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ABSTRACT

BITCOIN PRICE FORECASTING UNDER THE INFLUENCES OF NETWORK
METRICS AND OTHER FINANCIAL ASSETS

DAŞ, İSMAİL

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. A. Sevtap Kestel

Co-Supervisor : Dr. Bilgi Yılmaz

DECEMBER 2022, 56 pages

In 2008, the whitepaper titled "Bitcoin: A Peer-to-Peer Electronic Cash System" introduced
an original design of a decentralized digital currency. The innovations, described by the
pseudonym Satoshi Nakamoto, have led to the evolution of cryptocurrencies and have at-
tracted significant attention from the media and investors. The price of bitcoin has captured
the interest, and the dynamics of bitcoin have become a popular topic in academia. This the-
sis examines the dynamics of bitcoin prices with several network metrics and financial assets.
Three periods chosen by Prophet’s change point detection are studied to capture the relation-
ships in different characteristics. Cointegration relationships are analyzed, and according to
the results, VAR and VEC models are estimated for granger causality. The cointegration re-
lationship between BTC and hashrate revealed a unidirectional granger-causality from BTC
price to hashrate. Additionally, BTC price granger-causes volume in two periods. Finally,
ARIMA models are used to forecast Bitcoin and other variables in seven different periods.
The results are compared and evaluated by several accuracy measures.

Keywords: ARIMA, Bitcoin, Granger causality test, VAR, Prophet, Cointegration
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ÖZ

AĞ METRİKLERİ VE FİNANSAL VARLIKLARIN ETKİSİ ALTINDA BITCOIN FİYAT
TAHMİNİ

DAŞ, İSMAİL

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. A. Sevtap Kestel

Ortak Tez Yöneticisi : Dr. Bilgi Yılmaz

Aralık 2022, 56 sayfa

2008 yılında, "Bitcoin: A Peer-to-Peer Electronic Cash System" başlıklı makale, merkezi ol-
mayan bir dijital para biriminin özgün bir tasarımını tanıttı. Anonim kimlik Satoshi Naka-
moto tarafından duyurulan yenilikler, kripto para birimlerinin evrimine öncülük etti ve medya
ve yatırımcılardan büyük ilgi gördü. Bitcoin fiyatı ve bitcoin fiyat dinamikleri de akademide
popüler bir konu haline geldi. Bu tez, bitcoin fiyatı ve dinamiklerinin çeşitli network met-
rikleri ve finansal varlıklar ile bağlantısı incelenmektedir. Prophet’ın değişim noktası tespiti
ile tanımlanan iki dönem, farklı özelliklerdeki ilişkileri yakalamak için incelenmiştir. Eşbü-
tünleşme ilişkileri analiz edilmiş ve sonuçlara göre nedensellik analizi için VAR ve VEC
modelleri tahmin edilmiştir. Bitcoin fiyatından hacime ve hash oranına tek yönlü granger ne-
densellik ilişkisi tespit edilmiştir. Son olarak, ARIMA, Bitcoin fiyatını ve diger degiskenleri
tahmin etmek için kullanılmış ve sonuçlar, bazı doğruluk ölçümleriyle en doğru tahmin mo-
delini bulmak için karşılaştırılmıştır.

Anahtar Kelimeler: ARIMA, Bitcoin, Granger nedensellik testi, VAR, Prophet, Eşbütünleşme
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CHAPTER 1

INTRODUCTION

Satoshi Nakamoto published a white paper titled “Bitcoin: A Peer-to-Peer Electronic Cash
System” in 2008 [51]. The paper introduced an original design of a digital currency named
Bitcoin (BTC), which is a decentralized currency built on a distributed ledger called the
blockchain. These innovations, described by the pseudonym Satoshi Nakamoto, have led
to the evolution of cryptocurrencies and attracted significant media attention [52]. While the
surge in BTC prices has captured the interest of many investors, the dynamics of BTC prices
have become a popular topic in academia in recent years.

In the last decade, the attractiveness of BTC as an investment asset has grown significantly.
As a consequence, BTC exceptionally climbed in value from less than $1 to over $14,000
between 2010 and 2017 [17]. When its price and overall market valuation soared in the
second half of 2017, BTC became one of the most popular topics as a financial investment
vehicle. One BTC was worth about $17,000 in the middle of December 2017, and the market
capitalization was above $300 billion [28]. The increasing importance of BTC as a financial
instrument has resulted in a corresponding increase in the studies on the forecasting of BTC
price [2, 3, 16, 31, 38, 43]. While the performance of Prophet and ARIMA is compared in
BTC price forecasting [65, 37], machine learning methods are also widely used [50, 56].

BTC secures its blockchain with a process of mining that uses an energy-hungry consensus
algorithm called “proof of work”. The proof of work requires computational power from the
network participants to obtain a consensus on data recorded on a blockchain. In this sense,
a blockchain can be described as a value-exchange protocol in which miners are rewarded in
BTC for their energy expense [48]. The total computational power of the miners is measured
by hashrate, which is an input for the cost calculation of miners [33]. In addition, BTC
price is critical for all miners to estimate their profits and decide on their mining activities.
Therefore, numerous studies have investigated the fundamental relationship between BTC
price and hashrate [24, 44, 27, 29].
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1.1 Literature Review

Several studies examine the relationship between Bitcoin and various other variables, such as
economic indicators, market factors, and news events. Different methodologies are applied
to investigate the relationship between BTC and other variables. A number of studies find
significant autocorrelation in BTC price and linear dependency with other variables [63, 24,
3, 26, 41, 22, 19]. The concept of Granger causality, introduced by Granger [30], is a common
approach to discovering the predictability of the variables. The linear time series models,
such as Vector Auto Regression (VAR) and Error Correction models (ECM) are estimated
and evaluated for the causality test.

[24] investigated the relationship between BTC price and hashrate in two sub-periods. A
cointegration relationship is found between these variables in 11/12/2017 – 4/02/2020, and
the unidirectional causality is from BTC price to hashrate. [68] analyzes the influences of
some factors on BTC price including oil price, volume, US Dollar index, and stock index
by applying a cointegration test with error correction models. The study concludes that all
variables have an influence in the long run. They find that gold has the least impact on Bitcoin
price, while the dollar index has the greatest impact.

[63] analyzes the influence of the stock index, oil price, and trading volume on BTC price
by performing a cointegration analysis through VEC model. Stock price index, oil price, and
volume have a long-term relationship with BTC price. The stock price index and oil price
have a negative effect on BTC price, while volume has a positive effect. [29] conducts bivari-
ate ECM with BTC price and several variables including hashrate. They find a unidirectional
granger-causality from BTC price to hashrate. [42] establishes an empirical model for discov-
ering the dynamics of Bitcoin prices through an error correction model for two periods. S&P
500 index has a positive effect on BTC price, and gold price has a negative effect.

[44] studies between 2013 and 2018, and includes several variables such as hashrate, volume,
S&P500, gold, oil, and Google trends to capture the dynamics of BTC price. The study uses
Autoregressive Distributed Lag and Generalized Autoregressive Conditional Heteroscedas-
ticity approach and concludes that S&P500 and Google trends affect BTC price. The unidi-
rectional causality, from Bitcoin price to hashrate is captured and evaluated with the mining
economics of BTC network. [20] analyzes the causal relationship between Bitcoin attention,
measured by Google Trends, and Bitcoin returns by employing the Copula-based Granger
Causality in Distribution (CGCD) test. They find a bi-directional causal relationship between
Bitcoin attention and Bitcoin returns.

[6] employs a non-parametric causality-in-quantiles test to analyze the causal relationship
between trading volume and Bitcoin returns. Volume can predict BTC returns except in bear
and bull market regimes while volume cannot predict the volatility of Bitcoin returns. [45]
proposes a model to examine the relationship between BTC price and various macroeconomic
variables including BTC price, S&P500 volatility index, gold price, and the dollar index. They
develop a time-varying cointegration to investigate the equilibrium relationships.
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[40] uses wavelet coherence to analyze the co-movement between BTC price and gold. In
order to predict the direction of the cryptocurrency market. [25] provide a lower-bound esti-
mate of Bitcoin’s intrinsic value by using the cost of the energy used in Bitcoin mining. They
include social metrics and studied the bubbles in BTC price. They find positive feedback
loops in Bitcoin price and its social activity. [7] finds that the oil price volatility index is an
important predictor for both BTC and Gold prices. Ten-year bond yields are also significant
for predicting Bitcoin price direction. [18] uses the generalized variance decomposition to
understand the sign and severity of spillover shocks from markets such as SP500, gold, and
BTC price. The study concludes that cryptocurrencies are unrelated to traditional markets
and might provide short-term diversification advantages. [27] finds that S&P 500 index has
a negative impact on BTC prices in the long run while showing that positive correlation of
twitter activities with BTC prices. In the short-run hashrate has a positive impact on BTC
price.

On the other hand, nonlinear models like regime-switching models are also used to capture
the nonlinear features among the variables. For example, Markov-switching (MS) AR mod-
els, allowing the analysis of causality within the discrete regimes that explain the significant
shifts in a time series, are applied in BTC [14]. Markov-Switching GARCH models are used
to model the volatility of BTC [15]. Also, Copula methods, investigating the dependency
between variables through the joint probabilities of a multivariate distribution, are used for
BTC [20, 10].

Given the enormous market capitalization of cryptocurrencies, predicting their prices is a re-
search field with great financial reward potential. Several studies apply efficient forecasting
models to predict BTC price. [50] uses Machine Learning (ML) algorithms to predict BTC
price. The results show that non-parametric machine learning methods have higher predic-
tive accuracy than regression-based methods. [61] have also used statistical methodologies
and ML algorithms to forecast BTC price. [37] applies ARIMA, Prophet, and Multilayer
Perceptron (MLP) to forecast the price direction of BTC and MLP provided the best result of
accuracy at 54%. [56] explores several algorithms of ML using supervised learning to develop
a prediction model and provide an analysis of future market prices.

[31] applies linear regression, logistic regression, SVM, and ANN with the blockchain met-
rics of Bitcoin, and analyzes the network’s influence on Bitcoin price. They predict the price
movement with an accuracy of 55%. [3] proposes the prediction model based on ARIMA to
evaluate the future value of Bitcoin from 2015 to 2018. They conclude that predicting BTC
price is efficient in sub-periods in which the behavior of the time series is stable. In con-
trast, in the long term, the forecasts of BTC price have large prediction errors. [16] studies
with high-dimensional data of BTC, and reveals that logistic regression and linear discrimi-
nant analysis achieve an accuracy of 66%. On the other hand, machine learning algorithms
give 65.3% accuracy. [38] compares the performances of various deep learning models and
their combinations for BTC price forecasting. LSTM-based prediction models are slightly
outperformed.
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1.2 Aim of the Thesis

Despite the considerable amount of published research about the dynamics of Bitcoin price,
there is no consensus on which factors are the drivers of BTC price. While several studies
state that BTC price has an impact on hashrate [24, 44, 29], some studies depict different
results. Several studies find evidence of Granger causality relationships between Bitcoin and
certain variables such as volume, gold, and S&P500 [41, 68, 63, 6, 44]. In this thesis, hashrate
and volume are added as the network metrics to extend the previous studies in different time
intervals.

BTC price shares common characteristics with commodities such as the mining process and
limited supply. Hence, gold, silver, and crude oil are also added to the study. The Dollar
index (DXY) and S&P500 are the two important indexes monitored worldwide to interpret a
general view of the economy and the financial markets. The allowances of carbon emissions,
traded under the European Union Emissions Trading System (EU ETS), encourage reductions
in carbon emissions and the use of clean energy. Similarly, there are serious concerns about
the fossil energy consumption of BTC mining [4, 60], and BTC is heavily criticized for its
carbon emissions. Therefore, the carbon price is also included in the study to investigate the
impact of rising carbon prices on BTC price.

BTC price has very distinctive patterns, mostly with high volatility and strong trend, and the
changes are quite abrupt due to the regulations, hacking issues, and halving process [9, 8,
54, 47, 49]. So, different relationships may be discovered over different time periods in the
studies of Bitcoin price dynamics. Some studies find structural breaks in BTC price and divide
the whole period into sub-periods [24, 20], and, interestingly different results are obtained in
these sub-periods.

The objective of this thesis is two-fold: The first highlights and evaluates the influence of dif-
ferent variables on BTC price. Through multivariate time series models, this study examines
the drivers of BTC price in different time intervals. The second is to make efficient forecasts
of BTC price and to compare the performances in different time intervals. The research ques-
tions are (i) Does Bitcoin have any causality relationship with the selected variables? (ii)

How do these relationships differ in different time horizons? (iii) Which variables have pre-
dictive power on BTC prices? (iv) How accurately do ARIMA and ES models predict BTC
price in various time periods?

Due to the interpretability limitation of machine learning algorithms, autoregressive models
are applied to examine and understand the structure behind the predictive models.

This thesis is expected to contribute to the literature in several points. First, this thesis takes
into a wide range of variables, including carbon and oil prices in which the literature is still
limited. Also, this thesis examines three distinct periods to compare the relationships in dif-
ferent market conditions. While most studies in the literature include the period until 2020,
the upward market movement beginning from the last halving event in 2020 is also included.
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The structure of the thesis is as follows. The study’s theoretical background and methodology
are described in Chapter 2. Empirical results are introduced in Chapter 3. The thesis’s key
conclusions are summarized in Chapter 4 along with some recommendations for additional
research. The final section of the thesis includes the conclusions, along with some recom-
mendations for further research.
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CHAPTER 2

METHODOLOGY

This chapter is dedicated to give an intuition to the classical time series modeling methods.
We follow [12, 46] closely in this chapter.

A time series is a collection of data points indexed according to time, and its analysis com-
prises techniques for deriving valuable statistics and other aspects of time series data [46].
Time series models have a variety of forms and can represent various stochastic processes.
These models are fitted to time dependent data to investigate the relationships or forecast the
future.

The significant contributions [66, 67] lead to establish the foundation for modern time series
analysis. These studies primarily focus on the interdependence of time series observations in
a simple linear regression model given

yt = x
>
t �|{z}

explained

+ "t|{z}
unexplained

, t = 1, . . . , T.

The white noise process, frequently used to describe the distribution of the errors in the model,
is the basis for most time series models. It is described as a collection of zero-mean, finite-
variance random variables that are serially uncorrelated.

2.1 ARIMA

The ARIMA model was primarily introduced in [12]. It is also known as the Box-Jenkins
methodology and consists of steps for identifying, estimating, and assessing ARIMA models
using time series data. These models are denoted as ARIMA(p, d, q), where p is the order of
the autoregression, d is the degree of differencing, and q is the order of the moving average.
The AR part of the ARIMA indicates the autoregressive process that is regressed on lagged
values, and p is the number of the lags of the autoregressive model. The AR(p) model is
written as [12]

Xt =
pX

i=1

'iXt�i + "t,
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where '1, . . . ,'p are the finite set of weight parameters, and "t is white noise. This model
can be written in the equivalent form

Xt =
pX

i=1

'iB
i
Xt + "t,

or
�[B]Xt = "t,

which implies that the autoregressive process can be considered as the result of an all-pole
infinite impulse response filter with white noise as its input.

The moving average model of order q is indicated by MA(q), and the model is written as

Xt = µ+ "t + ✓1"t�1 + · · ·+ ✓q"t�q = µ+
qX

i=1

✓i"t�i + "t,

where µ is the mean, ✓1, . . . , ✓q are the finite set of weight parameters, and "t, "t�1, . . . , "t�q

are white noise. Now, using the backshift operator B, the model can be rewritten in an
equivalent form as

Xt = µ+ (1 + ✓1B + · · ·+ ✓qB
q)"t.

Conceptually, an MA model is a linear regression of the current value of the series against
the past and current error terms. It is assumed that the error terms at each point originate from
the same distribution, often a normal distribution, and are independent of one another. They
are also considered to have a mean zero and a constant variance.

The ARMA(p, q) model, includes both AR(p) and MA(q) models, and is a linear combina-
tion of past values Xt and past errors "t as following

Xt = "t +
pX

i=1

'iXt�i +
qX

i=1

✓i"t�i.

To find the best ARMA(p, q) model, Akaike Information Criterion (AIC) [1], a measure of
the goodness-of-fit.

2.2 Exponential Smoothing

Exponential smoothing is a popular and straightforward forecasting technique that works well
with discrete time series data. In spite of its simplicity in terms of computational efficiency,
it is a powerful forecasting method. Forecasted values are the weighted averages of previous
observations. Exponential Smoothing is developed by [13, 34, 64].

Simple Exponential Smoothing (SES) for the time series with no trend and seasonality. In
their work, the forecasts depend on the weighted average of previous observations, and are
given less weight and have less of an influence on forecasting in the future. In other words,
weights decline exponentially as the observations get older [35].
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In SES, the forecast yt+1 is the weighted average combination of most recent observation yt

with weight ↵, and the most recent forecast yt with a weight of (1� ↵). It is expressed as:

st = ↵xt + (1� ↵)st�1 = st�1 + ↵(xt � st�1),

where ↵ is the smoothing factor, and 0  ↵  1. SES is expanded to Double Exponential
Smoothing (DES) to account for the trend’s effects on the simple exponential smoothing [34].
This approach uses a trend coefficient and a smoothing parameter so that

Level equation : `t = ↵yt + (1� ↵)(`t�1 + bt�1),

Trend equation : bt = �
⇤(`t � `t�1) + (1� �

⇤)bt�1,

where ↵ (0  ↵  1) is the data smoothing factor, and � (0  �  1) is the trend smoothing
factor and, h step ahead forecast equation can be written as,

Forecast equation : ŷt+h|t = `t + hbt.

Holt-Winter Seasonal method is expanded upon by [34, 64] in 1957 in order to account for
seasonality. Three smoothing parameters ↵, �, and � are needed for level, trend, and seasonal
variations, respectively. These equations are as,

St = ↵
Yt�1

It�s
+ (1� ↵) (St�1 + Tt�1) ,

Tt = � (St � St�1) + (1� �)Tt�1,

It = �
Yt

St
+ (1� �)It�s,

where, S is the smoothed observation, T is the trend, I is seasonal index. By using the
minimized MSE value, ↵, �, and � values are calculated. The k-step ahead forecast is,

Ŷt(k) = (St + hTt) It+k�s.

2.3 Prophet

The Prophet software, a tool to forecast time series data [59], aims to forecast "at scale," which
means a forecasting tool that is automated in nature, making it easier to use when tuning time
series methods.

Linear trend with changepoints which is a piece-wise constant rate of growth is provided as,

g(t) =
�
k + a(t)T �

�
t+

�
m+ a(t)T�

�
,

where as k is the growth rate, � has the rate adjustments, m is the offset parameter, and �j is
set to �sj�j to make the function continuous. aj(t) defined as,

aj(t) =

(
1 if t � sj

0 otherwise .
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Automatic selection can be done quite naturally with the formulation by putting a sparse prior
on �. A large number of changepoints are specified, and the prior �j ⇠ L(0, ⌧) is used. The
parameter ⌧ directly controls the flexibility of the model in altering its rate. Additionally, a
sparse prior on the adjustments � has no impact on the primary growth rate k, so as ⌧ goes to
0 the fit reduces to standard logistic or linear growth.

The trend will have a constant rate when the model’s forecast is extrapolated beyond the
historical data. By moving the generative model forward, the uncertainty in the predicted
trend can be estimated. The generative model for the trend is that there are S changepoints
over a history of T points, each of which has a rate change �j ⇠ L(0, ⌧). Future rate changes
that emulate those of the past are simulated by replacing ⌧ with a variance inferred from data.

In a fully Bayesian framework this could be done with a hierarchical prior on ⌧ to obtain
its posterior, otherwise the maximum likelihood estimate of the rate scale parameter can be
used as � = 1

S

PS
j=1 |�j |. Future changepoints are randomly sampled so that their average

frequency matches that of the historical changepoints:

8j > T,

(
�j = 0 w.p. T�S

T

�j ⇠ L(0,�) w.p. S
T .

Thus, the degree of uncertainty in the predicted trend is estimated by assuming that rate
changes will occur with the same average frequency and magnitude as in the past. Once
� has been inferred from the data, this generative model is used to simulate potential future
trends. The simulated trends are used to compute uncertainty intervals.

2.4 Cointegration

If two non-stationary time series have the same order of integration and there is a stationary
linear combination of these series, then it can be said that these series are cointegrated [23].
Cointegration indicates a common stochastic trend and long-run equilibrium relationship be-
tween two variables [23]. In cointegration, it is necessary to use Vector Error Correction
Model (VECM). Hence, checking the presence of cointegration is an essential step to deter-
mine whether VAR or VECM is appropriate. There are numerous methods for developing
cointegration tests, including the Engle-Granger two-step method [23], Johansen test [39],
and Phillips-Ouliaris test [53]. This study applies the Engle-Granger two-step method for the
cointegration.

If xt and yt are non-stationary and order of integration d = 1, then a linear combination of
them may be stationary for some value of � and ut. � is estimated first by using ordinary least
squares (OLS). Then, Augmented Dickey-Fuller test (ADF) [21] is applied to check unit root
of the error term

yt � �xt = ut,
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where ut is the error term. Two I(1) variables variables can be expressed as

y1,t = µy1t + �y1t

y2,t = µy2t + �y2t ,

where µyit represents the trend in variable yt, and �i,t is the stationary part. By multiplying
y1t by �1 and y2t by �2,

�1y1,t = �1µy1t + �1�y1t

�2y2,t = �2µy2t + �2�y2t .

A linear combination of these variables can be expressed as

�1y1,t + �2y2,t = �1(µy1,t + �y1,t) + �2(µy2,t + �y2,t)

= (�1µy1,t + �2µy2,t) + (�1�y1,t + �2�y2,t).

If the residuals, (�1�y1,t + �2�y2,t) are stationary, and the linear combination of the variables
�1y1,t + �2y2,t are also stationary; then their stochastic trend is �(�1/�2) [58].
Therefore, for y1,t and y2,t to be cointegrated,

µy1,t =
��2µy2,t

�1
.

If stationarity exists in the residuals, Error Correction Model (ECM) can be estimated such as

�y1,t = �0 + ↵1 [y1,t�1 � �1y2,t�1] +
KX

i=1

⇣1,i�y1,t�1 +
LX

j=1

⇣2,j�y2,t�1 + "y1,t

�y2,t = ⌘0 + ↵2 [y1,t�1 � �1y2,t�1] +
KX

i=1

⇠1,i�y2,t�1 +
LX

j=1

⇠2,j�y1,t�1 + "y2,t,

where �1 is the cointegrating vector and, ↵1 and ↵2 are the speed of adjustment parameters.

2.5 Vector Autoregression (VAR)

In time series research, vector autoregressive (V AR) models are frequently used to look at
the dynamic relationships between variables [57]. In its basic form, a VAR consists of a set of
K endogenous variables yt = (y1t, . . . , ykt, . . . , yKt) for k = 1, . . .K. The V AR(p) model
can be defined as follows after the endogenous variables’ p lags are taken into account,

yt = A1yt�1 + . . .+Apyt�p + CDt + ut,

where Ai are (K ⇥K) coefficient matrices for i = 1, . . . , p and ut is a K-dimensional white
noise process with time-invariant positive definite covariance matrix, and E [utu0

t] = ⌃u such
that E [ut] = 0 and, ⌃u is a positive definite matrix. A multivariate equation form in K = 2

can be written as in the matrix form,
"
y1,t

y2,t

#
=

"
c1

c2

#
+

"
a1,1 a1,2

a2,1 a2,2

#"
y1,t�1

y2,t�1

#
+

"
e1,t

e2,t

#
,
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and linear equation system form

y1,t = c1 + a1,1y1,t�1 + a1,2y2,t�1 + e1,t

y2,t = c2 + a2,1y1,t�1 + a2,2y2,t�1 + e2,t.

A stable VAR model covariance-stationary when the effect of the shocks, ut, disappear over
time. In this case, the eigenvalues of the companion coefficient matrix � should be all less
than one in absolute value.

|�1 � �I| < 1

To specify the model, the appropriate lag length of the V AR model has to be chosen. AIC or
BIC can be used for this purpose as in ARIMA model.
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CHAPTER 3

EMPIRICAL ANALYSES

The empirical analyses are done on the variables which are expected to illustrate the outcome
of the proposed research questions. The models implemented to the data sets and the fore-
casts obtained are coded using R and Python software [55, 62]. The variables which are taken
into account in frame of forecasting prices are shown in Table 3.1. Hashrate and volume are
included as network metrics related to BTC. The influence of commodities, financial market
indicators, carbon emission, and environmental index is taken into account to depict their
impact on the BTC prices. The mining process of BTC, an energy-consuming process, may
cause a relationship with other energy commodities. Carbon, provided by European Union
Emissions Trading System (EU ETS), encourages the use of clean energy. Since serious con-
cerns arise about the fossil energy consumption of BTC mining [4, 60], BTC is also criticized
for carbon emission, and this similar situation is considered by including carbon emission
prices in the study. Additionally, the moves of the Federal Reserve (FED), the central bank
of the United States, affect the financial markets worldwide and the Dollar index (DXY). The
possible effects of these movements in BTC may also cause a relationship between DXY and
BTC.

Table 3.1: Description of the variables
Variable Description Source

Bitcoin price (BTC) the consolidation of bitcoin prices ($) from major crypto exchanges Blockchain.com
Hashrate the estimated number of giga hashes per second performed in Bitcoin network Blockchain.com
Volume the total trading volume of Bitcoin Blockchain.com

Gold London fixing prices by the London Bullion Market Association (LBMA) Nasdaq Data Link
Silver London fixing prices by the London Bullion Market Association (LBMA) Nasdaq Data Link

Crude Oil WTI futures price per barrel Investing.com
Dollar Index (DXY) the value of the US dollar against major currencies Investing.com

S&P 500 the stock market index of 500 large companies listed in US Investing.com

Carbon
the futures price of carbon emissions allowances (EUA)

traded on the European Union’s Emissions Trading System (ETS)
Investing.com
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3.1 Data Description

Most price series increase exponentially, and the multiplicative relationship of the variables
is not suitable for linear methods. Hence, it’s necessary to make variables additive and linear
before modeling with V AR and ARIMA. The log transformation scales the data and can
help to stabilize variances. The transformation of the natural logarithm is applied to the
financial price series. On the other hand, the min-max method is used for the trading volume
of BTC.

In many cases, it is necessary to transform time series data before applying any statistical
models since the time series data we have usually are not stationary. Further, we should
eliminate trends or cycles in the data and use the statistical models for the remaining data.
Therefore, we applied the logarithmic transformation for BTC and other price variables. Vol-
ume is transformed with the standard min-max normalization defined as

y =
x�min(x)

max(x)�min(x)
.

This transformation provides a rescaling of the data so that all values are within the new range
of 0 and 1.

The modeling part consists of dividing the data set into training and test subsets, at which we
apply the model, estimate the parameters and apply it to the test set to determine if the model
fits well using some performance indicators. Based on literature which suggests around 80-
20%, we remain within the limits and choose the separation rates as 85-15%. In contrast to
BTC, the markets of other financial variables are closed on weekends and holidays. So the
time series used in this study are filtered according to the intersection of available observa-
tions.

Figure 3.1 shows the visualization of dependent and independent variables, and the increasing
trends can be seen in BTC price, hashrate, carbon, and S&P500. Volume, hashrate, and BTC
show higher volatility. In last years, although BTC price reached $60,000, the price faced a
dramatic fall in 2022. The trading volume has spiked in December 2017 when BTC reached
new all-time high levels of around $17,000. The effect of Covid can be seen clearly with
sharp movements in crude oil, silver, and S&P500 in Figure 3.1. The price of European
carbon emissions and BTC has a significant rise starting from 2021. While DXY moves in a
range between 90 and 105 until 2022, the index reached higher levels with the strong trend
in this year. S&P500 index has a upward movement with two extreme falls. Silver has an
apparent change in level around mid-2020 by rising from $20 to $30. After the logarithmic
and min-max transformations, the transformed variables are shown in Figure 3.2. Exponential
trends in BTC and carbon have vanished with the logarithmic transformation.

Table 3.2 illustrates the descriptive statistics of the variables. BTC has the highest mean value
(8.72), while volume has the lowest one. BTC is also the most volatile variable (1.36), while
Dollar Index has the lowest volatile (0.03). If the series is normally distributed, the skewness
value should be zero. The kurtosis value, which determines whether a series is heavy-tailed
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Figure 3.1: Visualization of dependent and independent variables

or light-tailed for a normally distributed series, should have the value of three in normality.
The skewness of carbon and S&P500 are close to zero. Volume has the highest kurtosis,
which indicates heavier tails than a normal distribution. All variables are very far from the
assumption of normality. In Figure 3.3, the differenced series are presented. All time series
have mean around zero. While BTC, Dollar index, gold, and carbon have relatively constant
variances, volume, crude oil, and S%P500 have high values in some periods.

Table 3.2 shows the descriptive statistics of differenced variables. The mean is zero for all
series, and the standard deviations are higher for BTC and its metrics hashrate and volume.
Gold, the Dollar index, and S&P 500 are less volatile, with minor standard deviations (0.01).
Only gold, volume and DXY have negative skewness, crude oil and and S&P500 are right-
skewed with higher positive skewness. Additionally, while all variables have heavy-tails with
the positive kurtosis values, Volume, Crude oil, and S&P 500 show extreme values. Jarque
Bera statistics are rejected at a 5% significance level for all series, which means they are not
normally distributed.

Figure 3.4 graphs the additive seasonal decomposition of the seasonal, trend, and residual of
the BTC price. As the figure shows, BTC has a distinct, repeating pattern observed in regular
intervals, and the general movement of BTC is increasing. The irregular component consists
of the fluctuations in the time series after removing the trend and seasonality components
showing periods of low variability in the early and late years of the series. The residuals are
serially uncorrelated and have a mean around zero, a white noise.
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Figure 3.2: Transformed variables

Table 3.2: Descriptive statistics of the variables
BTC Hashrate Volume Gold Silver Crude Oil Dollar Index S&P 500 Carbon

Count 1442 1442 1442 1442 1442 1442 1442 1442 1442
Mean 8.89 17.36 0.06 7.27 2.91 3.97 4.55 7.97 2.81

Std. dev. 1.36 1.69 0.08 0.16 0.19 0.25 0.03 0.22 0.83
Min 6.01 13.77 0.00 7.03 2.46 2.30 4.48 7.59 1.38
Max 11.12 19.57 1.00 7.63 3.38 4.43 4.63 8.46 4.49

Skewness -0.29 0.43 3.73 0.53 0.79 -1.58 -0.01 0.50 -0.20
Kurtosis -0.57 -1.17 24.87 -1.29 -0.58 5.55 -0.59 -0.53 -1.18
JB test 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(a) Transformed variables
BTC Hashrate Volume Gold Silver Crude Oil Dollar Index S&P 500 Carbon

Count 1441 1441 1441 1441 1441 1441 1441 1441 1441
Mean -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Std. dev. 0.05 0.12 0.05 0.01 0.02 0.03 0.01 0.01 0.03
Min -0.26 -0.45 -0.62 -0.07 -0.09 -0.31 -0.02 -0.09 -0.20
Max 0.27 0.49 0.69 0.05 0.12 0.36 0.02 0.13 0.16

Skewness 0.65 0.16 -0.09 -0.08 0.77 1.96 -0.10 1.14 0.47
Kurtosis 9.01 5.69 45.08 5.08 7.80 34.07 1.56 23.40 4.07
JB test 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(b) Differenced variables

Table 3.3 presents the correlation matrix to illustrate the linear relation between the inde-
pendent and dependent variables. The dependent variable has the highest correlation with
S&P500 (0.93). Although BTC and S&P500 are two distinct financial assets with different
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Figure 3.3: Differenced variables

Figure 3.4: Seasonal decomposition of BTC
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characteristics, they have similar trends starting from 2020. One reason for this common
movement is the positive investor sentiment by the recovery from the pandemic in mid-2020.

Hashrate and BTC also have a strong correlation with 0.90. This strong correlation between
BTC and hashrate investigated in many studies [24, 44, 68]. The economics of the mining
process in BTC network is frequently discussed in this aspect. Additionally, Bitcoin has
significant correlations with the other variables except for the Dollar index (-0.11). DXY is
a measure of the value of the dollar relative to several major currencies, and a higher DXY
implies a stronger dollar. Hence, the value of the DXY can negatively impact commodities
priced in dollars, such as gold, silver, and crude oil. DXY has smaller correlation values than
the other variables.

While carbon price is a measure of the cost of carbon dioxide emission, BTC price and
hashrate are related to the mining process which leads to carbon emissions. There is also a
strong correlation between these variables. Various studies are motivated to investigate these
strong relationships of BTC with other financial assets [26, 6, 68]. The correlation between
S&P500 and Hashrate (0.86), S&P500 and Gold (0.82), S&P500 and Silver (0.70), S&P500
and Carbon, and Silver and Gold (0.82) are relatively high.

Table 3.3: Correlation coefficients among the variables
BTC Hashrate Volume Gold Silver Crude Oil Dollar Index S&P 500

Hashrate 0.90 1
Volume 0.74 0.62 1
Gold 0.73 0.73 0.30 1
Silver 0.60 0.40 0.17 0.82 1
Crude Oil 0.55 0.19 0.36 0.26 0.28 1
Dollar Index -0.11 0.08 -0.42 -0.37 0.22 0.22 1
S&P 500 0.93 0.86 0.19 0.82 0.70 0.39 0.02 1
Carbon 0.87 0.94 0.54 0.73 0.47 0.34 -0.29 0.82

3.1.1 Time Periods

In this study, further analyses examine the relationship between variables over a certain period
of time. However, the relationship between these variables may not be constant across the
entire period. The underlying relationship between the variables in the model can change
due to some external factors. The standard framework for structural breaks, provided by [5],
is widely used to detect these structural changes. Also, Prophet [59] offers the detection of
change points in the series. In this study, Prophet is used to capture abrupt changes linearly
in BTC price.

Table 3.4: Changepoints in BTC price
1 2 3 4 5 6 7

2016-12-20 2018-01-21 2018-12-31 2019-06-25 2020-03-25 2021-02-18 2022-04-14
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Prophet takes parameters such as the number of change points, the prior scale, and the range
to estimate change points. Here, the number of change points is specified as seven at the
beginning, and the changepoints can be seen in BTC price in Figure 3.5. To capture the
downside movement this year, the range is set as 0.90. Table 3.4 shows the seven change
points in BTC price from 2016 to the end of 2022.

Figure 3.5: Changepoints in BTC Price

The rate of the change points is presented in Figure 3.6. The highest change is at the beginning
of 2018 when the long bull run of BTC ended. One critical finding is that the continuous
upside trend from the beginning ended dramatically in March 2022. Second, the bull run,
beginning in March 2020, is well captured by Prophet.

Figure 3.6: Rate of the changepoints

In this study, according to three different market conditions which are flat, up, and down, six
sub-periods are specified for further analyses with ARIMA by selecting two periods from
each market condition. The interval from 2016 to the end of 2022 which covers all periods of
the study is also included as the first period. All intervals are listed in Table 3.5.
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Table 3.5: Time periods
Univariate ARIMA Time intervals Multivariate models Time intervals
Period 1: All 2016-12-20 - 2022-11-08 Period 2: Up 2020-03-25 - 2021-02-18
Period 2: Up 2020-03-25 - 2021-02-18 Period 4: Down 2022-04-14 - 2022-11-08
Period 3: Up 2016-12-20 - 2018-01-21 Period 6: Flat 2021-02-19 - 2021-09-19
Period 4: Down 2022-04-14 - 2022-11-08
Period 5: Down 2018-01-21 - 2018-12-31
Period 6: Flat 2021-02-19 - 2021-09-19
Period 7: Flat 2021-09-20 - 2022-04-14

The second period includes the upside movement beginning from March 2020 to February
2021 while the other up period 3 covers the bull-run in 2017. Periods 4 and 5 include the
downside movement of BTC price. The fourth includes the last downside movement of BTC
beginning from April 2022 in which the price is around $60k. Although the significant devi-
ation, BTC price has no level change between February 2021 and April 2022. So this interval
is described as flat and divided into two sub-periods as Periods 6 and 7 in order to make
comparable analyses in the same market condition.

According to the results of the stationarity tests and ARIMA models in the following chapter,
this study has selected one period from each market condition to investigate the relationship
between the variables with a multivariate framework. The time periods of the multivariate
modeling can be found in Table 3.5.

3.1.2 Stationarity

The Augmented Dickey-Fuller test [21] is used to verify whether the time series is stationary,
and the test results for period 1 are presented in Table 3.6. First, the test equation includes
both a constant and time trend. If the null hypothesis of the test cannot be rejected, then the F
statistics of the coefficients are checked. According to the statistics, the time trend component
may be removed from the test equation.

In case of a deterministic time trend in variables, the test may indicate stationarity with a
trend component in ADF equation. The null hypothesis of the ADF test cannot be rejected
for the preprocessed series in Period 1, and as seen in Table 3.6, the series has a clear trend,
especially BTC, hashrate, carbon, and S&P500.

The dollar index, crude oil, and silver have extreme volatility at some points. However, after
the differencing operation, all preprocessed variables have p-values close to zero, indicating
stationarity in Table 3.6. The test results of other periods can be found in Tables 3.7 3.8.
In Period 2, according to both normality tests, hashrate is normally distributed. In Period 3,
while gold and crude oil are normally distributed according to both tests, silver and S&P500

are normal only by JB test. In Period 4, hashrate, gold, and S&P500 are normally distributed.
However, silver, crude oil, and DXY are also normally distributed by JB test.

20



Table 3.6: Stationarity test results of Period 1
Transformed Differenced

ADF (c) ADF (ct) ADF (c)
Variables ADF-Stat p-value n-lags ADF-Stat p-value n-lags ADF-Stat p-value n-lags
BTCPrice -0,991 0,757 1 -1,648 0,773 1 -37,091 0,000 1
Hashrate -2,448 0,129 7 -0,293 0,990 7 -15,755 0,000 10
Volume -2,520 0,111 10 -2,538 0,309 10 -11,361 0,000 9
Gold -0,834 0,809 0 -1,929 0,640 0 -36,412 0,000 3
Silver -1,419 0,573 2 -2,037 0,581 2 -19,393 0,000 1
Crudeoil -2,833 0,053 8 -2,615 0.273 8 -8,101 0,000 7
DXY -2,154 0,223 0 -2,310 0,428 0 -37,351 0,000 0
SP500 -0,086 0,951 3 -2,164 0,510 3 -9,709 0,000 2
Carbon -0,499 0,892 0 -2,210 0,484 0 -39,169 0,000 0

Table 3.7: Stationarity and normality of transformed variables: Periods 2-4
JB Test Shapiro Test ADF (’c’) ADF (’ct’)

Skew Kurtosis stats p-value stats p-value ADF-Stat p-value n-lags ADF-Stat p-value n-lags
Period 2

BTCPrice 0,759 0,260 18,068 0,000 0,931 0,000 1,340 0,997 1 0,058 0,995 1
Hashrate -0,325 -0,189 3,605 0,165 0,989 0,141 -2,871 0,049 2 0.389 0,798 2
Volume 2,206 7,044 512,162 0,000 0,794 0,000 -2,091 0,248 4 -2,668 0,250 4
Gold -0,342 -0,749 8,087 0,018 0,962 0,000 -2,118 0,237 0 -1,854 0,678 0
Silver -0,510 -1,159 18,471 0,000 0,891 0,000 -1,754 0,404 1 -1,483 0,835 1
Crudeoil -1,913 3,083 180,916 0,000 0,737 0,000 -1,670 0,446 4 -2,399 0,380 4
DXY 0,340 -1,074 12,589 0,002 0,925 0,000 -0,175 0,941 0 -2,500 0,328 0
SP500 -0,710 0,039 15,480 0,000 0,951 0,000 -2,739 0,068 4 -3,737 0,020 0
Carbon -0,657 -0,284 13,967 0,001 0,949 0,000 -2,136 0,230 1 -2,402 0,379 1

Period 3
BTCPrice 0,135 -1,287 15,725 0,000 0,929887 0,000 0.126 0.967 0 -3,002 0,131 0
Hashrate 0,179 -1,065 11,563 0,003 0,96277 0,000 -1,128 0.703 3 -4,922 0,001 3
Volume 2,300 6,594 566,157 0,000 0,748736 0,000 2,216 0.998 13 0,700 1,000 13
Gold -0,239 0,257 2,525 0,283 0,991145 0,204 -2,130 0.232 12 -2,922 0,155 12
Silver -0,014 -0,330 1,126 0,570 0,986736 0,039 -2,787 0.060 3 -3,007 0,130 3
Crudeoil -0,164 -0,474 3,169 0,205 0,987785 0,058 -1,748 0.406 0 -1,609 0,788 0
DXY -0,018 -1,482 19,890 0,000 0,916989 0,000 -1,266 0.644 0 -1,846 0,682 0
SP500 0,007 -0,666 4,205 0,122 0,975284 0,001 -1,479 0.543 0 -3,643 0,026 0
Carbon 0,774 -0,787 27,362 0,000 0,869984 0,000 -0.126 0.950 2 -2,291 0,438 2

Period 4
BTCPrice 0,981 -0,242 18,825 0,000 0,849 0,000 -1,941 0,313 0 -2,109 0,541 0
Hashrate 0,065 -0,001 0,093 0,955 0,995 0,939 -0,861 0,801 4 -1,105 0,928 4
Volume 2,917 9,726 585,443 0,000 0,677 0,000 -5,548 0,000 0 -4,894 0,000 5
Gold 0,132 -0,642 2,511 0,285 0,981 0,097 -1,794 0,384 0 -2,932 0,152 0
Silver 0,539 -0,119 5,700 0,058 0,963 0,002 -2,789 0,060 0 -2,718 0,229 7
Crudeoil -0,030 -0,941 4,475 0,107 0,976 0,031 -1,338 0,611 0 -2,502 0,327 0
DXY 0,300 -0,648 3,937 0,140 0,977 0,037 -0,910 0,785 0 -2,733 0,223 0
SP500 0,031 -0,609 1,997 0,368 0,986 0,266 -1,778 0,391 0 -1,965 0,621 0
Carbon -0,731 -0,321 10,886 0,004 0,916 0,000 -1,203 0,672 0 -2,319 0,424 0

BTC price is trend stationary in Period 5. While S&P500 is trend-stationary in Periods 2 and
3, hashrate is trend-stationary in Periods 3 and 7. On the other hand, volume is stationary in
Periods 4, 6 and 7. Silver is only stationary in Period 7.

3.2 ARIMA Models

The ARIMA model is established with the Box-Jenkins procedure. In the first part of, trans-
formations and differencing are involved in data preparation [12]. In a series where the vari-
ance varies with the level, data transformations (such as logarithms) can help stabilize the
variance [11]. Then the data are differenced until there are no apparent patterns such as trend
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Table 3.8: Stationarity and normality of transformed variables: Periods 5-7
JB Test Shapiro Test ADF (’c’) ADF (’ct’)

Skew Kurtosis stats p-value stats p-value ADF-Stat p-value n-lags ADF-Stat p-value n-lags
Period 5

BTCPrice 0,661 -0,701 18,495 0,000 0,906 0,000 -2,154 0,224 0 -3,705 0,022 2
Hashrate -0,246 -1,102 12,108 0,002 0,951 0,000 -1,452 0,557 6 -3,038 0,122 4
Volume 1,388 1,753 86,292 0,000 0,864 0,000 -2,321 0,165 9 -3,086 0,109 7
Gold -0,130 -1,543 20,080 0,000 0,900 0,000 -1,229 0,661 4 -0,920 0,954 4
Silver -0,469 -1,229 19,698 0,000 0,888 0,000 -0,828 0,811 5 -2,361 0,400 2
Crudeoil -0,135 -0,504 2,854 0,240 0,989 0,111 -1,926 0,320 0 -1,609 0,789 0
DXY -0,422 -1,379 21,475 0,000 0,876 0,000 -0,874 0,796 0 -2,550 0,304 0
SP500 0,071 -0,870 6,563 0,038 0,976 0,001 -2,395 0,143 3 -3,179 0,089 3
Carbon -0,323 -0,827 9,220 0,010 0,956 0,000 -1,912 0,326 0 -1,552 0,811 1

Period 6
BTCPrice -0,107 -1,433 10,536 0,005 0,922 0,000 -1,454 0,556 0 -1,325 0,882 0
Hashrate -0,430 -1,033 9,172 0,010 0,936 0,000 -1,353 0,605 2 -2,225 0,476 2
Volume 2,551 10,957 685,768 0,000 0,802 0,000 -4,273 0,000 1 -5,247 0,000 1
Gold 0,265 -0,616 3,467 0,177 0,970 0,007 -1,564 0,502 0 -1,656 0,770 0
Silver -0,282 -0,163 1,795 0,408 0,954 0,000 -1,445 0,560 0 -1,639 0,777 0
Crudeoil 0,017 -1,161 6,881 0,032 0,957 0,001 -1,756 0,403 1 -2,096 0,548 1
DXY -0,267 -1,217 8,939 0,011 0,937 0,000 -1,498 0,535 0 -1,650 0,772 0
SP500 -0,448 -0,675 6,441 0,040 0,948 0,000 -1,038 0,739 0 -3,410 0,050 0
Carbon -0,638 -0,872 12,050 0,002 0,902 0,000 -1,710 0,426 0 -2,366 0,398 0

Period 7
BTCPrice 0,280 -1,250 9,389 0,009 0,931 0,000 -1,147 0,696 0 -2,510 0,323 0
Hashrate -0,382 -0,220 3,220 0,200 0,984 0,164 -1,232 0,660 6 -11,018 0,000 0
Volume 1,104 0,830 26,796 0,000 0,910 0,000 -8,768 0,000 0 -9,510 0,000 0
Gold 1,308 1,351 41,510 0,000 0,879 0,000 -1,225 0,663 0 -2,355 0,404 7
Silver 0,536 -0,445 6,801 0,033 0,958 0,001 -2,959 0,039 5 -3,093 0,108 5
Crudeoil 0,781 0,815 14,687 0,001 0,958 0,001 -1,352 0,605 0 -1,704 0,749 0
DXY 0,352 -0,089 2,524 0,283 0,947 0,000 -1,126 0,704 0 -2,477 0,339 0
SP500 -0,294 -0,993 6,753 0,034 0,950 0,000 -1,798 0,381 0 -2,086 0,554 0
Carbon -0,071 -1,433 10,313 0,006 0,920 0,000 -1,343 0,609 5 -1,638 0,777 5

or seasonality.

First, ACF and PACF plots are presented to visually estimate p and q values. Next, AIC val-
ues are calculated and compared for various model alternatives with different orders. Finally,
model orders which minimize AIC value are selected for modeling ARIMA. Next, to validate
an estimated model, the autocorrelation of residuals is checked by the Ljung-Box test and
plotted for visual inspection. Finally, the characteristic roots of the models are examined to
check whether the model is stationary and invertible. If the inverse roots from the charac-
teristic polynomials are close to the center of the unit circle, then the roots are numerically
stable, and the model is appropriate for forecasting. In case the model is not valid, the second
candidate is chosen by AIC values.

According to [36, 32], a variable’s statistical significance is typically not a good indicator
in variable selection. For example, a variable helpful for forecasting might be associated
with an insignificant coefficient. First, in case of a high correlation between two predictor
variables, statistical tests of the coefficients may produce insignificant results because it is
difficult to distinguish between each of their individual contributions, which causes a higher
standard error on the coefficients. Second, an estimated coefficient may be significant in a
large sample size despite a low coefficient and high variability. In this case, including the
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predictor may not be helpful while the variance of the forecast increases.

The autocorrelation function gives the correlation values between a time series and its lagged
values. The partial autocorrelation shows the partial correlation coefficients between a series
and lags of itself. Both plots can help identify AR and MA orders to fit an ARIMA model. By
following this literature, ARIMA model of BTC price in Period 1 is examined and validated
as an example. The ACF plot shows the correlations with the lags are high and positive with
a very slow decay in Figure 3.7a. At the same time, the PACF plot shows that the partial
autocorrelations have a single spike at lag 1. The plots indicate the strong persistence in BTC
price. After the differencing, the ACF and PACF plots are shown in Figure 3.7b. There is no
significant spike in both plot. While lag 14 is outside the limits, lag 4 is on the limit in the
PACF plot.

(a) Transformed BTC

(b) Differenced BTC
Figure 3.7: Period 1: ACF and PACF plots of BTC

AIC, BIC, and HQIC values of the different models with p and q orders from 1 to 5 are
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calculated, and the model with a minimum AIC value is selected for further analysis. The
candidate models of BTC in Period 1 are presented in Table 3.9. ARIMA(1, 1, 1) is chosen
and the model coefficients are presented in Table 3.10. Ljung-Box test is applied to check

Table 3.9: Period 1: Candidate models for BTC
Model AIC BIC HQIC

ARIMA(1, 1, 1) -4666.115 -4650.373 -4660.231
ARIMA(2, 1, 1) -4664.247 -4643.258 -4656.402
ARIMA(1, 1, 2) -4663.346 -4642.358 -4655.502
ARIMA(1, 1, 3) -4662.451 -4636.216 -4652.645
ARIMA(2, 1, 2) -4662.155 -4635.919 -4652.349
ARIMA(0, 1, 0) -4661.448 -4656.201 -4659.487
ARIMA(4, 1, 3) -4660.890 -4618.913 -4645.200
ARIMA(3, 1, 2) -4660.437 -4628.954 -4648.670
ARIMA(2, 1, 3) -4660.433 -4628.950 -4648.666
ARIMA(4, 1, 0) -4660.196 -4633.961 -4650.390

Table 3.10: Period 1: Model output of ARIMA(1, 1, 1) for BTC
Estimate Std. Error z p-value

ar1 0.9750 0.018 53.128 0.000
ma1 -0.9576 0.024 -40.062 0.000
sigma2 0.0021 0.000 40.930 0.000

Log-likelihood 2336.057 AIC -4666.115
BIC -4650.373 HQIC -4660.231

z p-value
Ljung-Box 0.16 0.69
Heteroskedasticity 0.96 0.66
Jarque-Bera (JB) 461.31 0.00

autocorrelation in the residuals of the model. According to the results in Table 3.10, the model
satisfies the condition of independence in the residuals since the p-value is greater than the
critical value 0.05, the null hypothesis that the residuals are independently distributed cannot
be rejected. In addition, the Heteroskedasticity test also gives a p-value greater than 0.05

which indicates the residual distribution has constant variance. The JB test shows that the
skewness and kurtosis values don’t match a normal distribution. In Figure 3.8, the residuals
are presented, and they have a mean around zero and a constant variance.

The summary of ARIMA models are presented in Table 3.11. Autocorrelation plots, model
outputs, and residual diagnostics can be found in Appendix. According to the results, BTC
price follows a random walk process in Periods 3, 4, 6, and 7. In addition to BTC price,
Gold is a random walk in Periods 1, 2, 4, and 7. While crude oil has random walk properties
in Periods 3, 4, 5, and 6, DXY is in all periods except Period 3. ARIMA(0, 1, 1) without
intercept is equivalent to simple exponential smoothing, which is exhibited by hashrate in
Period 2, carbon in Period 3, and crude oil in Period 5. On the other hand, ARIMA(0, 1, 1)

with intercept is equivalent to simple exponential smoothing with growth. This model fitted
in hashrate in Periods 2 and 5, S&P500 in Period 3.
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Figure 3.8: Period 1: Residuals of ARIMA(1, 1, 1) model for BTC

Table 3.11: The orders of ARIMA models
Periods

1 2 3 4 5 6 7
BTCPrice (1,1,1) (1,1,0)* (0,1,0)* (0,1,0) (3,0,0)* (0,1,0) (0,1,0)
Hashrate (0,1,1)* (0,1,1) (2,0,2)* (4,1,0) (0,1,1)* (2,1,0) (3,0,2)*
Volume (4,1,5) (1,1,1) (4,1,3) (0,0,5)* (0,1,2) (1,0,1) (1,0,0)*
Gold (0,1,0)* (0,1,0) (1,1,0) (0,1,0)* (4,1,0) (1,1,0) (0,1,0)*
Silver (0,1,2) (0,1,2) (0,1,0) (3,1,2) (0,1,3) (0,1,0) (2,2,2)
Crudeoil (5,1,2) (0,1,4) (0,1,0) (0,1,0) (0,1,0) (0,1,1) (0,1,0)
DXY (0,1,0) (0,1,0) (2,1,0) (0,1,0)* (0,1,0) (0,1,0) (0,1,0)*
SP500 (3,1,0) (3,0,2)* (0,1,1)* (0,1,0) (3,1,0) (0,1,2) (0,1,0)
Carbon (1,1,1)* (1,1,1)* (0,1,1) (0,1,0) (2,1,2) (0,1,0)* (2,1,4)*

⇤ models with an intercept

3.3 Smoothing Models

Exponential smoothing methods, forecasting moving averages, uses weighted averages of past
observations in an exponential way in which the recent data takes the greater weight. There
are smoothing parameters that are determined to give weights for previous observations. In
this part, simple exponential smoothing, Holt’s linear trend, and exponential trend are used
and compared to forecast BTC price.

Simple Exponential Smoothing (SES), a method for data with no trend or seasonality, assumes
that the last observation is the only one that contains valuable information for the future. The
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method’s smoothing factor ↵, the only parameter, determines the rate at which the influence
of the observations decays exponentially. First, l0 and ↵ values should be selected for the
method. In here, l0 equals to the first observation, on the other hand, ↵ is an optimized value
selected by Python’s statsmodel.

Holt’s trend method, an extension to SES, uses an additional parameter to determine the decay
of the influence of the change in trend. Additive or multiplicative versions can be used to
define the movement. While Holt’s linear model is used for additivity, the exponential trend
is used for multiplicativity in a trend. These parameters also chosen by Python’s statsmodel.
The coefficients of the models can be found in Appendix.

3.4 Forecast Results

Forecasts are evaluated by the accuracy metrics RMSE, MAE, and MAPE, and the results are
shown in Tables 3.12, 3.13, 3.14, 3.15. In the flat periods 6 and 7, the forecasts have better
performance compared to the up and down periods. The sub-periods are predicted with higher
accuracy than the long period. The ARIMA models give unstable performance in BTC price
forecasting. While BTC price is well predicted by ARIMA in Period 2, 4, especially in
Periods 3 and 5, the accuracy is quite low. Gold, DXY and silver have stable accuracy values
in all periods. Hashrate and BTC price exhibit similar performances in the sub-periods.

In Period 1, Gold and DXY exhibits a random walk process with ARIMA(0, 1, 0), and the
results ARIMA and SES are very close. ARIMA and SES models also outperform in
the down market periods. In the flat periods 6 and 7, SES outperforms Holt’s linear

Table 3.12: Period 1: Forecast Performance of ARIMA and ES models
ARIMA SES Holt’s Linear Exponential Trend

Variable RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
BTC 0.354 0.253 0.074 0.564 0.462 0.075 0.634 0.582 0.109 0,650 0.603 0.119
Hashrate 0.134 0.103 0.005 0.288 0.252 0.013 0.112 0.096 0.005 0.111 0.091 0.005
Volume 0.048 0.043 0.526 0.048 0.044 1.525 0.055 0.049 1.760 0.043 0.033 0.682
Gold 0.050 0.041 0.005 0.051 0.041 0.005 0.071 0.053 0.007 0.072 0.053 0.007
Silver 0.145 0.117 0.038 0.145 0.117 0.039 0.187 0.147 0.049 0.185 0.146 0.048
Crude oil 0.170 0.138 0.030 0.170 0.138 0.030 0.138 0.118 0.026 0.138 0.117 0.026
Dollar index 0.103 0.086 0.018 0.103 0.086 0.025 0.110 0.092 0.019 0.108 0.900 0.019
SP500 0.214 0.176 0.021 0.125 0.100 0.012 0.217 0.178 0.021 0.222 0.183 0.022
Carbon 0.201 0.176 0.040 0.341 0.323 0.073 0.201 0.176 0.040 0.211 0.170 0.039

and exponential trend models. While ARIMA gives more accurate results for BTC price
in Period 1, 6 and 7, Holt’s linear and exponential trend models have better performance in
Periods 2 and 3 respectively.

Multivariate time-series models may give better predictions compared to ARIMA and other
univariate models since multivariate models take into account additional variables which may
have a predictive power between each other. In Table 3.16, the forecast performance is pre-
sented for V AR model of BTC and hashrate. For BTC price, there is no significant im-
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Table 3.13: Forecast Performance of ARIMA Models
Period 2 Period 3 Period 4

Variable RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
BTC 0.183 0.147 0.013 0.459 0.408 0.042 0.123 0.106 0.010
Hashrate 0.190 0.171 0.009 0.404 0.364 0.022 0.097 0.080 0.004
Volume 0.138 0.103 0.448 0.233 0.145 0.361 0.022 0.021 0.352
Gold 0.024 0.021 0.002 0.025 0.018 0.002 0.014 0.011 0.002
Silver 0.039 0.033 0.010 0.038 0.029 0.010 0.044 0.036 0.012
Crude oil 0.118 0.102 0.025 0.007 0.059 0.014 0.036 0.030 0.007
Dollar index 0.019 0.017 0.003 0.006 0.005 0.001 0.029 0.025 0.006
SP500 0.048 0.042 0.005 0.029 0.025 0.003 0.051 0.046 0.005
Carbon 0.052 0.043 0.012 0.037 0.030 0.014 0.120 0.098 0.022
Variable Period 5 Period 6 Period 7
BTCPrice 0.563 0.505 0.061 0.068 0.061 0.006 0.079 0.063 0.006
Hashrate 0.410 0.382 0.021 0.064 0.055 0.021 0.183 0.146 0.008
Volume 0.077 0.055 0.450 0.057 0.054 0.060 0.033 0.025 0.461
Gold 0.016 0.013 0.002 0.007 0.006 0.001 0.099 0.097 0.013
Silver 0.024 0.019 0.007 0.027 0.024 0.007 0.020 0.017 0.005
Crudeoil 0.205 0.184 0.047 0.046 0.040 0.010 0.093 0.108 0.019
DXY 0.007 0.006 0.001 0.006 0.005 0.001 0.060 0.059 0.013
SP500 0.060 0.045 0.006 0.012 0.010 0.001 0.034 0.032 0.004
Carbon 0.213 0.067 0.233 0.034 0.029 0.007 0.206 0.168 0.040

provement in the forecast of V AR model compared to ARIMA. While ARIMA model has
the values of RMSE (0.183), MAE (0.147), and MAPE (0.013), V AR model gives slightly
better results. Figure 3.9 shows the forecast of the models.
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Table 3.14: Forecast Performance of Exponential Smoothing Models: Periods 2-4
Period 2

Simple Exponential Holt’s Linear Exponential Trend
Variable RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

BTC 0.317 0.275 0.026 0.141 0.114 0.011 0,147 0,122 0,012
Hashrate 0.102 0.089 0.005 0.088 0.072 0.004 0.088 0.072 0.004
Volume 0.135 0.099 0.429 0.131 0.093 0.403 0.128 0.090 0.390
Gold 0.025 0.021 0.003 0.038 0.034 0.005 0.038 0.034 0.004
Silver 0.039 0.033 0.010 0.071 0.066 0.020 0.071 0.066 0.020
Crude oil 0.128 0.123 0.028 0.047 0.040 0.010 0.051 0.043 0.011
Dollar index 0.010 0.009 0.002 0.019 0.017 0.004 0.019 0.017 0.003
SP500 0.031 0.027 0.003 0.015 0.011 0.001 0.015 0.012 0.001
Carbon 0.107 0.085 0.024 0.053 0.044 0.012 0.052 0.043 0.012

Period 3
Variable Simple Exponential Holt’s Linear Exponential Trend
BTCPrice 0.648 0.589 0.061 0.460 0.409 0.043 0.429 0.378 0.039
Hashrate 0.347 0.312 0.019 0.165 0.141 0.009 0.157 0.133 0.008
Volume 0.241 0.155 0.390 0.10 0.124 0.338 0.214 0.144 0.482
Gold 0.019 0.016 0.002 0.020 0.016 0.002 0.020 0.016 0.002
Silver 0.038 0.030 0.011 0.041 0.031 0.011 0.041 0.031 0.011
Crudeoil 0.071 0.059 0.015 0.067 0.056 0.014 0.068 0.057 0.014
DXY 0.012 0.009 0.002 0.006 0.005 0.001 0.006 0.005 0.001
SP500 0.043 0.038 0.005 0.029 0.025 0.003 0.029 0.026 0.003
Carbon 0.037 0.031 0.015 0.043 0.035 0.017 0.070 0.060 0.029

Period 4
Variable Simple Exponential Holt’s Linear Exponential Trend
BTCPrice 0.054 0.043 0.004 0.124 0.107 0.011 0,124 0,106 0,107
Hashrate 0.094 0.076 0.004 0.123 0.090 0.005 0.124 0.090 0.005
Volume 0.012 0.008 0.345 0.014 0.009 0.362 0.018 0.015 0.603
Gold 0.012 0.010 0.001 0.015 0.011 0.001 0.015 0.011 0.001
Silver 0.043 0.033 0.011 0.057 0.043 0.014 0.057 0.043 0,015
Crudeoil 0.037 0.030 0.007 0.035 0.029 0.007 0.035 0.030 0.006
DXY 0.017 0.014 0.003 0.029 0.025 0.005 0.029 0.005 0.005
SP500 0.052 0.046 0.006 0.071 0.064 0.008 0.071 0.064 0.008
Carbon 0.119 0.098 0.022 0.137 0.115 0.026 0.138 0.115 0.027
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Table 3.15: Forecast Performance of Exponential Smoothing Models: Periods 5-7
Period 5

Simple Exponential Holt’s Linear Exponential Trend
Variable RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

BTC 0.474 0.422 0.051 0.423 0.376 0.046 0.422 0.375 0.046
Hashrate 0.276 0.250 0.014 0.411 0.383 0.022 0.413 0.385 0.022
Volume 0.086 0.067 0.581 0.100 0.084 0.794 0.097 0.079 0.737
Gold 0.016 0.013 0.002 0.021 0.017 0.002 0.021 0.017 0.002
Silver 0.025 0.019 0.007 0.035 0.027 0.010 0.035 0.027 0.010
Crude oil 0.205 0.184 0.047 0.203 0.182 0.047 0.203 0.181 0.047
Dollar index 0.007 0.006 0.001 0.005 0.004 0.001 0.005 0.004 0.001
SP500 0.060 0.046 0.006 0.057 0.043 0.005 0.057 0.043 0.005
Carbon 0.196 0.174 0.054 0.121 0.106 0.033 0.124 0.109 0.034

Period 6
Variable Simple Exponential Holt’s Linear Exponential Trend
BTCPrice 0.067 0.059 0.006 0.085 0.079 0.007 0.087 0.081 0.007
Hashrate 0.104 0.080 0.004 0.127 0.104 0.005 0.127 0.104 0.006
Volume 0.030 0.017 0.290 0.033 0.017 0.245 0.034 0.018 0.252
Gold 0.007 0.006 0.001 0.007 0.006 0.001 0.007 0.006 0.001
Silver 0.022 0.017 0.005 0.027 0.024 0.008 0.027 0.024 0.008
Crudeoil 0.046 0.040 0.010 0.037 0.031 0.007 0.037 0.031 0.007
DXY 0.006 0.005 0.001 0.010 0.009 0.002 0.010 0.009 0.002
SP500 0.020 0.009 0.001 0.011 0.009 0.001 0.011 0.009 0.001
Carbon 0.054 0.047 0.012 0.034 0.029 0.007 0.035 0.029 0.007

Period 7
Variable Simple Exponential Holt’s Linear Exponential Trend
BTCPrice 0.080 0.064 0.006 0.082 0.066 0.006 0.083 0.066 0.006
Hashrate 0.053 0.043 0.002 0.095 0.080 0.004 0.095 0.080 0.004
Volume 0.025 0.021 0.550 0.022 0.016 0.397 0.022 0.017 0.438
Gold 0.012 0.010 0.001 0.008 0.007 0.001 0.008 0.007 0.001
Silver 0.025 0.019 0.006 0.020 0.018 0.005 0.020 0.018 0.005
Crudeoil 0.108 0.093 0.020 0.093 0.076 0.016 0.092 0.076 0.016
DXY 0.008 0.007 0.001 0.005 0.005 0.001 0.005 0.005 0.001
SP500 0.035 0.032 0.004 0.035 0.032 0.004 0.035 0.032 0.004
Carbon 0.019 0.015 0.003 0.026 0.023 0.005 0.025 0.021 0.005

Table 3.16: Forecast Performance of V AR Model BTC&Hashrate
Variable RMSE MAE MAPE
BTC 0.174 0,139 0,013
Hashrate 0.082 0.064 0.003
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Figure 3.9: Period 2: Forecasts of BTC price

On the other hand, according to the granger-causality test in Period 2, there is a unidirectional
granger-causality from BTC price to hashrate, indicating the predictive power of BTC price
on hashrate. Since this relationship can improve the accuracy of the forecast for hashrate in
Period 2, the forecasting ability of V AR model is presented in Table 3.16, and compared
with ARIMA model. While ARIMA(0, 1, 1) model of hashrate gives the values of RMSE
(0.190), MAE (0.171), V AR model have better performance with RMSE (0.082), MAE
(0.064) values. Thus, the results indicate that BTC price is helpful in forecasting hashrate.

3.5 ECM-VAR Models

In time series, vector autoregressive (VAR) models are frequently used to search for the dy-
namic relationships between variables. The design of VAR models enables the examination of
endogenous variable values from their observed historical values. Engle and Granger’s [23]
contributions also offered methods for modeling cointegrated relationships between variables.
Before making the variables stationary for V AR model, it is possible to investigate the coin-
tegration relationship between non-stationary variables.

3.5.1 Cointegration

Suppose that two non-stationary time series have the same order of integration, and there
may be a stationary linear combination of these series. If a cointegration is found, an error
correction model (ECM) can be estimated for the stochastic trend and equilibrium. In this
study, the Engle-Granger two-step method [23] is applied for the cointegration test. Engle-
Granger’s two-step method has some specific steps that should be followed, as below.

1. Stationary testing for the time series. If the series are non-stationary in level and their
order of integration values is equal, then the next step is followed.
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2. A linear model is built for the series by OLS, and the residuals of the linear model
are checked for stationarity by the Augmented Dickey-Fuller test. If the residuals are
stationary, cointegration is found. Conversely, the non-stationarity of the residuals in-
dicates the absence of cointegration.

The cointegration analysis cannot be applied, in case a time series is trend-stationary. Since
BTC price is trend-stationary in Period 5, and hashrate is in Periods 3 and 7, Periods 2, 4, and
6 are selected to investigate the cointegration relationships of the variables.

In Table 3.17, ADF test results are shown for the residuals of the linear models. Since S&P500
is trend stationary in Period 2, and volume is stationary in Periods 4, 6, these variables are not
included in the cointegration studies. We should use the critical values from [23] to evaluate
the test statistics.

Table 3.17: ADF test results for the residuals of the regressions
Period 2 Period 4 Period 6

Test statistics
BTCHashrate -4,8600 -3,1086 -2,8005
BTCVolume -3,0899 - -
BTCGold 1,4174 -2,2994 -1,9742
BTCSilver 1,3958 -1,7451 -1,4748
BTCCrudeoil 0,1198 -3,1883 -3,0458
BTCDXY 0,4748 -1,6771 -1,3196
BTCSP500 - -1,4779 -1,6440
BTCCarbon -0,2972 -1,8042 -1,7124

By following the two-step method, the linear equations for BTC and hashrate is as below.
The stationarity of the error term ut is tested by ADF test. Since the regression has constant
�0 in Table 3.18, ADF test is applied without a constant. Only the residuals of BTC and
hashrate have lower statistics than the critical values in Period 2. Hence, the null hypothesis
of the ADF test can be rejected. The other equations have higher values than the test’s critical
values, which indicates the absence of cointegration.

Hasht = �0 + �1BTCt + ut

Hasht = 16.7695 + 0.1973 ⇤BTCt + ut

Table 3.18: Regression of hashrate and BTC
Estimate Std. Error t value Pr(>|t|)

Intercept 16.7695 0.2581 64.97 0.0001
BTC 0.1973 0.2764 7.14 0.0001

To investigate the cointegration relationship between BTC and hashrate, the lag of the error
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correction model should be determined first. A V AR model is estimated with these non-
stationary variables to specify the lag order which gives the minimum AIC value. The error
correction model is estimated with a lag of 1, and the equations of the model are shown in
Table 3.19. If there is a negative and significant lagged error correction term (ECT) which is
an adjustment coefficient, BTC and hashrate can have a common stochastic trend and reach
the equilibrium. In the case of equilibrium, the effect of a shock is not permanent in the long-
run relationship. In the equation of BTC as an independent variable, the error correction term
is small and insignificant. On the other hand, the equation of hashrate has a significant nega-
tive ECT value of �0.1647, which indicates the speed of adjustment towards the equilibrium
in 1/0.1647 periods. the common stochastic trend of BTC and hashrate. This also implies
a granger-causality relationship from BTC to hashrate. The equations are also presented in
matrix form below.

BTC.dt = c1 + ↵1 ⇤ ECTt�1 + a1,1BTC.dt�1 + a1,2Hash.dt�1 + e1,t

Hash.dt = c2 + ↵2 ⇤ ECTt�1 + a2,1BTC.dt�1 + a2,2Hash.dt�1 + e2,t

"
BTC.dt

Hash.dt

#
=

"
�0.0002

0.0001

#
+

"
0.0058

�0.1647

#"
ECTt�1

ECTt�1

#
+

"
�0.1097 0.0030

�0.4508 0.4389

#"
BTC.dt�1

Hash.dt�1

#
+

"
e1,t

e2,t

#

BTCt = �0.0002 + 0.0058⇥ ECT1 � 0.1097 ⇤BTC.dt�1 + 0.0030⇥Hash.dt�1

Hasht = �0.0001� 0.1647⇥ ECT2 � 0.4508 ⇤BTC.dt�1 + 0.4389⇥Hash.dt�1

Table 3.19: Error correction model of BTC and hashrate
Estimate Std. Error t value Pr(>|t|)

Intercept -0.0001 0.0011 -0.115 0.908
ECT -0.1647 0.0189 -8.697 0.001
Hashrate.d1 0.4389 0.0366 11.985 0.001
BTC.d1 -0.4508 0.2234 0.737 0.461
(a) Estimated equation for hashrate

Estimate Std. Error t value Pr(>|t|)
Intercept -0.0002 0.0002 -1.357 0.1755
ECT 0.0058 0.0036 1.618 0.1064
Hashrate.d1 0.0030 0.0070 0.432 0.0109
BTC.d1 -0.1097 0.0429 -2.554 0.6656
(b) Estimated equation for BTC

3.5.2 VAR

Since S&P500 is trend stationary in Period 2, the variable is detrended before estimating a
V AR model. Also, volume is stationary in Periods 4 and 6, no differencing is applied to
volume. In Table 3.20, the lags of VAR models, determined by AIC, are shown for Periods 2,
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4, and 6. Accordingly, to these lag values, VAR models are estimated for each pair of BTC.
The serial correlation of the residuals is checked by Breusch–Godfrey (BG) test, and no serial
correlation is found in the residuals. Table 3.21 shows the results of BG test. The residuals
of the VAR models can be seen in Figures 3.10a, 3.10b, 3.10c. The residuals have mean zero
and constant variance.

Table 3.20: Lags of VAR models
Period 2 Period 4 Period 6

BTCHashrate 2 4 2
BTCVolume 5 1 2
BTCGold 1 1 1
BTCSilver 1 1 1
BTCCrudeoil 4 1 1
BTCDXY 1 1 1
BTCSP500 3 1 1
BTCCarbon 1 1 1

Three V AR models in which granger causality is found are presented in Table 3.22. The
matrix forms of the models are below. The stability of coefficients in a multivariate model
can be ensured by CUSUM test. In Figures 3.11a, 3.11b, 3.11c, CUSUM test results are
shown for the residuals of V AR models. The test shows that there is no structural break in
the residuals.

Table 3.21: Breusch–Godfrey test results of the residuals
Period 2 Period 4 Period 6

p-values
BTCHashrate 0.9588 0.5961 0.7431
BTCVolume 0.3813 0.1614 0.1863
BTCGold 0.2507 0.7737 0.5873
BTCSilver 0.5520 0.8060 0.7615
BTCCrudeoil 0.1786 0.5756 0.3355
BTCDXY 0.2572 0.6670 0.4621
BTCSP500 0.1262 0.7957 0.7553
BTCCarbon 0.3264 0.4798 0.8895

In the VAR model of BTC and hashrate in Period 2, the lag of BTC has a significant positive
value of 0.4051 which indicates the explanatory power of BTC price in hashrate. However,
there is no significant value of hashrate in the equation of BTC price.

Period 2: BTC&Hashrate
"
BTCt

Hasht

#
=

"
0.0094

�0.0004

#
+

"
�0.1581 �0.0288

0.4051 �0.6140

#"
BTCt�1

Hasht�1

#

+

"
�0.0113 0.0519

0.0949 �0.3168

#"
BTCt�2

Hasht�2

#
+

"
e1,t

e2,t

#

The VAR model of BTC and volume in Period 2 is estimated with a lag of 3. In the equation of
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BTC, there is only one significant coefficient which is the first lag of BTC price. On the other
hand, the equation of volume has there significant coefficients of BTC price with the lags of
1, 2 and 4. The coefficients are 0.2470, 0.2332, and 0.1118 which indicates the predictive
power of BTC price on volume.

Period 2: BTC&Volume
"
BTCt

V olt

#
=

"
0.0006

0.0071

#
+

"
�0.1750 0.0650

0.2470 0.2814

#"
BTCt�1

V olt�1

#
+

"
�0.0114 0.0843

0.2332 0.1300

#"
BTCt�2

V olt�2

#

+

"
0.0681 0.1251

0.0245 �0.0621

#"
BTCt�3

V olt�3

#
+

"
�0.0664 �0.0268

0.1118 0.1018

#"
BTCt�4

V olt�4

#

+

"
�0.0762 �0.0110

0.0866 0.2623

#"
BTCt�5

V olt�5

#
+

"
e1,t

e2,t

#

The VAR model of BTC and volume in Period 4 is estimated with one lag. In the equation of
BTC, there is no significant coefficient. However, the equation of volume has there significant
coefficients, including the first lag of BTC price.

Period 4: BTC&Volume
"
BTCt

V olt

#
=

"
�0.0062

0.0173

#
+

"
�0.0522 �0.0175

�0.2065 0.5623

#"
BTCt�1

V olt�1

#
+

"
e1,t

e2,t

#

3.5.3 Granger Causality

Granger causality determines whether a time series is useful in forecasting another. If a time
series has statistically significant information about future values of another time series, then
the time series granger causes the other one. The test can be done through a F test or Wald test.
In the thesis, F-test is applied for granger-causality in the mean on the estimated coefficients
of the bivariate VAR models.

The null hypothesis of the Granger causality test indicates the absence of a causality rela-
tionship. The results of the F-test, applied to VAR models, are shown in Table 3.23. In
Period 2, two unidirectional granger-causality are found. According to the results, BTC price
granger-causes hashrate and volume. Additionally, in Period 4, BTC price also granger-causes
volume. On the other hand, there is no evidence of granger-causality in Period 6. While BTC
price only granger-causes hashrate in the upward market, volume is granger-caused by BTC
price in both upward and downward market conditions.
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Table 3.22: V AR Models
BTC Hashrate

Estimate Std. Error t value p value Estimate Std. Error t value p value
const 0.0094 0.0029 3.214 0.0015 -0.0004 0.0075 -0.054 0.9574
BTC.L1 -0.1581 0.0754 -2.096 0.0374 0.4051 0.1988 2.038 0.0430
Hash.L1 0.0288 0.0280 1.029 0.3046 -0.6140 0.0718 -8.546 0.0001
BTC.L2 -0.0113 0.0788 -0.143 0.8860 0.0949 0.2020 0.470 0.6387
Hash.L2 0.0519 0.0280 1.856 0.0651 -0.3168 0.0717 -4.414 0.0001

a) Period 2: BTC and hashrate
BTC Volume

Estimate Std. Error t value p value Estimate Std. Error t value p value
const 0.0006 0.0058 0.110 0.9125 0.0071 0.0034 2.088 0.0383
BTC.L1 -0.1750 0.0776 -2.253 0.0255 0.2470 0.0453 5.451 0.0001
Vol.L1 0.0650 0.1272 0.511 0.6100 0.2814 0.0742 3.793 0.0002
BTC.L2 -0.0114 0.0873 -0.131 0.8961 0.2332 0.0509 4.578 0.0001
Vol.L2 0.0843 0.1321 0.638 0.5242 0.1300 0.0770 1.688 0.0933
BTC.L3 0.0681 0.0915 0.744 0.4577 0.0245 0.0534 0.460 0.6462
Vol.L3 0.1251 0.1336 0.937 0.3503 -0.0621 0.0779 -0.797 0.4266
BTC.L4 -0.0664 0.0925 -0.718 0.4735 0.1118 0.0539 2.072 0.0397
Vol.L4 -0.0268 0.1286 -0.209 0.8349 0.1018 0.0750 1.357 0.1765
BTC.L5 -0.0762 0.0905 -0.843 0.4007 0.0866 0.0527 1.641 0.1026
Vol.L5 -0.0110 0.1232 -0.090 0.9285 0.2623 0.0718 3.651 0.0003

b) Period 2: BTC and volume
BTC Volume

Estimate Std. Error t value p value Estimate Std. Error t value p value
const -0.0062 0.0071 -0.879 0.381 0.0173 0.0039 4.359 0.0001
BTC.L1 -0.0522 0.0936 -0.558 0.578 -0.2065 0.0521 -3.959 0.0001
Vol.L1 -0.0175 0.1299 -0.135 0.893 0.5623 0.0724 7.766 0.0001

c) Period 4: BTC and volume
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(a) Period 2: BTC&Hashrate

(b) Period 2: BTC&Volume

(c) Period 4: BTC&Volume
Figure 3.10: Residuals of V AR models

36



(a) Period 2: BTC&Hashrate

(b) Period 2: BTC&Volume

(c) Period 4: BTC&Volume
Figure 3.11: OLS-CUSUM of V AR models
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Table 3.23: Granger causality test results
F-test p-value F-test p-value

BTC > Hashrate 4.1517 0.0420 Hashrate > BTC 0.0160 0.8993
BTC > Volume 10.763 0.0001 Volume > BTC 0.1587 0.9589
BTC > Gold 2.5470 0.0564 Gold > BTC 0.0709 0.7901
BTC > Silver 3.1757 0.0755 Silver > BTC 1.2920 02564
BTC > Crudeoil 1.9665 0.1197 Crudeoil > BTC 1.4820 0.2195
BTC > DXY 3.8186 0.0514 DXY > BTC 0.0064 0.9363
BTC > SP500 1.9599 0.0840 SP500 > BTC 1.5970 0.1247
BTC > Carbon 0.0452 0.8317 Carbon > BTC 2.1881 0.1399

a) Period 2
F-test p-value F-test p-value

BTC > Hashrate 1.2991 0.2715 Hashrate > BTC 0.3534 0.8414
BTC > Volume 15.6730 0.0001 Volume > BTC 0.0182 0.8929
BTC > Gold 2.9224 0.0887 Gold > BTC 0.2647 0.6074
BTC > Silver 1.5983 0.1903 Silver > BTC 0.0085 0.9265
BTC > Crudeoil 1.8813 0.1545 Crudeoil > BTC 0.1829 0.8926
BTC > DXY 0.8164 0.3672 DXY > BTC 0.0435 0.8349
BTC > SP500 0.3241 0.5697 SP500 > BTC 0.9048 0.3425
BTC > Carbon 0.5700 0.4510 Carbon > BTC 1.4016 0.2243

b) Period 4
F-test p-value F-test p-value

BTC > Hashrate 1.2812 0.2797 Hashrate > BTC 1.0678 0.3455
BTC > Volume 1.0864 0.3390 Volume > BTC 1.8171 0.1648
BTC > Gold 0.1352 0.7133 Gold > BTC 0.0332 0.8555
BTC > Silver 0.1595 0.6900 Silver > BTC 1.2408 0.2665
BTC > Crudeoil 1.5051 0.2211 Crudeoil > BTC 0.0441 0.8338
BTC > DXY 0.0894 0.7652 DXY > BTC 1.8569 0.1743
BTC > SP500 0.2990 0.7418 SP500 > BTC 1.8813 0.1545
BTC > Carbon 0.0156 0.9005 Carbon > BTC 0.4634 0.4967

c) Period 6
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CHAPTER 4

CONCLUSION AND DISCUSSION

The behavior of BTC price and its predictability attract the world of finance and the aca-
demic community. Therefore, the motivation for discovering an indicator for BTC price is a
lasting topic in the literature. Thus, the primary goal of this thesis is to investigate the po-
tential drivers of BTC prices. For this purpose, various variables, including network metrics
such as the computational power on the network, also the commodities which have common
characteristics with BTC, are included in the study.

Due to the unstable nature of BTC, the likelihood of shifting relationships is considered,
and three periods with different market conditions are chosen by the practice of Prophet’s
trend changepoints. These periods are separately examined to answer the research question
of how these relationships differ in different time horizons. The first period includes the bull
period beginning around the last halving event in March 2020. While the second involves the
ongoing dramatic downfall of BTC, starting from April 2022, the last period includes the flat
movement in 2021.

The research question, "Does Bitcoin have any causal relationship with the variables?", is
answered using multivariate models in three periods. In the first period, the cointegration
relationship is found between BTC and hashrate which indicates a common stochastic trend.
The cointegration reveals a unidirectional granger-causality from BTC price to hashrate in the
upward market. The findings consistent with studies [24, 29] support the mining equilibrium
of BTC network in which the increasing profit led by the rise of BTC price is an incentive for
the miners to participate in mining and allocate more computational power.

The variables’ predictive power is examined by Granger test, and the granger-causality is
found between BTC price and volume. BTC price granger causes the trading volume in
Periods 2 and 4. This finding highlights that the movements of BTC price can trigger changes
in its market activity via trading volume. In other words, the trading volume is driven by BTC
prices in both up and down market conditions. However, neither cointegration nor granger
causality is found in the flat market condition.

Forecasting BTC price is another objective of this thesis. BTC price and other variables
are predicted by ARIMA and ES models in seven different periods, and the performance
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of the forecasts is compared to answer the research question of how accurately ARIMA

and ES models predict BTC price in various time periods. The forecasts in the sub-periods
show higher accuracy than the whole period. The Dollar index and gold have better accuracy
results in all periods. The forecasts in flat market conditions have lower errors than in upward
and downward markets. The forecast performance of BTC price highly depends on the time
intervals and varies a lot in the sub-periods. While BTC is accurately predicted in Periods 2
and 4, the performances in Periods 3 and 5 have the largest errors among the other variables.

Although the selected variables have no predictive ability on BTC price, the predictive power
of BTC price is examined on hashrate by comparing the forecast performances of ARIMA

and V AR models. V AR model outperforms ARIMA model for hashrate, and the results
show that BTC price is a useful indicator in forecasting hashrate. On the other hand, V AR

model does not provide a significant improvement for the forecast of BTC price, indicating
that the lagged values of hashrate do not contain valuable information about BTC price.

In further studies, the cointegration relationship between hashrate and BTC can be investi-
gated from an economic perspective. The potential mining equilibrium may help answer the
questions that arise with the huge energy consumption of BTC network. The predictive power
of BTC price on hashrate can be used as an indicator to forecast the energy consumption of
BTC network. Finally, the seasonality properties of the halving cycle of BTC can be studied
before the subsequent one in 2024.
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APPENDIX A

VISUALIZATION OF THE VARIABLES

Figure A.1: Period 2: Visualization of transformed variables

Figure A.2: Period 3: Visualization of transformed variables

Figure A.3: Period 4: Visualization of transformed variables
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Figure A.4: Period 5: Visualization of transformed variables

Figure A.5: Period 6: Visualization of transformed variables

Figure A.6: Period 7: Visualization of transformed variables
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APPENDIX B

SMOOTHING MODELS

Table B.1: Period 1: Model coefficients of ES models
SES Holt’s Linear Holt’s Exponential

↵ initial level ↵ � initial level initial trend ↵ � initial level initial trend
BTCPrice 1,000 5,922 1,000 0,000 5,919 0.003 1,000 0,000 5,920 1,000
Hashrate 0,286 14,003 0,250 0,006 13,980 0,004 0,249 0,007 13,981 1,000
Volume 0,356 0,004 0,356 0,000 0,004 0,000 0,374 0,000 0,004 0,983
Gold 1,000 7,081 1,000 0,000 7,080 0,000 1,000 0,000 7,080 1,000
Silver 0,926 2,737 0,926 0,000 2,737 0,000 0,926 0,000 2,737 1,000
Crudeoil 1,000 3,330 1,000 0,000 3,329 0,001 1,000 0,000 3,329 1,000
DXY 0,995 4,565 0,995 0,000 4,565 0,000 0,995 0,000 4,566 0,999
SP500 0,961 7,524 0,960 0,000 7,523 0,001 0,959 0,000 7,523 1,000
Carbon 0,960 1,598 0,957 0,000 1,596 0,002 0,957 0,000 1,597 1,000
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APPENDIX C

ARIMA MODELS

C.1 Period 1

Table C.1: Period 1: Model output of ARIMA(0, 1, 1) for Hashrate
Estimate Std. Error z p-value

intercept 0.0035 0.001 4.997 0.000
ma1 -0.7412 0.016 -47.347 0.000
sigma2 0.0095 0.000 29.250 0.000

Log-likelihood 1227.557 AIC -2549.155
BIC -2533.413 HQIC -2543.271

z p-value
Ljung-Box 0.04 0.84
Heteroskedasticity 0.94 0.52
Jarque-Bera (JB) 49.40 0.00

Table C.2: Period 1: Model output of ARIMA(4, 1, 5) for Volume
Estimate Std. Error z p-value

ar1 -0.2794 0.212 -1.318 0.187
ar2 -0.5277 0.066 -8.011 0.000
ar3 -0.1875 0.181 -1.036 0.300
ar4 0.3611 0.069 5.248 0.000
ma1 -0.2743 0.212 -1.294 0.196
ma2 0.2546 0.152 1.678 0.093
ma3 -0.1616 0.165 -0.977 0.328
ma4 -0.6508 0.152 -4.270 0.000
ma5 0.1420 0.045 3.161 0.002
sigma2 0.0023 0.000 90.182 0.000
Log-likelihood 2271.569 AIC -4523.137
BIC -4470.667 HQIC -4503.525

z p-value
Ljung-Box 0.08 0.78
Heteroskedasticity 0.85 0.08
Jarque-Bera (JB) 13175.70 0.00
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Table C.3: Period 1: Model output of ARIMA(0, 1, 0) for Gold
Estimate Std. Error z p-value

intercept 0.0003 0.000 1.291 0.197
sigma2 0.0001 0.000 38.610 0.000

Log-likelihood 4717.173 AIC -9430.345
BIC -9419.851 HQIC -9426.423

z p-value
Ljung-Box 1.07 0.30
Heteroskedasticity 1.32 0.00
Jarque-Bera (JB) 300.29 0.00

Table C.4: Period 1: Model output of ARIMA(0, 1, 2) for Silver
Estimate Std. Error z p-value

ma1 -0.0757 0.017 -4.414 0.000
ma2 0.0487 0.018 2.638 0.008
sigma2 0.0003 0.000 57.076 0.000
Log-likelihood 3685.281 AIC -7364.563
BIC -7348.821 HQIC -7358.679

z p-value
Ljung-Box 0.00 0.95
Heteroskedasticity 2.78 0.00
Jarque-Bera (JB) 3542.85 0.00

Table C.5: Period 1: Model output of ARIMA(5, 1, 2) for Crudeoil
Estimate Std. Error z p-value

ar1 0.0876 0.058 1.513 0.130
ar2 -0.7591 0.044 -17.200 0.000
ar3 0.1735 0.021 8.209 0.000
ar4 0.0729 0.023 3.216 0.001
ar5 -0.0132 0.017 -0.756 0.450
ma1 0.0497 0.056 0.896 0.370
ma2 0.7378 0.040 18.416 0.000
sigma2 0.0008 0.000 68.371 0.000

Log-likelihood 3001.870 AIC -5987.739
BIC -5945.763 HQIC -5972.050

z p-value
Ljung-Box 0.00 0.95
Heteroskedasticity 2.85 0.00
Jarque-Bera (JB) 2155.57 0.00
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Table C.6: Period 1: Model output of ARIMA(0, 1, 0) for DXY
Estimate Std. Error z p-value

sigma2 0.0001 0.000 34.615 0.000
Log-likelihood 5842.596 AIC -11683.192
BIC -11677.945 HQIC -11681.231

z p-value
Ljung-Box 0.01 0.94
Heteroskedasticity 0.74 0.00
Jarque-Bera (JB) 119.55 0.00

Table C.7: Period 1: Model output of ARIMA(3, 1, 0) for SP500
Estimate Std. Error z p-value

intercept 0.0007 0.000 2.283 0.022
ar1 -0.0353 0.015 -2.291 0.022
ar2 0.0954 0.015 6.411 0.000
ar3 -0.0695 0.015 -4.756 0.000
sigma2 0.0001 0.000 53.693 0.000

Log-likelihood 4519.375 AIC -9028.751
BIC -9002.515 HQIC -9018.945

z p-value
Ljung-Box 0.01 0.92
Heteroskedasticity 4.37 0.00
Jarque-Bera (JB) 4087.69 0.00

Table C.8: Period 1: Model output of ARIMA(1, 1, 1) for Carbon
Estimate Std. Error z p-value

intercept 0.0030 0.001 2.155 0.031
ar1 -0.6964 0.211 -3.297 0.001
ma1 0.6539 0.221 2.961 0.003
sigma2 0.0009 0.000 48.071 0.000

Log-likelihood 2965.103 AIC -5922.206
BIC -5901.218 HQIC -5914.361

z p-value
Ljung-Box 0.00 0.98
Heteroskedasticity 0.77 0.01
Jarque-Bera (JB) 1452.47 0.00
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C.2 Period 2

Table C.9: Period 2: Model output of ARIMA(1, 1, 0) for BTC
Estimate Std. Error z p-value

intercept 0.0093 0.003 3.252 0.001
ar1 -0.1636 0.061 -2.685 0.007
sigma2 0.0014 0.000 15.388 0.000

Log-likelihood 346.831 AIC -687.663
BIC -677.986 HQIC -683.741

z p-value
Ljung-Box 0.00 0.95
Heteroskedasticity 0.98 0.93
Jarque-Bera (JB) 88.95 0.00

Table C.10: Period 2: Model output of ARIMA(0, 1, 1) for Hashrate
Estimate Std. Error z p-value

ma1 -0.6608 0.053 -12.377 0.000
sigma2 0.0092 0.001 9.139 0.000

Log-likelihood 171.952 AIC -339.904
BIC -333.453 HQIC -337.290

z p-value
Ljung-Box 0.06 0.81
Heteroskedasticity 1.28 0.33
Jarque-Bera (JB) 1.88 0.39

Table C.11: Period 2: Model output of ARIMA(1, 1, 1) for Volume
Estimate Std. Error z p-value

ar1 0.1915 0.062 3.113 0.002
ma1 -0.8540 0.045 -18.797 0.000
sigma2 0.0006 0.000 16.630 0.000

Log-likelihood 422.337 AIC -838.675
BIC -828.998 HQIC -834.753

z p-value
Ljung-Box 0.02 0.90
Heteroskedasticity 3.12 0.00
Jarque-Bera (JB) 360.93 0.00
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Table C.12: Period 2: Model output of ARIMA(0, 1, 0) for Gold
Estimate Std. Error z p-value

sigma2 0.0001 0.000 13.109 0.000
Log-likelihood 577.985 AIC -1153.969
BIC -1150.744 HQIC -1152.662

z p-value
Ljung-Box 0.19 0.66
Heteroskedasticity 1.03 0.90
Jarque-Bera (JB) 34.58 0.00

Table C.13: Period 2: Model output of ARIMA(0, 1, 2) for Silver
Estimate Std. Error z p-value

ma1 -0.1594 0.066 -2.409 0.016
ma2 0.1654 0.060 2.751 0.006
sigma2 0.0008 0.000 13.168 0.000

Log-likelihood 401.208 AIC -796.415
BIC -786.738 HQIC -792.494

z p-value
Ljung-Box 0.01 0.91
Heteroskedasticity 1.22 0.43
Jarque-Bera (JB) 38.70 0.00

Table C.14: Period 2: Model output of ARIMA(0, 1, 4) for Crudeoil
Estimate Std. Error z p-value

ma1 0.2032 0.053 3.811 0.000
ma2 -0.2033 0.045 -4.508 0.000
ma3 0.1295 0.055 2.362 0.018
ma4 0.3637 0.057 6.409 0.000
sigma2 0.0023 0.000 15.706 0.000

Log-likelihood 301.934 AIC -593.867
BIC -577.739 HQIC -587.331

z p-value
Ljung-Box 0.04 0.84
Heteroskedasticity 0.13 0.00
Jarque-Bera (JB) 327.47 0.00

Table C.15: Period 2: Model output of ARIMA(0, 1, 0) for DXY
Estimate Std. Error z p-value

intercept -0.0005 0.000 -1.802 0.072
sigma2 0.0001 0.000 8.661 0.000

Log-likelihood 775.109 AIC -1546.218
BIC -1539.766 HQIC -1543.603

z p-value
Ljung-Box 0.10 0.75
Heteroskedasticity 0.57 0.03
Jarque-Bera (JB) 1.38 0.50
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Table C.16: Period 2: Model output of ARIMA(3, 0, 2) for SP500
Estimate Std. Error z p-value

intercept 0.1030 0.008 12.640 0.000
ar1 0.1136 0.143 0.795 0.427
ar2 0.5342 0.056 9.588 0.000
ar3 0.3394 0.153 2.220 0.026
ma1 0.7935 0.111 7.148 0.000
ma2 0.4249 0.122 3.491 0.000
sigma2 0.0002 0.000 11.191 0.000

Log-likelihood 529.879 AIC -1045.758
BIC -1023.141 HQIC -1036.594

z p-value
Ljung-Box 0.33 0.57
Heteroskedasticity 0.27 0.00
Jarque-Bera (JB) 104.11 0.00

Table C.17: Period 2: Model output of ARIMA(1, 1, 1) for Carbon
Estimate Std. Error z p-value

intercept 0.0061 0.004 1.723 0.085
ar1 -0.7515 0.169 -4.441 0.000
ma1 0.5905 0.210 2.818 0.005
sigma2 0.0009 0.000 10.991 0.000

Log-likelihood 391.942 AIC -775.884
BIC -762.981 HQIC -770.655

z p-value
Ljung-Box 0.01 0.92
Heteroskedasticity 0.49 0.01
Jarque-Bera (JB) 8.92 0.01
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