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ABSTRACT

DEBUGGING IMAGE CLASSIFICATION ALGORITHMS USING HUMAN
ASSISTED FEEDBACK

Becek, Kadircan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

December 2022, 88 pages

Neural Network debugging is a relatively newly emerged field of deep learning which

tries to improve upon learned parameters with external assistance. Two academic

fields are particularly active in addressing this issue: the field of feature visualiza-

tions and explainable artificial intelligence. While these methods can improve how

to interpret a neural network, they can not provide the expert opinion of a human to

improve the accuracy of a neural network. Therefore, while being interpreted cor-

rectly, these networks can have undesired outputs. For instance, they may have biases

against some classes or may not work effectively in the wild due to overfitting.

In this thesis, we propose a method with two steps to tackle this problem: (1) present-

ing feature contribution using visualization, (2) taking feedback from humans, and

retraining the network by disabling irrelevant or adversarial features.

Keywords: Explainable AI, Feature Visualization, debugging
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ÖZ

İNSAN YARDIMLI GERİ BİLDİRİM KULLANARAK RESİM
SINIFLANDIRMA ALGORİTMALARINDA HATA AYIKLAMA

Becek, Kadircan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Aralık 2022 , 88 sayfa

Sinir Ağı hata ayıklaması, öğrenilen parametreleri harici yardımla geliştirmeye çalı-

şan, nispeten yeni ortaya çıkmış bir derin öğrenme alanıdır. Bu konuyu ele almada

özellikle aktif olan iki akademik alan vardır: görsel analitik ve Açıklanabilir Yapay

Zeka. Bu yöntemler bir sinir ağının nasıl yorumlanacağını iyileştirebilirken, sinir ağı-

nın doğruluğunu artırmak için bir insanın uzman görüşünü sağlayamaz. Dolayısıyla

bu ağlar yorumlanırken istenmeyen çıktılara sahip olabilir. Örneğin, bazı sınıflara

karşı önyargıları olabilir veya aşırı öğrenme nedeniyle etkili bir şekilde çalışmaya-

bilirler.

Bu tezde, bu sorunun üstesinden gelmek için iki adımlı bir yöntem öneriyoruz: (1)

görselleştirme kullanarak özellik katkısını sunmak, (2) insanlardan geri bildirim al-

mak ve alakasız veya çekişmeli özellikleri devre dışı bırakarak ağı yeniden eğitmek.

Anahtar Kelimeler: Açıklanabilir YZ, Özellik Görselleştirme, hata ayıklama
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Deep Learning (DL) is a powerful method that empowered the capabilities of various

research fields such as Computer Vision (CV), Natural Language Processing (NLP),

Pattern Recognition (PR), etc. Despite the great success of deep neural networks, little

is explored for debugging internal problems that affect the reliability and robustness

of the decision-making strategies they employ. Deep learning models can perform

remarkably well when given enough high-quality training data. Other than ideal cases

like benchmark results obtained by AlexNet [13], DenseNet [14], Inception [15],

SqueezeNet [16] on ImageNet-1K [17] in this case is diverse, rich and huge; diversity

in most datasets used by real-life applications is scarce. Usually, in real-life cases,

datasets are small and biased towards the person or group who collects and labels

them. This bias in data collection and annotation can lead to models which are not

generalized to their intended use case. For example, the model can overfit to one class

due to erroneous data collection which requires collecting and annotating additional

data or balancing classes by removing data from the dataset which is already small

in size. This erroneous behavior created a new problem to be solved: debugging the

decision-making mechanism of deep neural networks by inspecting the internals of

hidden layers. In this thesis, we will analyze this behavior and try to solve this by

regulating networks using expert knowledge, hence debugging the network.

To overcome problems of datasets, there are methods that can transfer knowledge

from one trained network to another to reduce training time and use learned knowl-

edge from a better-trained network. These methods which are gathered under a single

1



topic as Transfer Learning (TL) [18, 19] use knowledge source (or in most cases a

pre-trained network whose performance is known to work better in generalizing) on

one domain and transfer it to a specific and smaller domain to benefit from the success

of source and have the best result with the limited amount of data. However, these

methods have limited external control to influence the training process and inference

outcome.

Debugging deep learning models [20, 21, 22, 11, 10, 12, 23] aims to find errors that

create vulnerability and try to correct them to avoid problems. Neural network debug-

ging can be utilized in many areas such as CV where sub-tasks are object detection

and recognition, image classification and generation, and NLP where sub-tasks are

text comprehension, semantics analysis, etc.

To get rid of erroneous parameters, debug and improve the model, previous works

looked into different methods such as analyzing symmetry and unconsumed informa-

tion on an image by filters [20] and calculating the importance of features by dissect-

ing and aligning results with a pre-trained GAN (Generative Adversarial Networks)

[21].

To debug the internals of deep learning models, one needs to understand what is

learned throughout the training process. The early method which is still used as a

baseline algorithm to get a comprehension of what gets the most confident result on

a neuron in a model is Activation Maximization (AM) [24] which tries to maximize

the response of a neuron by trying to optimize the input with respect to that neuron.

This created the field Feature Visualization (FV) [25] where random Gaussian input

is fed to the network and optimized until maximum value generating input is created

for a particular neuron, channel, or layer of the network. Also to reason with outputs

or intermediate results of the network, Explainable AI (XAI) [6, 26] has emerged.

With the help of Feature Visualization (FV) and Explainable AI (XAI), the models

can be finally peeked through to get a sense of which parts of the input model’s inter-

nal parameters take into consideration while making the final decision; hence, allow-

ing human knowledge to be integrated with higher level. Model debugging utilizing

human feedback has can be inspected in two different types: modifying the model

2



through the dataset and modifying the model directly. The former utilizes feedback

by sampling results and displaying them to humans to give input so that it can be

fixed at the next iteration in the dataset. These methods change or append data to the

dataset itself to improve the quality of data or change model parameters indirectly.

CAIPI [22] is one of the methods where it utilizes active learning to enable humans

correct labels predicted from an unlabeled dataset or correct the explanation made

by an XAI method named LIME [27]. LIME takes input and segments into an im-

age where the target node or neuron is positively or negatively activated. Then, the

dataset is extended with corrected labels and augmentations made from corrected ex-

planations until the maximum number of iterations is reached or the model is optimal.

Latter employ feedback to whether create new pathway [11] or delete pathways that

could confuse or mislead the model [12]. FIND [12] is a NLP-based model debug-

ging method that utilizes an XAI method named Layer-wise Relevance Propagation

(LRP) [28] to understand the behavior of features and model’s prediction. After com-

piling the most activated words or phrases for every feature from the results of LRP,

they will be presented to humans to get their opinion on whether those features are

relevant to the decision they make. If the feature clashes with the opinion of humans,

the feature gets disabled and the model is retrained with a modified feature vector.

In this thesis, we propose a method that enables humans to integrate their knowledge

by eliminating useless or harmful features of the feature vector extracted before be-

ing processed by the last classification layer of image classification models. This ap-

proach has a similar idea to FIND [12]; however, due to differences between text and

image, our approach differs in explanation method where Activation Maximization

[24, 25] and LIME is used to represent feature patterns. Also, while FIND decides

how a feature supports final outputs by inspecting weights, in our approach, we used

the contribution of features to the final layer as features could be negatively activated

by input and still be positively contributed to the final nodes by negative weights.

1.2 The Outline of the Thesis

The thesis contains 5 chapters. In Chapter 1, brief descriptions of Feature Visualiza-

tion, Neural Network debugging, and Explainable Artificial Intelligence are provided.
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The shortcomings of existing methods are identified, and our contributions are sum-

marized. In Chapter 2, background information is provided for the concepts used and

mentioned throughout the thesis. Also, a literature review for Feature Visualization,

Neural Network debugging, and Explainable Artificial Intelligence is provided. Con-

volutional Neural Network (CNN) debugging and analysis methods are discussed in

terms of taxonomy and application areas. Image classification datasets and evalua-

tion metrics are described. In Chapter 3, The architectural and training details of the

baseline method used in this study are thoroughly explained. This chapter also ex-

plains the proposed novel approach. In Chapter 4, experimental results are provided.

The analysis is performed for the dataset, obtaining human expert feedback, and in-

tegrating this feedback into the network to improve its decision-making ability. The

baseline method and the proposed method are theoretically and practically compared.

Finally, in Chapter 5, We provide a summary of the research done for this thesis,

draw some conclusions, and talk about potential follow-up studies for this research.

In Appendix A, we provide user study results gathered, visualizations provided at user

study, and contributions to each class for every investigated feature. In Appendix B,

confusion matrices for each trial are provided.

1.3 Contributions and Novelties

This thesis focuses on debugging methods for deep image classification algorithms.

Our contributions are as follows:

• Experimenting with FIND [12] and modifying its supporting algorithms like

explanations with LRP [28] and word clouds to see if it could be a viable algo-

rithm for image classification while preserving its core idea.

• Using visualization of features via LIME [27] to present information to humans

who interact with debugging since parameters themselves are hard to compre-

hend by only inspecting numerical values at feature maps. Therefore, a thor-

ough visualization with examples and contributions by weight and biases is

provided to debuggers to clarify any weight’s or feature’s purpose and contri-

bution toward the final decision.
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• A masking operation for weights or parameters for disabling them entirely to

stop their irrelevant or adversarial contribution to the model’s success. This

helps the model to drop adverse features which confuse the network in the

decision-making process.
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CHAPTER 2

BACKGROUND INFORMATION AND LITERATURE REVIEW

2.1 Introduction

In this section, brief information is provided on neural network visualization and

debugging. It is discussed how neural networks developed through time to become

the powerful deep learning models we use today. Because it is crucial for network

debugging, the neural network training method is explained. Convolutional neural

networks are thoroughly discussed as they are employed in the experiments. The

fundamental information of visualization is explained since visualization is used to

portray learned features as familiar notions to humans with expert knowledge.

2.2 Brief History of Neural Networks

Part of a series on Machine Learning (ML) and Artificial Neural Networks (ANN)

are computational models inspired by the way that biological neurons work. They

have been around for the past 30 years, and have proven themselves to be a powerful

tool for data processing in various fields including pattern recognition, forecasting,

and optimization. The basis of their operation can be traced back to research done

in 1943 by Princeton researchers Warren McCulloch and Walter Pitts, who described

how to achieve a “logical” design that could mimic how neurons in the brain process

information where it is called "threshold logic" with electrical circuits [29]. Hebbs

extended their work in 1949 by suggesting that learning behavior can be replicated

by repetitive iterations, which is known as hebbian learning [30]. Perceptron which

can be seen in Figure 2.1 proposed by Frank Rosenblatt in 1958 [31] is seen as the
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first program to classify information using hebbian learning and advanced threshold

logic circuit. In its first version which is named Mark 1 Perceptron had only 2 layers:

input and output layer. Perceptron uses Equation 2.1 to calculate the result.

y =
m∑

n=0

f(ωn ∗ xn) (2.1)

Figure 2.1: Perceptron illustration

Because NN models are hand-engineered and there is no viable backpropagation im-

plementation, their development tumbles back and forth until the 1980s. The in-

troduction of backpropagation and multi-layer perceptron gets the popularity of the

field back at that time, however, it will never be as popular as today until 2012 with

AlexNet [13] due to lack of data and computational power. As the internet is popular-

ized and reachable by the public, while data becomes digitalized and structured, data

being both personal and anonymous became available to researchers and companies

which wanted to employ data-based algorithms. This excessive amount of data al-

lowed researchers to split their data to generalize their decision-making algorithm for

their use case. The computation problem is solved by the parallel processing power
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of the Graphics Processing Unit (GPU)s and its single instruction multiple dataset

(SIMD) ability due to processing graphics. After the popularization of GPUs, there

were other solutions such as neural network accelerators and TPU (Tensor Processing

Unit)s inspired by parallel computation and tailored for neural network units.

2.3 Training Neural Networks

Neural networks should have their parameters tuned for the task they are tailored

for. To achieve this, there is a learning process with two different steps: forward

propagation and backpropagation. The first one is the same as the decision-making

process. Input is fed to the model and it goes through the layers and modules the

model has in an intended way while inferring the output of the model with the output

of the final layer or combination of layers depending on the model architecture. In

backpropagation, the error from the output which calculates the loss function whether

it is from ground truth in the supervised learning or reward function in reinforcement

learning and so on is propagated through the input. There are many loss functions

for many purposes such as Mean Squared Error (MSE) which can be represented in

Equation 2.2 for regression, Binary Cross Entropy (BCE) which can be represented in

Equation 2.3 for binary classification or Negative Log Likelihood (NLL) which can

be represented in Equation 2.4 for multiclass classification.

MSE =
n∑

i=1

(ŷi − yi)
2 (2.2)

BCE = −(y log(ŷ) + (1− y) log(1− ŷ)) (2.3)

NLL(y) = −log(p(y)) (2.4)

Once the loss function is chosen for the appropriate algorithm, it is propagated by

taking its gradient throughout from the last layer to the first layer with respect to each

parameter such as weight and bias residing within the model. The gradient can be

seen in Equation 2.5 where J is the cost function and ω is the parameter in the model
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for the gradient. For multi-layered networks gradient works in chain rule as can be

seen in Equation 2.6. This step shows how much each parameter in each module in

the model is needed to change to achieve learning.

∇ωm =
δJ

δωm

(2.5)

∇ωm =
δJ

δωfinal

δωfinal

δωfinal−1

...
δωm+1

δωm

(2.6)

To actually achieve an iterative learning process, there are many optimizers that try to

modify parameters in each step to improve the model. The most common examples

are Stochastic Gradient Descent (SGD) which can be represented in Equation 2.7

where η is learning rate, Momentum [32] which can be represented in Equation 2.8

where ν is a gradient from the previous iteration and γ is momentum parameter which

is used to control residual gradient, Adaptive Momentum (Adam) [33] which can be

represented in Equation 2.9 where m and ν are moving averages of gradient and

squared gradient, β parameters are hyper-parameters for controlling moving average

amount.

ωt = ωt − η∇ωt (2.7)

νt = γνt − η∇ωt

ωt+1 = ωt − νt
(2.8)

mt = β1mt−1 + (1− β1)∇ωt

νt = β2νt−1 + (1− β2)∇ω2
t

m̂t =
mt

1− βt
1

ν̂t =
νt

1− βt
2

ωt + 1 = ωt − η
m̂t√
v̂t + ϵ

(2.9)
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Figure 2.2: Gradient Descent Visualized [1]

The optimizer updates the parameters of the model with their function for each step

scaled with a predefined value named learning rate. The learning rate is a hyperpa-

rameter that defines how fast or slow a parameter is updated during training in the

backpropagation phase. Learning with gradient descent can be seen in Figure 2.2.

2.4 Visualizing Learned Features

Deep learning neural networks are generally opaque, which means that while they can

make useful and skillful predictions, it is unclear how or why a particular prediction

was made. With the success of neural networks and their success due to empirical

methods they employ, the need for investigating neural networks by their learned

features has grown further. There are early methods where intermediate network layer

outputs are extracted to show what each feature in each layer actually represents.

2.4.1 Activation Maximization

Activation Maximization [24] is a method to generate artificial input that maximizes

the activation of a specific neuron in a specific layer of a neural network. The opti-

mization problem is expressed in Equation 2.10 where v is the input, v̂ is generated
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input, a(·) is the activated parameter function which can be whole end-to-end neu-

ral network or a part of it. It is possible to use gradient-based [34] or non-gradient

[35] approaches to try to identify a local maximum for this non-convex optimization

issue. Applying a gradient ascent [24, 5, 36, 37] for maximization with an update

rule is a straightforward strategy which is given in Equation 2.11 where t denotes

iteration count, vt denotes image generated until iteration t, γ denotes step size. This

gradient ascent is very similar to the gradient descent that is widely used in deep neu-

ral network optimization on the backpropagation step. However, in this case, we are

applying an optimization step to input with respect to the model’s output value.

v̂ = argmax
vϵRv

a(v) (2.10)

vt+1 = vt + γ
∂a(vt)

∂vt
(2.11)

While this method generates images as can be seen in Figure 2.3 and 2.4, this inter-

pretation can be incomprehensible to humans as it includes too much high-frequency

information for the human mind to perceive the concept.

Figure 2.3: Activation maximization example with respect to class "Saluki, gazelle

hound" from ImageNet-1K optimized to model VGG-16 [2]
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Figure 2.4: Activation maximization example with respect to class "Poncho" from

ImageNet-1K optimized to the final layer of model VGG-16 [2]

To get more interpretable results, Compositional Pattern Producing Networks (CPPN)

[38] can be added as an additional constraint for visualization as can be seen in Figure

2.5. CPPN inputs latent features and pixel position to produce a scalar value for the

generated image’s inputted coordinates. These networks can be combined with the

Generator-Discriminator concept of GANs to generate interpretable images [4]. The

weights and biases of the CPPN network determine the image produced. Depending

on the architecture chosen for the CPPN, pixels in the resulting image are required to

share, to some constraint, the color of their neighbors [3]. An example can be seen for

the same gazelle hound in Figure 2.6 that visuals are not high frequency and they are

more interpretable for humans to understand learned features. This process requires

training a new network for generating the image which introduces more black box

modules to the overall system; therefore, this is not a preferred method in this thesis.

Figure 2.5: CPPN integrated into CNN network for visualization [3, 4]
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Figure 2.6: Activation maximization example with respect to class "Saluki, gazelle

hound" from ImageNet-1K optimized to model VGG-16 optimized using CPPN

model as constraint

Similar to CPPN [38], Generative networks can be utilized for synthesizing images

that can activate images for better comprehension such as DGN-AM [5] and PPGN

[39]. The architecture for synthesizing can be seen in Figure 2.7 which is called

Deep Generative Network for Activation Maximization (DGN-AM). The formula for

optimization can be seen in Equation 2.12 where yl is the entire layer to generate

an image from viable code, Φ is the target network, h is the target neuron, Gl is the

generator for the target layer, λ is regularization parameter. This procedure is costly

due to training different generator networks required for every single layer that needs

to be visualized and because they are another neural network trained, similar to the

CPPN case, this arises more black box concept than explainability; therefore, it is not

preferred in this thesis.

v̂ = argmax
yl

Φh(Gl(y
l)− λ∥yl∥) (2.12)
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Figure 2.7: Prior generative network (DGN-AM) proposed by A. Nguyen [5] for

visualizing DL model

2.4.2 Explainable Artificial Intelligence

Since the beginning of AI research, scientists have argued that intelligent systems

should explain the AI results, particularly when it comes to decisions [40]. Users also

have the right to demand an explanation for decisions according to European Union’s

AI Act [41] which states every AI that breaches the fundamental rights and safety

of data subjects (users in other terms) that is classified as high-risk AI should have a

certain degree of transparency.

To achieve this transparency for the inner workings of black box explainable artificial

intelligence, Charlisle Scott et al. [6] set guidelines for explanations of decision-

making production systems in 1977 and a diagram for prototype explanation system

as can be seen in Figure 2.8.
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Figure 2.8: A Production-Based Consultation System with Explanation Capability

proposed by Scott et al [6]

After seeds of interpretation are planted with these guidelines, a field emerged after

40 years when Deep Learning became more successful, popularized, and used by both

researchers to improve it and companies to provide services in several areas. Without

explanations, modern artificial intelligence systems are completely black boxes that

are only inspired by classical methods for working principles and nothing else mean-

ing whose internal inference processes are unknown to the observer and cannot be

interpreted by humans. Therefore, the network and its output can not be explained to

the developer or user.

This paved the way for Explainable Artificial Intelligence [6, 42, 43] field where

the purpose is to find a way to inspect the internals of black box systems or make

networks transparent and interpretable so that external observers can comprehend

network’s decision making process. XAI can be categorized in three terms [7]: scope

(global [44, 45] and local [26, 46]), methodology (backpropagation-based [47, 48, 49,

50, 46] and perturbation-based [27]), usage (post-hoc [47, 48, 49] and model-intrinsic
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[45, 44, 51]) as can be seen in Figure 2.9.

Figure 2.9: A general categorization of XAI taken from [7]

2.4.3 Concept Bottleneck Models and Self-Explaining Neural Networks

After Explainable AI achieved significant success in justifying decisions for neural

networks by highlighting parts of input or tracing paths through the output, the need

for interpretable networks has arisen. Among these networks, there is one that is

named Self-Explaining Neural Networks [8] which tries to achieve creating unsuper-

vised concepts for inputs before making the final decision. These networks encode

the information into a small set of explainable features as can be seen in Figure 2.10.

Figure 2.10: A general architecture of Self Explaining Neural Networks (SENN) [8]

While unsupervised self-explaining networks give results by combining their con-

cepts and providing examples while not giving explicit explanations, Concept Bot-
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tleneck Models [9] try to learn pre-engineered features to learn and judge using dis-

entangled features as can be seen in Figure 2.11. These models also enable external

intervention on intermediatory parameters called concepts and enable models to be

more interpretable while most other SotA NNs are end-to-end and difficult to inter-

pret. While this method can be viable due to an intrinsic set of parameters called

concepts, they add another level of supervision and labeling. Therefore, they are not

used in this thesis.

Figure 2.11: A general working principle of Concept Bottleneck Models (CBM) [9]

2.5 Model Debugging

With the growing success of NNs arrived a growing need to expand the research into

different areas. This expansion caused the need for troubleshooting. In the earliest

phases, machine learning parameter-based problems could have been solved by iden-

tifying basic problems such as over-fitting or under-fitting, bias or variance-based

problems, or learning-based problems where the learning rate becomes so steep it

steers gradients into unlearning some of the training. These problems could have been
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solved with general methods such as the regularization of weights in updates (L1 in

Equation 2.13, L2 in Equation 2.14 regularization), canceling random weights in lay-

ers to train others every iteration with Dropout [52] or using learning rate schedulers

such as Cosine Annealing [53] where learning rate ηt decays with cosine function

modulation cos(Tcur

Ti
π) as can be seen in Equation 2.15

MSEL1 =
n∑

i=1

(ŷi − yi)
2 + λ

m∑
j=0

∥ωj∥ (2.13)

MSEL2 =
n∑

i=1

(ŷi − yi)
2 + λ

m∑
j=0

ω2
j (2.14)

ηt = ηimin +
1

2
(ηimax − ηimin)(1 + cos(

Tcur

Ti

π)) (2.15)

With the emergence of XAI [6], model debugging expanded its methods to include

humans in the process which is called Explanatory Interactive Learning(XIL) [22].

This method combines active learning with XAI and uses LIME [27] to explain in-

ference results for unlabelled images and correct results, explanation, or both if nec-

essary. Then, the model continues training until the model is accurate enough or the

max iteration number is reached. There are 3 different feedback types in XIL:

• Right for the right reasons: The prediction and the explanation are both cor-

rect. No feedback is requested.

• Wrong for the wrong reasons: The prediction is wrong. As in active learning,

we ask the user to provide the correct label. The explanation is also necessarily

wrong, but we currently do not require the user to act on it.

• Right for the wrong reasons: The prediction is correct but the explanation is

wrong. We ask the user to provide an explanation correction C.

This operation is costly due to generating counterexamples and storing them in train-

ing. To overcome this problem, an improved version of XIL [23] uses GRAD-CAM

[49] instead of LIME [27] for explanations and focuses on RRR(Right for right rea-

sons) type of feedback in original XIL [22] paper. Change of explanation method
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from perturbation-based to backpropagation-based method gets rid of extra operation

caused by sampling superpixels. Also choosing only RR relevant and other deci-

sions irrelevant; therefore punishing weights for non-contributing in training makes

training faster rather than analyzing and manipulating data as in the original paper

For Vision-Language models, there is a method called HINT(Human Importance-

aware Network Tuning) [10] which tries to remove the bias of explanations by using

human feedback which is a heatmap to reflect explanation to possible output to tune

VQA(Visual Question Answering) [54] as can be seen in Figure 2.12. This system

uses ranking loss to reward the model if the annotator and model agree on the expla-

nation of the result.

Figure 2.12: Working diagram of HINT system taken from [10]

ALICE (Active Learning with Contrastive Explanations) [11] relies on contrasting

explanations while facilitating Active Learning [55]. For each interaction round, the

machine chooses a small number of class pairs—often those that the model does not

discriminate well—and requests that an annotator describes in normal language the

characteristics that allow them to tell the two classes apart. The feedback is then

transformed into rules via semantic parsing, and integrated by "morphing" the model

architecture appropriately as can be seen in Figure 2.13.

Figure 2.13: Working diagram of ALICE system taken from [11]
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There is another model focused on NLPs mainly to inspect latent features after the

feature extraction process called FIND (Feature Inspection aNd Disabling) [12]. This

framework extracts word clouds from latent features as it ranks words or short phrases

comprised of 2 or 3 words. Then these word clouds are presented to the user or expert

to let them decide whether this feature is relevant to the decision made by the model

or not. If it is irrelevant, the feature is completely disabled by masking the weights

and disabling connections to the final layer. Then, the model is trained with masked

weights ensuring that those layers are not included by both training and inference

operations. The overall process can be seen in Figure 2.14

Figure 2.14: Working diagram of FIND taken from [12]
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CHAPTER 3

PROPOSED METHODOLOGY

3.1 Motivation

In this chapter, we will give the details of the proposed methodology to debug the im-

age classification algorithms using human feedback for disabling irrelevant features.

If we are aware of the patterns or attributes of the input that each feature captures,

we may appreciate the model’s overall functionality since the classification part’s lin-

ear layer then becomes understandable. This is made possible by utilizing Activation

Maximization and Explainable AI method called LIME [27] in this thesis. Humans

can determine whether each feature’s discovered input patterns are pertinent for cat-

egorization by inspecting the explanation of the model. In order for the following

linear layer to support the appropriate classes, the features should be attributed with

correct weights per classes that they represent. If those features are not supporting

the classes correctly, debugging can be carried out by turning off any features that the

model may have that could be misleading. This methodology answers 2 questions:

• How to interpret and visualize latent features?

• How to match human knowledge and the model’s explanation for the final de-

cision and improve the model’s training and fine-tuning?

Generally, deep image classifiers are comprised of two parts: feature extractors which

perform identifying and transforming image data to feature vectors which store mean-

ingful information about the image and are comprised of either fully connected layers,

convolutional layers, or a newly shining field, transformers, and classifiers which uses

feature vectors to a fully connected layer with a non-linear activation which is prefer-
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ably softmax to get predictions and their respective probabilities. This algorithm is

not a see-through, transparent algorithm by itself where anyone can peek through and

see what the feature vector represents. Therefore, they can not be understood without

the help of XAI and even if we get a glimpse of what this means, it can not be modi-

fied directly to give the perfect result, only guided through correct answers. However,

with the usage of human knowledge and feature interpretation using XAI, and fusing

this knowledge to guide the model to become better or understand the importance of

features, we could make gray-box models’ working principle more comprehensible.

Table 3.1: Table of Notations

Notation Description

d number of features in feature vector

N number of classes model outputs

D Feature Disabling Matrix with the shape of dxd

W Weight of Mc with shape of Nxd

x Input

M Model

Mf Feature Extraction part of model

Mc Classification part of model

M ′
c Classification part of the model, modified after fine-tuning

F Feature vector comprised of d features, the output of Mf

fi ith feature instance from F = [f0, f1, ..., fi, ..., fd−1]

3.2 Algorithm

A three-stage algorithm as can be seen in Figure 3.1 is introduced to address and

answer the questions above which is similar to FIND [12] framework.
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Figure 3.1: Proposed System

3.2.1 Training Network

The first one is the learning phase which is described in Chapter 2 Section 2.3, training

a convolutional neural network for image classification whose notation will be M

with the model formulation in Equation 3.1 where all notation can be seen in Table

3.1 from scratch or using transfer learning.

M(x) = Mc(Mf (x)) = ŷ (3.1)

3.2.2 Interpreting Features

For the second part of the algorithm, the feature extracting part (Mf ) is isolated from

the model as in Equation 3.1 and visualized using Activation Maximization [24] or

LIME [27] for each feature fi calculated at feature extracting part as in Equation 3.2,

the entire validation dataset is scanned to find images that activate the features the

most and visualized weights to see that which class this feature actually contributes

the most as can be seen in Figure 3.4. For LIME, we sample a limited number of

inputs that activates feature highly and contributes positively to the final decision.

Therefore for each feature fi, a subset of the validation set denoted as x has run
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through and collaged into an image as can be seen in Figure 3.2

Mf (x) = F (3.2)

Figure 3.2: Visualization of a feature with LIME

3.2.3 Disabling Features

The investigation of features is done by a human expert or experts about whether the

feature is useful or misguiding to the classification part by presenting a visualization

of each feature fi and collecting responses on features about which class they repre-

sent and how likely to the target class it is as can be seen in Figure 3.3 and disabling

part is done according to results. For disabling part, if survey results clash with that

of the model itself, that means the model is lacking to give good decisions on that

feature, therefore it should be disabled. For example, consider feature representation

in Figure 3.2 that clearly represents "Cat" class may be classified as one of the other

classes in the classification part. That means this feature misleads the classification

part to misclassify this. Therefore if it is removed, the model will be guided to make

better decisions for classifying instances of images. To establish disabling part, we

use a disabling matrix D and D ∈ RNxd where d is the number of features and N is

the number of classes that model M classifies. To disable a feature fi, ith column

of D matrix is set to zero. Disable matrix D masks the final layer’s weight W is a
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matrix of shape Nxd where d is the number of features in the feature vector which is

the output of Mf . The model is retrained with disabled weights as in Equation 3.3

to fine-tune the model. At this phase, Mf ’s parameters are frozen completely to only

change parameters of Mc.

M ′(x) = M ′
c(F ) = softmax((W ⊙D) ∗ F + b) (3.3)

Figure 3.3: Survey question conducted to receive opinions about what class repre-

sents, 0-Not representing at all, 4-Truly represents the class

27



Figure 3.4: Feature Visualization and disabling screen presented to user, with feature

vector on left, Activation Maximization result, weight visualization per feature, max-

imum activated images on right, feature disabling option at bottom
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Implementation Details

The models are trained and fine-tuned on a PC with NVIDIA GeForce RTX 3070

GPU with 8 GB memory and Intel Core i7-11800H CPU.

4.2 Datasets

We used CIFAR-10 [56] for initial experimentation due to their diverse classes which

can be distinguishable when features are visualized. CIFAR includes 32x32 RGB

images that have 6000 training and 1000 test images per class with a total of 60000

training images and 10000 testing images. CIFAR-10 has 10 classes which are Air-

planes, Cars, Birds, Cats, Deer, Dogs, Frogs, Horses, Ships, and Trucks.

For more experimentation and better visuals, the dataset is switched to Animal-10

[57] which has medium-quality images which have higher resolution than CIFAR-10

[56]. This new dataset has 10 classes which are Butterfly, Cat, Chicken, Cow, Dog,

Elephant, Horse, Sheep, Spider, and Squirrel.

4.3 Base Architecture

For experiments modified version of ResNet-18 [58] is used. Feature extractor part

before Global Average Pooling [59] layer is cut off and three more layers added as can

be seen in Table 4.1 and Figure 4.1. This modification allowed for better investigation
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of features due to the fact that there are less number of features to investigate rather

than having 512 features, we have 32 to analyze and disable if necessary. The model

is trained for 15 epochs with batch size 64 and learning rate η = 0.001.

Table 4.1: Model Architecture

Layer Properties

conv2d [7,7,64], stride 2

maxpool2d [2,2], stride 2

conv2d [3,3,64]

conv2d [3,3,64]

conv2d [3,3,64]

conv2d [3,3,64]

conv2d [3,3,128], stride 2

conv2d [3,3,128]

conv2d [3,3,128]

conv2d [3,3,128]

conv2d [3,3,256], stride 2

conv2d [3,3,256]

conv2d [3,3,256]

conv2d [3,3,256]

conv2d [3,3,512], stride 2

conv2d [3,3,512]

conv2d [3,3,512]

conv2d [3,3,512]

conv2d [1,1,32]

globalavgpool [1,1,32]

fclayer [32,10]
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Figure 4.1: Model Architecture with parts indicated where features are visualized and

where human input is utilized
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4.4 Experiment 1: Feature Disabling and Retraining with CIFAR-10

For this experiment, we trained custom ResNet-18 with CIFAR-10 inputs. To get

better results on feature visualization, images are resized from 32x32 to 128x128

before being fed to the model. This proved to give better results as the resolution

for input is increased learned features could be better represented as can be seen in

Figure 4.2

Figure 4.2: Feature Visualization taken from f3

We tried a mostly data-agnostic approach by using class weights per feature and visu-

alizing features using the Activation Maximization [24] method to get positive parts

that contribute to the feature itself. After careful investigation, features are disabled

regarding their visualization, most activating images in the dataset, and their contribu-

tion to the final layer by looking at the weight graph on whether they are misleading

or not. An example of a feature disabling screen with assisting data can be seen in

Figure 4.3. Disabled features in this case are indexed as [3, 8, 11, 12, 13] out of 32

layers. Misleading examples can be seen in Figures 4.3, 4.4, 4.5, 4.6, 4.7. Misleading

examples can be investigated in 2 categories: misattribution to a different class, and

ambiguous features. Misattribution is when a feature does not contribute to the class

as intended whether it negatively attributes to it or some other class attributes more

than the class feature represents as can be seen in Figures 4.3, 4.6, 4.7. Ambiguity

is caused when feature visualization is not interpretable and most contributed images

are not represented in the weight plot as can be seen in Features 4.4, 4.5.
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Figure 4.3: Feature Visualization taken from f3: Problem with this layer is it is clearly

attributed as deer, however, it mostly contributes to "ship" class.
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Figure 4.4: Feature Visualization taken from f8: Problem with this layer is it is not

clear to deduce which class it belongs to from FV and contributions are mostly to

"horse" class while maximum activations are all "ships".
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Figure 4.5: Feature Visualization taken from f11: Problem with this layer is it is not

clear to deduce which class it belongs to from FV and contributions are mostly to

"horse" class while maximum activations are all "automobiles".
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Figure 4.6: Feature Visualization taken from f12: Problem with this layer is it is

clearly attributed as "cats" while most activated images are all "cars" and the contri-

butions are contested for 3 different classes. Therefore this feature is misattributed.
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Figure 4.7: Feature Visualization taken from f13: The problem with this layer is it is

clearly attributed as "ships" as FV patterns can be recognizable as sea colors while

most activated images are all "cars" and the contributions are contested for 2 different

classes. Therefore this feature is misattributed.

After disabling and retraining the model with masked features for 10 epochs with

Early Stopping of 2 epochs, validation accuracy improved from 88.68% to 88.99%,

and macro f1 improved from 0.8873 to 0.8911. Inspecting Table 4.2, Airplane, Au-

tomobile, Cat, Horse, Ship, and Truck classes are improved significantly, Deer class

is negatively affected by feature disabling, and other classes are affected insignificant

amounts in terms of F1 score metric. In this experiment, we considered weights per

feature rather than contribution by running it with the validation set. Therefore, while

overall results are improved by retraining and adapting to changes, possible useful

features are discarded due to this data-agnostic approach.
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Table 4.2: Results with CIFAR-10

Training Type Accuracy F1 FPR FNR Class Per Class F1

Initial 88.68 0.8873 0.015 0.084

airplane 0.8899

automobile 0.9287

bird 0.8585

cat 0.7884

deer 0.9003

dog 0.8319

frog 0.9088

horse 0.9254

ship 0.9176

truck 0.9118

Fine-Tune 88.99 0.8911 0.052 0.166

airplane 0.8921

automobile 0.9506

bird 0.8590

cat 0.7948

deer 0.8764

dog 0.8384

frog 0.9144

horse 0.9107

ship 0.9495

truck 0.9417

As has been demonstrated, using too many classes with too few features in debugging

phase causes entanglement; therefore, disabling features with considering only one

class is problematic as it would disable useful contributions to other classes. Also,

Feature Visualization [25] with Activation Maximization [24] causes high-frequency

outputs that could be hard to interpret and decide whether the feature is useful or not.
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4.5 Experiment 2: Human Opinion Collection, Feature Ranking and Disabling

with Reduced Animals-10

After inspecting the effects of Feature Visualization and weight comparison assisted

elimination on CIFAR-10 [56], a thorough experiment is conducted with a reduced

set of Animals-10 [57]. This set only contained 3 of 10 classes of the original dataset

which are Cat, Cow, and Spider. In this part, a sample of data for each feature is

selected in accordance with their contribution to the final decision via the help of

Algorithm 2. Then, they are processed with LIME [27] to get positive parts that

contribute to the final decision. The processed samples are combined to represent

what feature stores and provides for the final decision part as can be seen in Figure 4.8.

Also, in this part, instead of debugging and disabling with the opinion of one person,

we used the expertise of 16 different individuals to gather more data by surveying

whether a feature represents any of the given classes and giving points with respect

to the representation of classes as seen in Figure 3.3. For this part, only features that

have at least one positive influence on a class are used as can be seen in Table 4.4.

With this data at hand, features are ranked for each class as high priority (HP) where

the feature is important for classes selection at the final stage, medium priority (MP)

where it does not have a decisive role but still contributes small amounts, low priority

(LP) where the feature does not contribute or negatively contributes to decision part

on the specific class as can be seen for each class in Figures 4.9, 4.10 and 4.11.

All visualization, human votings, and actual contributions of features can be seen in

Appendix A.

Table 4.3: Sample Amounts in reduced Animal-10

Class Train Val Total

Cat 1501 167 1668

Cow 1679 187 1846

Spider 4338 483 4821
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Algorithm 1 Probability list creator for Sample algorithm
Input: prob_list = [p1, . . . pN ] -> probability of each element getting selected.

Output: range = [r1, . . . rN ] -> Each elements’ probability accumulated to achieve

weighted random

1: function probability_range(prob_list)

2: range← []

3: cumulative_prob← 0

4: for all j = 1 to size(prob_list) do

5: cumulative_prob← cumulative_prob+ prob_list[j]

6: range.insert(cumulative_prob)

7: end for

8: return range

9: end function

Table 4.4: Feature Indexes ranked according to their contribution

Class
Priority Level

Low Medium High

Cat 2,4,8,9,13,14,15,17,22 1,5,11,12,16,20,21,24,29 0,3,6,7,25,26,27,28,31

Cow 0,8,15,17,20,21,22,24,29 1,2,3,5,6,7,13,14,25 4,9,11,12,16,26,27,28,31

Spider 0,3,11,16,25,26,27,28,31 1,2,4,5,6,7,9,12,21 8,13,14,15,17,20,22,24,29

No positive contribution 10,18,19,23,30

Figure 4.8: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance their positive contribution as in Algorithm 2
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Algorithm 2 Sampling algorithm
Input: predicted_results = [(x1, c1), (x2, c2), . . . (xN , cN)] -> validation dataset ele-

ments x with the contribution c to model’s final prediction, N being the size of vali-

dation dataset.

Output: sample_list= [(x1, c1), (x2, c2), . . . (xM , cM)] -> sampled elements from

predicted_results with M<N

1: candidate_list← []

2: probability_list← []

3: for all j = 1 to N do

4: xj, cj ← predicted_results[j]

5: if cj > 0 then

6: candidate_list.insert((xj, cj))

7: probability_list.insert(cj)

8: end if

9: end for

10: probability_list_normalised← probability_list/sum(probability_list)

11: prob_range← probability_range(probability_list_normalised)

12: for all i = 1 to M do

13: prob← random.generate(0, 1)

14: for all j = 1 to size(candidate_list) do

15: if prob < prob_range[j] then

16: sample_list.insert(candidate_list[j])

17: probability_list.pop(j)

18: candidate_list.pop(j)

19: break

20: end if

21: end for

22: probability_list_normalised← probability_list/sum(probability_list)

23: prob_range← probability_range(probability_list_normalised)

24: end for
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Figure 4.9: Features ranked with respect to their resemblance to "Cat" class

Figure 4.10: Features ranked with respect to their resemblance to "Cow" class

Figure 4.11: Features ranked with respect to their resemblance to "Spider" class
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4.5.1 Effect of disabling features according to human knowledge

After ranking each feature according to the answers and points as can be seen in

Figures 4.9, 4.10 and 4.11 and Table 4.4 given to each feature with questions provided

such as in Figure 3.3, we disabled each priority group for each class except the non-

positive contributing ones both individually and in combinations of two and both class

weight only and whole feature such as disabling only cat weight for low priority (LP)

or disabling all weights calculating feature for medium and high priority (MP & HP)

ranked features of cow class. For Confusion matrices and results for this experiment

can be seen in Appendix B. The results are taken without retraining or fine-tuning

after disabling to investigate the effects of features. For this experiment, we choose

metrics F1 per class, Accuracy, and Macro F1

Investigating results for the Cat class, medium priority (MP) classes actually con-

tribute more to the class than high priority(HP) classes where features are expected

to mostly only contribute to the class itself. This is because of the entanglement of

features in combination with more than one class. For example, Feature 28 as can be

seen in Figure 4.12 voted more contributing to the Cat class as it is placed as high

priority feature for the Cat class actually contributes less than feature 11 and 21 as

stats can be seen in Figure 4.14 and 4.13. However, due to the sampling process and

both features actually contributing to cow (Feature 28) and spider(Feature 11) classes

same or more amount, these features can not be solely voted as the Cat contributing

classes. Therefore, when high-priority(HP) features are disabled, there is little change

whereas when mediums(MP) are disabled there is a bigger change. When both priori-

ties are combined, the positive amount reduces to zero as there will be no contributing

feature remaining to make a positive impact on the Cat class; therefore making the

F1 score for the Cat class NaN. Also, without retraining, disabling low-priority(LP)

features’ weights that contribute to the Cat class, improves overall metrics slightly.

Investigating further by splitting medium-priority features into 3 equal parts, we can

see that features 11,12,21 are heavily contributing to the Cat class while others are

slightly supporting in the decision-making part as can be seen in Table 4.5. The re-

sults for the Cat class can be seen in Table 4.6.
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure 4.12: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 28 and

answers in survey, and also contributions of feature index 28
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure 4.13: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 21 and

answers in survey, and also contributions of feature index 21
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure 4.14: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 11 and

answers in survey, and also contributions of feature index 11
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Table 4.5: Results with Animal-10 for disabling different parts of medium priority

features according to Cat

Model: ResNet-18
Dataset: Animals-10 reduced to 3 classes

Cat F1 Cow F1 Spider F1 Macro F1 Accuracy

Original 0.97 0.981 0.993 0.981 0.986

Disabling Cat Weights only

Disabling 20,29,1 0.97 0.979 0.992 0.98 0.984

Disabling 16,24,5 0.97 0.981 0.993 0.981 0.986

Disabling 12,21,11 0.97 0.979 0.992 0.98 0.984

Disabling Whole Feature

Disabling 20,29,1 0.973 0.981 0.994 0.983 0.987

Disabling 16,24,5 0.97 0.981 0.993 0.981 0.986

Disabling 12,21,11 0.134 0.976 0.866 0.659 0.812
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Table 4.6: Results with Animal-10 for disabling according to Cat

Model: ResNet-18
Dataset: Animals-10 reduced to 3 classes

Cat F1 Cow F1 Spider F1 Macro F1 Accuracy

Original 0.97 0.981 0.993 0.981 0.986

Disabling Cat Weights only

Disabling LP 0.973 0.981 0.994 0.983 0.987

Disabling MP 0.953 0.981 0.988 0.974 0.98

Disabling HP 0.963 0.981 0.991 0.978 0.983

Disabling LP&MP 0.972 0.981 0.994 0.983 0.987

Disabling LP&HP 0.966 0.981 0.992 0.98 0.984

Disabling MP&HP 0.94 0.976 0.986 0.967 0.975

Disabling Whole Feature

Disabling LP 0.967 0.233 0.851 0.683 0.795

Disabling MP 0.175 0.974 0.869 0.673 0.817

Disabling HP 0.957 0.979 0.988 0.974 0.98

Disabling LP&MP 0.333 NaN NaN 0.111 0.2

Disabling LP&HP 0.963 NaN 0.83 0.597 0.763

Disabling MP&HP NaN 0.976 0.856 0.611 0.798

Examining Table 4.7, medium priority (MP) and low priority (LP) features impact

low on classes’ success individually, while high priority features are playing a de-

cisive role in the classification of Cow. While there are disentangled features on

high-priority features, it can be said that there are more features entangled with the

Spider class than with the Cat class amongst high-priority features as those features

break the balance in favor of the Spider class as can be seen in Figure 4.15c; there-

fore, creating more false positives for Spider class and reducing its F1 score more

than Cat’s F1 score. Similar to the Cat class, disabling low-priority (LP) features

contributing to the Cow class improves the overall performance of the model. Look-

ing into disabling only high-priority (HP) features, this features completely removes

both Cat and Cow classes’ positive predictions. From this, we can deduce that high-
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priority Cow features include weights that support positive contributions to the Cat

class. Also, medium-priority features have little to no impact neither negative nor

positive on the Cow class’ prediction.

Table 4.7: Results with Animal-10 for disabling according to Cow

Model: ResNet-18
Dataset: Animals-10 reduced to 3 classes

Cat F1 Cow F1 Spider F1 Macro F1 Accuracy

Original 0.97 0.981 0.993 0.981 0.986

Disabling Cow Weights only

Disabling LP 0.966 0.979 0.993 0.979 0.984

Disabling MP 0.963 0.976 0.993 0.977 0.983

Disabling HP 0.959 0.556 0.895 0.803 0.855

Disabling LP&MP 0.963 0.974 0.994 0.977 0.983

Disabling LP&HP 0.97 0.947 0.979 0.965 0.97

Disabling MP&HP 0.967 0.916 0.97 0.951 0.958

Disabling Whole Feature

Disabling LP 0.973 0.984 0.995 0.984 0.988

Disabling MP 0.973 0.981 0.994 0.983 0.987

Disabling HP NaN NaN 0.732 0.244 0.577

Disabling LP&MP 0.969 0.979 0.994 0.981 0.986

Disabling LP&HP 0.204 NaN 0.743 0.2516 0.6

Disabling MP&HP NaN NaN 0.732 0.244 0.577
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(a) Disabled LP features

for only cow weights

(b) Disabled MP features

for only cow weights

(c) Disabled HP features

for only cow weights

(d) Disabled LP features

for all weights

(e) Disabled MP features

for all weights

(f) Disabled HP features

for all weights

Figure 4.15: Confusion Matrix disabling one priority rank features for Cow class

Inspecting results on Table 4.8, similar to the Cat class, medium-priority features are

contributing more than high-priority features. In most of those features, the Spider

class shares the feature with other classes. In the specific example of Feature 4, the

feature is visualized as contributing Cows and Spiders equally while in Figure 4.16

it can be seen that Cow contribution is mostly negative with the exception for some

outliers above the last quartile. Therefore, while removing MP features’ Spider class

weights does not change metrics where HP features compensate completely, deleting

MP features completely eliminates positive Cow predictions and changes most of

the predictions to the Cat class. Hence, it can be derived that the Spider class is

more entangled with the Cow class than the Cat class in MP features. Producing the

same result as Cow results’ Disabling HP features in Table 4.7, Spider’s LP and MP

combination includes all HP features from the Cow class. This provides insight that

some of the Cow class is entangled with the Spider class in their most contributing

features. In another example, Disabling the MP&HP features of Spider produces the

same results as disabling the LP&MP features of Cat classes which removes both

Spider and Cow classes’ positive predictions.
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure 4.16: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 4 and

answers in survey, and also contributions of feature index 4
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Table 4.8: Results with Animal-10 for disabling according to Spider

Model: ResNet-18
Dataset: Animals-10 reduced to 3 classes

Cat F1 Cow F1 Spider F1 Macro F1 Accuracy

Original 0.97 0.981 0.993 0.981 0.986

Disabling Spider Weights only

Disabling LP 0.963 0.979 0.99 0.977 0.982

Disabling MP 0.97 0.981 0.993 0.981 0.986

Disabling HP 0.973 0.981 0.994 0.983 0.987

Disabling LP&MP 0.963 0.981 0.991 0.978 0.983

Disabling LP&HP 0.966 0.981 0.992 0.98 0.984

Disabling MP&HP 0.964 0.979 0.99 0.978 0.982

Disabling Whole Feature

Disabling LP 0.957 0.976 0.987 0.973 0.978

Disabling MP 0.356 NaN 0.23 0.195 0.274

Disabling HP 0.973 0.984 0.995 0.984 0.988

Disabling LP&MP NaN NaN 0.732 0.244 0.577

Disabling LP&HP 0.966 0.981 0.992 0.98 0.984

Disabling MP&HP 0.333 NaN NaN 0.111 0.2
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CHAPTER 5

CONCLUSIONS

In this study, we have analyzed the effects of human-guided feature disabling with

the assistance of FV and XAI. We have provided results and analysis for retraining

DL-based image classification algorithms. During experiments, we performed the vi-

sual analysis of the model and decided which feature is irrelevant using FV, ranking

images by activation amounts, and weight visualization. Recently, active learning

methods are popular for neural network debugging via manipulating the network it-

self [23] or labeling unlabelled classes after inferring them with model [22]. However,

these models are not taking advantage of feature visualization, and they correct the

model by inspecting examples instead of the network itself. Therefore, FIND [12]

which employs LRP (Layer-wise Relevance Propagation) [28] to find global expla-

nations for each feature. This does not work as expected in image-based problems as

there are no "embedding" vectors or layers that can encode the image in a way they

are completely distinguishable in latent space before it is fed to the model. Therefore,

Activation Maximization [24] is employed for feature visualization to attribute latent

features some familiarity to the user who debugs the system. However, using only Ac-

tivation Maximization [24] for visualization of layers could confuse the users as it can

produce high-frequency patterns which probably have no familiarity to the user. To

overcome this problem, maximum activating images from the dataset are brought to-

gether in a collage to make a decision about to which class this feature contributes the

most easier. To complete the decision, we presented the classifier module’s weights

to show to which class that feature actually contributes.

During the experiment phase, we used a custom ResNet-18 [58] and trained and tested

it with CIFAR-10 [56] and Animal-10 [57]. We disabled features that are either am-
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biguous, misleading or have high-frequency FV that are not distinguishable. This

improved overall F1 score and most classes’ F1 scores after fine-tuning with masked

features. Results show that FV is not enough to determine whether a feature is rele-

vant or not. Therefore, we employed LIME [27] which is an XAI method for high-

lighting relevant parts of the input for Experiment 2 to test human expertise vs the

model’s understanding of each feature. Even though LIME proved useful for visual-

ization, it is computationally expensive to create visuals for each feature due to the

individual processing of inputs. To overcome this, we take weighted samples on the

validation set and used them for visualization. This experimentation showed that we

can use XAI techniques for the diagnosis of errors in decision-making and debug-

ging of image classification algorithms. For future studies, Self Explaining Neural

Networks [8] or Concept Bottleneck Models [9], if there is a labeled set of concepts,

could be employed to investigate samples from the dataset to improve visualization.

Moreover, rather than disabling features completely, regularization methods or re-

wards and punishments for specific weights could be applied to get more interpretable

and better-contributing features.
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APPENDIX A

FEATURE VISUALIZATIONS VIA LIME IN ANIMAL-10

(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.1: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 0 and

answers in survey, and also contributions of feature index 0
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.2: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 1 and

answers in survey, and also contributions of feature index 1

56



(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.3: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 2 and

answers in survey, and also contributions of feature index 2
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.4: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 3 and

answers in survey, and also contributions of feature index 3
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.5: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 5 and

answers in survey, and also contributions of feature index 5
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.6: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 6 and

answers in survey, and also contributions of feature index 6
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.7: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 7 and

answers in survey, and also contributions of feature index 7
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.8: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 8 and

answers in survey, and also contributions of feature index 8
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.9: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 9 and

answers in survey, and also contributions of feature index 9
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.10: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 12 and

answers in survey, and also contributions of feature index 12
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.11: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 13 and

answers in survey, and also contributions of feature index 13
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.12: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 14 and

answers in survey, and also contributions of feature index 14
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.13: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 15 and

answers in survey, and also contributions of feature index 15
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.14: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 16 and

answers in survey, and also contributions of feature index 16
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.15: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 17 and

answers in survey, and also contributions of feature index 17
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.16: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 20 and

answers in survey, and also contributions of feature index 20
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.17: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 22 and

answers in survey, and also contributions of feature index 22
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.18: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 24 and

answers in survey, and also contributions of feature index 24
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.19: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 25 and

answers in survey, and also contributions of feature index 25
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.20: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 26 and

answers in survey, and also contributions of feature index 26
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.21: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 27 and

answers in survey, and also contributions of feature index 27
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.22: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 29 and

answers in survey, and also contributions of feature index 29
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(a) Feature Visualization

(b) Survey Answers

(c) Contribution of Feature

Figure A.23: Feature Visualization via samples from reduced Animal-10 processed

with LIME in accordance with their positive contribution for feature index 31 and

answers in survey, and also contributions of feature index 31
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APPENDIX B

CONFUSION MATRICES AND RESULTS FROM ANIMAL-10

Figure B.1: Confusion Matrix for Original Model with no disabled features
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(a) Disabled LP features

for only cat weights

(b) Disabled MP features

for only cat weights

(c) Disabled HP features

for only cat weights

(d) Disabled LP features

for all weights

(e) Disabled MP features

for all weights

(f) Disabled HP features

for all weights

Figure B.2: Confusion Matrix disabling one priority rank features for Cat class

(a) Disabled LP &

MP features for only cat

weights

(b) Disabled LP &

HP features for only cat

weights

(c) Disabled MP &

HP features for only cat

weights

(d) Disabled LP & MP

features for all weights

(e) Disabled LP & HP

features for all weights

(f) Disabled MP & HP

features for all weights

Figure B.3: Confusion Matrix disabling combination of two priority rank features for

Cat class
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(a) Disabled LP & MP

features for only cow

weights

(b) Disabled LP & HP

features for only cow

weights

(c) Disabled MP & HP

features for only cow

weights

(d) Disabled LP & MP

features for all weights

(e) Disabled LP & HP

features for all weights

(f) Disabled MP & HP

features for all weights

Figure B.4: Confusion Matrix disabling combination of two priority rank features for

Cow class

(a) Disabled LP features

for only spider weights

(b) Disabled MP features

for only spider weights

(c) Disabled HP features

for only spider weights

(d) Disabled LP features

for all weights

(e) Disabled MP features

for all weights

(f) Disabled HP features

for all weights

Figure B.5: Confusion Matrix disabling one priority rank features for Spider class

81



(a) Disabled LP & MP

features for only spider

weights

(b) Disabled LP & HP

features for only spider

weights

(c) Disabled MP & HP

features for only spider

weights

(d) Disabled LP & MP

features for all weights

(e) Disabled LP & HP

features for all weights

(f) Disabled MP & HP

features for all weights

Figure B.6: Confusion Matrix disabling combination of two priority rank features for

Spider class
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