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ABSTRACT 

EFFICIENT NUMERICAL ANALYSIS OF PERIODIC STRUCTURES 

USING THE THEORY OF CHARACTERISTIC MODES 

Haykır, Yiğit 

Doctor of Philosophy, Electrical and Electronic Engineering 

Supervisor : Prof. Dr. Özlem Aydın Çivi 

December 2022, 154 pages 

The characteristic mode analysis has become a popular and versatile tool in antenna 

design and analysis. This analysis provides useful information about radiation 

characteristics of scatterers and offers physical insight into the radiation problem. 

Hence it can also be exploited in the solution of periodic structures. In this work, an 

integral based simulation program has been developed to perform the modal analysis 

of periodic structures. This dissertation consists of three interrelated parts. In the first 

part, the characteristic mode analysis is extended to the periodic unit cell solution. 

This analysis yields distinct perspective to the analysis of the reflectarray problem. 

In the second part, the resonance behavior of the mode of interest is modified by 

applying continuous load distribution over the unit cell element. However since such 

loading is hard to realize, an approach has been developed to reduce the load 

distribution on the ring-type unit cell element into two discrete loads. Subsequently, 

a novel method is introduced that allows to find the reactive load values in advance 

that shift the reflection band of the ring-type frequency selective surface element to 

desired frequency. Thus, the need for optimization-based methods that increase the 
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solution cost has been eliminated. In the last part, the finite array solution is evaluated 

in which characteristic modes are used as macro basis functions. Afterwards, a 

multilevel matrix reduction method is presented for the array of differently sized 

elements using characteristic modes. This thesis work leads efficient and original 

analysis of large periodic structures using the theory of characteristic modes. 

 

Keywords: Characteristic mode analysis, periodic unit cell, reactive loading, macro 

basis functions. 
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ÖZ 

 

PERİYODİK YAPILARIN KARAKTERİSTİK MODLAR TEORİSİNİ 

KULLANARAK VERİMLİ NÜMERİK ANALİZİ 

 

 

 

 

Haykır, Yiğit 

Doktora, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Özlem Aydın Çivi 

 

 

Aralık 2022, 154 sayfa 

 

Karakteristik mod analizi, anten tasarımı ve analizinde popüler ve çok yönlü bir araç 

haline gelmiştir. Bu analiz, saçıcıların ışıma özellikleri hakkında faydalı bilgiler 

sağlamakta ve ışıma problemine fiziksel bir bakış açısı sunmaktadır. Dolayısıyla 

periyodik yapıların çözümünde de kullanılabilir. Bu çalışmada, periyodik yapıların 

modal analizini gerçekleştirmek için integral tabanlı bir simülasyon programı 

geliştirilmiştir. Bu tez birbiriyle ilişkili üç bölümden oluşmaktadır. İlk bölümde, 

karakteristik mod analizi periyodik birim hücre çözümüne genişletilmektedir. Bu 

analiz, yansıtmalı dizi probleminin analizine farklı bir bakış açısı getirmektedir. 

İkinci bölümde ilgili modun rezonans davranışı, birim hücre elemanı üzerinde 

sürekli yük dağılımı uygulanarak değiştirilir. Ancak böyle bir yüklemenin 

gerçekleştirilmesi zor olduğundan, halka tipi birim hücre elemanı üzerindeki yük 

dağılımını iki ayrı yüke indirgemek için bir yaklaşım geliştirilmiştir. Sonrasında ise 

halka tipi frekans seçici yüzey elemanının yansıma bandını istenen frekansa kaydıran 

reaktif yük değerlerinin önceden bulunmasını sağlayan yeni bir yöntem tanıtılmıştır. 

Böylece çözüm maliyetini arttıran optimizasyon tabanlı yöntemlere olan ihtiyaç 

giderilmiştir. Son bölümde ise karakteristik modların makro tabanlı fonksiyonlar 
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olarak kullanıldığı sonlu dizi çözümü değerlendirilmiştir. Daha sonra karakteristik 

modlar kullanılarak farklı büyüklükteki elemanlar dizisi için çok seviyeli bir matris 

indirgeme yöntemi sunulmuştur. Bu tez çalışması, karakteristik modlar teorisini 

kullanarak büyük periyodik yapıların verimli ve özgün analizine öncülük etmektedir. 

 

Anahtar Kelimeler: Karakteristik mod analizi, periyodik birim hücre, reaktif 

yükleme, makro temel fonksiyonlar. 
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CHAPTER 1

INTRODUCTION

Large periodic arrays are utilized in many applications. Especially optical filters in-

cluding frequency selective surface (FSS) [1] and photonic band gap (PBG) [2] struc-

tures have become popular research topics. In these applications, the shape of the

unit cell element and its periodicity is determined such that they allow transmission

and reflection of electromagnetic waves only at certain frequencies. Similarly meta-

material absorbers and artificial impedance surfaces such as mushroom-type texture

surfaces also utilize arrays of 2D periodic elements. In recent years, reflectarray an-

tennas become very popular due to their advantages over phased arrays and reflector

antennas [3]. Unlike phased arrays, reflectarray antennas do not require a compli-

cated and lossy feeding network. Moreover, they are low profile, light and easy to

fabricate antennas which are also advantageous features compared to the reflector an-

tenna. In the reflectarray design, certain element parameters are modified so that the

reflected electric field provides desired reflection phase response. Hence, the overall

phase distribution on the aperture can yield desired radiation behavior.

Since there are many applications of periodic structures, the analysis of the radiation

and scattering from periodic elements has become an important area of the computa-

tional electromagnetics. Due to the increasing number of elements in large periodic

arrays, unit cell solution is adopted to reduce the computational burden. Hence so-

lution of large arrays of periodic elements can be performed quickly and efficiently

by defining periodic boundary conditions on the edges of the unit cell. Unit cell so-

lution is also needed in the design of reflectarray antennas since the reflection phase

of each element is obtained from the solution of each element inside the periodic

boundary. Periodic boundary conditions can be applied for different computational
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methods such as finite element method and finite difference. Hybrid method of fi-

nite element boundary integrals (FEBI) [4] incorporates Floquet modes into the finite

element solution and implements integral solutions on top and bottom sides of the

unit cell. Nevertheless, use of periodic Green’s function in the context of the method

of moment (MoM) [5] provides simple, and yet efficient solution for the unit cell

problem.

Method of moments is a versatile method for the solution of conducting elements

within the unit cell as well as at open boundaries. Especially for arbitrary geometries,

Rao-Wilton-Glisson (RWG) [6] functions along with triangular discretization on the

conducting surface pave the way for flexible and accurate solutions. The periodic

Green’s function (PGF) can be utilized in the solution of unit cell element within

the MoM. Since a large number of terms that come from the periodic Green’s func-

tion must be included into the integral equation, Ewald’s transformation [7] can be

implemented to reduce the computational burden.

In recent years, characteristic mode analysis has also become very popular tool in

the solution of antenna and scattering problem. In analysis of characteristic modes

within the method of moments, applying the generalized eigenvalue equation over the

impedance matrix yields a set of orthogonal modes [8, 9]. These modes yield phys-

ical insight about the radiation and scattering behavior of conducting and dielectric

bodies. They can be excited by different illuminations and feedings. Besides that, the

theory of the characteristic modes has also emerged as a method that facilitates the use

of reactive loads and calculates loading values to alter radiation characteristics of an

antenna [10]. However, since this method suggests using as many loads as the num-

ber of basis functions, it has evolved into a method that utilizes network characteristic

modes (NCM) by turning the antenna problem into a network problem [11–14].

Moreover, the characteristic modes can also be utilized as macro basis functions

(MBFs) over large scattering bodies as well as finite array structures. Macro ba-

sis function approach provides fast solutions of large structures by decomposing do-

mains into large subdomains. Using basis functions over each subdomain, the number

of unknowns can be reduced which paves the way for cost and time efficient inte-

gral solutions [15]. The characteristic basis function method (CBFM) [16, 17] is a
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well-known approach that employs MBFs, also known as characteristic basis func-

tions (CBFs) to achieve matrix reduction. Within this method, finite array structures

can be solved by expanding basis functions over the array elements. To reduce the

number of unknowns even further, the multilevel CBFM (MLCBFM) has also been

suggested [18, 19]. It utilizes hierarchical partitioning to achieve faster solutions in

electrically very large structures.

The characteristic modes make very efficient macro basis functions over finite array

elements due to their excitation-free nature [20]. Especially in the problem of finite

arrays consisting of identical elements, the characteristic modes that obtained over a

single and isolated array element can be applied over all array elements regardless

of the excitation. In recent years, characteristic modes have been utilized as macro

basis functions in the solution of the reflectarray, and it has been shown that the same

modes can be used on differently sized elements [21].

In summary, the characteristic mode analysis can become very useful in the unit cell

solution as well as the solution of finite array. The physical insight that characteristic

mode analysis brings to the antenna and scattering problem can be extended to the

unit cell problem. Besides that, the modal approach to obtain reactive load matrix on

antenna elements can be utilized in the unit cell problem to achieve shift in reflection

and transmission band of the unit cell element. Moreover in the finite array problem,

the characteristic modes can be exploited as macro basis functions to speed up the

numerical analysis.

1.1 Motivation and Problem Definition

The characteristic modes yield orthogonal basis functions that model the surface cur-

rent in the radiation and scattering problem. Moreover they can be expressed in

terms of other modal expansion functions. For instance spherical modes in dipole

and loop element can be modeled using characteristic modes [22] and similarly, the

cavity modes in a microstrip patch element can be associated with the characteristic

modes [23]. However since characteristic mode analysis of the unit cell element has

not been fully investigated, the relationship between the characteristic modes and the

3



Floquet modes of the unit cell element has remained unclear. In fact, the characteristic

modes of the unit cell element would yield the reflection and transmission properties

of Floquet modes. Therefore the useful features of characteristic modes, especially

utilized in antenna problems, can also be exploited for the unit cell problem.

Secondly, the characteristic mode analysis makes the use of reactive loads very con-

venient. Using continuous loading on the scattering element, the mode-of-interest can

be made resonant at any frequency [10]. Although changing the resonant frequency

in this way can simplify the antenna design, it has been discussed that physical imple-

mentation of such loading would be hard since it requires the application of reactive

loads over set of basis functions [24]. Especially in the unit cell problem, using pre-

determined loads to change reflection and transmission characteristics of the unit cell

element would have been paved the way for an efficient design methodology. If it

were possible to reduce the load distribution on the unit cell element to few loads, the

design of loaded unit cell element could have been performed without the need for

optimization algorithms that increase the computational cost and complexity.

Thirdly, excitation-independent nature of the characteristic modes makes them very

convenient to be utilized as macro basis functions. Although there is already a reflec-

tarray analysis method using CMs as macro basis functions [21], further analyses are

also needed to fully exploit excitation-free nature of the CM basis functions. In the

macro basis function approach, the goal is to reduce the size of the impedance matrix,

however too many CMs may be needed to ensure the solution accuracy in the near

field. Especially in very large array structures, using multiple characteristic modes

may not yield the desired amount of reduction, hence multilevel matrix reduction can

be considered to adequately reduce the degree of freedom. Therefore, in addition to

the multilevel version of the conventional CBFM [18,19], a similar approach of mul-

tilevel reduction can also be considered using characteristic modes as macro basis

functions.
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1.2 Proposed Methods and Models

This dissertation consists of three interrelated topics that address the ideas summa-

rized in Section 1.1. In the first part, an efficient tool has been developed on MATLAB

in order to perform MoM-based solution of the periodic unit cell element as well as

the analysis of the characteristic modes. After verifying the accuracy of the developed

program by comparing with commercial EM simulation tools, the characteristic mode

analysis of an FSS element is demonstrated. The reflection response of the element

is discussed with respect to the angle of incidence through characteristic modes. The

reflectarray element is also analyzed, and the phase responses of the unit cell elements

are interpreted in terms of the characteristic modes.

In the second part, a design methodology for the unit cell element has been sought by

exploiting the theory of characteristic modes. In this respect, reactive load distribution

over the ring-type FSS element is calculated to shift the resonance frequency of the

mode of interest to any desired frequency. It has been seen that this method can also

be implemented to shift the reflection band of the FSS element as desired. Since it

is not practical, if not impossible, to apply a continuous load distribution on the FSS

element, an original method has been proposed for ring-type FSS elements that takes

the average of the continuous load distribution and reduces it to two discrete lumped

elements. Applying the pre-calculated lumped elements on the unit cell element, it

has become possible with sufficient accuracy to shift reflection band of the ring-type

FSS element to any desired frequency.

The third part of this work differs from the first two parts as this time, the characteris-

tic mode analysis is not performed on the unit cell element but performed on isolated

array elements at open boundary conditions. Then the characteristic modes are uti-

lized as macro basis functions for large finite arrays. In addition, additional basis

functions induced by modal currents on the neighboring elements are also incorpo-

rated into the solution as secondary basis functions, and the outcomes are evaluated.

Finally, a multilevel matrix reduction method is proposed in which the characteristic

modes are used as basis functions in the first level, which is then followed by the

conventional CBFM technique in the second level.
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Note that since the MoM program is developed for only conducting surfaces, metal-

only elements are considered in all analyses and solutions. However it is still possible

to realize such array structures by applying metal layers on styrofoam-like materials

that have very low dielectric constant.

1.3 Contributions and Novelties

Our contributions are as follows:

• The application area of the characteristic mode analysis has been extended to

the solution of periodic unit cell.

• It has been contributed that characteristic mode analysis can yield insights to

understand the phase response of reflectarray elements.

• A novel method is proposed based on the characteristic mode analysis of the

unit cell element to calculate lumped element values beforehand that shifts total

reflection and transmission band of the ring-type FSS element to the desired

frequency with sufficient accuracy. Therefore, load values can be calculated

efficiently without the need for optimization-based methods that increase the

computational time and cost.

• In addition to the use of characteristic modes as macro basis functions in the

finite array solution, the use of secondary basis functions, coming from element

interactions, is also demonstrated.

• Similar to the MLCBFM, a multilevel matrix reduction method is recommended

that utilizes characteristic modes as macro basis functions at Level-1, and fol-

lowed by the conventional CBFM at Level-2.

1.4 The Outline of the Thesis

The organization of this dissertation is as follows: Chapter 2 is dedicated to the nu-

merical computation method utilized throughout this work. Hence the Method of

6



Moment solution of the integral equation using RWG basis functions is given. The

computational aspects including the mesh definition and the numerical evaluation

of singularities are also explained in detail. Besides, the theory of the characteris-

tic mode is presented and the mode tracking algorithm developed for this work is

demonstrated.

In Chapter 3, the periodic unit cell solution is given within the MoM solution. Floquet

analysis of 2D periodic elements in spectral domain is discussed, and the computa-

tional aspects including Ewald’s transformation and handling the continuity on the

unit cell boundaries are thoroughly explained. After that, the characteristic mode

analysis of the unit cell element is performed on the FSS element of Jerusalem cross.

The modes obtained from the CMA are interpreted together with the reflection be-

havior. Then metal-only reflectarray elements are investigated using the characteris-

tic modes. The relation between the characteristic modes and the phase response for

several reflectarray elements are discussed.

In Chapter 4, the reactive loading concept is introduced in the context of the CMA for

the ring-type FSS element. After finding the load distribution that shifts the resonance

band of the mode-of-interest to the desired frequency, the method of reducing the

continuous load distribution into two discrete lumped elements is given. Then the

application of the same solution to the complementary slot element is presented based

on the duality principle. After that, the proposed method for calculating the required

load values to shift the reflection band of the unit cell element to the desired frequency

is summarized in a flowchart. The method has been demonstrated on metal ring-type

as well as slot ring-type elements of different geometries.

In the beginning of Chapter 5, it has been shown that characteristic modes can be used

as basis functions. Then the matrix reduction method using macro basis functions is

explained in the context of the conventional CBFM. After that, incorporation of the

characteristic modes is demonstrated as macro basis functions. In the second part

of this chapter, the multilevel matrix reduction with CM basis functions is given and

demonstrated for large arrays consisting of randomly scaled elements.

Chapter 6 provides the conclusion and emphasizes on the possible future work.
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CHAPTER 2

NUMERICAL COMPUTATION METHOD

In this chapter, the electric field integral equation (EFIE) is explained for electromag-

netic scattering from the surface of perfectly electric conductors (PECs). General

aspects of the Method of Moments (MoM) is discussed for the solution of 3D arbi-

trary scatterers. MoM provides an accurate numerical computation environment for

the solution of linear integral equations. Within this method, a conducting surface is

discretized into subdomains, and the surface current on each subdomain is modeled

by weighted basis functions. Subsequently taking the inner product of the equations

with test functions yields a set of linear equations in the form of matrix vector multi-

plication. As the solution of the matrix equation yields weighting coefficients for the

basis functions, the surface current can be calculated.

The basis functions can be defined such that each function exists over only a subdo-

main. The basis function of this type is known as the subdomain basis function [5].

In the solution of the EFIE, basis functions such as rooftop functions [25] and Rao-

Wilton-Glisson (RWG) functions [6] are popular choices for rectangular and triangu-

lar discretization, respectively. Since triangular discretization provides flexibility and

high accuracy, RWG basis functions are utilized in this work. Basic examples of the

triangular mesh discretization are depicted in Fig. 2.1.

Using the Method of Moments, a set of orthogonal modes can be obtained by utiliz-

ing the generalized eigenvalue equation [8, 9]. The solution of such equation yields

characteristic modes, which are basically a weighted set of orthogonal modes that

model the current density on the conducting surface. The computational aspects of

the characteristic modes with an efficient mode tracking algorithm are also given in

this chapter.

9



Figure 2.1: Examples for the triangular surface discretization.

In this thesis study, an in-house code is developed on MATLAB, and thus an efficient

computational tool is obtained. Using this tool, the MoM solution as well as the

characteristic mode analysis are performed. In order to reduce the execution time,

the scripts associated with the filling of the MoM matrix are generated in the form of

C++ MEX-scripts, with the help of MATLAB Coder [26].

2.1 The Integro-Differential Equation

The electric field integral equation provides the relation between the excitation and

the induced current by enforcing boundary conditions for tangential electric field.

The solution of the equation with the Method of Moments yields the induced current

density on the conducting surface. Then the scattered and total radiating fields can

be calculated in the post-processing stage. In this section, expression of the EFIE is

given for the general solution of conducting elements. Metallic losses are neglected

for simplicity, hence the surfaces are considered as PEC. ejωt time dependence is

assumed throughout the formulation.

The total tangential electric field, Et, on a conducting surface is zero, thus

n̂× Et = n̂× (Ei + Es) = 0 (2.1)

where n̂ is the outward unit vector normal to the conducting surface, Ei is the incident

electric field and Es is the scattered electric field. (2.1) can also be expressed as

n̂× Ei = −n̂× Es. (2.2)
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In the scattering problem, as the incident field impinges on a scatterer, an electrical

current is induced, thus radiates the scattered field. The scattered electric field can be

calculated using the vector potential A and the scalar potential ϕ as

E = −∇ϕ− jωA. (2.3)

By substituting Lorentz Gauge, i.e., ϕ = −∇·A/(jωµϵ), the equation in (2.3) reduces

to

Es = −j
1

ωµϵ
∇(∇ ·A)− jωA. (2.4)

If J represents the current density over the surface, the solution for the vector potential

can be defined as

A = µ

∫
S

J(r′)G (r, r′) dr′ (2.5)

where G (r, r′) is the Green’s function, r′ refers to the source point over the surface S,

and r is the observation point. Substituting (2.5) into (2.4) and defining the divergence

operation on the current source yields

Es = −j
1

ωϵ
∇
∫
S

∇′ · J(r′)G (r, r′) dr′ − jωµ

∫
S

J(r′)G (r, r′) dr′. (2.6)

where ∇ and ∇′ are gradient and divergence operators applied over observation and

source coordinates, respectively. As the observation point is chosen on the conducting

surface such that r = rs, substituting (2.6) into (2.2) yields the electric field integral

equation, i.e.,

n̂× Ei(r = rs) = n̂×
[
j
1

ωϵ
∇
∫
S

∇′ · J(r′)G (rs, r
′) dr′

+jωµ

∫
S

J(r′)G (rs, r
′) dr′

]
.

(2.7)

As can be seen from (2.7), the integro-differential equation provides the direct relation

between the incident electric field applied on the conductor, and the induced current

on its surface. To calculate the surface current density over the conduction surface in

the free space, 3D spatial free-space Green’s function can be utilized within the EFIE

as

G (r, r′) =
e−jkR

4πR
(2.8a)

R = |r− r′| (2.8b)
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where k is the wavenumber. In the free space, wavenumber holds the dispersion rela-

tion k = ω
√
ϵµ where permittivity ϵ = ϵ0 ≈ 8.854× 10−12 F/m and the permeability

µ = µ0 ≈ 4π×10−7 H/m. Note that the intrinsic impedance in the free space becomes

η = η0 =
√
µ0/ϵ0 ≈ 120πΩ.

2.2 The Application of the Method of Moments

The integro-differential operator can be expressed such that

L{X(r′)} = j
1

ωϵ
∇
∫
S

∇′ ·X(r′)G (r, r′) dr′ + jωµ

∫
S

X(r′)G (r, r′) dr′ (2.9)

and thus the electric field integral equation can be simply defined as

n̂×
(
L{J(r′)} − Ei(r)

)
= 0. (2.10)

In order to solve the equation, the unknown surface current density, J(r′), is approxi-

mated as a weighted sum of N basis functions fn(r′) as

J(r′) ≈
N∑

n=1

αnfn(r
′). (2.11)

Thus (2.10) can be expressed in terms of the basis functions as

R = n̂×

{[
N∑

n=1

αnL{fn(r′)}

]
− Ei(r)

}
(2.12)

where R is the residual function that comes from the approximation of the surface

current with basis functions. To minimize the residual, an inner product between

the residual function and a test function, fm(r) is formed. In such formulation, both

basis and test functions can be chosen of the same type, which is known as Galerkin’s

method [5]. The inner product of (2.12) can be assumed to be zero as shown in (2.13).

< fm(r), n̂×

{[
N∑

n=1

αnL{fn(r′)}

]
− Ei(r)

}
>= 0 (2.13)

Note that m and n correspond to the basis and test functions, respectively. Since the

test function is defined on the surface, it is tangential by the definition. Therefore,

(2.13) can be expressed as

< fm(r),
N∑

n=1

αnL{fn(r′)} >=< fm(r),E
i(r) > . (2.14)
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Because the summation in (2.14) is not depended on the test function, the equation

can also be expressed as

N∑
n=1

αn < fm(r),L{fn(r′)} >=< fm(r),E
i(r) > . (2.15)

Using same number of test functions as the basis functions, a linear set of N equations

can be defined to calculate N unknowns, hence the MoM equation is formed as given

in (2.16).

ZI = V (2.16a)

Zmn =< fm(r),L{fn(r′)} > (2.16b)

Vm =< fm(r),E
i(r) > (2.16c)

In = αn (2.16d)

Once the MoM impedance matrix, Z, and the excitation vector, V, is filled by solving

(2.16b) and (2.16c), respectively, the matrix equation in (2.16a) can be constructed.

2.2.1 The Use of RWG Basis Functions

𝑆𝑆𝑗𝑗𝑗
𝑆𝑆𝑗𝑗𝑗

𝑙𝑙𝑗𝑗𝑹𝑹𝒋𝒋𝒋𝒋

𝑹𝑹𝒋𝒋𝒋𝒋

𝑂𝑂

𝒓𝒓𝒋𝒋𝒋𝒋

𝒓𝒓𝒋𝒋𝒋𝒋

𝒓𝒓

.

𝒓𝒓

Figure 2.2: Defining parameters of an RWG basis function.

Rao-Wilton-Glisson [6] functions are edge-based vector basis functions. Because

RWG vector elements are very flexible and easy to implement, they have become a

popular choice in the solution of 3D arbitrary structures. RWG functions are defined

on triangular subdomains such that each pair of triangles that share a common edge

form an RWG. Defining parameters for jth RWG function is depicted in Fig. 2.2.
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The mathematical definition can be given as

fj(r) =


ljRj1

2Aj1

, r ∈ Sj1

ljRj2

2Aj2

, r ∈ Sj2

0 , otherwise

(2.17a)

Rj1 = r− rj1 (2.17b)

Rj2 = rj2 − r (2.17c)

where Aj1 and Aj2 defines the surface area of triangular subdomains Sj1 and Sj2,

respectively. lj is the length of the common edge of both triangles. Direction of the

RWG vector function defined on the first triangular surface Sj1 is from the free vertex

of the first triangle, rj1, to any point observed on Sj1. On the contrary, the function

on the second triangular surface Sj2 is directed from any point observed on its surface

to the free vertex of the second triangle, rj2. Therefore the vector distribution is

expressed from one free vertex to another, with magnitude of zero at free vertices

while the magnitude is increasing towards the common edge. Within the Method

of Moments, such vector distribution is utilized to model surface current density on

each RWG vector element. Each triangle is tabulated to be used by minimum one

and maximum three different RWG functions. Once coefficients corresponding to

each basis RWGs are calculated through matrix-vector multiplication of (2.16a), the

surface current on each triangular subdomain can be calculated.

One of the many advantages of RWG basis functions is that they are divergence con-

forming in nature. It means that the divergence of the RGW function is finite and can

be expressed as

∇ · fj(r) =


lj
Aj1

, r ∈ Sj1

− lj
Aj2

, r ∈ Sj1

0 , otherwise

(2.18)

which turns out to be very useful in the solution of the EFIE. As inner products in the

impedance matrix elements and the voltage vector elements are defined on triangular

subdomains Sm, (2.16b) and (2.16c) can be expressed as

Zmn =

∫
Sm

dr fm(r) · L {fn(r′)} (2.19a)
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Vm =

∫
Sm

dr fm(r) · Ei(r) (2.19b)

Substituting integro-differential operator in (2.9) into (2.19a) yields

Zmn = j
1

ωϵ

∫
Sm

dr fm(r) · ∇
∫
Sn

dr′ ∇′ · fn(r′)G (r, r′)

+jωµ

∫
Sm

dr fm(r) ·
∫
Sn

dr′fn(r
′)G (r, r′) .

(2.20)

In order to exploit divergence conforming nature of the RWG vector, the product rule

of the vector identity can be applied. Since there is no source at the boundaries, the

product rule can be expressed as in (2.21).∫
S

A · ∇ϕds =

∫
S

{∇ · (ϕA)− ϕ∇ ·A} ds = −
∫
S

ϕ∇ ·Ads (2.21)

Applying this rule on the first term of (2.20), the entries of the impedance matrix can

be expressed as

Zmn =
1

jωϵ

∫
Sm

dr [∇ · fm(r)]
∫
Sn

dr′∇′ · fn(r′)G (r, r′)

+jωµ

∫
Sm

dr fm(r) ·
∫
Sn

dr′fn(r
′)G (r, r′) .

(2.22)

By expanding RWG functions in (2.22), it becomes

Zmn =
2∑

p=1

2∑
q=1

lmlnζmpζnq

{
1

jωϵ

1

Amp

∫
Smp

dr
1

Anq

∫
Snq

dr′G (r, r′)

+
jωµ

4

1

Amp

∫
Smp

dr (r− rmp) ·
1

Anq

∫
Snq

dr′(r′ − rnq)G (r, r′)

} (2.23)

where ζj1 = 1 and ζj2 = −1 as p = 1 and q = 1 corresponds to the first (positive)

triangle of the test and basis functions of jth RWG, respectively. Similarly, p = 2 and

q = 2 corresponds to the second (negative) triangle of the test and basis functions,

respectively. The integrals over the observation surface, which is defined with un-

primed coordinates, can be easily handled by testing only at the center of the triangle

rcmp, thus

Zmn =
2∑

p=1

2∑
q=1

lmlnζmpζnq

{
1

jωϵ

1

Anq

∫
Snq

dr′G(rcmp, r
′)

+
jωµ

4
(rcmp − rmp) ·

1

Anq

∫
Snq

dr′(r′ − rnq)G(rcmp, r
′)

}
.

(2.24)
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In order to extract the singularity and to be able to solve it analytically, the vector

subtractions in the second term of (2.24) can also be defined in terms of their projec-

tions on the surface. If n̂ is the unit normal vector defined on the triangle surface, the

projection of r onto the surface of the triangle can be defined as ρ = r − n̂ (n̂ · r).
Using vector projections, (2.24) can also be defined as

Zmn =
2∑

p=1

2∑
q=1

lmlnζmpζnq

{
jωµ

4
(ρc

mp − ρmp) ·
1

Anq

∫
Snq

dr′(ρ′ − ρc
mp)G(rcmp, r

′)

+

[
1

jωϵ
+

jωµ

4
(ρc

mp − ρmp) · (ρc
mp − ρnq)

]
1

Anq

∫
Snq

dr′G(rcmp, r
′)

}
.

(2.25)

2.2.2 Numerical Evaluation of the Non-singular Integrals

The solution of the integral equations is challenging due to the singular nature of

the Green’s function. The free-space Green’s function, as expressed in (2.8), goes to

infinity when the source and the observation points are in the close vicinity of each

other, i.e., R = |r− r′| ≈ 0. Therefore a special treatment is needed to deal with the

singular behavior of the Green’s function. In order to circumvent this pitfall, (2.8) is

expressed as the sum of non-singular and singular terms, hence

G (r, r′) = Gns (r, r′) +Gs (r, r′) =
e−jkR − 1

4πR
+

1

4πR
. (2.26)

Substituting the non-singular term, Gns (r, r′), into (2.25), integrals can be computed

numerically using Gaussian quadrature method [27]. In order to apply Gaussian

quadrature over the triangular area, coordinates of the three vertices of the triangle

are converted into simplex coordinates of the natural triangle, as depicted in Fig. 2.3.

A mapping transformation between the node coordinates of the triangle in Cartesian

coordinate system, r1, r2, and r3, and the simplex coordinates of the natural coordi-

nate system, sx, sy, and sz, can be formed when simplex coordinates satisfy

sx,p + sy,p + sz,p = 1 (2.27)

where p is index of the sample point. Using such transformation, the integral over a

triangle can be approximated in simplex coordinates as

1

A

∫
S

x(r)dr ≈
T∑
t=1

wtx(r
s
t) (2.28)
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𝑠𝑠𝑥𝑥

𝑠𝑠𝑦𝑦

(1,0,0)

(0,0,1)(0,1,0) ..

.

𝑠𝑠𝑧𝑧

Figure 2.3: Natural triangle in simplex coordinates.

Table 2.1: Simplex coordinates and weights for 3-point Gaussian quadrature.

t wt sx,t sy,t sz,t

1 1/3 2/3 1/6 1/6

2 1/3 1/6 2/3 1/6

3 1/3 1/6 1/6 2/3

where

rst = sx,tr1 + sy,tr2 + sz,tr3 (2.29)

is the location of the tth sample point in simplex coordinates. T is the number of

sample points used in Gaussian quadrature, and wt is the weight that corresponds to

each quadrature point. For 3-point Gaussian quadrature, i.e., T = 3, natural simplex

coordinates and corresponding weights for sample points are given in Table 2.1. The

first term in (2.26) that refers to the non-singular part of the Green’s function,

Gns =
e−jkR − 1

4πR
(2.30)

can be handled with the numerical integration. When the source and observation

points are very close to each other, it can be simplified using L’Hôpital’s rule as given

in (2.31).

lim
R→0

Gns = lim
R→0

e−jkR − 1

4πR
=

−jk

4π
(2.31)
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Therefore the integral equations in (2.25) for the non-singular part of the free space

Green’s function can be evaluated as shown in (2.32) and (2.33),

1

Anq

∫
Snq

dr′Gns(rcmp, r
′) =


T∑
t=1

wt
e−jk|rcmp−r′st | − 1

4π|rcmp − r′st |
, R ≫ 0

T∑
t=1

wt
−jk

4π
, R ≈ 0

(2.32)

1

Anq

∫
Snq

dr′(r′ − rcmp)G
ns(rcmp, r

′)

=


T∑
t=1

wt
e−jk|rcmp−r′st | − 1

4π|rcmp − r′st |
(r′st − rcmp), R ≫ 0

T∑
t=1

wt
−jk

4π
(r′st − rcmp), R ≈ 0

(2.33)

where

r′st = sx,tr
′
1 − sy,tr

′
2 − sz,tr

′
3. (2.34)

2.2.3 Analytical Evaluation of the Singular Part of the Green’s Function

𝑑𝑑

𝑅𝑅
𝑅𝑅−

𝑅𝑅+

𝑅𝑅0

𝑃𝑃0

�𝑷𝑷𝟎𝟎

�̂�𝒍

𝑙𝑙+

𝑙𝑙−

.
Observation 
Point 𝒓𝒓

𝑆𝑆

Source
Point 𝒓𝒓𝒓

.

Figure 2.4: Illustration of geometric quantities in the analytical solution of singular

integrals.
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The computation of the singular part of Green’s function can be performed using the

method given in [28]. In this method, the observation point is projected onto S, as

shown in Fig. 2.4. The observation point, r, and the source point, r′, that are projected

on S can be defined as ρ and ρ′, respectively. Therefore if vertices of a triangle edge

are defined in S as r− and r+, the projection of these points can be defined as ρ− and

ρ+, and thus,

ρ± = r± − n̂
(
n̂ · r±

)
. (2.35)

As following the notation in [29] and based on Fig. 2.4, the necessary parameters can

be calculated as given in (2.36).

ρ± = r± − n̂
(
n̂ · r±

)
(2.36a)

l̂ =
ρ+ − ρ−

|ρ+ − ρ−|
(2.36b)

û = l̂× n̂ (2.36c)

l± =
(
ρ± − ρ

)
· l̂ (2.36d)

P 0 =
∣∣(ρ± − ρ

)
· û
∣∣ (2.36e)

P± =
∣∣(ρ± − ρ

)∣∣ = [(P 0)2 + (l±)2
]1/2 (2.36f)

P̂0 =
(ρ± − ρ)− l±l̂

P 0
(2.36g)

d = n̂ ·
(
r− r±

)
(2.36h)

R0 =
[
(P 0)2 + d2

]1/2 (2.36i)

R± =
[
(P±)2 + d2

]1/2 (2.36j)

In order to evaluate the integral in (2.25) for the singular part of the Green’s function,

ρ = ρcp can be used in (2.36) since the testing is performed at the center of the triangle.

Therefore the singular integrals of the integral equation can be evaluated as shown in

(2.37) and (2.38).∫
Snq

ρ′ − ρc
p

R
dr′ =

1

2

3∑
i=1

ûi

[(
R0

i

)2
log

R+
i + l+i

R−
i + l−i

+ l+i R
+
i − l−i R

−
i

]
(2.37)

∫
Snq

1

R
dr′ =

3∑
i=1

P̂0
i · ûi

[
P 0
i log

R+
i + l+i

R−
i + l−i

−

|d| tan−1

(
P 0
i l

+
i

(R0
i )

2
+ |d|R+

i

− P 0
i l

−
i

(R0
i )

2
+ |d|R−

i

)] (2.38)
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2.2.4 Triangular Discretization Aspects

Domain discretization is an important aspect of numerical computations regarding

the solution accuracy and computational cost. Using larger triangular subdomains

would reduce the number of subsectional basis functions, hence smaller matrices and

fast solutions can be achieved. However the size of the triangles must be electrically

small in order to achieve accurate results. Although there is no exact rule for deter-

mining the correct dimension for discretization, it is common to choose the triangle

size between λ/10 and λ/20 in order to guarantee the accuracy of the solution. The

geometry of the surface and the excitation also affect the mesh size and the mesh

density. Meshes smaller than λ/20 can also be defined if there are fine details on

the solution surface. Especially in radiation problems in which the feeding must be

defined on the element surface, discretization must be done carefully around the feed

location to achieve good accuracy.

(a)

(b)

Figure 2.5: Mesh types. (a) Structured mesh. (b) Unstructured mesh.

In this work, Siemens NX 10, a computer aided engineering software, is utilized in

order to construct triangular subdomains. The discretization can be performed with

either structured or unstructured meshes. To create a structured mesh, the software

divides the surface of interest repeatedly into smaller surfaces to create subdomains.

Unlike this type of subdivision, an unstructured mesh can also be formed by the
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paving technique as given in [30]. As an illustration, a rectangular plate is discretized

by both structured and unstructured mesh as depicted in Fig. 2.5. Using the soft-

ware, the node coordinates of each triangle are obtained in the first step, and then

RWG functions that correspond to each pair of triangles are formed. Finally RWG

functions are arranged according to their index numbers. Hence each RWG vector

function is defined in terms of its index, as well as the surface area, vector direction

and the edge length common for the corresponding pair of triangles. For instance in

Fig. 2.6, 51 RWG elements are constructed using 40 triangles over an unstructured

triangular mesh.
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Figure 2.6: Definition of triangles (red) and RWGs (blue)

2.3 The Characteristic Mode Analysis

The impedance matrix obtained by the MoM solution can be utilized directly in the

analysis of characteristic modes. As described in [8, 9], the impedance matrix can be

presented as

Z = R+ jX (2.39)

where R and X are the real and imaginary parts of the impedance matrix, respec-

tively. Both R and X are real Hermitian matrices. Theoretically R is also a positive

semi-definite matrix. The generalized eigenvalue equation for the characteristic mode

decomposition is defined as

XJn = λnRJn (2.40)
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where λn are the eigenvalues and Jn are the eigenvectors. Eigenvalues are real, where

the corresponding eigenvectors are also real and orthogonal to each other. MATLAB

routine eig is employed in the solution of the eigenvalue equation. The solution is

normalized as

< J∗
n,RJn >= 1 (2.41)

which is the criterion for the unit radiation power. Therefore orthogonality properties

of the characteristic modes are defined as

< J∗
m,RJn > = δmn (2.42a)

< J∗
m,XJn > = λnδmn (2.42b)

< J∗
m,ZJn > = (1 + jλn)δmn (2.42c)

where δmn is Kronecker delta function given by

δmn =

1, m = n

0, m ̸= n.
(2.43)

Since eigenvectors are real, conjugate operators in (2.41) and (2.42) can be neglected.

The governing equation in (2.40) is not depended on the excitation, so are the charac-

teristic modes. Thus characteristic modes solely depend on the shape of the scatterer

and its physical dimensions in terms of the wavelength.

Since eigenvectors are interpreted as entire domain basis vectors of the current density

over the conducting surface, they can be called as eigencurrents. Each eigencurrent

radiates power orthogonal to one another. Therefore the induced surface current on

the conducting surface can be expressed as weighted sum of eigencurents as

J =
∑
n

anJn. (2.44)

Note that since the induced current on the conducting surface radiates and produces

the fields, the total far field can also be expressed as weighted sum of modal fields as

shown in (2.45).

E =
∑
n

anEn (2.45a)

H =
∑
n

anHn (2.45b)
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By substituting (2.44) into electric field integral equation in (2.10) yields

n̂×

(
L

{∑
n

anJn

}
− Ei(r)

)
= 0. (2.46)

The numerical solution of (2.46) can be formulated by utilizing eigencurrents as entire

domain basis functions in the context of the Method of Moments. Therefore the inner

product equation in (2.15) can be defined as

N∑
n=1

an < Jm,ZJn >=< Jm,Ei > (2.47)

where m = 1, 2, ...,M . The substitution of (2.42c) into (2.47) leads

N∑
n=1

an(1 + jλn)δmn =< Jm,Ei > . (2.48)

Because only the term m = n exists on the left hand side of (2.48) due to the Kro-

necker delta function, (2.48) becomes

an(1 + jλn) =< Jn,E
i > (2.49)

where n = 1, 2, ..., N . The right hand side of (2.49) is known as the modal excitation

coefficient, Vn, hence can be presented as

Vn =< Jn,E
i(r) >=

∫
n

Jn · Eids. (2.50)

The modal excitation coefficient indicates the interaction between the mode and the

excitation that applied over the conducting body. The scatterer can be illuminated by

a plane wave, in which case the incidence angle, polarization, magnitude and phase of

the incident wave influence the modal excitation coefficients. In radiation problems,

the type of the feed and its location on the surface also affect the value of the excitation

coefficient. In fact the induced surface current also depends on the eigenvalues of the

generalized eigenvalue equation. As shown in (2.44), modal weighting coefficients,

an, are defined such that the weighted sum of the eigencurrents yields the induced

current on the conducting surface. From (2.49), the modal weighting coefficients, an,

are expressed as

an =
Vn

(1 + jλn)
. (2.51)
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The absolute value of the term that relates modal excitation coefficient to modal

weighting coefficient is known as the modal significance (MS),

MSn =
1

|1 + jλn|
. (2.52)

Modal significance is independent of the excitation, hence expresses the intrinsic na-

ture of the characteristic modes. Since the values of the eigenvalue range from −∞
to ∞, modal significance values provide a better representation of the eigenvalues as

they range from 0 to 1. There is also another way of representing eigenvalues in terms

of characteristic angles, ϑn,

ϑn = 180◦ − tan−1(λn) (2.53)

which determines the phase difference between the eigencurrent Jn and the tangential

component of modal field En on the conducting surface.

The physical interpretation of the characteristic modes can be done by sorting eigen-

values. In the theory of the characteristic mode, the stored electromagnetic energy

of each mode is related to the magnitude of the eigenvalues. This phenomena can be

understood by expressing modal fields within Poynting’s theorem [31]. Since the to-

tal power must be conserved, the supplied complex power in radiation and scattering

problems becomes equal to the sum of the total power that exits from the system, the

complex stored power and dissipated real power. By neglecting ohmic power loss by

assuming the surface PEC, and omitting magnetic current sources in the general for-

mulation because the formulation is defined on the conducting surface, the Poynting’s

equation for the impressed current density, J, can be expressed as

−
∫
V

E · J∗dV =

∮
S

(E×H∗) dS + jω

∫
V

(
µ |H|2 − ϵ |E|2

)
dV (2.54)

where the term on the left hand side represents the supplied power, the first term on

the right hand side is the total exiting power and the second terms corresponds to the

stored magnetic energy and electric energy. The expression of the supplied power

as the function of the induced current can also be expressed in terms of Z matrix

notation, thus

< Z · J,J∗ >=

∮
S

(E×H∗) dS + jω

∫
V

(
µ |H|2 − ϵ |E|2

)
dV. (2.55)
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Since (2.55) can be expressed in terms of characteristic modes, incorporating modal

fields and eigencurrents into the solution and exploiting (2.42c) yields

(1 + jλn)δmn =

∮
S

(Em ×H∗
n) dS + jω

∫
V

(µHm ·H∗
n − ϵEm · E∗

n) dV. (2.56)

One can interchange the indices m and n of the equation in (2.56) and then take

the complex conjugate of both sides. Subtracting the resulting equation from (2.56)

would yield

ω

∫
V

(µHm ·H∗
n − ϵEm · E∗

n) dV = λnδmn (2.57)

which shows the relation between eigenvalues and the energy stored by the charac-

teristic modes. If λn = 0, the stored electric and magnetic field energy cancels each

other which means that the corresponding mode is at resonance. Thus as the eigen-

value is smaller, the mode radiates more efficiently. λn > 0 means that the magnetic

energy is being stored more than the electric energy. Such modes can be called as

inductive modes. Similarly, modes of λn < 0 are capacitive modes since the electric

energy is being stored more than the magnetic energy. This phenomenon can also be

interpreted using the values of the characteristic angle. As can be extrapolated from

(2.53), the characteristic mode is at resonance when ϑn = 180◦, an inductive mode

when 90◦ < ϑn < 180◦, and a capacitive mode when 180◦ < ϑn < 270◦. Moreover

modal significance also indicates if a characteristic mode is at resonance. The associ-

ated mode is resonant when MSn = 1. After the eigenvalue equation is solved at any

frequency, the modes are sorted by their closeness to the resonance. Thus the mode

having the modal significance value closest to 1 is regarded as the most significant

mode, or the first mode. Therefore modes are indexed as the first mode, second mode,

third mode, etc., according to their MS value being close to 1. Since MSn ∈ [0, 1], a

3-dB bandwidth for characteristic modes can also be defined. The modal bandwidth

can be expressed for the range of the frequency to satisfy MSn > 0.707.

2.3.1 The Mode Tracking

MoM solution and subsequent characteristic mode analysis should be repeated for

many frequency samples to observe the wideband properties of the characteristic

modes. However when characteristic modes are calculated over a frequency band,

25



the mode indices may not follow the same physical mode as the frequency increases.

The reason is that as the frequency changes, the eigenvalue of the modes will also

change, hence approaching or moving away from the resonance. If the frequency-

of-interest is closest to the resonant frequency of the first mode, such mode can be

regarded as the first mode. However such mode may not be the first mode at a differ-

ent frequency where the resonance frequency of another mode is closest to that fre-

quency. Therefore, to avoid the confusion of interpreting characteristic modes over a

frequency band, modes must be tracked according to a reference frequency.

In this study, a simple mode tracking algorithm is implemented to ensure that charac-

teristic modes follow the same current and radiation pattern at different frequencies. It

is basically performed by exploiting the orthogonality properties of the characteristic

modes and correlating eigenvectors at adjacent frequencies. This algorithm consists

of three stages [32]. In the first stage, all eigenvectors are normalized to meet the

orthogonality criteria. Then the correlation coefficient matrix is calculated between

two adjacent frequency samples. In the last step, the eigenvectors are being matched

by gradually reducing the correlation matrix. Further details can be found in [32].

In order to demonstrate the mode tracking algorithm, the rectangular PEC plate of

10 cm × 4 cm is solved from 0.5 to 5 GHz. At first, modal significance values for

the first 6 modes are calculated across the frequency band without implementing the

mode tracking algorithm. As can be seen from Fig. 2.7a, there are abrupt changes on

the curves which indicate that depicted modes do not follow the same physical pattern

throughout the band. Modal significance values after applying the mode tracking

algorithm is given in Fig. 2.7b. As can be seen from the figure, utilization of the

algorithm makes the curves vary smoothly.

The accuracy of the MATLAB code has been validated by comparisons with commer-

cial EM simulation tool FEKO [33] throughout the study. In Fig. 2.8, the magnitude

of the eigenvalues for the previous example is compared with FEKO’s results. As

can be seen from the figure, the results obtained from the MoM code follows FEKO’s

results very closely. Moreover in 2018, a cross-validation study is performed with re-

search groups from different institutions. As initiated by The Special Interest Group

on Theory of Characteristic Modes, (SIG TCM) [34], a benchmarking work is con-
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ducted for the CM solution of three different geometries [35]. The first problem is a

rectangular PEC plate of 10 cm × 4 cm, as already discussed above. The second and

third geometries are a PEC circular disc with 10 cm radius and a PEC sphere with 20

cm radius, respectively. In [35], the solutions produced from this study are labeled

as "METU" on the legend charts of the graphics. Figures of [35] indicate that the

solutions produced by the in-house code are in accordance with the solutions of other

participants.
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Figure 2.7: Characteristic modes of the rectangular PEC plate of 10 cm × 4 cm. (a)

MS of the first 6 modes without mode tracking. (b) MS of the first 6 modes with

mode tracking.
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Figure 2.8: Absolute values of the eigenvalues for 10 cm × 4 cm rectangular PEC

plate, compared with FEKO’s results.
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CHAPTER 3

UNIT CELL SOLUTION

The solution of large array structures requires special attention. Since array elements

are either identical or very similar to each other and lined up with a repeating pattern,

fast and effective solution methods can be exploited. Although the far field in the array

antennas can be estimated with some accuracy by simply multiplying the array factor

with the element factor, it is often necessary to take into account mutual interactions

between array elements.

In this work, method of moment solution of the infinitely large periodic structures

is implemented using the periodic Green’s function (PGF). The Method of Moments

provides simple and effective solution for arbitrary elements in a 2D periodic unit

cell. Since purely spatial periodic Green’s function, as well as purely spectral periodic

Green’s function converges very slowly, Ewald’s transformation [7] is implemented.

In recent years, characteristic mode decomposition of the reflectarray element phase

is mentioned [36]. However apart from this introductory conference paper, character-

istic mode analysis has not been considered for the unit cell problem. Nevertheless

this thesis work yields a comprehensive analysis of the unit cell solution using char-

acteristic modes.

In this chapter, the solution of the periodic Green’s function for the metal-only ele-

ment is demonstrated. The modal analysis of the unit cell element is performed for

metal-only FSS and reflectarray elements. It is discussed that advantages of the char-

acteristic mode theory can be exploited in the design and analysis of the large periodic

structures.
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3.1 Periodic Green’s Function

3.1.1 Spatial Form of the Periodic Green’s Function

𝑎𝑎

𝑏𝑏

𝒔𝒔𝒋𝒋

𝒔𝒔𝒋𝒋
(0,0)

(𝑚𝑚𝒔𝒔𝒋𝒋,𝑛𝑛𝒔𝒔𝒋𝒋)
.

.

Figure 3.1: Unit lattice cell.

The spatial form of the periodic Green’s function (PGF) can be expressed as

Gp (r, r
′) =

1

4π

∞∑
m=−∞

∞∑
n=−∞

e−jkt00·ρmn
e−jkRmn

Rmn

(3.1)

where kt00 is the transverse component of the incident wave vector that corresponds

to the incident wave of (θi, ϕi) as

kt00 = x̂k0sinθi cosϕi + ŷk0 sin θi sinϕi. (3.2)

The translation vector, ρmn, can be expressed as

ρmn = ms1 + ns2 (3.3)

where s1 and s2 are vectors defining the unit lattice cell, as illustrated in Fig.3.1.

Hence the distance between source and observation points become

Rmn = |R− ρmn| = |r− r′ − ρmn| . (3.4)

As long as the rectangular unit lattice cell is concerned, it can be aligned with the

x− y coordinate system, thus

s1 = ax̂ (3.5a)

s2 = bŷ (3.5b)

where a and b are unit cell dimensions in x and y directions, respectively.
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3.1.2 Floquet Analysis in Spectral Domain

The periodic Green’s function in spatial domain can also be defined in the spectral

domain. In this case, the surface current in the unit cell can be represented as the

sum of Floquet modes [37, 38]. Floquet modes can be regarded as plane waves that

depend on the direction of the propagation, the frequency and the shape of the unit cell

element. The transverse wave vector for the Floquet mode of (m,n) can be expressed

as

ktmn = kxmx̂+ kynŷ (3.6)

where

kxm = k sin θi cosϕi + 2πm/a (3.7a)

kyn = k sin θi sinϕi + 2πn/b (3.7b)

The z component of the wave number for the corresponding mode becomes

kzmn =
√

k2 − ktmn
2 (3.8)

where k2
tmn = |ktmn · ktmn|. Note that kzmn is real when the wavenumber k > ktmn.

This is the case when the Floquet mode of (m,n) is a propagating mode. Otherwise,

the mode is an evanescent mode that does not propagate but decays in the z direction.

By taking squares of the terms in (3.7) and adding them together, an inequality can

be obtained for the propagating mode as [39](
kxm − 2mπ

a

)2

+

(
kyn −

2nπ

b

)2

= k2 sin2 θi ≤ k2. (3.9)

This inequality defines infinitely many circular regions over rectangular unit cell grids

as depicted in Fig. 3.2. Each circle, that has a center at (2mπ/a, 2nπ/a) and radius

k, represents a Floquet mode of (m,n). The Floquet modes can be defined as vector

modal functions of either TEz
mn or TMz

mn. The dominant Floquet mode is illustrated

in Fig.3.2 by the shaded area where m = n = 0. The shaded area is called as the

visible scan region [39]. A Floquet mode propagates along the z direction when the

corresponding points reside inside the visible scan region. As can be seen from Fig.

3.2, mode circles would not intersect if π/a > k and π/b > k regardless of the angle
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Figure 3.2: Floquet modes in the spectral domain.

of the incidence. Otherwise, grating beams are observed in the visible scan region.

Hence it can be inferred that higher order modes do not cause grating beams when

a, b < λ/2. For the special case of the normal incidence, i.e. θi = 0, a, b < λ must

hold, however grating beams would still occur at oblique incidences. For an oblique

incidence, it must satisfy

k sin θi <
2π

a
− k (3.10a)

k sin θi <
2π

b
− k (3.10b)

so that higher order circles do not intersect the circular area inside the shaded region

with the radius of |k sin θi|. Hence a general condition for grating beams not occurring

in the visible scan region can be expressed by modifying (3.10) as

a, b <
λ

(1 + sin θi)
. (3.11)

Using (3.7) and (3.8), the periodic Green’s function can be expressed in terms of

Floquet modal functions in the spectral domain as [40]

Gp (r, r
′) =

∞∑
m=−∞

∞∑
n=−∞

e−jktmn·(ρ−ρ′)−jkzmn|z−z′|

j2abkzmn

. (3.12)
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Figure 3.3: Dipole moment vector on an RWG element.

Spectral form of the periodic Green’s function can be used in order to calculate the

reflected field. Neglecting higher order components of (2.4) in the far field region, the

reflected electric field can be expressed as

Er = −jωA. (3.13)

After the current density is calculated by the Method of Moments, the distribution of

the surface current over basis functions can be approximated by infinitesimal dipole

elements. This approach is known as the dipole modeling [41]. The value of the

dipole moment of jth RWG becomes

mj = αjlj(r
c
2j − rc1j) (3.14)

where αj is the unknown coefficient of the jth basis function. As illustrated in Fig.

3.3, rc1j and rc2j are center coordinates of the first (positive) and second (negative)

triangles of the jth RWG, respectively. In this way, the dipole vector distribution can

be calculated on the unit cell element. Using the sum of dipole moments over the unit

cell element, the magnetic vector potential can be written as

A = µ
N∑
j=1

mjGp (r, r
′) . (3.15)

Substituting (3.12) into (3.15), the reflected electric field in (3.13) becomes

Er = −jωµ

N∑
j=1

mj

∞∑
m=−∞

∞∑
n=−∞

e−jktmn·(ρ−ρ′
j)−jkzmn|z−z′j |

j2abkzmn

(3.16)

where (x′
j, y

′
j, z

′
j) can be chosen as the midpoint coordinates of the common edge of

the jth RWG function. Moreover if the center of the unit cell is at the origin of the
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coordinate system, the reflection coefficient of the Floquet mode of (m,n) [38] can

be expressed as

Γ(m,n) = −jωµ

N∑
j=1

mj
ejkxmx′+jkyny′+jkzmn|z′|

j2abkzmn

. (3.17)

3.1.3 Ewald’s Transformation

Although periodic Green’s function is an infinite series, finite number of terms should

be chosen to be able to fill the MoM matrix. Hence a trade off must be made between

the solution accuracy and the computational cost by choosing an optimal truncation

number. In order to cope with huge computational burden, Ewald’s transformation is

incorporated into the solution. Using the Ewald’s transformation, the solution can be

accelerated by expressing periodic Green’s function as a sum of spatial and spectral

series,

Gp (r, r
′) =

∞∑
m=−∞

∞∑
n=−∞

Gspatial
mn (r, r′) +

∞∑
m=−∞

∞∑
n=−∞

Gspectral
mn (r, r′) . (3.18)

The convergence of the Ewald’s method depends on a splitting parameter. Using

either a larger or a smaller splitting parameter would increase the convergence rate

of spatial or spectral series, respectively [42]. An optimum splitting parameter, E, is

chosen as

E = max

{√
π

A
,
k

2H

}
(3.19)

where H is the maximum value of the exponent of the series [42]. In this study,

H = 3 is chosen. For the propagating modes that satisfy k2
zmn > 0, the spectral term,

Gspectral
mn , can be defined as [43]

Gspectral
mn (r, r′) =

e−jktmn·(ρ−ρ′)

2Akzmn

[
e−kzmn(z−z′) + e−(kzmn/(2E))2−((z−z′)E)2

× jIm
{

w
(
jkzmn

2E
+ j(z − z′)E)

)}]
.

(3.20)

For the evanescent modes that satisfy k2
zmn < 0, it becomes [43]

Gspectral
mn (r, r′) =

e−jktmn·(ρ−ρ′)

4Akzmn

[
erfc

(
kzmn

2E
+ (z − z′)E)

)
ekzmn(z−z′)

+erfc
(
kzmn

2E
− (z − z′)E)

)
e−kzmn(z−z′)

]
.

(3.21)
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In these equations, erfc(z) is the complementary error function, and w(z) is called

Faddeeva function, a modified type of the complementary error function such that

erfc(z) = e−z2w(jz). (3.22)

The spatial term for the periodic Green’s function of Ewald’s series, Gspatial
mn , also

becomes [43]

Gspatial
mn (r, r′) =

e−jkt00·ρmn

8πRmn

e−(RmnE)2+(k/(2E))2

×
[

w
(
jRmnE − k

2E

)
+ w

(
jRmnE +

k

2E

)]
.

(3.23)

As can be expected, there is a singularity in the spatial term when m = n = 0 and the

source point is in vicinity of the observation point, i.e., r ≈ r′. The first exponential

term in (3.23) vanishes when there is singularity due to the fact that ρ00 = 0. The

singularity can be extracted by dividing (3.23) into two terms as

Gspatial
mn (r, r′) =

1

8πRmn

{
e−(RmnE)2+(k/(2E))2

[
w
(
jRmnE − k

2E

)

+ w
(
jRmnE +

k

2E

)]
− 2

}
+

1

4πRmn

= G̃mn +
1

4πRmn

.

(3.24)

The second term in (3.24) can be solved analytically as discussed in Chapter 2. The

singularity of the first term in (3.24) can be handled when Rmn → 0 as

lim
Rmn→0

{
G̃mn

}
=

1

4π

{
e(k/(2E))2

[
jkw

(
−k

2E

)
− 2E√

π

]
− jk

}
. (3.25)

The convergence of the Ewald’s transformation of the periodic Green’s function is

compared with the convergence of the spatial domain periodic Green’s function for

the FSS element of Jerusalem cross. Dimensions of the unit cell geometry is obtained

from [44] and shown in Fig. 3.4. In this comparison, the reflection coefficient of the

fundamental mode of Jerusalem cross unit cell is calculated as a function of T , which

is the truncation number of the infinite double summation. Note that since summation

limits from −∞ to +∞ are approximated as from −T to +T , there are (2T + 1)2

terms left in the series. In Fig. 3.5a, the reflection coefficient is calculated at 6 GHz,

under y-polarized normal incidence with spatial domain periodic Green’s function.
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Figure 3.4: Frequency selective surface element of Jerusalem cross with dimensions

d1 = 5.7 mm, d2 = 3.8 mm, d3 = d4 = 1.9 mm, inside square unit cell of a = b =

15.2 mm.
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Figure 3.5: Reflection coefficient of Jerusalem cross unit cell at 6 GHz, as a function

of T (a) Spatial domain periodic Green’s function. (b) Ewald’s transformation of

periodic Green’s function.
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On the other hand in Fig. 3.5b, the solution is performed with Ewald’s transforma-

tion of the periodic Green’s function. The convergence of the reflection coefficient

found with spatial Green’s function seems very slow compared to the solution with

Ewald’s method. Ewald’s transformation prevents a large computational burden since

the double summation already converges at T = 1 which corresponds to sum of only

9 terms. Therefore Ewald’s periodic Green’s function is utilized in the analysis of the

unit cell problem throughout this work.

In order to validate the accuracy of the unit cell analysis, the solution of the FSS

element of Jerusalem cross illuminated by x-polarized normal incidence is compared

with FEKO’s results at the frequency range of 1 to 14 GHz. As seen from Fig. 3.6,

the result from the MoM solution of the periodic unit cell with Ewald’s method is in

agreement with the result obtained from the commercial simulation tool.
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Figure 3.6: Reflection coefficient of Jerusalem cross unit cell element illuminated by

x-polarized normal incidence, compared with FEKO’s results. (a) Magnitude. (b)

Phase.
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Figure 3.7: Triangular mesh connections on the periodic boundary.

3.1.4 Continuity on the Unit Cell Boundary

In the unit cell solution, unless the elements touch the periodic boundary, the element

discretization can be done as discussed in Section 2.2.4. However as the triangular

mesh resides on the periodic boundary, a special treatment is needed to satisfy the

continuity of the surface current on the unit cell boundary.

In order to maintain the continuity, the triangular mesh residing on the boundary is

constructed such that edges of triangles coinciding with the opposite sides of bound-

ary are defined in equal lengths and in mirror symmetry [45]. Therefore additional

basis functions can be defined with triangles on the opposite sides of the unit cell. As

illustrated in Fig. 3.7, an additional RWG element can be defined with 36th triangle

on the left and 16th triangle on the right. In this very specific example, 6 additional

RWG elements must be formed by triangles of opposite sides and utilized along with

the rest of RWG elements that defined inside the unit cell.
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3.2 Characteristic Mode Analysis of the Unit Cell

Since the generalized equation in (2.40) is independent of the excitation, the charac-

teristic mode analysis of finite elements is also free of excitation as discussed in Sec-

tion 2.3. However since the periodic Green’s function is dependent on the excitation

due to the transverse component of the wave vector, the MoM impedance matrix has

also become dependent on the excitation. Therefore the characteristic mode analysis

of the unit cell solution is not only dependent on the element shape and wavelength,

but also the incident wave impinging over the unit cell element.

In the characteristic mode analysis of Jerusalem cross unit cell element for the x-

polarized normal incidence, the eigenvalues, modal significance values and the char-

acteristic angles for the first 2 characteristic modes within the band of 1 to 14 GHz are

depicted in Fig. 3.8. Because 3rd and higher order modes have very large eigenval-

ues and negligibly small modal weighting coefficients for the given excitation, such

higher order modes can be omitted from this analysis.
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Figure 3.8: The first 2 modes of Jerusalem cross unit cell element, illuminated by

x-polarized normal incidence. (a) Eigenvalues. (b) Modal significance values. (c)

Characteristic angles.

As reflection coefficient values in Fig. 3.6 and the first 2 modes in Fig. 3.8 are com-

pared, one can observe that modal significance values of the first 2 modes are exactly

equal to the magnitude of the reflection coefficient. Similarly characteristic angles

of the first 2 modes yield the phase of the reflection coefficient. These preliminary

results indicate that characteristic modes can be exploited in Floquet analysis of peri-

odic unit cell element.

In the solution of Jerusalem cross, a symmetrical element with respect to x and y

coordinates, is utilized within the square unit cell. Besides that, it is also illuminated

by normal incidence, i.e. θi = 0, which is also a symmetrical excitation with respect

to x and y coordinates. For this reason, two characteristic modes have exactly the

same real eigenvalues over the frequency band. Since both modes share the same

eigenvalues, they can be referred as degenerate modes. Modal surface currents of two

degenerate modes under y-polarized normal incidence is given in Fig. 3.9. As can be

inferred from the directions of the current flow, the modes are 90◦ out of phase.

In order to deepen the analysis, same unit cell element given in Fig. 3.4 is solved for

an oblique incidence. In this case, a plane wave of θi = 30◦ is utilized as

Ei(r) = (−x̂ cos θi + ẑ sin θi) e
jkx sin θi+jkz cos θi . (3.26)
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(a) (b)

Figure 3.9: Modal current on Jerusalem cross unit cell element, illuminated by y-

polarized normal incidence. (a) 1st mode. (b) 2nd mode.
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Figure 3.10: Reflection coefficient of Jerusalem cross unit cell element, illuminated

by (3.26) with θi = 30◦. (a) Magnitude. (b) Phase.
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Figure 3.11: The first 2 modes of Jerusalem cross unit cell element, illuminated by

(3.26) with θi = 30◦. (a) Eigenvalues. (b) Modal significance values. (c) Character-

istic angles.

The reflection coefficient for the oblique incidence is given in Fig. 3.10 at the band of

1 to 14 GHz. The solution is also validated for the oblique case by comparing results

with FEKO’s results in the same figure. Since the electric field is along the direction

of propagation due to the definition in (2.26), Floquet mode of TM00 is excited. The

most obvious outcome of the oblique incidence is the abrupt change of the reflection

behavior around 9.7 GHz.

In order to understand this behavior, the characteristic mode analysis is performed.

The modal significance values as well as the characteristic angles for the first 4 modes

are given in Fig. 3.11. Similar to the case of normal incidence, the first 2 modes are

dominant modes almost the entire band. Because of the unsymmetrical nature of

the problem due to the oblique excitation, eigenvalues of these two modes are not

exactly the same but slightly different. The 3rd mode can also be neglected up to
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13 GHz since the contribution to the solution is very small. On the other hand, 4th

mode becomes resonant around 9.7 GHz. Although the bandwidth of the 4th mode

is very narrow, it affects the reflection performance of the FSS element in the case of

oblique incidence, hence explains the abrupt change of the reflection at this frequency.

Moreover, the behavior of the all 4 characteristic modes is completely changed at

13.16 GHz. The reason is the higher order Floquet modes. As discussed in Section

3.1.2, circles that represent higher order modes are intersecting with the inner circle

of the dominant mode having the radius of |k sin θi|, thus the inequalities in (3.10) no

longer hold at frequencies higher than 13.16 GHz. Because higher order modes are

also contributing to the surface current induced on the unit cell element above their

cut-off frequency, reflection behavior of the unit cell changes, so does the behavior of

the characteristic modes in the unit cell.

In the design of large periodic structures such as frequency selective surfaces, meta-

material absorbers and artificial impedance surfaces, the goal is to provide the de-

sired reflection and transmission properties over the desired frequency band. How-

ever since such structures are expected to provide the desired performance not only

at the case of normal incidence but also at oblique incidences up to some degree, it

is important to understand the change of reflection and transmission properties as the

scan angle varies. As demonstrated above with the FSS element of Jerusalem cross,

the change of the incidence angle from 0 to 30◦ excites the 4th characteristic mode.

This example indicates that the performance of the unit cell element illuminated by

incident fields of varying angles can be analyzed with the help of the characteristic

mode analysis. For instance, in order to make the FSS structure of Jerusalem cross

yield the same reflection results for both scan angles of θi = 30◦ and θi = 0, one can

consider suppressing the excitation of the 4th characteristic mode. As the suppression

of the characteristic modes has already been studied for antenna problems by utilizing

inductive loads [46] and metasurfaces [47], such methods can also be extended into

the periodic unit cell problem.
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3.2.1 Modal Analysis of Reflectarray Elements

In this section, the characteristic mode analysis of periodic unit cell elements is in-

vestigated for the design and analysis of reflectarray elements. In the reflectarray

antenna, the goal is to produce a pencil beam towards the desired direction. Thus a

phase distribution must be created on the antenna surface accordingly. To do this,

the geometrical parameters of the elements can be adjusted so that the incident wave

impinging on each element reflects with a specific phase.

Usually the reflectarray elements are chosen to provide a phase range of minimum

360◦. The reflectarray element can consist of either 2-layer as a single layer of el-

ement backed by a ground plane, or multilayer of elements in which each element

acts as a resonant circuit thus a phase range larger than 360◦ can be achieved [48]. In

the following examples, characteristic mode analyses for ground backed metal-only

slot-type elements are given to discuss the modal characteristics of the reflectarray el-

ements. Unlike the FSS examples above, the behavior of the modes are evaluated not

according to the frequency but the tuning parameter that adjusts the phase response of

the element. Hence the mode tracking algorithm discussed in Section 2.3.1 is imple-

mented with respect to the tuning parameter. The work demonstrated in this section

has also been presented in [49] and [50].

𝐿𝐿𝑐𝑐

ℎ

𝐿𝐿

Figure 3.12: Geometry of the square slot reflectarray unit cell element.

The first example of the reflectarray unit cell element is a square slot that is depicted

in Fig. 3.12 [51]. Desired phase distribution with such type of element is obtained

by adjusting the slot dimension. The unit cell problem is solved at 12.5 GHz inside

the square unit cell of Lc = 12 mm, under y-polarized normal incidence. The phase

response of the element is given in Fig. 3.13 as a function of the slot size of L and
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Figure 3.13: Reflection phase of the square-slot unit cell reflectarray element illumi-

nated by normal incidence as a function of the slot dimension.

varying ground heights, h, from 1 mm to 10 mm. The results indicate that when

the slot is very small, the reflection phase is 180◦ regardless of the height, as if the

wave is reflected from an infinite ground plane. As the slot dimension increases, the

reflection phase begins to vary. Although the phase range increases as the height

from the ground plane increases, the total range from L = 1 to 11.5 mm is still

275◦ at h = 10 mm, which is not sufficient for the reflectarray antenna design since

minimum 360◦ of range is required for a proper design. Note that since the metal

element is PEC and no dielectric material is included, neither metallic nor dielectric

losses affect the results. Hence the magnitude of the reflection coefficient becomes

equal to 1. Although there is no substrate between the ground plane and the slot

element, it can be physically realized by printing copper elements on styrofoam-like

materials that have very low relative permittivity.

It can be recalled from the previous section that only the first 2 characteristic modes

can be excited on the Jerusalem cross element in the visible scan region where only

the fundamental Floquet modes are allowed to propagate. However in the solution

of the square-slot reflectarray element, the first 4 characteristic modes can be excited

due to the 2-layer structure.
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(a)

(b)

(c)

(d)

Figure 3.14: Modal currents on the square slot reflectarray element for the case of

h = 5 mm L = 9 mm.. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
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Due to the mirror symmetry of the element with respect to the x and y coordinates,

as well as the normal incidence, the 1st and 2nd modes, and similarly the 3rd and

4th modes yield the same eigenvalues. It means that the first 4 characteristic modes

are obtained as 2 pairs of degenerate modes. To provide a better insight, the modal

currents associated with these modes are depicted in Fig. 3.14 when h = 5 mm and

L = 9 mm. Note that in these depictions, the sizes of the arrows are kept particularly

equal to emphasize the direction of the current flows on both layers.
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Figure 3.15: The first 4 modes of the square-slot unit cell element, illuminated by

normal incidence as a function of the slot dimension. (a) Modal significance values.

(b) Characteristic angles.

In Fig. 3.15a and 3.15b, the modal significance values and the characteristic angles

associated with these 4 modes are plotted, respectively, as a function of the slot di-

mension for different heights. It can be deduced from the results that the height of the

elements from ground plane as well as the size of the square slot dramatically affect
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the eigenvalues of the solution. When the height is 4 mm, the modal significance

values of the first two modes are closer to 1, and the next two modes are close to 0.

Moreover, characteristic angles are varying very slowly similar to the phase of the

reflected field. However as the height increases from 4 mm to 10 mm, eigenvalues

change more rapidly as a function of L. At the case of h = 10 mm, the modal signifi-

cance values intersect at some point around L = 8.5 mm. Therefore we can conclude

that as the reflection phase varies more rapidly as a function of L, so do the eigenval-

ues of the excited modes. Unlike the single layer Jerusalem Cross FSS element, the

values of modal significance and characteristic angle do not yield the magnitude and

phase of the reflected field, respectively. However as can be observed from Fig. 3.15,

the modal significance values for the two-layer reflectarray elements satisfy√
MS2

1,2 + MS2
3,4 = 1 (3.27a)

|ϑ1,2 − ϑ3,4| = 90◦. (3.27b)

These equations indicate that 1st and 3rd modes as well as 2nd and 4th modes can be

considered as the components of the dominant Floquet modes. Although the solution

is performed under the y-polarized illumination, the square-slot element would yield

the same reflection phase for either x-polarized or y-polarized incidence due to the

symmetry with respect to the x and y coordinates and resulting 2 pairs of degenerate

modes.

In order to observe 4 distinct characteristic modes of different eigenvalues as well as

different reflection responses according to the polarization, one can disturb the sym-

metry of the geometry by simply implementing a rectangle-slot element instead of

the square-slot. In the next example, square-slot element illuminated by a y-polarized

normal incidence is compared with a rectangle-slot element which is illuminated by

the x and y polarized normal incidences to observe the effect of the polarization over

the reflected field as well. Again the solution is performed inside the square unit cell

of Lc = 12 mm at 12.5 GHz. The rectangle slot is L + 2 mm along the x coordinate

and L mm along the y coordinate. Both solutions for the rectangle and square slots

are performed when the height of the elements from the ground plane, h, is 10 mm.

The results are presented in Fig. 3.16. It can be seen from the figure that the reflection

phase of the rectangle slot becomes equal to the square slot element as long as the slot

edge lengths are equal in the direction perpendicular to the polarization.
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Figure 3.16: Comparison of the reflection phase for the rectangular-slot and square-

slot elements, illuminated by normal incidence, as the function of the slot size.
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Figure 3.17: Comparison of the characteristic modes for the rectangular-slot and

square-slot elements illuminated by normal incidence as a function of the slot size.

(a) Modal significance values. (b) Characteristic angles.
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In Fig. 3.17, the modal significance values as well as the characteristic angles for the

first 4 distinct eigenvalues of the rectangle-slot element are compared with degenerate

modes of the square-slot element. It can be seen that the 1st and the 4th mode of the

rectangle-slot element is aligned with first 2 and the next 2 degenerate modes of the

L × L square-slot element. Similarly the 2nd and the 3rd mode of the rectangle-slot

element is aligned with first 2 and the next 2 degenerate modes of (L+ 2)× (L+ 2)

square-slot element. This analysis indicates that the difference between the 1st and

the 2nd mode as well as the difference between the 3rd and the 4th mode comes from

the dimensions of the slot edges observed along the x and y directions.
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Figure 3.18: Modal weighting coefficients of the rectangle-slot unit cell element as

a function of the slot size. (a) Illuminated by x-polarized normal incidence. (b)

Illuminated by y-polarized normal incidence.

Depending on the polarization of the incident electric field, only one of the first 2

modes and one of the next 2 modes model the surface current on the unit cell elements.

More specifically, as the rectangle-slot element of (L + 2) × L is illuminated by the
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x-polarized normal incidence, the modes of the rectangle slot elements are aligned

with the square-slot of L×L. Hence in the case of x-polarization, the 1st and the 4th

CMs of the rectangle slot element are excited. Similarly the 2nd and the 3rd modes

are excited when the incidence is y-polarized. This can also be observed from the

modal weighting coefficients of the corresponding modes, which are also given in

Fig. 3.18.

In the last example of the reflectarray unit cell element, the square-slot element is

modified by adding a square ring element in the middle of the slot to obtain the

double-slot unit cell element, as depicted in Fig. 3.19. Similar to the previous ex-

ample, the unit cell is a square of Lc = 12 mm, and solved under normal incidence at

12.5 GHz. The thickness of the ring is chosen as w = 0.5 mm. The phase shifting pa-

rameter is the edge length of the square ring element, L. The purpose of this element

is to enhance the phase range, which makes it more convenient in a reflectrarray de-

sign. It is also possible to incorporate an additional square patch at the middle of the

ring, hence not only the edge length of the ring element, but also the size of the patch,

as well as the thickness of the ring element can become the phase-shifting parameter.

In fact, such element is a well known reflectarray element, known as Phoenix ele-

ment [51, 52]. However using only an additional ring element without the additional

patch is also sufficient to yield the desired phase range in this analysis.

ℎ

𝐿𝑐

𝐿

𝑤

𝑤

Figure 3.19: Geometry of the double-slot unit cell element.

In Fig. 3.20, the reflection phase of the double slot element is given for different

heights from the ground plane. Unlike the single slot-type element, the phase range is

360◦ regardless of the element height from the ground plane. However as the height

increases, the phase curves are getting flatter. Since reflectarray element design with
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Figure 3.20: Reflection phase of the double-slot unit cell element, illuminated by

normal incidence as a function of the edge length.

steep phase slopes would reduce the design accuracy and makes the structure more

dependent on manufacturing tolerances, larger h seems more advantageous to make

the phase response curves flatter. Similar behavior can also be observed in eigenval-

ues as a function of the phase shifting parameter. As shown in Fig. 3.21, there are

4 excited modes in which the first two and the next two modes are degenerate char-

acteristic modes that satisfy (3.27). In this analysis, as the height from the ground

plane increases, the variation of the modal significance values between 0 and 1 be-

comes smoother. Therefore similar behavior between the variation of the character-
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Figure 3.21: Modal significance values of the double-slot unit cell element, illumi-

nated by normal incidence, as a function of the edge length.
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istic modes and variation of the phase response depending on the tune parameter can

also be observed in the double-slot element.

As a conclusion, both single and double slot-type elements indicate that the charac-

teristic mode analysis of the unit cell can be performed to understand the behavior

of the reflectarray unit cell elements. Since the phase range of 360◦ along with grad-

ual phase variation is desired for a good design of reflectarray, one should excite the

characteristic modes of the unit cell element such that the eigenvalues vary very grad-

ually over a wide range of the tuning parameter. As a design methodology, it may

also be considered to suppress modes with eigenvalues that do not comply with this

behavior.
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CHAPTER 4

REACTIVE LOADING ON UNIT CELL ELEMENTS

Reactive loading has been utilized in the antenna design for many years. Using re-

active elements, scattered and radiating field from the electric conductor can be con-

trolled [53]. In the antenna design, reactive load elements are used for various reasons

including the reduction of back-scattering [54–56], adjustment of the bandwidth [57],

and electronic beam-steering [58, 59]. They can be applied with lumped elements as

well as stub elements, or by opening slot elements on the conductive surfaces. Es-

pecially in the design of microstrip antennas, it is possible to achieve dual-band ra-

diation using coaxial stubs [60] and slots [61], or to adjust the input impedance by

adding short-circuit loads [62].

The reactive loading using the characteristic modes is introduced by Roger F. Har-

rington [10]. In [10], a load matrix has been incorporated into the generalized eigen-

value equation. By calculating the load distribution that makes the eigenvalue zero,

it has become possible to turn a reactive mode into a resonant mode at the desired

frequency. Hence, the bandwidth and the radiation of an antenna can be tuned by

exciting such mode with the help of the reactive load matrix. Nevertheless, reactive

loads calculated by the load matrix must be applied over all basis functions in the so-

lution domain, which is usually not realizable. Although implementing lumped loads

on wire antennas can be considered only if few basis functions are defined in the so-

lution domain, it is still not preferable due its difficulty in the implementation. An

example of continuous loading for a thin wire dipole can be found in [63]. Although

tuned stubs and slots can also be considered instead of lumped elements, it would also

be very difficult, if not impossible, to apply specific reactance values this way. In or-

der to circumvent this pitfall, such problem is usually turned into an N-port scattering
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problem [11, 64]. Then it is possible to express the generalized eigenvalue equation

in terms of an N-port network in which few lumped elements can be realized on net-

work ports [12,13,65]. In [14], the network characteristic modes (NCM) is utilized in

order to construct desired antenna current using a finite number of impedance loads.

In [66], the design of loaded pattern reconfigurable antenna is demonstrated using the

characteristic mode analysis. In [67], a method is developed to modify eigenvalue be-

haviour of the modes using loads on the dipole element. It is usually difficult to find

optimal reactive loads that yields desired electrical characteristics. To address this

problem, the NCM is combined with differential evolution algorithm [68]. Although

adding desired reactance values into the problem by modifying the antenna geometry

is quite challenging, a design procedure is also developed to optimize slotted patch

elements [69].

Besides the antenna design, reactive loads can also become useful in the design of

frequency selective surfaces (FSS). In the early applications of frequency selective

surfaces, capacitive and inductive responses were obtained by constructing grids and

meshes in electrically small periodicity. However with the development of numerical

solution methods over time, periodic structures that consist of elements in various

geometries such as ring, linear dipole, cross and Jerusalem cross [70–73] are studied.

Especially the analysis of such elements in terms of equivalent lumped circuit models

has provided good understanding of how such elements behave under electromag-

netic illumination [74]. Further analyses have also paved the way for more compli-

cated elements including concentric rings [75], double square loop patches [76–78]

and complementary arrays [79, 80]. Similarly, capacitive and inductive loading ele-

ments are also utilized on FSS elements to be able to tune reflection and transmission

characteristics as well as provide an active control, or achieve element miniaturiza-

tion [81–86].

A wide variety of optimization algorithm [81] can be implemented to determine not

only the element parameters but also values for the load elements. In fact, commer-

cial EM simulation tools offer many conveniences for implementing optimization al-

gorithms. Apart from that, a systematic design method is given in [87], that yields the

values for reactive elements with parameters of the structure for the desired band of

operation. As an alternative to complex methods that require the use of optimization
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algorithms, a systematic approach has been sought to calculate discrete load values

for ring-type FSS elements as well as their complementary slot-type elements using

the theory of the characteristic modes.

4.1 The Continuous Loading

The generalized eigenvalue equation of (2.40) can be written as

(X+XL)Jn = λnRJn (4.1)

where XL is the reactive load matrix which is chosen to be a diagonal matrix within

Galerkin’s method,

XL =



XL1 0 0 ... ...

0 XL2 0 ... ...

0 0 XL3 ... ...

... ... ...
. . . ...

... ... ... ... XLN


(4.2)

such that each diagonal element defines a reactive load on the corresponding basis

function. As already discussed in Section 2.3, a mode becomes resonant when its

eigenvalue is equal to zero. In this context, the diagonal elements can be defined to

satisfy λn = 0 at any desired frequency. Since setting eigenvalues to zero would make

the equation (4.1) equal to zero, diagonal elements can be calculated as

XLi = −{X · Jn}i
{Jn}i

(4.3)

where { }i defines ith entry of the vector that corresponds to the ith basis function.

In order to demonstrate this method, an FSS element of circular ring is utilized as

an example. The geometry of the element is given in Fig. 4.1 in which 48 RWG

elements along with 48 triangles are defined on its surface. The reflection coefficient

and the modal significance values of the first 2 modes are plotted in Fig. 4.2a and 4.2b,

respectively, for an x-polarized normal incidence. It can be seen that total reflection

occurs at 14.8 GHz. Similar to the Jerusalem cross example, only the first 2 modes are

excited and yield the same eigenvalues due to the symmetry with respect to the x and
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Figure 4.1: FSS element of circular ring with dimensions r1 = 4 mm and r2 = 3.5

mm, inside the square unit cell of a = b = 11 mm.

y directions. Modal significance values of the first 2 modes are exactly equal to the

reflection magnitude throughout the band. It means that the generalized eigenvalue

equation, (2.40), is equal to zero when there is total reflection.

Assume that the total reflection is desired to be shifted from 14.8 to 10 GHz. To do

this, the first step is to observe modal currents in Fig. 4.3. It can be seen that the 1st

modal current on the FSS element is in the x direction and the 2nd modal current is in

the y direction. Since the problem is considered under the x-polarized incidence, the

1st mode must be modified to achieve total reflection performance at 10 GHz. In this

respect, the resonance frequency of the 1st characteristic mode must be shifted from

14.8 to 10 GHz. For this purpose, the reactance load matrix which would make (4.1)

equal to zero, is calculated at 10 GHz.
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Figure 4.2: Circular ring element, illuminated by an x-polarized normal incidence.

(a) Reflection coefficient. (b) Modal significance values.

(a) (b)

Figure 4.3: Modal current on the circular ring element, illuminated by an x-polarized

normal incidence at 10 GHz. (a) 1st mode. (b) 2nd mode.
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Figure 4.4: Continuous reactive loading of RWG elements.

To find the load values, the diagonal load matrix elements are divided by the square

of the RWG element lengths [41] such that

Xi =
XLi

l2i
(4.4)

where Xi is the reactance value of the ith RWG and li is the edge length as described

in Fig. 2.2. The definition of the RWG elements and the corresponding load values

that would shift the total reflection point from 14.8 to 10 GHz are shown in Fig. 4.4.

Assuming the center of the ring as the origin of the Cartesian coordinate system, it

can be seen that load values are in mirror symmetry with respect to both x and y axes.

After applying the continuous load distribution into the impedance matrix, the mod-

ified reflection coefficient and modal significance values are obtained as in Fig. 4.5a

and 4.5b, respectively. It can be seen from the figure that the first 2 modes no longer

yield the same eigenvalues. The resonance frequency of the 1st and 2nd modes are

shifted from 14.8 to 10 GHz and 11.3 GHz, respectively. Since the 1st mode cor-

responds to the x-polarized incidence, the reflection magnitude of the continuously

loaded unit cell element is expected to follow the pattern of the 1st mode. Indeed
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Figure 4.5: Continuously loaded circular ring element, illuminated by an x-polarized

normal incidence. (a) Reflection coefficient. (b) Modal significance values.

the reflection coefficient is exactly equal to the modal significance value of the 1st

mode. Therefore the shift of the total reflection frequency from 14.8 to 10 GHz is

successfully demonstrated by applying the continuous loading.

Although the reflection characteristics of the unit cell element can be controlled by

this method, it is not practical to use 48 lumped elements on each periodic array ele-

ment. One solution is to use coarser mesh at the cost of the accuracy. However, since

the lumped elements obtained on a very coarse mesh would not be sufficiently accu-

rate, all loading values should be further optimized. Therefore load values cannot be

implemented directly but can only be used as initial values for an optimization algo-

rithm. Another approach may be etching slots on the element surface, but applying

load values in terms of slots would become a very complicated task.

A more reliable solution would be to use fewer loads that will yield a similar effect
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of the load distribution over the unit cell element. In fact, it would be sufficient to use

the reactive loads only on the locations where the magnitude of the surface current is

large. In the next section, a novel approach is introduced to obtain two load values

that can be applied at the nodes of the element where the magnitude of the induced

current becomes maximum, due to the linearly polarized illumination.

4.2 The Discrete Loading Approach on Ring-Type Elements

𝑥𝑥

𝑦𝑦

Load locations for x-polarized illumination  

Load locations for y-polarized illumination  

𝑥𝑥

𝑦𝑦

Load locations for x-polarized illumination  

Load locations for y-polarized illumination  

(a)

𝑥𝑥

𝑦𝑦

Load locations for x-polarized illumination  

Load locations for y-polarized illumination  

𝑥𝑥

𝑦𝑦

Load locations for x-polarized illumination  

Load locations for y-polarized illumination  

(b)

Figure 4.6: Load locations for x and y-polarized plane waves (blue areas refer to

the conducting surface). (a) Metal ring element. (b) Complementary problem of the

metal ring element as the slot ring element.

Determining the locations of reactive loads is challenging in antenna problems. How-

ever, for periodic elements such as frequency selective surfaces, the most convenient

regions to apply loads would be those with the highest currents. Since the radiation

behavior of the element is determined by the induced current, loads applied to the

nodes where the current peaks would affect the radiation behavior drastically. For the

same reason, the effect of the loads on the radiation will be negligible when they are

applied in the null regions where the current is very low.
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When a ring-type element is illuminated by a linearly polarized plane wave, the maxi-

mum current occurs in the section of the element where the flowing direction is paral-

lel to the electric field vector. Thus, as depicted in Fig. 4.6a, loads must be applied at

northernmost-southernmost and easternmost-westernmost nodes of the ring element

for x and y-polarized electric fields, respectively. In the complementary problem of

the ring element as a slot element, the loads must be applied in the opposite nodes, as

shown in Fig. 4.6b. This situation will also be discussed in the next section.

Nevertheless the main problem is to reduce the continuous load distribution into two

loads that will yield the desired frequency shift of the continuous loading. Although

impracticality of the continuous loading is pointed out in the literature [63], no sug-

gestion has been made so far to reduce such load distribution into a few number of

loads. However only in this study, a direct method is proposed to obtain two reactive

loads using the continuous load distribution.

As the domain discretization is performed such that each triangle is used by only

two RWG basis elements, it is possible to take an average of the load distribution.

Note that in the case when each triangle defines only two RWGs, the total number

of RWG elements becomes equal to the total number of triangles. In the case of the

ring-type element where two loads are applied 180 degrees apart, the geometry can

be divided into two equal semi-rings due to mirror symmetry and only one load can

be approximated using half of the load distribution over the semicircle. Hence, the

value for the two discrete loads can be approximated as

Xd =
1

2

N∑
i=1

δiXi (4.5)

where δi is the coefficient for each continuous load value. These coefficients deter-

mine how effective the continuous load values are to the radiation of the element for

the given polarization.

4.2.1 Obtaining Coefficients of the Continuous Load Distribution

Undoubtedly one of the important aspects that determines the accuracy of the method

is to find proper coefficients to take an average of the load distribution. The effect of

the distributed loads to the unit cell performance is vastly dependent on the current
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density on the element surface. The load values in the region where the current is high

are decisive in the frequency shift. On the other hand, load values correspond to the

RWG elements located in the null regions of low current would not affect the band

of the unit cell element, hence they can be omitted when finding discrete load values.

Considering the x-polarized illumination as an example, the magnitude of the current

induced in the x direction would increase towards northernmost and southernmost

nodes. Hence, the effect of load elements would be higher if applied on the nodes

that are close to the northernmost and southernmost nodes. Therefore, for the x-

polarized incidence, it is preferable to choose lower coefficient values correspond to

RWG elements that are close to y = 0 axis and higher values for elements that are far

away from y = 0 axis.

In this respect, the values for the coefficients are calculated from the current of the

mode-of-interest. To be able to use this approach, the maximum and minimum nodes

of the modal current must also follow the polarization of the incidence. In other

words, the direction of the surface current induced by an incident wave must be in

the same direction with the modal current of the mode-of-interest. Hence, if the

direction of the current of kth mode is aligned with the polarization of the incidence,

the coefficients for the load distribution is formulated according to the kth mode. If

Jk is the eigenvector, the modal current, Ik(r′), on each triangle can be calculated

by multiplying corresponding RWG basis functions with corresponding eigenvector

entries as

Ik(r
′) =

N∑
i=1

{Jk}ifi(r′) (4.6)

where r′ is the center coordinate of each triangle. Once the modal current is calculated

on each triangle, the vector of Īk is constructed. The ith entry of this vector, {Īk}i, is

defined as the arithmetic mean of the modal currents calculated on two triangles that

form the ith RWG element. Then the proposed coefficients for the load distribution

are calculated as the entries of the vector, ∆,

∆ =

∣∣̄Ik∣∣Jk

max
{∣∣̄Ik∣∣Jk

} . (4.7)

Since the vector defined in the numerator of the fraction in (4.7) is divided by its

largest entry, all of the coefficients range from 0 to 1.
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Figure 4.7: Coefficients of the continuous load distribution.

Following this procedure, coefficients of the continuous load values for the given

example can be found as in Fig. 4.7. Substituting the values in Fig. 4.4 and Fig. 4.7

in the equation (4.5), Xd = 184.85 Ω is calculated. The positive Xd can be realized

as the inductance of L0 = Xd/ω, and similarly the negative Xd can be utilized as

the capacitance of C0 = −1/(Xdω). In this example, since the sign of the reactance

value is positive, it can be realized as an inductance of L0 = 2.942 nH at 10 GHz.

After inductive load of L0 = 2.942 nH is applied at the northernmost and southern-

most nodes, the reflection coefficient as well as the modal significance values for the

first two modes are calculated. The results are given in Fig. 4.8. As can be seen from

the figure, the total reflection point is shifted from 14.8 to 10 GHz similar to the case

of the continuous distribution. Again the magnitude of the reflection coefficient fol-

lows the pattern of the modal significance of the 1st mode. However, unlike the case

of continuous loading, the modal significance of the 2nd mode has not been shifted

elsewhere from 14.8 GHz. The reason is that the second mode corresponds only to

the y- polarized incidence. Hence, loading only the northernmost and southernmost

nodes of the ring element does not affect the 2nd mode and the reflection behavior at
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Figure 4.8: Two discrete loads applied on the circular ring element, illuminated by

an x-polarized normal incidence. (a) Reflection coefficient. (b) Modal significance

values.

the case of y-polarized illumination.

4.2.2 The Complementary Slot Problem

In the periodic unit cell analysis, the complementary problem of the ring-type metal

element is the ring-type slot element that is cut out from the ground plane. The in-

troduced method of finding discrete loads cannot be utilized directly on the slot-type

elements. Therefore, the most logical approach would be to exploit the complemen-

tary problem. The characteristic mode analysis of aperture/slot problem has already

been introduced for infinitely long apertures [88–90]. In [91], the aperture problem

is formulated for MoM admittance matrix. In [92], the modal analysis of the slot-

ted planar antenna is demonstrated over both infinite and finite ground planes. Thus

68



the characteristic mode analysis of the slot problem can be defined by the equivalent

magnetic current approach. If the MoM admittance matrix, Y, is defined as

Y = G+ jB (4.8)

the characteristic mode decomposition can be expressed as

BMn = λnGMn (4.9)

where Mn is the magnetic modal current. The orthogonality relations can also be

stated as

< M∗
m,GMn > = δmn (4.10a)

< M∗
m,BMn > = λnδmn (4.10b)

< M∗
m,YMn > = (1 + jλn)δmn. (4.10c)

However, instead of computing the admittance matrix and reformulating the solution

according to equivalent magnetic currents, the principle of duality can also be ex-

ploited. If the duality principle is used in the finite aperture problem, the solutions of

metal patch and its complementary aperture would differ since the effect of the finite

plate size cannot be omitted in the aperture problem. However, this is not the case

in the unit cell solution since the unit cell problem is defined assuming infinite peri-

odicity. Therefore, in the unit cell solution, the dual problem can be considered by

converting the EFIE into its dual form [93, 94]. Dual quantities to convert the prob-

lem of the conducting element into the problem of the complementary slot element

is summarized in Table 4.1. In this table, A refers to the magnetic vector potential

as defined in (2.3) and used in the case of the electric source over the conducting el-

ement. Similarly, F represents the electric vector potential that utilized in the case of

magnetic current sources over the slot element. By substituting dual quantities into

(2.22), the impedance matrix becomes

ZF
mn =

1

jωµ

∫
Sm

dr
[
∇ · fFm(r)

] ∫
Sn

dr′∇′ · fFn (r′)G (r, r′)

+jωϵ

∫
Sm

dr fFm(r) ·
∫
Sn

dr′fFn (r
′)G (r, r′)

(4.11)

as the integral domain is defined over the slot region. The duality principle can also

be applied on the characteristic modes. Hence the magnetic current and the radiated
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Table 4.1: Dual quantities

Conducting element Complementary slot element

A F

J M

EA HF

HA −EF

ϵ0 µ0

µ0 ϵ0

fields can be defined as weighted sums of modal dual currents and modal dual fields,

respectively as

M =
∑
n

aFnMn (4.12a)

EF =
∑
n

aFnE
F
n (4.12b)

HF =
∑
n

aFnH
F
n (4.12c)

where

aFn =
< Mn,H

i >

1 + jλF
n

. (4.13)

One favorable outcome of the dual problem is that eigenvalues of both problems are

equal to each other [93],

λA
n = λF

n . (4.14)

This result indicates that characteristic modes of the metal element and the comple-

mentary slot element resonate at the same frequency. Therefore, by finding the loads

on the metal element to shift the modal band to the desired frequency, the modal

band of the slot element can also be shifted to the same frequency. As also discussed

in [93], the relation between inductive/capacitive loads of the metal element and ca-

pacitive/inductive loads of the slot element can be presented as

CF
0 =

4

η2
LA
0 (4.15a)
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(a) (b)

Figure 4.9: Meshing of the ring-type slot element (a) Load-free element. (b) Loaded

element.

CA
0 =

4

η2
LF
0 . (4.15b)

Since the dual problem yields the same eigenvalues, the modal significance values in

the metal element and the complementary slot element are also the same. Because

amplitude and phase of the reflection coefficient values follow the modal significance

and characteristic angle values of one of the dominant modes, respectively, the reflec-

tion coefficient of the slot problem can be computed by considering only the com-

plementary metal counterpart. In this respect, the reflection coefficient of the FSS

metal element becomes equal to the transmission coefficient of its complementary

slot element, and vice versa. This suggests that by solving the metal ring element and

finding discrete inductive loads that shift the total reflection frequency to a desired

frequency, one would also obtain the discrete capacitive loads that would shift the

total transmission frequency to the same frequency for the slot counterpart. Since the

scattered electric field of the one problem is proportional to the scattered magnetic

field of its dual, the problem of x-polarized incidence over the metal ring corresponds

to the problem of y-polarized incidence over the complementary slot ring, or vice

versa. Therefore the load locations on the ring-type metal element and the ring-type

slot element must be 90 degrees apart.

As an example, the complementary slot of the same metal element from the previ-

ous example is utilized and illuminated by an x-polarized plane wave. Because the
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Figure 4.10: Reflection coefficient of the slot ring element, illuminated by an x-

polarized normal incidence. (a) Unloaded element (b) Capacitive loaded element.

incidence is x-polarized, loads on the complementary slot element are placed at east-

ernmost and the westernmost nodes of the slot as already discussed in Fig. 4.6b. As

depicted in Fig. 4.9, additional meshes are included on the slot to be able to define

loads. Because L0 = 2.942 nH is the inductive load that shifts the total reflection

frequency from 14.8 to 10 GHz, the value of the capacitance loads that would shift

the total transmission frequency of the slot element from 14.8 to 10 GHz is found

using (4.15) as CF
0 = 82.8 fF.

The reflection coefficients calculated for the unloaded slot element as well as the ca-

pacitive loaded slot element are plotted in Fig. 4.10. It can be seen that the total

transmission frequency is 15 GHz for the unloaded slot element, whereas 9.5 GHz

when the slot is loaded with the capacitance. The total transmission frequencies of

the slot element in both cases are almost equal to the corresponding total reflection

frequencies in the complementary metal element case. In order to validate the accu-
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racy of the MoM solution, both metal element and its complementary slot element

are also solved in FEKO with and without lumped elements that are obtained from

the proposed method. As can be seen from Fig. 4.11, the produced results are in

agreement with the FEKO’s results. This example successfully shows that the intro-

duced method to find discrete load elements to control the total reflection band of the

ring-type metal element can also be exploited for the slot element by taking the dual

case into account.

In Fig. 4.12, a flowchart is generated to briefly describe the proposed method of find-

ing discrete load values that yield desired frequency shifts for ring-type FSS elements.
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Figure 4.11: Reflection magnitude of the unloaded and loaded circular ring-type FSS

elements, compared with FEKO’s results. (a) Metal element. (b) Slot element.
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NO

Figure 4.12: Flowchart of the proposed method.

4.3 Analyses of Various Ring-Type FSS Elements

In the previous section, the method has been demonstrated for the circular ring ele-

ment, thus the discrete load values are found in advance that shifts the total reflection

frequency from 14.8 to 10 GHz. However, discrete loads can also be calculated to

shift the reflection band into different frequencies of interest. In this section, the anal-

ysis is performed to demonstrate the proposed method for various ring-type FSS ele-

ments considering broad band of frequencies. Hence, for each example, a wide range

of inductance and capacitance values are pre-calculated in order to shift the total re-

flection frequency to desired frequencies. Once the load values are calculated, the
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accuracy of the method is also examined by the direct solution of the loaded element.

The direct solution refers to the MoM solution of the loaded ring-type element where

the loads that are obtained using the proposed method are applied on the element and

the shifted frequency of the total reflection is calculated.

After the reactive loads are calculated for pre-determined total reflection frequencies

using the proposed method, and the total reflection frequencies are calculated for pre-

determined load values using the direct MoM solution, both results can be compared

by plotting "total reflection frequency vs load value" response curves on the same

graph. In order to find the accuracy of the proposed method relative to the direct

solution, the percentage error with respect to reactive load values is also calculated

to show how different the reflection frequencies that are utilized as the input for the

proposed method are from the frequencies found by solving the direct solution of

MoM. The relative percentage error is formulated as

Error =
|f0 − fm|

f0
× 100 (4.16)

where f0 is the value of the total reflection frequency found by the direct solution of

the loaded element for predetermined loads, and fm are the desired frequency shifts

used in the developed method. Note that since the response curves obtained with the

proposed method and the direct solution consist of different and unequal number of

samples, the curve that is obtained from the proposed method is interpolated at the

samples of the curve of the direct solution. Hence, it becomes possible to calculate

the relative error of frequency with respect to different capacitive and inductive load

values.

4.3.1 The Circular Element

As already been demonstrated in the previous section, the total reflection occurs at

14.8 GHz for the exemplified circular ring element when there is no applied load. To

shift the total reflection frequency from 14.8 GHz to lower and higher frequencies, a

wide range of inductance and capacitance values are calculated, respectively. Same

to the previous example, the solution is considered for an x-polarized incident wave

propagating in z direction.

75



Total Reflection Frequency (GHz)
2 6 10 14

In
du

ct
an

ce
 V

al
ue

s 
(n

H
)

0

10

20

30

40

50

60

70

80

Proposed Method
Direct Solution

Total Reflection Frequency (GHz)
15 16 17 18 19 20

0

0.5

1

1.5

2

2.5

3

3.5

4

Proposed Method
Direct Solution

(a)

2 6 10 14

In
du

ct
an

ce
 V

al
ue

s 
(n

H
)

0

10

20

30

40

50

60

70

80

Proposed Method
Direct Solution

Total Reflection Frequency (GHz)
15 16 17 18 19 20

C
ap

ac
ita

nc
e 

V
al

ue
s 

(p
F

)
0

0.5

1

1.5

2

2.5

3

3.5

4

Proposed Method
Direct Solution

(b)

Figure 4.13: The comparison of the proposed method with direct solution of the

loaded element for the circular ring element. (a) Inductive values. (b) Capacitive

values.

The results presented by the blue curve in Fig. 4.13 refer to the load values found by

the proposed method. To calculate this response, the MoM program is initially solved

for the unloaded ring element. Then the modes are tracked using the aforementioned

mode tracking algorithm and subsequently load values are obtained to shift the total

reflection frequency from 2 to 26 GHz. Moreover the red curve in Fig. 4.13 yields

the results of the direct solution of the loaded element. In order to perform the direct

solution, 1001 inductance values changing from 0 to 100 nH, as well as 1001 capaci-

tance values from 0.1 fF to 7.5 pF are applied on the northernmost and southernmost

nodes of the circular ring element. Therefore, the direct solution requires the MoM

solution to be performed 2002 times. Hence, generating the red curve becomes very

time-consuming compared to the generation of the blue curve which is based on the

proposed method. As can be seen from the figure, the two curves are very close to

each other. To have a better understanding of the accuracy, the relative error between

the curves are also calculated and plotted in Fig. 4.14. According to these results, the

relative error in the total reflection frequency is below 5% for inductive load values
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Figure 4.14: The relative error between the proposed method and the direct solution of

the loaded element for the circular ring element. (a) Inductive values. (b) Capacitive

values.

smaller than 43 nH and capacitive load values greater than 0.1 pF. As can be observed

in Fig. 4.13, applying 43 nH and 0.1 pF corresponds to the frequencies of 3.3 GHz

and 17 GHz, respectively. It means that using the proposed method, it is possible to

find the load value that shifts the total reflection frequency of the circular ring element

from 14.8 GHz to any frequency from 3.3 to 17 GHz with an error less than 5%.

In order to visualize the behavior of reflection within the band of interest, the ampli-

tude of the reflection coefficient is plotted in Fig. 4.15 for different load values. 3-dB

bandwidth of reflection for the circular FSS element becomes 37% when there is no

applied load, whereas 8.5%, 18.5%, 33% and 27% when the element is loaded with

20 nH, 5 nH, 0.2 pF and 0.05 pF, respectively. As can be seen from the figure, the

band of the FSS element becomes narrower as the reflection band shifts to the lower

frequencies due to the increasing inductance value. However, even if the error of the
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Figure 4.15: The reflection coefficient amplitude for different loading values.

proposed method also increases as the inductance increases, an error below 5% is still

satisfactory. In order to observe this, the shifting of the total reflection frequency from

14.8 to 4.9 GHz can be examined. In this example, the loading value obtained from

the proposed method is 20 nH in which the relative error becomes 4.1%. Due to this

error, 20 nH would not shift the total reflection point from 14.8 to 4.9 GHz, but 4.7

GHz. However, even if there is no total reflection at 4.9 GHz, three quarters of the

incoming power would still be reflected at this frequency. This analysis indicates that

the proposed method is able to bring the reflection band of the circular ring to a value

within a wide range of frequencies.

In order to complete the discussion for the circular ring element, the same element is

also solved for oblique incidences. The incident wave can be defined as

Ei = {−x̂ cos θi cosϕi − ŷ cos θi sinϕi + ẑ sin θi} ejkxx+jkyy+jkzz. (4.17)

As already discussed in the previous chapter, cut-off frequencies of the higher order

modes would decrease as the incidence angle, θi, increases. This can cause problems

in shifting the frequency band to upper frequencies since the proposed method would

work only if the characteristic mode, that exhibits the same behavior as the current

induced on the element surface, is being excited within the band. If the desired shift-
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Figure 4.16: The relative error between the proposed method and the direct solution

of the loaded circular ring element, illuminated by normal and oblique incidences. (a)

Inductive values. (b) Capacitive values.

ing frequency is above the cut-off frequency of higher order modes, the reflection

behavior would be determined by more than one mode as a combination of lower and

higher order modes. In this case, the magnitude of the reflection coefficient would

not be equal to the modal significance value of one of the modes. Under normal inci-

dence, higher order modes can be excited only when the operating frequency is above

27.27 GHz. However, for oblique incidences of θ = 30◦ and θ = 60◦, the cut-off

frequencies become 18.18 GHz and 14.61 GHz, respectively. Hence, the load values

that are calculated with the proposed method are compared with the direct solution for

the illuminations of θ = 0◦, 30◦ and 60◦ in order to shift total reflection frequencies

from 2 to 26 GHz, from 2 to 18 GHz and from 2 to 14.5 GHz, respectively. Note that

ϕi=0 is considered to examine the case where the electric field has a component in

the x direction. As given in Fig. 4.16, the relative error values are very close to each
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Figure 4.17: Load locations for different polarizations.

other regardless of the elevation angle. Hence, the developed method can be used

effectively not only in the case of normal incidence but also for oblique incidences.

Since the geometry of the element is purely circular, the load values that are calculated

with this method can be used for the incidence of any polarization. As an illustration,

the locations of discrete load elements for different polarizations are depicted in Fig.

4.17. The direction of the polarization can be determined by ϕi for the incident wave

defined in (4.17). However, in the case of non-circular ring element, the load values

would become dependent on the polarization of the incident wave. In the next sec-

tion, this is observed by calculating load values over square and cross-shaped ring

elements.

4.3.2 The Square and Cross-Shaped Element

Due to the geometrical symmetry of square and cross-shaped elements with respect

to the x and y coordinates, same loads can be used for x and y-polarized incidences.

In the next example, square and cross ring FSS elements are solved for the normal

incidence and polarized in the x direction as ϕi = 0◦ and in the diagonal direction as

ϕ = 45◦. The geometry and the dimensions for both elements are given in Fig. 4.18.

Both the square and the cross elements are discretized with 72 triangles.
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Figure 4.18: Ring-type FSS elements inside the unit cell of a = b = 14 mm (a)

Square ring element with dimensions c = 11 mm and d = 9 mm. (b) Cross ring

element with dimensions c = e = 3 mm and d = f = 4 mm.

In Fig. 4.19 and 4.20, modal currents of the first 2 modes for two different polar-

izations are given for the square element and the cross-shaped element, respectively.

Both elements are illuminated by normal incidence of θi = 0◦ at 6 GHz. In Fig. 4.19a,

4.19b, 4.20a and 4.20b, the modes are calculated for the x-polarized incidence, hence

the modal currents of the first 2 modes are aligned in the x and y directions. Whereas

when the elements are illuminated by a diagonal polarization of ϕi = 45◦, the modal

currents of the first 2 modes are aligned in diagonal directions as shown in Fig. 4.19c,

4.19d, 4.20c and 4.20d. Using the proper mode that is aligned with the polarization of

the illumination, reactive loads can be calculated to shift the total reflection frequency

to 6 GHz.
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(a) (b)

(c) (d)

Figure 4.19: Modal currents of the square ring element, illuminated by (4.17) at 6

GHz. (a) Mode 1 at ϕi = 0◦. (b) Mode 2 at ϕi = 0◦. (c) Mode 1 at ϕi = 45◦. (d)

Mode 2 at ϕi = 45◦.

(a) (b)

(c) (d)

Figure 4.20: Modal currents of the cross ring element, illuminated by (4.17) at 6 GHz.

(a) Mode 1 at ϕi = 0◦. (b) Mode 2 at ϕi = 0◦. (c) Mode 1 at ϕi = 45◦. (d) Mode 2 at

ϕi = 45◦.
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Figure 4.21: The reflection magnitude values before and after applying inductive

loads that are found using the proposed method. (a) Square ring element. (b) Cross

ring element.

Unlike the case of the x-polarized incidence where loads are applied on the northern-

most and southernmost nodes of the element, loads must be applied on the northwest-

ern and southeastern nodes in the case of ϕi = 45◦ since the magnitude of the modal

current peaks at those nodes.

Following the proposed method for the square ring element, the inductance values

for the desired frequency shift are calculated as L0 = 4.56 nH and L0 = 4.39 nH

for ϕi = 0◦ and ϕi = 45◦, respectively. Similarly, the inductance values that must

be applied on the cross ring element are found as L0 = 6.22 nH and L0 = 8.29 nH

for ϕi = 0 and ϕi = 45◦, respectively. The amplitude of the reflection coefficient

before and after loading the elements are plotted in Fig. 4.21. In these results, the

total reflection frequency for the square ring element is shifted from 8.93 to 5.96 GHz

for ϕi = 0◦ and from 8.93 to 5.77 GHz for ϕi = 45◦. Similarly, the total reflection

frequency for the cross ring element is shifted from 10 to 6.19 GHz for ϕi = 0◦ and
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from 10 to 5.51 GHz for ϕi = 45◦. Although the results in the case of x polarization

are relatively more accurate, the desired frequency shift can also be obtained in the

case of ϕi = 45◦ with reasonable accuracy.

Besides that, total reflections also occur at higher frequencies when inductive loads

are applied on the both elements. As can be seen from Fig. 4.21a, total reflections

from the square ring element occurs at 17.6 and 17 GHz for ϕi = 0◦ and ϕi = 45◦,

respectively. In Fig. 4.21b, total reflections from the cross ring element take place

at 18.6 and 17.5 GHz for ϕi = 0◦ and ϕi = 45◦, respectively. This behavior can

be explained due to the resonance of a 3rd mode at these frequencies. The currents

associated with this higher order mode are illustrated in Fig. 4.22 for all cases.

(a) (b)

(c) (d)

Figure 4.22: Modal current of the 3rd mode at higher frequencies. (a) Current on the

square ring element at 17.6 GHz for ϕi = 0◦. (b) Current on the square ring element at

17 GHz for ϕi = 45◦. (c) Current on the cross ring element at 18.6 GHz for ϕi = 0◦.

(d) Current on the cross ring element at 17.5 GHz for ϕi = 45◦.
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Figure 4.23: The comparison of the proposed method with direct solution. (a) In-

ductive loaded square ring element. (b) Capacitive loaded square ring element. (c)

Inductive loaded cross ring element. (d) Capacitive loaded cross ring element.
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Figure 4.24: The relative error between the proposed method and the direct solution

of the loaded element for the square and cross-shaped ring elements. (a) Inductive

values. (b) Capacitive values.

In order to check the accuracy of the solutions over a wide band of frequencies, the

proposed method is compared with the direct MoM solution for 1001 inductance val-

ues from 0 nH to 100 nH and 1001 capacitance values from 0.1 fF to 7.5 pF. In Fig.

4.23, the calculated load values are given with respect to the total reflection frequency

for square and cross-shaped ring elements. To have a better insight about the accuracy

of the solution, the relative error is given in Fig. 4.24 for both elements and polariza-

tions. It can be deduced from these results that the proposed method is more accurate

across the band of interest when the element is illuminated by an x-polarized plane

wave. In the case of the square-element illuminated by an x-polarized incidence, the

error is 5% when load values are 5.2 nH and 0.15 pF. It means that assuming less

than 5% error is tolerable, total reflection frequency can be shifted from 8.93 GHz

to a range of frequencies from 2.9 to 10.5 GHz. In a similar fashion, the range of

the frequency shift for the cross-shaped element becomes 1.8 to 11 GHz in the case

of x-polarized incidence. On the other hand, when the elements are illuminated by a
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Figure 4.25: Elliptic ring-type FSS element with the dimensions r1 = 6 mm, r2 = 2

mm and w = 0.5 mm inside the rectangular unit cell of a = 7 mm and b = 14 mm.

diagonal polarization, the band of shift with an error less than 5% are from 5.4 GHz

to 10.3 GHz and from 6.8 to 12.2 GHz, for square and cross-shaped ring elements,

respectively. These results indicate that although the ring-type unit cell element is

not circular and is not illuminated particularly by x and y-polarized plane waves, the

proposed method can still be applied to find the desired load values accurately in a

wide range of frequencies.

4.3.3 The Elliptic Element in Rectangular Unit Cell

In the previous examples, the unit cell elements are chosen to be same when viewed

from the x and y direction. However, in this section, an elliptic ring element is ex-

amined inside a rectangular unit cell to see the validity of the proposed method. The

dimensions of the elliptic ring element is given in Fig. 4.25. The element is dis-

cretized with 76 triangles, hence 76 RWG functions are defined to solve this problem.

Both x and y-polarized normal incidence are considered in this example. Since the

element is unsymmetrical with respect to the x and y coordinates, the correspond-

ing modes are no longer degenerate modes, hence they would resonate at different

frequencies. The modal significance values for the first 2 characteristic modes are

plotted in Fig. 4.26. The 1st mode is excited when the element is illuminated by a

y-polarized electric field, and similarly the 2nd mode is excited due to the x-polarized
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Figure 4.26: Modal significance values of the first 2 modes, illuminated by x and

y-polarized plane waves.

electric field. This can be seen by observing modal currents in Fig. 4.27, where the

modal surface current for the first two modes are depicted at 8 GHz. Therefore, the

reflection coefficient of the FSS element follows either the 1st or the 2nd character-

istic mode depending on the polarization of the incidence. Hence, in the case of y

polarization, the full reflection occurs at 14.15 GHz, whereas in the case of x po-

larization, the full reflection happens at 10.9 GHz with relatively narrower reflection

band.

(a) (b)

Figure 4.27: Modal currents on the elliptic ring element, illuminated by an x-

polarized plane wave at 8 GHz. (a) Mode 1. (b) Mode 2.
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Figure 4.28: The reflection magnitude values before and after loading the elliptic ring

element for the two orthogonal polarizations.

In order to demonstrate the developed method, the required load values are calcu-

lated to shift the total reflection frequency to 8 and 11 GHz in the case of x and y

polarizations, respectively. Using the 1st mode, the inductance value to shift the total

reflection frequency from 14.15 to 11 GHz is found as 1.8 nH. It must be applied on

the easternmost and westernmost nodes of the element. Similarly with the help of the

2nd mode, the inductance value to shift the total reflection frequency from 10.9 to 8

GHz becomes 2.9 nH, which must be applied on the northernmost and southernmost

nodes of the element. After loading the reactive elements accordingly, total reflec-

tion frequency is shifted from 14.15 to 11 GHz for the x-polarized plane wave and

from 10.9 GHz to 8.1 GHz for the y-polarized plane wave. The curves associated

with these results can be seen in Fig. 4.28. The load that is applied for one of the

polarizations will not affect the reflecting behavior under the excitation of the other

polarization as long as the polarization directions are orthogonal to each other. This

is because the node where the load is placed for one polarization is the null region for

its orthogonal polarization. Therefore, loads for both x and y-polarized incidence can

be applied at the same time to change the reflection response in both directions.
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Figure 4.29: The comparison of the proposed method with the direct solution for the

elliptic ring element. (a) Inductive values. (b) Capacitive values.

The accuracy of the method for the elliptic ring element is also evaluated by compar-

ing load values of the proposed method with direct MoM solution of 1001 inductance

values changing from 0 to 100 nH, as well as 1001 capacitance values from 0.1 fF

to 7.5 pF applied on the element. In Fig. 4.29, the load values that are calculated by

the proposed method are given with respect to the shifted total reflection frequency

along with the direct solution of the frequency shifts with respect to the load values.

The corresponding relative error for both x and y-polarized illumination is also given

in Fig. 4.30. The error is 5% for the x-polarized incidence when load values are

100 nH and 0.1 pF. It means that by assuming less than 5% error is sufficient, total

reflection frequency can be shifted from 10.9 GHz to a range of frequencies from 1.8

to 12.9 GHz. Similarly in the case of y polarization, the error is 5% when the load

values are 6 nH and 0.12 pF, thus the total reflection frequency can be shifted from

14.15 GHz to a range of frequencies from 7.6 to 16.1 GHz with an error less than 5%.

This solution indicates that the developed method can also be utilized to change the

reflection properties of ring-type elements that are not symmetrical with respect to x

and y coordinates. In fact asymmetric nature of the unit cell element would give the

opportunity of having different radiation characteristics for different incidences.
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Figure 4.30: The relative error between the proposed method and the direct solution of

the loaded element for the elliptic ring elements. (a) Inductive values. (b) Capacitive

values.
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Figure 4.31: FSS element that consists of two concentric square rings with the di-

mensions c = 40 mm, d = 28 mm, w1 = 2 mm and w2 = 4 mm inside square unit

cell of a = b = 45 mm.
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4.3.4 The Element of Concentric Square Rings

After going through examples to demonstrate the proposed method for single ring

elements, the next step would be to apply the proposed method to dual band FSS ele-

ments that consist of two rings inside the unit cell. In Fig. 4.31, the dimensions for

an FSS element that consists of two concentric square rings are given. As discussed

in [95], it is a dual-band FSS element such that the inner slot determines the higher

reflection band and the outer slot determines the lower band. Under the x-polarized

normal incidence, the reflection amplitude and modal significance values for the first

4 modes of the FSS element of concentric square rings are given in Fig. 4.32. As

can be seen from the figure, 4 modes are excited up to 6 GHz. 1st and 2nd modes are

degenerate modes that resonate around 1.4 GHz due to the outer ring element. 3rd
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Figure 4.32: FSS element of two concentric square rings, illuminated by normal inci-

dence in square unit cell. (a) Reflection magnitude. (b) Modal significance values.
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and 4th are also degenerate modes but resonate around 2.8 GHz due to the inner ring

element. As a result, the reflection coefficient is determined by the sum of one of the

1st and 2nd modes and one of the 3rd and 4th modes. In order to check which modes

correspond to which polarization, the modal currents over the ring elements can be

examined.

(a) (b)

(c) (d)

Figure 4.33: Modal currents on the FSS element of two concentric square rings, illu-

minated by normal incidence at 1.4 GHz. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d)

Mode 4.

In Fig. 4.33, modal currents of the first 4 modes are depicted at 1.4 GHz. By observ-

ing the current of only the outer ring element, 1st and 2nd modes correspond to the x

and y polarizations, respectively. Since the 3rd and the 4th modes are not excited at

this frequency, the current over the 3rd and 4th modes resemble to a high-order mode

behavior. Besides that, because the inner ring is expected to resonate only at the upper

band, modal currents on the inner ring are barely induced at this frequency. However,

as modal currents at 2.8 GHz can also be seen from Fig. 4.34, the induced current

over the inner ring element of the 3rd and 4th modes correspond to the x and y polar-
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(a) (b)

(c) (d)

Figure 4.34: Modal currents on the FSS element of two concentric square rings, illu-

minated by normal incidence at 2.8 GHz. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d)

Mode 4.

izations, respectively. This time modal currents are not induced by either polarization

over the outer ring. Since the given example is considered for the x-polarized normal

incidence, only 1st and 3rd modes are excited. The 1st mode shapes the reflection

behavior of the unit cell element at frequencies below 2 GHz, whereas the 3rd mode

affects the reflection behavior from 2 to 6 GHz.

The total reflection frequencies of the isolated ring elements are very close to the total

reflection frequencies when both elements are solved concentrically in the same unit

cell. When both rings are solved together in the same unit cell, total reflections occur

at 1.44 and 2.81 GHz. However total reflections occur at slightly different frequencies

when rings are solved separately, which are 1.47 and 2.82 GHz for outer and inner

rings, respectively. Therefore, load values are calculated for each ring using the pro-

posed method in order to shift the total reflection frequencies to desired frequencies.

The method is demonstrated through four separate examples as described in Table

4.2. In order to modify the reflection band of the unit cell element according to this
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Table 4.2: Desired frequency shifts for the dual-band FSS element of two concentric

rings.

Case
Desired Shift

in the Lower Band

Desired Shift

in the Upper Band

I 1.44 GHz → 1.0 GHz 2.81 GHz → 2.3 GHz

II 1.44 GHz → 1.7 GHz 2.81 GHz → 3.2 GHz

III 1.44 GHz → 1.0 GHz 2.81 GHz → 3.2 GHz

IV 1.44 GHz → 1.7 GHz 2.81 GHz → 2.3 GHz

table, the proposed method is applied over both inner and outer rings separately, for

the x-polarized normal incidence. After utilizing the method, the load values that

shift the total reflection frequencies of the isolated inner ring from 2.82 GHz to 2.3

and 3.2 GHz are found as Linner = 5 nH and Cinner = 1.03 pF, respectively. Applying

these loads over the northernmost and southernmost nodes of the isolated inner ring

element, the change of the reflection magnitude is plotted in Fig. 4.35. From these

results, the total reflection frequency is shifted from 2.82 GHz to 2.37 and 3.1 GHz in
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Figure 4.35: The reflection magnitude of the isolated inner ring element, unloaded

and loaded with Linner = 5 nH and Cinner = 1.03 pF.
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Figure 4.36: The reflection magnitude of the isolated outer ring element, unloaded

and loaded with Louter = 25.7 nH and Couter = 1.47 pF.

the case of an inductive and a capacitive loading, respectively. Similarly, the load val-

ues that shift the total reflection frequencies of the isolated outer ring from 1.47 GHz

to 1 and 1.7 GHz are found as Louter = 25.7 nH and Couter = 1.47 pF, respectively.

Applying these loads over the northernmost and southernmost nodes of the isolated

outer ring in the unit cell, the change of the reflection magnitude is also plotted in

Fig. 4.36. As shown in this figure, total reflection frequency is shifted from 1.47 to

1.63 GHz in the case of the capacitive loading. Whereas in the case of the inductive

loading, total reflection frequency is shifted from 1.47 to 1.08 GHz. Besides that,

total reflection also occurs at 4.45 GHz due to a 3rd mode resonates at this frequency.

The modal current for this higher order mode is also depicted in Fig. 4.37. Note that

the resonances that cause other total reflections which are expected in this example

are due to the 1st modes with modal currents flowing in the x direction. They are not

also plotted for the sake of brevity. Having successfully shifted the reflection band of

the isolated ring elements to desired frequencies, the next step is to apply these loads

to the FSS element of two concentric rings.
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Figure 4.37: The current of the 3rd mode at 4.45 GHz due to the inductive loading of

Louter = 25.7 nH on the isolated outer ring element.
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Figure 4.38: The solution of the FSS element, illuminated by an x-polarized plane

wave, when inner and outer rings are loaded by Linner = 5 nH and Louter = 25.7 nH,

respectively. (a) The reflection magnitude. (b) The modal significance values.
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In the first example, 1st, 3rd and 5th modes can be excited due to the x-polarized

incidence, which can be observed by comparing the characteristic modes and the

resulting reflection coefficient from Fig. 4.38a and Fig. 4.38b. Due to the inductive

loads applied on the outer ring, the resonance frequency of the 1st mode is shifted

from 1.44 to 1.05 GHz. Similarly due to the inductive loads applied on the inner ring,

the resonance frequency of the 3rd mode is shifted from 2.81 to 2.34 GHz. Hence,

the total reflection frequencies of the unit cell element become 1.05 and 2.34 GHz,

which is very close to the desired shifting goal of 1 and 2.3 GHz. Besides, a 5th mode

is also excited due to the inductive load on the outer ring. It corresponds to the higher

order mode depicted in Fig. 4.37 and causes total reflection at 4.34 GHz.
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Figure 4.39: The solution of the FSS element, illuminated by an x-polarized plane

wave, when inner and outer rings are loaded by Cinner = 1.03 pF and Couter = 1.47

pF, respectively. (a) The reflection magnitude. (b) The modal significance values.
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The outcome of the second example is given in Fig. 4.39 where both rings are loaded

with capacitive loads. In this case, only the 2nd and 3rd modes are excited due to the

x-polarized incidence in which the resonance frequency of the 2nd mode is shifted

from 1.44 to 1.62 GHz due to capacitive load on the outer ring, and the resonance

frequency of the 3rd mode is shifted from 2.81 to 3.1 GHz due to the capacitive load

on the inner ring. As a result, the total reflection frequencies become 1.62 and 3.1

GHz, which are also close to the desired goals of 1.7 and 3.2 GHz.
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Figure 4.40: The solution of the FSS element, illuminated by an x-polarized plane

wave, when inner and outer rings are loaded by Cinner = 1.03 pF and Louter = 25.7

nH, respectively. (a) The reflection magnitude. (b) The modal significance values.

In Fig. 4.40, the results of the third example are demonstrated where an inductive

load is applied on the outer ring and a capacitive load is applied on the inner ring.

Hence, 2nd, 3rd and 4th modes are excited due to the x-polarized incidence, where
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the 2nd mode is shifted from 1.44 to 1.06 GHz due to the inductive load on the outer

ring, and the resonance frequency of the 3rd mode is shifted from 2.81 to 3.08 GHz

due to the capacitive load on the inner ring. Therefore, the total reflection frequencies

become 1.44 and 3.08 GHz, which are also very close to the initial goals. Again, 4th

mode is also excited due to the inductive loading of the outer ring as depicted in Fig.

4.37. It also causes total reflection around 4.3 GHz.
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Figure 4.41: The solution of the FSS element, illuminated by an x-polarized plane

wave, when inner and outer rings are loaded by Linner = 5 nH and Couter = 1.47 pF,

respectively. (a) The reflection magnitude. (b) The modal significance values.

The last example is relatively harder to achieve since the upper and lower bands are

intended to be made closer by loading the outer ring with a capacitive load and the

inner ring with an inductive load. As shown in Fig. 4.41, 2nd and 3rd modes are

excited due to the x-polarized incidence. Therefore, the 2nd mode is shifted from

1.44 to 1.61 GHz due to the capacitive load on the outer ring, and the resonance

100



frequency of the 3rd mode is shifted from 2.81 to 2.34 GHz due to the inductive

load on the inner ring. As expected, total reflection frequencies of the unit cell are

shifted to 1.61 GHz and 2.34 GHz, which are again very close to the initially intended

frequencies.

Overall, the results of these four different examples indicate that it is also possible to

find load values in advance to shift the reflection of the dual-band FSS element to de-

sired frequencies. In order to complete this discussion, the method is also performed

over ring elements that are placed in different layers. Therefore in the last section

of this chapter, the proposed method is examined for two metal rings as well as one

metal ring and one slot ring located at two different layers.

4.3.5 The Multilayer Square Elements

In order to demonstrate the analysis of multilayer element, two square rings depicted

in Fig. 4.31 are utilized again in the square unit cell of a = b = 45 mm under the

(a) (b)

(c)

Figure 4.42: Discretization of the two-layer ring-type FSS element. (a) Ring-type

metal elements on both layers. (b) Ring-type metal element on the top layer, and

ring-type slot element on the bottom layer for the unloaded solution. (c) Ring-type

metal element on the top layer, and ring-type slot element on the bottom layer for the

loaded case.
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x-polarized plane wave. However this time, the inner ring is placed 2.5 mm below

the outer ring, hence the structure becomes a 2-layer FSS element. As can be recalled

from 4.2.2, once the value of the reactive load is obtained for the metal ring element,

the load values for the complementary slot element can be easily calculated through

(4.15a) and (4.15b). Therefore, the problem can also be realized as ring-type slot

elements on either layers. In this final section of this chapter, the elements on both

layers are initially considered as metal rings. Then the ring-type metal element on

the bottom layer is turned into its complementary slot. The triangulated forms of the

elements for both problems are depicted in Fig. 4.42a and 4.42b. The mesh structure

for the loaded slot element is also given in Fig. 4.42c, since the extra mesh on the slot

region is needed to define the loading.
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Figure 4.43: 2-layer FSS element that consists of unloaded metal ring elements on the

both layers, illuminated by an x-polarized plane wave. (a) The reflection magnitude.

(b) The modal significance values.
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In Fig. 4.43a and 4.43b, the resulting reflection magnitude and the modal significance

values of the first 4 modes are given, respectively, when the FSS element consists of

ring-type unloaded metal elements on both layers. Since the larger ring on the top

layer excites one of the 1st and 2nd modes, and similarly the smaller ring on the

bottom layer excites one of the 3rd and 4th modes, the reflection behavior of the 2-

layer element becomes very similar to the example of two concentric rings given in

Fig. 4.32. Thus the total reflection frequencies become 1.44 and 2.81 GHz, similar to

the example of two concentric rings.
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Figure 4.44: 2-layer FSS element that consists of loaded metal ring elements on the

both layers, illuminated by an x-polarized plane wave. (a) The reflection magnitude.

(b) The modal significance values.
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In order to shift the total reflection frequency of the lower band from 1.44 to 1 GHz

and the upper band from 2.81 to 2.3 GHz, ring-type metal elements on top and bottom

layers are loaded with 25.7 nH and 5 nH, respectively. Note that these values are

already calculated for the example of two concentric rings in the previous section.

As load elements are applied on northernmost and southernmost nodes of the both

metal rings, the resulting reflection magnitude and the modal significance values are

shown in Fig. 4.44a and Fig. 4.44b, respectively. As can be seen from the figure,

1st, 3rd and 5th modes are excited by the x-polarized plane wave and due to the

loading, the resonance frequencies of the 1st and 3rd modes are shifted to 2.35 and

1.05 GHz, respectively. As a result, total reflection frequencies are also shifted to

these frequencies which are very close to the desired values.
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Figure 4.45: 2-layer FSS element that consists of an unloaded metal ring on the top

layer and an unloaded slot element on the bottom layer, illuminated by an x-polarized

plane wave. (a) The reflection magnitude. (b) The modal significance values.
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In the next analysis, the unit cell element in Fig. 4.42b is solved for the x-polarized

plane wave where the element on the top layer is an unloaded ring-type metal, whereas

the element on the bottom layer is an unloaded ring-type slot. In Fig. 4.45, the re-

sulting reflection magnitude and the modal significance values of the first 6 modes

are given. Similar to the case of total reflection around 2.8 GHz when the element

on the bottom layer is a ring-type metal, total transmission has occurred around this

frequency due to the complementary slot element. The total reflection frequency due

to the ring element and the total transmission frequency due to the slot element are

very close to the total reflection frequencies of the problem when both elements are

metal, and become 1.52 GHz and 3.04 GHz, respectively.
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Figure 4.46: 2-layer FSS element that consists of an unloaded metal ring element

on the top layer and a loaded slot element on the bottom layer, illuminated by an

x-polarized plane wave. (a) The reflection magnitude. (b) The modal significance

values.
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Since 5 nH of inductance can be applied to shift the total reflection frequency of the

upper band to 2.3 GHz, the corresponding capacitance value according to (4.15a)

can also be calculated for the complementary problem to shift total transmission fre-

quency of the upper band to 2.3 GHz as well. The capacitive load of the comple-

mentary problem is found as Cbottom = 0.141 pF and applied on the easternmost

and westernmost nodes of the slot element using the mesh structure in Fig. 4.42c. In

order to observe the effect of the capacitive load on the slot element only, the metal el-

ement on the top layer is initially kept unloaded. The resulting values of the reflection

magnitude and the modal significance values of the first 6 modes under x-polarized

incidence are shown in Fig. 4.46. As Fig. 4.46b is compared with Fig. 4.45b, it can
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Figure 4.47: 2-layer FSS element that consists of a loaded metal ring element on the

top layer and a loaded slot element on the bottom layer, illuminated by an x-polarized

plane wave. (a) The reflection magnitude. (b) The modal significance values.
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be seen that 4th and 5th modes are shifted together due to the load. Hence, the total

transmission frequency is shifted to 2.3 GHz, which is the desired result. However,

since the metal element on the top layer is not loaded, neither 1st nor the 2nd mode is

shifted, hence the total reflection frequency does not change.

In order to shift the total reflection frequency to 1 GHz as well, the metal element on

the top layer is also loaded with Ltop = 25.7 nH while keeping the capacitive loading

on the bottom layer. The reflection magnitude and the modal significance values of

the first 7 modes for this case are also given in Fig. 4.47a and Fig. 4.47b, respectively.

As expected, not only 4th and 5th modes are shifted but also the 1st mode due to the

inductive loads on the top layer. As a result, the total transmission frequency and

the total reflection frequency have become 2.25 and 1.05 GHz, respectively. These

frequency values are very close to the desired values of 2.3 and 1 GHz.

As a conclusion, the proposed method has been demonstrated for ring-type FSS ele-

ments in different shapes including elements consisting of multiple rings. The analy-

ses yield very successful results. Further discussion is given in Chapter 6.
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CHAPTER 5

CHARACTERISTIC MODES AS MACRO BASIS

FUNCTIONS IN LARGE ARRAYS

Fast and efficient solution of integro-differential equations is a widely studied topic.

In order to obtain an accurate solution using the Method of Moments, the subdomain

size must be kept between λ/10 and λ/20. This condition would cause the num-

ber of unknowns to increase as the size of the structure increases. Hence, effective

acceleration methods are needed to reduce the computational burden.

In the solution of large array structures, the first approach that comes to mind for a

low-cost solution is infinite array approach. As a matter of fact, the unit cell method

described in the previous chapters would provide a fast and effective solution. How-

ever, the major drawbacks of the unit cell solution are that all array elements are

assumed to be identical and discontinuities at the edges of the finite structure are

neglected. In addition, there may be non-periodic elements in the solution domain,

which cannot be included inside the unit cell boundaries.

In recent years, fast multipole method (FMM) [96] and its extended version as the

multilevel fast multipole algorithm (MLFMA) [97] have been incorporated into the

MoM-based integral equation solutions to reduce the computational burden. Sim-

ilarly iterative methods including the adaptive integral method (AIM) [98] and the

adaptive cross approximation (ACA) algorithm [99] are developed to speed up the

computation time of the MoM solution. Although these methods can speed up the

computation of large scattering bodies, the size of the basis function would still range

from λ/10 to λ/20, which leads to large matrices. In order to reduce the number of

unknowns, macro basis functions (MBFs) [15], and especially the characteristic basis

function method (CBFM) [16, 17] can be considered.
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Unlike the conventional MoM solution with subdomain basis functions, the geome-

try can be divided into larger blocks proportional to the wavelength. Defining macro

basis function on each block, the impedance matrix size can be reduced, and in this

fashion the electrically large structures can be solved efficiently. In the CBFM, each

block must be extended to ensure the continuity between the blocks [16]. However in

the solution of arrays, array elements can be considered as distinct blocks, thus macro

basis functions can be expanded over them. In this method, first the primary charac-

teristic basis functions (CBFs) are calculated from the self-interaction of each block,

then the secondary CBFs are found by calculating currents induced by the primary

CBFs on neighboring elements. Note that secondary CBFs due to the far interactions

can be discarded and the CBFs redundant to the solution can be eliminated using

the singular value decomposition (SVD). However instead of having secondary basis

functions, excitation-free CBFs can also be implemented by finding primary MBFs

for different excitations, especially in the solution of elements under multiple illumi-

nations [100, 101]. Using acceleration methods including Jacobi Method [102, 103],

Domain Green’s Function Method [104] and MLFMA [105] within the methodology

of the CBFM, much faster and cheaper solutions can be achieved.

In [18] and [19], the multilevel CBFM (MLCBFM) is also presented for the solution

of large structures and arrays. Utilizing blocks in different levels, the multilevel ap-

proach would reduce the degree of freedom even further. The largest computational

burden in CBFM is the filling of the reduced matrix. To reduce such a burden, ACA

algorithm [106], FMM [105] and the interpolation method presented in [107] can be

considered.

The characteristic modes can also be incorporated as macro basis functions. Since

CM analysis is independent of the excitation, same modes can be implemented for

different excitations. In [20], characteristic modes are introduced as basis functions

for the microstrip array of identical elements. In [108], periodic characteristic mode

analysis is proposed to perform matrix reduction for large finite periodic arrays effec-

tively. In order to demonstrate usability of the same characteristic modes over array

elements of different sizes, an analysis of reflectarray is presented in [21]. In this so-

lution, a tabulation based on the element size and the element distance is also demon-

strated, which accelerates the generation of the reduced matrix entities. Besides, it
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has been argued that using the first couple of modes would suffice to calculate the

far field with a certain accuracy. However, when it comes to the calculation of near

field and the surface current, more modes are needed for an accurate solution. In ad-

dition to this, as the difference between the size of array element becomes too large,

the utilized modes would become insufficient to represent the current on the largest

elements. Therefore in such case, number of modes must also be increased. However

increasing the number of modes would cause larger reduced matrices.

In this chapter, characteristic modes are demonstrated as macro basis functions. The

characteristic basis function method is explained and the use of characteristic modes

as primary CBFs in the context of CBFM is discussed. By calculating secondary

CBFs from the characteristic modes, the interactions between array elements can be

represented by basis functions free of excitation. Although the inclusion of secondary

CBFs increases the matrix size, using characteristic modes as primary CBFs may

become advantageous over the conventional CBFM due to the excitation-free and

reusable nature of the modes as discussed in [21]. This study is also reported in [109].

Afterwards the methodology of the MLCBFM is briefly described and incorporation

of the characteristic modes into the MLCBFM is introduced as an original study.

5.1 The Characteristic Modes as Basis Functions

In the theory of the characteristic modes, the solution of the eigenvalue equation

for N × N matrix would produce N different eigenvalues. Therefore, the number

of modes are equal to the number of subdomain basis functions that is utilized in

the MoM solution. However, it is sufficient to consider only a few modes of near

resonance since the significant modes are more likely to make the most contribution

to the solution. In order to illustrate the contribution of the significant modes, the

surface current is solved over a single rectangular PEC plate of 10 cm × 4 cm. As

can be recalled from Chapter 2, the modal significance values of the first 6 modes of

this element from 0.5 and 5 GHz are already given in Fig. 2.7b. In this example, the

rectangular plate is illuminated by a y-polarized plane wave of normal incidence at

2.4 GHz.
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Figure 5.1: Relative error of using first M CMs as basis functions. (a)The error in the

absolute value of the current. (b) The error in the real part of the current.

A relative error between the solutions of the surface current, one calculated by using

RWG functions in the context of the conventional MoM, and the other obtained by

(2.44) using the first M modes as basis functions is given in Fig. 5.1. The relative

error is formulated as

Error =

√∑N
n=1 |In − Ĭn|2√∑N

n=1 |In|
2

× 100 (5.1)

where I is associated with the current found directly from the conventional MoM

solution with RWG basis functions. Whereas Ĭ is the weighted sum of first M CM

basis functions as

Ĭ =
M∑

m=1

amJm. (5.2)

As can be seen from Fig. 5.1a, the contribution of the second mode drops the relative

error from 100% to 36%. However, this error comes mostly from the imaginary part

of the current. In Fig. 5.1b, the relative error in the real part of the current is given, in

which the contribution of the first 2 modes makes the relative error about 6%.
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Figure 5.2: Eigencurrents on rectangular PEC plate of 10 cm × 4 cm, at 2.4 GHz. (a)

Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 5. (f) Mode 6.

The numerical inaccuracies in both the MoM solution and the solution of the gener-

alized eigenvalue equation inevitably contribute to the relative error. Hence, although

the illumination over the rectangular plate mostly excites the 2nd mode, using the 2nd

mode alone does not reduce the error to zero. Even when 25 CM basis function are

incorporated into the solution, the relative error becomes very low but not zero. How-

ever, since only the first few modes with low eigenvalues can be excited within the

given excitation, utilizing higher order modes as basis functions would not bring any

significant improvement to the solution accuracy but in return, it would increase the

computational burden. The modal currents of the first 6 characteristic modes are also

depicted in Fig. 5.2. As expected, since the plate is excited by a y-polarized plane

wave, the 2nd mode that contributes most to the solution has the current flowing in

the y direction. The contributions can also be observed from the modal weighting
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coefficients. In Fig. 5.3, the weighting coefficients, the modal significance values as

well as the characteristic angles of the first 6 modes are also plotted. The characteris-

tic angles imply that 1st, 3rd and 6th modes are inductive, whereas 2nd, 4th and 5th

modes can be regarded as capacitive modes. Note that the modal significance values

do not decrease with respect to the mode index due to the mode tracking which is

applied according to 0.5 GHz, as shown in Fig. 2.7b.
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Figure 5.3: Rectangular PEC plate of 10 cm × 4 cm, illuminated by y-polarized plane

wave of normal incidence at 2.4 GHz. (a) Modal significance values. (b) Character-

istic angles. (c) Modal weighting coefficients.

5.2 Matrix Reduction Using Macro Basis Functions

Having successfully demonstrated that characteristic modes can be used as basis func-

tions, this section shows how characteristic modes can be utilized as macro basis
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pth

qth

Figure 5.4: 20-element array of patch elements.

functions to reduce the number of unknowns. Therefore first, the matrix reduction

technique is explained in the context of CBFM, then the advantages of using charac-

teristic modes as macro basis functions over CBFM are discussed.

5.2.1 The Characteristic Basis Function Method (CBFM)

In the CBFM solution, the structure is divided into sub-blocks. However, in the prob-

lem of large array structures, each array element can be treated as a sub-block. As an

illustration, a patch array consisting 20 elements is depicted in Fig. 5.4. Hence, this

specific problem consists of 20 blocks. The MoM matrix and the excitation vector

obtained using subdomain basis functions are presented in terms of sub-matrices and

sub-vectors as

Z =



. . . ...
...

...
...

· · · Zpp · · · Zpq · · ·
...

...
...

...
...

· · · Zqp · · · Zqq · · ·
...

...
...

... . . .


V =



...

Vp

...

Vq

...


. (5.3)

In this representation, the diagonal sub-matrices correspond to the element solutions

that are isolated from the rest of the array. In this context, Zpp and Zqq correspond to

the MoM matrices of isolated pth and qth elements, respectively. Besides that, Zqp

and Zpq sub-matrices correspond to the interaction between the pth and qth elements.

Using the excitation vector Vp that corresponds to the pth element, the solution of the
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vector matrix multiplication,

ZppIp = Vp (5.4)

gives the first macro basis function over the pth element as Ip, which is called as the

primary basis function.

Due to the coupling between array elements, using only one macro basis function on

each array element would not be sufficient for an accurate solution. For this reason,

secondary basis functions are introduced to obtain macro basis functions which are

orthogonal to each other and better represent the current distribution over the array.

In order to calculate secondary basis functions within the CBFM, the primary basis

functions are treated as distant current sources for the neighboring array elements.

Hence, the excitation on the qth element due to the current source Ip can be defined

as

Vqp = −ZqpIp. (5.5)

Subsequently the induced current over the qth element due to such radiation yields

the secondary basis function Isqp, which can be calculated from the solution of the

vector matrix multiplication in (5.6).

ZqqI
s
qp = Vqp (5.6)

(a) (b)

Figure 5.5: (a) 1st-order neighboring. (b) 2nd-order neighboring.
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In the solution of the 20-element array, 1 primary basis function can be defined along

with maximum 19 secondary basis functions for each element. Therefore, if 20 MBFs

are defined on each element, the size of the matrix becomes 400 × 400. However,

the matrix can be further reduced by neglecting distant interactions at some extend.

Hence in the solution of large arrays, the interactions between elements of either 1st

or 2nd order neighboring can be taken into account to keep the matrix small. The

cases of 1st and 2nd order neighboring are depicted in Fig. 5.5. It can be deduced

from Fig. 5.5a that along with 1 primary basis function, maximum 8 secondary basis

functions can be defined in the case of 1st order neighboring. Whereas in the case of

the 2nd order neighboring, up to 24 secondary basis function can be defined, as shown

in Fig. 5.5b. Note that unlike the depiction in Fig. 5.5, such neighboring can also be

realized by neglecting the elements in farthest corners. Once primary and secondary

functions are calculated for each element, the macro basis functions are grouped in

matrices. For instance, the set of basis functions in matrix form that corresponds to

pth element can be presented as

Jp =
[
Ip Isp1 Isp2 Isp3 · · ·

]
. (5.7)

Before the calculation of the reduced matrix, the singular value decomposition [110]

is applied to the set of basis functions in order to ensure the orthogonality. After the

SVD procedure, the new basis set is sorted according to the singular values. Besides

that, basis functions with singular values below a certain threshold are removed from

the basis set. Hence, secondary CBFs that are not adequately independent from other

MBFs are being removed. Apart from reducing the matrix size even further, SVD also

improves the condition number of the matrix. The singular values are also normalized

as proposed in [106]. Throughout this work, the threshold of the normalized singular

values is set to 10−3. Once the macro basis function sets are obtained, the reduced

impedance matrix and the reduced excitation vector can be calculated as given in

(5.8a) and (5.8b), respectively.

Zr
pq =JT

pZpqJq (5.8a)

Vr
p =JT

pVp (5.8b)
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5.2.2 The Characteristic Modes as Macro Basis Functions

As briefly discussed at the beginning of this chapter, filling the reduced impedance

matrix is the most expensive part of the computation. By exploiting symmetries in

the problem as well as utilizing several methods including ACA algorithm [106] and

interpolation techniques [107], the computational cost of this stage is usually reduced.

However, when the goal is to solve the array structure for different illuminations,

MBFs and the resulting reduced matrix must be calculated over and over for different

excitations. The computational burden of such problem has led to the search for

excitation independent macro basis functions. In order to address this problem, using

multiple primary basis functions resulting from different incidences is proposed in

[101].

Nevertheless the first few significant modes in the analysis of characteristic modes

are very prone to resonance by any illumination. Hence, characteristic modes be-

come perfect candidates to be utilized as excitation independent MBFs in the matrix

reduction. Therefore once the reduced matrix is obtained, the same matrix can be

reused in the solution of the array for different illuminations. Moreover, when the

array elements are either identical or having dimensions close to each other, it is

possible to utilize exactly the same modal currents as MBFs over the elements. How-

ever, keep in mind that as the size differences between array elements increase, more

modes will be needed to model the surface current on the larger elements than on

the smaller elements. Using redundant modes as MBFs on smaller elements would

increase the computational load, whereas using less than necessary modes over larger

elements may reduce the solution accuracy. In the conventional MoM solution with

RWG basis functions, if each array element consists of N RWGs, an array size of P

would lead an impedance matrix of PN × PN . However, as M CMs are utilized

as basis functions on each element, the size of the reduce matrix would reduce from

PN × PN to PM × PM where M << N .

In [21], a solution method is demonstrated for array of differently sized elements. In

this solution, array elements are scaled and by keeping the mesh structure same on

each element, same characteristic modes are used on differently sized elements. A

tabulation method has also been developed in [21] to cope with the computational
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load of filling the reduced matrix. In this tabulation, the elements of the reduced ma-

trix that determine the interactions between the elements are expressed as functions

of the element size and the distances between the elements. Hence, only certain re-

gions of the reduced matrix are calculated while the rest is filled using the tabulation.

In this respect, characteristic modes can become very advantageous as macro basic

functions.

Although using only significant modes as MBFs would be sufficient to achieve an

accurate solution, the secondary basis functions resulting from CMs can also be cal-

culated and incorporated into the solution. As already been demonstrated as a part of

the work in [109], the inclusion of secondary MBFs significantly increases the size

of the reduced matrix. After applying SVD, redundant secondary functions with very

low singular values can still be eliminated. Since the modes are sorted according

to their closeness to resonance, using only a very few modes and their corresponding

secondary functions would ensure the accuracy of the solution. Using secondary basis

functions obtained from characteristic modes can become more advantageous com-

pared to the conventional CBFM when the excitation-free nature and the reusability

of the modes for scaled elements are exploited well.

5.3 Application of the Matrix Reduction with CM Basis Functions

In this section, the periodic structures are initially solved using the straightforward

MoM with RWG basis functions. Then the matrix reduction is performed using the

characteristic modes as macro basis functions. In order to investigate the accuracy

under different illuminations, the array is solved for a spectrum of plane waves of

0◦ ≤ θi ≤ 60◦ and 0◦ ≤ ϕi ≤ 90◦ with angular step of Nθ = 30◦ and Nϕ = 2◦. The

plane wave expression used in the solutions can be given as

Ei = [−x̂ cos θi cosϕi − ŷ cos θi sinϕi + ẑ sin θi]×

exp {jk (x̂ sin θi cosϕi + ŷ sin θi sinϕi + ẑ cos θi)} .
(5.9)

In order to determine the accuracy of the solutions, the relative error before and after

the reduction is calculated using (5.1). In this case, Ĭ represents the solution of the
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reduced matrix for array of P elements, which can be calculated as

Ĭp = JpUP (5.10)

where U is the solution of the reduced matrix,

U =



U1

U2

...

UP−1

UP


= {Zr}−1Vr. (5.11)

5.3.1 Solution of the Square Patch Array

The first example is an 8×8 array composed of square unit patch elements as depicted

in Fig. 5.6a. The size of the square patch is 10 mm and the period is 15 mm both in x

and y directions. The element consists of 133 RWG functions as shown in Fig. 5.6b,

hence the number of unknowns for 64-element array becomes 8512.
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Figure 5.6: (a) Meshing configuration of the 64-element array. (b) RWG basis func-

tions on the square patch element.

In the initial analysis, the matrix reduction is performed on the 64-element square
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patch array at 8 and 15 GHz under normal incidence using the CMs as macro basis

functions. The relative error and the reduced matrix size according to the first M

number of modes are given in Table 5.1. The characteristic modes are utilized as

basis functions in the order of significance. As can be seen from the table, using the

first 10 modes at 8 GHz and the first 14 modes at 15 GHz, the relative error drops

below 1%. The dimension of the impedance matrix is reduced from 8512 to 640 and

896 at 8 GHz and 15 GHz, respectively. The error decreases more rapidly at the lower

frequency since less number of CM basis functions affect the current density on lower

frequencies.

Table 5.1: Solution of 64-element square patch array using CM basis functions

# of CMs f (GHz) Reduced Matrix Size Relative Error (%)

2 8 128× 128 24.75

4 8 256× 256 22.84

6 8 384× 384 22.80

8 8 512× 512 1.78

10 8 640× 640 0.97

12 8 768× 768 0.66

14 8 896× 896 0.38

16 8 1024× 1024 0.33

18 8 1152× 1152 0.31

20 8 1280× 1280 0.31

2 15 128× 128 30.63

4 15 256× 256 8.04

6 15 384× 384 7.88

8 15 512× 512 4.28

10 15 640× 640 1.85

12 15 768× 768 1.56

14 15 896× 896 0.73

16 15 1024× 1024 0.59

18 15 1152× 1152 0.53

20 15 1280× 1280 0.48
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Figure 5.7: MS values of the 10 cm square element.

In Fig. 5.7, modal significance values of the 10 cm square element for the first 10

modes are plotted under normal incidence. As can be seen from the figure, only the

first 4 modes have almost non-zero modal significance values at 8 GHz, however at

15 GHz, the first 2 modes are almost at resonance and more modes can be excited

due to the plane wave illumination or the element interactions. Hence, more number

of modes are needed at 15 GHz to model the reduced matrix solution accurately.

In the next analysis, the matrix reduction is performed at 8 GHz using the first 10

modes. Then the reduced matrix is calculated in the case of θi = ϕi = 0 for once and

stored. Then the stored matrix is utilized in the solution of the array under different

illuminations. The relative error is given in Fig. 5.8a. The same procedure is also

repeated at 15 GHz using the first 14 CMs and the corresponding errors are also

plotted in Fig. 5.8b. It can be seen that same reduced matrix can be utilized for

different incidences and yet the relative errors according to different propagation and

polarization angles become very close to each other. Note that although the reduced

impedance matrix is calculated once, the reduced excitation vector still needs to be

calculated for every different incidence. Nevertheless, the computational cost of the

reduced excitation vector is much lower compared to the reduced matrix generation.
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Figure 5.8: The relative error of the matrix reduction using CMs, as a function of ϕi.

(a) The solution at 8 GHz using the first 10 CMs. (b) The solution at 15 GHz using

the first 14 CMs.

Table 5.2: Solution of 64-element array using CMs as primary basis functions and

secondary basis functions from the interactions of elements.

# of CMs f (GHz) Reduced Matrix Size Relative Error (%)

1 8 656× 656 45.03

2 8 1016× 1016 3.95

1 15 800× 800 55.31

2 15 1124× 1124 6.63

4 15 1320× 1320 1.03
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Besides using the characteristic modes only as macro basis functions, the solution can

also be realized by considering CMs as primary basis functions and incorporating sec-

ondary functions, that are calculated from the interaction of characteristic modes on

neighboring array elements, into the solution. In Table 5.2, the relative error and the

reduced matrix size according to the mode number are given for the normal incidence

of θi = ϕi = 0. Similar to the previous solution, modes are utilized in the order of

significance and 2nd order neighboring is considered. The redundant basis functions

are eliminated through SVD and the threshold for normalized singular values is set to

10−3. As can be seen from the table, only the first 2 characteristic modes and the first

4 characteristic modes would be sufficient to achieve a relative error around 4% and

1% at 8 GHz and 15 GHz, respectively.
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Figure 5.9: The relative error using CMs as primary basis functions and secondary

basis functions from the interactions of elements. (a) The solution at 8 GHz using the

first 2 CMs. (b) The solution at 15 GHz using the first 4 CMs.
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Although incorporation of the secondary basis functions significantly increase the size

of the reduced matrix, the secondary basis functions can still be included into the so-

lution to ensure the accuracy. The solution is also performed for multiple excitations

by implementing same basis functions. In Fig. 5.9a, relative error of the solution is

shown for the first 2 CMs as primary basis functions and their secondaries at 8 GHz.

Similarly in Fig. 5.9b, the relative error with the first 4 CMs and the correspond-

ing secondary basis functions is given at 15 GHz. As can be seen, the relative error

slightly increases as the elevation angle increases. Hence, more modes are needed in

the case of oblique incidence.

5.3.2 Solution for Array of Identical and Scaled Ring Elements

Having successfully demonstrated CMs as excitation independent MBFs, the next

step is to demonstrate the matrix reduction of the array of differently sized elements.

In this analysis, a 16 × 8 array of circular ring elements are utilized. In the first

example, the array is constructed by identical ring elements with inner radius of 2.5

cm and outer radius of 3 cm. The period is 8 cm both in x and y directions. The

element is meshed in such a way that 64 RWG functions are defined on each element

as shown in Fig. 5.10. Hence, the overall number of RWG basis functions used

in the MoM solution is 8192. In Fig. 5.11, the characteristic modes of the first 10
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Figure 5.10: RWG basis functions on the circular ring element.
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Figure 5.11: MS values of the circular ring element.

modes are given. As seen from the figure, the first 2 modes resonate at 1.9 GHz and

the resonance frequencies for higher order modes are 3.7 and 5.5 GHz. In order to

observe the influence of the first 2 CMs, the solution is carried out at 2 GHz, however

to observe the need for more than 2 modes, the solution is also realized at 5 GHz.

In Table 5.3, the relative error and the corresponding matrix size are given according

to the number of CM basis functions. In this solution, 128-element array of identical

ring elements is illuminated by the normal incidence of θi = ϕi = 0. It can be seen

that using the first 6 modes drops the relative error below 1% at 2 GHz. However at 5

GHz, first 16 CMs are needed to reduce the relative error below 1%.
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Table 5.3: Solution of the 128-element array of identical circular ring elements using

CMs as basis functions.

# of CMs f (GHz) Reduced Matrix Size Relative Error (%)

2 2 256× 256 5.00

4 2 512× 512 1.57

6 2 768× 768 1.13

8 2 1024× 1024 0.10

10 2 1280× 1280 0.10

2 5 256× 256 99.96

4 5 512× 512 99.95

6 5 768× 768 85.20

8 5 1024× 1024 7.38

10 5 1280× 1280 5.26

12 5 1536× 1536 4.41

14 5 1792× 1792 4.38

16 5 2048× 2048 0.47

18 5 2304× 2304 0.35

20 5 2560× 2560 0.26

In order to investigate the matrix reduction using the same characteristic modes on

elements of different sizes, circular ring elements in the previous example are ran-

domly scaled by scaling factor from 0.7 to 1.3. Similar to the previous example, the

array period is kept 8 cm in both x and y directions. The resulting array structure is

depicted in Fig. 5.12. The characteristic modes that have already been utilized on the

array of identical elements are also utilized on the scaled elements at 5 GHz without

any modification. The relative error and corresponding matrix sizes in the case of

the normal incidence are given in Table 5.4. As can be seen, the relative error values

for the array of differently sized elements are very close to the relative errors of the

solution for the identical elements. These results indicate that CMs can be used as

basis functions in the solution of reflectarray problems where the element dimensions

vary as the phase tuning parameter.
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Figure 5.12: 128-element array of differently sized circular rings.

Table 5.4: Solution for the 128-element array of differently sized circular rings using

CM basis functions.

# of CMs f (GHz) Reduced Matrix Size Relative Error (%)

2 5 256× 256 99.99

4 5 512× 512 99.99

6 5 768× 768 85.65

8 5 1024× 1024 9.23

10 5 1280× 1280 5.37

12 5 1536× 1536 4.88

14 5 1792× 1792 4.39

16 5 2048× 2048 0.97

18 5 2304× 2304 0.57

20 5 2560× 2560 0.39

In the solution of reflectarray element, it is not necessary to reduce the error to 1% if

the far field can be the only concern. As discussed in [21], the relative error of the far

field is lower than the relative error of the surface current due to the far field approx-

imations. However, when the near field solution is under concern, one can desire a

relative error less than 1% in the stage of the matrix reduction. In the example of the

array solution with ring elements, using the first 16 modes to reduce the relative error

below 1% makes the reduced matrix dimension 2048, which is a quarter of the di-
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mension of the MoM matrix that is obtained with RWG functions. Hence, especially

in the calculation of the near field of large arrays, the matrix should be reduced more

than the examples presented above. For this reason, multilevel matrix reduction using

CM basis functions is proposed as an original work. Based on the multilevel CBFM,

characteristic modes can be utilized in the first level of the matrix reduction. In the

next section, the multilevel matrix reduction is briefly explained, then the results re-

garding the matrix reduction with CM basis functions are demonstrated.

5.4 Multilevel Matrix Reduction using Characteristic Modes

In the multilevel matrix reduction, the solution with RWG basis functions is Level-0.

As can be recalled from Chapter 2, the matrix-vector multiplication in Level-0 can be

represented as

Z[0]I[0] = V[0]. (5.12)

The impedance matrix and the excitation vector for the array of P elements can be

expressed as

Z[0] =


[Z[0]

11 ]N0,1×N0,1 [Z[0]
12 ]N0,1×N0,2 · · · [Z[0]

1P ]N0,1×N0,P

[Z[0]
21 ]N0,2×N0,1 [Z[0]

22 ]N0,2×N0,2 · · · ...
...

... . . . ...

[Z[0]
P1 ]N0,P×N0,1 · · · · [Z[0]

PP]N0,P×N0,P

{
P∑

p=1
N0,p

}
×
{

P∑
p=1

N0,p

}

(5.13a)

V[0] =


[V[0]

1 ]N0,1×1

[V[0]
2 ]N0,2×1

...

[V[0]
P ]N0,P×1

{
P∑

p=1
N0,p

}
×1

(5.13b)

where N0,p is the number of RWG elements in the pth element. If the discretization

on each array element is kept the same using either identical or scaled elements, the

number of RWGs on each element becomes N0. Hence, corresponding impedance
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matrix and the excitation vector becomes

Z[0] =


[Z[0]

11 ]N0×N0 [Z[0]
12 ]N0×N0 · · · [Z[0]

1P ]N0×N0

[Z[0]
21 ]N0×N0 [Z[0]

22 ]N0×N0 · · · ...
...

... . . . ...

[Z[0]
P1 ]N0×N0 · · · · [Z[0]

PP]N0×N0


PN0×PN0

(5.14a)

V[0] =


[V[0]

1 ]N0×1

[V[0]
2 ]N0×1

...

[V[0]
P ]N0×1


PN0×1

. (5.14b)

As already been demonstrated for square patch and circular ring examples in the

previous section, characteristic modes are utilized as Level-1 basis functions. Using

the first N1 characteristic modes of the impedance matrix Z[0]
pp which corresponds to

any isolated element at Level-0, a set of Level-1 basis functions, J[1], can be defined

as

J[1] =
[
[J

[1]
1 ]N0×1 [J

[1]
2 ]N0×1 · · · [J

[1]
N1
]N0×1

]
N0×N1

. (5.15)

Therefore, the impedance matrix and the excitation vector at Level-1 can be expressed

as

Z[1] =


[Z[1]

11 ]N1×N1 [Z[1]
12 ]N1×N1 · · · [Z[1]

1P ]N1×N1

[Z[1]
21 ]N1×N1 [Z[1]

22 ]N1×N1 · · · ...
...

... . . . ...

[Z[1]
P1 ]N1×N1 · · · · [Z[1]

PP]N1×N1


PN1×PN1

(5.16a)

V[1] =


[V[1]

1 ]N1×1

[V[1]
2 ]N1×1

...

[V[1]
P ]N1×1


PN1×1

(5.16b)

where sub-matrices and sub-vectors are calculated according to (5.17).

Z[1]
pq = J[1]

p

T
Z[0]

pqJ
[1]
q (5.17a)

V[1]
p = J[1]

p

T
V[0]

p (5.17b)
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In the second level, the array is divided into blocks in which each block contains

a group of array elements. Then the matrix reduction is done in the same way by

treating each block as a single array element. Assuming that R is the number of blocks

at Level-2 and each block contains equal number of array elements, the impedance

matrix of Level-1 can also be represented as

Z[1] =


[Z[1]

11 ]N ′
1×N ′

1
[Z[1]

12 ]N ′
1×N ′

1
· · · [Z[1]

1R]N ′
1×N ′

1

[Z[1]
21 ]N ′

1×N ′
1

[Z[1]
22 ]N ′

1×N ′
1

· · · ...
...

... . . . ...

[Z[1]
R1]N ′

1×N ′
1

· · · · [Z[1]
RR]N ′

1×N ′
1


RN ′

1×RN ′
1

(5.18)

where N ′
1 = N1P/R. In order to reduce the matrix in the second level, a set of

basis functions is also defined at Level-2. In this stage, the basis functions are cal-

culated as in the conventional CBFM. Hence, primary and secondary basis functions

are calculated for the each block as

J[2]
r =

[
[J

[2]
1 ]N ′

1×1 [J
[2]
2 ]N ′

1×1 · · · [J
[2]
N2,r

]N ′
1×1

]
N ′

1×N2,r

, r = 1, 2, ..., R. (5.19)

As a result, the reduced matrix and the excitation vector at Level-2 becomes

Z[2] =


[Z[2]

11 ]N2,1×N2,1 [Z[2]
12 ]N2,1×N2,2 · · · [Z[2]

1R]N2,1×N2,R

[Z[2]
21 ]N2,2×N2,1 [Z[2]

22 ]N2,2×N2,2 · · · ...
...

... . . . ...

[Z[2]
R1]N2,R×N2,1 · · · · [Z[2]

RR]N2,R×N2,R

{
R∑

r=1
N2,r

}
×
{

R∑
r=1

N2,r

}

(5.20a)

V[2] =


[V[2]

1 ]N2,1×1

[V[2]
2 ]N2,2×1

...

[V[2]
R ]N2,R×1

{
R∑

r=1
N2,r

}
×1

(5.20b)

where the sub-matrices and sub-vectors become

Z[2]
pq = J[2]

p

T
Z[1]

pqJ
[2]
q (5.21a)

V[2]
p = J[2]

p

T
V[1]

p . (5.21b)
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5.4.1 Application of Multilevel Matrix Reduction

The proposed multilevel matrix reduction is performed on the 16× 8 array of scaled

ring elements shown in Fig. 5.12. The first level has already been demonstrated by

treating each array element as a block and expanding characteristic modes as basis

functions over the array elements. At level-2, the array is divided into 8 block where

each block consists of 16 elements. The blocks at both levels are depicted in Fig.

5.13. At Level-1, 5 and 16 CMs are utilized as basis functions at 2 and 5 GHz,

respectively. At Level-2, 2nd order neighboring is considered and the SVD threshold

for the normalized singular values is set to 10−3. The array is illuminated by normal

and oblique plane wave incidences of θi = 0◦, 30◦, and 60◦ as defined in (5.9). In

Table 5.5, the relative error and the matrix size reduction are given at both levels at 2

and 5 GHz. It can be seen from the table that the size of the matrix is reduced from

8192 × 8192 to 56 × 56. In the first level, the error relative to Level-0 is less than

%2, whereas in the second level, the error relative to Level-1 becomes less than 8%

for all different incidences. This example indicates that the proposed method can be

utilized as an alternative to the conventional multilevel CBFM to exploit advantages

of CM basis functions coming from their excitation-free nature and reusability on

differently scaled elements. Further discussion on the multilevel matrix reduction

using the characteristic modes is provided in Chapter 6.
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Figure 5.13: 128 blocks at Level-1 and 8 blocks at Level-2, defined for the 128-

element array of differently sized circular rings.
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Table 5.5: Multilevel matrix reduction for the 128-element array of differently sized

circular rings.

Level Matrix Size f (GHz) (θi, ϕi) Relative Error (%)

0 → 1 8192× 8192 → 640× 640 2 (0◦, 0◦) 1.62

1 → 2 640× 640 → 56× 56 2 (0◦, 0◦) 6.57

0 → 1 8192× 8192 → 640× 640 2 (30◦, 0◦) 1.70

1 → 2 640× 640 → 56× 56 2 (30◦, 0◦) 7.75

0 → 1 8192× 8192 → 640× 640 2 (60◦, 0◦) 1.53

1 → 2 640× 640 → 56× 56 2 (60◦, 0◦) 7.67

0 → 1 8192× 8192 → 2048× 2048 5 (0◦, 0◦) 0.97

1 → 2 2048× 2048 → 56× 56 5 (0◦, 0◦) 7.10

0 → 1 8192× 8192 → 2048× 2048 5 (30◦, 0◦) 1.16

1 → 2 2048× 2048 → 56× 56 5 (30◦, 0◦) 3.55

0 → 1 8192× 8192 → 2048× 2048 5 (60◦, 0◦) 1.56

1 → 2 2048× 2048 → 56× 56 5 (60◦, 0◦) 4.08
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CHAPTER 6

CONCLUSIONS

The characteristic mode analysis allows the current on any arbitrary surface to be

evaluated as a weighted set of orthogonal modes. It mostly distinguishes from other

modal analysis techniques due to the eigenvalues since they yield information about

the resonant behavior of the modes. For this reason, the analysis of the characteristic

modes provides valuable insight into the radiation and scattering problems. There-

fore, it has become popular for antenna designers over the years. Characteristic mode

analysis can be useful in a wide variety of antenna applications including phased ar-

ray design, multiple-input-multiple-output (MIMO) systems, loaded array analysis

and coupling reduction methods in finite arrays [63]. In recent years, the relationship

of characteristic modes with spherical modes [22] and cavity modes have been in-

vestigated [23]. However, the periodic unit cell analysis has never been investigated

using the theory of the characteristic modes. In this respect, this thesis study brings a

new perspective to the unit cell solution and leads new approaches in the analysis and

design of unit cell elements.

In order to calculate characteristic modes for the unit cell problem, an efficient for-

mulation is developed. Due to the slow converging nature of both spatial domain and

spectral domain periodic Green’s functions, Ewald’s transformation is incorporated

into the solution. Hence, it paves the way for fast and effective analysis of the unit

cell elements. Then, characteristic mode analysis of the FSS elements is performed.

In the solution of Jerusalem Cross, first few characteristic modes show similar char-

acteristics to the fundamental Floquet modes. Under normal incidence, modal signif-

icance and characteristic angle values correspond to the magnitude and phase of the

reflected field, respectively. However, a more interesting phenomena occurs when the
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unit cell element is illuminated by an oblique incidence. In this case, a third character-

istic mode emerges in the band of interest and changes the behavior of the reflection.

Hence, the FSS element becomes dependent on angle of incidence. Nevertheless in

the design of large periodic structures including FSSs, metamaterial absorbers and ar-

tificial impedance surfaces, one possible goal is to achieve polarization independence

along with angle insensitivity. Thus, the angle independency can be provided only by

preventing this additional characteristic mode resonating at the band of interest. In

recent years, characteristic mode suppression techniques are demonstrated in antenna

problems using inductive loads [46] and metasurface structures [47]. These methods

can also be considered for the unit cell applications. Therefore, characteristic mode

analysis of the unit cell element indicates a possible future work based on the CMA

to make the unit cell element insensitive to the angle of incidence.

In the following analysis, metal-only reflectarray elements are examined. However

this time, the modal analysis is not performed according to the frequency but the tun-

ing parameters of the reflectarray element. Since the unit cell elements are backed

by a ground plane, the structure can be thought of as a two-layer element. For this

reason, 4 CMs are emerged. Since the aim in the design of reflectarray antennas is

to acquire the desired aperture phase distribution, the phase range of the reflectarray

unit cell element must be at least 360 degrees. Besides, in order to make reflectarray

antenna less dependent on the production tolerances as well as the simulation inaccu-

racies, the phase response must change gradually with respect to the tuning parameter.

Therefore for a proper design, it can be stated that the eigenvalues correspond to the

excited modes must vary gradually and over a wide range with respect to the tuning

parameter. This leads to the conclusion that characteristic modes can also be used

in reflectarray element design. Therefore as a future study, a design methodology

based on CMA can be adopted to obtain new reflectarray elements by adjusting the

behavior of eigenvalues according to the tuning parameter. Since the characteristic

mode analysis of the unit cell element is attempted for the first time, the examples are

chosen out of simple and metal-only elements. Nevertheless, such analysis can also

be extended for complex structures including multilayer metasurfaces, dielectric FSS

elements and corrugated surfaces.
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Undoubtedly, one of the most original contributions of this dissertation is the pro-

posed method that calculates the required load values in advance to shift the reflec-

tion band of the ring-type FSS element to the desired band. In this method, first the

reactive load matrix is calculated to change the resonance frequency of the mode-of-

interest as desired. Then a novel approach is introduced that reduces the continuous

load distribution into two capacitive or inductive loads. Since shifting the resonant

frequency of the mode also means shifting the reflection coefficient, an original de-

sign method has emerged. It is shown that the developed method to obtain load val-

ues to have desired reflection band can be utilized for ring-type elements in different

shapes, as well as for illuminations that propagate and polarize in different directions.

Hence instead of assigning load values as unknown variables and running complex

optimization algorithms, applying the characteristic mode analysis on the unloaded

ring elements seem sufficient to find the load values that shift the reflection band to

desired frequencies. Especially in the design of FSS elements that consist of multiple

ring elements, the optimization algorithms would become very cumbersome, espe-

cially when there are multiple rings in the same unit cell. However, the developed

method also works well on the unit cell elements that consist of multiple rings placed

concentrically or placed in different layers. In the ring-type slot problem, solving the

conducting surface rather than solving only the slot region would increase the compu-

tational cost drastically. Hence considering the complementary problem and solving

only the complementary unloaded slot element once to find desired load values would

be very advantageous in terms of time and cost. For all these reasons, the theory of

characteristic mode theory has been exploited efficiently in the design of ring-type

reactively loaded FSS elements.

After having successfully demonstrated the method for the ring-type FSS elements,

the next step would be to develop the same method for different periodic geometries

that are not ring-shaped. In fact, although the goal in this thesis work is to develop this

method for periodic structures, a similar approach can also be considered in antenna

problems with the help of the characteristic modes.

In the last part of the dissertation, an additional study is demonstrated that differs from

the rest of the thesis study since the CMA is not applied on unit cell elements, but on

isolated array elements at the open boundaries. Then the characteristic modes on an
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array element is utilized as a macro basis function on the entire array. In the context

of the macro basis function approach, the use of characteristic modes is discussed as

basis functions. Although excitation-independent CBFM techniques are available in

the literature [100,101], excitation independent nature of the characteristic modes still

become advantageous due to the fact that no prior knowledge regarding the excitation

is needed in the construction of macro basis functions. Besides that, unlike the CBFM

approach, the same modes can also be used as basis functions on the array elements

of different sizes. This is successfully demonstrated in the example of reflectarray

with differently sized elements.

As an original approach, the characteristic modes are treated as primary basis func-

tions in the context of CBFM and secondary basis functions are included into the

solution. Although less modes are needed in order to reduce the relative error com-

pared to the solution where only CMs are used as basis functions, a large number

of MBFs is still needed in both solutions especially at higher frequencies. Because

the matrix size increases as the number of MBFs increases, the multilevel matrix re-

duction approach is proposed by utilizing characteristic modes at the first level and

applying the conventional CBFM at the second level. In this multilevel solution, CM

basis functions can also be calculated and used at the second level. However such

a solution would decrease the accuracy unless most of the modes calculated at the

second level are incorporated into the solution. Hence at the second level, imple-

menting the conventional CBFM is considered. The downside of this approach is that

the basis functions at the second level become dependent on the excitation. However,

the first level is still independent of the excitation. Therefore, the reduced matrix

of the first level can still be stored and reused for different excitations. Since filling

the reduced matrix at the first level is time-consuming, using excitation independent

basis functions only at the first level would still be more advantageous than using

excitation-dependent basis functions at the both levels. To be able to fill the reduced

matrix efficiently, several methods including the ACA algorithm [106] can be incor-

porated into the solution. Recently, a tabulation method is also presented in [21]

for scaled reflectarray elements. As the main purpose of Chapter 5 is to present a

discussion about the matrix reduction approach using the characteristic modes, appli-

cation of these methods are left to the reader. In this chapter, computational aspects
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of the reduced matrix approach is successfully demonstrated and new approaches are

proposed using characteristic modes as basis functions.

As a conclusion, an efficient analysis of periodic structures is demonstrated with the

help of characteristic modes. This thesis work not only introduces new approaches

and design methodologies, but also brings new perspectives to the study of periodic

structures with the help of the characteristic modes.
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