DECOMPOSITION OF A SPECIFIC CLASS OF $(1,3)$ GROUPS

A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

UTKU ŞÜKRÜ ÇÖLAŞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
MATHEMATICS

DECOMPOSITION OF A SPECIFIC CLASS OF $(1,3)$ GROUPS

submitted by UTKU ŞÜKRÜ ÇÖLAŞAN in partial fulfillment of the requirements for the degree of Master of Science in Mathematics Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Yıldıray Ozan
Head of Department, Mathematics
\qquad

Assoc. Prof. Dr. Ebru Solak
Supervisor, Mathematics Department, METU

Examining Committee Members:

Prof. Dr. Feride Kuzucuoğlu
Mathematics Department, Hacettepe University
Assoc. Prof. Dr. Ebru Solak
Mathematics Department, METU
Assist. Prof. Dr. Dilber Koçak Benli
Mathematics Department, METU

Date: 21.12.2022

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Surname: Utku Şükrü Çölaşan

Signature

ABSTRACT
\title{ DECOMPOSITION OF A SPECIFIC CLASS OF $(1,3)$ GROUPS }
Çölaşan, Utku Şükrü
M.S., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Ebru Solak

December 2022,52 pages

The classification (up to near isomorphism) of some class of almost completely decomposable groups with a regulating regulator is possible. Since almost completely decomposable groups can be written as a direct sum of indecomposable groups, for classification of almost completely decomposable groups it would be enough to find isomorphism classes of all indecomposable groups. The class of almost completely decomposable groups with a critical typeset in $(1,3)$ configuration and a regulator quotient of exponent p^{3} have 6 near isomorphism classes of indecomposable groups. We describe almost completely decomposable groups by coordinate matrices. If the coordinate matrix of an almost completely decomposable group is decomposable, then the group is decomposable. Hence the method used in this thesis to determine the decomposition of almost completely decomposable groups is turned to an equivalance problem of determining the decomposition of the corresponding coordinate matrices.

Keywords: Almost completely decomposable groups, Torsion free groups, Decom-
posability of almost completely decomposable groups.

(1,3) GRUPLARIN SPESIIFIK BİR SINIFININ PARÇALANMASI

Çölaşan, Utku Şükrü
Yüksek Lisans, Matematik Bölümü
Tez Yöneticisi: Doç. Dr. Ebru Solak

Aralık 2022, 52]sayfa

Regulatörü regule olan hemen hemen ayrışan grupların bazı sınıflarının (yakın izomorfizma altında) sınıflandırılması mümkündür. Hemen hemen ayrışan gruplar ayrışamayan grupların direkt toplamı olarak yazılabildiği için, hemen hemen ayrışan grupların sınıflandırılmasında ayrışamayan grupların izomorfizma sınıflarını bulmak yeterli olacaktır. Kritik tip kümesi $(1,3)$ düzeneğinde, bölüm regulatörün üssü p^{3} olan hemen hemen ayrışan grupların 6 tane yakın izomorfizma sınıfı vardır.

Hemen hemen ayrışan grupları koordinat matrisleriyle betimleyebiliriz. Hemen hemen ayrışan bir grubun koordinat matrisi ayrışıyor ise, grubun kendisi de ayrışır. Bundan dolayı, hemen hemen ayrışan grupların ayrışmasını belirlemek için bu tezde kullandığımız metot, gruplara karşıık gelen koordinat matrislerin ayrışmasına denk gelen bir probleme dönmüştür.

Anahtar Kelimeler: Hemen hemen ayrışan gruplar, Torsiyonsuz gruplar, Hemen hemen ayrışan grupların parçalanması.

To my family

ACKNOWLEDGMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Ebru Solak for the valuable help and the guidance. I also thank my beloved mom Necmiye Çölaşan, my dad Haluk Çölaşan and my lovely family for their supports during my study. I also want to thank TÜBİTAK for their valuable supports. Last but not the least I want to thank Aslı Serttaş for all her love and support.

TABLE OF CONTENTS
ABSTRACT v
ÖZ vii
ACKNOWLEDGMENTS ix
TABLE OF CONTENTS x
CHAPTERS
1 INTRODUCTION 1
2 PRELIMINARIES 3
2.1 Almost Completely Decomposable Groups 3
2.2 Posets 4
2.3 Types and Critical Typeset 4
3 REGULATOR AND REGULATOR QUOTIENT OF AN ALMOST COM- PLETELY DECOMPOSABLE GROUP 7
4 COORDINATE MATRICES 9
4.1 Smith Normal Form 10
5 MODIFIED GAUSS ELIMINATIONS 13
$6(1,3)$ GROUPS 17
6.1 Allowed Column and Row Operations 18
7 HOMOCYCLIC $(1,3)$ GROUPS 23
8 (1,3)-GROUPS WITH REGULATOR QUOTIENT ISOMORPHIC TO $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p}$ 29
REFERENCES 51

CHAPTER 1

INTRODUCTION

An abelian group in which every element except identity has infinite order is called a torsion-free group.

A torsion-free abelian group of finite rank which contains a completely decomposable subgroup of finite index is called an almost completely decomposable group. Almost completely decomposable groups are very complicated to classify and only some special subclasses of almost completely decomposable groups can be classified under a modified isomorphism called near-isomorphism.

In this thesis we investigate the decomposition of a subclass of almost completely decomposable groups, namely $(1,3)$ groups.

In [14] the near isomorphism classes of p-reduced, p-local $(1,3)$ groups of exponent p^{3} are determined by a long and detailed proof. In this thesis we first determine the near-isomorphism classes of indecomposable $(1,3)$ groups with homocyclic regulator quotient of exponent p^{3}, then the near-isomorphism classes of indecomposable $(1,3)$ groups with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p}$ and finally we find the nearisomorphism classes of indecomposable $(1,3)$ groups with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p^{2}}$.

In this way we believe that the readers can follow the proof given in [14] easier.
A very good source for the definitions and notations are the books of A. Mader and L. Fuchs. For the detailed information about matrix represantations of almost completely decomposable groups you can read the papers published by Arnold,Mader,Mutzbauer and Solak.

In chapter 2, we define almost completely decomposable groups, pure subgroups, posets and types of almost completely decomposable groups.

In chapter 3, the definition and properties of two important isomorphism invariants of an almost completely decomposable group G, namely regulator and regulator quotient, are given.

Almost completely decomposable groups can be described by matrices, the so called coordinate matrices. This induces the problem of decomposability of almost completely decomposable groups to an equivalance problem of the decomposability of matrices.

In chapter 4, coordinate matrices and the relation between the decomposability of almost completely decomposable groups and the corresponding coordinate matrices are presented.

In chapter 5, the modified Gauss algorithm which we need to find the Smith Normal form of coordinate matrices of the given almost completely decomposable groups, is discussed

In chapter 6, we specialize on $(1,3)$ groups of exponent p^{3}. The theory given in the previous chapter is formulated in this chapter particularly for $(1,3)$ groups. We show how to construct the coordinate matrix of a $(1,3)$ group and we list the allowed row and column operations to reduce it to its Smith Normal form. We also showed that it is possible to exclude some summands if the coordinate matrix has a 0 -line or a cross.

In chapters 7,8 and 9 decomposition theorems of $(1,3)$ groups of exponent p^{3} are stated and proven.

CHAPTER 2

PRELIMINARIES

2.1 Almost Completely Decomposable Groups

A torsion-free abelian group G can be considered as an additive subgroup of the \mathbb{Q} vector space $\mathbb{Q} G$, the divisible hull of G. The dimension of $\mathbb{Q} G$ is called the rank of G.

Let G be a torsion-free abelian group of finite rank. G is called completely decomposable if G is the direct sum of rank 1 groups. If G has only trivial direct summands then G is called indecomposable.

Definition 1 A torsion-free abelian group G is said to be almost completely decomposable if G contains a completely decomposable subgroup H such that G / H is finite.

Definition 2 (Pure Subgroup) Let G be an abelian group and let H be a subgroup of G. H is called a pure subgroup of G if $m G \cap H=m H$ for all $m \in \mathbb{Z}$. In particular, if G is torsion free then from the definition of pure subgroup it follows that for all $n \in \mathbb{Z}$ the equation $a=n b$ where $b \in G$ and $a \in G$ implies $b \in H$.

The group $H_{*}^{G}:=\left\{x \in G \mid \exists_{n \in \mathbb{N}} n x \in H\right\}=G \cap \mathbb{Q} H$ is called the purification of H in G. The purification H_{*}^{G} is the unique smallest pure subgroup of G containing H.

2.2 Posets

Definition 3 A partially ordered set or poset is a set T with a binary relation \leq satisfying the followings:

1. the reflexive law: $t \leq t$, for any $t \in T$
2. the anti-reflexive law: $t_{1} \leq t_{2}$ and $t_{2} \leq t_{1}$ imply $t_{1}=t_{2}$, where $t_{1}, t_{2} \in T$
3. the transitive law: $t_{1} \leq t_{2}$ and $t_{2} \leq t_{3}$ implies $t_{1} \leq t_{3}$, where $t_{1}, t_{2}, t_{3} \in T$

Note that, $t_{1} \leq t_{2}$ means the same as $t_{2} \geq t_{1}$ and $t_{1}<t_{2}$ means that $t_{1} \leq t_{2}$ and $t_{1} \neq t_{2}$.

Some useful definitions about posets are given below:

1. Two elements $t_{1}, t_{2} \in T$ are comparable if either $t_{1} \leq t_{2}$ or $t_{2} \leq t_{1}$. Otherwise the elements are incomparable.
2. A subset of T is called a chain, if any two elements of T are comparable. On the other hand, the antichains are subsets of T whose elements are pairwise incomparable.
3. A poset T is a tree if for each $t \in T$ the subset $\{x \mid x \leq t\}$ is a chain. Similarly, T is called an inverted tree if for each $t \in T$ the subset $\{x \mid x \geq t\}$ is a chain.
4. A forest is the disjoint union of trees and an inverted forest is a disjoint union of inverted trees. Inverted forests are also called \mathbf{V}-free.

2.3 Types and Critical Typeset

Let G be a torsion-free abelian group and let p be a prime. The maximal integer m for which the equation $p^{m} x=y$ is solvable in G, is called p-height of y, denoted $h_{p}(y)$. If there is no such maximal integer exists then $h_{p}(y)$ is infinity. The sequence of p-heights,
$H(y)=\left(h_{p_{1}}(y), \ldots, h_{p_{k}}(y), \ldots\right)$ is said to be the charachteristic of y.
The equivalance classes of characteristics are called types. A type can be represented by any member in its equivalance class.

Types were invented to classify torsion-free groups of rank 1. A type $t(R)$ is an isomorphism class of a rank one group R. The set of types form a poset where $t\left(R_{1}\right) \leq t\left(R_{2}\right)$ if R_{1} is isomorphic to a subgroup of R_{2}.

Let G be a torsion-free abelian group. The set of all types of elements of G is said to be a typeset of G. If G is an almost completely decomposable group then the finite set of types of direct summands of rank 1 is called the critical typeset of G.

The group G is called homogenous if every non-zero element of G is of the same type.

CHAPTER 3

REGULATOR AND REGULATOR QUOTIENT OF AN ALMOST COMPLETELY DECOMPOSABLE GROUP

Almost completely decomposable groups are torsion-free abelian groups of finite rank which contain completely decomposable subgroups of finite index.

Let G be an almost completely decomposable group. We call a completely decomposable subgroup of G of minimal index a regulating subgroup, namely, a completely decomposable subgroup R of G is called a regulating subgroup if $|G / R|$ is the least integer in the set $\{|G / H|: H$ is completely decomposable with G / H finite $\}$

The intersection of all regulating subgroups of G is again a completely decomposable group of finite index and is called regulator of G. This result is due to R. Burkhardt. If R is the regulator of G, then G / R is called the regulator quotient of G.

The isomorphism types of the regulator and the regulator quotient are isomorphism invariants of an almost completely decomposable group.

If G contains exactly one regulating subgroup then we say G has a regulating regulator.

Remark: Let G be an almost completely decomposable group and let R be its regulator. Then R is completely decomposable. Moreover, if n is the exponent of G / R, then $R \subseteq G \subseteq n^{-1} R$.

The following result plays an important role in the decomposition problem of almost completely decomposable groups with a V-free critical typeset.

Theorem 3.0.1 (Mutzbauer [7]|) Let G be an almost completely decomposable group
and let T be the critical typeset of G. If T is V-free then G has a regulating regulator.

Definition 4 Let G be an almost completely decomposable group with regulator R and regulator quotient G / R. Write $R=C_{1} x_{1} \oplus \ldots \bigoplus C_{n} x_{n}$ where $x_{i} \in R$ and $C_{i}=$ $\left\{c \in \mathbb{Q} \mid c x_{i} \in R\right\}$. If $p^{-1} \notin C_{i}$, then the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is called ap-basis of R.

Definition 5 An almost completely decomposable group G is said to be p-local for a prime p if the regulator quotient G / R is a primary group, i.e.,G / R is a group of exponent dividing p.

Definition 6 An almost completely decomposable group G is called \boldsymbol{p}-divisible for a prime p if $p G=G$ and G is called p-reduced if it contains no p-divisible subgroup other than $\{0\}$.

Definition 7 Let G be an almost completely decomposable group. Then G is called clipped if it does not have any rational direct summand.

CHAPTER 4

COORDINATE MATRICES

Let $M=\left[m_{i j}\right]$ be an integer matrix of size $r \times n$. The matrix M is called decomposable if there exist permutation matrices P and Q such that $P M Q$ is of the form $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$. It is allowed that either A or B has no rows or no columns.

Definition 8 Let G be a p-local, p-reduced almost completely decomposable group with a regulator R and let $M=\left[m_{i j}\right]$ be an $r \times n$ integer matrix. M is called a coordinate matrix of the group G if $\left\{x_{1}, \ldots, x_{n}\right\}$ is a p-basis of R and $\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$ is a basis of the regulator quotient G / R such that

$$
g_{i}=p^{-k_{i}}\left(\sum_{j=1}^{n} m_{i j} x_{j}\right)
$$

with $\left\langle\gamma_{i}\right\rangle \cong Z_{p^{k i}}$.

Suppose that $k=k_{1} \geq k_{2} \geq \ldots \geq k_{r}$. If we group the generators g_{i} of the regulator quotient of equal orders, then the coordinate matrix M has the form

$$
M=\begin{array}{ccc|c}
m_{11} & \ldots & m_{1 n} & p^{-k_{1}} \\
\hline m_{21} & \ldots & m_{2 n} & p^{-k_{2}} \\
\hline & & & \vdots \\
\hline m_{r 1} & \ldots & m_{r n} & p^{-k_{r}}
\end{array}
$$

where $p^{k_{i}}=\operatorname{ord}\left(g_{i}+R\right)$ for $i=1, \ldots, r$.
Almost completely decomposable groups can be represented by coordinate matrices. The following theorem shows us that the decomposability of an almost completely
decomposable group G can be reduced to the decomposability of the corresponding coordinate matrix M of G. This theorem has a very important role in the decomposition theory of almost completely decomposable groups.

Theorem 4.0.1 Let G be an almost completely decomposable group and let M be its coordinate matrix. G is decomposable if and only if M is decomposable. In particular, if G has a decomposable matrix M, i.e., $P M Q=M_{1} \bigoplus M_{2}$, where P and Q are permutation matrices, then $G=G_{1} \bigoplus G_{2}$ where G_{i} has the coordinate matrix M_{i}.

Proof 1 First suppose that M is decomposable. Then there are permutation matrices P and Q such that $P M Q=M_{1} \bigoplus M_{2}$. The coordinate matrix is obtained by means of a p-basis B of the regulator R. Each column of B corresponds to a basis element and the columns of the M_{i} determine a partition $B=B_{1} \cup B_{2}$ of the p-basis.

According to this partition, we can write $R=R_{1} \bigoplus R_{2}$. But then we can write G as $G=G_{1} \bigoplus G_{2}$ where $G_{i}=\left\langle R_{i}\right\rangle_{*}$ the purification of R_{i} in G, i.e., G is decomposable.

Next assume that G is decomposable and let M be its coordinate matrix. By definition the group G can be written as $G_{1} \bigoplus G_{2}$. We may write the regulator R of G as $R=R_{1} \bigoplus R_{2}$ where R_{i} is the regulator of G_{i} and this leads us to be able to write M as a direct sum of the coordinate matrices of G_{1} and G_{2} because the columns of M are determined by the p-basis of R_{1} and R_{2}.

4.1 Smith Normal Form

Theorem 4.1.1 Let H be a non-singular, $k \times k$ integer matrix. Then there exist invertible integer matrices U, Y of size $k \times k$ such that

$$
U H Y=\left[\begin{array}{cccccc}
d_{1} & 0 & 0 & 0 & \ldots & 0 \\
0 & d_{2} & 0 & 0 & \ldots & 0 \\
0 & 0 & \ddots & 0 & \ldots & 0 \\
\vdots & \ldots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & d_{k-1} & 0 \\
0 & \ldots & 0 & 0 & 0 & d_{k}
\end{array}\right]
$$

where d_{i} are positive integers and d_{i} divides d_{i+1} for $1 \leq i \leq m$. The numbers d_{i} are uniquely determined by H. UHY is called the Smith Normal Form of a matrix H.

We need to establish standard form of coordinate matrices of almost completely decomposable groups.

Smith Normal Forms of coordinate matrices are helpful to determine the decomposability of matrices. By Theorem4.1.1, every integer matrix H is equivalent to a matrix H^{\prime} in Smith Normal form, i.e., $H^{\prime}=U H Y$ where U, Y are invertible matrices.

In this thesis, we deal with matrices in $Z_{p^{k}}$. By Theorem 4.1.1, we get the Smith Normal form of H as

$$
\left[\begin{array}{lllll}
I & & & \\
& p I & & & \\
& \ddots & & \\
& & p^{k-1} I & \\
& & & 0
\end{array}\right]
$$

where I denotes the identity matrix and the empty spaces are 0 -blocks.
Let G be an almost completely decomposable group and let $H=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ be its coordinate matrix, where A, B, C and D are block matrices. We will use allowed row and column transformations to get the Smith Normal form of the subblocks of H. While applying this procedure, the submatrices 0 and the submatrices of the form $p^{k} I$ will be affected. However it is possible to reestablish them.

CHAPTER 5

MODIFIED GAUSS ELIMINATIONS

Almost completely decomposable groups can be written as a direct sum of indecomposables. This decomposition is not unique and therefore it is hopeless to determine the isomorphism classes of almost completely decomposable groups. But some classes of almost completely decomposable groups can be classified under a weaker form of isomorphism called near isomorphism.

Definition 9 Let G_{1} and G_{2} be two torsion free groups of finite rank. If for every integer $n \in \mathbb{Z}^{+}$, there is a monomorphism $\alpha_{n}: G_{1} \rightarrow G_{2}$ such that $\left[G_{2}: \alpha_{n}\left(G_{1}\right)\right]$ is finite, n and $\left[G_{2}: \alpha_{n}\left(G_{1}\right)\right]$ are relatively prime, then G_{1} and G_{2} are called nearly isomorphic, denoted $G_{1} \cong{ }_{n r} G_{2}$.

Note that near isomorphism is a weaker form of isomorphism and isomorphic groups are also nearly isomorphic.

The following theorem includes some characterizations of near-isomorphism.

Theorem 5.0.1 [4] Let G_{1} and G_{2} be nearly isomorphic almost completely decomposable groups. Then the following statements hold.

1. Let R_{1} and R_{2} be the regulators of G_{1} and G_{2} respectively. Then R_{1} and R_{2} are isomorphic.
2. $\operatorname{Rank}\left(G_{1}\right)=\operatorname{Rank}\left(G_{2}\right)$ and $T_{\text {cr }}\left(G_{1}\right)=T_{c r}\left(G_{2}\right)$ where $T_{\text {cr }}$ denotes the critical typeset.
3. $G_{1} \bigoplus R_{2} \cong G_{2} \bigoplus R_{1}$

Almost completely decomposable groups can be represented by coordinate matrices. A row or a column transformation of the coordinate matrix M of an almost completely decomposable group G is equivalent to multiplying M with the corresponding elemantary matrices from left or right, respectively.

Let G and H be torsion free groups of finite rank. Then G and H are called nearly isomorphic if for every positive integer n , there are relatively prime integers m and n and homomorphisms $f: G \rightarrow H$ and $g: H \rightarrow G$ such that $f g=m 1_{H}$ and $g f=n 1_{G}$.

Let G be an almost competely decomposable group and M be its coordinate matrix. Row and column transformations of M are called allowed if the transformed coordinate matrix M^{\prime} is the coordinate matrix of G or another group H, that is nearly isomorphic to G. Matrices are simplified by making entries equal to 0 .

By a theorem of Faticoni-Schultz (see [5]) p-local almost completely decomposable groups can be classified up to near-isomorphism if the near isomorphism classes of indecomposable groups are known. Hence our motivation is to obtain a complete list of indecomposable groups.

Let G be an almost completely decomposable group and let M be the corresponding coordinate matrix. If we want to classify the near-isomorphism classes of indecomposable groups then we first simplify M to M^{\prime} by allowed row and column transformations. The matrix M^{\prime} that we obtained is the coordinate matrix of a nearly isomorphic group G^{\prime}. If M^{\prime} is decomposable then the group G^{\prime} is decomposable and by a well-known theorem of Arnold, two nearly isomorphic torsion-free abelian groups have the same decomposition properties, i.e., if G^{\prime} is decomposable then G is decomposable.

Lemma 5.0.2 ([][10]) Let $G=A_{1} u_{1}+A_{2} u_{2}+A_{3} u_{3}+Z_{p^{-k}}\left(a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}\right)$ be an almost completely decomposable group where $\mathbb{Z} \subseteq A_{i} \subseteq \mathbb{Q}_{p}$ and a_{i} 's are integers where $i \in\{1,2,3\}$

Suppose that $a_{3} \in p^{m} \mathbb{Q}_{p} / p^{m+1} \mathbb{Q}_{p}$ where $m \in \mathbb{N}$. Then $\left\langle u_{1}, u_{2}\right\rangle_{*}^{G}=A_{1} u_{1} \oplus A_{2} u_{2}$.

Proof 2 It is clear that $\left\langle A_{1} u_{1}+A_{2} u_{2}, p^{-m}\left(a_{1} u_{1}+a_{2} u_{2}\right)\right\rangle$ is a subset of $\left\langle u_{1}, u_{2}\right\rangle_{*}^{G}$

By definition we can write $\left\langle u_{1}, u_{2}\right\rangle_{*}^{G}=\left(Q u_{1} \bigoplus Q u_{2}\right) \cap G$.
Take an arbitrary element $b \in\left\langle u_{1}, u_{2}\right\rangle_{*}^{G}$ then

$$
\begin{equation*}
b=c_{1} u_{1}+c_{2} u_{2} \in\left(Q u_{1} \bigoplus Q u_{2}\right) \cap G \tag{51}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{Q}$.
and since $b \in G$ we can also write

$$
\begin{equation*}
b=d_{1} u_{1}+d_{2} u_{2}+d_{3} u_{3}+\varepsilon p^{-k}\left(a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}\right) \tag{52}
\end{equation*}
$$

where $d_{1} \in A_{1}, d_{2} \in A_{2}, d_{3} \in A_{3}$ and $\varepsilon \in \mathbb{Z}$.

Put $a_{3}=p^{m} a_{3}^{\prime}$ where a_{3}^{\prime} is a unit and $m \in \mathbb{N}$. Then equating the coefficients of the equations (51) and (52) we obtain

$$
d_{3}+\varepsilon p^{-k} a_{3}=d_{3}+\varepsilon p^{-k} p^{m} a_{3}^{\prime}=0
$$

Set $\varepsilon=p^{k-m} \varepsilon^{\prime}$ where $k>m$ and $\varepsilon^{\prime} \in \mathbb{Z}$. We get

$$
\begin{gathered}
c_{1} u_{1}+c_{2} u_{2}=d_{1} u_{1}+d_{2} u_{2}+d_{3} u_{3}+\varepsilon p^{-k}\left(a_{1} u_{1}+a_{2} u_{2}+p^{m} a_{3}^{\prime} u_{3}\right) \\
=d_{1} u_{1}+d_{2} u_{2}+p^{k-m} \varepsilon^{\prime} p^{-k}\left(a_{1} u_{1}+a_{2} u_{2}\right)+\left(\varepsilon p^{-k+m} a_{3}^{\prime}+d_{3}\right) u_{3}
\end{gathered}
$$

This implies $b \in\left\langle A_{1} u_{1}+A_{2} u_{2}, p^{-m}\left(a_{1} u_{1}+a_{2} u_{2}\right)\right\rangle$ because $\varepsilon p^{-k+m} a_{3}^{\prime}+d_{3}=0$ hence we proved that $\left\langle u_{1}, u_{2}\right\rangle_{*}^{G}=A_{1} u_{1}+A_{2} u_{2}+\mathbb{Z}_{p^{-m}}\left(a_{1} u_{1}+a_{2} u_{2}\right)$.

CHAPTER 6

$(1,3)$ GROUPS

A $(1,3)$ group is a p-local, p-reduced almost completely decomposable group with a critical typeset of $(1,3)$ form.

Let G be a $(1,3)$ group and let $R=R_{1} \bigoplus R_{2} \bigoplus R_{3} \bigoplus R_{4}$ be the regulator of G. Direct summands R_{i} 's are all homogoneous completely decomposable groups of rank $r_{i} \geq 1$ and type t_{i}. The rank of G is $n=r_{1}+r_{2}+r_{3}+r_{4}$.

Let $M=\left[M_{i j}\right]$ be the coordinate matrix of G and let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a p-basis of R. Assume $\left(x_{1}, \ldots, x_{r_{1}}\right)$ is a p-basis of $R_{1},\left(x_{r_{1}+1}, \ldots, x_{r_{1}+r_{2}}\right)$ is a p-basis of R_{2}, $\left(x_{r_{1}+r_{2}+1}, \ldots, x_{r_{1}+r_{2}+r_{3}}\right)$ is a p-basis of R_{3} and $\left(x_{r_{1}+r_{2}+r_{3}+1}, \ldots, x_{r_{1}+r_{2}+r_{3}+r_{4}}\right)$ is a pbasis of R_{4}, so the coordinate matrix M is divided in 4 blocks, say $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ of size $r \times r_{i}$, where $i \in\{1,2,3,4\}$ and we get $M=\left[\alpha| | \beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$. The matrix $\left[\beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$ is called the β-part of M. The coordinate matrix M is obtained by means of the bases of R and G / R.

If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a p-basis of R and if $\left(r_{1}, r_{2}, \ldots, r_{r}\right)$ is a basis of G / R then the coordinate matrix M is of size $r \times n$ and has rank r . Each column of M corresponds to a type. For example, according to the division of the p-basis of R, the columns of α are of type t_{1} and hence called t_{1}-columns of M.

Let $G=\left\langle R, g_{1}, \ldots, g_{r}\right\rangle$ be a $(1,3)$ group with regulator R. The g_{i} 's are the representatives of the basis of the regulator quotient $G / R=\bigoplus_{s=1}^{r} \mathbb{Z}_{p^{k_{s}}}$

If we group the generators g_{i}, then we may write the coordinate matrix M in the form

where $p^{k_{i}}=\operatorname{ord}\left(g_{i}+R\right)$ and $k_{1} \geq k_{2} \geq \ldots \geq k_{r}$.

6.1 Allowed Column and Row Operations

Let G be an almost completely decomposable group and let M be the coordinate matrix of G. Row and column transformations of M are called allowed if the transfromed coordinate matrix M^{\prime} is the coordinate matrix of G^{\prime} where G^{\prime} is near isomorphic to G.

By[14] the following row and column operations are allowed for $(1,3)$ groups:

1. We can add any multiple of a row to any row below it.
2. We can add any multiple of $p^{k_{i}-k_{j}}$ times of row j to a row i where $i<j$
3. We can multiply any row by an integer y where y is relatively prime to p, i.e., any row can be multiplied by a p-unit.
4. Two columns of α or two columns of β_{i} for $i \in\{1,2,3\}$ can be interchanged.
5. Any column can be multiplied by a p-unit.
6. We can add any multiple of a column of β_{i} to a column of β_{j} for $j \geq i$

Allowed row operations are done by multiplying the coordinate matrix M from left by a lower triangular matrix X and allowed column operations are performed by multiplying M from right by an upper triangular matrix $Y=\left[Y_{i j}\right]$ which is of the form

$$
Y=\left[\begin{array}{cccc}
Y_{1,1} & 0 & 0 & 0 \\
0 & Y_{2,2} & Y_{2,3} & Y_{2,4} \\
0 & 0 & Y_{3,3} & Y_{3,4} \\
0 & 0 & 0 & Y_{4,4}
\end{array}\right]
$$

where $Y_{i, j}$ are $r_{i} \times r_{j}$ integer matrices and the diagonal blocks are p -invertible block matrices.

Lemma 6.1.1 (Regulator Criterion) Let G be a (1,3)-group. Let $R=R_{1} \bigoplus R_{2} \bigoplus R_{3} \bigoplus R_{4}$ be a completely decomposable subgroup of G of finite index. Then R is the regulator of G if and only if R_{1} and $R_{2} \bigoplus R_{3} \bigoplus R_{4}$ are pure subgroups in G.

Proof 3 Let $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ be the types of R_{1}, R_{2}, R_{3} and R_{4} respectively. Let $t(x)$ denote the type of x where $x \in G$.

Define $R\left(\tau_{i}\right)=\left\{x \in G \mid t(x) \geq \tau_{i}\right\}$ Since G is a (1,3) group $R\left(\tau_{1}\right)=R_{1}$ and $R\left(\tau_{2}\right)=$ $\left\{x \in G \mid t(x) \geq \tau_{2}\right\}=R_{2} \bigoplus R_{3} \bigoplus R_{4}$. By lemma 4.0.2 in [1]] the subgroups R_{1} and R_{2}, R_{3}, R_{4} are pure subgroups of G.

Definition 10 Let G be an almost completely decomposable group. G is called clipped if G has no direct summand of rank 1.

We mean by a line of a matrix a row or a column. While an entry of a coordinate matrix is annihilated, other entries that were zero may become non-zero and such entries are called fill-ins. An integer that is relatively prime to p is called a p-unit or briefly a unit.

A matrix $M=[m i j]$ has a cross located at $\left(i_{1}, j_{1}\right)$ if $m_{i_{1}, j_{1}} \neq 0$ and $m_{i_{1}, j}=0$, $m_{i, j_{1}}=0$ for all $i \neq i_{1}$ and $j \neq j_{1}$.

If an entry $m_{i j}$ is used to annihilate in its row and column by using allowed row and cloumn transformation to get a cross located at $m_{i j}$, then we write " $m_{i j}$ leads to a cross".

If the fill-ins in a row or in a column caused by allowed row and column transformations can be removed by inverses of the transformations and the 0 -blocks can be reestablished, then we write "we can annihilate in ...".

Lemma 6.1.2 Let $M=\left[\alpha| | \beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$ be a coordinate matrix of size $r \times n$ of a clipped $(1,3)$ group G. Then

1. α and $\beta=\left[\beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$ both are of rank r.
2. The block matrix α can be transformed to the identity matrix by allowed column transformations.
3. The first l_{1} rows of β_{1} can be transformed to a p-diagonal matrix by allowed row and column transformations.
4. G is uniquely determined by $\left[\beta_{1} \mid \beta_{2}\right]$ up to near isomorphism.
5. If $k_{1}=k_{2}+1$ then the first $l_{1}+l_{2}$ rows of β_{1} can be transformed to the form $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$ where A, B are p-diagonal matrices.

Proof 4 1. This result is due to regulator criterion.

2. By regulator criterion R_{1} and $R_{2} \bigoplus R_{3} \bigoplus R_{4}$ are pure subgroups in G and this is true if α and β part both have p-rank r. This implies that there is a unit in each row of α and in each row of β part of the coordinate matrix. By column transformations the unit in the first row of α can be moved to $(1,1)$ 'th position of α. By allowed row and column transformations the entries in the first column below this unit and the entries in the first row of a right to this unit can be made zero. Similarly, the unit in the second row can be moved to the $(2,2)$ 'th position of α and as described above, the second column and the second row of α can be annihilated up to this unit.

Continuing like this, α can be transformed to the form $[I \mid 0]$. Since G is clipped, there is no 0 -column in α. Hence α can be transformed to the identity matrix I and the proof finishes.
3. We may transform the first l_{1} rows of β_{1} into a p-diagonal matrix because we can apply any row and column transformations on the first l_{1} rows of β_{1}.
4. By part (2) we know that α can be transformed to the identity matrix. The column and row operations applied on $[\alpha \mid \beta]$ cause fill-ins in α but it is possible to reestablish α in the original form by column transformations in α only.
5. See lemma 15 in [14].

If there are crosses, zero row or columns or units in the first block of β-part of the coordinate matrix $M=\left[\alpha| | \beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$ of a $(1,3)$ group G, then we can read off summands of rank 1,2 or 3 .

The following lemma is due to Corollary 26 in [14].

Lemma 6.1.3 Let G be a $(1,3)$ group and let $M=\left[\alpha| | \beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$ be a coordinate matrix of G. Then

1. If there is a zero column in $\left[\beta_{1} \mid \beta_{2}\right]$ then G has a direct summand of rank 1 .
2. If there is a zero row in $\left[\beta_{1} \mid \beta_{2}\right]$ then G has a direct summand of rank 2 .
3. If there is a cross in $\left[\beta_{1} \mid \beta_{2}\right]$ then G has a summand either of rank 2 or rank 3.
4. If there is a double cross in $\left[\beta_{1} \mid \beta_{2}\right]$ then G has a summand either of rank 3 or rank 4.
5. If there is a unit in the first l_{1} rows of β_{1} then G has a direct summand of rank 2.
6. If $k_{1}=k_{2}+1$ and β_{1} has a unit in the first $l_{1}+l_{2}$ rows, then G has a summand of rank 2 .

Proof 5 3) If there is a cross in $\left[\beta_{1} \mid \beta_{2}\right]$ with a pivot a unit located at row i, then with this unit we can annihilate the i 'th row in β_{3} and this would display a direct summand of rank 2 .

If there is a cross in $\left[\beta_{1} \mid \beta_{2}\right]$ with a pivot in $p \mathbb{Z}$ located at row i then by regulator criterion there must be a unit in the i 'th row of β_{3}. This would lead to a direct summand of rank 3.
5) If there is a unit in the first l_{1} rows of β_{1} then by row and column permutations we can bring this unit at position $(1,1)$ in β_{1}. Then by allowed row and column transformations all the entries in the first column of β_{1} and the first row in $\left[\beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$ can be annihilated up to this unit. This would display a direct summand of rank 2.
6) If $k_{1}=k_{2}+1$ and there is a unit in a row j where $l_{1} \leq j \leq l_{1}+l_{2}$ then there is a cross in the first $l_{1}+l_{2}$ rows of β_{1}. By allowed row and column transformations using the unit as a pivot, the whole columns and rows in β-block up to this unit can be annihilated. This leads to a summand of rank 2.

CHAPTER 7

HOMOCYCLIC $(1,3)$ GROUPS

Almost completely decomposable groups are direct sums of indecomposables. However, this decomposition is not unique and very complicated to deal with. Some classes of almost completely decomposable groups can be classified under nearisomorphism. Let G be a p-local almost completely decomposable group. Then G is, up to near isomorphism, uniquely a direct sum of indecomposable groups by a theorem of Faticoni-Schultz, see [5]. Hence to classify all p-reduced almost completely decomposable groups, it is sufficient to classify all indecomposable p-reduced almost completely indecomposable groups.

By Arnold's Theorem if G and H are two near isomorphic almost completely decomposable groups of finite rank then they have the same decomposition properties. By theorem4.0.1 if the coordinate matrix of an almost completely decomposable group is decomposable then the group is decomposable. Hence our method consists in turning the decomposition question into equivalance problem for integer matrices.

Let G be a p-local, p-reduced $(1,3)$ group with regulator R and regulator quotient G / R. Let $\delta=\left[\begin{array}{lllllll}\alpha & \| & \beta_{1} & \mid & \beta_{2} & \mid & \beta_{3}\end{array}\right]$ be the coordinate matrix of G. By Proposition 27 in [14] if $\left[\beta_{1} \mid \beta_{2}\right]$-part of δ is decomposable, then G is decomposable.

In this chapter we will find all indecomposable (1,3)-groups with homocyclic regulator quotient of exponent p^{3}.

PROPOSITION 7.0.1 The following two (1, 3)-groups G with homocyclic regulator quotient of exponent p^{3} given by the isomorphism types of their regulator with fixed types, their regulator quotient and their coordinate matrix $\delta=\left[\begin{array}{lllllll}\alpha & \| & \beta_{1} & \mid & \beta_{2} & \beta_{3}\end{array}\right]$ are indecomposable and pairwise not near-isomorphic.
(i) $\delta=\left[\begin{array}{lllllll}1 & \mid & p^{2} & \mid & p & \mid & 1\end{array}\right]$ with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}}$ and rank $G=4$.
(ii) $\delta=\left[\begin{array}{ll|l|l|l}1 & 0 & p & 1 & 0 \\ 0 & 1 & 0 & p & 1\end{array}\right]$ with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p^{3}}$ and $\operatorname{rank} G=5$.

Proof 6 (i) is obvious.
(ii) It is enough to show that the following matrix has no 0 -line modulo p^{3}

$$
\left[\begin{array}{cc}
1 & c \\
a p & 1
\end{array}\right]\left[\begin{array}{ll}
p & 1 \\
0 & p
\end{array}\right]=\left[\begin{array}{cc}
p & 1+c p \\
a p^{2} & a p+p
\end{array}\right]
$$

We need to show that by using allowed row operations it is not possibble to decompose $\left[\begin{array}{ll}p & 1 \\ 0 & p\end{array}\right]$. The first row is never $0 \bmod p^{3}$. The only possibility for the decomposition is $a \equiv p \bmod p^{3}$. But then the entry at position $(2,2)$ is not 0 modulo p^{3}.

Denote (1,3)-groups with regulator quotient of exponent p^{3} as $\left((1,3), p^{3}\right)$-groups.

Theorem 7.0.2 There are precisely two near-isomorphism classes of indecomposable homocyclic $\left((1,3), p^{3}\right)$-groups as in Proposition 7.0.1

Proof 7 Assume that G is a homocyclic $\left((1,3), p^{3}\right)$ group with regulator R and a coordinate matrix $\delta=\left[\alpha| | \beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$. Our aim is to find all indecomposable homocyclic $(1,3)$-groups that are direct summands of G. By Proposition 27 in [14] if $\left[\beta_{1} \mid \beta_{2}\right]$-part of δ is decomposable, then the group G is decomposable. Hence for the decomposability of $a(1,3)$-group it is enough to check the $\left[\beta_{1} \mid \beta_{2}\right]$-part of δ. Our method is to form successively the Smith Normal form's of sub-blocks of β_{1} and β_{2}. If we find a summand then its class is either on the list given in Proposition 7.0.1 or it leads to a contradiction. By Proposition 7.0.1 $\left[\beta_{1} \mid \beta_{2}\right]$ contains no 0 -rows and there is no 0 -column in δ. Furthermore, there can not be a cross or a double cross in $\left[\beta_{1} \mid \beta_{2}\right]$. Since a unit in β_{1} leads to a cross, the Smith Normal form of β_{1} is $\left[\begin{array}{cc}p^{2} I & 0 \\ 0 & p I \\ 0 & 0\end{array}\right]$. Therefore $\left[\beta_{1} \mid \beta_{2}\right]$ is of the form

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|c}
p^{2} I & 0 & A_{1} \\
0 & p I & A_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

With a unit in A_{3} we can annihilate in its column and in its row. But then we obtain a cross located at this unit. Hence we may write $p A_{3}$. Then if there is a unit in A_{1}, the entries in its row, in its column and the entries below this unit can be annihilated. This eliminations cause fill-ins in the sub-blocks of β_{1} but they can removed by pI or are in $p^{3} \mathbb{Z}$ and can be neglected. Hence we may write $p A_{1}$. Thus we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc:c}
p^{2} I & 0 & p A_{1} \\
0 & p I & A_{2} \\
0 & 0 & p A_{3}
\end{array}\right]
$$

The entries of A_{2} are either units or zeros due to $p I$ on the left. A 0 -row in A_{2} leads to a cross. Hence the Smith Normal form of A_{2} is $\left[\begin{array}{ll}I & 0\end{array}\right]$. This expands the block matrices A_{2} and $p A_{3}$ and then $\left[\beta_{1} \mid \beta_{2}\right]$ transforms to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|cc}
p^{2} I & 0 & p A_{1} & p A_{1}^{\prime} \\
0 & p I & I & 0 \\
0 & 0 & p A_{3} & p A_{3}^{\prime}
\end{array}\right]
$$

We annihilate $p A_{1}$ by I below. The resulting fill-ins in the first block of β_{1} are in $p^{2} \mathbb{Z}$ and can be removed by $p^{2} I$ on the left. The resulting coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc:cc}
p^{2} I & 0 & 0 & p A_{1}^{\prime} \\
0 & p I & I & 0 \\
0 & 0 & p A_{3} & p A_{3}^{\prime}
\end{array}\right]
$$

An entry $p \in p A_{3}^{\prime}$ allows to annihilate in $p A_{3}$ and in $p A_{1}^{\prime}$. This causes a cross in $\left[\beta_{1} \mid \beta_{2}\right]$. Hence we write $p^{2} A_{3}$. The new coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|cc}
p^{2} I & 0 & 0 & p A_{1}^{\prime} \\
0 & p I & I & 0 \\
0 & 0 & p A_{3} & p^{2} A_{3}^{\prime}
\end{array}\right]
$$

The entries of $p A_{1}^{\prime}$ that are in $p^{2} \mathbb{Z}$ can be annihilated by $p^{2} I$ on the left. There is no 0 -row in $p A_{1}^{\prime}$ to avoid a cross. Hence the Smith Normal form of $p A_{1}^{\prime}$ is $\left[\begin{array}{cc}p I & 0\end{array}\right]$ and we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|ccc}
p^{2} I & 0 & 0 & p I & 0 \\
0 & p I & I & 0 & 0 \\
0 & 0 & p A_{3} & p^{2} A_{3}^{\prime} & p^{2} A_{3}^{\prime \prime}
\end{array}\right]
$$

The block matrix $p^{2} A_{3}^{\prime}$ can be annihilated by pI above it. The fill-ins in the last block row of β_{1} are in $p^{3} \mathbb{Z}$ and can be disregarded. The resulting coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc:ccc}
p^{2} I & 0 & 0 & p I & 0 \\
0 & p I & I & 0 & 0 \\
0 & 0 & p A_{3} & 0 & p^{2} A_{3}^{\prime \prime}
\end{array}\right]
$$

The first row and the columns (1) with (4) display a summand which is (i) on the list in Proposition 7.0.1. Omitting this summand we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cc}
p I & I & 0 \\
0 & p A_{3} & p^{2} A_{3}^{\prime \prime}
\end{array}\right]
$$

An entry $p \in p A_{3}$ leads to a summand with regulator quotient exponent p^{3} which is (ii) on the list in Proposition 7.0.1 Omitting this summand we may assume that the entries of A_{3} are in $p^{2} \mathbb{Z}$ and we may write $p^{2} A_{3}$. But then $p^{2} A_{3}$ can be annihilated by I above it. The corresponding fill-ins in the second block row of β_{1} are in $p^{3} \mathbb{Z}$ and can be neglected. The resulting coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cc}
p I & I & 0 \\
0 & \mid & 0
\end{array} p^{2} A_{3}^{\prime \prime}\right]
$$

A p^{2} in $p^{2} A_{3}^{\prime \prime}$ leads to a cross in $\left[\beta_{1} \mid \beta_{2}\right]$, a contradiction. Hence $p^{2} A_{3}^{\prime \prime}$ can be considered as 0 -matrix. Thus, the last block row and the last block column of $\left[\beta_{1} \mid \beta_{2}\right]$ can not be present and this leads to a summand of rank ≤ 2, a contradiction.

This finishes the proof.

CHAPTER 8

(1,3)-GROUPS WITH REGULATOR QUOTIENT ISOMORPHIC TO $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p}$

In this chapter we discuss the decomposability of (1,3)-groups with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p}$.

In the following proposition, the list of indecomposable $(1,3)$ groups G with regulator quotient $G / R \cong \mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p}$ is given.

Proposition 8.0.1 The following two (1, 3)-groups G_{1} and G_{2} with regulator qutioent isomorphic to $Z_{p^{3}} \bigoplus Z_{p}$ given by the isomorphism types of their regulator with fixed types, their regulator quotient and their coordinate matrix $\delta=\left[\begin{array}{lllllll}\alpha & \| & \beta_{1} & \beta_{2} & \beta_{3}\end{array}\right]$ are indecomposable and pairwise not near-isomorphic.
(i) $\delta=\left[\begin{array}{cc|c|c|c}1 & 0 & p^{2} & p & 1 \\ \hline 0 & 1 & 0 & 1 & 0\end{array}\right]$ with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p}$ and $\operatorname{rank} G_{1}=5$.
(ii) $\delta=\left[\begin{array}{ll|l|l|l}1 & 0 & p & p & 1 \\ \hline 0 & 1 & 1 & 0 & 0\end{array}\right]$ with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p}$ and $\operatorname{rank} G_{2}=5$.

Proof 8 (i) Consider the following matrix:

$$
\left[\begin{array}{cc}
1 & a p^{2} \\
c & 1
\end{array}\right]\left[\begin{array}{cc}
p^{2} & p \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
p^{2} & p+a p^{2} \\
c p^{2} & c p+1
\end{array}\right]=\left[\begin{array}{cc}
p^{2} & p+a p^{2} \\
0 & 1
\end{array}\right]
$$

Since the entry at position $(1,1)$ is not 0 , the first row is not 0 . Similarly, since the entry at position $(2,2)$ is not 0 , the entire second column is not 0 , which shows the $\left[\begin{array}{cc}p^{2} & p \\ 0 & 1\end{array}\right]$ can not be decomposed.
(ii) We take the $\left[\beta_{1} \mid \beta_{2}\right]$-part of δ and multiply it from the left and from the right by the matrices of the form given in Theorem 12 in [14] and get

$$
\left[\begin{array}{cc}
1 & a p^{2} \\
c & 1
\end{array}\right]\left[\begin{array}{ll}
p & p \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
p+a p^{2} & b\left(p+a p^{2}\right)+p \\
1 & b
\end{array}\right]
$$

The entry at position $(1,1)$ is not $0 \bmod p^{3}$ and the entry at position $(1,2)$ is not 0 $\bmod p$, i.e., the first column is not 0 .

For a possible decomposition, let $b \equiv 0 \bmod p^{2}$. However, in this case the entry at position $(1,2)$ is not 0 modulo p^{3}.

Theorem 8.0.2 There are two near-isomorphism classes of indecomposable ($\left.(1,3), p^{3}\right)$ groups with regulator qutioent isomorphic to $Z_{p^{3}} \bigoplus Z_{p}$ as in Proposition 8.0.1.

Proof 9 Assume that the group G is an indecomposable $\left((1,3), p^{3}\right)$-group with regulator R and regulator quotient G / R is isomorphic to $\mathbb{Z}_{p^{3}} \bigoplus Z_{p}$.

Let $\delta=\left[\begin{array}{lllllll}\alpha & \| & \beta_{1} & \mid & \beta_{2} & \mid & \beta_{3}\end{array}\right]$ be the coordinate matrix of G. Our method consists of forming the Smith Normal forms of subblocks of $\left[\beta_{1} \mid \beta_{2}\right]$ since by Proposition 27 in [14] we know that if $\left[\beta_{1} \mid \beta_{2}\right]$ is decomposable then G is decomposable. If a summand is displayed, then it leads to a contradiction or we check its class in the list given in Proposition 8.0.1

In this way we will find all indecomposable $\left((1,3), p^{3}\right)$ groups with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \bigoplus Z_{p}$. Since we supposed that G is indecomposable, $\left[\beta_{1} \mid \beta_{2}\right]$ can not contain 0 -rows, there can not be any 0 -column in δ, and there can not be a cross or a double cross in $\left[\beta_{1} \mid \beta_{2}\right]$.

We successively form Smith Normal form's of sub-blocks to split out the parts $p^{2} I$ and pI's. Since a unit in the p^{3}-block of β_{1} leads to a cross, the Smith Normal form of β_{1} is $\left[\begin{array}{ccc}p^{2} I & 0 & 0 \\ 0 & p I & 0 \\ 0 & 0 & 0 \\ \hline B_{1} & B_{2} & B_{3}\end{array}\right]$ and $\left[\beta_{1} \mid \beta_{2}\right]$ is of the form

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|c|c}
p^{2} I & 0 & 0 & A_{1} \\
0 & p I & 0 & A_{2} \\
0 & 0 & 0 & A_{3} \\
B_{1} & B_{2} & B_{3} & B_{4}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

With a unit in B_{3} we can annihilate in its row and in its column without any fill-ins. But then we obtain a cross located at this unit. Hence entries of B_{3} are in $p \mathbb{Z}$ which can be regarded as zeros. However, zero entries of B_{3} leads to a zero column and so we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|c}
p^{2} I & 0 & A_{1} \\
0 & p I & A_{2} \\
0 & 0 & A_{3} \\
\hline B_{1} & B_{2} & B_{4}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

If there is a unit in B_{1}, then we can annihilate in its column and in its row causing to a cross located at this unit. Hence the entries of B_{1} is in $p \mathbb{Z}$, and are zero $\bmod p$. Thus we have

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc:c}
p^{2} I & 0 & A_{1} \\
0 & p I & A_{2} \\
0 & 0 & A_{3} \\
\hline 0 & B_{2} & B_{4}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

Since by our assumption G is indecomposable, there is no unit in A_{3} because this gives a summand. Hence we write $p A_{3}$. Similarly with a unit in A_{1} we can annihilate in its column and in its row except for $p^{2} I$ which leads to a vertical double cross located at that unit. Thus we can write $p A_{1}$. Therefore $\left[\begin{array}{ll}\beta_{1} & \beta_{2}\end{array}\right]$ is of the form

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc:c}
p^{2} I & 0 & p A_{1} \\
0 & p I & A_{2} \\
0 & 0 & p A_{3} \\
\hline 0 & B_{2} & B_{4}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

The entries of B_{2} are either units or zeros since it is located in $p \mathbb{Z}$ block. Hence the Smith Normal Form of B_{2} is $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$. This expands the block matrices B_{4} and A_{2} then $\left[\beta_{1} \mid \beta_{2}\right]$ transforms to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc:c}
p^{2} I & 0 & 0 & p A_{1} \\
0 & p I & 0 & A_{2} \\
0 & 0 & p I & A_{2}^{\prime} \\
0 & 0 & 0 & p A_{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
0 & I & 0 & B_{4} \\
0 & 0 & 0 & B_{4}^{\prime}
\end{array}\right] \begin{gathered}
p^{3} \\
p
\end{gathered}
$$

We annihilate B_{4} by I left to it. The resulting fill-ins are in A_{2} so they can be disregarded. The entries of B_{4}^{\prime} are either units or zeros since it is located in p-block. Furthermore a zero row in B_{4}^{\prime} leads to a zero row in $\left[\beta_{1} \mid \beta_{2}\right]$. Hence the Smith Normal Form of B_{4}^{\prime} is $\left[\begin{array}{ll}I & 0\end{array}\right]$. This expands the block matrices $p A_{1}, A_{2}, A_{2}^{\prime}$ and $p A_{3}$. So $\left[\beta_{1} \mid \beta_{2}\right]$ is transformed to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|cc}
p^{2} I & 0 & 0 & p A_{1} & p A_{1}^{\prime} \\
0 & p I & 0 & A_{2} & A_{2}^{\prime \prime} \\
0 & 0 & p I & A_{2}^{\prime} & A_{2}^{\prime \prime \prime} \\
0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
0 & I & 0 & 0 & 0 \\
p \\
p & 0 & I & 0
\end{array}\right]
$$

With a unit in A_{2} we can annihilate in its column and in its row except for pI. This annihilation leads to a direct summand. Hence we may assume that the entries of A_{2} are in $p \mathbb{Z}$. Similarly we may write $p A_{2}^{\prime \prime}$ instead of $A_{2}^{\prime \prime}$. Moreover the entries of $p A_{2}$ which are in $p \mathbb{Z}$ can be annihilated by $p I$ in β_{1} in the same block row. This cause fill-ins in the 5 'th block row of $\left[\beta_{1} \mid \beta_{2}\right]$ but they are annihilated by I below it. Hence we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc:cc}
p^{2} I & 0 & 0 & p A_{1} & p A_{1}^{\prime} \\
0 & p I & 0 & 0 & p A_{2}^{\prime \prime} \\
0 & 0 & p I & A_{2}^{\prime} & A_{2}^{\prime \prime \prime} \\
0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} \\
0 & I & 0 & 0 & 0 \\
0 & 0 & 0 & I & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p \\
p
\end{gathered}
$$

Due to the presence of $p I$ in the third block row of β_{1} the entries of $A_{2}^{\prime \prime \prime}$ are either units or zeros. Hence the Smith Normal Form of $A_{2}^{\prime \prime \prime}$ is $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$. This expands the block matrices $A_{2}^{\prime}, p A_{1}^{\prime}, p A_{2}^{\prime \prime}$ and $p A_{3}^{\prime}$. The matrix $\left[\beta_{1} \mid \beta_{2}\right]$ changes to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|ccc}
p^{2} I & 0 & 0 & 0 & p A_{1} & p A_{1}^{\prime} & p A_{1}^{\prime \prime} \\
0 & p I & 0 & 0 & 0 & p A_{2}^{\prime \prime} & p A_{2}^{\prime \prime \prime} \\
0 & 0 & p I & 0 & A_{2} & I & 0 \\
0 & 0 & 0 & p I & A_{2}^{\prime} & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} & p A_{3}^{\prime \prime} \\
0 & I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p \\
p
\end{gathered}
$$

Similarly the entries of A_{2}^{\prime} are either units or zeros due to the pI block left to it. Note that a zero row in A_{2}^{\prime} leads to a cross. Therefore the Smith Normal Form of A_{2}^{\prime} is $\left[\begin{array}{ll}I & 0\end{array}\right]$. This enlarges the block matrices $p A_{1}, A_{2}$ and $p A_{3}$ changing $\left[\beta_{1} \mid \beta_{2}\right]$ to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|cccc}
p^{2} I & 0 & 0 & 0 & p A_{1} & p A_{1}^{\prime \prime \prime} & p A_{1}^{\prime} & p A_{1}^{\prime \prime} \\
0 & p I & 0 & 0 & 0 & 0 & p A_{2}^{\prime \prime} & p A_{2}^{\prime \prime \prime} \\
0 & 0 & p I & 0 & A_{2} & A_{2}^{\prime} & I & 0 \\
0 & 0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{3} & p A_{3}^{\prime \prime \prime} & p A_{3}^{\prime} & p A_{3}^{\prime \prime}
\end{array} \begin{array}{c}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p \\
0
\end{array} I\right.
$$

We may annihilate the submatrix A_{2} by I below it and the resulting fill-ins in the last column of β_{1}-block can be annihilated by pI next to it. Moreover, A_{2}^{\prime} can be annihilated in the same block row by I right to it. The resulting fill-ins can be either disregarded or they can be annihilated by using identity matrix in β_{2} in p-block. The identity matrix in the 7 'th row of β_{2} can be annihilated by I above it. The resulting fill-ins in p-block are in $p \mathbb{Z}$ and hence can be ignored. This causes a 0 -row in $\left[\beta_{1} \mid \beta_{2}\right]$ and will be neglected. Thus, we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|cccc}
p^{2} I & 0 & 0 & 0 & p A_{1} & p A_{1}^{\prime} & p A_{1}^{\prime \prime} & p A_{1}^{\prime \prime \prime} \\
0 & p I & 0 & 0 & 0 & 0 & p A_{2} & p A_{2}^{\prime} \\
0 & 0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} & p A_{3}^{\prime \prime} & p A_{3}^{\prime \prime \prime}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p \\
0
\end{gathered}
$$

With an entry in $p \mathbb{Z} \backslash p^{2} \mathbb{Z}$ in $p A_{3}^{\prime \prime \prime}$, we annihilate in its column and in its row. This would lead to a cross at this entry, so we can write $p^{2} A_{3}^{\prime \prime \prime}$. An entry in $p A_{1}^{\prime \prime \prime}$ that is in $p \mathbb{Z} \backslash p^{2} \mathbb{Z}$ leads to annihilation in its column and in its row except for $p^{2} I$. This causes a vertical double cross. So, we can write $p^{2} A_{1}^{\prime \prime \prime}$. The resulting $\left[\beta_{1} \mid \beta_{2}\right]$ is of the form

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|cccc}
p^{2} I & 0 & 0 & 0 & p A_{1} & p A_{1}^{\prime} & p A_{1}^{\prime \prime} & p^{2} A_{1}^{\prime \prime \prime} \\
0 & p I & 0 & 0 & 0 & 0 & p A_{2} & p A_{2}^{\prime} \\
0 & 0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime}
\end{array} \begin{array}{c}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
0
\end{array} I^{3}\right.
$$

The block matrix $p^{2} A_{1}^{\prime \prime \prime}$ can be annilated by $p^{2} I$ in the first block column in β_{1}. Moreover, the block matrix $p A_{1}$ can be annihilated by I in the 4'th row of β_{2} which cause fill-ins in the first row fourth column of β_{1}, but they can be annihilated by $p^{2} I$ in β_{1}.

Thus, the resulting matrix is,

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|cccc}
p^{2} I & 0 & 0 & 0 & 0 & p A_{1}^{\prime} & p A_{1}^{\prime \prime} & 0 \\
0 & p I & 0 & 0 & 0 & 0 & p A_{2} & p A_{2}^{\prime} \\
0 & 0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime} \\
\hline 0 & I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p \\
p
\end{gathered}
$$

An entry in $p A_{2}^{\prime}$ that is in $p \mathbb{Z} \backslash p^{2} \mathbb{Z}$ leads to an annihilation in its block column and in its block row except for the pI in the second column of β_{1}. This leads to a summand (ii) listed in Proposition 8.0.1 Omitting this summand we may write $p^{2} A_{2}^{\prime}$. Thus we have

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|cccc}
p^{2} I & 0 & 0 & 0 & 0 & p A_{1}^{\prime} & p A_{1}^{\prime \prime} & 0 \\
0 & p I & 0 & 0 & 0 & 0 & p A_{2} & p^{2} A_{2}^{\prime} \\
0 & 0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime} \\
0 & I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p \\
p
\end{gathered}
$$

The block matrix $p^{2} A_{2}^{\prime}$ can be annihilated by pI in the second column of $\left[\beta_{1} \mid \beta_{2}\right]$. The resulting fill-ins are in $p \mathbb{Z}$ and can be disregarded since they are located in p-block. Moreover, the block matrix $p A_{1}^{\prime \prime}$ can be annihilated by I in the same block column. The resulting fill-ins are in $p^{2} \mathbb{Z}$ and can be annihilated by $p^{2} I$ in the first column. Hence we get $\left[\beta_{1} \mid \beta_{2}\right]$ as

It is possible to annihilate $p A_{2}$ by pI in the second column of β_{1}. This will cause fillins which can be annihilated by I in the third block row. This operation leads another fill-ins in 6 'th row but they can be disregarded since they are in p-block.

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|cccc}
p^{2} I & 0 & 0 & 0 & 0 & p A_{1}^{\prime} & 0 & 0 \\
0 & p I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered} I^{3}
$$

The second and sixth row together with second column lead to a horizantal double cross. Hence by deleting these block rows and the second block column we obtain

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|cccc}
p^{2} I & 0 & 0 & 0 & p A_{1}^{\prime} & 0 & 0 \\
0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & p A_{3} & p A_{3}^{\prime} & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime} \\
\hline 0 & 0 & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

If there is an entry of $p A_{3}^{\prime}$ in $p \mathbb{Z} \backslash p^{2} \mathbb{Z}$, then it may used to annihilate the entries in the same row of this entry causing fill-ins in the 4'th, 6'th and 7'th columns. The fill-ins in the 4'th column are annihilated by I above it which cause fill-ins in the last block row but can be disregarded since they are in p-block. The fill-ins in the 6 'th
column are annihilated by I above it causing fill-ins in the last block row. However, these fill-ins can be neglected. The fill-ins in 7 'th column are already in $p \mathbb{Z}$ and can be disregarded. This entry together with I in the last block row of $\left[\beta_{1} \mid \beta_{2}\right]$ leads to a horizontal double cross. Hence the entires of $p A_{3}^{\prime}$ are in $p^{2} \mathbb{Z}$ but then $p A_{3}^{\prime}$ can be annihilated by I in the last block row of $\left[\beta_{1} \mid \beta_{2}\right]$. Hence we assume that $p A_{3}^{\prime}$ is zero and $\left[\beta_{1} \mid \beta_{2}\right]$ changed to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|cccc}
p^{2} I & 0 & 0 & 0 & p A_{1}^{\prime} & 0 & 0 \\
0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & p A_{3} & 0 & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime} \\
\hline 0 & 0 & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

An entry $p \in p A_{1}^{\prime}$ leads to a summand (i) listed in Proposition 8.0.1. Omitting this summand we may assume that the entries of A_{1}^{\prime} are in $p^{2} \mathbb{Z}$ and we may write $p^{2} A_{1}^{\prime}$.

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|cccc}
p^{2} I & 0 & 0 & 0 & p^{2} A_{1}^{\prime} & 0 & 0 \\
0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & p A_{3} & 0 & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime} \\
\hline 0 & 0 & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

The block matrix $p^{2} A_{1}^{\prime}$ can be annihilated by I in the last block row. Hence we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|cccc}
p^{2} I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & p I & 0 & 0 & 0 & I & 0 \\
0 & 0 & p I & I & 0 & 0 & 0 \\
0 & 0 & 0 & p A_{3} & 0 & p A_{3}^{\prime \prime} & p^{2} A_{3}^{\prime \prime \prime} \\
\hline 0 & 0 & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p
\end{gathered}
$$

The fifth block column of $\left[\beta_{1} \mid \beta_{2}\right]$ with the last block row leads to a cross. Deleting these columns and rows, we end up with the homocyclic case which is not possible.

This finishes the proof.

CHAPTER 9

(1, 3)-GROUPS WITH REGULATOR QUTIOENT ISOMORPHIC TO $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p^{2}}$

In this chapter, we first list the indecomposable $(1,3)$ groups with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p^{2}}$ and then we prove that there is no other indecomposable $(1,3)$ group G with $G / R \cong \mathbb{Z}_{p^{3}} \bigoplus \mathbb{Z}_{p^{2}}$ except the ones given on the list.

PROPOSITION 9.0.1 The following two (1,3)-groups G_{1} and G_{2} with regulator qutioent isomorphic to $Z_{p^{3}} \bigoplus Z_{p^{2}}$ given by the isomorphism types of their regulator with fixed types, their regulator quotient and their coordinate matrix $\delta=\left[\begin{array}{lllllll}\alpha & \| & \beta_{1} & \mid & \beta_{2} & \beta_{3}\end{array}\right]$ are indecomposable and pairwise not near-isomorphic.
(i) $\delta=\left[\begin{array}{ll|l|l|l}1 & 0 & p & 1 & 0 \\ \hline 0 & 1 & p & 0 & 1\end{array}\right]$ with regulator quotient isomorphic to $Z_{p^{3}} \bigoplus Z_{p^{2}}$ and $\operatorname{rank} G_{1}=5$.
(ii) $\delta=\left[\begin{array}{ll|l|l|l}1 & 0 & 0 & p & 1 \\ 0 & 1 & p & 1 & 0\end{array}\right]$ with regulator quotient isomorphic to $Z_{p^{3}} \oplus Z_{p^{2}}$ and $\operatorname{rank} G_{2}=5$.

Proof 10 (i) It is enough to state the matrix $\left[\begin{array}{ll}p & 1 \\ p & 0\end{array}\right]$ has no 0-line modulo $\operatorname{diag}\left(p^{3}, p^{2}\right)$ and is not decomposable.

Consider the following matrix $\left[\begin{array}{cc}1 & c \\ a p & 1\end{array}\right]\left[\begin{array}{ll}p & 1 \\ p & 0\end{array}\right]=\left[\begin{array}{cc}p+c p & 1 \\ a p^{2}+p & a p\end{array}\right]=\left[\begin{array}{cc}p+c p & 1 \\ p & a p\end{array}\right]$ Since the entry at position (1,2) is not 0 , the first row and the second column can not be completely zero. The entry at position $(1,1)$ is not 0 for any value of c. If we set $a=p$ then the entry at position (2,2) is 0 , but again we neither get a zero line nor a
cross.
(ii) We now multiply the matrix $\left[\begin{array}{ll}0 & p \\ p & 1\end{array}\right]$ from left by $\left[\begin{array}{ll}1 & a p \\ c & 1\end{array}\right]$ and check whether the resulting matrix is decomposable modulo $\operatorname{diag}\left(p^{3}, p^{2}\right)$. Consider $\left[\begin{array}{cc}1 & a p \\ c & 1\end{array}\right]\left[\begin{array}{ll}0 & p \\ p & 1\end{array}\right]=$ $\left[\begin{array}{cc}a p^{2} & p+a p \\ p & c p+1\end{array}\right]$. If we set $a=p$, then the entry at position (1,1) is 0 but this does not make the entry 0 at position (1,2). The entry at position $(2,2)$ is never 0 for any value of c. This shows that there will be no 0 -row, 0 -column or cross in $\left[\beta_{1} \mid \beta_{2}\right]$.

Theorem 9.0.2 There are precisely two near-isomorphism classes of indecomposable $\left((1,3), p^{3}\right)$-groups with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p^{2}}$ as in Proposition 9.0 .1

Proof 11 Let G be a $\left((1,3), p^{3}\right)$-group with regulator R and $G / R \cong \mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p^{2}}$. Let $\delta=\left[\alpha| | \beta_{1}\left|\beta_{2}\right| \beta_{3}\right]$ be the coordinate matrix of G. Our method consists of finding all indecomposable (1,3)-groups with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p^{2}}$ that are direct summands of G by forming the Smith Normal form of the subblocks of δ. By Theorem 4.0.1 if δ is decomposable, then G is decomposable. Moreover, by Proposition 27 in [14] it is enough to check $\left[\beta_{1} \mid \beta_{2}\right]$ to determine the decomposability of δ. By Lemma 6.1.3 $\left[\beta_{1} \mid \beta_{2}\right]$ contains no 0 -rows and there is no 0 -column in δ.

Note that a cross or a double cross leads to a direct summand. Hence we assume that $\left[\beta_{1} \mid \beta_{2}\right]$ has no cross and no double cross. Write $\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|c}X & Y \\ \hline Z & T\end{array}\right] \begin{gathered}p^{3} \\ p^{2}\end{gathered}$ where X, Y, Z, T are block matrices.

Since a unit in X leads to a cross, the Smith Normal form of X is $\left[\begin{array}{ccc}p^{2} I & 0 & 0 \\ 0 & p I & 0 \\ 0 & 0 & 0\end{array}\right]$. Therefore $\left[\beta_{1} \mid \beta_{2}\right]$ is of the form

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|c}
p^{2} I & 0 & 0 & A_{1} \\
0 & p I & 0 & A_{2} \\
0 & 0 & 0 & A_{3} \\
\hline B_{1} & B_{2} & B_{3} & B_{4}
\end{array}\right] \begin{aligned}
& p^{3} \\
& p^{3} \\
& p^{3} \\
& p^{2}
\end{aligned}
$$

With a unit in A_{3} we can annihilate in its column and in its row. But then we obtain a cross located at this unit. Hence we may write $p A_{3}$. Due to $p I$ in the second block row of X, the entries of A_{2} are either units or zeros. Hence the Smith Normal form of A_{2} is $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$. Thus we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc:cc}
p^{2} I & 0 & 0 & 0 & A_{11} & A_{12} \\
0 & p I & 0 & 0 & I & 0 \\
0 & 0 & p I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p A_{31} & p A_{32} \\
\hline p B_{1} & p B_{21} & p B_{22} & p B_{3} & B_{41} & B_{42}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2}
\end{gathered}
$$

The entries of A_{11} are in $p Z$ due to I in the first block column of Y in p^{3}-block. The matrix B_{41} can be annihilated by the identity matrix I above it and $p B_{22}$ can be annihilated by pI above it. This would lead to a cross located at pI in the X-block. Omitting this cross, we get the new coordinate matrix

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccc|cc}
p^{2} I & 0 & 0 & p A_{11} & A_{12} \\
0 & p I & 0 & I & 0 \\
0 & 0 & 0 & p A_{31} & p A_{32} \\
\hline p B_{1} & p B_{21} & p B_{3} & 0 & B_{41}
\end{array}\right] \begin{aligned}
& p^{3} \\
& p^{3} \\
& p^{3} \\
& p^{2}
\end{aligned}
$$

There is no 0-column in B_{3} and so the Smith Normal form of B_{3} is $\left[\begin{array}{c}p I \\ 0\end{array}\right]$ and $\left[\beta_{1} \mid \beta_{2}\right]$ transforms to

$$
\left[\beta_{1} \beta_{2}\right]=\left[\begin{array}{ccc|cc}
p^{2} I & 0 & 0 & p A_{11} & A_{12} \\
0 & p I & 0 & I & 0 \\
0 & 0 & 0 & p A_{31} & p A_{32} \\
\hline p B_{1}^{\prime} & p B_{21^{\prime}} & p I & 0 & B_{41} \\
p B_{1} & p B_{21} & 0 & 0 & B_{42}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2}
\end{gathered}
$$

The matrices $p B_{1}^{\prime}$ and $p B_{21^{\prime}}$ are annihilated by $p I$ in the Z-block and we get

$$
\left[\beta_{1} \beta_{2}\right]=\left[\begin{array}{ccc|cc}
p^{2} I & 0 & 0 & p A_{11} & A_{12} \\
0 & p I & 0 & I & 0 \\
0 & 0 & 0 & p A_{31} & p A_{32} \\
0 & 0 & p I & 0 & B_{41} \\
p B_{1} & p B_{21} & 0 & 0 & B_{42}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2}
\end{gathered}
$$

We form the Smith Normal Form of the submatrix $p B_{1}$ to get $\left[\begin{array}{cc}p I & 0 \\ 0 & 0\end{array}\right]$. This expands the block matrices in its column and row and then $\left[\beta_{1} \mid \beta_{2}\right]$ transforms to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cccc|cc}
p^{2} I & 0 & 0 & 0 & p A_{11} & A_{12} \\
0 & p^{2} I & 0 & 0 & p A_{21} & A_{22} \\
0 & 0 & p I & 0 & I & 0 \\
0 & 0 & 0 & 0 & p A_{31} & p A_{32} \\
\hline 0 & 0 & 0 & p I & 0 & B_{41} \\
p I & 0 & p B_{21} & 0 & 0 & B_{42} \\
0 & 0 & p B_{22} & 0 & 0 & B_{43}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2} \\
p^{2}
\end{gathered}
$$

First we annihilate $p B_{21}$ and then the block matrix $p^{2} I$ in the first column of X-block by $p I \subset p B_{1}$ below. This causes a 0 -row in the first block row in X. But then to avoid a cross we may assume that $p A_{12}$. The Smith Normal form of $p B_{22}$ is $\left[\begin{array}{cc}p I & 0 \\ 0 & 0\end{array}\right]$ and the resulting coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccccc|ccc}
0 & 0 & 0 & 0 & 0 & p A_{11} & p A_{12} & p A_{13} \\
0 & p^{2} I & 0 & 0 & 0 & A_{21} & A_{22} & A_{23} \\
0 & 0 & p I & 0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & p I & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & 0 & p A_{31} & p A_{32} & p A_{33}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
0
\end{gathered} 0^{3}
$$

If there is a unit in A_{22}, then we get a double cross. Hence the entries of $A_{22} \in p \mathbb{Z}$. But then $p A_{22}$ can be annihilated by I below. The corresponding fill-ins can removed by $p^{2} I$ in the second row of the X-block. To avoid a double cross, the entries of A_{23} are in $p \mathbb{Z}$. Moreover, it is obvious that there is no unit in B_{44} otherwise we get a cross. The new coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{ccccc|ccc}
0 & 0 & 0 & 0 & 0 & p A_{11} & p A_{12} & p A_{13} \\
0 & p^{2} I & 0 & 0 & 0 & A_{21} & 0 & p A_{23} \\
0 & 0 & p I & 0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & p I & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & 0 & p A_{31} & p A_{32} & p A_{33} \\
\hline 0 & 0 & 0 & 0 & p I & 0 & 0 & B_{41} \\
p I & 0 & 0 & 0 & 0 & 0 & 0 & B_{42} \\
0 & 0 & p I & 0 & 0 & 0 & 0 & B_{43} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p B_{44}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2}
\end{gathered}
$$

Note that from here on we will write β_{1} in a closed form to save place. The entries of the submatrices B_{41}, B_{42}, B_{43} are either units or zero due to pI's in \mathbb{Z}-block. The

Smith Normal form of B_{43} is $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$ and $\left[\beta_{1} \mid \beta_{2}\right]$ transforms to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|ccccc}
0 & p A_{11} & p A_{11^{\prime}} & p A_{12} & p A_{13} & p A_{13^{\prime}} \\
p^{2} I & A_{21} & A_{21^{\prime}} & 0 & p A_{23} & p A_{23^{\prime}} \\
p I & I & 0 & 0 & 0 & 0 \\
p I & 0 & I & 0 & 0 & 0 \\
p I & 0 & 0 & I & 0 & 0 \\
0 & p A_{31} & p A_{32} & p A_{33} & p A_{34} & p A_{35} \\
p I & 0 & 0 & 0 & B_{41} & B_{41^{\prime}} \\
p p^{3} \\
p I & 0 & 0 & 0 & B_{42} & B_{42^{\prime}} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p I & 0 & 0 & 0 & I & 0 \\
p x^{2} \\
p I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p B_{44} & p B_{45}
\end{array}\right] \begin{gathered}
\\
p^{2} \\
p^{2} \\
p^{2}
\end{gathered}
$$

We can annihilate the matrices $p A_{13}, p A_{23}, B_{41}, B_{42}$ and $p B_{44}$ by $p I \subset p B_{43}$. The fillins in the X and the Z-blocks can be annihilated by pI's in these blocks. Moreover, the block matrices $p A_{31}$ and $p A_{11^{\prime}}, p A_{32}$ can be annihilated by I's in the third and the fourth column of Y-block. The new coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|ccccc}
0 & p A_{11} & 0 & p A_{12} & 0 & p A_{13^{\prime}} \\
p^{2} I & A_{21} & A_{21^{\prime}} & 0 & 0 & p A_{23^{\prime}} \\
p I & I & 0 & 0 & 0 & 0 \\
p I & 0 & I & 0 & 0 & 0 \\
p I & 0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & p A_{33} & p A_{34} & p A_{35} \\
\hline p I & 0 & 0 & 0 & 0 & B_{41^{\prime}} \\
p I & 0 & 0 & 0 & 0 & B_{42^{\prime}} \\
p I & 0 & 0 & 0 & I & 0 \\
p I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & p B_{45}
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2}
\end{gathered}
$$

We can form the Smith Normal form of the matrices $B_{41^{\prime}}$ and $B_{42^{\prime}}$ to get $\left[\begin{array}{ll}I & 0\end{array}\right]$. This will expand the the corresponding blocks. Hence $\left[\beta_{1} \mid \beta_{2}\right]$ transforms to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|ccccccc}
0 & p A_{11} & 0 & p A_{12} & 0 & p A_{13^{\prime}} & p A_{13^{\prime \prime}} & p A_{13^{\prime \prime \prime}} \\
p^{2} I & A_{21} & A_{21^{\prime}} & 0 & 0 & 0 & p A_{23^{\prime}} & p A_{23^{\prime \prime}} \\
p I & I & 0 & 0 & 0 & 0 & 0 & 0 \\
p I & 0 & I & 0 & 0 & 0 & 0 & 0 \\
p I & 0 & 0 & I & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & p A_{33} & p A_{34} & p A_{35} & p A_{36} & p A_{37} \\
p I & 0 & 0 & 0 & 0 & I & 0 & 0 \\
p^{3} \\
p I & 0 & 0 & 0 & 0 & 0 & I & 0 \\
p I & 0 & 0 & 0 & I & 0 & 0 & 0 \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2}
\end{array}\right.
$$

By I in the second row of T block, the submatrices $p B_{45}$ and $p A_{23^{\prime}}$ can be annihilated.
Since there is no cross in $\left[\beta_{1} \mid \beta_{2}\right]$ the entries of $p A_{37}$ and $p A_{13}^{\prime \prime \prime}$ are in $p^{2} \mathbb{Z}$. Then we can form the Smith normal form of $p B_{46}$ to get $\left[\begin{array}{cc}p I & 0\end{array}\right]$. The resulting matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cccccccc}
0 & p A_{11} & 0 & p A_{12} & 0 & p A_{13^{\prime}} & p A_{13^{\prime \prime}} & p^{2} A_{13^{\prime \prime \prime}} & p^{2} A_{14} \\
p^{2} I & A_{21} & A_{21^{\prime}} & 0 & 0 & 0 & 0 & p A_{23^{\prime}} & p A_{23^{\prime \prime}} \\
p I & I & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
p I & 0 & I & 0 & 0 & 0 & 0 & 0 & 0 \\
p I & 0 & 0 & I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & p A_{33} & p A_{34} & p A_{35} & p A_{36} & p^{2} A_{37} & p^{2} A_{37^{\prime}} \\
p I & 0 & 0 & 0 & 0 & I & 0 & 0 & 0 \\
p I & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 \\
p I & 0 & 0 & 0 & I & 0 & 0 & 0 & 0 \\
p I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p I & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2}
\end{gathered}
$$

The matrices $p^{2} A_{13 \prime \prime \prime}$ and $p^{2} A_{37}$ can be annihilated by $p I$ in the last block row of the T-block. If there is a $p \in p A_{13^{\prime}}$, then we get a direct summand (ii) on the list in Proposition 9.0.1. with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p^{2}}$. Omitting this summand we may assume that the entries of $p A_{13^{\prime}}$ are all in $p^{2} \mathbb{Z}$. The same holds for
$p A_{13^{\prime \prime}}$. Thereafter the matrices $p A_{13^{\prime}}$ and $p A_{13^{\prime \prime}}$ can be annihilated by the block unit matrices below them. Therefore, the new coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cccccccc}
0 & p A_{11} & 0 & p A_{12} & 0 & 0 & 0 & 0 & p^{2} A_{14} \\
p^{2} I & A_{21} & A_{21^{\prime}} & 0 & 0 & 0 & 0 & p A_{23^{\prime}} & p A_{23^{\prime \prime}} \\
p I & I & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
p I & 0 & I & 0 & 0 & 0 & 0 & 0 & 0 \\
p I & 0 & 0 & I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & p A_{33} & p A_{34} & p A_{35} & p A_{36} & 0 & p^{2} A_{37^{\prime}} \\
\hline p I & \mid & 0 & 0 & 0 & 0 & I & 0 & 0 \\
p I & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 \\
p I & 0 & 0 & 0 & I & 0 & 0 & 0 & 0 \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} & \mid & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2}
\end{array}\right.
$$

A unit in $A_{21^{\prime}}$ leads to a summand of rank ≤ 3 and also the entries of $A_{21^{\prime}}$ which are in $p \mathbb{Z}$ can be annihilated by I below. Hence we may assume that $A_{21^{\prime}}=0$. But then we get a direct summand (i) on the list in Proposition 9.0.1 with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p^{2}}$. Omitting this summand we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|ccccccc}
0 & p A_{11} & p A_{12} & 0 & 0 & 0 & 0 & p^{2} A_{14} \\
p^{2} I & A_{21} & 0 & 0 & 0 & 0 & p A_{23^{\prime}} & p A_{23^{\prime \prime}} \\
p I & I & 0 & 0 & 0 & 0 & 0 & 0 \\
p I & 0 & I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & p A_{33} & p A_{34} & p A_{35} & p A_{36} & 0 & p^{2} A_{37^{\prime}} \\
p I & 0 & 0 & 0 & I & 0 & 0 & 0 \\
p I & 0 & 0 & 0 & 0 & I & 0 & 0 \\
p I & 0 & 0 & I & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p I & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2} \\
p^{2} \\
p^{2}
\end{gathered}
$$

A unit in A_{21} leads to a summand of rank ≤ 3 and hence the entries of A_{21} are in $p \mathbb{Z}$ and they can be annihilated by I below. So we assume that $A_{21}=0 . A$ $p \in p A_{23^{\prime \prime}}$ leads to a direct summand of type (i) on the list in Proposition 7.0.1 But then the entries of $p A_{23^{\prime \prime}}$ are all in $p^{2} \mathbb{Z}$ and can be annihilated by $p^{2} I$ on the left.

The same holds if there is a $p \in p A_{23^{\prime}}$ and hence it can be annihilated by $p I$ in the last column. Hence $p A_{23^{\prime}}=0$ and this would lead to across located at $p^{2} I$ in the X-block. Omitting the row and column leading crosses, the new coordinate matrix becomes

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|ccccc}
0 & p A_{11} & p A_{12} & 0 & 0 & p^{2} A_{14} \\
p I & I & 0 & 0 & 0 & 0 \\
p I & 0 & I & 0 & 0 & 0 \\
0 & 0 & p A_{33} & p A_{34} & p A_{35} & p^{2} A_{37^{\prime}} \\
\hline p I & 0 & 0 & 0 & I & 0 \\
p I & 0 & 0 & I & 0 & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2} \\
p^{2}
\end{gathered}
$$

A $p \in p A_{35}$ leads to a summand of type (ii) on the list in Proposition 9.0.1 with regulator quotient isomorphic to $\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p^{2}}$. Omitting this summand we may assume that $p A_{35}=0$. Thereafter omitting the columns and rows leading to a horizontal double cross and permutating the first block row of $\left[\beta_{1} \mid \beta_{2}\right]$ to the fourth block row of $\left[\beta_{1} \mid \beta_{2}\right]$ the resulting matrix takes the form

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|cccc}
p I & 0 & I & 0 & 0 & 0 \\
0 & p I & 0 & I & 0 & 0 \\
0 & 0 & 0 & p A_{33} & p A_{34} & p^{2} A_{37^{\prime}} \\
0 & 0 & p A_{11} & p A_{12} & 0 & p^{2} A_{14} \\
\hline p I & 0 & 0 & 0 & I & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2}
\end{gathered}
$$

A zero column leads to a cross with a cross point located at $p A_{34}$. Hence the Smith normal form of $p A_{34}$ is $\left[\begin{array}{c}p I \\ 0\end{array}\right]$ and the new coordinate matrix is

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|cccc}
p I & 0 & I & 0 & 0 & 0 \\
0 & p I & 0 & I & 0 & 0 \\
0 & 0 & \mid & 0 & p A_{33} & p I \\
p^{2} A_{37^{\prime}} \\
0 & 0 & \mid & 0 & p A_{33^{\prime}} & 0 \\
p^{2} A_{37^{\prime \prime}} \\
0 & 0 & p A_{11} & p A_{12} & 0 & p^{2} A_{14} \\
\hline p I & 0 & 0 & 0 & I & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2}
\end{gathered}
$$

The submatrices $p A_{33}$ and $p^{2} A_{37^{\prime}}$ can be annihilated by $p I \subset p A_{34}$. The resulting fill ins can be removed. A p in $p A_{33^{\prime}}$ leads a summand with homocyclic regulator quotient. Omitting this summand and by the fact $p A_{33^{\prime}}$ has no entries in $p^{2} \mathbb{Z}$ by I above it, we can conclude that $p A_{33^{\prime}}=0$. We can also conclude that $p A_{12}=0$ by the same reasoning that we used to show that $p A_{33^{\prime}}=0$. But this causes to a direct summand ≤ 3. We omit this summand to get the new resulting matrix as

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|cccc}
p I & 0 & I & 0 & 0 & 0 \\
0 & p I & 0 & I & 0 & 0 \\
0 & 0 & 0 & 0 & p I & 0 \\
0 & 0 & 0 & 0 & 0 & p^{2} A_{37^{\prime \prime}} \\
0 & 0 & p A_{11} & p A_{12} & 0 & p^{2} A_{14} \\
\hline p I & 0 & 0 & 0 & I & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2}
\end{gathered}
$$

The block row $p^{2} A_{37^{\prime \prime}}$ does not exist to avoid a cross. The submatrix $p A_{11}$ can be annihilated by I above it.The resulting fill ins can be removed. Hence we can assume that $p A_{11}=0$. Then the coordinate matrix transforms to

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{cc|cccc}
p I & 0 & I & 0 & 0 & 0 \\
0 & p I & 0 & I & 0 & 0 \\
0 & 0 & 0 & 0 & p I & 0 \\
0 & 0 & 0 & p A_{12} & 0 & p^{2} A_{14} \\
p I & 0 & 0 & 0 & I & 0
\end{array}\right] \begin{gathered}
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{3} \\
p^{2}
\end{gathered}
$$

A $p \in p A_{12}$ leads to a homocyclic summand of type (ii) on the list in Proposition 7.0.1. Thereafter the block row $p^{2} A_{14}$ is not present to avoid a cross. Therefore the new coordinate matrix is of the form

The second column with the fourth column result to a direct summand of rank ≤ 3 and hence can be omitted. But then the new coordinate matrix

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cc}
p I & I & 0 \\
0 & 0 & p I
\end{array}\right] \begin{aligned}
& p^{3} \\
& p^{3} \\
& p^{2}
\end{aligned}
$$

The block matrix pI in the last block row can be annihilated by pI above it and this transforms $\left[\beta_{1} \mid \beta_{2}\right]$ to the form

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cc}
p I & I & 0 \\
0 & 0 & p I \\
\hline 0 & I & I
\end{array}\right] \begin{aligned}
& p^{3} \\
& p^{3} \\
& p^{2}
\end{aligned}
$$

The identity matrix in the third block column can be annihilated by I on its left and we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cc}
p I & I & I \\
0 & 0 & p I \\
\hline 0 & I & 0
\end{array}\right] \begin{aligned}
& p^{3} \\
& p^{3} \\
& p^{2}
\end{aligned}
$$

The identity matrix in the second block column in the p^{3}-block can be annihilated by I right to it. The resulting fill-ins in the second block row can be annihilated by I in the p^{2}-block. Hence we get

$$
\left[\beta_{1} \mid \beta_{2}\right]=\left[\begin{array}{c|cc}
p I & 0 & I \\
0 & 0 & p I \\
\hline 0 & I & 0
\end{array}\right] \begin{aligned}
& p^{3} \\
& p^{3} \\
& p^{2}
\end{aligned}
$$

The second block column of $\left[\beta_{1} \mid \beta_{2}\right]$ with the last block row leads to a cross. Deleting these columns and rows, we end up with the homocyclic case which is not possible. This finishes the proof.

REFERENCES

[1] N. Jacobson, Basic Algebra I, W. H. Freeman and Company, Yale (1974).
[2] L. Fuchs, Infinite Abelian Groups, Vols. I and II, Academic Press (1970,1973).
[3] A. Mader, Almost Completely Decomposable Groups, Gordon Breach (2000).
[4] C. Teichert, Lokale unzerlegbare (1,2)-Gruppen, Diplomarbeit (2004).
[5] Ted Faticoni and Phill Schultz, Direct decompositions of almost completely decomposable groups with primary regulating index, Abelian Groups and Modules, Marcel Dekker, New York (1996), 233-242.
[6] Adolf Mader, Almost Completely Decomposable Groups, Algebra, Logic and Applications Series Volume 13, Gordon and Breach, Amsterdam, (2000).
[7] O. Mutzbauer, Regulating subgroups of Butler groups, Lecture Notes in Pure and Applied Mathematics, 146, (1993), 209-217.
[8] Arnold, David M., Abelian Groups and Representations of Partially Ordered Sets, CMS Advanced Books in Mathematics, Springer-Verlag, New York, (2000).
[9] Burkhardt, Rolf, On a special class of almost completely decomposable groups, Abelian Groups and Modules, CISM Courses and Lectures 287, SpringerVerlag, New York, (1984), 141-150.
[10] Maack, A., Konstruktion unzerlegbarer, fast vollständig zerlegbarer Gruppen vom Typ (1,2),Diplomarbeit Würzburg, (2002).
[11] Budak, C. About the decomposability of almost completely decomposable groups, Master Thesis, METU, (2020).
[12] Arnold, David M., Mader, Adolf, Mutzbauer, Otto, and Solak, Ebru. The Class of $(1 ; 3)$-groups with a homocyclic regulator quotient of exponent p^{5} is of finite representation type., Bulletin of the Helenic Math. Society 61, (2017), 55-72.
[13] Arnold, David M., Mader, Adolf, Mutzbauer, Otto, and Solak, Ebru. Almost completely decomposable groups of unbounded representation type, J. Alg. 349, (2012), 50-62.
[14] D. M. Arnold, A. Mader, O. Mutzbauer, E. Solak, Indecomposable (1, 3)-groups and a matrix problem, Czech. Math. J. 63, (2013), 307-355.
[15] D. M. Arnold, A. Mader, O. Mutzbauer, E. Solak, The Class of (2, 2)-Groups with Homocyclic Regulator Quotient of Exponent p^{3} has bounded Representation Type , J. Aust. Math. Soc.,99, (2015), 12-29.
[16] D. M. Arnold, A. Mader, O. Mutzbauer, E. Solak, The Class of $(1,3)$-groups with homocyclic regulator quotient of exponent p^{4} has bounded representation type, J. Alg.,400, (2013), 43-65.

