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ABSTRACT

DECOMPOSITION OF A SPECIFIC CLASS OF (1,3) GROUPS

Çölaşan, Utku Şükrü

M.S., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Ebru Solak

December 2022, 52 pages

The classification (up to near isomorphism) of some class of almost completely de-

composable groups with a regulating regulator is possible. Since almost completely

decomposable groups can be written as a direct sum of indecomposable groups, for

classification of almost completely decomposable groups it would be enough to find

isomorphism classes of all indecomposable groups. The class of almost completely

decomposable groups with a critical typeset in (1,3) configuration and a regulator

quotient of exponent p3 have 6 near isomorphism classes of indecomposable groups.

We describe almost completely decomposable groups by coordinate matrices. If the

coordinate matrix of an almost completely decomposable group is decomposable,

then the group is decomposable. Hence the method used in this thesis to determine

the decomposition of almost completely decomposable groups is turned to an equiv-

alance problem of determining the decomposition of the corresponding coordinate

matrices.

Keywords: Almost completely decomposable groups, Torsion free groups, Decom-
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posability of almost completely decomposable groups.
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ÖZ

(1,3) GRUPLARIN SPESİFİK BİR SINIFININ PARÇALANMASI

Çölaşan, Utku Şükrü

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Ebru Solak

Aralık 2022 , 52 sayfa

Regulatörü regule olan hemen hemen ayrışan grupların bazı sınıflarının (yakın izo-

morfizma altında) sınıflandırılması mümkündür. Hemen hemen ayrışan gruplar ay-

rışamayan grupların direkt toplamı olarak yazılabildiği için, hemen hemen ayrışan

grupların sınıflandırılmasında ayrışamayan grupların izomorfizma sınıflarını bulmak

yeterli olacaktır. Kritik tip kümesi (1,3) düzeneğinde, bölüm regulatörün üssü p3 olan

hemen hemen ayrışan grupların 6 tane yakın izomorfizma sınıfı vardır.

Hemen hemen ayrışan grupları koordinat matrisleriyle betimleyebiliriz. Hemen he-

men ayrışan bir grubun koordinat matrisi ayrışıyor ise, grubun kendisi de ayrışır.

Bundan dolayı, hemen hemen ayrışan grupların ayrışmasını belirlemek için bu tezde

kullandığımız metot, gruplara karşılık gelen koordinat matrislerin ayrışmasına denk

gelen bir probleme dönmüştür.

Anahtar Kelimeler: Hemen hemen ayrışan gruplar, Torsiyonsuz gruplar, Hemen he-

men ayrışan grupların parçalanması.
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CHAPTER 1

INTRODUCTION

An abelian group in which every element except identity has infinite order is called a

torsion-free group.

A torsion-free abelian group of finite rank which contains a completely decomposable

subgroup of finite index is called an almost completely decomposable group. Almost

completely decomposable groups are very complicated to classify and only some

special subclasses of almost completely decomposable groups can be classified under

a modified isomorphism called near-isomorphism.

In this thesis we investigate the decomposition of a subclass of almost completely

decomposable groups, namely (1,3) groups.

In [14] the near isomorphism classes of p-reduced, p-local (1,3) groups of exponent

p3 are determined by a long and detailed proof. In this thesis we first determine the

near-isomorphism classes of indecomposable (1,3) groups with homocyclic regulator

quotient of exponent p3, then the near-isomorphism classes of indecomposable (1,3)

groups with regulator quotient isomorphic to Zp3
⊕

Zp and finally we find the near-

isomorphism classes of indecomposable (1,3) groups with regulator quotient isomor-

phic to Zp3
⊕

Zp2 .

In this way we believe that the readers can follow the proof given in [14] easier.

A very good source for the definitions and notations are the books of A. Mader and

L. Fuchs. For the detailed information about matrix represantations of almost com-

pletely decomposable groups you can read the papers published by Arnold,Mader,Mutzbauer

and Solak.
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In chapter 2, we define almost completely decomposable groups, pure subgroups,

posets and types of almost completely decomposable groups.

In chapter 3, the definition and properties of two important isomorphism invariants

of an almost completely decomposable group G, namely regulator and regulator quo-

tient, are given.

Almost completely decomposable groups can be described by matrices, the so called

coordinate matrices. This induces the problem of decomposability of almost com-

pletely decomposable groups to an equivalance problem of the decomposability of

matrices.

In chapter 4, coordinate matrices and the relation between the decomposability of

almost completely decomposable groups and the corresponding coordinate matrices

are presented.

In chapter 5, the modified Gauss algorithm which we need to find the Smith Normal

form of coordinate matrices of the given almost completely decomposable groups, is

discussed

In chapter 6, we specialize on (1,3) groups of exponent p3. The theory given in the

previous chapter is formulated in this chapter particularly for (1,3) groups. We show

how to construct the coordinate matrix of a (1,3) group and we list the allowed row

and column operations to reduce it to its Smith Normal form. We also showed that it

is possible to exclude some summands if the coordinate matrix has a 0-line or a cross.

In chapters 7,8 and 9 decomposition theorems of (1,3) groups of exponent p3 are

stated and proven.
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CHAPTER 2

PRELIMINARIES

2.1 Almost Completely Decomposable Groups

A torsion-free abelian group G can be considered as an additive subgroup of the Q-

vector space QG, the divisible hull of G. The dimension of QG is called the rank

of G.

Let G be a torsion-free abelian group of finite rank. G is called completely decom-

posable if G is the direct sum of rank 1 groups. If G has only trivial direct summands

then G is called indecomposable.

Definition 1 A torsion-free abelian group G is said to be almost completely decom-

posable if G contains a completely decomposable subgroup H such that G/H is

finite.

Definition 2 (Pure Subgroup) Let G be an abelian group and let H be a subgroup of

G. H is called a pure subgroup of G if mG ∩H = mH for all m ∈ Z. In particular,

if G is torsion free then from the definition of pure subgroup it follows that for all

n ∈ Z the equation a = nb where b ∈ G and a ∈ G implies b ∈ H .

The group HG
∗ := {x ∈ G | ∃n∈N nx ∈ H} = G ∩QH is called the purification of

H in G. The purification HG
∗ is the unique smallest pure subgroup of G containing H .

3



2.2 Posets

Definition 3 A partially ordered set or poset is a set T with a binary relation ≤
satisfying the followings:

1. the reflexive law: t ≤ t , for any t ∈ T

2. the anti–reflexive law: t1 ≤ t2 and t2 ≤ t1 imply t1 = t2, where t1, t2 ∈ T

3. the transitive law: t1 ≤ t2 and t2 ≤ t3 implies t1 ≤ t3, where t1, t2, t3 ∈ T

Note that, t1 ≤ t2 means the same as t2 ≥ t1 and t1 < t2 means that t1 ≤ t2 and

t1 ̸= t2.

Some useful definitions about posets are given below:

1. Two elements t1, t2 ∈ T are comparable if either t1 ≤ t2 or t2 ≤ t1. Otherwise

the elements are incomparable.

2. A subset of T is called a chain, if any two elements of T are comparable. On

the other hand, the antichains are subsets of T whose elements are pairwise

incomparable.

3. A poset T is a tree if for each t ∈ T the subset {x|x ≤ t} is a chain. Similarly,

T is called an inverted tree if for each t ∈ T the subset {x|x ≥ t} is a chain.

4. A forest is the disjoint union of trees and an inverted forest is a disjoint union

of inverted trees. Inverted forests are also called V–free.

2.3 Types and Critical Typeset

Let G be a torsion-free abelian group and let p be a prime. The maximal integer m

for which the equation pmx = y is solvable in G, is called p-height of y, denoted

hp(y). If there is no such maximal integer exists then hp(y) is infinity. The sequence

of p-heights,
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H(y) = (hp1(y), ..., hpk(y), ...) is said to be the charachteristic of y.

The equivalance classes of characteristics are called types. A type can be represented

by any member in its equivalance class.

Types were invented to classify torsion-free groups of rank 1. A type t(R) is an

isomorphism class of a rank one group R. The set of types form a poset where

t(R1) ≤ t(R2) if R1 is isomorphic to a subgroup of R2.

Let G be a torsion-free abelian group. The set of all types of elements of G is said to

be a typeset of G. If G is an almost completely decomposable group then the finite

set of types of direct summands of rank 1 is called the critical typeset of G.

The group G is called homogenous if every non-zero element of G is of the same

type.
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CHAPTER 3

REGULATOR AND REGULATOR QUOTIENT OF AN ALMOST

COMPLETELY DECOMPOSABLE GROUP

Almost completely decomposable groups are torsion-free abelian groups of finite rank

which contain completely decomposable subgroups of finite index.

Let G be an almost completely decomposable group. We call a completely decompos-

able subgroup of G of minimal index a regulating subgroup, namely, a completely

decomposable subgroup R of G is called a regulating subgroup if |G/R| is the least

integer in the set {|G/H| : H is completely decomposable with G/H finite}

The intersection of all regulating subgroups of G is again a completely decomposable

group of finite index and is called regulator of G. This result is due to R. Burkhardt.

If R is the regulator of G, then G/R is called the regulator quotient of G.

The isomorphism types of the regulator and the regulator quotient are isomorphism

invariants of an almost completely decomposable group.

If G contains exactly one regulating subgroup then we say G has a regulating regu-

lator.

Remark: Let G be an almost completely decomposable group and let R be its regu-

lator. Then R is completely decomposable. Moreover, if n is the exponent of G/R,

then R ⊆ G ⊆ n−1R.

The following result plays an important role in the decomposition problem of almost

completely decomposable groups with a V-free critical typeset.

Theorem 3.0.1 (Mutzbauer [7]) Let G be an almost completely decomposable group

7



and let T be the critical typeset of G. If T is V-free then G has a regulating regulator.

Definition 4 Let G be an almost completely decomposable group with regulator R

and regulator quotient G/R. Write R = C1x1

⊕
...
⊕

Cnxn where xi ∈ R and Ci =

{c ∈ Q |cxi ∈ R}. If p−1 ̸∈ Ci, then the set {x1, ..., xn} is called a p-basis of R.

Definition 5 An almost completely decomposable group G is said to be p-local for

a prime p if the regulator quotient G/R is a primary group, i.e. , G/R is a group of

exponent dividing p.

Definition 6 An almost completely decomposable group G is called p-divisible for a

prime p if pG = G and G is called p-reduced if it contains no p-divisible subgroup

other than {0}.

Definition 7 Let G be an almost completely decomposable group. Then G is called

clipped if it does not have any rational direct summand.

8



CHAPTER 4

COORDINATE MATRICES

Let M =
[
mij

]
be an integer matrix of size r × n. The matrix M is called decom-

posable if there exist permutation matrices P and Q such that PMQ is of the formA 0

0 B

. It is allowed that either A or B has no rows or no columns.

Definition 8 Let G be a p-local, p-reduced almost completely decomposable group

with a regulator R and let M =
[
mij

]
be an r × n integer matrix. M is called a

coordinate matrix of the group G if {x1, ..., xn} is a p-basis of R and {γ1, ..., γr} is

a basis of the regulator quotient G/R such that

gi = p−ki

(
n∑

j=1

mijxj

)
with ⟨γi⟩ ∼= Zpki .

Suppose that k = k1 ≥ k2 ≥ ... ≥ kr. If we group the generators gi of the regulator

quotient of equal orders, then the coordinate matrix M has the form

M =



m11 ... m1n

m21 ... m2n

mr1 ... mrn



p−k1

p−k2

...

p−kr

where pki =ord(gi +R) for i = 1, ..., r.

Almost completely decomposable groups can be represented by coordinate matrices.

The following theorem shows us that the decomposability of an almost completely

9



decomposable group G can be reduced to the decomposability of the corresponding

coordinate matrix M of G. This theorem has a very important role in the decomposi-

tion theory of almost completely decomposable groups.

Theorem 4.0.1 Let G be an almost completely decomposable group and let M be

its coordinate matrix. G is decomposable if and only if M is decomposable. In

particular, if G has a decomposable matrix M , i.e., PMQ = M1

⊕
M2, where P

and Q are permutation matrices, then G = G1

⊕
G2 where Gi has the coordinate

matrix Mi.

Proof 1 First suppose that M is decomposable. Then there are permutation matrices

P and Q such that PMQ = M1

⊕
M2. The coordinate matrix is obtained by means

of a p-basis B of the regulator R. Each column of B corresponds to a basis element

and the columns of the Mi determine a partition B = B1 ∪B2 of the p-basis.

According to this partition, we can write R = R1

⊕
R2. But then we can write G as

G = G1

⊕
G2 where Gi = ⟨Ri⟩∗ the purification of Ri in G, i.e., G is decomposable.

Next assume that G is decomposable and let M be its coordinate matrix. By definition

the group G can be written as G1

⊕
G2. We may write the regulator R of G as

R = R1

⊕
R2 where Ri is the regulator of Gi and this leads us to be able to write

M as a direct sum of the coordinate matrices of G1 and G2 because the columns of

M are determined by the p-basis of R1 and R2.

4.1 Smith Normal Form

Theorem 4.1.1 Let H be a non-singular, k × k integer matrix. Then there exist in-

vertible integer matrices U, Y of size k × k such that

10



UHY =



d1 0 0 0 . . . 0

0 d2 0 0 . . . 0

0 0
. . . 0 . . . 0

... . . .
. . . . . . . . . ...

0 . . . 0 0 dk−1 0

0 . . . 0 0 0 dk



where di are positive integers and di divides di+1 for 1 ≤ i ≤ m. The numbers di are

uniquely determined by H. UHY is called the Smith Normal Form of a matrix H.

We need to establish standard form of coordinate matrices of almost completely de-

composable groups.

Smith Normal Forms of coordinate matrices are helpful to determine the decompos-

ability of matrices. By Theorem 4.1.1, every integer matrix H is equivalent to a matrix

H ′ in Smith Normal form, i.e., H ′ = UHY where U, Y are invertible matrices.

In this thesis, we deal with matrices in Zpk . By Theorem 4.1.1, we get the Smith

Normal form of H as


I
pI

. . .
pk−1I

0


where I denotes the identity matrix and the empty spaces are 0-blocks.

Let G be an almost completely decomposable group and let H =

A B

C D

 be its

coordinate matrix, where A, B, C and D are block matrices. We will use allowed

row and column transformations to get the Smith Normal form of the subblocks of

H . While applying this procedure, the submatrices 0 and the submatrices of the form

pkI will be affected. However it is possible to reestablish them.

11
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CHAPTER 5

MODIFIED GAUSS ELIMINATIONS

Almost completely decomposable groups can be written as a direct sum of indecom-

posables. This decomposition is not unique and therefore it is hopeless to deter-

mine the isomorphism classes of almost completely decomposable groups. But some

classes of almost completely decomposable groups can be classified under a weaker

form of isomorphism called near isomorphism.

Definition 9 Let G1 and G2 be two torsion free groups of finite rank. If for every

integer n ∈ Z+, there is a monomorphism αn : G1 → G2 such that [G2 : αn(G1)]

is finite, n and [G2 : αn(G1)] are relatively prime, then G1 and G2 are called nearly

isomorphic, denoted G1
∼=nr G2.

Note that near isomorphism is a weaker form of isomorphism and isomorphic groups

are also nearly isomorphic.

The following theorem includes some characterizations of near-isomorphism.

Theorem 5.0.1 [4] Let G1 and G2 be nearly isomorphic almost completely decom-

posable groups. Then the following statements hold.

1. Let R1 and R2 be the regulators of G1 and G2 respectively. Then R1 and R2

are isomorphic.

2. Rank(G1) = Rank(G2) and Tcr(G1) = Tcr(G2) where Tcr denotes the critical

typeset.

3. G1

⊕
R2

∼= G2

⊕
R1

13



Almost completely decomposable groups can be represented by coordinate matrices.

A row or a column transformation of the coordinate matrix M of an almost com-

pletely decomposable group G is equivalent to multiplying M with the corresponding

elemantary matrices from left or right, respectively.

Let G and H be torsion free groups of finite rank. Then G and H are called nearly

isomorphic if for every positive integer n, there are relatively prime integers m and

n and homomorphisms f : G → H and g : H → G such that fg = m1H and

gf = n1G.

Let G be an almost competely decomposable group and M be its coordinate matrix.

Row and column transformations of M are called allowed if the transformed coor-

dinate matrix M ′ is the coordinate matrix of G or another group H , that is nearly

isomorphic to G. Matrices are simplified by making entries equal to 0.

By a theorem of Faticoni-Schultz (see [5]) p-local almost completely decomposable

groups can be classified up to near-isomorphism if the near isomorphism classes of

indecomposable groups are known. Hence our motivation is to obtain a complete list

of indecomposable groups.

Let G be an almost completely decomposable group and let M be the correspond-

ing coordinate matrix. If we want to classify the near-isomorphism classes of in-

decomposable groups then we first simplify M to M ′ by allowed row and column

transformations. The matrix M ′ that we obtained is the coordinate matrix of a nearly

isomorphic group G′. If M ′ is decomposable then the group G′ is decomposable

and by a well-known theorem of Arnold, two nearly isomorphic torsion-free abelian

groups have the same decomposition properties, i.e., if G′ is decomposable then G is

decomposable.

Lemma 5.0.2 ([10]) Let G = A1u1 +A2u2 +A3u3 + Zp−k(a1u1 + a2u2 + a3u3) be

an almost completely decomposable group where Z ⊆ Ai ⊆ Qp and ai’s are integers

where i ∈ {1, 2, 3}

Suppose that a3 ∈ pm Qp /p
m+1 Qp where m ∈ N. Then ⟨u1, u2⟩G∗ = A1u1

⊕
A2u2.

Proof 2 It is clear that ⟨A1u1 + A2u2, p
−m(a1u1 + a2u2)⟩ is a subset of ⟨u1, u2⟩G∗

14



By definition we can write ⟨u1, u2⟩G∗ = (Qu1

⊕
Qu2) ∩G.

Take an arbitrary element b ∈ ⟨u1, u2⟩G∗ then

b = c1u1 + c2u2 ∈ (Qu1

⊕
Qu2) ∩G (51)

where c1, c2 ∈ Q.

and since b ∈ G we can also write

b = d1u1 + d2u2 + d3u3 + εp−k(a1u1 + a2u2 + a3u3) (52)

where d1 ∈ A1, d2 ∈ A2, d3 ∈ A3 and ε ∈ Z.

Put a3 = pma′3 where a′3 is a unit and m ∈ N. Then equating the coefficients of the

equations (51) and (52) we obtain

d3 + εp−ka3 = d3 + εp−kpma′3 = 0

Set ε = pk−mε′ where k > m and ε′ ∈ Z. We get

c1u1 + c2u2 = d1u1 + d2u2 + d3u3 + εp−k(a1u1 + a2u2 + pma′3u3)

= d1u1 + d2u2 + pk−mε′p−k(a1u1 + a2u2) + (εp−k+ma′3 + d3)u3

This implies b ∈⟨A1u1+A2u2, p
−m(a1u1+a2u2)⟩ because εp−k+ma′3+d3 = 0 hence

we proved that ⟨u1, u2⟩G∗ = A1u1 + A2u2 + Zp−m(a1u1 + a2u2).

15
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CHAPTER 6

(1,3) GROUPS

A (1,3) group is a p-local, p-reduced almost completely decomposable group with a

critical typeset of (1,3) form.

Let G be a (1,3) group and let R = R1

⊕
R2

⊕
R3

⊕
R4 be the regulator of G.

Direct summands Ri’s are all homogoneous completely decomposable groups of rank

ri ≥ 1 and type ti. The rank of G is n = r1 + r2 + r3 + r4.

Let M = [Mij] be the coordinate matrix of G and let (x1, x2, ..., xn) be a p-basis

of R. Assume (x1, ..., xr1) is a p-basis of R1, (xr1+1, ..., xr1+r2) is a p-basis of R2,

(xr1+r2+1, ..., xr1+r2+r3) is a p-basis of R3 and (xr1+r2+r3+1, ..., xr1+r2+r3+r4) is a p-

basis of R4, so the coordinate matrix M is divided in 4 blocks, say α, β1, β2, β3 of size

r × ri, where i ∈ {1, 2, 3, 4} and we get M = [α||β1|β2|β3]. The matrix [β1|β2|β3] is

called the β-part of M . The coordinate matrix M is obtained by means of the bases

of R and G/R.

If (x1, x2, ..., xn) is a p-basis of R and if (r1, r2, ..., rr) is a basis of G/R then the

coordinate matrix M is of size r × n and has rank r. Each column of M corresponds

to a type. For example, according to the division of the p-basis of R, the columns of

α are of type t1 and hence called t1-columns of M .

Let G = ⟨R, g1, ..., gr⟩ be a (1,3) group with regulator R. The gi’s are the representa-

tives of the basis of the regulator quotient G/R =
⊕r

s=1 Zpks

If we group the generators gi, then we may write the coordinate matrix M in the form

17



M =


m11 ... m1n

mr1 ... mrn


pk1

...

pkr

where pki =ord(gi +R) and k1 ≥ k2 ≥ ... ≥ kr.

6.1 Allowed Column and Row Operations

Let G be an almost completely decomposable group and let M be the coordinate

matrix of G. Row and column transformations of M are called allowed if the trans-

fromed coordinate matrix M ′ is the coordinate matrix of G′ where G′ is near isomor-

phic to G.

By[14] the following row and column operations are allowed for (1,3) groups:

1. We can add any multiple of a row to any row below it.

2. We can add any multiple of pki−kj times of row j to a row i where i < j

3. We can multiply any row by an integer y where y is relatively prime to p , i.e.,

any row can be multiplied by a p-unit.

4. Two columns of α or two columns of βi for i ∈ {1, 2, 3} can be interchanged.

5. Any column can be multiplied by a p-unit.

6. We can add any multiple of a column of βi to a column of βj for j ≥ i

Allowed row operations are done by multiplying the coordinate matrix M from left

by a lower triangular matrix X and allowed column operations are performed by

multiplying M from right by an upper triangular matrix Y = [Yij] which is of the

form
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Y =


Y1,1 0 0 0

0 Y2,2 Y2,3 Y2,4

0 0 Y3,3 Y3,4

0 0 0 Y4,4


where Yi,j are ri × rj integer matrices and the diagonal blocks are p-invertible block

matrices.

Lemma 6.1.1 (Regulator Criterion) Let G be a (1, 3)-group. Let R = R1

⊕
R2

⊕
R3

⊕
R4

be a completely decomposable subgroup of G of finite index. Then R is the regulator

of G if and only if R1 and R2

⊕
R3

⊕
R4 are pure subgroups in G.

Proof 3 Let τ1, τ2, τ3, τ4 be the types of R1, R2, R3 and R4 respectively. Let t(x)

denote the type of x where x ∈ G.

Define R(τi) = {x ∈ G|t(x) ≥ τi} Since G is a (1,3) group R(τ1) = R1 and R(τ2) =

{x ∈ G|t(x) ≥ τ2} = R2

⊕
R3

⊕
R4. By lemma 4.0.2 in [11] the subgroups R1 and

R2, R3, R4 are pure subgroups of G.

Definition 10 Let G be an almost completely decomposable group. G is called

clipped if G has no direct summand of rank 1.

We mean by a line of a matrix a row or a column. While an entry of a coordinate

matrix is annihilated, other entries that were zero may become non-zero and such

entries are called fill-ins. An integer that is relatively prime to p is called a p-unit or

briefly a unit.

A matrix M = [mij] has a cross located at (i1, j1) if mi1,j1 ̸= 0 and mi1,j = 0,

mi,j1 = 0 for all i ̸= i1 and j ̸= j1.

If an entry mij is used to annihilate in its row and column by using allowed row and

cloumn transformation to get a cross located at mij , then we write "mij leads to a

cross".
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If the fill-ins in a row or in a column caused by allowed row and column transfor-

mations can be removed by inverses of the transformations and the 0-blocks can be

reestablished, then we write "we can annihilate in ...".

Lemma 6.1.2 Let M = [α||β1|β2|β3] be a coordinate matrix of size r×n of a clipped

(1,3) group G. Then

1. α and β = [β1|β2|β3] both are of rank r.

2. The block matrix α can be transformed to the identity matrix by allowed column

transformations.

3. The first l1 rows of β1 can be transformed to a p-diagonal matrix by allowed

row and column transformations.

4. G is uniquely determined by [β1|β2] up to near isomorphism.

5. If k1 = k2 + 1 then the first l1 + l2 rows of β1 can be transformed to the formA 0

0 B

 where A, B are p-diagonal matrices.

Proof 4 1. This result is due to regulator criterion.

2. By regulator criterion R1 and R2

⊕
R3

⊕
R4 are pure subgroups in G and this

is true if α and β part both have p-rank r. This implies that there is a unit in

each row of α and in each row of β part of the coordinate matrix. By column

transformations the unit in the first row of α can be moved to (1,1)’th position

of α. By allowed row and column transformations the entries in the first column

below this unit and the entries in the first row of α right to this unit can be made

zero. Similarly, the unit in the second row can be moved to the (2,2)’th position

of α and as described above, the second column and the second row of α can

be annihilated up to this unit.

Continuing like this, α can be transformed to the form [I|0]. Since G is clipped,

there is no 0-column in α. Hence α can be transformed to the identity matrix I

and the proof finishes.
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3. We may transform the first l1 rows of β1 into a p-diagonal matrix because we

can apply any row and column transformations on the first l1 rows of β1.

4. By part (2) we know that α can be transformed to the identity matrix. The

column and row operations applied on [α|β] cause fill-ins in α but it is possible

to reestablish α in the original form by column transformations in α only.

5. See lemma 15 in [14].

If there are crosses, zero row or columns or units in the first block of β-part of the

coordinate matrix M = [α||β1|β2|β3] of a (1,3) group G, then we can read off sum-

mands of rank 1, 2 or 3.

The following lemma is due to Corollary 26 in [14].

Lemma 6.1.3 Let G be a (1,3) group and let M = [α||β1|β2|β3] be a coordinate

matrix of G. Then

1. If there is a zero column in [β1|β2] then G has a direct summand of rank 1.

2. If there is a zero row in [β1|β2] then G has a direct summand of rank 2.

3. If there is a cross in [β1|β2] then G has a summand either of rank 2 or rank 3.

4. If there is a double cross in [β1|β2] then G has a summand either of rank 3 or

rank 4.

5. If there is a unit in the first l1 rows of β1 then G has a direct summand of rank

2.

6. If k1 = k2 +1 and β1 has a unit in the first l1 + l2 rows, then G has a summand

of rank 2.

Proof 5 3) If there is a cross in [β1|β2] with a pivot a unit located at row i, then with

this unit we can annihilate the i’th row in β3 and this would display a direct summand

of rank 2.
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If there is a cross in [β1|β2] with a pivot in pZ located at row i then by regulator

criterion there must be a unit in the i’th row of β3. This would lead to a direct

summand of rank 3.

5) If there is a unit in the first l1 rows of β1 then by row and column permutations

we can bring this unit at position (1,1) in β1. Then by allowed row and column

transformations all the entries in the first column of β1 and the first row in [β1|β2|β3]

can be annihilated up to this unit. This would display a direct summand of rank 2.

6) If k1 = k2 + 1 and there is a unit in a row j where l1 ≤ j ≤ l1 + l2 then there

is a cross in the first l1 + l2 rows of β1. By allowed row and column transformations

using the unit as a pivot, the whole columns and rows in β-block up to this unit can

be annihilated. This leads to a summand of rank 2.
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CHAPTER 7

HOMOCYCLIC (1,3) GROUPS

Almost completely decomposable groups are direct sums of indecomposables. How-

ever, this decomposition is not unique and very complicated to deal with. Some

classes of almost completely decomposable groups can be classified under near-

isomorphism. Let G be a p-local almost completely decomposable group. Then G is,

up to near isomorphism, uniquely a direct sum of indecomposable groups by a theo-

rem of Faticoni-Schultz, see [5]. Hence to classify all p-reduced almost completely

decomposable groups, it is sufficient to classify all indecomposable p-reduced almost

completely indecomposable groups.

By Arnold’s Theorem if G and H are two near isomorphic almost completely decom-

posable groups of finite rank then they have the same decomposition properties. By

theorem 4.0.1 if the coordinate matrix of an almost completely decomposable group is

decomposable then the group is decomposable. Hence our method consists in turning

the decomposition question into equivalance problem for integer matrices.

Let G be a p-local, p-reduced (1,3) group with regulator R and regulator quotient

G/R. Let δ =
[
α || β1 | β2 | β3

]
be the coordinate matrix of G. By Proposi-

tion 27 in [14] if [β1|β2]-part of δ is decomposable, then G is decomposable.

In this chapter we will find all indecomposable (1,3)-groups with homocyclic regula-

tor quotient of exponent p3.

PROPOSITION 7.0.1 The following two (1, 3)-groups G with homocyclic regulator

quotient of exponent p3 given by the isomorphism types of their regulator with fixed

types, their regulator quotient and their coordinate matrix δ =
[
α || β1 | β2 | β3

]
are indecomposable and pairwise not near-isomorphic.
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(i) δ =
[
1 | p2 | p | 1

]
with regulator quotient isomorphic to Zp3 and rankG = 4.

(ii) δ =

1 0
∣∣ p

∣∣ 1
∣∣ 0

0 1
∣∣ 0

∣∣ p
∣∣ 1

 with regulator quotient isomorphic to Zp3
⊕

Zp3

and rankG = 5.

Proof 6 (i) is obvious.

(ii) It is enough to show that the following matrix has no 0-line modulo p3 1 c

ap 1

p 1

0 p

 =

 p 1 + cp

ap2 ap+ p


We need to show that by using allowed row operations it is not possibble to decompose[
p 1
0 p

]
. The first row is never 0 mod p3. The only possibility for the decomposition is

a ≡ p mod p3. But then the entry at position (2,2) is not 0 modulo p3.

Denote (1,3)-groups with regulator quotient of exponent p3 as ((1, 3), p3)-groups.

Theorem 7.0.2 There are precisely two near-isomorphism classes of indecompos-

able homocyclic ((1, 3), p3)-groups as in Proposition 7.0.1.

Proof 7 Assume that G is a homocyclic ((1, 3), p3) group with regulator R and a co-

ordinate matrix δ = [α||β1|β2|β3]. Our aim is to find all indecomposable homocyclic

(1, 3)-groups that are direct summands of G. By Proposition 27 in [14] if [β1|β2]-part

of δ is decomposable, then the group G is decomposable. Hence for the decompos-

ability of a (1, 3)-group it is enough to check the [β1|β2]-part of δ. Our method is

to form successively the Smith Normal form’s of sub-blocks of β1 and β2. If we find

a summand then its class is either on the list given in Proposition 7.0.1 or it leads

to a contradiction. By Proposition 7.0.1 [β1|β2] contains no 0-rows and there is no

0-column in δ. Furthermore, there can not be a cross or a double cross in [β1|β2].

Since a unit in β1 leads to a cross, the Smith Normal form of β1 is


p2I 0

0 pI

0 0

. Therefore

[β1|β2] is of the form
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[β1|β2] =


p2I 0

∣∣ A1

0 pI
∣∣ A2

0 0
∣∣ A3



With a unit in A3 we can annihilate in its column and in its row. But then we obtain

a cross located at this unit. Hence we may write pA3. Then if there is a unit in A1,

the entries in its row, in its column and the entries below this unit can be annihilated.

This eliminations cause fill-ins in the sub-blocks of β1 but they can removed by pI or

are in p3 Z and can be neglected. Hence we may write pA1. Thus we get

[β1|β2] =


p2I 0

∣∣ pA1

0 pI
∣∣ A2

0 0
∣∣ pA3



The entries of A2 are either units or zeros due to pI on the left. A 0-row in A2 leads

to a cross. Hence the Smith Normal form of A2 is
[
I 0

]
. This expands the block

matrices A2 and pA3 and then [β1|β2] transforms to

[β1|β2] =


p2I 0

∣∣ pA1 pA′
1

0 pI
∣∣ I 0

0 0
∣∣ pA3 pA′

3



We annihilate pA1 by I below. The resulting fill-ins in the first block of β1 are in p2 Z

and can be removed by p2I on the left. The resulting coordinate matrix is

[β1|β2] =


p2I 0

∣∣ 0 pA′
1

0 pI
∣∣ I 0

0 0
∣∣ pA3 pA′

3



An entry p ∈ pA′
3 allows to annihilate in pA3 and in pA′

1. This causes a cross in

[β1|β2]. Hence we write p2A3. The new coordinate matrix is
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[β1|β2] =


p2I 0

∣∣ 0 pA′
1

0 pI
∣∣ I 0

0 0
∣∣ pA3 p2A′

3


The entries of pA′

1 that are in p2 Z can be annihilated by p2I on the left. There is no

0-row in pA′
1 to avoid a cross. Hence the Smith Normal form of pA′

1 is
[
pI 0

]
and

we get

[β1|β2] =


p2I 0

∣∣ 0 pI 0

0 pI
∣∣ I 0 0

0 0
∣∣ pA3 p2A′

3 p2A′′
3


The block matrix p2A′

3 can be annihilated by pI above it. The fill-ins in the last block

row of β1 are in p3 Z and can be disregarded. The resulting coordinate matrix is

[β1|β2] =


p2I 0

∣∣ 0 pI 0

0 pI
∣∣ I 0 0

0 0
∣∣ pA3 0 p2A′′

3


The first row and the columns (1) with (4) display a summand which is (i) on the list

in Proposition 7.0.1. Omitting this summand we get

[β1|β2] =

pI ∣∣ I 0

0
∣∣ pA3 p2A′′

3


An entry p ∈ pA3 leads to a summand with regulator quotient exponent p3 which is

(ii) on the list in Proposition 7.0.1. Omitting this summand we may assume that the

entries of A3 are in p2 Z and we may write p2A3. But then p2A3 can be annihilated

by I above it. The corresponding fill-ins in the second block row of β1 are in p3 Z and

can be neglected. The resulting coordinate matrix is

[β1|β2] =

pI ∣∣ I 0

0
∣∣ 0 p2A′′

3
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A p2 in p2A′′
3 leads to a cross in [β1|β2], a contradiction. Hence p2A′′

3 can be consid-

ered as 0-matrix. Thus, the last block row and the last block column of [β1|β2] can

not be present and this leads to a summand of rank ≤ 2, a contradiction.

This finishes the proof.
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CHAPTER 8

(1,3)-GROUPS WITH REGULATOR QUOTIENT ISOMORPHIC TO

Zp3
⊕

Zp

In this chapter we discuss the decomposability of (1,3)-groups with regulator quotient

isomorphic to Zp3
⊕

Zp.

In the following proposition, the list of indecomposable (1,3) groups G with regulator

quotient G/R ∼= Zp3
⊕

Zp is given.

PROPOSITION 8.0.1 The following two (1, 3)-groups G1 and G2 with regulator qutioent

isomorphic to Zp3
⊕

Zp given by the isomorphism types of their regulator with fixed

types, their regulator quotient and their coordinate matrix δ =
[
α || β1 | β2 | β3

]
are indecomposable and pairwise not near-isomorphic.

(i)δ =

1 0
∣∣ p2

∣∣ p
∣∣ 1

0 1
∣∣ 0

∣∣ 1
∣∣ 0

 with regulator quotient isomorphic to Zp3
⊕

Zp

and rankG1 = 5.

(ii)δ =

1 0
∣∣ p

∣∣ p
∣∣ 1

0 1
∣∣ 1

∣∣ 0
∣∣ 0

 with regulator quotient isomorphic to Zp3
⊕

Zp

and rankG2 = 5.

Proof 8 (i) Consider the following matrix:1 ap2

c 1

p2 p

0 1

 =

 p2 p+ ap2

cp2 cp+ 1

 =

p2 p+ ap2

0 1


Since the entry at position (1,1) is not 0, the first row is not 0. Similarly, since the

entry at position (2,2) is not 0, the entire second column is not 0, which shows the[
p2 p
0 1

]
can not be decomposed.
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(ii) We take the
[
β1|β2

]
-part of δ and multiply it from the left and from the right by

the matrices of the form given in Theorem 12 in [14] and get

1 ap2

c 1

p p

1 0

1 b

0 1

 =

p+ ap2 b(p+ ap2) + p

1 b



The entry at position (1,1) is not 0 mod p3 and the entry at position (1,2) is not 0

mod p, i.e., the first column is not 0.

For a possible decomposition, let b ≡ 0 mod p2. However, in this case the entry at

position (1,2) is not 0 modulo p3.

Theorem 8.0.2 There are two near-isomorphism classes of indecomposable ((1, 3), p3)

groups with regulator qutioent isomorphic to Zp3
⊕

Zp as in Proposition 8.0.1.

Proof 9 Assume that the group G is an indecomposable ((1, 3), p3)-group with regu-

lator R and regulator quotient G/R is isomorphic to Zp3
⊕

Zp.

Let δ =
[
α || β1 | β2 | β3

]
be the coordinate matrix of G. Our method con-

sists of forming the Smith Normal forms of subblocks of [β1|β2] since by Proposition

27 in [14] we know that if [β1|β2] is decomposable then G is decomposable. If a

summand is displayed, then it leads to a contradiction or we check its class in the list

given in Proposition 8.0.1.

In this way we will find all indecomposable ((1, 3), p3) groups with regulator quotient

isomorphic to Zp3
⊕

Zp. Since we supposed that G is indecomposable, [β1|β2] can

not contain 0-rows, there can not be any 0-column in δ, and there can not be a cross

or a double cross in [β1|β2].

We successively form Smith Normal form’s of sub-blocks to split out the parts p2I and

pI’s. Since a unit in the p3-block of β1 leads to a cross, the Smith Normal form of β1

is


p2I 0 0

0 pI 0

0 0 0

B1 B2 B3

 and [β1|β2] is of the form
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[β1|β2] =


p2I 0 0

∣∣ A1

0 pI 0
∣∣ A2

0 0 0
∣∣ A3

B1 B2 B3

∣∣ B4


p3

p3

p3

p

With a unit in B3 we can annihilate in its row and in its column without any fill-ins.

But then we obtain a cross located at this unit. Hence entries of B3 are in pZ which

can be regarded as zeros. However, zero entries of B3 leads to a zero column and so

we get

[β1|β2] =


p2I 0

∣∣ A1

0 pI
∣∣ A2

0 0
∣∣ A3

B1 B2

∣∣ B4


p3

p3

p3

p

If there is a unit in B1, then we can annihilate in its column and in its row causing to

a cross located at this unit. Hence the entries of B1 is in pZ, and are zero mod p.

Thus we have

[β1|β2] =


p2I 0

∣∣ A1

0 pI
∣∣ A2

0 0
∣∣ A3

0 B2

∣∣ B4


p3

p3

p3

p

Since by our assumption G is indecomposable, there is no unit in A3 because this

gives a summand. Hence we write pA3. Similarly with a unit in A1 we can annihilate

in its column and in its row except for p2I which leads to a vertical double cross

located at that unit. Thus we can write pA1. Therefore
[
β1 β2

]
is of the form

[β1|β2] =


p2I 0

∣∣ pA1

0 pI
∣∣ A2

0 0
∣∣ pA3

0 B2

∣∣ B4


p3

p3

p3

p
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The entries of B2 are either units or zeros since it is located in pZ block. Hence the

Smith Normal Form of B2 is

I 0

0 0

. This expands the block matrices B4 and A2

then [β1|β2] transforms to

[β1|β2] =



p2I 0 0
∣∣ pA1

0 pI 0
∣∣ A2

0 0 pI
∣∣ A′

2

0 0 0
∣∣ pA3

0 I 0
∣∣ B4

0 0 0
∣∣ B′

4



p3

p3

p3

p3

p

p

We annihilate B4 by I left to it. The resulting fill-ins are in A2 so they can be dis-

regarded. The entries of B′
4 are either units or zeros since it is located in p-block.

Furthermore a zero row in B′
4 leads to a zero row in [β1|β2]. Hence the Smith Normal

Form of B′
4 is

[
I 0

]
. This expands the block matrices pA1, A2, A′

2 and pA3. So

[β1|β2] is transformed to

[β1|β2] =



p2I 0 0
∣∣ pA1 pA′

1

0 pI 0
∣∣ A2 A′′

2

0 0 pI
∣∣ A′

2 A′′′
2

0 0 0
∣∣ pA3 pA′

3

0 I 0
∣∣ 0 0

0 0 0
∣∣ I 0



p3

p3

p3

p3

p

p

With a unit in A2 we can annihilate in its column and in its row except for pI. This

annihilation leads to a direct summand. Hence we may assume that the entries of A2

are in pZ. Similarly we may write pA′′
2 instead of A′′

2. Moreover the entries of pA2

which are in pZ can be annihilated by pI in β1 in the same block row. This cause

fill-ins in the 5’th block row of [β1|β2] but they are annihilated by I below it. Hence

we get
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[β1|β2] =



p2I 0 0
∣∣ pA1 pA′

1

0 pI 0
∣∣ 0 pA′′

2

0 0 pI
∣∣ A′

2 A′′′
2

0 0 0
∣∣ pA3 pA′

3

0 I 0
∣∣ 0 0

0 0 0
∣∣ I 0



p3

p3

p3

p3

p

p

Due to the presence of pI in the third block row of β1 the entries of A′′′
2 are either

units or zeros. Hence the Smith Normal Form of A′′′
2 is

I 0

0 0

. This expands the

block matrices A′
2, pA′

1, pA′′
2 and pA′

3. The matrix [β1|β2] changes to

[β1|β2] =



p2I 0 0 0
∣∣ pA1 pA′

1 pA′′
1

0 pI 0 0
∣∣ 0 pA′′

2 pA′′′
2

0 0 pI 0
∣∣ A2 I 0

0 0 0 pI
∣∣ A′

2 0 0

0 0 0 0
∣∣ pA3 pA′

3 pA′′
3

0 I 0 0
∣∣ 0 0 0

0 0 0 0
∣∣ I 0 0



p3

p3

p3

p3

p3

p

p

Similarly the entries of A′
2 are either units or zeros due to the pI block left to it. Note

that a zero row in A′
2 leads to a cross. Therefore the Smith Normal Form of A′

2 is[
I 0

]
. This enlarges the block matrices pA1, A2 and pA3 changing [β1|β2] to

[β1|β2] =



p2I 0 0 0
∣∣ pA1 pA′′′

1 pA′
1 pA′′

1

0 pI 0 0
∣∣ 0 0 pA′′

2 pA′′′
2

0 0 pI 0
∣∣ A2 A′

2 I 0

0 0 0 pI
∣∣ I 0 0 0

0 0 0 0
∣∣ pA3 pA′′′

3 pA′
3 pA′′

3

0 I 0 0
∣∣ 0 0 0 0

0 0 0 0
∣∣ I 0 0 0

0 0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p3

p

p

p
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We may annihilate the submatrix A2 by I below it and the resulting fill-ins in the

last column of β1-block can be annihilated by pI next to it. Moreover, A′
2 can be

annihilated in the same block row by I right to it. The resulting fill-ins can be either

disregarded or they can be annihilated by using identity matrix in β2 in p-block. The

identity matrix in the 7’th row of β2 can be annihilated by I above it. The resulting

fill-ins in p-block are in pZ and hence can be ignored. This causes a 0-row in [β1|β2]

and will be neglected. Thus, we get

[β1|β2] =



p2I 0 0 0
∣∣ pA1 pA′

1 pA′′
1 pA′′′

1

0 pI 0 0
∣∣ 0 0 pA2 pA′

2

0 0 pI 0
∣∣ 0 0 I 0

0 0 0 pI
∣∣ I 0 0 0

0 0 0 0
∣∣ pA3 pA′

3 pA′′
3 pA′′′

3

0 I 0 0
∣∣ 0 0 0 0

0 0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p3

p

p

With an entry in pZ \p2 Z in pA′′′
3 , we annihilate in its column and in its row. This

would lead to a cross at this entry, so we can write p2A′′′
3 . An entry in pA′′′

1 that is

in pZ \p2 Z leads to annihilation in its column and in its row except for p2I . This

causes a vertical double cross. So, we can write p2A′′′
1 . The resulting [β1|β2] is of the

form

[β1|β2] =



p2I 0 0 0
∣∣ pA1 pA′

1 pA′′
1 p2A′′′

1

0 pI 0 0
∣∣ 0 0 pA2 pA′

2

0 0 pI 0
∣∣ 0 0 I 0

0 0 0 pI
∣∣ I 0 0 0

0 0 0 0
∣∣ pA3 pA′

3 pA′′
3 p2A′′′

3

0 I 0 0
∣∣ 0 0 0 0

0 0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p3

p

p

The block matrix p2A′′′
1 can be annilated by p2I in the first block column in β1. More-

over, the block matrix pA1 can be annihilated by I in the 4’th row of β2 which cause

fill-ins in the first row fourth column of β1, but they can be annihilated by p2I in β1.
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Thus, the resulting matrix is,

[β1|β2] =



p2I 0 0 0
∣∣ 0 pA′

1 pA′′
1 0

0 pI 0 0
∣∣ 0 0 pA2 pA′

2

0 0 pI 0
∣∣ 0 0 I 0

0 0 0 pI
∣∣ I 0 0 0

0 0 0 0
∣∣ pA3 pA′

3 pA′′
3 p2A′′′

3

0 I 0 0
∣∣ 0 0 0 0

0 0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p3

p

p

An entry in pA′
2 that is in pZ \p2 Z leads to an annihilation in its block column and

in its block row except for the pI in the second column of β1. This leads to a summand

(ii) listed in Proposition 8.0.1. Omitting this summand we may write p2A′
2. Thus we

have

[β1|β2] =



p2I 0 0 0
∣∣ 0 pA′

1 pA′′
1 0

0 pI 0 0
∣∣ 0 0 pA2 p2A′

2

0 0 pI 0
∣∣ 0 0 I 0

0 0 0 pI
∣∣ I 0 0 0

0 0 0 0
∣∣ pA3 pA′

3 pA′′
3 p2A′′′

3

0 I 0 0
∣∣ 0 0 0 0

0 0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p3

p

p

The block matrix p2A′
2 can be annihilated by pI in the second column of [β1|β2]. The

resulting fill-ins are in pZ and can be disregarded since they are located in p-block.

Moreover, the block matrix pA′′
1 can be annihilated by I in the same block column.

The resulting fill-ins are in p2 Z and can be annihilated by p2I in the first column.

Hence we get [β1|β2] as
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[β1|β2] =



p2I 0 0 0
∣∣ 0 pA′

1 0 0

0 pI 0 0
∣∣ 0 0 pA2 0

0 0 pI 0
∣∣ 0 0 I 0

0 0 0 pI
∣∣ I 0 0 0

0 0 0 0
∣∣ pA3 pA′

3 pA′′
3 p2A′′′

3

0 I 0 0
∣∣ 0 0 0 0

0 0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p3

p

p

It is possible to annihilate pA2 by pI in the second column of β1. This will cause fill-

ins which can be annihilated by I in the third block row. This operation leads another

fill-ins in 6’th row but they can be disregarded since they are in p-block.

[β1|β2] =



p2I 0 0 0
∣∣ 0 pA′

1 0 0

0 pI 0 0
∣∣ 0 0 0 0

0 0 pI 0
∣∣ 0 0 I 0

0 0 0 pI
∣∣ I 0 0 0

0 0 0 0
∣∣ pA3 pA′

3 pA′′
3 p2A′′′

3

0 I 0 0
∣∣ 0 0 0 0

0 0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p3

p

p

The second and sixth row together with second column lead to a horizantal double

cross. Hence by deleting these block rows and the second block column we obtain

[β1|β2] =



p2I 0 0
∣∣ 0 pA′

1 0 0

0 pI 0
∣∣ 0 0 I 0

0 0 pI
∣∣ I 0 0 0

0 0 0
∣∣ pA3 pA′

3 pA′′
3 p2A′′′

3

0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p

If there is an entry of pA′
3 in pZ \p2 Z, then it may used to annihilate the entries in

the same row of this entry causing fill-ins in the 4’th, 6’th and 7’th columns. The

fill-ins in the 4’th column are annihilated by I above it which cause fill-ins in the last

block row but can be disregarded since they are in p-block. The fill-ins in the 6’th
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column are annihilated by I above it causing fill-ins in the last block row. However,

these fill-ins can be neglected. The fill-ins in 7’th column are already in pZ and can

be disregarded. This entry together with I in the last block row of [β1|β2] leads to a

horizontal double cross. Hence the entires of pA′
3 are in p2 Z but then pA′

3 can be

annihilated by I in the last block row of [β1|β2]. Hence we assume that pA′
3 is zero

and [β1|β2] changed to

[β1|β2] =



p2I 0 0
∣∣ 0 pA′

1 0 0

0 pI 0
∣∣ 0 0 I 0

0 0 pI
∣∣ I 0 0 0

0 0 0
∣∣ pA3 0 pA′′

3 p2A′′′
3

0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p

An entry p ∈ pA′
1 leads to a summand (i) listed in Proposition 8.0.1. Omitting this

summand we may assume that the entries of A′
1 are in p2 Z and we may write p2A′

1.

[β1|β2] =



p2I 0 0
∣∣ 0 p2A′

1 0 0

0 pI 0
∣∣ 0 0 I 0

0 0 pI
∣∣ I 0 0 0

0 0 0
∣∣ pA3 0 pA′′

3 p2A′′′
3

0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p

The block matrix p2A′
1 can be annihilated by I in the last block row. Hence we get

[β1|β2] =



p2I 0 0
∣∣ 0 0 0 0

0 pI 0
∣∣ 0 0 I 0

0 0 pI
∣∣ I 0 0 0

0 0 0
∣∣ pA3 0 pA′′

3 p2A′′′
3

0 0 0
∣∣ 0 I 0 0



p3

p3

p3

p3

p

The fifth block column of [β1|β2] with the last block row leads to a cross. Deleting

these columns and rows, we end up with the homocyclic case which is not possible.

This finishes the proof.
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CHAPTER 9

(1, 3)-GROUPS WITH REGULATOR QUTIOENT ISOMORPHIC TO

Zp3
⊕

Zp2

In this chapter, we first list the indecomposable (1,3) groups with regulator quotient

isomorphic to Zp3
⊕

Zp2 and then we prove that there is no other indecomposable

(1,3) group G with G/R ∼= Zp3
⊕

Zp2 except the ones given on the list.

PROPOSITION 9.0.1 The following two (1, 3)-groups G1 and G2 with regulator qutioent

isomorphic to Zp3
⊕

Zp2 given by the isomorphism types of their regulator with fixed

types, their regulator quotient and their coordinate matrix δ =
[
α || β1 | β2 | β3

]
are indecomposable and pairwise not near-isomorphic.

(i) δ =

1 0
∣∣ p

∣∣ 1
∣∣ 0

0 1
∣∣ p

∣∣ 0
∣∣ 1

 with regulator quotient isomorphic to Zp3
⊕

Zp2

and rankG1 = 5.

(ii) δ =

1 0
∣∣ 0

∣∣ p
∣∣ 1

0 1
∣∣ p

∣∣ 1
∣∣ 0

 with regulator quotient isomorphic to Zp3
⊕

Zp2

and rankG2 = 5.

Proof 10 (i) It is enough to state the matrix

p 1

p 0

 has no 0-line modulo diag(p3, p2)

and is not decomposable.

Consider the following matrix

 1 c

ap 1

p 1

p 0

 =

 p+ cp 1

ap2 + p ap

 =

p+ cp 1

p ap


Since the entry at position (1,2) is not 0, the first row and the second column can not

be completely zero. The entry at position (1,1) is not 0 for any value of c. If we set

a = p then the entry at position (2,2) is 0, but again we neither get a zero line nor a
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cross.

(ii) We now multiply the matrix

0 p

p 1

from left by

1 ap

c 1

 and check whether the

resulting matrix is decomposable modulo diag(p3, p2). Consider

1 ap

c 1

0 p

p 1

 =ap2 p+ ap

p cp+ 1

. If we set a = p, then the entry at position (1,1) is 0 but this does not

make the entry 0 at position (1,2). The entry at position (2,2) is never 0 for any value

of c. This shows that there will be no 0-row, 0-column or cross in [β1|β2].

Theorem 9.0.2 There are precisely two near-isomorphism classes of indecompos-

able ((1, 3), p3)- groups with regulator quotient isomorphic to Zp3 ⊕Zp2 as in Propo-

sition 9.0.1.

Proof 11 Let G be a ((1, 3), p3)-group with regulator R and G/R ∼= Zp3 ⊕Zp2 . Let

δ = [α||β1|β2|β3] be the coordinate matrix of G. Our method consists of finding all

indecomposable (1, 3)-groups with regulator quotient isomorphic to Zp3 ⊕Zp2 that

are direct summands of G by forming the Smith Normal form of the subblocks of

δ. By Theorem 4.0.1 if δ is decomposable, then G is decomposable. Moreover, by

Proposition 27 in [14] it is enough to check [β1|β2] to determine the decomposability

of δ. By Lemma 6.1.3, [β1|β2] contains no 0-rows and there is no 0-column in δ.

Note that a cross or a double cross leads to a direct summand. Hence we assume that

[β1|β2] has no cross and no double cross. Write [β1|β2] =

X ∣∣ Y

Z
∣∣ T

 p3

p2

where X, Y, Z, T are block matrices.

Since a unit in X leads to a cross, the Smith Normal form of X is


p2I 0 0

0 pI 0

0 0 0

. There-

fore [β1|β2] is of the form
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[β1|β2] =


p2I 0 0

∣∣ A1

0 pI 0
∣∣ A2

0 0 0
∣∣ A3

B1 B2 B3

∣∣ B4


p3

p3

p3

p2

With a unit in A3 we can annihilate in its column and in its row. But then we obtain

a cross located at this unit. Hence we may write pA3. Due to pI in the second block

row of X , the entries of A2 are either units or zeros. Hence the Smith Normal form of

A2 is
I 0

0 0

. Thus we get

[β1|β2] =



p2I 0 0 0
∣∣ A11 A12

0 pI 0 0
∣∣ I 0

0 0 pI 0
∣∣ 0 0

0 0 0 0
∣∣ pA31 pA32

pB1 pB21 pB22 pB3

∣∣ B41 B42



p3

p3

p3

p3

p2

The entries of A11 are in pZ due to I in the first block column of Y in p3-block. The

matrix B41 can be annihilated by the identity matrix I above it and pB22 can be

annihilated by pI above it. This would lead to a cross located at pI in the X-block.

Omitting this cross, we get the new coordinate matrix

[β1|β2] =


p2I 0 0

∣∣ pA11 A12

0 pI 0
∣∣ I 0

0 0 0
∣∣ pA31 pA32

pB1 pB21 pB3

∣∣ 0 B41


p3

p3

p3

p2

There is no 0-column in B3 and so the Smith Normal form of B3 is
pI
0

 and [β1|β2]

transforms to
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[β1β2] =



p2I 0 0
∣∣ pA11 A12

0 pI 0
∣∣ I 0

0 0 0
∣∣ pA31 pA32

pB′
1 pB21′ pI

∣∣ 0 B41

pB1 pB21 0
∣∣ 0 B42



p3

p3

p3

p2

p2

The matrices pB′
1 and pB21′ are annihilated by pI in the Z-block and we get

[β1β2] =



p2I 0 0
∣∣ pA11 A12

0 pI 0
∣∣ I 0

0 0 0
∣∣ pA31 pA32

0 0 pI
∣∣ 0 B41

pB1 pB21 0
∣∣ 0 B42



p3

p3

p3

p2

p2

We form the Smith Normal Form of the submatrix pB1 to get
pI 0

0 0

. This expands

the block matrices in its column and row and then [β1|β2] transforms to

[β1|β2] =



p2I 0 0 0
∣∣ pA11 A12

0 p2I 0 0
∣∣ pA21 A22

0 0 pI 0
∣∣ I 0

0 0 0 0
∣∣ pA31 pA32

0 0 0 pI
∣∣ 0 B41

pI 0 pB21 0
∣∣ 0 B42

0 0 pB22 0
∣∣ 0 B43



p3

p3

p3

p3

p2

p2

p2

First we annihilate pB21 and then the block matrix p2I in the first column of X-block

by pI ⊂ pB1 below. This causes a 0-row in the first block row in X . But then to avoid

a cross we may assume that pA12. The Smith Normal form of pB22 is
pI 0

0 0

 and the

resulting coordinate matrix is
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[β1|β2] =



0 0 0 0 0
∣∣ pA11 pA12 pA13

0 p2I 0 0 0
∣∣ A21 A22 A23

0 0 pI 0 0
∣∣ I 0 0

0 0 0 pI 0
∣∣ 0 I 0

0 0 0 0 0
∣∣ pA31 pA32 pA33

0 0 0 0 pI
∣∣ 0 0 B41

pI 0 0 0 0
∣∣ 0 0 B42

0 0 pI 0 0
∣∣ 0 0 B43

0 0 0 0 0
∣∣ 0 0 B44



p3

p3

p3

p3

p3

p2

p2

p2

p2

If there is a unit in A22, then we get a double cross. Hence the entries of A22 ∈ pZ.

But then pA22 can be annihilated by I below. The corresponding fill-ins can removed

by p2I in the second row of the X-block. To avoid a double cross, the entries of A23

are in pZ. Moreover, it is obvious that there is no unit in B44 otherwise we get a

cross. The new coordinate matrix is

[β1|β2] =



0 0 0 0 0
∣∣ pA11 pA12 pA13

0 p2I 0 0 0
∣∣ A21 0 pA23

0 0 pI 0 0
∣∣ I 0 0

0 0 0 pI 0
∣∣ 0 I 0

0 0 0 0 0
∣∣ pA31 pA32 pA33

0 0 0 0 pI
∣∣ 0 0 B41

pI 0 0 0 0
∣∣ 0 0 B42

0 0 pI 0 0
∣∣ 0 0 B43

0 0 0 0 0
∣∣ 0 0 pB44



p3

p3

p3

p3

p3

p2

p2

p2

p2

Note that from here on we will write β1 in a closed form to save place. The entries

of the submatrices B41,B42, B43 are either units or zero due to pI’s in Z-block. The
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Smith Normal form of B43 is
I 0

0 0

 and [β1|β2] transforms to

[β1|β2] =



0
∣∣ pA11 pA11′ pA12 pA13 pA13′

p2I
∣∣ A21 A21′ 0 pA23 pA23′

pI
∣∣ I 0 0 0 0

pI
∣∣ 0 I 0 0 0

pI
∣∣ 0 0 I 0 0

0
∣∣ pA31 pA32 pA33 pA34 pA35

pI
∣∣ 0 0 0 B41 B41′

pI
∣∣ 0 0 0 B42 B42′

pI
∣∣ 0 0 0 I 0

pI
∣∣ 0 0 0 0 0

0
∣∣ 0 0 0 pB44 pB45



p3

p3

p3

p3

p3

p3

p2

p2

p2

p2

p2

We can annihilate the matrices pA13, pA23, B41, B42 and pB44 by pI ⊂ pB43. The fill-

ins in the X and the Z-blocks can be annihilated by pI’s in these blocks. Moreover,

the block matrices pA31 and pA11′ , pA32 can be annihilated by I’s in the third and

the fourth column of Y -block. The new coordinate matrix is

[β1|β2] =



0
∣∣ pA11 0 pA12 0 pA13′

p2I
∣∣ A21 A21′ 0 0 pA23′

pI
∣∣ I 0 0 0 0

pI
∣∣ 0 I 0 0 0

pI
∣∣ 0 0 I 0 0

0
∣∣ 0 0 pA33 pA34 pA35

pI
∣∣ 0 0 0 0 B41′

pI
∣∣ 0 0 0 0 B42′

pI
∣∣ 0 0 0 I 0

pI
∣∣ 0 0 0 0 0

0
∣∣ 0 0 0 0 pB45



p3

p3

p3

p3

p3

p3

p2

p2

p2

p2

p2

We can form the Smith Normal form of the matrices B41′ and B42′ to get
[
I 0

]
. This

will expand the the corresponding blocks. Hence [β1|β2] transforms to
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[β1|β2] =



0
∣∣ pA11 0 pA12 0 pA13′ pA13′′ pA13′′′

p2I
∣∣ A21 A21′ 0 0 0 pA23′ pA23′′

pI
∣∣ I 0 0 0 0 0 0

pI
∣∣ 0 I 0 0 0 0 0

pI
∣∣ 0 0 I 0 0 0 0

0
∣∣ 0 0 pA33 pA34 pA35 pA36 pA37

pI
∣∣ 0 0 0 0 I 0 0

pI
∣∣ 0 0 0 0 0 I 0

pI
∣∣ 0 0 0 I 0 0 0

pI
∣∣ 0 0 0 0 0 0 0

0
∣∣ 0 0 0 0 0 pB45 pB46



p3

p3

p3

p3

p3

p3

p2

p2

p2

p2

p2

By I in the second row of T block, the submatrices pB45 and pA23′ can be annihilated.

Since there is no cross in [β1|β2] the entries of pA37 and pA′′′
13 are in p2 Z. Then we

can form the Smith normal form of pB46 to get
[
pI 0

]
. The resulting matrix is

[β1|β2] =



0
∣∣ pA11 0 pA12 0 pA13′ pA13′′ p2A13′′′ p2A14

p2I
∣∣ A21 A21′ 0 0 0 0 pA23′ pA23′′

pI
∣∣ I 0 0 0 0 0 0 0

pI
∣∣ 0 I 0 0 0 0 0 0

pI
∣∣ 0 0 I 0 0 0 0 0

0
∣∣ 0 0 pA33 pA34 pA35 pA36 p2A37 p2A37′

pI
∣∣ 0 0 0 0 I 0 0 0

pI
∣∣ 0 0 0 0 0 I 0 0

pI
∣∣ 0 0 0 I 0 0 0 0

pI
∣∣ 0 0 0 0 0 0 0 0

0
∣∣ 0 0 0 0 0 0 pI 0



p3

p3

p3

p3

p3

p3

p2

p2

p2

p2

p2

The matrices p2A13′′′ and p2A37 can be annihilated by pI in the last block row of

the T -block. If there is a p ∈ pA13′ , then we get a direct summand (ii) on the list

in Proposition 9.0.1. with regulator quotient isomorphic to Zp3 ⊕Zp2 . Omitting this

summand we may assume that the entries of pA13′ are all in p2 Z. The same holds for
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pA13′′ . Thereafter the matrices pA13′ and pA13′′ can be annihilated by the block unit

matrices below them. Therefore, the new coordinate matrix is

[β1|β2] =



0
∣∣ pA11 0 pA12 0 0 0 0 p2A14

p2I
∣∣ A21 A21′ 0 0 0 0 pA23′ pA23′′

pI
∣∣ I 0 0 0 0 0 0 0

pI
∣∣ 0 I 0 0 0 0 0 0

pI
∣∣ 0 0 I 0 0 0 0 0

0
∣∣ 0 0 pA33 pA34 pA35 pA36 0 p2A37′

pI
∣∣ 0 0 0 0 I 0 0 0

pI
∣∣ 0 0 0 0 0 I 0 0

pI
∣∣ 0 0 0 I 0 0 0 0

pI
∣∣ 0 0 0 0 0 0 0 0

0
∣∣ 0 0 0 0 0 0 pI 0



p3

p3

p3

p3

p3

p3

p2

p2

p2

p2

p2

A unit in A21′ leads to a summand of rank ≤ 3 and also the entries of A21′ which are

in pZ can be annihilated by I below. Hence we may assume that A21′ = 0. But then

we get a direct summand (i) on the list in Proposition 9.0.1. with regulator quotient

isomorphic to Zp3 ⊕Zp2 . Omitting this summand we get

[β1|β2] =



0
∣∣ pA11 pA12 0 0 0 0 p2A14

p2I
∣∣ A21 0 0 0 0 pA23′ pA23′′

pI
∣∣ I 0 0 0 0 0 0

pI
∣∣ 0 I 0 0 0 0 0

0
∣∣ 0 pA33 pA34 pA35 pA36 0 p2A37′

pI
∣∣ 0 0 0 I 0 0 0

pI
∣∣ 0 0 0 0 I 0 0

pI
∣∣ 0 0 I 0 0 0 0

0
∣∣ 0 0 0 0 0 pI 0



p3

p3

p3

p3

p3

p2

p2

p2

p2

A unit in A21 leads to a summand of rank ≤ 3 and hence the entries of A21 are

in pZ and they can be annihilated by I below. So we assume that A21 = 0. A

p ∈ pA23′′ leads to a direct summand of type (i) on the list in Proposition 7.0.1. But

then the entries of pA23′′ are all in p2 Z and can be annihilated by p2I on the left.
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The same holds if there is a p ∈ pA23′ and hence it can be annihilated by pI in the

last column. Hence pA23′ = 0 and this would lead to across located at p2I in the

X-block. Omitting the row and column leading crosses, the new coordinate matrix

becomes

[β1|β2] =



0
∣∣ pA11 pA12 0 0 p2A14

pI
∣∣ I 0 0 0 0

pI
∣∣ 0 I 0 0 0

0
∣∣ 0 pA33 pA34 pA35 p2A37′

pI
∣∣ 0 0 0 I 0

pI
∣∣ 0 0 I 0 0



p3

p3

p3

p3

p2

p2

A p ∈ pA35 leads to a summand of type (ii) on the list in Proposition 9.0.1 with

regulator quotient isomorphic to Zp3 ⊕Zp2 . Omitting this summand we may assume

that pA35 = 0. Thereafter omitting the columns and rows leading to a horizontal

double cross and permutating the first block row of [β1|β2] to the fourth block row of

[β1|β2] the resulting matrix takes the form

[β1|β2] =



pI 0
∣∣ I 0 0 0

0 pI
∣∣ 0 I 0 0

0 0
∣∣ 0 pA33 pA34 p2A37′

0 0
∣∣ pA11 pA12 0 p2A14

pI 0
∣∣ 0 0 I 0



p3

p3

p3

p3

p2

A zero column leads to a cross with a cross point located at pA34. Hence the Smith

normal form of pA34 is
pI
0

 and the new coordinate matrix is

[β1|β2] =



pI 0
∣∣ I 0 0 0

0 pI
∣∣ 0 I 0 0

0 0
∣∣ 0 pA33 pI p2A37′

0 0
∣∣ 0 pA33′ 0 p2A37′′

0 0
∣∣ pA11 pA12 0 p2A14

pI 0
∣∣ 0 0 I 0



p3

p3

p3

p3

p3

p2
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The submatrices pA33 and p2A37′ can be annihilated by pI ⊂ pA34. The resulting

fill ins can be removed. A p in pA33′ leads a summand with homocyclic regulator

quotient. Omitting this summand and by the fact pA33′ has no entries in p2 Z by I

above it, we can conclude that pA33′ = 0. We can also conclude that pA12 = 0 by

the same reasoning that we used to show that pA33′ = 0. But this causes to a direct

summand ≤ 3. We omit this summand to get the new resulting matrix as

[β1|β2] =



pI 0
∣∣ I 0 0 0

0 pI
∣∣ 0 I 0 0

0 0
∣∣ 0 0 pI 0

0 0
∣∣ 0 0 0 p2A37′′

0 0
∣∣ pA11 pA12 0 p2A14

pI 0
∣∣ 0 0 I 0



p3

p3

p3

p3

p3

p2

The block row p2A37′′ does not exist to avoid a cross. The submatrix pA11 can be

annihilated by I above it.The resulting fill ins can be removed. Hence we can assume

that pA11 = 0. Then the coordinate matrix transforms to

[β1|β2] =



pI 0
∣∣ I 0 0 0

0 pI
∣∣ 0 I 0 0

0 0
∣∣ 0 0 pI 0

0 0
∣∣ 0 pA12 0 p2A14

pI 0
∣∣ 0 0 I 0



p3

p3

p3

p3

p3

p2

A p ∈ pA12 leads to a homocyclic summand of type (ii) on the list in Proposition

7.0.1. Thereafter the block row p2A14 is not present to avoid a cross. Therefore the

new coordinate matrix is of the form

[β1|β2] =


pI 0

∣∣ I 0 0

0 pI
∣∣ 0 I 0

0 0
∣∣ 0 0 pI

pI 0
∣∣ 0 0 I


p3

p3

p3

p2
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The second column with the fourth column result to a direct summand of rank ≤ 3

and hence can be omitted. But then the new coordinate matrix

[β1|β2] =


pI

∣∣ I 0

0
∣∣ 0 pI

pI
∣∣ 0 I


p3

p3

p2

The block matrix pI in the last block row can be annihilated by pI above it and this

transforms [β1|β2] to the form

[β1|β2] =


pI

∣∣ I 0

0
∣∣ 0 pI

0
∣∣ I I


p3

p3

p2

The identity matrix in the third block column can be annihilated by I on its left and

we get

[β1|β2] =


pI

∣∣ I I

0
∣∣ 0 pI

0
∣∣ I 0


p3

p3

p2

The identity matrix in the second block column in the p3-block can be annihilated by

I right to it. The resulting fill-ins in the second block row can be annihilated by I in

the p2-block. Hence we get

[β1|β2] =


pI

∣∣ 0 I

0
∣∣ 0 pI

0
∣∣ I 0


p3

p3

p2

The second block column of [β1|β2] with the last block row leads to a cross. Deleting

these columns and rows, we end up with the homocyclic case which is not possible.

This finishes the proof.
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