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ABSTRACT 
Alzheimer’s disease, a progressive neurologic disorder, is 
the most common cause of dementia, affecting millions 
worldwide. Mild Cognitive Impairment (MCI) is considered 
an intermediate stage before Alzheimer's. Early prediction of 
the conversion from MCI to Alzheimer's is crucial to take 
necessary precautions for decelerating the disease progres-
sion and developing suitable treatments. This study proposes 
a deep learning framework to identify patients whose diag-
noses might change from MCI to Alzheimer’s in the follow-
ing stages. In particular, latent space manipulation tech-
niques are applied to the latent space of a variational auto-
encoder trained with MCI and Alzheimer’s patients. The ma-
nipulation step aims to reveal significant attributes triggering 
the conversion. Secondly, a correlation between the manipu-
lation’s magnitude and the conversion time is investigated to 
introduce a predictive perspective. Experimental results 
show promising quantitative and qualitative results on one of 
the literature's most extensive and commonly used Alz-
heimer’s disease neuroimaging datasets. 

1. INTRODUCTION 

Neurodegenerative diseases are a common concern threaten-
ing millions of lives worldwide. Alzheimer's disease (AD) is 
the most well-known cause of dementia that affect cognitive 
functions [1]. The transition between normal cognitive func-
tions and dementia is called Mild Cognitive Impairment 
(MCI) [2]. While 1-2% of the cognitively normal elderly de-
velop dementia each year, approximately 12% of those with 
MCI convert to dementia [3]. Some patients with MCI symp-
toms have AD in the later stages. However, some may remain 
in the MCI stage or progress very slowly [4]. Therefore, pre-
dicting the conversion from MCI to AD is of great importance.  

AD can be diagnosed with an accuracy close to 95% [5]. How-
ever, for the early diagnosis, it is imperative to take the clinical 
history of a patient and their families, perform a neurological 
examination and neuropsychological tests suitable to the edu-
cation level, and evaluate the brain tissue with neuroimaging 
methods, such as Magnetic Resonance Imaging (MRI), and 
Positron Emission Tomography (PET). Today, machine learn-
ing and deep learning techniques can assist clinicians in sim-
ultaneously analyzing multiple modalities and developing pre-
dictive models for early AD diagnosis. 

Although predictive models successfully solve various 
healthcare problems, they are not always easily interpretable. 
However, it is crucial to know the underlying reasons behind 
the behavior of a model. This study proposes a deep learning 
framework to discover the underlying factors leading to the 
conversion from MCI to AD. A latent space manipulation 
technique is adopted to obtain the significant attributes and de-
cipher their behavior. The contributions of the proposed study 
are outlined below. 
• A variational auto-encoder (VAE) network is trained to 

learn the latent representations of the MCI and AD pa-
tient data without any labels. 

• Supervised and unsupervised latent space manipulation 
techniques are applied to the latent representations of the 
MCI patients. The VAE decoder outputs new patient data 
from the manipulated latent representations. To the best 
of our knowledge, the proposed study is the first attempt 
to apply latent space manipulation to tabular patient data. 

• The proposed approach facilitates discovering relation-
ships between the directions in the latent space and the 
AD diagnosis. 

• We show that the generated AD patients via latent space 
manipulation and the actual MCI patients diagnosed with 
AD in the future stages share similar characteristics. This 
finding may imply that our approach may correspond to 
a clinically realistic transition between MCI and AD. 
Thus, the proposed framework may reveal more infor-
mation about the conversion than a binary classifier. 

We conduct experiments with the dataset publicly shared by 
The Alzheimer's Disease Prediction of Longitudinal Evolu-
tion, TADPOLE challenge [6]. The credibility of the experi-
mental results from a clinical perspective is confirmed by a 
neurologist. 

2. BACKGROUND 

Clinical studies show that not all MCI patients convert to AD 
[7]. Therefore, detecting MCI patients likely to develop AD 
is crucial to improving the quality of life. This section reviews 
the studies for detecting MCI to AD conversion and the latent 
space manipulation providing a basis for our study. 

2.1 Studies on the Conversion Between MCI and AD 
Biological and behavioral markers from the lab and neuro-
psychological tests are often used to detect AD [7]. There has 
been a quest for distinctive noninvasive identifiers and fusion 



of multiple identifiers to diagnose a patient with dementia. 
For instance, Lu et al. proposed to fuse AD biomarkers with 
an event-based probabilistic framework [8]. The authors state 
that screening abnormal amyloid and tau proteins has been 
essential for accurate diagnosis, but it is not always possible 
[8]. Therefore, it is necessary to enable accurate and early AD 
diagnosis considering the biomarkers obtained by noninva-
sive screening. It is also essential to analyze multiple factors 
simultaneously. For instance, Sun et al. considered a hierar-
chical Bayesian model to simultaneously extract underlying 
factors from atrophy patterns and cognitive impairments [9]. 

Mofrad et al. also focused on brain atrophy due to aging [10]. 
The authors applied an ensemble of predictive models on 
MRI images to predict the conversion from cognitively nor-
mal patients to MCI and from MCI to AD [10]. For the same 
task, Bae et al. used a 3-dimensional Convolutional Neural 
Network (CNN) to extract features from structural MRI im-
ages [11]. Sufficient data is required when complex models 
are utilized. However, it is often not possible to collect large-
scale patient data. Therefore, the authors resorted to fine-tun-
ing a pre-trained CNN [11]. Instead of directly utilizing the 
MRI images, some studies aim to discover new biomarkers 
from MRI. Kung et al. proposed a biomarker, the ratio of 
principal curvatures, that may be an identifier to detect the 
transition between MCI and AD [12]. Kuang et al., on the 
other hand, considered a drastically different dataset collected 
via a cognitive questionnaire [13]. The authors employed lo-
gistic regression and Multi-layer Perceptron (MLP). Alt-
hough less complex and more interpretable models are used, 
relying only on the questionnaire dataset is a limitation [13]. 

In addition to CNN and MLP, some studies consider recurrent 
neural network architectures, such as Long Short-Term 
Memory (LSTM), to learn the temporal patterns in the disease 
progression. Li et al. proposed an LSTM-based framework to 
predict the risk of progression from MCI to AD using cogni-
tive measures and features extracted from the MRI of the hip-
pocampus [14]. Wegmayr et al. took the temporal analysis of 
the progression to another level by training a recursive gener-
ator architecture to synthesize the following stages of a pa-
tient’s brain image [15].   

2.2 Latent Space Manipulation 
Latent space manipulation is usually applied to the latent 
spaces of Generative Adversarial Networks (GANs). Control-
ling the latent space enables reshaping the generated output 
in specific ways. For example, one of the studies in computer 
vision employs latent space manipulation to generate face im-
ages that look more feminine, older, or with more makeup 
[16]. Another study from the healthcare domain utilizes latent 
space manipulation for high-resolution medical image syn-
thesis using GANs [17].  

The latent space manipulation can be learned in supervised 
and unsupervised manners. In the supervised techniques, an 
attribute classifier is trained to discover relevant directions 
within the latent space [16, 18]. Principal Component Analy-
sis (PCA) can also be applied to data points sampled from a 
latent space to find relevant directions [19]. 

On the other hand, DeVries et al. proposed using simple trans-
formations, such as extrapolation, interpolation, and Gaussian 
noise, to the latent representations learned via an auto-en-
coder [20].  

The studies presented in Section 2.1 mainly focus on training 
predictive models by posing the conversion from MCI to AD 
as a classification problem. Despite the high performance of 
deep learning models, it is challenging to unravel biomarkers 
and modalities contributing to predictive performance. This 
study employs supervised and unsupervised latent space ma-
nipulation techniques to investigate the underlying factors of 
the conversion between MCI and AD. We aim to reveal more 
information about MCI patients and their conversion to AD. 

3. METHODS 

In this section, we present the proposed framework shown in 
Figure 1. Details of the proposed framework are presented in 
the following sections. 

3.1 Problem Definition 
Predicting the conversion from MCI to AD may be posed as a 
supervised learning problem. However, the primary goal of 
this study is to investigate the reasons behind this progression. 
Therefore, we pose this problem as an exploration of the 
meaningful directions in the latent space where the patients are 
represented. In this study, we try to find an answer to the fol-
lowing question: How can the latent directions help us under-
stand the conversion from MCI to AD? 

3.2   Model Architecture 
The proposed framework in Figure 1 comprises a binary clas-
sifier and a VAE trained on MCI and AD patients. We did not 
consider a control group in this study since we focused on the 
conversion between MCI and AD rather than on the expected 
MCI.  

3.2.1    Binary Classifier  
A binary classifier is trained to distinguish patient visits with 
MCI and AD diagnoses. We do not consider temporal model-
ing at this stage. The number of time steps in publicly available 
datasets is often insufficient to capture a temporal pattern. 
Therefore, an MLP network is trained with the patient visits 
resulting in MCI and AD diagnoses. The binary cross-entropy 

Figure 1. Proposed framework.  
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ground-truth 𝑦% and predicted 𝑦)% is used to train the classifier.         

The binary classifier is used to evaluate the output of the ma-
nipulation procedure. Otherwise, any feedback from the bi-
nary classifier is not used during the training of the VAE.  The 
probabilistic outcome of the classifier also provides insight 
into the manipulated patient and the amount of manipulation 
towards the direction of AD. For instance, if an MCI patient is 
classified as AD with high confidence after the manipulation, 
this may mean that the MCI patient is pushed beyond the de-
cision boundary and shows the characteristics of an AD diag-
nosis. 

3.2.2 Variational Autoencoder 
The VAE aims to learn a latent space for the input samples in 
an unsupervised way. Unlike the traditional autoencoders, the 
encoder outputs a distribution rather than projecting the input 
to a fixed-sized latent vector. Thus, the VAE prevents overfit-
ting specific patients in the training set but captures the distri-
butions of MCI and AD patients. The decoder gains a genera-
tive property by reconstructing the input from a sample drawn 
from a normal distribution. Therefore, VAE's latent space is 
more versatile for latent space manipulation than the tradi-
tional autoencoder. This study uses fully-connected encoder 
and decoder architectures with ReLU activation functions and 
is trained to minimize the following loss function. 
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where  𝐱' ∈ ℝ( is the input, 𝐱)% ∈ ℝ( is the reconstructed in-
put, 𝝁) , 𝝈)* denote mean and variance of the distribution 
learned by the encoder, KL is the Kullback-Leibler divergence. 
Gamma controls the effect of KL divergence that measures the 
distance between the two distributions. 

3.3   Latent Space Manipulation 
Inspired by the unsupervised latent space manipulation tech-
nique [19], we investigate the latent direction in the latent 
space of the VAE by applying PCA to the latent representa-
tions of the patients. Thus, the principal components can cap-
ture the directions containing the most variation in the latent 
space. Since only MCI and AD patients are considered in this 
study, we expect that the first principal component should be 
associated with the direction of the disease progression. 

We also conducted experiments with a supervised manipula-
tion technique [16] to be able to control the manipulation di-
rection directly. An SVM classifier with a linear kernel is 
trained on the latent representations of MCI and AD patients. 
The opposite direction of the parameter vector denoting the 
direction of the conversion to AD is used to manipulate MCI 
patients. Our analysis shows that both supervised and unsu-
pervised manipulation techniques lead in similar directions for 

the dataset used in this study. For this reason, we continue with 
unsupervised latent manipulation in our experiments.  

The latent representation of a patient is manipulated by adding 
either a principal component vector or the unit direction vector 
of the SVM classifier, multiplied by a coefficient, as shown 
below. 

𝐳∗ = 𝐳 + α𝐮 (2) 
where 𝐳 is the latent representation learned by the VAE, 𝐮 is a 
principal component or the direction obtained by the SVM 
classifier, and α denotes a scalar controlling the manipulation 
amount. Once the manipulated latent representation of the pa-
tient,  𝐳∗, is obtained, the decoder of the VAE is used to syn-
thesize a new patient from the manipulated latent representa-
tion; bold equals = decoder(𝐳∗). Next, the diagnosis of the 
manipulated patient 𝐱), is predicted using the binary classifier. 
The following steps summarize the procedure. 

1) The reconstructed MCI patient vectors by the decoder of 
the VAE are fed to the binary classifier.  

2) The MCI patients, whose reconstructed samples are cor-
rectly identified as MCI by the binary classifier, are se-
lected for the latent space manipulation step. This step 
aims to choose the correctly reconstructed data points so 
that the effect of manipulation on label shift can be ob-
served.  

3) PCA is applied to the latent space, and principal compo-
nents (PCs) are obtained. 

4) The selected MCI patients are manipulated, and the bi-
nary classifier obtains the predicted labels of the synthe-
sized manipulated patients.  
 

The key findings of the proposed approach are presented in 
the next section.  

4. RESULTS 

Experiments are conducted with the TADPOLE dataset [6], 
which is retrieved from Alzheimer's Disease Neuroimaging 
Initiative (ADNI) [21]. Since similar results from the super-
vised and unsupervised latent space manipulation techniques 
are obtained, only unsupervised latent space manipulation re-
sults are reported in this section. 

4.1   Data Preprocessing 
TADPOLE dataset comprises multi-modal data such as MRI, 
PET, CSF, diffusion tensor imaging (DTI), cognitive tests, and 
some genetic and demographic information from the ADNI 
database [22]. The visits of 1737 subjects diagnosed with 
MCI, AD, and control patients are recorded in the dataset. On 
average, each subject has 6.68 different visits up to 6 years 



from their first examination. The TADPOLE challenge recom-
mends 23 variables, including diagnosis, neuropsychological 
test scores, and anatomical features derived from T1 MRI, 
PET, and CSF markers [6]. However, we selected a subset of 
size 16 with a missing value rate of less than 50%. Missing 
data is imputed with the forward filling by replacing the most 
recent measurement of the patient before the missing. If the 
forward filling cannot be used, an average value calculated 
from the visits with the same label is used. 

Measurements that are not clinically plausible are removed 
from the dataset. PET and MRI measurements, namely hippo-
campus, whole brain, middle temporal cortical, entorhinal, 
and fusiform volumes, are normalized by the intracranial vol-
ume of the particular patient, as suggested by Voevodskaya et 
al. [23]. In our experiments, we use the patient visits with only 
MCI and AD labels. Thus, we have 1343 data points with AD 
and 4021 with MCI labels. During the evaluation, we focus 
only on correctly classified test MCI data points, which con-
tain 185 patients, and 30 of them convert to dementia in the 
future. We use the standard scaling method for normalizing the 
numerical columns.  

4.2   Training Scheme 
Hyperparameter optimization is employed with the 5-fold 
cross-validation. The encoder and decoder are designed as 
three-layer fully connected networks, and the binary classifier 
is a two-layer fully connected network. The hyperparameter 𝛾 
in Eq. 1 is set to 0.1. VAE and the binary classifier are trained 
with the training set. PCA is applied to latent space represen-
tations of the training dataset. Manipulation experiments are 
conducted on latent space representations of the test dataset 
after the manipulation direction vectors are obtained. Google 
Colab1 and Tensorflow2 are used to implement the proposed 
approach. 

4.3   Choice of Principal Components 
We experiment with the top 5 PCs. Each PC is added to the 
latent representations of the MCI patients as in Eq. 2. The ma-
nipulation effect of PCs is evaluated by the number of MCI 
patients classified as dementia after the manipulation. In 

 
1 https://colab.research.google.com/ 

Figure 2, for a fixed value of α = 5, we plot the average prob-
ability of the classifier for dementia computed using manipu-
lated MCI patients against the five different principal direc-
tions. This empirical evidence indicates that the first PC moves 
the latent representation of an MCI patient towards dementia.  

4.4 Investigating the Effect of 𝜶 
Next, we investigate the effect of varying alpha values. Figure 
3 demonstrates the average softmax probabilities of being de-
mentia against different 𝛼 values for the first principal compo-
nent. Different 𝛼 values have a non-linear behavior for con-
verting the MCI patients to dementia. We observe similar be-
havior when the number of manipulated MCI patients labeled 
as dementia is investigated for each 𝛼 value.  

5. DISCUSSION 

5.1   Clinical Interpretation 

2 https://www.tensorflow.org/ 

Figure 5. The ratio of number of manipulated patients 
with different 𝜶 values 

Figure 4. Conversion detection ratio within 2-year follow-
up with different 𝜶 values 

Figure 3. Manipulation effect of the first PC for α. y-axis is the aver-
age dementia probability of the patients after manipulation and the 

shaded region denotes the standard deviation. 

Figure 2. Manipulation effects of principal components for fixed α.  



To investigate the individual changes in variables after manip-
ulation, we manipulated the MCI patients diagnosed with de-
mentia in future time steps, using the first PC with a fixed al-
pha value. We compare the average changes in a subset of var-
iables between the manipulated and original time steps labeled 
as dementia in Table 1. 

Table 1. Average changes as % between the manipulated and origi-
nal time steps labeled as dementia for a fixed 𝛼. CDRSB: Clinical 

Dementia Rating Scale Sum of Boxes, ADAS: Alzheimer’s Disease 
Assessment Scale, RAVLT: Rey Auditory Verbal Learning Test 

Variable Manipulated 
vs. Original 

Future Visit 
vs. Original 

CDRSB 27.85 46.29 
RAVLT immediate -8.01 -7.31 

ADAS-Cog11 15.43 15.49 
FAQ 28.38 47.88 

MMSE -4.4 -6.49 
Ventricles 5.79 6.87 

Hippocampus -6.67 -4.93 
Whole brain vol. -2.25 -2.39 

Entorhinal cortical vol. -6.84 -4.98 
Fusiform cortical vol. -3.77 -2.68 
Middle temporal vol. -3.76 -3.04 

 
Future visit information after the manipulated data points of 
the corresponding patients shows that the patients undergo 
similar changes to be diagnosed with dementia. For instance, 
clinically plausible results include an increase in the CDRSB 
score and a decrease in the MMSE score as the disease pro-
gresses. The reported results in this section imply that we can 
discover a direction that contains a significant amount of in-
formation about AD in the latent space of a deep network.  

Although the manipulation effect falls behind on changing 
CDRSB and FAQ variables accordingly, the changes in other 
variables enable the visit data to be labeled as dementia by the 
classifier. This implies that the variation in MRI values and the 
other cognitive tests can better explain the shift in diagnosis. 

In Figure 4, we investigate the ratio of detected test patients 
who convert to AD within a 2-year follow-up by the manipu-
lation method. This figure demonstrates that the detected con-
verted patients are more realistic as the manipulation amount 
increases. The first visit of each MCI patient among the ma-
nipulated visit data for each 𝜶 is selected. The time interval 
between the first visit of an MCI patient at which the conver-
sion is detected by our method and the patient’s actual conver-
sion time to AD is extracted from the dataset. If the time inter-
val is less than or equal to 24 months, the patient is included 
in Figure 4.  

In Figure 5, we demonstrate the ratio of patients labeled as AD 
by the classifier after manipulating the test set. Visits 

belonging to different time points of the same MCI patient can 
be manipulated simultaneously by a fixed 𝛼 value. Therefore, 
we take a unique number of patients for this figure. One might 
consider that if the 𝛼 value is too high, the number of manip-
ulated patients covers almost all patients in the test set, which 
is not desirable to detect the patients who will convert to AD 
in real life. There needs to be a balance point between these 
two figures, where the method enables detecting a maximum 
number of progressive MCI and AD-to-be patients while fo-
cusing on the minimum portion of the cohort. For example, 
when α = 2, the ratio of detected progressive MCI patients is 
~86%, while the percentage of manipulated patients is ~42%. 
These two figures imply that using a reasonable α value would 
enable clinicians to detect most of the progressive MCI cases 
that will convert to dementia by focusing only on a small por-
tion of the cohort. This result shows the potential to associate 
α with the risk of conversion. In future work, we plan to for-
malize this relationship for predictive evaluation. 

5.2   Visualizing the Classifier's Latent Space 
Figure 6 displays manipulated data points with their original 
counterparts in the latent space of the binary classifier. Since 
we apply manipulation only on the MCI labeled patients, De-
mentia* and MCI* represent manipulated versions of MCI 
data points. With this visualization, we can observe the diver-
sity in generated data points. We infer that the proposed ap-
proach may be suitable for generating realistic synthetic de-
mentia patients under the low data regime. 
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