation scheme in Figure 4.81 below. This abstract 

context was found remarkable by the research team. It was noted to be observed 

in the following lessons to be observed.  

 

 

Figure 4. 81. Toulmin's Analysis scheme regarding constructing problem on 

bottle-shelf picture including regular actions 

In the eleventh lesson, which is explained in the previous sections, some of the 

students posed problems about daily routines and various actions. It was seen 

that some of the students posed rate problems for equal groups. Students focused 

on the unit. They started the problem by specifying the unit (multiplicand). 
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Sample dialogue related to the discussion of these problems in the classroom is 

given below: 

 

(Students were asked to pose problems for 3+3+3+3+3+3+3) 

Egemen: I do 3 pushups every day. How many pushups do I do in 7 days? 

Teacher: What do you think about Egemen's problem? 

Esra: What are the groups? 

Egemen: Days are the groups. I do 3 pushups each day as I drew (He showed his 

drawing given in Figure 4.82). 

Zuhal: I used the days as groups, too. 

Teacher: Can you read? 

Zuhal: I eat 3 strawberries every day. How many strawberries do I eat in 7 days? 

I placed strawberries in days (Showed her drawing in Figure 4.82). 

Teacher: Is there anyone who uses the days as groups? 

Halil: I wrote drinking 3 glasses of water. 

 

As can be deduced from the dialogue, students used frequency of actions as 

multiplicand and the number of days as multiplier for the rate problem. Students 

supported their claims by specifying the groups and elements. Moreover, 

students made drawings to visualize their reasoning and represent groups as in 

Figure 4.82.  

 

 

Figure 4. 82. Drawings of Egemen and Zuhal related to their problems 

On the thirteenth day, students continued to use actions to be grouped for rate 

problems they posed. Students used TAS 10 as data to specify the number of 

groups and elements in each group. After that, they generated problems related 

to these numbers. While they prefer constant objects placed somewhere in the 

light of TAS 16, they preferred objects specified by a verb like visited forests, 

eaten food, bought products, and done work in TAS 17. Students shared their 

Egemen: I do 3 pushups every day. 

How many pushups do I do in 7 days? 
Zuhal: I eat 3 strawberries every day. 

How many strawberries do I eat in 7 

days? 
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problems and supported their claims by using visual representations in Figures 

4.83. Students preferred time intervals like days and months as the groups. They 

limited the actions in a time scale so that each action happens in the same 

amount of time. 

 

 

Figure 4. 83. Drawings of Ali and Ilker related to their problems on 5x4 

For instance, students were asked to pose a problem for the operation "9x4" on 

the twenty-second day. They discussed the problems and ideas related to abstract 

groups as in the argumentation scheme (Figure 4.84) and dialogue below: 

 

Zehra: Here, we can consider each group as days. So, my problem is, "I run four 

laps in our playground every day. In 9 days, how many laps do I run?" 

Kadir: Where is the groups? 

Doğan: I think it is OK. 

Teacher: How is it OK? Can you explain more specifically? What should be in a 

problem to be OK? 

Halil: There must be nine groups. Nine days can be counted as nine groups.  

Ilker: What can we put in these groups? 

Ali: She also runs each day equally. We can solve this problem by multiplying 

nine times 4. 

Teacher: You say that the number of tours you run is the number of objects in 

each group? 

 

We visit 4 forests in each month. 

How many forests do we visit in 5 

months? (Ali) 

I drink 4 glasses of milk every day. How 

many glasses of milk do I drink in 5 days? 

(Ilker) 
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Figure 4. 84. Toulmin Analysis scheme regarding constructing problem on 

abstract groups of actions 

During this lesson, the teacher asked questions for justification. Although 

students were aware of what they had done, they had difficulty explaining how 

they thought sometimes. The teacher restated the statement to clarify, apply 

appropriate language, and involve more students in such times. In this excerpt, 

students formed their groups as nine days and four actions each. Instead of 

choosing tangible or concrete objects to place in the groups, students started 

thinking about abstract items like daily routines, actions, verbs, and activities to 

place in each group. Students agreed with this type of problem, considering 

groups as a period at the end of a couple of lessons. Students developed shared 

ideas on this issue and reflected on this in the following lessons. 

 

Furthermore, most of the students used such contexts for multiplication with 

zero, which is hard to conceptualize most of the time. For instance, students were 

asked to pose a problem for the operation "5x0" on the twenty-fifth day. They 

discussed the problems and ideas related to abstract groups as in the dialogue: 

 

Melek: I see zero dogs in the street each day. How many dogs do I see in 5 

days? 

Data: ―9x4‖  

There are 9 fours 

here (Zuhal) 

Claim: We can consider each 

group as days. There are 4 in each 

group/day. ―I run four laps in our 

playground. In 9 days, how many 

laps do I run?‖ (Zehra) 

Warrant: She runs the same 

laps in each day. Laps are the 

elements in each group (Ali) 

Warrant: There 

must be 9 groups. 9 

days become our 9 

groups (Halil) Warrant: She does 

the same thing 

every day. Every 

day is equal (Birce) 
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Hakan: Problems about dogs and streets were constructed before (TAS 12). It is 

Ok.  

Burak: I want to share mine. I drink tea without sugar every day. How many 

sugar cubes do I use for my tea in 5 days? 

Birce: Clever. You do not use sugar for tea. There is zero sugar in each day. It 

means that the answer is zero.  

 

Here, the idea is posing rate problems considering actions in each time interval 

like day, week, and months. In the following lesson, students did not question 

such contexts, so that the warrants were not offered. That is to say, students 

developed the rate meaning of multiplication. They could conceptualize the 

equal group representation in rate problems. Therefore, in the following lessons, 

no other students challenged constructing rate problems so it was concluded to 

be taken-as-shared at this point in instruction. 

 

4.5.4. Idea 18: Focusing on structure and keywords in the problems to 

conceptualize multiplication 

 

While posing problems on a given operation, students focused not only on the 

context of the problem but also on the grammar of problem text. They paid 

serious attention to the concept and language of problems posed to make 

inferences in light of multiplication (equal grouping). They questioned the 

meaning of the problems by looking for and expressing regularity in 

multiplicative reasoning. In the first lesson regarding problem posing (8th day), 

students wrote problems related to "5 times 3", they shared and discussed their 

problems as in the dialogue below: 

 

Esra: I had 5 eggs. 3 of them were broken. How many eggs do I have now? 

Ali: Yours is subtraction problem. 

Teacher: How can you help Esra? 

Doğan: I have 5 boxes. There are 3 toys in each. I put them together. They were 

15. 

Teacher: How can you turn it to a problem? You can ask "How many toys are 

there totally". 

Zehra: I have 3 boxes. There are 5 pencils in each. I counted them by 5s and 

found 15. 

Teacher: To make it a problem, you can ask total number of pencils instead of 

calculating it. 
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Eyüp: I have 3 oranges in 5 boxes. I added all the oranges to find total number. 

Burak: I had 5 glasses. 3 of them were broken. How many glasses do I have 

now? 

Classroom: Wrong! It is subtraction problem. 

Teacher: Let's start with 5 glasses and help Burak to correct his problem. 

Ajda: We need equal groups. 

Doğan: I have 5 glasses. I put 3 ice cubes in each glass. 

Teacher: How many ice cubes do we need? 

  

As viewed in the excerpt above, various difficulties emerged in making 

sentences to write a problem. The initial difficulty was about making an 

interrogative sentence. Students could give the meaning of equal grouping. They 

knew that they should process repeated addition and find the total number of 

objects. However, they had difficulty in making an interrogative sentence. They 

stated adding 5 times 3 to find the total number. The teacher supported students 

to make interrogative sentences that ask a question. Another difficulty was that 

students tended to pose problems related to addition and subtraction that they 

were familiar with. As in the except, when students posed a problem for wrong 

operation, others were asked to help to correct the problem. For instance, Burak 

posed a subtraction problem. Doğan enriched his context to make it repeated 

addition problem. As Ajda emphasized, Doğan gave the meaning of equal 

groups. At that point, it was seen that students focused on the meaning of the 

given statement to be able to give the same meaning in the problem text.  

 

On the tenth day, students were asked to pose a problem related to the picture of 

bottles on shelves. Students asked their original problems to others to get 

feedback from the others. Others evaluated these problems by solving and 

checking the consistency between the given picture. An excerpt related to the 

discussion of this lesson is given below: 

 

Karan: There are 4 shelves. There are 5 bottles in each shelf. How many bottles 

are there?  

Simge: I have 5 bottles. I buy 4 more bottles.  

Doğan: More? 

Yalçın: Simge, be careful. You wrote an addition problem. It must be a repeated 

addition. 

Teacher: Can you help her? 
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Eyüp: I have 5 bottles. I have 5 bottles more. I have 5 bottles more. I have 5 

bottles more. 

Melek: Eyüp, if you have 4 shelves, it is good. 

Egemen: I have 4 fives of bottles. How many bottles do I have? 

Esra: I have 5 bottles in each shelf. How many bottles do I have if I have 4 more 

shelves? 

Doğan: There is something wrong about your problem. 

Ajda: Esra says "more". It requires addition. 

Teacher: Can you help Esra? 

Gökhan: She shouldn't use the word "more". If this word is removed, the 

problem will be fixed.  

 

As can be gathered from the dialogue, students used the word "more" while 

posing a problem. Students stated that using the word "more" gives additional 

meaning. As given in Figure 4.85, Gökhan claimed that removing "more" from 

the problem makes the problem relevant. It was a correct claim. One more claim 

showed that it was possible to make a correct claim with the word "more". Eyüp 

used the word "more" without losing the meaning of repeated addition. He wrote 

a sentence for each group as "having 5 more". He repeated this sentence to give 

the meaning of repeated addition. In both types of claims, students stated the 

meaning given by the words. 

 

 

Figure 4. 85. Toulmin's Analysis scheme regarding structure and keywords in the 

problems on the picture of bottles on shelves. 
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In the same way, students interpreted the problems posed for "8x4" by reasoning 

the structure and keywords in the problems to give a meaning of multiplication 

on the fourteenth day. During this lesson, it was observed that students did not 

have difficulty making interrogative sentences. They had capable of ending their 

context with a question. Students made reasoning on the words giving 

multiplicative meaning. They discovered how the words in the text and their 

meanings are essential, as in the dialogue below: 

 

(Students were asked to pose problems according to "8x4=….") 

Mahmut: There are four bottles of milk in each box. If I buy eight boxes more, 

how many milk bottles do I have? 

Doğan: I could not understand. Can you read again? 

Mahmut: There are four bottles of milk in each box. If I buy eight boxes more, 

how many milk bottles do I have? 

Birce: 8 boxes more? I could not understand. 

Teacher: What is wrong? Why are you confused? 

Ali: He buys eight boxes more. It means that he has already had some other 

bottles at home. We should also know the numbers of these bottles at home. 

Doğan: He buys eight boxes on what? What will we add it on? 

(Students were all confused) 

Teacher: What do you suggest to Mahmut? How can we revise the problem to 

make it more understandable? 

Gökhan: It is confusing to use "more" in this problem. It seems like an addition. 

Not multiplication. Instead of using "more," we can say, "If I buy eight boxes, 

how many bottles of milk do I have?" 

  

As in the dialogue, students interpreted the meaning of the problems posed. As in 

the tenth day, the word "more" was used and caused discussion. Students 

claimed that this word gives the meaning of joining. The word "more" means 

joining a problem that involves the initial amount, added amount, and resulting 

number. Since students knew that, they looked for the initial number in the 

problems posed with the word "more". Ali claimed that there must be some 

bottles to be able to add some more on. Students not only discussed the 

limitations in these problems posed but also revised them to make correct claims 

as in the scheme below (Figure 4.86) 
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Figure 4. 86. Toulmin's Analysis scheme regarding structure and keywords in the 

problems on "8x4" 

Students focused on the wording to pose a significant problem. Since students 

had worked on addition problems and the word "more" frequently until they 

started the multiplication concept, they tended to pose problems related to one-

step addition and use the word "more." After practicing problem-solving and 

later posing activities on multiplication day by day, they started judging the 

wording in the story of the problem and the meaning under the sentences. 

Students focused on the action in the problem, so that it should require adding 

numbers in each group repeatedly or multiplying the numbers of groups and the 

elements in each group through skip counting. It was also surprising that students 

did not overgeneralize this situation. The teacher hesitated whether students 

considered using the word "more" as always wrong for repeated 

addition/multiplication problems. The posing problem was a relatively high-level 

activity for the students in second grade. Therefore, they were not asked to 

discuss whether using the word "more" is always wrong or not. It would have 

been confusing for them. However, surprisingly they showed that they did not 

overgeneralize this situation. In one of the lessons, Zuhal posed a problem for 

"4+4+4=…". She said, "One day, my mom gave me four pencils. My dad gave 

Warrant: He buys eight boxes more. It 

means that he has already had some other 

bottles at home. We should also know the 

numbers of these bottles at home (Ali). 

Backing: It is confusing to use "more" in 

this problem. It seems like an addition. 

(Gökhan) 

Data: There are four bottles of 

milk in each box. If I buy eight 

boxes more, how many bottles 

of milk do I have? (Mahmut) 

Claim: There are four 

bottles of milk in each 

box. If I buy eight boxes, 

how many bottles of milk 

do I have? (Gökhan) 
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me four more pencils. My grandmother gave me four more pencils. How many 

pencils do I have now?" All the students accepted this as a well-written problem. 

They did not focus on the word "more" but the meaning so that she was given 

equal numbers of pencils, i.e., the same addend to add over and over. Students 

reached the idea of defining equal groups and reaching the whole by collecting 

all the groups. Students used this idea as data in their arguments on following 

days to claim on problems without the need for backings, which indicates it had 

become taken-as-shared. Students analyzed and revealed the problems in the 

story and revised the story to make it contextually rich and mathematically 

meaningful through stating the meaning and choosing appropriate wording. 

 

In conclusion, this chapter is devoted to the presentation of the taken-as-shared 

ideas that were established throughout the instructional sequence for 

multiplication. The classroom mathematical practices were identified to illustrate 

how the social and psychological environments impacted students‘ learning of 

multiplication. Individual students and the classroom community both 

contributed to these practices as given in Toulmin's Analysis schemes. While 

individual students contributed to the class by introducing new concepts and 

contributing more proof, such as facts, warrants, backings, or challenges, the 

classroom community helped the development of their mathematical knowledge 

by detecting misunderstandings of concepts offered and revising their thinking to 

perceive the concepts correctly. Therefore, five classroom mathematical 

practices emerged in terms of students‘ taken-as-shared ways of thinking and 

communicating by using mathematical language. These practices are linked to 

the revisions for HLT that occurred throughout the course of the twenty-seven 

class hours. These changes can be applied to future studies to improve the 

teaching of multiplication concepts. 

 

Finally, by documenting classroom mathematical practices, it was possible to 

study how the second-grade classroom community developed its multiplication 

and multiplicative thinking in normative and progressively sophisticated ways 

(CMPs). A focus was placed on how second graders' collective ways of 
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reasoning developed using both informal and formal tools (such as models, 

images, gestures, and metaphors) and how this reasoning was supported in ever 

more complex ways using an RME perspective. These findings are discussed in 

light of the literature and several revisions for the HLT and the instructional 

sequence are interpreted and evaluated in the following chapter. 

 

4.6. Summary of Findings 

 

By performing design research, an instructional sequence was created under the 

direction of a hypothetical learning trajectory in multiplication intended for 

second-graders. Through the analysis of second graders' classroom discussions 

that emerged during the implementation of this instructional sequence, to 

evaluate their communal ways of development in multiplication, the classroom 

mathematical practices were analyzed by using the adaptation of Toulmin's 

(1958) argumentation model and the three-phase methodology of Rasmussen and 

Stephan (2008). Therefore, classroom mathematical practices were documented 

as collective learning activities, mostly including whole-class discussions. At the 

end of the analysis, eighteen taken-as-shared ideas (TAS) and five mathematical 

practices were obtained over the five-week instruction. 

 

The first classroom mathematical practice emerged regarding reasoning with 

fingers to skip count. Two taken-as-shared ideas supported this practice: skip 

counting by using ordinal aspects of fingers and finding the order of numbers in 

a number sequence by reasoning from the order of previously established 

numbers. Therefore, students used skip counting with their fingers to build and 

recite number sequences and built a relationship between two numbers in the 

sequence according to their order. 

 

The second classroom mathematical practice emerged as partitioning objects into 

equal groups to add them repeatedly. This practice was about students' attempts 

to divide the specified number of objects into equal groups. Students 

concentrated on creating equal groups to skip count quickly and effectively in 
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this practice. Using images of the objects or by representing the objects in equal 

groups, they grouped the objects by rearranging, equipartitioning, and halving 

them. Furthermore, students interpreted the remainder to equalize the groups. 

 

The third classroom mathematical practice emerged in terms of iterating linked 

units using pictures and fingers. This practice was about composing the groups 

obtained by the second classroom mathematical practice. In this practice, 

students used their fingers, hands, and pictures to assign and iterate composite 

units and make sense of covariation by double-matching pictures. 

 

The fourth classroom mathematical practice emerged in terms of analyzing 

components and properties of multiplication by modeling with equal groups and 

arrays. Students concentrated on actions (such as "groups of," "set of," and 

"creating arrays") that are related to repeated addition and multiplication 

concepts during this practice. The objective, in this case, was for the students to 

define equal groups as a foundation for representing specific multiplicative 

situations. To put it another way, students gained knowledge of the multiplier, 

multiplicand, and product of multiplication by connecting the equal group 

representation, array models, and repeated addition. 

 

The fifth classroom mathematical practice emerged regarding writing 

contextually realistic problems by coordinating the relationship among 

multiplicative representations. This practice emerged as students engaged in 

problem-posing tasks. The equal groups that the students specified as Practice 4 

were incorporated into multiplication scenarios. The problem's context was 

created by the words used in a real-life scenario where the group size and group 

number were made clear. Students moved from discussing strategies informally 

to placing a more rigorous procedural emphasis on the action in the problem 

structure. 
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CHAPTER V 

 

 

CONCLUSIONS AND DISCUSSION 

 

 

In this study, a classroom Hypothetical Learning Trajectory (HLT) accompanied 

by an instructional sequence was constructed, tested, and refined to develop an 

effective local instructional theory for multiplication teaching. The growth of the 

second-grade classroom community's multiplication in normative and 

progressively complex ways was examined through the documentation of 

classroom mathematical practices (i.e., CMPs). The development of the second 

graders' collective ways of reasoning with formal and informal tools and how 

this reasoning is supported in more complex ways with an RME approach were 

carefully investigated. Consequently, the CMP analysis suggested modifications 

for the instructional sequence and the HLT. 

 

The present chapter summarizes the research's conclusions concerning the goals 

related to developing an HLT and documenting classroom mathematical 

practices and evaluates them within the frame of the existing literature under two 

main sections: (1) Development of multiplication in the social context 

(classroom mathematical practices); and (2) Revisions to the instructional 

sequence and the HLT. The following sections present implications for practice 

and recommendations for future investigations. 

 

5.1. Development of multiplication in the social context 

 

A hypothetical learning trajectory regarding multiplication for second graders 

was developed based on design research. This trajectory guided the creation of 

the instructional process, which was later implemented in the classroom 

environment. During this classroom teaching experiment, second graders' 
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discussions in the classroom were recorded and analyzed to reveal students' 

taken-as-shared ways of thinking.  

 

The first classroom mathematical practice emerged as students engaged in the 

instructional sequence conducted within the framework of the designed HLT: 

reasoning with fingers to skip count. Skip counting is suggested as a foundation 

to increase comprehension of multiplication facts. Some studies argue that 

students should be strongly encouraged to use their fingers and manage numbers 

in multiplicative situations coordinately (Anghileri, 1989; 1995; Sherin & Fuson, 

2005).  Students‘ skip-counting reasoning and use of fingers can be considered 

as valuable practices for learning multiplication. In the present study, this way of 

reasoning and justification was not dictated but instead was collectively and 

independently discovered by students. For instance, the students were provided 

with hundreds charts, but they preferred ready-made materials (fingers) that were 

always available and accessible. They even persuaded the ones who had used 

hundreds charts to use their fingers instead. The reason why the students chose 

finger counting might be because they are used to doing addition and subtraction 

with their fingers. Since they are used to counting by tracking their fingers, they 

might have used their fingers to count the numbers in a number sequence. Thus, 

in this practice, the students built and recited number sequences, skip-counted 

using their fingers to indicate the verbal count order, and identified a relationship 

between two numbers in the sequence by comparing their locations (order).  

 

In fact, fingers are crucial links between practical and mental processes, allowing 

abstraction to increase understanding in many cases (Anghileri, 2008). In this 

sense, TAS 2 (finding orders of numbers in a number sequence by reasoning the 

order of previously established numbers) under the first CMP can be argued to 

be a higher-order thinking skill for students. While skip counting, the students 

used their fingers as representatives of ordinal numbers. Using questions 

prepared by the design team, the teacher asked the students to find a number in a 

number sequence while skip counting (e.g., what is the sixth number while 

counting by threes). After the students counted their six fingers and found 18, the 
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teacher asked follow-up questions like ―What is the 7th number while counting 

by 3s?". The numbers 6 and 7 were purposefully selected to see whether the 

students could make a connection between these two numbers. It was observed 

that the students used 18 (the 6th number) and added three more to find the 7th 

number instead of counting from 3 to 21. They could conceptualize that while 

the order (multiplier) increases by 1, the number in the sequence increases by 3 

(multiplicand). This reasoning is important since it is related to the role of the 

multiplier, which is yet to be taught in the 3rd grade. Thus, this taken-as-shared 

idea is one of the striking findings of the current study, showing that students can 

develop such reasoning in a well-planned classroom discourse. The follow-up 

questions in the section on possible topics of mathematical discourse in the HLT 

might have played a crucial role in developing students‘ higher-order thinking 

skills.  

 

The second mathematical practice that emerged as the students engaged in the 

instructional sequence was partitioning objects into equal groups to add them 

repeatedly, which is about students‘ thinking to form equal groups by 

partitioning the given objects. In this practice, the students concentrated on 

creating equal groups to skip count them quickly and effectively. The students 

informally developed the division concept, which is another striking finding. As 

students learn more effective methods of multiplying, they start to adopt 

partitioning strategies (Baek, 1998). They can switch between multiplication and 

division more efficiently by using the inverse relationship (Jacob & Willis, 

2003). Thus, in this study, the teacher asked questions about composing and 

decomposing while the students were working on equal grouping activities. For 

example, the students were given pictures of 16 balls on the third day. They were 

asked to find the number of balls. It was observed that the students tended to 

count the objects in multiples. After they stated how they counted the balls, the 

teacher asked, ―Can you count these balls in a different way?‖ This question 

triggered students to find another way to distribute the objects into equal groups. 

They developed division strategies to be able to decide on equal groups and 

looked for the numbers that could be skip-counted until 16 (quotitive division). 
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The number they chose was the size of the groups, and they tried to find group 

numbers by skip-counting these groups. It was surprising that the students used 

skip counting for division. They intuitively discovered the inverse relationship 

between division and multiplication as stated in the literature (Jacob & Willis, 

2003; Kennedy et al., 2008; Kouba & Franklin, 1993; Wright et al., 2014).  

 

Similarly, discussion questions such as "Can you count these balls in a different 

way?" "Is there another way?", and "Are these the only strategies you can use?" 

played a huge role in developing concepts other than multiplication. When the 

students were asked to find all possible ways to skip count the given objects, 

they focused on finding the divisors of the given number of objects. For instance, 

on the fifth day, the students worked on 36 birds and tried to find ways to group 

these birds equally. They looked for the numbers that can be skip-counted until 

36 (quotitive division). In fact, they developed this method to divide the given 

number into its divisors without knowing formally about divisibility. As they 

learned to skip count fluently with their fingers (TAS 1), they used this idea to 

connect other topics informally with higher-order thinking.  

 

These discussion questions might also have led the students to discover the 

commutative and identity properties of multiplication. When asked to find all 

possible ways to count the given objects, they used the commutativity property. 

For instance, when a student said, ―I can group 16 objects as eight groups of 2‖, 

another student said, ―or two groups of 8‖. The design team observed this 

specific thinking strategy in the classroom many times. The students called this 

strategy ―reversing‖. They discussed this fact and accepted it as true but could 

not explain why it is always true. They represented and linked two cases using 

objects and pictures. However, they could not show the relationship between 

them. This finding coincides with the literature stating that equal-group 

representation is not efficient and capable of showing commutativity (Greer, 

1992; Schliemann et al., 1998). 
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In addition to the commutativity property, the students also discovered the 

identity property. They realized that they could group the objects into a single 

group (e.g., 1 group of 16) or distribute each object into a group (e.g., 16 groups 

of 1).  In other words, they discovered that each number could be partitioned as a 

single group with all objects or as groups with a single object. It is noteworthy 

that the students used commutativity to make this inference since these two 

situations are ―reverses‖ of each other. Therefore, the students intuitively 

discovered both the commutativity and identity properties of multiplication. 

However, multiplication had to be formally introduced to them, which might be 

due to the tools and imageries (e.g., unit cubes and object pictures) used in the 

instructional tasks. Thus, we need to focus on mathematical models and their 

creation in order to talk about mathematics as mathematizing. These models 

frequently start as learners' simple representations of situations or problems 

(Fosnot & Dolk, 2001). Then, the more connections students make between and 

within these situational models, the more universal they become. In other words, 

physical modeling established at these increasingly complex stages of 

representation provides a solid foundation for investigating the links to 

multiplication. It might have stimulated the students to make arguments about 

equal grouping activities and develop an understanding of the properties of 

multiplication and interconnected concepts. 

 

Another remarkable finding under the second practice is the ideas strongly 

related to proportional reasoning. Studies show that students can think 

proportionally in tasks involving simple multiplicative reasoning or fair sharing 

early in elementary school (Resnick & Singer, 1993; Boyer & Levine, 2012; 

Vanluydt et al., 2020). For this reason, well-structured didactical situations 

containing relationships, partitioning, and unitizing, which are the fundamental 

mathematical components of proportional reasoning, should be established 

during early arithmetic instruction (Kaput & West, 1994; Lamon, 1995; Steffe, 

1994). Kaput and West (1994) highlighted the importance of creating learning 

environments for students to have an informal and conceptual background on 

proportion. In the present study, the nature of the mathematical tasks might have 
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enabled students to think proportionally. Using the pictures of the objects or 

showing the objects in equal groups, the students grouped the objects by 

reorganizing, equipartitioning, and halving, which are three taken-as-shared 

ideas under this practice. These ideas are crucial since they help maintain the 

relationship between multiplicative and proportional reasoning.  

 

The design team had predicted the first three taken-as-shared ideas (TAS 3, TAS 

4, and TAS 5) in the second practice while developing activities and possible 

discourse questions in the light of the literature. However, the fourth idea (TAS 

6) was surprising for the team members, as the students could manage the 

remainder while partitioning the objects. This might be the conclusion of the 

RME theory, which is employed for the development and implementation of the 

design. Most division problems in the real world involve remainders that must be 

handled appropriately. Children must deal with various situations where the 

setting influences the remainder in different ways (Fosnot & Dolk, 2001). They 

should do this to view mathematics as mathematizing by addressing problems in 

familiar contexts. They also develop mathematical thinking methods in their own 

lives. They avoid doing things that make no sense to them and treat leftover 

numbers accordingly. The realistic nature of the instructional tasks enabled the 

students in our study to handle the leftovers rationally. 

 

In the second practice, the students partitioned the objects equally to obtain units 

and added the units repeatedly. After this practice, they iterated these units using 

pictures and fingers as the third classroom mathematical practice. The third 

practice is about managing multiplication operations first; however, it is related 

to more than multiplication. When the students‘ reasoning processes while 

putting the items together were evaluated, unitizing and iterating were found to 

be crucial skills for the growth of proportional thinking. The students iterated 

units as they began to accumulate things through skip counting. In the following 

sessions, they were given a unit of units (a composite unit) to solve proportional 

situations, enhancing their counting skills. Later, they were asked follow-up 

questions well-adjusted to the problem's realistic context. These questions 
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enabled them to consider the relationships between various groupings and 

broaden their build-up method by creating composite units. As a result, the 

students might have developed the idea of double-matching collection. This idea 

is related to understanding covariation, which is crucial for proportional 

reasoning (Lamon, 1994). From a cognitive point of view, multiplicative 

structures were extended to new domains of experience so that proportional 

thinking could be grasped and conceptualized deeply and flexibly. Thus, the 

current study promoted early proportional reasoning since multiplicative 

thinking is regarded as the core of proportional reasoning (Behr et al., 1992; 

Lamon, 2007). 

 

After the students engaged in partitioning and iterating practices, the fourth 

classroom mathematical practice on the analysis of components and properties of 

multiplication operations by modeling with equal groups and arrays emerged. In 

this practice, the students used the provided representations as multiplier and 

multiplicand while concentrating on group number and group size. Repeated 

addition is one of the models used by students in multiplicative situations. 

Despite the conceptual difference between addition and multiplication, the two 

operations have a procedural connection (Nunes & Bryant, 1996). Repeated 

addition should not be the foundation for teaching multiplication, but should be 

viewed as a computing procedure during instruction (Park & Nunes, 2001). In 

this regard, the current study's findings clearly have practical significance. The 

students developed an idea that required connecting repeated addition and 

multiplication operations by interpreting multiplier and multiplicand (TAS 11). 

The physical tools or pictures of the objects provided in the tasks might have 

played a crucial role in developing this idea. The students used these 

representations to form groups and benefited from these models to show these 

groups via the symbolic representations of repeated addition and multiplication. 

Moreover, they made drawings to represent equal-sized groups in the problem-

solving activities. At the higher level, they used the imagery of repeated addition 

and analyzed these models, which might have enabled them to take the first steps 
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of building a connection between a multiplier and a multiplicand within the 

concept of multiplication. 

 

In analyzing the models as the multiplier and the multiplicand, the students 

focused on determining units suitable for the given multiplicative situation. They 

tried to construct a reference unit and then reinterpret the given situation in terms 

of that unit (norming) (Lamon, 1994). They determined the unit to count both 

items and groups all at once as part of the unitizing process (Fosnot & Dolk, 

2001). They interpreted each unit as the multiplicand and the number of units as 

the multiplier. For instance, they decomposed the given arrays into rows and 

defined each row as a unit (multiplicand), where the number of columns 

represented the number of units (multiplicand). It should be noted that the 

students also used the partitioning practice to distribute the given objects into 

units (CMP 2) and to iterate these units (CMP 3). Hence, it can be concluded that 

the fourth classroom mathematical practice was constructed on previous 

practices and connected them through modeling.  

 

Under the fourth practice, another striking finding of the study is that the 

students built upon their array models to show multiplicative relationships. 

Outhread and Mitchelmore (2004) point out the difficulty of seeing the structural 

similarities between discrete arrays and arrays as a grid of contiguous squares, 

which may not allow students to connect an array of squares with multiplication. 

Contrary to this view, the students in the current study established the 

relationship between the discrete groups and array models. Instead of drawing 

the actual objects given in the problem text (e.g., apples, baskets), they drew 

circles to represent them. Surprisingly, they tended to arrange the circles to form 

rectangular areas. At this point, squared papers were given to the students to 

reveal the row-column relationship more clearly. The students determined their 

groups according to the rows or columns on the array models they created on the 

square backgrounds. Thus, they built their intuitive models and used the array 

model as a valuable tool to show numerous properties of multiplication.   
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Arrays are recommended as they are considered to be highly practical in 

representing the commutative property of multiplication (Anghileri, 2006). They 

are critically important in developing multiplicative thinking (Hurst, 2015). In 

the second grade, multiplication is interpreted as repeated addition (MoNE, 

2018). However, repeated addition does not view multiplication as commutative. 

For this reason, arrays are used to enhance students‘ early learning process of 

commutativity. In this study, the students divided their arrays into equal groups 

to link the array model to multiplication. While some students perceived the 

rows as groups, others perceived the columns as groups. They discussed and 

discovered that changing the orientation of the array results in swapping the 

numbers of groups and objects in each group (TAS 14). Therefore, swapping the 

two multiplied numbers did not change the total. To ensure that children make 

sense of multiplication and think critically, they should be provided with an 

environment that would allow them to use different levels of representation (e.g., 

physically covering a rectangle with unit squares and drawing rectangular arrays 

on squared paper). As the present study could provide such an environment, the 

students might have conceptualized the quantities involved and the relationship 

between multiplication, division, and commutativity. 

 

Another unique taken-as-shared idea that emerged under the fourth classroom 

mathematical practice is reasoning the effect of change in multiplier on the 

product (TAS 12). As in TAS 2, the students interpreted the change in the 

product when the multiplier changed. Unlike TAS 2, they made this 

interpretation through the symbolic representation of multiplication in real-life 

contexts. This interpretation is a sophisticated way of thinking since it is one of 

the 3rd grade curriculum objectives. Moreover, this reasoning is crucial for 

creating a multiplication table, which is constructed using the pattern "the 

product increases by the multiplier" for each row (Isoda & Olfos, 2021). Thus, 

students can conclude that if the multiplier increases by 1, the product increases 

by the multiplicand while creating the multiplication table. 
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This idea is also significant because it reflects students‘ conceptualization of the 

distributive property of multiplication. According to Carpenter, Franke, and Levi 

(2003), students can acquire multiplication facts by connecting the challenging 

or complex ones to the ones they already know by using the distributive property 

(e.g., 3×8=2×8+8, and 9×6=10×6-6). In the same way, van den Heuvel-

Panhuizen (2008) suggests splitting to analyze the given operation (6x3) as 

known (5x3) and the difference (1x3). These explanations and interpretations 

shed light on another aspect of the twelfth idea (TAS 12). In the cases related to 

TAS 12, the students brought the distributive property to the forefront by 

intuitively embedding it in the algorithms. The activities related to finding the 

multiples of a given number might have encouraged the students to interpret the 

multiplier and find the product by using known facts (e.g., Figure 4.57). In this 

sense, it can be claimed that the current design triggered the students to discover 

the distributive law, which is the objective of the sixth grade. Thus, this idea can 

be interpreted as a foundation for the distributive law.  

 

The final classroom mathematical practice is writing contextually realistic 

problems by coordinating the relationship among multiplicative representations 

(CMP 5), which is undoubtedly another striking finding of this research. 

Although the mathematics education program (MoNE, 2018) does not include 

problem posing in the second grade, the students‘ ability to pose problems was 

investigated in reference to the literature. Before dealing with the problem posing 

tasks, the students were introduced to the multiplication concept. They were 

encouraged to deal with the problem-solving tasks proposed with real-life 

examples and concrete materials in the light of RME. Working on such tasks 

might have enhanced the students‘ performance in posing realistic, solvable, 

appropriate, and clear problems. The problem posing tasks served as an 

assessment tool for improving students‘ engagement and capabilities (Kwek, 

2015). It was observed that the students conceptually understood multiplication 

and problem solving and were able to connect them with problem posing.  
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When the equal group problems of the students were examined, they were 

distinguished as repeated addition and rate problems, as Greer (1992) specified. 

The students posed repeated addition problems by interpreting the multiplier and 

multiplicand to place them in a real-life context (TAS 16). The structure of the 

problems posed by the students was in the form of mapping rule multiplication 

according to the textual approach (Nesher, 1988; 1992).  They presented 

problems with a minimal underlying structure consisting of three strings. They 

started by stating that the first two strings were ―group number‖ and ―group 

size‖. This might have helped the other students in the classroom to construct a 

mapping between each group and the objects in the groups. Then, they asked the 

question (third string) that sought the number of objects in all the groups. Their 

interpretations of the textual structure of the problems can be inferred from the 

classroom dialogues presented in the section related to TAS 16 in Chapter 4.  

 

Another critical and striking finding during this classroom mathematical practice 

was interpreting the multiplier and multiplicand to pose multiplication problems 

as rate (TAS 17). It should be noted that equal-group problems differ slightly in 

that they are repeated addition and rate problems (Greer, 1992). The students in 

the present study posed repeated addition problems similar to those stated in the 

mathematics education textbooks, as expected at the beginning of the classroom 

teaching experiment. Surprisingly, it was observed that after a couple of weeks 

they developed a connection between the given symbolic and visual 

representations and rate problems. Rather than choosing the concrete or tangible 

objects in groups, they began to think about abstract items such as daily routines, 

actions, verbs, and activities in each group. They preferred time intervals such as 

days and months as groups and began to solve problems by expressing what 

happened. They limited the actions to a time scale so that each action happens in 

the same amount of time. For example, if there are three guests one day, there 

will be three more guests the next day. The students did not pose problems like 

"One day, three guests came; next week, three guests came; and next month, 

three guests came. How many guests came in total?". It is like thinking that the 

plates must be the same size when apples are being served. This shows that the 
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students kept not only actions equal but also time intervals equal. In other words, 

they specified an action happening at each time interval (unit rate). They 

constructed their problems based on the unit they determined. Problem-solving 

tasks like planting trees might have triggered the formation of the unit problems 

concept in students. The variation of the tasks in the instructional sequence might 

have played an essential role in developing students‘ interpretation of 

multiplicative situations in real life.  

 

Although studies on multiplication report that it is hard to connect 

multiplication-related mathematical vocabulary with real-world scenarios 

(Anghileri, 2006; Calabrese et al., 2020), the students in this study wrote entirely 

original and diverse stories for their problems. It is important to note that 

students should be taught vocabulary carrying the meaning of multiplication in 

both mathematics classrooms and daily routines in addition to the procedure of 

multiplication. The present study revealed that the students presented a variety of 

realistic multiplication scenarios. They could connect multiplication operations 

with real-life situations and write their multiplication problems thanks to the 

realistic mathematics education and the argumentation process during the 

instruction. As a result, they developed multiplicative language by focusing on 

the structure and keywords of the problems to conceptualize multiplication (TAS 

18). Two types of problems emerged during problem posing sessions: addition 

and multiplication. The students focused on some keywords to pose 

multiplication problems. They helped each other to convert the addition 

problems into multiplication problems by changing keywords. Their capability 

of problem posing might have been supported with RME, which uses realistic 

contexts and connections with real-life situations. As the students understood the 

operation, they used meaningful contexts.  

 

Furthermore, the students developed not only multiplicative language but also 

the zero property of multiplication through the problem-posing tasks. They were 

asked to pose problems for the given operation. As expected, they posed 

problems like ―I see zero dogs in the street each day. How many dogs do I see in 
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5 days?‖. Such problems are acceptable but meaningfully unreasonable. It would 

have been better to say, ―I don‘t see any dogs in the street each day‖ instead of ―I 

see zero dogs in the street each day‖. Surprisingly, the students started creating 

problems involving logical contexts suitable for zero property through 

instruction. For instance, on the twenty-fifth day, Burak posed a problem: ―I 

drink tea without sugar every day. How many sugar cubes do I use for my tea in 

5 days?‖. This problem triggered the other students, and they started developing 

such contexts. It is thought that the more students engaged in multiplicative tasks 

developed with the RME theory, the more significant problems they posed. 

According to the RME, problems are grounded in realistic scenarios that help 

students imagine themselves in the situation or the role presented by the problem 

context (Gravemeijer et al., 2000). With didactic phenomenology, the students 

might have found the problems in the current study feasible and meaningful. 

Thus, engaging in these problems and making mathematics accessible to the 

students might have promoted their mathematical development. 

 

So far, five mathematical practices and related taken-as-shared ideas that 

emerged over 26 days of classroom instruction experiment have been discussed. 

Although these practices were presented separately, it should be emphasized that 

the classroom mathematical practices overlapped. They did not emerge linearly 

since more than one mathematical idea emerged and contributed to a separate 

practice over the same class hour. For instance, the second and third 

mathematical practices emerged nearly at the same time since the students 

processed partitioning and iterating on the same tasks. They partitioned objects 

to get equal-sized units and iterated them to find the whole. The problem 

contexts and classroom discourse may have been crucial in this regard. The 

students were asked follow-up questions about the given context in order to 

encourage them to think and discuss. Then, during discussion sessions, more 

than one mathematical idea, each relating to different mathematical practices, 

was developed by the classroom community. 
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As explained in detail, the current design was developed in line with the RME 

heuristics. The tasks were designed in a realistic context, considering the 

transition from a model of situated informal mathematical strategies used by 

students to a model for more formal mathematical reasoning (Gravemeijer & 

Doorman, 1999). Students‘ transition from ―model of‖ to ―model for‖ while 

constituting a new mathematical reality (Gravemeijer et al., 2000) was followed 

and encouraged. When we examine the classroom mathematical practices and 

taken-as-shared ideas, this shift from ―model of‖ to ―model for‖ is clearly seen. 

For instance, in the tree-planting problem, the students first drew flowers, trees, 

balls, or plants in 9 groups of 2 objects to represent the trees planted in 9 mounts 

(Figures 4.44; 4.45; 4.46). As they reasoned with symbolic representation, these 

drawings might have become models for higher-level mathematical reasoning. 

The students used these drawings to decide on the multiplier and multiplicand. 

Thus, it can be claimed that they moved from ―model of‖ to ―model for‖ by 

using the contexts of the tasks, the pictures given in the tasks, and their original 

drawings as expected. 

 

Moreover, the imageries of the students also played a crucial role. The students 

reflected their immediate understandings of the situations on their imageries. 

They did not adhere to a uniform understanding or representation, but developed 

this representation in the process. Anghileri (2008) suggests that students be 

encouraged to make inferences using models and imagery relevant to the tasks 

they engage with. Thus, it can be argued that the students used situation-specific 

imagery as a model of the given context and as a model for higher-level 

mathematical reasoning. For instance, they made drawings to decide on the 

group size and group number and on how to write a repeated addition sentence 

and explain the groups as ―… times…, makes...‖ as in Figure 5.1. In such cases, 

students‘ models of given situations served as models for higher-level 

representation or interpretation, like multiplication. 
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Figure 5. 1. The transition from model of to model for 

Finally, the classroom culture, where the mathematical practices and taken-as-

shared ideas emerged, should also be discussed. In this context, the norms that 

play a significant role in developing mathematical practices come to the fore. At 

the beginning of the teaching experiment, social and socio-mathematical norms 

had already been established to create a classroom environment filled with 

communication, think-pair-share, discourse, and openness to mistakes. During 

the discussion sessions, the students shared their solutions, listened to each other, 

discussed their ideas, and indicated their agreement or disagreement. Moreover, 

socio-mathematical norms had also been set to find different solutions and 

representations, to provide conjectures, and to justify mathematical reasoning. 

Other students listened carefully and discussed those explanations by offering 

mathematical reasoning. The students felt free and safe to share their ideas and 

negotiate. Therefore, it should be emphasized that norms might have played a 

crucial role in analyzing the social interactions that resulted in taken-as-shared 

ideas. 

 

5.2. Development of the Instructional Sequence and the HLT 

 

In this research, we aimed to design a hypothetical learning trajectory and related 

instructional sequence to introduce multiplication to 2nd grade students. The 

design phases were carefully followed in order to address the first research 

question. Each phase was explained in detail to show the validity, practicality, 

and effectiveness of the HLT and the instructional sequence for multiplication. 
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The first phase of design research (preparing for the experiment) is related to the 

validity of the developed design. The HLT and instructional sequence 

components should be based on state-of-the-art knowledge (content validity). All 

components should be consistently linked to each other (construct validity). It is 

valid if the product meets these requirements (Nieveen, 1999). This study 

examined various educational programs, sample learning pathways, and related 

literature to ensure content validity. Then, a framework was blueprinted for the 

intervention. The big ideas and objectives were assigned, and the sequence of 

activities was determined. These processes were documented in detail in Chapter 

3. During this process, the design team (a professor of Mathematics Education, a 

teacher, and the researcher) conducted meetings and asked two more experts for 

their opinions, after which they agreed that the content validity requirements 

were met. 

 

The second phase of design research (design experiment) is related to the 

construct validity and practicality of the developed design. In this phase, a 

sequence of prototypes is tried out and revised based on formative evaluations to 

meet construct validity (Nieveen, 1999). Moreover, a formative review is 

conducted using expert opinions to determine to what extent the users (teachers 

and students) consider the intervention appealing and usable in normal 

conditions (i.e., anticipated practicality) (Nieveen, 1999). In this sense, formative 

assessment was implemented during the instructional sequence in light of 

classroom observation, whole-class discussion, students‘ written works, and the 

researcher‘s field notes. The team members discussed the validity and 

practicality of these data collection methods at after-lesson meetings and weekly 

research team meetings. In this sense, daily revisions were made in the HLT and 

instructional sequence, as explained in Chapter 3. 

 

As we spent more than a week on skip counting and equal grouping activities in 

the first week of the implementation, the teacher was concerned about the 

duration of the design. She discussed the practicality of the design with the team 

since she thought the first week was a waste of time. The professor and the 
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researcher assured her they would finish the teaching experiment on time since 

students had gained the prerequisite knowledge. The teacher was satisfied the 

following week because the students were informally multiplying and dividing 

during their engagement in equal grouping activities. In total, the classroom 

teaching experiment took 26 class hours to develop multiplication skills, 

although the Turkish Middle School Curriculum (2018) devoted 20 class hours 

to teaching multiplication. After the experiment, the teacher introduced the 

division concept, to which the mathematics curriculum devotes 16 class hours in 

second grade (MoNE, 2018). The team also tracked the teacher's time on the 

division lessons. She spent just five hours on the development of division since 

students had already grasped the concept while engaging in the instructional 

sequence for multiplication. In the end, the teacher spent 31 hours teaching 

multiplication and division, whereas these concepts are given 36 hours in the 

Turkish Middle School Curriculum (2018). Thus, it can be suggested that the 

current design is practical enough to be used in Turkish second-grade 

classrooms.  

 

In order to address both the first and second research questions, the third phase 

of design research (the retrospective analysis) is devoted to practicality and 

effectiveness. The consistency of the intervention's experiences and outcomes 

with the design objectives is related to the intervention's practicability and 

effectiveness (Nieveen, 1999). In order to examine whether the HLT and 

instructional sequence met the criteria for effectiveness, retrospective analyses of 

classroom videos—where the impact of the HLT and instructional sequence on 

the students and the teacher could be observed—were first processed and then 

documented. The following section explains how these practices allowed the 

team members to make the necessary revisions to the HLT. 

 

5.2.1. Suggested Revisions to the Instructional Sequence and the HLT 

 

The CMP analysis did not only document the collective growth of the classroom 

community as described in Chapter 4 but also provided a retrospective outline of 
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the mathematical content that arose over five weeks of implementation. 

Moreover, it unfolded the necessary revisions for the Hypothetical Learning 

Trajectory as well as the content and sequence of the instructional activities for 

future uses. Several big ideas are suggested for the HLT to enrich the content for 

teaching multiplication and better reflect the theory of RME (content validity). 

These additional ideas should be included in the HLT by taking care of the 

logical order of these ideas. During the implementation of the initial HLT, these 

ideas emerged as a result of the classroom discourse through follow-up 

questions. Then, it is suggested that the HLT be revised in line with these 

unexpected but valuable ideas to make it more practical and usable for the 

reader. Finally, it is believed that the revised HLT will be more effective in 

developing multiplication and the related concepts as stated in the multiplicative 

conceptual field theory. Therefore, the big ideas and phases of the initial HLT 

are suggested to be modified and revised as in Figure 5.2 through 5.6. 
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Figure 5. 2. Phase 1 of the revised HLT for the multiplication instructional 

sequence 



283 

 

Figure 5. 3. Phase 2 of the revised HLT for the multiplication instructional 

sequence 
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Figure 5. 4. Phase 3 of the revised HLT for the multiplication instructional 

sequence 
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Figure 5. 5. Phase 4 of the revised HLT for the multiplication instructional 

sequence 
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Figure 5. 6. Phase 5 of the revised HLT for the multiplication instructional 

sequence 
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A structured and interconnected network of mathematical concepts and abilities 

must be built to generate significant mathematical knowledge (National 

Mathematics Advisory Panel, 2008). According to this notion, the multiplicative 

conceptual field (MCF) was described as a network of connected subjects 

constructed by division and multiplication with whole numbers (Vergnaud, 

1994). MCF covers measurement, fractions, rates, and proportional reasoning 

topics in relation to multiplication and division. As a result, from a cognitive 

perspective, multiplicative structures should be broadened to include new 

domains of experience in order to understand and conceptualize concepts clearly 

and flexibly. According to this claim, whole number multiplication significantly 

encourages the early conceptual growth of related concepts. Keeping this in 

mind, the design team noted mathematical discourse topics that could trigger 

students‘ thinking related to connected concepts and provided related follow-up 

questions to the teacher. However, big ideas or learning goals related to these 

connected concepts, such as division and proportional reasoning, were not 

included in the HLT or related instructional sequence. Unexpectedly, taken-as-

shared ideas and classroom mathematical practices related to these concepts 

emerged during the classroom discourse. In line with these ideas, the HLT 

should be revised, and these ideas should be included.  

 

Students developed ideas related to equipartitioning while participating in 

grouping activities. As explained before, students used skip counting to 

equipartition the collection of objects. This idea emerged through discussing all 

the possibilities for the equipartition of given objects. The purpose of this 

discussion was to encourage students to share their ways of grouping. 

Surprisingly, they developed the strategy of skip counting to divide objects 

equally. This way of thinking was noted as a big idea for equipartitioning. 

Hence, it should be included in the revised HLT as a big idea.  

 

In addition to equipartitioning, students also developed an idea to evaluate the 

remainder. In the development of this idea, classroom discourse plays a 

significant role. When a student partitioned the given objects with remainders, 
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the others discussed this partitioning procedure to distribute leftover numbers 

(remainders) to equal groups by conserving equality when possible. The social 

norms (e.g., interpreting others‘ solutions) and sociomathematical norms (e.g., 

sharing different solutions) also contributed to the classroom discourse, and 

students helped each other equipartition by distributing the remainder. Thus, the 

sixth taken-as-shared idea related to interpreting the remainder emerged. This 

idea was found valuable and was included in the HLT as another big idea.  

 

Having analyzed these big ideas related to equipartitioning (TAS 4) and having 

interpreted the remainder (TAS 6), the team realized that a new practice emerged 

while equally partitioning the objects into equal groups to add them repeatedly 

(CMP 2). As these ideas take an important place in the HLT, the team decided to 

include a new phase related to the division comprising these ideas. The team also 

discussed the place of this phase in the HLT. As found in classroom 

mathematical practice analyses, they placed it before the phase related to 

iterating the units (multiplication). In the flow of the instruction, students 

attempted to divide objects into equal groups to be able to skip count them. 

Moreover, the ideas related to division became taken-as-shared before the ideas 

related to iterating units. Therefore, the ideas related to partitioning were placed 

in the second phase of the HLT.  

 

Likewise, the ideas related to division emerged during the teaching experiment, 

as did those related to proportional reasoning, like halving and doubling. These 

ideas reflect the effectiveness of the design on early proportional reasoning. As 

stated by the theory of the multiplicative conceptual field (Vergnaud, 1994), the 

ideas related to proportional reasoning have a crucial role in reflecting the 

connection between multiplication and proportional reasoning. Moreover, it was 

surprising that students developed covariational reasoning, which is crucial for 

proportional thinking (Lamon, 1994).  Using pictures of the objects allowed 

students to reason in a way that allowed them to understand covariation by 

double-matching. Thus, the big ideas should be included in the revised HLT, and 



289 

the pictorial representations should be included in the ―tools/imagery‖ column in 

the HLT table.  

 

As stated before, students made arguments related to the role of the multiplier on 

the product (TAS 12) in line with the third-grade objectives. The roots of this 

reasoning go back to the tasks related to skip counting and number sequences 

(TAS 2). Students make connections between the numbers in a number sequence 

and their ordinal numbers. Through the teaching experiment, students developed 

this idea to interpret the change in the multiplier. The research team planned to 

discuss the interpretation of the change in multiplier on the product to observe 

students‘ conceptualization of equal groups. Surprisingly, students developed 

this idea and used it to solve problems. Thus, the design team decided to include 

this idea in the revised HLT. 

 

The final revision to the HLT is related to rate problems, which require focusing 

on the unit rate. Rate problems may be more challenging for young learners 

since they include a rate rather than several countable objects. Indeed, the 

students in this study posed rate problems for a given visual or symbolic 

representation, although they had been asked to solve only one rate problem in 

the instructional sequence. Posing such questions should be considered because 

they are conceptualized in a manner similar to equal-group problems (van de 

Walle et al., 2020). In this regard, it was decided to include more rate problems 

and make students discuss them. Thus, the HLT was revised, and a big idea 

related to the rate problem was included. 

 

To sum up, the initial HLT was revised in light of the findings obtained from 

classroom implementation. The initial and revised HLTs are compared in Figure 

5.7. As shown in the figure, the conjectured ideas shown with arrows were 

included in the revised HLT since they emerged in the classroom. Other than 

these, seven more ideas highlighted in the figure were observed in the classroom 

and included in the revised HLT. Overall, the HLT was composed of eighteen 

big ideas. As a part of the three-phase method, these ideas were organized 
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according to common mathematical activities that served as classroom 

mathematical practices. When the new ideas were included, Phase 2 in the initial 

HLT was split into two, as Phase 2 related to partitioning and Phase 3 related to 

iterating units in the revised HLT. 

 

 

Figure 5. 7. Comparison of the initial and revised HLT for the multiplication 

5.3. Implications of the Study 

 

In line with the purposes of this study, it was documented how specific 

instructional activities support second-grade students‘ understanding of the 

multiplication concept from a social perspective. The implemented HLT was 

assessed, and a revised HLT was suggested as a possible direction for future 

research. Hence, grounded on the findings of this study, possible implications for 

people in the mathematics education field are stated in this part of the study.  

 

In the current study, all the activities were developed in realistic contexts where 

students identified the specific mathematics in a general context,  schematized 

through drawing and using imageries; formulated and visualized the problem in 

different ways like equal groups and arrays; discovered relations between group 

number and group size; discovered regularities like equality in each group; 

transferred a real-world issue to a mathematical problem via problem posing, and 

transferred a real-world problem to a known mathematical model via problem-
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solving in the sense of horizontal mathematization. Meanwhile, in this design, 

students represented the objects in equal groups via mathematical formulas of 

repeated addition and multiplication, proved regularities in each operation, 

refined and adjusted models for the given contexts, used different models of 

equal groups and arrays by connecting with repeated addition and multiplication, 

and generalized the rules and properties of multiplication in the sense of vertical 

mathematization. Therefore, this study indicated that a well-designed 

instructional sequence through RME theory has the potential to facilitate 

mathematization in the classroom. In this sense, teachers can design their lessons 

in light of Realistic Mathematics Education as in the current study. Likewise, 

teacher educators can incorporate those into their lessons to aid preservice 

teachers in building their subject matter and pedagogical content knowledge so 

they can use it in their future lessons. 

 

Notably, the study's design and findings might contribute to theory and practice. 

In the name of the theory, the study's design enhances the existing knowledge of 

instructional theory, particularly multiplication. This study, which uses the RME 

theory as a model and a guideline, intends to develop a local instructional theory 

for teaching multiplication. Since local instruction theories include recently 

developed instances of how RME might be worked out, they can serve as the 

basis for creating a more complex version of the general theory (Gravemeijer & 

Stephan, 2002). Due to the reconstruction of an existing theory and the 

revelation of how RME can affect the development of an HLT for multiplication, 

the findings of this study may help advance the RME theory in teaching 

multiplication. Moreover, the norms, tools (concrete materials and pictures), 

models (equal groups and arrays), and activities (problem posing) explained in 

this study can be propounded to inform the theory specific to multiplication 

instruction. Therefore, the structure and nature of the developed local 

instructional theory might enlighten the RME theory for teaching multiplication. 

 

In the name of the practice, the study's findings reveal what contents should be 

taught under the topic of multiplication. In addition to the objectives for second 
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graders in the mathematics education program (MoNE, 2018), skip counting, 

modeling via arrays, and problem-posing were included in the instructions. Skip 

counting is placed mathematics education program (MoNE, 2018) for the 

previous semester. However, in the current design, it was included at the 

beginning of the instructional sequence to maintain students‘ capability of 

counting strategies, a prerequisite for multiplying two numbers. Utilizing number 

sequences, students could keep track of both the group size and group number at 

the same time. In this sense, the current study's findings might support the idea 

that skip counting might be included in the mathematics education program right 

before teaching multiplication rather than one semester before. 

 

In the current study, both skip counting and equal grouping activities enriched 

students‘ number sense abilities. Skip-counting activities gradually lay the 

foundation for comprehension to grow facts (Ogletree et al., 1970), and number 

composition and decomposition in equal groups improve students' number 

reasoning (Anghileri, 2008). Bearing the fact that the arguments of the students 

were interpreted in terms of procedural and conceptual knowledge of whole 

numbers, comprehension of magnitude, counting abilities, and basic arithmetic 

operations, the activities in the instructional sequence contributed to the students‘ 

number sense abilities. From this point of view, teachers can benefit from the 

activities implemented in the teaching experiment to develop number sense 

while teaching multiplication. 

 

Another crucial concept that was given a prominent place in the current design is 

the array representation of multiplication. Students worked on the tasks by 

modeling the given context via both equal groups and array models. Array 

models helped students put forth the symmetric nature of multiplication and its 

properties (commutative, distributive, and identity properties). In this sense, the 

design and findings of the current study in terms of defining multiplication as an 

array have several implications. The activities given in the instructional sequence 

can be used as sample activities to be applied in lessons by teachers, textbook 

writers, and curriculum developers. At the same time, the findings and 
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argumentation schemes presented in the study can be a guideline for those who 

want to use an array representation of multiplication in the mathematics 

education area.  

 

In addition to skip counting and array models, problem-posing is another crucial 

concept in this study. In the mathematics education program (MoNE, 2018), 

problem posing on multiplication is given place in third grade. In the current 

design, problem posing activities were implemented for second graders. These 

activities improved students' association of multiplication with daily life and 

allowed us to observe how students interpret multiplication. The students' 

problems showed how they give meaning to multiplication and connect it to 

routine activities they experience in real life. Therefore, the findings related to 

using problem posing activities and students' performance can inform those who 

might benefit from this study. While curriculum designers can incorporate 

problem posing on multiplication also in the second grade to strengthen the 

education, math teachers can apply such activities more often in their classes to 

teach multiplication.  

 

The findings showed that students could develop an understanding of 

partitioning objects into equal groups to add them repeatedly (Practice 2). 

Students were shown composing and decomposing activities to conjecture this 

progression so they could use division informally. This practice shows the 

possibility of teaching multiplication and division together as stated in the 

literature. In this sense, teachers can integrate the activities supporting the 

evaluation of both operations simultaneously in the instructional sequence into 

their lessons by investigating the relationship between multiplication and 

division. Curriculum developers can also use these findings to revise the 

objectives related to multiplication and division in a nested way.  

 

The findings also revealed that multiplication is the foundation of other 

mathematical topics like proportional reasoning. According to previously 

conducted studies, students can think proportionally in tasks involving simple 
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multiplicative reasoning or fair sharing early in elementary school (e.g., Resnick 

& Singer, 1993; Boyer & Levine, 2012; Vanluydt et al., 2020). It is critical to 

figure out what students know informally so that effective instruction can be 

constructed on that intuitive knowledge and methods (Kaput & West, 1994; 

Lamon, 1994). As stated in the literature, the findings revealed that young 

children have well-developed counting, matching, partitioning, and making sense 

of one-to-many and many-to-many correspondence abilities. For instance, in the 

current study, students composed their units and iterated them to find the 

product; consequently, they developed early proportional reasoning. The 

practices and ideas taken-as-shared can be used by those who want to study the 

concepts of proportional reasoning. Teachers can also benefit from the findings 

of this study to get an idea of students' prior knowledge before teaching further 

concepts.  

 

To conclude, the instructional sequence and the associated hypothetical learning 

trajectory could aid in the development of multiplication in a second-grade 

classroom community in an argumentative classroom setting. Teachers can, 

therefore, readily incorporate these into their second-grade lessons on 

multiplication. At that point, transferability which is related to the applicability 

of the design experiment in various contexts and is associated with external 

validity (Bakker & van Eerde, 2015; McKenney & Reeves, 2012; Merriam, 

2009), comes to the fore. For others interested in transferring the findings 

elsewhere to assess the likelihood of doing so, transferability is established by 

providing a full account of the environment, time period, and participants in this 

study. The study's methodology and conclusions are given in-depth, taking each 

stage into account with thorough explanations. Consequently, teachers can easily 

integrate the instructional sequence into their multiplication courses. 

 

Finally, all the taken-as-ideas and mathematical practices related to 

multiplication emerged through the classroom discourse. While managing the 

discussions on the tasks, social and sociomathematical norms played a crucial 

role, as seen in the dialogues given in the study. In this sense, teachers who want 
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to develop the collective growth of the classroom community can benefit from 

the norms mentioned in this study to set their norms in their classrooms and to 

manage classroom discourse with the guidance of these norms. 

 

5.4. Recommendations for Further Research  

 

This study shows how a second-grade classroom community created 

fundamental concepts of multiplication, how those concepts were taken-as-

shared as the children interacted with the instructional sequence and HLT, and 

how this development was encouraged. In addition, some other questions are 

raised at the end of the study. Therefore, in this section, further research is 

recommended to find answers to the questions that this study raised. 

 

A vital understanding of the collective growth of a school community's 

multiplication skills was provided by the documentation of the mathematical 

procedures used in the classroom. Specifically, students developed ideas and 

shared them in the classroom through argumentation, justifying for their claims. 

As a result of this sharing process, eighteen distinct, taken-as-shared ideas 

evolved in the classroom when the classroom discussions were analyzed by 

Toulmin's argumentation model (1958), which was used to analyze the evolution 

of mathematical practices. These ideas might be detailed and related in many 

aspects. It can be challenging to distinguish some of them. However, each idea is 

unique for the related mathematical practices, so they cannot be merged but 

presented separately. In this sense, it can be suggested to interpret the study‘s 

data through another framework or perspective to search for more general ideas.  

 

Furthermore, individual student learning was used to investigate whole-class 

interactions and document the evolution of taken-as-shared mathematical ideas, 

despite the fact that individual student learning analysis is beyond the scope of 

this study. Individual students' knowledge and progress may need to be 

adequately addressed by observing and recording the learning in an entire class. 

Therefore, it would be interesting to research how different students develop 
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individually, specifically how students benefit from and contribute to this 

collective development. To gain an in-depth understanding of the learning and 

growth that occurred in the classroom, subsequent research that examines each 

student's individual development of multiplication through pre- and post-design 

is recommended. Thus, quantifying the level of learning and growth through pre- 

and post-testing would aid in understanding the learning and development in the 

classroom community. 

 

Moreover, carrying out a longitudinal study would aid in examining the 

community of students' long-term retention and learning. The results of this 

study demonstrated how multiplicative thinking evolves with other ideas like 

division and proportional reasoning. In this regard, an important research area 

could be how multiplication develops inside the multiplicative conceptual field.  

Hence, the evolution of concepts like division, fractions, and proportional 

reasoning, which are parts of MCF, is suggested to be observed and examined 

through a longitudinal study.  

 

Similarly, further design research is suggested to develop another HLT and 

related instructional sequence for multiplication in the third grade. In the case of 

the current study, the students intuitively comprehended objectives related to the 

third grade. For that reason, the team concluded that students have fewer 

objectives to learn in the next year. In this regard, it can be suggested to design 

the objectives and lessons for the following year for the participants of this 

study.  

 

From another perspective, the current study can be complemented and extended 

by reanalyzing the same data for the gestures of the students and their role in 

establishing taken-as-shared ideas. Focusing on the function of gesturing in the 

collective development of meaning can be an important yet often neglected 

component of mathematics learning (Rasmussen et al., 2004). In this sense, it is 

suggested to conduct further research to illustrate a methodological approach for 
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empirically investigating the function of gesturing in the evolution of the taken-

as-shared ways of reasoning in multiplication. 

 

In addition to the students‘ understanding of multiplication, the teaching practice 

of the participating teacher also improved. Since the current study focused on 

students' communal learning through classroom teaching experiments, in further 

research, it can be suggested to focus on the teacher by conducting ―dual design‖ 

research in which the goal of supporting the teacher‘s learning is addressed in a 

parallel design research project (Gravemeijer & van Eerde, 2009). Such a design 

can be developed to support the learning of students and their teacher within the 

same study. The development of the participating teacher‘s expertise in 

scaffolding students‘ development can be traced. 

 

Furthermore, professional development programs on constructing RME-based 

instructions considering further topics, setting norms, and maintaining 

negotiation in the classroom can be developed for teachers in order to improve 

their subject matter knowledge and pedagogical content knowledge. The current 

study offers a methodological tool to improve interventions and build more 

appropriate theories for particular contexts. Consequently, this study may 

provide a feasible new professional development strategy to give instructors 

these crucial teaching tools. Hence, professional development programs can be 

prepared and implemented. 

 

Finally, the mathematical practices that emerged in the classroom recommended 

some changes to the HLT and the teaching sequence. A few tasks were explicitly 

requested to be added to the sequence, while a few were moved out. Some 

revisions were also made to the HLT's phases and parts. Therefore, a later design 

experiment, or Design Experiment 2, can shed light on whether those 

improvements would be implemented in a subsequent experiment and, more 

specifically, on whether they would support the teaching and learning of 

multiplication in a classroom community. Consequently, it is recommended to 
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conduct a follow-up study in which the revised instructional sequence would be 

tested to create a more practical and better case for teaching sequence. 

 

Furthermore, it should be noted that the current study was carried out with the 

teacher and her students, all of whom had prior experience with design research. 

Accordingly, the classroom norms had already been established. In this regard, 

those who wish to conduct such design research are advised to conduct a pilot 

study, which may be useful in preparing participants for the main study in terms 

of social and sociomathematical norms, as well as ensuring the internal validity 

(credibility) of an investigation through prolonged interaction engagement. 
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F. SAMPLE FLUENCY TEST 
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G. TURKISH SUMMARY / TÜRKÇE ÖZET 

 

 

ĠLKOKUL 2. SINIF ÖĞRENCĠLERĠNĠN DOĞAL SAYILARLA 

ÇARPMA ĠġLEMĠNĠ KAVRAYIġLARININ ÖĞRENME ROTASI ĠLE 

DESTEKLENMESĠ 

 

1.GiriĢ 

Çarpma, birçok kavramın geliĢtirilmesinde önemli rolü olan, ilkokul 

matematiğindeki temel aritmetik kavramlardan biridir ((Amerikan) Ulusal 

Matematik Öğretmenleri Konseyi [NCTM], 2000; Millî Eğitim Bakanlığı 

[MEB], 2018). Ġlköğretim sınıflarında temel çarpma iĢlemini kavramsal olarak 

anlamlandırabilen öğrencilerin üst düzey matematik becerilerine ve çok 

basamaklı çarpma, bölme, kesirler, ondalık gösterim ve oran-orantı gibi 

çarpımsal düĢünme gerektiren kavramlara çok daha iyi hazırlanmıĢ olacakları 

ifade edilmektedir (Wong ve Evans, 2007; Vergnaud, 1988). Bu nedenle, 

çarpmanın kavramsallaĢtırılması, birbiri üzerine inĢa edilmiĢ birçok 

matematiksel kavramın inĢası için oldukça önem taĢımaktadır. Birçok kavramın 

çarpma üzerine kurulması gibi, çarpma iĢlemi de çoğunlukla toplama iĢlemi 

üzerine kurulmaktadır (Anghileri, 2006). Bu strateji, öğrencilerin toplama 

kavramları üzerine temel çarpma bilgilerini oluĢturmalarını ve iĢlemler 

arasındaki bağlantıdan yararlanarak çarpma iĢlemi gerektiren durumlarda tekrarlı 

toplamaya baĢvurmalarını sağlamaktadır (Nunes ve Bryant, 1996). 

 

 Önceden öğrenilen ve sağlam temellere dayanan bilgilerin kullanımı öğrencilere 

daha kolay geldiğinden, çarpma gerektiren durumları tekrarlı toplama ile 

göstermeyi tercih etmektedirler. Diğer bir ifade ile, alan/dizi modeli gibi simetrik 

modelleri tercih etmemektedirler (Larsson vd., 2017). Matematik derslerinde 

öğrencilere tanıtılan modelleri ortaya çıkarmak için ulusal ve uluslararası 

matematik eğitim programlarına bakıldığında, birçok ülkede asimetrik 

modellerin yanı sıra simetrik modellerin de kullanıldığı görülmektedir (Olfos 

vd., 2021). Ancak Türkiye'de öğrenciler çarpma iĢlemini ikinci sınıfta tekrarlı 
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toplama ve üçüncü sınıfta ise kat kavramı ile iliĢkilendirirler. Kullanılan bu 

asimetrik modeller açısından bakıldığında, Türkiye‘de matematik müfredatı ve 

ders kitaplarının çarpma iĢleminin öğretimi açısından sınırlı olduğu 

görülmektedir. Çünkü asimetrik modeller çarpmanın tüm özelliklerini ortaya 

koymada yetersiz kalmaktadır. Örneğin,  öğrencilerin çarpmayı tekrarlı toplama 

veya eĢ gruplar üzerine kurgulamaları, dağılma özelliğini açıklama adına fayda 

sağlasa da (Fosnot ve Dolk, 2001; Larsson vd., 2017; Mendes vd., 2021; Wright 

vd., 2014), değiĢme özelliğini açıklamada yetersiz kalmaktadır (Bell vd., 1989, 

Fischbein vd., 1985; Verschaffel vd., 1988). 

 

Çarpma öğretimi ile ilgili müfredat dokümanları ve ders kitaplarının 

araĢtırılmasının yanı sıra, bu dokümanların öğrencilerin öğrenmeleri üzerindeki 

etkisini görmek için öğrencilerin çarpmayı kavramsallaĢtırmalarına yönelik 

çalıĢmaların da incelenmesi önerilmektedir. Bu doğrultuda, öğrencilerin çarpma 

iĢlemini nasıl tanımladıklarını, çarpma içeren durumları nasıl yorumladıklarını, 

çarpma iĢlemlerini nasıl yaptıklarını, çarpma stratejilerini nasıl kullandıklarını, 

ne tür hatalar yaptıklarını ve hangi kavram yanılgılarına sahip olduklarını 

anlamak için çok sayıda araĢtırma yapılmıĢtır (örn. De Corte vd., 1988; Doğan 

ve Doğan, 2019; Mulligan ve Mitchelmore, 1997; Sherin ve Fuson, 2005; 

Tertemiz, 2017; Thompson ve Saldanha, 2003). Bu çalıĢmalar, öğrencilerin 

çarpma konusundaki anlayıĢlarının öncelikle tekrarlı toplama ve eĢit 

gruplamalarla sınırlı olduğunu göstermektedir. Hatta bu durumun daha sonra 

öğretilen konulara dair öğrencilerde kavram yanılgılarına sebep olduğu 

belirtilmektedir.  

 

Sonuç olarak, öğrencilerin çarpmayı ve özelliklerini anlamlandırmasına yönelik 

sorunlar ile müfredat ve ders kitaplarındaki kısıtlılıklar göz önünde 

bulundurulduğunda, çarpma iĢleminin nasıl öğretileceği sorusu ortaya 

çıkmaktadır. Bu bağlamda, çeĢitli modellerle (simetrik ve asimetrik) 

zenginleĢtirilmiĢ alternatif bir çerçevenin ve gerçekçi matematik eğitimi ile 

desteklenen matematiksel etkinliklerin faydalı olabileceğini düĢünülmüĢtür. Bu 

amaçla, alternatif öğretim çerçevesi olarak tanımlanan varsayıma dayalı öğrenme 
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rotalarının oluĢturulması ve uygulanması önerilmektedir (Simon,1995). Alan 

yazında çeĢitli matematiksel konularda çok sayıda öğrenme rotaları 

oluĢturulmuĢtur (örneğin, Bowers vd., 1999; Gravemeijer vd., 2003a; Stephan ve 

Akyüz, 2012; Wright vd., 2014). Öğrenme rotalarına dair çok farklı yaklaĢımlar 

vardır. Bu yaklaĢımların çoğu, bireysel düzeyde matematik öğreniminin aĢamalı 

geliĢimini vurgulasa da, mevcut çalıĢma, kolektif matematiksel uygulamalar 

yaklaĢımını kullanan bir öğrenci topluluğunun geliĢimini tasvir etmeye 

odaklanmaktadır (Lobato ve Walters, 2017). Bu bakıĢ açısına göre, bir öğrenme 

rotası, sınıfta kullanılan bir dizi matematiksel uygulamayı ve bunların daha 

önceki uygulamalar üzerine ilerlemelerine iliĢkin bir hipotezi içermektedir 

(Cobb, 1999). Bu yaklaĢıma göre, sınıf içi matematiksel uygulamalar, belirli 

matematiksel fikirleri incelerken oluĢturulmuĢ tartıĢma, akıl yürütme ve temsil 

etmenin ortaklaĢa akıl yürütme Ģekli olarak tanımlanmaktadır (Cobb vd., 2001).  

 

Öğrenciler, sosyal etkileĢimler yürüterek sınıf içi matematiksel uygulamalara 

katılmaktadırlar. Bu anlamda, öğrencilerin ve öğretmenlerin matematiksel 

iddialarda bulundukları ve ardından bu argümanları gerekçelerle destekledikleri 

kolektif argümantasyon geliĢtirilmektedir (Krummheuer, 1995; Lobato ve 

Walters, 2017). Argümantasyon süreci boyunca öğrenciler aynı zamanda gözden 

geçirme, geri çekme ve değiĢtirme aĢamalarına yol açan çatıĢmalar üzerinde 

derinlemesine düĢünürler. Bu bağlamda, kolektif bir tartıĢma ortamına ve 

öğrencilerin giderek kavramsal açıdan geliĢmesine yardımcı olmak için biliĢsel 

anlamda iyi yapılandırılmıĢ bir etkinlik dizisi oluĢturmak gerekmektedir 

(Clements ve Sarama, 2004). Son araĢtırmalara göre, öğretim dizilerinin tasarım 

ve uygulama aĢamalarında genellikle Gerçekçi Matematik Eğitimi (GME) 

teorisinden faydalanıldığı görülmüĢtür (Gravemeijer vd., 2003a, 2003b; Stephan 

ve Akyüz, 2012). 

 

Bir sınıf ortamında, öğrenciler ve öğretmen, ortaklaĢa bir akıl yürütmeye varmak 

için, hipotezler oluĢturur ve daha sonra onları savunarak veya çürüterek kolektif 

bir yeniden keĢfetme sürecine katılırlar (Gravemeijer vd., 2000). GME 

perspektifinden bakıldığında toplu bir yeniden keĢfetme sürecini teĢvik etmek 
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için pratik durumlardan baĢlayan ve hedeflenen formel matematiğe doğru 

ilerleyen etkinlik dizileri oluĢturmak önem taĢımaktadır. Bu etkinlik dizisinin 

öğrencilere sunacağı deneyimler ve öğrenme fırsatları aracılığıyla öğrenciler 

hedeflenen matematiksel fikre ulaĢmaktadırlar (Gravemeijer vd., 2000). Tüm 

bunlar göz önüne alındığında, çarpma iĢlemine yönelik GME temelli bir 

varsayıma dayalı öğrenme rotası ve iliĢkili etkinlik dizisinin geliĢtirilerek 

uygulanması ve ortaya çıkan sınıf içi matematiksel uygulamaların toplu 

argümantasyon yoluyla belgelenmesi hedeflenmiĢtir.  

 

1.1. AraĢtırmanın Amaçları ve AraĢtırma Soruları 

 

Bu çalıĢmanın birden fazla amacı bulunmaktadır. Bunlardan biri ikinci sınıflara 

yönelik çarpma öğretimi için bir varsayıma dayalı öğrenme rotası ve etkinlik 

dizisi geliĢtirmek, test etmek ve düzenlemektir. Daha açık bir ifadeyle, etkinlik 

dizisinin ve varsayıma dayalı öğrenme rotasının çarpmayı öğretme ve öğrenmede 

nasıl yardımcı olabileceğini gösteren bir yerel öğretim teorisi ortaya koymak 

hedeflenmiĢtir. Diğer amaç ise öğrencilerin çarpma iĢlemine yönelik fikrini ve 

matematiksel kavramların ortaklaĢa geliĢimini sınıf içi matematiksel 

uygulamalar analiziyle ortaya koymaktır. Bu amaç doğrultusunda , sınıf içi 

matematiksel uygulamalar ortaya koyularak, varsayıma dayalı öğrenme rotasının 

sınıf ortamında nasıl gerçekleĢtiği araĢtırılmıĢtır. Bu amaca yönelik analiz, 

öğrencilerin toplu matematikleĢtirmesini kolaylaĢtırmak için varsayıma dayalı 

öğrenme rotasının sunduğu potansiyellere ve engellere odaklanmıĢtır. Çarpma 

öğretimi için önerilen yerel öğretim teorisinin geçerliliğini desteklemek, 

öğrenme rotasında ve etkinlik dizisinde iyileĢtirmeler önermek ve sınıf içi 

matematiksel uygulamaları ortaya koymak için, varsayıma dayalı öğrenme rotası 

ve etkinlik dizisi kullanılarak yürütülen sınıf öğretim deneylerinden veri 

toplanması hedeflenmiĢtir. Neticede bu amaçlar doğrultusunda çalıĢmaya yön 

veren araĢtırma soruları Ģu Ģekilde sunulmuĢtur: 
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3- Çarpma iĢleminin öğretimi için ideal bir varsayıma dayalı öğrenme 

rotası ve ilgili etkinlik dizisi nasıl olmalıdır?  

4- Çarpma iĢleminin öğretimine yönelik etkinlik dizisi ile yapılan 

öğretim sürecinde hangi matematiksel uygulamalar ortaya çıkmıĢtır?  

 Çarpma iĢleminin öğretimine yönelik etkinlik dizisi ile 

yapılan öğretim sürecinde hangi ortaklaĢa akıl yürütmeler 

matematiksel uygulamaları desteklemiĢtir? 

 

Bu amaçlar ve araĢtırma soruları ıĢığında bu çalıĢmayı yapmanın önemi bir 

sonraki bölümde açıklanmaktadır. 

 

1.2. ÇalıĢmanın Önemi 

 

Bu çalıĢma, Gerçekçi Matematik Eğitimi (GME) teorisi doğrultusunda 

oluĢturulan bir öğretim dizisi kullanılarak gerçek yaĢam bağlamları aracılığıyla 

çarpmaya yönelik müfredat hedeflerini yerine getirmek ve sınırlı kaynakları 

desteklemek için geliĢtirilmiĢtir. Bu amaçla hem öğretim tasarımı hem de sınıf 

temelli araĢtırmayı içeren bir tasarım araĢtırması olarak yürütülmüĢtür (Cobb vd., 

2001). Tasarım ve analiz süreci detaylı bir Ģekilde ortaya koyularak, bu tez 

çalıĢmasının matematik eğitimi alanında teorik ve pratik uygulamalar sağlaması 

beklenmektedir. Daha açık bir ifade ile, GME teorisi ve çarpma ile ilgili alan 

yazına ve teoriye katkı sağlayabilir, aynı zamanda çarpma öğretimi, toplu 

tartıĢma ve öğretim dizisi uygulamalarına öğrenci, öğretmen, öğretmen 

eğitimcisi, matematik eğitimi araĢtırmacıları ve eğitim kaynakları tasarımcıları 

perspektifinden katkı sağlayabilir.  

 

Çarpma ve ilgili kavramların öğretimine yönelik birkaç mevcut öğrenme rotası 

olmasına rağmen (örneğin, Götze ve Baiker, 2021; Kennedy vd., 2008; Mendes 

vd., 2021; Wright vd., 2014), bu rotaların çok genel oldukları ve sınıf 

seviyelerinden bağımsız olarak ele alındıkları görülmüĢtür. Daha açık bir ifade 

ile bu öğrenme rotalarının çoğu, genel anlamda bir çarpma anlayıĢı geliĢtirmeye 

odaklanmaktadır. Ġkinci sınıf özelinde çarpma iĢleminin nasıl öğretileceğine dair 
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bilgi içermemektedir. Ayrıca, bu rotalarda yer alan fikirlerin çoğunun, 

Türkiye'de ikinci sınıf düzeyi için çok yeni olduğu görülmüĢtür. Bu nedenle bu 

etkinlik dizilerinin Türk öğrenciler ve matematik öğretim programında yer alan 

kazanımlar göz önünde bulundurularak adapte edilmesi gerektiği sonucuna 

varılmıĢtır. Öğretim etkinliklerinin, öğrenciler için açık ve anlaĢılır olacak 

Ģekilde Türkçe bağlamlara uyarlanması gerektiğine karar verilmiĢtir. Bu amaçla, 

mevcut çalıĢmanın, öğrencilere bu kavramları giderek daha karmaĢık ve geliĢmiĢ 

Ģekilde öğrenmeleri için ihtiyaç duydukları kaynak ve ders etkinlikleri sunmanın 

yanı sıra, öğretmenlere çarpmanın temel kavramları ve ilkeleri hakkında 

kapsamlı bir anlayıĢ vererek bu boĢluğu kapatma potansiyeline sahip olduğu 

söylenebilir. 

 

Öğrencilerin çarpma ve günlük yaĢam durumları arasında bağlantı kurmalarına 

ve daha derin bilgileri geliĢtirmelerine yardımcı olmak için bu tasarıma problem 

kurma etkinlikleri de dâhil edilmiĢtir (English, 1997b). Problem kurma, 

matematiksel iletiĢim için biliĢsel olarak zorlayıcı görevleri içerdiğinden (Cai ve 

Hwang, 2002), ortak bir anlayıĢ yaratacak problem kurma etkinliklerinin ve 

tartıĢmaların, öğrencilerin fikirlerini tanımlamalarına ve çarpma hakkında yeni 

anlayıĢlar kazanmalarına yardımcı olduğu düĢünülmektedir (Cai vd., 2015). 

Bunun ıĢığında, bir sınıf topluluğu içinde matematiksel uygulamalar geliĢtirirken 

sebep ve açıklamaları anlamada öğrencilerin problem kurarken ortaya koydukları 

biliĢsel süreçlerin bize yol gösterebileceği düĢünülmüĢtür. Müfredatta problem 

kurmanın kullanımına kesin olarak vurgu yapılmasına rağmen (MEB, 2018; 

NCTM, 2000), ders kitaplarının, etkinliklerin ve materyallerin nasıl seçileceği 

açıkça belirtilmemektedir (Cai vd., 2015). Ayrıca Türkiye'de ikinci sınıf 

kazanımları çarpma iĢleminde problem kurmayı içermemektedir (MEB, 2018). 

Türk öğrencilerin üçüncü sınıfta çarpma problemi kurmaları beklenmektedir. Bu 

anlamda, mevcut çalıĢma, problem kurma etkinlikleriyle zenginleĢtirilmiĢ örnek 

bir etkinlik dizisi sağlamanın yanı sıra, ikinci sınıfta problem kurma 

etkinliklerini seçme veya geliĢtirmeye yönelik yol göstermektedir. Elde edilen 

bulgular, ikinci sınıf öğrencilerinin çarpma iĢlemindeki matematiksel 

uygulamalarını belgeleyerek, onların problem kurmadaki hazır bulunuĢluklarını 
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ve yeterliliklerini ortaya çıkarmıĢtır. Çok az araĢtırmacı, öğrencilerin problem 

kurma etkinlikleriyle meĢgul olduğu sınıf öğretiminin dinamiklerini tanımlamaya 

çalıĢmıĢtır (Cai vd., 2015). Bu çalıĢmada sınıfta etkinliklerin nasıl uygulanacağı, 

sınıf tartıĢması ve kültürünün dinamiklerini ortaya çıkararak tartıĢma 

ortamlarının nasıl yürütülmesi gerektiği açıklanarak, bu boĢluğun doldurulacağı 

düĢünülmüĢtür. Ayrıca, bu araĢtırmanın, yapılandırılmıĢ öğretimin sonuçları ve 

öğrencilerin çarpma problemleri hakkında informel düĢünme yollarını sunarak 

problem kurmanın teorik ve pratik zorluklarını birleĢtirme konusunda yol 

gösterebileceği söylenebilir. 

 

Problem kurma etkinliklerine ek olarak öğretmenlerden, eĢit gruplama ve 

paylaĢmayı içeren etkinliklerde kullanılan dilin çeĢitliliğine ve bu dilin sayma 

kalıplarıyla nasıl bağlantılı olabileceğine odaklanma konusunda öğrencilere 

rehberlik etmeleri beklenmektedir (Anghileri, 1995). Bu nedenle, eĢit gruplama 

etkinlikleri, çarpımsal dil geliĢtirmede ve çarpma ile bölmeyi 

kavramsallaĢtırmada önem taĢımaktadır. Örneğin, çocukların gerçek hayattaki 

nesne ve durumları ele almalarına yardımcı olan belirli ifade ve yöntemler 

geliĢtirerek, daha matematiksel bir dil kullanmaları ve çarpma ile bölme arasında 

bağlantı kurabilmeleri önerilmektedir (Anghileri, 1995). Bu nedenle öğrencilerin 

sayıları oluĢturma ve ayrıĢtırma becerileri önem kazanmaktadır. Çarpımsal akıl 

yürütme, sayıların eĢit gruplara ayrılması ve tekrar birleĢtirilmesinde çarpanlar 

ve katları kullanmayı içermektedir (Smith ve Smith, 2006). Bu doğrultuda 

etkinlik dizisi, çarpma ve bölme arasında köprü oluĢturabilecek Ģekilde gruplara 

ayırma etkinlikleriyle zenginleĢtirilmiĢtir. Bu etkinlikler, öğrencileri ölçme, 

kesirler, oranlar ve orantısal akıl yürütme gibi diğer ilgili konulara hazırlarken 

çarpmayı geliĢtirmek için örnek bir uygulama teĢkil edebilir. 

 

Benzer Ģekilde, öğretici deneyimler dıĢında, öğretmenler, öğrencilerin zaman 

içinde matematiksel olarak ilgili yönlerde birleĢik birimleri bağlama, 

birimleĢtirme ve üzerine kurma stratejileri konusundaki informel anlayıĢlarını 

kullanmaktan ve geliĢtirmekten sorumludur (Freudenthal, 1983; Lamon, 1995). 

Ne yazık ki orantısal akıl yürütme üzerine yapılan araĢtırmalar, öğretmenlerin 
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orantısal akıl yürütmeyi öğretmede zorluk yaĢadıklarını ve konuyu iĢlemsel, 

yüzeysel ve diğer konulardan soyutlanmıĢ olarak tanıttıklarını ortaya koymuĢtur 

(Sowder vd., 1998). Bu bağlamda, orantısal akıl yürütmeyi anlamada çarpmanın 

rolünü göz önünde bulundurarak, öğretmenlerin orantısal akıl yürütme 

konusundaki alan bilgilerini ve pedagojik alan bilgilerini geliĢtirmeleri 

gerekmektedir. Bu öneriye paralel olarak mevcut çalıĢma, GME aracılığıyla 

yeniden keĢfetme ve matematikleĢtirme sürecinin ıĢığında, öğretmen ve 

öğrencilerin informel bilgilerini ve orantısal akıl yürütme gibi ilgili kavramların 

sınıf bağlamında giderek daha geliĢmiĢ bir Ģekilde evrimini anlamalarına 

yardımcı olabilir. Bu çalıĢma ile ikinci sınıf öğrencilerinin diğer konulara 

yönelik hazır bulunuĢlukları ve performansları matematiksel uygulamaları 

belgelenerek gözlemlenebilir ve ortaya çıkarılabilir. Ayrıca, mevcut çalıĢmanın 

öğretmenlerin öğrencilerin kavramsal ilerlemeleri, konular arasındaki bağlantılar 

ve öğrencilerin matematiksel geliĢimini geliĢtirmek için ihtiyaç duydukları 

kaynaklar ve etkinlikler konusunda farkındalıklarını artırmaya yardımcı 

olacağına inanılmaktadır. Bu nedenle, bu çalıĢma, tasarlanan öğretimin çıktılarını 

ve diğer kavramlar için temel becerileri oluĢturan öğrencilerin informel düĢünme 

biçimlerini ortaya koyarak, çarpmayı öğrenmenin teorik ve pratik yönleri 

arasında köprü kurmaya yardımcı olabilir. 

 

Diğer bir konu, çarpmanın değiĢme özelliğinin kavramsallaĢtırılmasıdır. Alan 

yazında çarpma iĢleminin değiĢme özelliğini öğretmek için en etkili temsil 

olarak bir dizi modeli önerilmektedir (Greer, 1992; Outhred ve Mitchelmore, 

2004; Van de Walle vd., 2013). Alan yazında dizi modeli, çarpma ile ilgili 

anlamsal yapılardan biri olan birleĢik birimlerin bileĢimi (composite of 

composites) olarak ifade edilmektedir (Outhred ve Mitchelmore, 2004). 

Türkiye'de ikinci sınıf öğrencilerine yönelik matematik kazanımları ve ders 

kitapları çarpmayı yalnızca eĢit gruplama ve bu grupların tekrarlı toplamı olarak 

göstermektedir (MEB, 2018). Oysa öğeleri satır ve sütunlara taĢımak, değiĢme 

özelliğini keĢfetmek için eĢ gruplamaya dair görsellerden daha fazla fırsat 

sağlamaktadır (Anghileri, 2006). Bu bağlamda, öğrencilerin çarpma iĢlemini 

özellikle değiĢme özelliği olmak üzere tüm yönleriyle yorumlamaları için, dizi 
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modeli mevcut tasarıma dâhil edilmiĢtir. Bu model, çalıĢma süresince çarpma 

iĢleminin bir dizi olarak tanıtılmasında ve etkinlik dizisinin uygulanması 

sırasında öğrencilerin tepkilerini ve kavramsallaĢtırmasını ortaya koymada 

önemli bir rol oynamıĢtır. Bu açıdan, öğretmenlerin derslerini tasarlarken mevcut 

çalıĢmanın çıktılarından faydalanabileceği söylenebilir. 

 

Son olarak, etkinlik dizisinin uygulanabilirliğini değerlendirmek ve mümkünse 

revize ederek daha iyi bir forma ulaĢtırmak için hem sınıf topluluğunun sınıf içi 

matematiksel uygulamalarının hem de bireylerin matematiksel akıl 

yürütmelerinin ortaya çıkarılması önerilmektedir (Cobb, 2003; Stephan vd., 

2004). Bir grubun matematiksel uygulamalarını belgelemenin yolu, tüm sınıf 

tartıĢmalarında argümantasyonu analiz etmektir (Cobb ve Yackel, 1996). 

Argümantasyon süreci sırasında, sosyal ve sosyo-matematiksel normlar, sınıf 

tartıĢmasını yönetmede ve paylaĢılan fikirlerin evriminde önemli bir rol 

oynamaktadır. Katılımcı sınıfın sosyal ve sosyo-matematiksel normları bu 

çalıĢma öncesinde katıldıkları bir proje çerçevesinde kurulmuĢtur. Bu normlar, 

ekibin tartıĢmacı bir ortam yaratmasını ve bir sınıf topluluğunda tartıĢma yoluyla 

sınıf içi matematiksel uygulamalarının geliĢimini gözlemlemesini sağlamıĢtır. Bu 

bağlamda diğer eğitimciler bu normları inceleyebilir, doğrudan veya revize 

ederek sınıflarında kullanabilir ve toplu tartıĢmayı sürdürme ve öğrencileri sınıf 

içi matematiksel uygulamalara dahil etme konusundaki sonuçlarını görebilirler. 

 

2. Alan Yazın 

 

Çarpımsal akıl yürütme, farklı sayı kümeleriyle çalıĢırken, çarpma (veya bölme) 

içeren problemleri çözerken ve bu akıl yürütmeyi yazılı algoritmalar, 

diyagramlar, semboller ve yazılı dil aracılığıyla baĢarılı bir Ģekilde ifade ederken 

yaratıcı ve esnek bir Ģekilde düĢünme yeteneği  içermektedir (Siemon vd., 2005). 

Çarpımsal akıl yürütmeye dair teoriler, 1980'lerin baĢında çarpma ve bölme 

iĢlemi içeren problemler üzerine yapılan araĢtırmalar yoluyla geliĢmiĢtir. Bu 

çalıĢmalar ve teorik yaklaĢımlar ıĢığında çarpmaya dair çeĢitli modeller ortaya 

atılmıĢtır (Bell vd., 1981; 1984; Fishbein vd., 1985; Greer, 1992; Nesher, 1988, 
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1992; Schwartz, 1988; Vergnaud, 1983). Tüm modelleri kapsayan ve en yaygın 

kullanılan sınıflandırma Greer (1992) tarafından yapılmıĢtır. Bunlar asimetrik 

olan tekrarlı toplama ve kat modelleri ile simetrik olan alan/dizi ve Kartezyen 

çarpım modelleridir. Çarpma problemlerinin analizi ile sınıfta çarpma iĢlemi 

öğretilirken birden fazla çarpma modeli kullanılmasının faydalı olabileceği 

ortaya koyulmuĢtur (Bell vd.., 1989; Downton ve Sullivan 2017; Fishbein vd., 

1985; Graeber ve Tirosh, 1988; Lesh vd.., 2003; Lo vd.., 2008; Steffe 1994; 

Verschaffel vd.., 1988) 

 

Çarpmanın doğası, sayılar ve iĢlemler hakkında üst düzey biliĢsel düĢünmeyi 

gerektirmektedir (Davydov, 1992; Jacob ve Willis, 2001; Schwarz, 1988; 

Vergnaud, 1983). Çocukların çarpma kavramına iliĢkin geliĢtirdikleri anlayıĢları 

incelemek adına çeĢitli çalıĢmalar yürütülmüĢ, (Anghileri, 1989; Jacob ve Willis, 

2001; Kouba, 1989; Mulligan ve Mitchelmore, 1997; Mulligan ve Wright, 2000) 

ve öğrencilerin çarpma yaparken kullandıkları stratejiler belirlenmiĢtir (Sherin ve 

Fuson, 2005). Bunlar basitten daha üst düzey düĢünme gerektiren stratejilere 

doğru tümünü sayma (count-all), toplamaya dayalı düĢünme (additive 

calculation), ritmik sayma (count-by), örüntü tabanlı düĢünme (pattern-based), 

öğrenilmiĢ durumlar (learned product) ve karma yöntemler (hybrid) Ģeklinde 

sıralanmıĢtır (Anghileri, 1989; Cooney vd.., 1988; Kouba, 1989; Lefevre vd.., 

1996; Lemaire ve Seigler, 1995; Mulligan ve Mitchelmore, 1997; Siegler, 1988). 

Öğrencilerin çarpma ile ilgili hesaplama stratejileri geliĢtirmelerinde, çarpma 

öğretimi önemli bir rol oynamaktadır (Sherin ve Fuson, 2005).  

 

Birçok öğrenci, çarpmayı kavramsallaĢtırmalarını engelleyen bir veya daha fazla 

hususla karĢılaĢmaktadır. Bunlar temel sayı duyusu ve ön bilgi eksikliği, 

toplamanın aĢırı genellenmesi, çoklu temsil ve çarpımsal dil eksikliği ve 

öğretmenlerin konuyla ilgili bilgi eksiklikleri olarak belirlenmiĢtir. Sayı duyusu, 

sayılar ve iĢlemler arasındaki iliĢkileri esnek bir Ģekilde kullanma, sayı 

büyüklüğünü yorumlamak için referans ölçütleri kullanma, iĢlemlerin değiĢme, 

birleĢme ve dağılma özelliğini kavrama ve kullanma becerileriyle ilgilidir 

(Andrews ve Sayers, 2015; McIntosh vd., 1992; NCTM, 2000). Örneğin, sayı 
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duyusu geliĢmiĢ öğrenciler, sekiz kere yediyi (8x7=56) bulmak için dört kere 

yedinin (4x7=28) iki katını alabilirler ve ayrıca ―8x70 ifadesinin 56 onluk yani 

560‖ ettiğini bulabilirler (National Mathematics Advisory Panel, 2008). Bu tür 

iliĢkiler kurarak, sayılar ve iĢlemler arası bağıntılarla çarpmaya dair stratejiler 

geliĢtirebilmek için geliĢmiĢ bir sayı duyusu gerekmektedir. Aksi takdirde 

öğrencilerin iliĢkisel anlamada sorun yaĢayabileceği ifade edilmektedir 

 

Eğitim programlarının üzerine kurgulanmıĢ olduğu yapılandırmacı yaklaĢıma 

göre öğrenciler, önceki bilgileri ve kendi deneyimlerini temel alarak yeni 

bilgileri yapılandırmaktadırlar (von Glasersfeld, 1996). Var olan bilgiler üzerine 

yeni kavramları inĢa ederken, öğrencilerin önceki sınıflardaki kavram yanılgıları 

veya önceki bilgileri anlamamıĢ olmaları onların matematiksel geliĢimini 

kısıtlamaktadır (Carpenter vd., 1989). Buna paralel olarak, yapılandırmacı bir 

bakıĢ açısıyla, çarpma iĢlemi baĢlangıçta tekrarlı toplama üzerine kurulmaktadır 

(Fischbein vd., 1985). Bu sebeple, öğrencilerin toplama bilgisi, çarpmanın 

geliĢimi için önem taĢımaktadır. Toplamayla ilgili herhangi bir yanlıĢ anlama, 

öğrencilerin çarpma iĢlemini anlamalarını ve kullanmalarını otomatik olarak 

etkilemektedir.  

 

Çarpma iĢlemini toplama iĢlemi üzerine kurarken dikkat edilmesi gereken bir 

diğer husus ise öğrencilerin toplamayı aĢırı genelleme eğilimleridir (Lesh vd., 

2003; Lo vd., 2008). Örneğin, öğrenciler toplamaya aĢina olduklarından ve 

toplama üzerine çarpmayı yapılandırdıklarından, toplamanın tüm özelliklerini 

çarpma iĢlemine genelleyebilirler (örn. 18 x 26 = (10 x 20) + (8 x 6)). Oysaki 

çarpma iĢlemi toplama iĢleminden farklıdır ve daha karmaĢık bir yapı 

içermektedir (Downton ve Sullivan 2017; Steffe 1994). Toplama iĢlemi aynı 

birime sahip çokluklar içermektedir. Diğer taraftan çarpma iĢlemi farklı birimlere 

sahip iki niceliğin manipüle edildiği bir iĢlemdir (Barmby vd., 2009; Smith ve 

Smith 2006). Çarpılan nicelikler birbirinden farklı olmakla birlikte birbirine 

bağımlıdır. Bu anlayıĢ, toplama ve çarpma arasındaki önemli ayrımı ortaya 

koymaktadır (Schoenfeld vd., 2017). Toplamaya kıyasla çarpma, grupları ve 

elemanları daha soyut bir düzeyde koordine etme yeteneğini içermektedir (Clark 
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ve Kamii, 1996; Downton ve Sullivan 2017; Steffe 1994). Bu nedenle, toplama 

üzerine kurulan bir öğretimde, toplamanın aĢırı genellenmesinden kaçınılması 

gerektiği vurgulanmaktadır. Ne yazık ki, birçok eğitimci, tekrarlı toplama 

kullanarak tam sayılarla çarpma problemlerini çözmek mümkün olduğundan, 

çarpmanın sadece toplamanın bir uzantısı olduğuna inanmaktadırlar. Bu durum 

öğrencilerin çarpmayı ve özelliklerini kavramsallaĢtırmasını sınırlandırmaktadır. 

Matematik eğitiminde temsiller ve materyaller büyük rol oynamaktadır. Çoklu 

temsiller, öğrencileri iĢlemsel bir bakıĢ açısından yapısal bir bakıĢ açısına 

taĢımaktadır (Sfard, 1991). Farklı temsiller, bir kavramın çeĢitli özelliklerini 

vurgulayarak geliĢimini desteklemektedir (Goldin ve Shteingold, 2001). Jerome 

Bruner'in öğrenme teorisine göre, matematik öğrenimini geliĢtirmek için, 

öğrencilerin biliĢsel/bilgi geliĢim aĢamaları dikkate alınarak öğretim materyalleri 

sunulmalıdır. Farklı temsiller (somut ve resimsel, gerçek dünya ve sembolik) 

birbirine bağlanarak, öğretim etkinlikleri aĢamalı olarak somuttan soyuta doğru 

geçiĢe hizmet etmelidir (Bruner, 1964). Böylece öğrenciler konuları 

kavrayıĢlarını temsiller yoluyla aktarırken, öğretmenler de öğrencilerin 

öğrenmelerine dair bilgi sahibi olabilirler. Bu sebeple, temsillere dair 

sınırlılıklar, öğrencilerin öğrenmelerine dair de sınırlılıklara sebep olmaktadır 

(Anghileri, 1989; Bruner, 1964; Clark ve Kamii, 1996; Steffe, 1994). 

 

Farklı bir temsil yöntemi olarak sözel dil kullanımı çarpma öğretimindeki bir 

diğer kritik konu olarak karĢımıza çıkmaktadır (Anghileri 1997; 2000). 

Çarpmaya dair bağlamları anlamak ve bunları toplama, çıkarma veya bölme 

iĢlemi gerektirenlerden ayırt etmek için, öğrencilerin çarpma durumlarını 

tanımlayan sözcük problemlerini yorumlama konusunda yeterli deneyime sahip 

olmaları gerekmektedir. Öğrenciler günlük yaĢamda çarpma durumlarını 

deneyimleseler de bu durumlarda çarpma iĢlemini kolay ve açık bir Ģekilde fark 

edememektedirler (Calabrese vd., 2020). Çarpma iĢlemlerini gerçekçi durumlarla 

iliĢkilendirmenin zorluğu, çarpma iĢlemlerinde kullanılan sözcükler ile günlük 

dil arasındaki tutarsızlıktan kaynaklanmaktadır. Örneğin, çarpma problemlerinde 

ve günlük konuĢmalarda, insanlar çarpımsal anlamı temsil eden "her bir, kez, 

defa, kere, grup" gibi kelimeler kullanmaktadırlar. Öte yandan ―çarpma‖ terimi 
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tipik günlük senaryolarda değil çarpma iĢlemlerinde kullanılmaktadır (Anghileri 

2000). Bu nedenle çarpmanın kavramsal ve iĢlemsel bilgisine ek olarak, çarpma 

ile ilgili gerçek hayatta kullanılan sözcüklerin de matematik sınıflarında 

öğretilmesi gerekmektedir (Calabrese vd., 2020).  

 

Çarpma öğretiminde bir diğer kritik unsur olarak öğretmen bilgisi 

vurgulanmaktadır Öğretmenlerin sınırlı bilgileri doğrudan öğrencilerin geliĢimini 

de sınırlandırmaktadır (Shulman, 1986). Öğretmenin bilgisi öğrencilerin ne 

öğrendiğini doğrudan etkilediğinden, öğretmenin uzmanlığının matematik 

öğretiminin etkililiği ve öğrencilerin baĢarısı üzerinde önemli bir etkisi olduğu 

ortaya koyulmuĢtur (Shulman, 1986). Bu nedenle öğretmenlerin matematik 

eğitim programlarını beklendiği gibi uygulayabilmeleri için kavramları 

derinlemesine anlamaları gerekmektedir. En mükemmel müfredat bile yalnızca 

bir dizi kazanım sunmaktadır. Bu kazanımların sınıfta ne zaman, nasıl ve neden 

hayata geçirileceğine karar verecek olan öğretmendir (Griffin, 2004). Bu açıdan 

öğretmenin çarpma ile ilgili bilgisinin öğrencilerin çarpma iĢlemini anlamlı bir 

Ģekilde öğrenmelerinde büyük etkisi bulunmaktadır. Bu anlamda, mevcut 

çalıĢmanın pragmatik bir amacı olarak, öğretmen bu geliĢimsel araĢtırmanın her 

aĢamasına dahil edilmiĢ ve bu da öğrencilerin kendi çarpma bilgilerini, 

modellerini ve özelliklerini geliĢtirmelerine yardımcı olmuĢtur. 

 

Özetle, öğrencilerin çarpmayı kavramsallaĢtırmalarına iliĢkin alan yazın gözden 

geçirilmiĢtir. Öğrencilerin kullandıkları çarpma stratejileri, olası kavram 

yanılgıları ve öğrencilerin çarpmayı anlamalarına engel olabilecek konular 

tartıĢılmıĢtır. Tüm bu hususlar göz önünde bulundurularak hem öğretme hem de 

öğrenme ile ilgili tüm sınırlılıkları karĢılayan ve tüm sınıfın katılımıyla sınıf içi 

matematiksel uygulamaların geliĢtirilmesini teĢvik eden bir varsayıma dayalı 

öğrenme rotası ve etkinlik dizisi üzerinde çalıĢılmasına karar verilmiĢtir.  

 

 

 

 



370 

3. Yöntem 

 

Bu çalıĢmada birinci amaç, ikinci sınıfta çarpma öğretimine yönelik bir 

varsayıma dayalı öğrenme rotası ve buna paralel etkinlik dizisinin geliĢtirilmesi, 

test edilmesi ve düzenlenmesidir. Ġkinci amaç ise öğrencilerin çarpmaya yönelik 

ortaklaĢa akıl yürütmelerini ve sınıf içi matematiksel 

uygulamalarını ortaya koymaktır. Bu amaçlar doğrultusunda tasarım tabanlı 

araĢtırma yöntemi kullanılmıĢtır (Cobb vd.., 2003; Gravemeijer ve Cobb, 2006; 

McKenney ve Reeves, 2012; van den Akker vd., 2006). Bu yöntemde 

araĢtırmacılar çalıĢmayı katılımcılarla beraber yürüterek sürece dâhil olurlar 

(Cobb vd., 2003). AraĢtırma ve süreçteki müdahaleler tasarlanır ve uygulamaya 

koyulur. Uygulama süresince gerek görülen değiĢikliklerle tasarımda 

iyileĢtirmeler yapılır. Uygulamanın sonunda geriye dönük analizlerle tasarım 

gözden geçirilir ve geliĢtirilerek tekrar uygulanır. Bu tekrar uygulayıp düzenleme 

döngüsü uygulamanın yeterince geliĢtiği fikrine ulaĢana kadar devam ettirilir 

(Cobb vd., 2003). Bu değiĢikliklere ve iyileĢtirmelere dair döngüsel süreç göz 

önünde bulundurulduğunda, tasarım tabanlı araĢtırma yönteminin bu çalıĢma ile 

örtüĢtüğüne karar verilmiĢtir. Tasarım tabanlı araĢtırma modeli, uygulama için 

hazırlık, sınıf içi uygulama ve geriye dönük analizler olmak üzere üç aĢamadan 

oluĢmaktadır (Gravemeijer ve Cobb, 2006). Mevcut çalıĢma söz konusu üç 

aĢama doğrultusunda yürütülmüĢtür. 

 

3.1. ÇalıĢmanın Bağlamı ve Katılımcılar 

 

Bu çalıĢma Ankara ilinin Çankaya ilçesinde Milli Eğitim Bakanlığına bağlı bir 

devlet okulunda çalıĢmakta olan 23 yıllık bir sınıf öğretmeni ve onun 2. sınıf 

öğrencileriyle yürütülmüĢtür. Öğretmen, araĢtırmacı ve danıĢmandan oluĢan 

tasarım ekibine dâhil edilmiĢtir. Bu üç kiĢilik ekip, 2. sınıf öğrencileri için 

çarpma iĢleminin öğrenimine yönelik bir varsayıma dayalı öğrenme rotası ve 

bununla iliĢkili bir etkinlik dizisi geliĢtirmiĢlerdir. Bu tasarımlarını 2018-2019 

öğretim yılında katılımcı öğretmenin sınıfında 5 hafta boyunca gerçekleĢtirilen 
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öğretim kapsamında uygulamıĢlardır. Uygulama boyunca öğrencilerden 

fikirlerini paylaĢmaları ve tartıĢmaları beklenmiĢtir.   

 

Tasarımın hazırlık ve sınıf içi uygulama aĢamaları boyunca tasarım ekibinin bir 

üyesi olan katılımcı öğretmen aktif rol almıĢtır. Öğretmen, öğrencilere dair 

bilgisi, müfredat bilgisi ve öğretime dair deneyimleriyle hazırlık aĢamasında 

varsayıma dayalı öğrenme rotası ve etkinlik dizisinin geliĢtirilmesi amacıyla 

gerçekleĢtirilen toplantılara katkı sağlamıĢ ve yol gösterici olmuĢtur. Sınıf içi 

uygulama aĢamasında, öğretmen ile araĢtırmacı dersten önce dersin amacı ve 

muhtemel öğrenci düĢünüĢleri ile ilgili görüĢmeler yapmıĢlardır. Ders esnasında, 

iĢbirliği içinde sosyal ve sosyo-matematiksel normlar ıĢığında argümantasyon 

süreçlerini yönetmiĢlerdir. Ders sonrasında ise, tasarım ekibi dersin güçlü ve 

zayıf yönlerine dair görüĢlerini paylaĢarak bir sonraki uygulamaya yönelik 

düzenlemelere karar verilmiĢtir. 

 

3.2. Veri Toplama Süreci 

 

Veri toplama süreci, tasarım deneyi aĢamaları ıĢığında ilerlemiĢtir. Ġlk aĢama 

olan uygulama için hazırlık kapsamında öğretmen, araĢtırmacı ve profesörden 

(danıĢman) oluĢan tasarım ekibi ortaklaĢa çalıĢarak çarpma iĢlemine dair öğretim 

programında yer alan kazanımları, ders kitaplarını, alan yazında var olan 

öğrenme rotalarını ve çarpma iĢlemi üzerine yapılmıĢ çalıĢmaları incelemiĢlerdir. 

Bu bilgiler ıĢığında dört bölümden oluĢan bir varsayıma dayalı öğrenme rotası 

oluĢturmuĢlardır. 

 

Varsayıma dayalı öğrenme rotasının ilk bölümü, öğrencilerin ritmik sayma ve 

sayı dizileri oluĢturmalarını içermektedir. Ġleri doğru ritmik sayma, bir sayı 

dizisindeki sayıların sırasını bulma, bir sayı dizisinde sırası bilinen sayıyı bulma, 

parmakların etkili bir Ģekilde kullanılması ve bir sayı dizisinde, iki sayı arasında 

iliĢki kurma ile ilgili öğretim etkinlikleri geliĢtirilmiĢtir. Ritmik saymaları için 2, 

3, 4 ve 5'in her biri için yüzlük tablo kullanılmıĢtır. Örneğin, öğrenciler sayıları 

2'Ģerli sayarken söyledikleri sayıları yüzlük tabloda boyamıĢlardır. Ardından, 
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sayıların sırasına iliĢkin iki tipte sorular sorulmuĢtur. Bu soru tipleri, ―2'den 

baĢlayarak 2'Ģer sayarken söylediğiniz 7. sayı kaçtır?‖ ve ―2'den baĢlayarak 2'Ģer 

sayarken 12'yi kaçıncı sırada söylersiniz?‖ Ģeklindedir. Bu bölüm ile çarpma 

iĢlemi için ritmik sayma ön bilgisinin kazandırılması planlanmıĢtır. 

 

Öğrenme rotasının ikinci bölümü, çoklukları bir birim olarak görmeye ve bu 

birimler üzerinden toplamsal düĢünmeye dair hedefler içermektedir. Nesneleri 

tekrarlı saymak için eĢ gruplama etkinlikleri geliĢtirilmiĢtir. Bu amaçla, 

öğrencilere somut nesneler ya da etkinlik kâğıdı üzerinde görseller sunulmuĢtur. 

Nesnelerin farklı düzenlemelerini bulmaya yönlendirmek için öğrencilere farklı 

Ģekilde sayıp sayamayacakları sorulmuĢtur. Bu aĢamada öğrencilerin, bir iĢlemi 

sembolik olarak yapmak yerine toplam nesne sayısını bulmak için ritmik 

saymaları beklenmiĢtir. Bu doğrultuda öğrencilerin matematik çizimlerini 

kullanarak eĢit gruplar oluĢturmaları ve toplam nesne sayısını bulmaları teĢvik 

edilmiĢtir. Bu nedenle öğrencilerin çarpmanın bir anlamı olarak ritmik sayma 

yoluyla nesneleri eĢit gruplar halinde sayma anlayıĢı kazanmaları beklenmiĢtir. 

Öğrencilerden her görevin sonunda oluĢan durumu ifade etmek için ―…kere… , 

… eder‖ ifadesini kullanmaları beklenmiĢtir. Ġlerleyen günlerde, öğrencilerden 

toplam nesne sayısını bulmak için sayı cümleleri kullanmaları istenmiĢtir. EĢit 

gruplardaki nesnelerin toplamını bulma iĢlemi olarak tekrarlı toplama yapmaları 

beklenmiĢtir. Ayrıca bu aĢamada problem çözme ve problem kurmaya dair 

etkinlikleri kullanılmıĢtır. Problem kurma etkinliklerinde, günlük yaĢam 

durumları ile sembolik ve görsel temsilleri iliĢkilendirmeyi geliĢtirmek adına 

verilen görsele ya da iĢleme dair problem kurma etkinliklerine yer verilmiĢtir.  

 

Öğrenme rotasının üçüncü aĢamasında, öğrencilere sembolik olarak çarpma 

iĢlemi tanıtılıp ve eĢit gruplar ve dizilerle modelleme yaparak çarpma iĢleminin 

bileĢenleri ve özellikleri üzerinde durulmuĢtur. Çarpma iĢleminde birinci ve 

ikinci çarpanın rolleri eĢ gruplar gösterimi ile iliĢkilendirilmiĢtir. Ayrıca verilen 

problemin çarpma iĢlemine ek olarak tekrarlı toplama ile çözülmesi istenmiĢtir. 

Böylece öğrencilerin GME yaklaĢımına göre çarpma ile ilgili üst düzey 

matematiksel akıl yürütme için görselleri ve tekrarlı toplamayı model olarak 
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kullanmaları beklenmiĢtir. Bu aĢamada dizi modeli de kullanılmıĢtır. 

Etkinliklerin baĢında öğrencilere birbirlerini anlayabilecekleri ve kullanacakları 

bir dilin sağlanması için sütun ve satır terimleri anlatılmıĢtır. Dizi ve çarpma 

arasındaki iliĢki tartıĢılmıĢtır. Bu aĢamada çarpma iĢlemini dizi ile modelleme ya 

da dizi modelini çarpma ile ifade etmeye dair etkinlikler kullanılmıĢtır. 

Öğrencilere diziler ile çarpmayı modellemede kavramsal anlayıĢ ve akıcılık 

kazandırmak hedeflenmiĢtir. Bu etkinliklerde öğrencilerden çarpanları diziler 

üzerinde nasıl gösterdiklerini açıklamaları istenmiĢtir. Satırlardaki noktaları 

yatay olarak gruplayanlar ile dikey olarak sütunlardaki noktaları gruplayanlar 

arasında bir tartıĢma ortamı sağlanmıĢtır. Daha sonra öğrencilerden hem satırları 

hem de sütunları istedikleri gibi çarpan olarak adlandırabilecekleri sonucuna 

varmaları beklenmiĢtir. Böylece, çarpmada yer değiĢtirme özelliğinin 

yorumlanması hedeflenmiĢtir.  

 

Öğrenme rotasının dördüncü aĢaması ise, çarpmayı gerçek yaĢam bağlamlarıyla 

ifade etmekle ilgilidir. Sembolik ve görsel temsillere göre problem kurma 

etkinlikleri kullanılmıĢtır. Öğrencilerin çarpma iĢlemini gerçek yaĢam 

bağlamlarında tekrarlı toplama ile temsil etmeleri ve çarpımsal dili uygun Ģekilde 

kullanmaları beklenmiĢtir. Çarpımsal dilin yapılandırılması, öğrenme rotasının 

baĢlangıcından sonuna kadar geliĢtirilen kritik bir fikir olmuĢtur. Uygulamanın 

sonunda öğrencilerden formel çarpma iĢlemini gerçek hayattaki informel çarpma 

dili ile iliĢkilendirmeleri beklenmiĢtir. Yani bu fikrin birkaç etkinlikle değil, tüm 

öğretim dizisiyle geliĢtirilmesi hedeflenmiĢtir. 

 

Özetle, bu varsayıma dayalı öğrenme rotası sınıf içinde çarpmaya dair akıl 

yürütmelerin ortaklaĢa geliĢtirilmesine yönelik bir çerçeve sunmuĢtur.  Öğrenme 

rotası doğrultusunda geliĢtirilen etkinlik dizisinin sınıfta nasıl uygulandığı, 

çarpmaya dair akıl yürütmeyi nasıl geliĢtirdiği ve ne tür değiĢikliklere ve 

düzenlemelere ihtiyacı olduğu sınıf içi matematiksel uygulamalar analizi ile 

ortaya koyulmuĢtur. Bu analize dair bilgiler bir sonraki bölümde açıklanmıĢtır. 
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3.3. Veri Analizi 

 

Bu çalıĢmada varsayıma dayalı öğrenme rotası çerçevesinde geliĢtirilen etkinlik 

dizisinin sınıfta uygulanması beĢ hafta ve 26 saat sürmüĢtür. Bu sürece dair 

veriler ders öncesinde ve sonrasında öğretmenle araĢtırmacının görüĢmelerine 

dair ses kayıtları, derslerin video kayıtları, öğrenci ürünleri ve araĢtırmacının 

alan notlarından oluĢmuĢtur. GörüĢme kayıtları doğrultusunda öğrenme rotasına 

ve etkinlik dizisine dair değiĢiklikler günlük düzenlemeler kapsamında 

yapılmıĢtır. Derslerin video kayıtları, öğrenci ürünleri ve araĢtırmacının alan 

notları geriye dönük analizler için kullanılmıĢtır. Bu kapsamda sınıf videoları 

incelenerek öğrencilerin çarpmaya dair akıl yürütmelerinin ortaklaĢa geliĢimi 

analiz edilmiĢtir. Bu amaçla sınıf videoları deĢifre edilerek üç aĢamadan oluĢan 

Sınıf içi Matematiksel Uygulamalar Analizine (Rasmussen ve Stephan, 2008) 

hazır hale getirilmiĢtir. Birinci aĢamada, Toulmin‘in (1958) argümantasyon 

modeli kullanılarak sınıf tartıĢmaları veri, iddia, gerekçe ve destek olarak 

kodlanmıĢtır. Böylece tüm günlere dair argümantasyon Ģemaları elde edilmiĢtir. 

Ġkinci aĢamada, bu Ģemalar incelenmiĢ ve gün geçtikçe sınıfça kabul gören ve 

ortaklaĢa akıl yürütmeye (taken-as-shared) dönüĢen fikirler belirlenmiĢtir. Bunun 

belirlenmesi için 2 ölçüt kullanılmıĢtır (Rasmussen ve Stephan, 2008). Bunlar, 

bir argüman için yapılan açıklamalarda artık destek ve/veya gerekçelerin 

kullanılmaması ve bir argümanda herhangi bir bileĢenin (veri, iddia, gerekçe, 

destek) daha sonraki bir argümanda baĢka bir değiĢkenin yerine geçmesi 

Ģeklindedir. Bu Ģekilde tüm ortaklaĢa kabul gören fikirler ortaya koyulmuĢtur. 

Ardından üçüncü aĢama olarak, bu fikirler bir araya getirilerek belirli 

matematiksel uygulamalar etrafında sınıflandırılmıĢtır. Bu yöntem 

doğrultusunda, sınıfça ortaklaĢa akıl yürütmelerin geliĢiminin düzenli bir Ģekilde 

sunulmuĢ hali olarak sınıf içi matematiksel uygulamalar elde edilmiĢtir.  

 

4. Bulgular, TartıĢma ve Öneriler 

 

Bu çalıĢmada birinci amaç, ikinci sınıfta çarpma öğretimine yönelik bir 

varsayıma dayalı öğrenme rotası ve buna paralel etkinlik dizisinin geliĢtirilmesi, 
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test edilmesi ve düzenlenmesidir. Ġkinci amaç ise öğrencilerin çarpmaya yönelik 

ortaklaĢa akıl yürütmelerini ve sınıf içi matematiksel uygulamalarını ortaya 

koymaktır. Bu amaçlar doğrultusunda yapılan bu çalıĢmanın bulguları bu 

bölümde bir bütün olarak sunulmuĢtur. Yöntem bölümünde bahsedildiği gibi 

oluĢturulan varsayıma dayalı öğrenme rotası beĢ hafta (25 ders saati) boyunca 

katılımcı öğretmen ve onun 2.sınıf öğrencileriyle uygulanmıĢtır. Bu uygulamanın 

analizi sonucunda, beĢ sınıf içi matematiksel uygulama ortaya çıkmıĢtır (bkz. 

Tablo 4.1) 

 

Tablo 4.1. Sınıf içi matematiksel uygulamalar ve bu uygulamaları destekleyen 

ortaklaĢa akıl yürütmeler 
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Tabloda yer alan matematiksel uygulamalar ve ortaklaĢa geliĢtirilen 

matematiksel fikirler, geliĢtirilen öğrenme rotası ve etkinlik dizisinin 

öğrencilerin çarpmaya dair bilgilerini ve akıl yürütmelerini geliĢtirmedeki 

etkisini göstermektedir. Ġlk matematiksel uygulama ritmik sayarken parmakları 

kullanmayı içermektedir. Çarpma durumlarının anlaĢılmasında ritmik saymanın 

ne kadar önemli olduğu açıkça belirtilmektedir (Schoenfeld vd., 2017). Bu 

nedenle öğretim dizisine 2Ģer (20 içinde), 3er (30 içinde), 4er (40 içinde) ve 5er 

(50 içinde) ritmik sayma çalıĢmaları ile baĢlanmıĢtır. Bu etkinliklerle 

öğrencilerin ritmik sayma becerilerini ve akıcılıklarını artırılması ve sonraki 

etkinliklere ve akıl yürütmeye hazır hale getirilmesi amaçlanmıĢtır. Uygulama 

süresince öğretmen tarafından öğrencilere yönlendirilen sorular ıĢığında sınıf 

tartıĢmaları gerçekleĢmiĢ ve öğrencilerin çeĢitli stratejiler, gerekçeler ve akıl 

yürütmeler geliĢtirdikleri görülmüĢtür. Öğrencilerin sözel olarak ritmik sayarken 

parmaklarıyla saymayı takip ettikleri gözlemlenmiĢtir. Öğrenciler ritmik 

sayarken sayıların sıra sayılarının temsilcisi olarak parmaklarını kullanmıĢtır. Bu 

açıdan öğrencilerin içsel olarak geliĢtirdikleri ve sınıf tartıĢmaları doğrultusunda 

herkesçe kabul gören ritmik sayarken koordineli olarak parmakları kullanmaları 

alan yazınla paralellik göstermektedir (Anghileri, 1995; Sherin ve Fuson, 2005). 

 

Ġkinci matematiksel uygulama, öğrencilerin tekrarlı toplanabilecek eĢ grupları 

elde etmek için paylaĢtırma yapmalarıyla ilgilidir. Öğrencilerin çarpmayı 

öğrendikçe bölmeye dair de stratejileri geliĢtirmeye baĢladıkları öne 

sürülmektedir (Baek, 1998). Öğrenciler çarpma ve bölme arasındaki ters iliĢkiyi 
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kullanarak bu iĢlemler arasında daha kolay geçiĢ yapabilmektedirler (Jacob ve 

Willis, 2003). Bu doğrultuda öğrenciler eĢ gruplama etkinlikleri üzerinde 

çalıĢırken öğretmen ―Daha farklı nasıl gruplardınız?‖ sorusu ile sınıf 

tartıĢmalarını baĢlatmıĢ, öğrencileri yeni stratejiler geliĢtirmeleri için teĢvik 

etmiĢtir. Böylece, öğrenciler informel olarak bölme stratejileri geliĢtirmiĢlerdir. 

Alan yazında belirtildiği gibi bölme ve çarpma arasındaki ters iliĢkiyi sezgisel 

olarak keĢfetmiĢlerdir (Jacob ve Willis, 2003; Kennedy vd., 2008; Kouba ve 

Franklin, 1993; Wright vd., 2014). Bu tartıĢma soruları ayrıca öğrencileri 

çarpmanın değiĢme ve etkisiz eleman özelliklerini keĢfetmeye yönlendirmiĢtir.  

 

Ġkinci uygulama kapsamında dikkat çeken bir diğer bulgu ise orantısal akıl 

yürütme ile güçlü bir Ģekilde iliĢkili olan fikirlerdir. AraĢtırma çalıĢmaları, 

öğrencilerin ilkokul yıllarının baĢlarında çarpımsal akıl yürütme veya adil 

paylaĢım içeren görevlerde orantısal düĢünebildiklerini göstermektedir (Resnick 

ve Singer, 1993; Boyer ve Levine, 2012; Vanluydt vd., 2020). Bu doğrultuda 

Kaput ve West (1994), öğrencilerin orantı konusunda informel ve kavramsal bir 

alt yapıya sahip olmaları için öğrenme ortamları yaratmanın önemini 

vurgulamıĢtır. Bu bilgilere paralel olarak, mevcut çalıĢmada matematiksel 

etkinliklerin doğası, öğrencilerin orantısal düĢünmesini desteklemiĢ olabilir. 

Öğretim dizisi öğrencilerin informel düĢünme biçimlerini ve orantısal akıl 

yürütmeye dair sezgisel bilgilerini düzenlemelerine yardımcı olmuĢ olabilir. 

 

Üçüncü uygulama, ilk baĢta çarpma iĢlem yapmakla ilgili gibi görünse de, 

sadece çarpma ile ilgili değildir. Öğrencilerin nesneleri bir araya getirirken ki 

akıl yürütme süreçleri değerlendirildiğinde, orantısal düĢünmenin geliĢimi için 

gerekli olan birimleĢtirme ve yineleme becerilerinin geliĢtirildiği görülmüĢtür. 

Hatta orantısal akıl yürütme için çok önemli olan kovaryasyonel düĢünmeye dair 

çift eĢlemeli toplama (Lamon, 1994) fikrini geliĢtirmiĢlerdir. BiliĢsel bir bakıĢ 

açısından, orantısal düĢünmenin derinlemesine ve esnek bir Ģekilde 

kavranabilmesi ve kavramsallaĢtırılabilmesi için çarpımsal yapıların yeni 

deneyim alanlarına geniĢletildiği gözlemlenmiĢtir. Böylece, çarpımsal düĢünme 

orantısal akıl yürütmenin özü olarak kabul edildiğinden, mevcut tasarımın erken 
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orantısal akıl yürütmeyi desteklediği iddia edilebilir (Behr vd., 1992; Lamon, 

2007). 

 

Dördüncü uygulamada, genel anlamda öğrenciler birinci ve ikinci çarpanı 

yorumlayarak çarpma iĢlemini çeĢitli modellerle ifade etmiĢlerdir. Bu uygulama, 

öğrencilerin alan yazında belirtildiği gibi çeĢitli temsiller arasında bağlantı 

kurmaları açısından önemlidir (Anghileri, 2006; Fosnot ve Dolk, 2001; Sowder 

vd., 2010; Young-Loveridge, 2005). Bruner (1964) de matematik öğretiminde 

materyallerin ve temsillerin önemli rolünün altını çizmiĢtir. Bu bağlamda 

etkinliklerde nesnelerin resimleri sunulmuĢ, öğrencilerden çizim yapmaları ve 

verilen durumu sembolik olarak temsil etmeleri istenmiĢtir. Öğrenciler bu 

temsiller arasında geçiĢler yapmıĢtır. Bu durum, öğrencilerin verilen etkinlikleri 

modelleme yoluyla birinci ve ikinci çarpan olarak yorumlamalarını sağlamıĢ 

olabilir.  

 

Dördüncü uygulamada, öğrenciler eĢ grupların tekrarlı toplanmasının yanı sıra 

dizi modeli de kullanmıĢlardır. Akıl yürütmelerini diziler yoluyla aktararak, 

ilerleyen aĢamalarda çarpmanın değiĢme özelliğini de dizi modeli ile 

yorumlamıĢlardır. DeğiĢme özelliği çarpımsal düĢünme ve temsilinin 

geliĢtirilmesinde kritik öneme sahiptir (Hurst, 2015). Çarpmanın değiĢme 

özelliğinin temsilinde oldukça pratik olduğu ileri sürülen dizilerin kullanımı 

önerilmektedir (Anghileri, 2006). Bu açıdan ortaya çıkan ortaklaĢa akıl 

yürütmelerin alan yazında dizi modelinin etkisine dair vurgulanan fikirlerle 

paralellik gösterdiği görülmüĢtür. 

 

BeĢinci uygulama, öğrencilerin verilen çarpımsal durumlara uygun gerçekçi 

problemler kurmalarıyla ilgilidir. Matematik öğretim programında (MEB, 2018) 

ikinci sınıfta problem kurma kazanımı yer almamasına rağmen, alan yazından 

hareketle bu dizisine eklenmiĢtir. Problem kurma etkinlikleri, aynı zamanda 

öğrencilerin katılımını, yeteneklerini ve geliĢimini aydınlatmak için bir 

değerlendirme aracı (Kwek, 2015) olarak bu çalıĢmaya hizmet etmiĢtir. 

Öğrenciler kavramsal olarak çarpma ve problem çözmeden yola çıkarak problem 
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kurmaya dair anlayıĢlar geliĢtirmiĢlerdir. Bu alanda yapılan çalıĢmalar, çarpma 

ile ilgili matematiksel kelimeleri gerçek yaĢam senaryolarıyla birleĢtirmenin zor 

olduğunu belirtse de (Anghileri, 2006; Calabrese vd., 2020), bu katılımcı 

öğrenciler çarpma problemleri için oldukça özgün ve çeĢitli hikâyeler 

yazmıĢlardır.  

 

Sınıf içi matematiksel uygulamalar analizi yalnızca sınıfın toplu öğrenmesini 

belgelemekle kalmamıĢ, aynı zamanda beĢ haftalık uygulamadan sonra ortaya 

çıkan matematiksel içerikle öğrenme rotası ve etkinlik dizisine dair gerekli 

düzenlemeleri de ortaya koymuĢtur. Çarpma öğretiminin içeriğini 

zenginleĢtirmek ve GME teorisini daha iyi yansıtmak için öğrenme rotasına yeni 

matematiksel fikirler dahil edilmiĢtir. Bu ek fikirler mantıksal sırasına dikkat 

edilerek öğrenme rotasına eklenmiĢtir. Böylece revize edilen öğrenme rotasının 

çarpma ve ilgili kavramları geliĢtirmede daha etkili olacağına inanılmaktadır.  

 

Mevcut tasarım GME‘nin temel ilkeleri doğrultusunda geliĢtirilmiĢtir. Etkinlikler 

öğrencilerin informel matematiksel stratejilerinin yer aldığı bir modelden daha 

formel matematiksel muhakeme için bir modele kadar olan süreç göz önünde 

bulundurularak gerçekçi bir bağlamda tasarlanmıĢtır (Gravemeijer ve Doorman, 

1999). Öğrencilerin yeni bir matematiksel gerçeklik (Gravemeijer vd., 2000) 

oluĢtururken modelden modele geçiĢleri takip edilmiĢ ve teĢvik edilmiĢtir. Sınıf 

içi matematiksel uygulamalara ve ortaklaĢa akıl yürütmeler sonucu ortaya çıkan 

fikirlere baktığımızda modelden modele olan bu değiĢim açıkça görülmektedir. 

Ayrıca, geliĢen modeller ilkesi doğrultusunda, öğrencilerin imgeleri de çok 

önemli bir rol oynamıĢtır. Öğrenciler, durumlara iliĢkin anlık anlayıĢlarını 

imgelerine yansıtmıĢlardır. Thompson (1996), öğrencilerin meĢgul oldukları 

görevlerle ilgili modeller ve imgeler kullanarak akıl yürütmeye teĢvik 

edilmelerini önermektedir. Bu bağlamda öğrencilerin verilen bağlamın modeli ve 

üst düzey matematiksel muhakeme için model olarak duruma özel imgeleri 

kullandıkları söylenebilir. 
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Son olarak matematiksel uygulamaların ve fikirlerin ortaya çıktığı sınıf kültürü 

de tartıĢılmalıdır. Bu konuda matematiksel uygulamaların geliĢtirilmesinde 

önemli rol oynayan normlar ön plana çıkmaktadır. Öğretim deneyinin baĢında 

etkili iletiĢim kurarak öğrencilerin düĢüncelerini paylaĢabileceği bir sınıf ortamı 

yaratmak için sosyal ve sosyo-matematiksel normlar çoktan kurulmuĢtu. 

Böylece, tartıĢma oturumları sırasında öğrenciler çözümlerini paylaĢmıĢ, 

birbirlerini dinlemiĢ ve fikirlerini tartıĢmıĢlardır. Ayrıca, farklı çözümler ve 

temsiller bulmak, varsayımlarda bulunmak ve matematiksel akıl yürütmeyi haklı 

çıkarmak için sosyo-matematiksel normlardan faydalanılmıĢtır. Böylece 

normların, bu çalıĢmada önemli bir rol oynadığı görülmüĢtür. 

 

Bu çalıĢmanın bağlamı doğrultusunda elde edilen bulgular ve tartıĢmalar 

sonucunda, baĢka sorular da gündeme gelmiĢ ve gelecek çalıĢmalar için öneriler 

sunulmuĢtur. Örneğin, mevcut çalıĢma 2. sınıf öğrencilerinin çarpma 

becerilerinin toplu geliĢimini ortaya koymaktadır. Öğrencilerin bireysel 

geliĢimlerine odaklanılmamıĢtır. Bu nedenle, farklı öğrencilerin bireysel olarak 

nasıl geliĢtiğini, özellikle de belirli öğrencilerin bu kolektif geliĢim sürecinden ne 

kazandıklarını ve sürece nasıl katkıda bulunduklarını araĢtırmak faydalı olabilir. 

Ek olarak, ön ve son testler yoluyla öğrenmelerini ölçmek, sınıf topluluğunda 

gerçekleĢen öğrenme ve geliĢim hakkında daha kapsamlı bir anlayıĢa sahip 

olmak için faydalı olabilir. 

 

Bulgular incelendiğinde çarpma iĢleminin yanı sıra oran-orantı gibi çarpımsal 

düĢünme gerektiren konulara dair de çıktılar gözlenmiĢtir. Çarpımsal düĢünme 

gerektiren konuların çarpmanın yanı sıra nasıl geliĢtiğinin incelenmesinin 

geliĢtirilen öğrenme rotasının ve öğretim dizisinin önemini ortaya koymak adına 

değerli olacağı düĢünülmektedir. Örneğin, mevcut tasarımın bölme öğretimi 

üzerindeki etkisini ortaya çıkarmak için öğrencilerin bölme iĢlemine iliĢkin sınıf 

matematik uygulamaları belgelenebilir. Bu amaçla, çarpımsal düĢünme 

gerektiren kavramların evriminin boylamsal bir çalıĢma ile gözlemlenmesi ve 

incelenmesi önerilmektedir. 
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Benzer Ģekilde, üçüncü sınıfta çarpma için baĢka bir öğrenme rotası ve ilgili 

öğretim dizisi geliĢtirmek için baĢka bir tasarım araĢtırması önerilmektedir. 

Mevcut çalıĢmada, öğrenciler üçüncü sınıfla ilgili kazanımları sezgisel olarak 

kavramıĢlardır. Bu nedenle ekip, öğrencilerin gelecek yıl öğrenmek için daha az 

hedefleri olduğu sonucuna varmıĢtır. Bu bağlamda, bu çalıĢmanın katılımcıları 

için bir sonraki yıl için hedeflerin ve derslerin tasarlanması önerilebilir. 

 

Son olarak, öğretmenlerin konu bilgisini ve pedagojik alan bilgilerini geliĢtirmek 

için çeĢitli konuları dikkate alarak GME temelli öğrenme rotaları oluĢturma, 

normları belirleme ve sınıfta argümantasyonu sürdürme konusunda mesleki 

geliĢim programları geliĢtirilebilir. Mevcut çalıĢma, müdahaleleri geliĢtirmek ve 

belirli bağlamlara daha uygun teoriler oluĢturmak için metodolojik bir araç 

sunmaktadır. Sonuç olarak, bu çalıĢma, eğitmenlere öğretim araçlarına da 

ulaĢabilecekleri, uygulanabilir yeni bir mesleki geliĢim stratejisi sağlayabilir. 

Benzer Ģekilde mesleki geliĢim programları hazırlanabilir ve uygulanabilir. 
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