
 

 

 

AUTOMATIC TARGET RECOGNITION OF QUADCOPTER TYPE DRONES 

FROM MODERATELY-WIDEBAND ELECTROMAGNETIC DATA USING 

CONVOLUTIONAL NEURAL NETWORKS  

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

 

 

BY 

 

RUTKAY GÜNERİ 

 

 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

 

 

 

 

DECEMBER 2022





 

 

 

Approval of the thesis: 

 

AUTOMATIC TARGET RECOGNITION OF QUADCOPTER TYPE 

DRONES FROM MODERATELY-WIDEBAND ELECTROMAGNETIC 

DATA USING CONVOLUTIONAL NEURAL NETWORKS  

 

submitted by RUTKAY GÜNERİ in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical and Electronic Engineering, Middle 

East Technical University by, 

 

Prof. Dr. Halil Kalıpçılar  

Dean, Graduate School of Natural and Applied Sciences 

 

 

Prof. Dr. İlkay Ulusoy 

Head of Department, Electrical and Electronics Engineering 

 

 

Prof. Dr. Gönül Turhan Sayan  

Supervisor, Electrical and Electronics Engineering, METU 

 

 

 

 

Examining Committee Members: 

 

Prof. Dr. Gülbin Dural 

Electrical and Electronics Engineering, METU 

 

 

Prof. Dr. Gönül Turhan Sayan 

Electrical and Electronics Engineering, METU 

 

 

Prof. Dr. Mustafa Kuzuoğlu 

Electrical and Electronics Engineering, METU 

 

 

Prof. Dr. Gözde Bozdağı Akar 

Electrical and Electronics Engineering, METU 

 

 

Prof. Dr. Asım Egemen Yılmaz 

Electrical and Electronics Engineering, Ankara University 

 

 

 

Date: 15.12.2022 

 



 

 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work. 

 

  

Name Last name: Rutkay Güneri 

Signature: 

 

 



 

 

v 

 

ABSTRACT 

 

AUTOMATIC TARGET RECOGNITION OF QUADCOPTER TYPE 

DRONES FROM MODERATELY-WIDEBAND ELECTROMAGNETIC 

DATA USING CONVOLUTIONAL NEURAL NETWORKS  

 

 

 

Güneri, Rutkay 

Master of Science, Electrical and Electronic Engineering 

Supervisor: Prof. Dr. Gönül Turhan Sayan 

 

 

December 2022, 106 pages 

 

 

In this thesis, the classifier design approach based on “Learning by a Convolutional 

Neural Network (CNN)” will be applied to two different target library/data sets; an 

ultra-wideband simulation data (from 37 MHz to 19.1 GHz) obtained for a target 

library of four dielectric spheres, and a moderately-wide band measurement data 

(from 3.1 to 4.8 GHz) obtained for a target library of four quadcopter type unmanned 

aerial vehicles (UAVs). While the bandwidth of simulation data for spherical targets 

is about nine octaves, the bandwidth of measurement data collected for quadcopters 

is even less than one octave. 

As the first task, a CNN-based electromagnetic target classifier will be designed for 

the spherical targets using that spectrally rich simulated database. Then, its 

performance will be compared to the performance of another classifier that has been 

already reported in automatic target recognition (ATR) literature as designed by the 

“Wigner Distribution-Principle Component (WD-PCA) based Feature Extraction” 

technique using the same target library and the same database.  
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After verifying the effectiveness of the CNN-based classifier design aproach through 

this comparative investigation, a second CNN-based classifier will be designed for 

the quadcopter type UAVs using their challenging scattered database of very modest 

spectral bandwidth. Design details and performances of each classifier will be 

presented through the thesis discussing the advantages and disadvantages of the 

CNN-based classifier design approach. 

 

Keywords: Automatic Target Recognition, Electromagnetic Target Classification, 

Convolutional Neural Network (CNN), CNN Learning for One-Dimensional Data, 

Quadcopter type UAV Classification.
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ÖZ 

 

DÖRT PERVANELİ ROBOT HELİKOPTER TİPİ İNSANSIZ HAVA 

ARAÇLARININ EVRİŞİMLİ SİNİR AĞLARI KULLANILARAK ORTA 

DERECEDE BANT GENİŞLİĞİNE SAHİP ELEKTROMANYETİK 

SİNYALLERDEN OTOMATİK YÖNTEMLERLE TANINMASI 

 

 

 

Güneri, Rutkay 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Gönül Turhan Sayan 

 

 

Aralık 2022, 106 sayfa 

 

Bu tezde, “Evrişimli Sinir Ağı (CNN) ile Öğrenme” yöntemine dayalı sınıflandırıcı 

tasarım yaklaşımı, iki farklı hedef kütüphanesi/veri seti için  uygulanacaktır. İlk veri 

seti, dört dielektrik küreden oluşan bir hedef kütüphanesi için elde edilen ultra-geniş 

bantlı (37 MHz'den 19.1 GHz'e kadar) simülasyon verilerini içerirken, ikinci veri seti 

dört pervaneli robot helikopter tipi insansız hava araçlarından (İHA’lar) oluşan bir 

hedef kütüphanesi için orta derecede bant genişliğine sahip (3.1 ila 4.8 GHz arasında) 

ölçülmüş verilerden oluşmaktadır. Küresel hedefler için hesaplanan simülasyon 

verilerinin bant genişliği yaklaşık dokuz oktav iken, quadkopterler için toplanan 

ölçüm verilerinin bant genişliği bir oktavdan azdır.  

İlk iş olarak,  dielektrik kürelere ait ultra-geniş bantlı simülasyon veritabanı 

kullanılarak küresel hedeflerin tanınmasına yönelik CNN-tabanlı bir 

elektromanyetik hedef sınıflandırıcı tasarlanacaktır. Daha sonra, bu hedef 

sınıflandırıcının performansı, aynı hedef seti ve aynı veritabanı kullanılarak 

tasarlanmış, otomatik hedef tanıma (ATR) literatüründe yer alan ve   “Wigner 

Dağılımı-Temel Bileşenler Analizi (WD-PCA) tabanlı Öznitelik Çıkarma” tekniği 
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olarak adlandırlan yönteme dayanan diğer bir hedef sınıflandırıcının performansı ile  

karşılaştırılacaktır.  

Sözü edilen karşılaştırmalı inceleme sonucunda etkinliğinin doğrulanmasını takiben, 

CNN-tabanlı hedef tanıma yöntemi dört pervaneli robot helikopter tipi hedefler için 

de hedef sınıflandırıcı tasarımı için kullanılacaktır. Bu ikinci tasarımda düşük bant 

genişliğine sahip dezavantajlı bir veri tabanının kullanılacak olması problemin 

zorluk derecesini arttırmaktadır.  Tasarlanan iki sınıflandırıcının da tasarım detayları 

ve performans sonuçları tez içerisinde verilecek, CNN-tabanlı sınıflandırıcı tasarım 

yönteminin avantaj ve dezavantajları tartışılacaktır.   

 

Anahtar Kelimeler: Otomatik Hedef Tanıma, Elektromanyetik Hedef Sınıflandırma, 

Evrişimli Sinir Ağı (CNN), Tek-Boyutlu Veriler için CNN Öğrenimi, Dört Pervaneli 

Robot Helikopter Tipi İHA Sınıflandırması. 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Motivation and Problem Definition 

Automatic Target Recognition (ATR) is a wide research area where both civilian and 

military applications exist. A broad variety of techniques could be used to distinguish 

objects from each other based on the types of data collected by sensors which may 

operate at different frequency regimes and in different data formats in a given ATR 

scenario. For example, electro-optical sensors such as FLIR (Forward Looking 

Infrared) cameras or radars operating at microwave frequencies can be used in 

detection and recognition of targets with quite different techniques used for signal 

processing and interpretation.   It is a critical task to quickly and correctly recognize 

a detected target in certain applications such as the classification of a plane as a 

fighter aircraft or a passenger airplane in battlefield or around an airport. Such 

applications call for the use of real-time ATR techniques. In order to recognize or 

classify a target successfully, manifestation of the target properties (such as its size, 

shape, material composition, speed, temperature, etc.) in the collected data needs to 

be well understood. 

Design of electromagnetic target classifiers must utilize multi-aspect and/or multi-

polarization data because of the strong dependence of scattered signals on aspect 

angle and polarization. As described by the Singularity Expansion Method (SEM), 

complex natural resonance (CNR) frequencies are aspect/polarization independent 

descriptors of an object, hence they have the power to characterize a target uniquely 

as the bandwidth of electromagnetic data approaches to infinity [1-4]. Therefore, use 

of ultra-wideband scattered signals is strongly preferred in electromagnetic target 
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classifier design to provide excellent time resolution and highly improved accuracy 

in the extraction of physics-based target features which are indirectly based on 

complex natural resonance (CNR) frequencies [5-8]. The quality of extracted target 

features is expected to decline for moderately-wide data bandwidths leading to 

decreasing classifier performance [9]. In such a case, if a sufficiently large amount 

of scattered data is available, it may be not only meaningful but also necessary to 

investigate the usefulness of an alternative target classification technique that is 

based on deep learning algorithms. 

In this thesis, use of two different classifier design approaches, the “Wigner 

Distribution-Principal Component Analysis (WD-PCA) Method” that is a well-

established ATR method based on physics-based feature extraction [10-11] and the 

“Learning by Convolutional Neural Network (CNN) Method” [12-13] will be 

investigated in a comparative manner. The CNN-based design approach will be 

applied to design electromagnetic target classifiers from scratch for two different 

target library/data sets; an ultra-wideband analytically computed simulation data, 

from 37 MHz to about 19GHz, obtained for a target library of four similar dielectric 

spheres, and a moderately-wide band measurement data, from 3.1 to 4.8 GHz, 

obtained for a target library of four quadcopter type drones. While the bandwidth of 

simulation data for spherical targets is about nine octaves, the bandwidth of 

measurement data collected for quadcopters is relatively poor, less than one octave.  

As the first task, a CNN-based electromagnetic target classifier will be designed for 

the spherical targets using that spectrally rich simulated database. Then, its 

performance will be compared to the performance of another classifier that has been 

already reported in automatic target recognition (ATR) literature [11] as designed by 

the WD-PCA based technique using the same target library and the same database.  

After verifying the effectiveness of the CNN-based classifier design aproach through 

this comparative investigation, a second CNN-based classifier will be designed for 

the quadcopter type UAVs using their challenging scattered database of very modest 

spectral bandwidth. Design details and performances of each classifier will be 
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presented through the thesis discussing the advantages and disadvantages of the 

CNN-based classifier design approach. 

Use of Artificial Neural Networks (ANNs) in ATR problems have been 

demonstrated in literature since late 80’s and 90’s [14-17]. In recent years with the 

advancements in artificial intelligence, different deep learning methods are 

introduced [18] and applied to a wide variety of fields including radar signal 

processing [19] where the use of deep learning based algorithms are ranging from 

radar waveform recognition to automatic target recognition. Applications of 

convolutional neural networks (CNNs) to one-dimensional data [20-22] and 

especially to two-dimensional (i.e. image type) data [12], [23-25] are becoming more 

common for the purpose of automatic target recognition. When exposed to very large 

training datasets, CNNs can learn target features hidden in the input signals by the 

help of the convolutional layers. Elimination of the need for specially designed 

feature extraction steps in target classifier design looks to be the major advantage of 

the CNN learning approach. 

1.2 Related Work and Literature Review 

The use of ultra-wideband electromagnetic signals to identify objects was initiated 

by the Kennaugh’s work in 1958 [1]. For the first time, Kennaugh et al. applied the 

impulse response concept to electromagnetic scattering problems, and it was 

observed that damped sinusoidal oscillations occur in the transient responses of 

targets. This behavior was associated with complex poles (i.e. complex natural 

resonance (CNR) frequencies) of the targets’ system functions and formulated by 

Baum as Singularity Expansion Method (SEM) in mid-70’s [3]. The CNR frequency 

values of a target are affected by the physical and electrical properties of a given 

target such as its size, geometry, material composition and electrical parameters 

(permittivity, permeability and conductivity). The CNR frequencies are perfectly 

independent of aspect angle and polarization. However, the residues associated with 

these system poles are strong functions of aspect/polarization. Consequently, the 
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scattered response of a target is highly dependent on these measurement conditions. 

For instance, for a given target, time response at two different aspect angles may 

look very different from each other. Yet, target responses belonging to two different 

targets may look very similar at a given aspect angle. Due to these facts, feature 

extraction from raw electromagnetic scattered data is a crucial step in various target 

recognition methods. Further details of the SEM formalism and the linear, time-

invariant representation of the aspect dependent system function of a target are given 

in Appendix A. 

Early ATR research based on the SEM theory aimed to extract target poles (i.e. the 

CNR frequencies) directly from the electromagnetic scattered signals [2]. However, 

the success of this approach was shown to degrade dramatically in the presence of 

noise. Due to even small errors in estimated pole values, the accuracy of overall 

classification performance deteriorates quickly as the signal-to-noise ratio (SNR) of 

data gets lower.   

As opposed to using the CNR frequencies directly for ATR purposes, Kennaugh 

proposed another target identification method based on the indirect utilization of 

SEM methodology in 1981 [4]. Designing a special time limited excitation signal, 

called Kill pulse (K-pulse), was the main idea in this method. K-pulse should be 

designed in a way to annihilate target poles. So, the late-time response of the target 

becomes time-limited only when the target is excited by its own K-pulse [5-6]. 

Later, quadratic time-frequency representation (TFR) techniques [26] such as 

Wigner-Ville distribution and Page distribution, have been used to obtain energy 

based target features which are indirectly related to the information of complex 

natural frequencies [10-11], [16]. In this case, the late-time portion of the scattered 

electromagnetic signals are used (after the forced response is completely over) for 

target feature extraction in a way to utilize the effects of target poles only. In [16], 

the late-time features are extracted by Wigner distribution (WD) and a self-

organizing map type neural network (SOM) is used for classification. Another WD-

based method is proposed by Turhan-Sayan in [10]. The classifier decides on the 
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correct target choosing the maximum of all correlation coefficients computed 

between the late-time feature vector of the test signal and reference feature vectors, 

which are obtained at a small number of training aspect angles for each target in the 

classifier library. This method is further improved in [11] by using the principal 

component analysis (PCA) to merge the reference feature vectors computed for a 

given target at all training aspect angles to obtain a single target-specific feature 

vector [40]. In addition to WD-based classifiers, Seçmen and Turhan-Sayan 

proposed in [8] that MUSIC algorithm could be used to extract CNR-based features 

from the late-time response. Similar to [11], the feature matrices obtained by MUSIC 

algorithm in only a few reference angles are combined, and a single feature called 

Fused MUSIC Spectrum Matrix (FMSM) is obtained for each target. The MUSIC 

algorithm-based method is also applied for multiple target recognition in [27]. 

With the developments in artificial intelligence, the use of different types of neural 

networks in electromagnetic target recognition applications has increased. The 

application of conventional neural networks (supervised or unsupervised) still 

needed the use of feature extraction for NN training for better ATR results [16-17]. 

However, the need for hand-crafted feature extraction prior to neural network 

training is completely eliminated by the convolutional neural networks (CNNs). For 

example, Selver et al in [21] used a 1D convolutional neural network to classify small 

scale model aircrafts. The work was based on the 1D CNN foundation stated by 

Kiranyaz et al in [20] for ECG signal classification. In [21], the classifier designed 

for small scale model aircraft was composed of three stages. In the first stage, the 

neural networks are trained with analytically generated and simulated scattering 

signals of various spheres and dielectric rods. By using transfer learning, the neural 

networks trained in the first stage are fine-tuned with the small number of measured 

signals of model aircraft in the second stage. At last, the results of each neural 

network are ensembled to obtain the final output in the third stage. 

The CNN based three stage classifier mentioned above is improved by Toprak et al 

in [22]. In this work, two different methods are proposed. The first method utilizes 

magnetic spheres when training the first stage CNN in addition to Selver et al [21]. 
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So, new diverse features are obtained with the addition of the magnetic properties. 

Secondly, a new architecture is proposed which includes long short-term memory 

(LSTM) network along with CNN. By the CNN-LSTM architecture, the small 

number of scattered signals of small scale model aircraft are used directly to train the 

proposed network. 

1.3 Novel Contributions of the Thesis 

The novel contribution of this thesis is the design of a CNN-based electromagnetic 

target classifier for a library of four similar quadcopter type commercial drones using 

totally experimental, one dimensional (1-D) aspect/polarization dependent scattered 

field data with a highly restricted bandwidth of 3.1 to 4.8 GHz. Previous research 

papers reporting CNN-based classifiers for 1-D time-domain signals in ATR design 

either use very low frequency ECG signals [20] which do not suffer from the 

physically dictated complications of aspect/polarization dependencies, or they use 

electromagnetic scattered data like we use but utilize ultra-wideband simulation data 

as well as ultra-wideband measurement data not for full-size targets but for small-

scale targets over a very large bandwidth of 1-12 GHz in their design work [21-22]. 

1.4 The Outline of the Thesis 

In Chapter 1, problem definition and motivation of the study are presented together 

with literature survey. The novel contributions of the thesis are also mentioned 

briefly in this Introduction chapter.   

Basic theoretical background of artificial neural networks is outlined in Chapter 2.  

Design of a CNN-based electromagnetic classifier for lossless dielectric spheres 

using ultra-wideband simulation data is presented in full detail in Chapter 3. The 

performance of this classifier is compared to the performance of another classifier 
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reported in literature (designed by the WD-PCA based feature extraction method) to 

verify the capacity and usefulness of the CNN-based target classifiers.  

In Chapter 4, the CNN-based classification approach is used to classify quadcopter 

type UAVs.  Target parameters, properties of measured database and measurement 

setup are presented in this chapter together with full details of the classifier design 

process.  

Finally, the conclusions and plans for future work are given in Chapter 5. 

The thesis has also six Appendices.  

Appendix A provides details on the Singularity Expansion Method (SEM) and 

summarizes the representation of system response for an electromagnetic target. 

Appendix B presents waveform plots for scattered signals in the dielectric sphere 

database.  

Performance metrics of the CNN-based classifiers are defined in Appendix C. 

Appendix D presents the confusion matrices obtained in the testing stage of the 

CNN-based classifier with noisy signals belonging to the dielectric sphere database. 

Details of experimental setup used for the measurement of scattered fields of the 

quadcopter type UAVs are presented in detail in Appendix E. 

Finally, the Phyton codes developed for the CNN-based dielectric sphere classifier 

and the CNN-based quadcopter type UAV classifier are provided in Appendix F and 

Appendix G, respectively.  
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CHAPTER 2  

2 BACKGROUND FOR NEURAL NETWORKS 

In this chapter, the basic background of artificial neural networks (ANNs) and 

convolution neural networks (CNNs) are explained briefly for the sake of 

completeness. 

2.1 Artificial Neural Networks 

Neural networks are one of the most popular fields in machine learning. The building 

blocks of an artificial neural network are neurons which are inspired by biological 

neural systems [35]. A neuron is simply a computational unit that produces an output 

according to its input values as shown in Figure 2.1. At first, input values are 

multiplied by the corresponding weights of the neuron. The weighted inputs are 

summed, and a bias is added to the summation. Then the result is pass through an 

activation function to produce the output of the neuron. There are commonly used 

activation functions in neural networks such as sigmoid, tanh, and rectified linear 

unit (ReLU), which are shown in Figure 2.2. 

 

 

Figure 2.1. Mathematical model of a neuron 
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(a) (b) (c) 

 

Figure 2.2. Commonly used activation functions (a) sigmoid (b) tanh (c) rectified 

linear unit (ReLU) [35] 

 

Neurons are organized in layers to create a neural network. The architecture of a 

neural network is composed of an input layer, several hidden layers, and an output 

layer in general. As seen in Figure 2.3, a neuron is connected to all neurons in the 

previous and the preceding layer; therefore, this type of layer is named fully 

connected layer. In addition, there is no connection between neurons in the same 

layer. An artificial neural network is named according to the number of layers. Input 

layer, however, is not counted for the total number of layers in a neural network. For 

example, the network illustrated in Figure 2.3 is a 2-layer neural network composed 

of a single hidden layer and an output layer. Meanwhile, the number of hidden layers 

and neurons in each layer is a design consideration. 
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Figure 2.3. A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and 

one output layer with 2 neurons), and three inputs 

 

The training process of a neural network could be explained basically as optimizing 

the weights of the network to minimize the loss function. As seen in Figure 2.4, two 

processes contribute to the loss function which are data loss and regularization loss. 

The data loss arises from the difference between the output of the network and the 

true labels. On the contrary, only the weights determine the regularization loss. 

Various optimization algorithms are preferred to minimize the loss function of a 

neural network. For example, Gradient Descent and Adam are the popular choices 

which are iterative optimization techniques. While training a neural network, the 

weights are randomly initialized at the beginning, and the training dataset is passed 

through the network. The output is then compared with the true labels to calculate 

the data loss. In every iteration, the parameters are updated regarding to the loss 

value. 
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Figure 2.4. Summary of forward propagation to compute loss function [35] 

 

2.2 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a special class of artificial neural 

networks (ANNs) used commonly in the resent years.  Although, these networks are 

broadly preferred in image and video processing problems, numerous applications 

of CNNs are reported in the field of radar signal processing [35]. The main difference 

of CNNs from the regular artificial neural networks is the convolutional layers. 

Different from a fully connected layer, neurons are connected to a small portion of 

the previous layer while the convolution operation is performed. Since the 

parameters of the convolutional layers are trainable, a CNN can learn features of the 

concerned signal. By this way the feature extraction effort in signal processing 

research is eliminated. 
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Figure 2.5. A convolutional neural network illustration [36] 

 

A convolutional neural network is composed of several different layers which are 

convolutional layer, pooling layer, and fully connected layer (FCL) as shown in 

Figure 2.5. Convolutional layer is the layer where convolutional operation between 

the output of the previous layer and each neuron in the layer is computed. Similar to 

fully connected layers, an activation function is placed at the output of convolutional 

layer neurons, where rectified linear unit (ReLU) is selected in general. After the 

convolutional layers, down-sampling operation is performed in the pooling layers so 

that the spatial size is reduced. At the end, CNNs include fully connected layers at 

the output. The classification of the input is handled by the fully connected layers. 

The chosen classifier is varying according to number of target classes. For example, 

sigmoid function is commonly used for binary classification. Meanwhile, softmax is 

a very popular choice in classification of multiple targets. 
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CHAPTER 3  

3 ELECTROMAGNETIC TARGET CLASSIFIER DESIGN FOR DIELECTRIC 

SPHERES BY CONVOLUTIONAL NEURAL NETWORKS  

In this chapter, we will develop the design procedure for a convolutional neural 

network (CNN) based target classifier for the target library of four lossless dielectric 

spheres using an ultra-wideband analytically simulated database. Then, the 

performance of the resulting CNN-based classifier will be compared to the 

performance of a WD-PCA based classifier designed for the same spherical target 

set using exactly the same database to validate the effectiveness of the CNN-based 

classifier. As the design details and the performance results for the WD-PCA 

classifier are already reported in literature [11], WD-PCA classifier design for the 

spherical targets will not be repeated in this work.  

3.1 Properties of the Target Library 

The target library is composed of four lossless dielectric spheres with the same size 

(with diameter of 10 cm) but slightly different permittivity values as presented in 

Table 3.1.  These are exactly the same targets used in [11]. Although the geometry 

of the spherical targets looks perfectly symmetrical and simple, classification of 

dielectric spheres is a challenging problem as a dielectric sphere has a highly dense 

target pole pattern due to interior resonating modes [6-7]. Using spherical targets in 

classifier design [8,10-11,21-22, 27] comes handy as the ultra-wideband far field 

scattered signals can be conveniently computed by using the Mie series formulation 

[28]. 
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Table 3.1 Properties of the dielectric spheres 

 εr μr Radius (cm) 

Target 1 3 1 10 

Target 2 4 1 10 

Target 3 5 1 10 

Target 4 6 1 10 

 

3.2 Properties of the Database Simulated for the Dielectric Spheres 

The far-field scattered responses from each spherical target were already computed 

at 13 different bi-static aspects by Turhan-Sayan [10] in frequency domain using the 

excitation/observation scenario presented in Figure 3.1. Then, the resulting 

frequency domain data were windowed to minimize Gibbs phenomena and 

transformed to time domain by using the inverse fast Fourier transformation (IFFT). 

Signals in the time-domain database were also normalized to have unit energy prior 

to being used in the WD-PCA based feature extraction and classifier design 

approach. One of the important aspects in WD-PCA classifier design is to minimize 

the volume of data needed for design. Accordingly, the scattered field database was 

created at only 13 aspects; only 5 of these aspects were used in classifier design, and 

the remaining 8 aspects were used for testing the classifier. In the case of deep 

learning approach however, the neural networks such as the CNN require very large 

volumes of datasets for training. So, we needed to augment the available time domain 

database. This task is done in this thesis work by creating the noisy versions of the 

database at various SNR levels just by synthetically adding random Gaussian noise 

to original noise-free data as discussed in the subsection 3.2.2. The resulting 

augmented dataset is then divided into training, validation and test subsets as 

described in section 3.2.3. 
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Figure 3.1. Problem geometry used to generate electromagnetic signals scattered 

from the spherical dielectric targets 

3.2.1 Simulation of Scattered Database for Dielectric Spheres 

The scattered electromagnetic signals of dielectric spheres are generated for the 

problem geometry given in Figure 3.1. The excitation plane wave is linearly 

polarized in x direction and propagates in z direction. As seen in Figure 3.1, the 

scattered fields are calculated at the 𝜙 =
𝜋

2
 plane for different 𝜃 angles. Due to the 

perfect spherical symmetry, the scattered responses had to be computed at bi-static 

aspect angles. Otherwise, we would obtain the same monostatic response in each 

angle. In [10], thirteen different 𝜃 angles are chosen as 5°, 15°, 30°, 45°, 60°, 75°, 

90°, 105°, 120°, 135°, 150°, 165°, and 179° for the WD-PCA based classifier design. 

We also use the same aspect angles to form our dataset for the CNN based classifier 

design here. 

The frequency domain scattered responses are computed over the ultra-wide 

bandwidth from 37 MHz to 19.1 GHz at 512 equally spaced frequency points. An 

example of frequency response is illustrated in Figure 3.2 for the dielectric sphere 

with permittivity 3 at the aspect angle 165°. In order to obtain the time domain 

scattering signal, we firstly apply Gaussian windowing to the frequency response so 
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that the effect of Gibbs’ phenomenon is decreased. Afterwards, the Inverse Fast 

Fourier Transform (IFFT) is employed with 1024 points. A time domain scattered 

signal with a total observation duration of 26.81 ns is obtained at the end of this 

process as seen in Figure 3.3. As a result, a total of 52 different scattering signals are 

obtained for four different dielectric spheres at 13 bi-static aspect angles. 

 

 

Figure 3.2. The magnitude of the far-field frequency response of the dielectric sphere 

with 𝜖𝑟 = 3 where the bistatic angle is 165°. 

 

Figure 3.3. The far-field time domain scattered signal of dielectric sphere with 𝜖𝑟 =

3 where the bistatic angle is 165°. 
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Figure 3.4. The simulated far-field time domain scattered signals of four different 

dielectric spheres with 𝜖𝑟 = 3, ϵr = 4, 𝜖𝑟 = 5 𝑎𝑛𝑑 𝜖𝑟 = 6 where the bistatic angle is 

165°. 

 

Time-domain scattered signals of four dielectric spheres at the same aspect angle of 

165° are illustrated in Figure 3.4 to examine the small variations in the signals. As 

the targets are very similar to each other, their transient responses are also very 

similar, which complicates the classification problem. 
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Figure 3.5. Simulated far-field time domain scattered signals of the dielectric sphere 

with 𝜖𝑟 = 3 at the bistatic angles 179° (almost back-scattered aspect), 150°, 120°, 

90°, 60°, 30°. 

 

In addition to the arbitrarily chosen aspect angle of 165°, the scattered signals at 

aspect angles of 179°, 150°, 120°, 90°, 60° and 30° are also presented for the 

spherical target with 𝜖𝑟 = 3 in Figure 3.5. Similar database signals for the other 

spherical targets are plotted in Appendix B. The extensive changes in early-time 

responses could be observed in these figures as the aspect angles vary. Therefore, it 

is a difficult task to discriminate targets only using the early-time response. On the 

other hand, late-time response contains the effects complex natural resonance 

frequencies, which do not depend on the aspect angle. So, designing a classifier with 

minimal sensitivity on aspect variation becomes possible by utilizing the late-time 

responses. 
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3.2.2 Data Augmentation 

Thirteen different bistatic aspect angles are chosen to compose our dataset for 

dielectric spheres. Turhan-Sayan [10-11] used only five of them as reference for the 

WD-PCA based classifier design and the remaining eight aspect angles are used to 

test the performance of the classifier. However, a large dataset is required to develop 

a CNN based classifier. Hence, we need to augment the analytically generated 

dataset. For image classification purposes, a wide range of methods could be utilized 

to augment the original dataset [38]. For example, flipping, cropping, rotating and 

noise injection are some common image augmentation techniques. On the other 

hand, we could not take advantage of the vast majority of these techniques for 1D 

electromagnetic signals. This is because the important features of the scattered 

signals could be disrupted. For instance, temporal information of the signal could not 

be maintained when flipping is applied.  

Han et al. apply three different augmentation methods for FMCW radar signals in 

[13], which are frequency shifting, noise addition and time stretching. Moreover, 

Selver et al. state in [21], adding Gaussian noise is an effective technique to augment 

ultra-wideband scattering signal database. When we examine these methods, 

frequency shifting and time stretching are seen not suitable for our problem since the 

target specific complex natural resonance frequencies could not be maintained. So, 

we decide to add Gaussian noise at three SNR levels of 15 dB, 17 dB and 20 dB to 

the generated noise-free signals for augmentation. In Figure 3.6, an example of a 

scattered signal with 17 dB SNR is illustrated for the dielectric sphere with 𝜖𝑟 = 3 at 

the aspect angle 165°. In addition, the samples of noisy scattered signals at each SNR 

levels are shown in Figure 3.7. It can be observed from these figures that noiseless 

signal and the signal with 20 dB are very similar to each other because the noise level 

of the latter signal is quite low. Therefore, we do not add the noiseless signals in the 

dataset. 

The analytically generated dataset is augmented with 30 different trials of randomly 

and independently generated Gaussian noise at three different SNR levels of 15 dB, 
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17 dB and 20 dB for each aspect angle. By this way, a total of 1170 scattered signals 

are obtained for each sphere at thirteen bi-static aspect angles, and the dataset for all 

dielectric spheres contains 4680 ultra-wideband scattered signals as stated in Table 

3.2. 

 

Table 3.2 Details of Dielectric Sphere Dataset 

Bistatic Angles SNR Levels For Single Target For All Targets 

5°, 15°, 30°, 45°, 60°, 75°, 

90°, 105°, 120°, 135°, 150°, 

165°, 179° 

15 dB 

17 dB 

20 dB 

1170 4680 

 

 

 

Figure 3.6. An example of a noise-added scattered signal for the dielectric sphere 

with 𝜖𝑟 = 3 where the bistatic angle is 165° and SNR level 17 dB. 
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Figure 3.7. Noisy scattered signals with three different SNR levels of 20 dB, 17 dB 

and 15 dB for the sphere with 𝜖𝑟 = 3 at the bistatic angle of 165°. 

3.2.3 Separation of Training, Validation and Test Sets 

The development process of a neural network simply requires the dataset should be 

divided into sufficiently large training and test sets. However, our dataset of 

dielectric spheres is of very limited size. In this thesis, for CNN-based classifier 

design, we utilize nested cross validation to obtain an unbiased model and observe 

the generalization performance [29]. Therefore, the generated dataset is separated 

into training, validation, and test sets to implement nested cross validation. As seen 

in Figure 3.8, nested cross validation is composed of an outer loop and an inner loop. 

The test samples are set apart in the outer folds to evaluate the model performance. 

In the inner folds, the model is fitted with the training set, and the validation set is 

used for investigation of the learning procedure and parameter selection. 
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In our original dataset, the distinct information is contained in the 13 aspect angles. 

Therefore, we split the data into 13 groups to perform nested cross validation. In 

each outer fold, one group is separated as the test set. For the inner folds, the 

remaining samples belong to 12 aspect angles are grouped into six where every group 

contains two different aspect angles. From these six groups, one of them is 

established as the validation set of that fold. With this separation, the number of 

samples in each subset is summarized in Table 3.3. As a result, 6-folds are carried 

out in every inner loop along with 13 outer folds. In total, we are able to fit our model 

with 78 different dataset separations to examine the effects of hyper-parameters and 

observe the generalization performance of the network. 

 

Table 3.3 Number of Samples in Each Set for Nested Cross Validation 

Training Set Validation Set Test Set Total 

3600 720 360 4680 

 

 

Figure 3.8. Data Separation for Nested Cross Validation 
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3.3 Preprocessing of the Input Signal for CNN 

To improve the training process of the neural network, the input signal should be 

preprocessed with a couple of simple operations. The first preprocessing operation 

is normalization where the distribution of the input signal is converted into zero mean 

and unit variance. Secondly, the dataset is shuffled because the scattered signals are 

generated in a row. For a successful training process, the data should be given in a 

mixed order to the neural network. 

3.4 CNN Architecture of the Dielectric Sphere Classifier 

The number of the training samples directly affects the size of a neural network 

model because of the data-driven nature of neural networks. As the size of the dataset 

grows, we could train deeper networks. Since our dataset of dielectric spheres has a 

limited number of samples, we choose to work with a shallow model. The network 

to classify dielectric spheres is chosen to be composed of mainly three convolution 

layers as illustrated in Figure 3.9. The activation function of these three convolution 

layers is selected as rectified linear unit (ReLU) function. Zero padding is also 

applied so the output of a convolutional layer has the same shape as the input.  

Filters with trainable coefficients forms a convolution layer, and a convolution layer 

basically performs convolution operation between the input signal and each trainable 

filter. By the help of these filters, the target specific features could be extracted in 

the network. So, we do not need to extract hand-crafted features but the features of 

the targets are learned from the training data samples. 

Weight regularization methods are included in the network besides the convolution 

layers. With the help of regularization, the network can avoid overfitting, and the 

statistics of the given dataset can be learned successfully. The regularization methods 

are only executed during training stage and not included after training is finished. As 

a common choice in the field of neural networks [23], two techniques of 

regularization which are L2 regularization and dropout (with the rate of 0.5) are used 
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together in the network. At the early steps of the development process, it is clearly 

observed that overfitting occurs immediately if any regularization method is not 

used. In fact, the limited number of scattered signals could be considered as the main 

reason of that situation. So, we also apply batch normalization after each 

convolutional layer to avoid overfitting. Although batch normalization has a 

regularization effect, the primary advantage of this method is to accelerate the 

training procedure and produce a more robust neural network [30]. We take 

advantage of batch normalization and achieve satisfying results with small number 

of epochs like 20. 

In CNNs, pooling layers are placed between convolution layers to reduce the number 

of parameters and the computation cost. Pooling layers can achieve this effect by 

down-sampling the output of the previous convolutional layer. In our architecture, 

we choose to use max pooling with the pooling size 2. This means that the size of 

the signal is reduced to its half in every pooling layer by taking the maximum value 

of two consecutive time samples of the signal. 

After three convolutional layers, a fully connected layer with 64 hidden units takes 

place where the classification task is performed. Fully connected layers are indeed 

similar to regular artificial neural networks. Each neuron in the hidden layer is 

connected to previous and following layers. Lastly, a softmax layer follows the fully 

connected layer as the output layer. Since we have four different dielectric spheres 

as targets, the softmax layer contains four units. At the output of softmax layer, we 

obtain the classification probabilities for each target. The output values computed by 

softmax function are located between zero and one, and the sum of all values are 

equal to one. An ultra-wideband scattered signal is then classified as belonging to 

one of the four library targets according to the highest probability value.  

The CNN architecture described so far is implemented in Python with TensorFlow 

framework, and the code written for this purpose is given in Appendix F. The 

hardware used for training the CNN model for dielectric classification is NVIDIA 

Quadro K2200 GPU and Intel Xeon E5-1603 CPU. 
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Figure 3.9. CNN architecture used for dielectric sphere classification 
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3.5 Hyper-parameter Optimization for Dielectric Sphere Classifier 

The general architecture of the CNN developed for dielectric sphere classification is 

described in the previous section. To obtain an optimum deep learning model, we 

search different hyper-parameters which are the kernel size of convolutional layers, 

learning rate and the mini-batch size. The different hyper-parameters are tested by 

applying grid search. The grid search experiments are listed in Table 3.4.  

In the convolutional layers, we use 16, 32 and 64 filters respectively. To simplify the 

parameter selection procedure, we prefer to use the same number of kernels in each 

three convolutional layers. The values of 3, 5 and 7 are examined to determine the 

optimum kernel size. 

During the training stage of the deep learning model, the optimizer is chosen as 

Adam algorithm which is a computationally efficient form of stochastic gradient 

decent. The common choice of the learning rate used with Adam algorithm is 0.001. 

Hence, we start with this value in our experiments. Since it is observed in the first 

trials that overfitting could occur due to high learning rates, we examine the lower 

values instead. So, 0.001, 0.0005 and 0.0003 values are picked in our grid search for 

learning rate. 

Training of a neural network occurs in an iterative manner. All samples in the 

training set could be used several times to update weights of the network. An epoch 

represents the iterations when all the training samples have been seen once by the 

network. However, an epoch could be divided into mini batches of training set. The 

choice of the mini-batch size directly affects training procedure because the loss 

function is computed in every iteration with the selected number of samples in the 

batch. For the sake of more efficient computations, mini-batch size is selected as the 

powers of 2. Therefore, we pick the values 32, 64 and 128 during our grid search.  
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Table 3.4 List of Hyper-parameter Optimization Experiments for Sphere 

Classification 

Experiment No Kernel Size Learning Rate Mini-Batch Size Accuracy 

Experiment 1 (3, 3, 3) 0.001 32 0.8077 

Experiment 2 (3, 3, 3) 0.001 64 0.7962 

Experiment 3 (3, 3, 3) 0.001 128 0.7695 

Experiment 4 (3, 3, 3) 0.0005 32 0.8049 

Experiment 5 (3, 3, 3) 0.0005 64 0.8027 

Experiment 6 (3, 3, 3) 0.0005 128 0.7991 

Experiment 7 (3, 3, 3) 0.0003 32 0.7954 

Experiment 8 (3, 3, 3) 0.0003 64 0.8014 

Experiment 9 (3, 3, 3) 0.0003 128 0.7996 

Experiment 10 (5, 5, 5) 0.001 32 0.8143 

Experiment 11 (5, 5, 5) 0.001 64 0.7957 

Experiment 12 (5, 5, 5) 0.001 128 0.7728 

Experiment 13 (5, 5, 5) 0.0005 32 0.8121 

Experiment 14 (5, 5, 5) 0.0005 64 0.7872 

Experiment 15 (5, 5, 5) 0.0005 128 0.8140 

Experiment 16 (5, 5, 5) 0.0003 32 0.8006 

Experiment 17 (5, 5, 5) 0.0003 64 0.8021 

Experiment 18 (5, 5, 5) 0.0003 128 0.8147 

Experiment 19 (7, 7, 7) 0.001 32 0.8161 

Experiment 20 (7, 7, 7) 0.001 64 0.8132 

Experiment 21 (7, 7, 7) 0.001 128 0.8034 

Experiment 22 (7, 7, 7) 0.0005 32 0.7948 

Experiment 23 (7, 7, 7) 0.0005 64 0.8146 

Experiment 24 (7, 7, 7) 0.0005 128 0.7884 

Experiment 25 (7, 7, 7) 0.0003 32 0.8106 

Experiment 26 (7, 7, 7) 0.0003 64 0.7806 

Experiment 27 (7, 7, 7) 0.0003 128 0.7965 
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The hyper-parameter experiments are conducted with nested cross validation as 

described in 3.2.3. For evaluation, accuracy, precision, and recall are selected as the 

performance metrics. The definitions of the metrics are stated in Appendix C. The 

resulting metrics of cross-validation are averaged and illustrated in Figure 3.10. As 

seen in the Table 3.4 and Figure 3.10, we obtain the best result from Experiment 19 

with 81.6% accuracy. In this configuration, the kernel size is 7, learning rate is 0.001 

and mini-batch size is 32. The individual effect of each parameter on performance 

of the model is discussed in the following sections. 

 

Figure 3.10. The results of hyper-parameter optimization experiments 
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3.5.1 Impact of the Kernel Size 

The individual scores of different hyper-parameters are computed by averaging the 

results of the grid search while keeping the corresponding hyper-parameter constant. 

The obtained scores for kernel size are shown in Figure 3.11. It is observed that the 

best score is achieved with the kernel size 7. The result is consistent with the outcome 

of Experiment 19. As seen in Figure 3.11, the performance metrics increase while 

the kernel size grows. It could be said that the features representing the damped 

sinusoids due to the natural resonance mechanism are learned better with larger 

kernel size. 

 

 

Figure 3.11. Impact of different kernel sizes on the performance of the classifier 
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3.5.2 Impact of the Learning Rate 

When we examine the effect of learning rate on the model performance, it is observed 

that changes in the learning rate have a slight influence on the network. Although the 

scores for the three different values are almost the same, the highest score is obtained 

with the learning rate 0.0005. However, we receive the optimum result with the 

learning rate 0.001 in the grid search. The difference could be ignored since the 

learning rate has a small effect on the network performance as seen in Figure 3.12. 

 

 

Figure 3.12. Impact of different learning rates on the performance of the classifier 
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3.5.3 Impact of the Mini-batch Size 

Among the three different hyper-parameters, the mini-batch size has the most 

dramatic effect on the network. As seen in Figure 3.13, the performance metrics of 

our network are decreasing while the mini-batch size increase from 32 to 128. We 

obtain the best score with the mini-batch size of 32. This situation is also seen in the 

result of the overall grid search where Experiment 19 gives the highest score. 

 

 

Figure 3.13. Impact of the mini-batch size on the performance of the classifier 



 

 

34 

3.6 Training and Evaluation of the Optimized Network 

The hyper-parameter optimization is carried out in the previous section for the 

defined CNN architecture in section 3.4. We conclude that the classifier performs 

better with the increasing number of kernel size. In addition to kernel size, it is seen 

that the mini-batch size has a high influence on the classification performance. For 

dielectric sphere classifier, using a small value of mini-batch size works better. On 

the other hand, the learning rate is seen not an effective hyper-parameter of the 

proposed network.  

The optimized deep learning model with the hyper-parameters used in Experiment 

19 is summarized in Table 3.5. The total number of parameters of the network is 

543204. We train the optimized network with the dataset of the outer fold 3 through 

20 epochs. In the training process, the learning curves are obtained as in Figure 3.14. 

From the loss curve, we could say that the model is trained in a good manner. This 

is because the validation loss follows the training loss which decays exponentially. 

Besides, the accuracy curve shows that overfitting is not occurred. If overfitting was 

occurred, there would be a big gap between the training accuracy and the validation 

accuracy. Also, the validation loss would not follow the training loss, and diverge 

from it. As a result of this training process which essentially use the complete dataset 

for the sphere targets at all 13 aspects due to the use of cross-validation approach, 

we obtain the confusion matrix illustrated in Figure 3.15 reported for only the bi-

static aspect angle of 30 degrees, as an example. The achieved test accuracy for this 

sample case is 97.8%.  
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Table 3.5 Model Summary of Optimized Network for Sphere Classification 

Layers Output Shape 

Input Layer 1024 

Conv 1D, ReLU, L2 Regularization (1024, 16) 

Batch Normalization (1024, 16) 

Dropout (1024, 16) 

Max Pooling 1D (512, 16) 

Conv 1D, ReLU, L2 Regularization (512, 32) 

Batch Normalization (512, 32) 

Dropout (512, 32) 

Max Pooling 1D (256, 32) 

Conv 1D, ReLU, L2 Regularization (256, 64) 

Batch Normalization (256, 64) 

Dropout (256, 64) 

Max Pooling 1D (128, 64) 

Flatten 8192 

Fully Connected Layer, L2 Regularization 64 

Dropout 64 

Softmax Layer 4 
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Figure 3.14. The learning curves of the optimized network for dielectric sphere 

classification 

 

Figure 3.15. Confusion matrix of the optimized network for dielectric sphere 

classification considering only the test data at 30 degrees bi-static aspect angle. 

 

3.7 Training the Optimized Network with a Smaller Training Set 

As described in section 3.2.3, the available dataset for the spherical targets is split 

into training, validation and test set and the nested cross validation approach is 

utilized to examine the generalization performance of the CNN network for dielectric 

sphere classification by exposing the network to all the available data for four targets, 

13 aspect angles, three SNR levels. One of our aims in Chapter 3 is to verify the 

performance of the CNN-based classifier design method against the performance of 

the WD-PCA based classifier design method for the target library of dielectric 

spheres over the same database. For this reason, we will separate the sphere dataset 

into training and test sets for the next CNN-based sphere classifier design in such a 

way that is compatible with the training/testing data set separation used in [11]. It 



 

 

37 

should be also mentioned that the same set of hyper-parameters optimized in the 

previous CNN-based classifier design (i.e. kernel size of 7, mini batch size of 32 and 

learning rate of 0.001) will be maintained in the classifier design to be reported next. 

3.7.1 Separation of Training and Test Sets  

In this case, the training dataset is composed of the scattered signals simulated at five 

different aspect angles while the rest of the dataset at eight more aspect angles 

belongs to the test dataset. The bi-static aspect angles of the training set are 5°, 45°, 

90°, 135°, 179° while the aspect angles of the test dataset are 15°, 30°, 60°, 75°, 

105°, 120°, 150°, 165° as selected in the WD-PCA classifier design approach in 

Turhan-Sayan’s work in [11]. As a result, for each dielectric sphere, the training 

dataset contains 450 samples while the testing dataset contains 720 samples as shown 

in Table 3.6. 

 

Table 3.6 Training and Test Sets compatible with [11] 

Dataset Bistatic Angles SNR Levels For Single Target For All Targets 

Train 
5°, 45°, 90°, 135°, 

179° 15 dB 

17 dB 

20 dB 

450 1800 

Test 

15°, 30°, 60°, 75°, 

105°, 120°, 150°, 

165° 

720 2880 

 

3.7.2 Training and Evaluation of the Network 

In this section, the previously optimized network stated in Table 3.5 is trained by 

also using the previously optimized hyper-parameters but making use of an aspect-
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wise restricted dataset this time as described in section 3.7.1, instead of using the 

whole available dataset.  

As the network is trained with the mentioned dataset, we observe a variation in the 

performance of the classifier at different training repetitions. The accuracy of the 

classifier varies between 78.5% and 99.4% when we train the network from scratch 

5 times. 89.9% mean accuracy is acquired for the 5 repetitions. Here, in Figure 3.16 

and Figure 3.17, we report the results of the classifier with the best performance of 

99.4% accuracy out of these five design trials.  During training of the network, we 

obtain the learning curves shown in Figure 3.16. Even though a smaller training set 

is used, no overfitting is observed. As seen in the figure, the validation loss follows 

the training loss with a small bias. Moreover, the validation accuracy reaches 90% 

after epoch 5. As a result, the confusion matrix illustrated in Figure 3.17 is obtained. 

We achieve 99.4% test accuracy along with 99.6% precision and 98.2% recall for 

dielectric sphere classification. 

 

  

Figure 3.16. The learning curves of the best optimized network (out of five trials) 

when the dataset described in section 3.7.1 is used. 
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Figure 3.17. Confusion matrix of the best optimized network (out of five trials) when 

the dataset described in section 3.7.1 is used for training. 

 

3.7.3 Noise Performance of the CNN-based Classifier for Dielectric 

Spheres 

The deep learning model is developed with the training and test sets which both 

include scattered signals with the SNR levels of 15 dB, 17dB, and 20 dB. To 

observe the performance of the CNN-based classifier under noise and to make a 

comparison with the WD-PCA method, a new testing dataset is generated. Bi-static 

aspect angles are kept the same, but SNR levels differ in the new test dataset. Five 

different noisy datasets are generated with the SNR levels 0 dB, 5 dB, 10 dB, 15 

dB, and 20 dB. For the signals with 20 dB SNR, the accuracy of the classifier is 

observed to be 100% as seen in  

Table 3.7. As SNR level of the signal decreases, the accuracy of the classifier 

decreases to 98.7%, 97.5% and 93.4% for 15 dB, 10 dB and 5 dB SNR, respectively, 

as expected. In the case of 0 dB SNR, the classifier produces 81.6% accuracy where 
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the classifier maintains its high performance under noise. The corresponding 

confusion matrices are given in Appendix D. 

The testing accuracy levels of the WD-PCA based classifier were reported to be 100 

%, 96 %, 91 % and 75 % at 20 dB, 15 dB, 10 dB and 5 dB SNR levels, respectively 

in [11] where the classifier was designed using only noise-free data. In previous 

research, it has been demonstrated that use of noisy training data having moderate 

noise levels in classifier design leads to notable improvements in the classification 

accuracy rates at lower SNR testing levels [33-34]. While both CNN-based and WD-

PCA based classifiers reach 100% accuracy at 20 dB SNR level, the former classifier 

demonstrates better accuracy performance at lower SNR values probably due to this 

biasing effect as the noisy data at 20 dB, 17 dB and 15 dB are utilized in training the 

CNN classifier because of the need for dataset augmentation.    

 

Table 3.7 Noise Performance of the CNN-based Classifier 

SNR Level Accuracy Precision Recall 

0 dB 81.6% 86.5% 72.2% 

5 dB 93.4% 95.4% 91.5% 

10 dB 97.5% 97.8% 97.2% 

15 dB 98.7% 99.1% 98.1% 

20 dB 100% 100% 100% 

 

3.8 Effect of Number of Aspect Angles in the Training Set 

In the previous section, the network with optimized hyper-parameters is trained with 

a training set containing signals from 5 different aspect angles to compare the CNN-

based and WD-PCA based classifiers. On the other hand, we would like to examine 

the effect of the number of the aspect angles in the training set in this section. 
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Although it is seen that a high performance is achieved in section 3.7, there is a large 

variance in the performance of the designed networks at different trials. In this 

section, a different set of hyper-parameters (the kernel size of 3, the learning rate of 

0.0005, and the mini-batch size of 128) is utilized while investigating the effect of 

using training data over a wider selection of the aspect angle. The network with the 

mentioned hyper-parameters is trained with three different training sets including 5, 

6 and 7 bi-static aspect angles, and the results are presented below. 

3.8.1 Training Set Containing 5 Aspect Angles 

We start with 5 aspect angles to examine the effect of training set size on the 

performance of the classifier. The scattered signals from the aspect angles 5°, 45°, 

90°, 135° and 179° construct the training set. The remaining signals are used for 

testing. When we train the network from scratch 5 times, it is observed that the 

accuracy of the classifier changes between 90.4% and 97.4% with the mean accuracy 

of the 5 trials being 93.2%. Here, the classifier design procedure looks more stable 

as we observe a smaller performance variation as compared to the results of Section 

3.7.2 where the accuracy rate was found to change between 78.5% and 99.4%. As 

an example among the 5 design trials of this section, the learning curves of the CNN 

classifier with the accuracy of 91.5% are illustrated in Figure 3.18. Also, the 

confusion matrix belonging to this specific classifier design is shown in Figure 3.19. 

For this classifier, the precision and the recall metrics are also obtained as 93.1% and 

84.4%, respectively. 
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Figure 3.18. The learning curves of the sample CNN classifier when 5 aspect angles 

(5°, 45°, 90°, 135° and 179°) are used in the training dataset. 

 

Figure 3.19. Confusion matrix of the sample CNN classifier when 5 aspect angles 

(5°, 45°, 90°, 135° and 179°) are used in the training dataset. 

3.8.2 Training Set Containing 6 Aspect Angles 

This time, the training dataset is composed of the scattered signals from the aspect 

angles 15°, 45°, 75°, 105°, 135°, and 165°. When we trained the CNN classifier at 5 

different aspect angles, we achieved 93.2% average accuracy over 5 repetitions of 

training. Now, however, when the number of aspect angles are increased to 6, the 

mean accuracy over 5 trials becomes 98.4%. In different repetitions of training, the 
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accuracy of the classifier varies in a much narrower range between 96.5% and 100%, 

i.e. the training of the CNN classifier becomes more stable. In other words, we 

observe a performance improvement with the increased training information 

regarding the coverage of aspect angles. In Figure 3.20, the learning curves are 

plotted for the network with 96.5% accuracy; 99.7% precision and 91.2% recall are 

also achieved with this network. The confusion matrix of the network is shown in 

Figure 3.21. All signals from Target 1, Target 2, and Target 4 are recognized 

correctly. Only 87 signals from Target 3 are misclassified as Target 4.  

 

  

Figure 3.20. Learning curves of the sample CNN classifier when 6 aspect angles 

(15°, 45°, 75°, 105°, 135°, and 165°) are used in the training dataset. 
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Figure 3.21. Confusion matrix of the sample CNN classifier when 6 aspect angles 

(15°, 45°, 75°, 105°, 135°, and 165°) are used in the training dataset. 

3.8.3 Training Set Containing 7 Aspect Angles 

It is observed that with the increasing number of aspect angles, the CNN-based 

dielectric sphere classifier performs better. Hence, we train the deep learning model 

with a training set containing 7 aspect angles which are 5°, 30°, 60°, 90°, 120°, 150°, 

and 179°. Again, the training procedure is repeated 5 times to see if there exists any 

fluctuation of performance in different trials. With the training set including 7 aspect 

angles, 100% accuracy is obtained at all trials. An example learning curve is shown 

in Figure 3.22, and all signals in the test subset are classified correctly as seen in 

Figure 3.23.  

As a conclusion, the performance of the CNN-based dielectric sphere classifier is 

improved with the increasing number of aspect angles. This behavior could be 

explained as the network learns better with more information in the training dataset. 

When the mentioned 7 aspect angles are chosen for the training dataset, the 

performance metrics all reach to 100% and variance in the performance metrics is 

not observed in different trails of training procedure.  
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Figure 3.22. Learning curves of the sample CNN classifier when 7 aspect angles 

(5°, 30°, 60°, 90°, 120°, 150°, and 179°) are used in the training dataset. 

 

 

Figure 3.23. Confusion matrix of the sample CNN classifier when 7 aspect angles 

(5°, 30°, 60°, 90°, 120°, 150°, and 179°) are used in the training dataset.  
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CHAPTER 4  

4 ELECTROMAGNETIC TARGET CLASSIFIER DESIGN FOR QUADCOPTER 

TYPE UNMANNED AERIAL VEHICLES BY CONVOLUTIONAL NEURAL 

NETWORKS  

After validating the effectiveness of the CNN-based electromagnetic target classifier 

design approach in Chapter 3, a second and more challenging target classifier will 

be designed in this chapter for a set of four quadcopters having similar properties 

using their measured scattered field database over a relatively narrow bandwidth. 

In the present chapter, we will design a CNN-based classifier for commercial 

quadcopter type UAVs using what we learned from dielectric sphere classification 

exercise. The target set is composed of four different models of quadcopters. The 

database of wideband far field scattered signals for these targets are constructed 

totally by measurements over a very modest bandwidth from 3.1 GHz to 4.8 GHz 

using a portable wideband radar kit as opposed to the simulated database of spheres 

with almost nine-octaves bandwidth. Keeping these significant differences between 

the databases of spheres and quadcopters in mind, the CNN-based classifier will be 

designed and its performance will be investigated in the rest of this chapter. 

4.1 Properties of the Target Library 

The target library for this classifier design includes four different quadcopter type 

commercial drones which are AR Drone 2.0, DJI Phantom, DJI Spark, and MJX 

Bugs 5W. The picture for each quadcopter is presented in Figure 4.1. As stated in 

Table 4.1, the targets could be divided into two main groups regarding their 

dimensions. AR Drone 2.0 and DJI Phantom belong to the “bigger targets” set while 

DJI Spark and MJX Bugs 5W belong to the “smaller targets” set. In Table 4.1, the 

diagonal dimension between two motors is given to show the largest physical length 

of each target. 
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Table 4.1 Physical properties of the commercial UAV targets 

Target Type Diagonal Distance Weight 

AR Drone 2.0 40 cm 420 g 

DJI Phantom 35 cm 1200 g 

DJI Spark 17 cm 300 g 

MJX Bugs 5W 25 cm 400 g 

 

  

AR Drone 2.0 DJI Phantom 

  

DJI Spark MJX Bugs 5W 

 

Figure 4.1. Commercial UAV target set composed of four quadcopters 
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4.2 Measurement Setup 

The scattered field measurements of the quadcopters are collected with the wideband 

radar kit with brand name TimeDomain PulsON 440. The radar module operates 

over the frequency band 3.1 to 4.8 GHz having transmitter/receiver antennas with 

omnidirectional pattern in the H-plane (azimuth plane). Due to this antenna pattern, 

measurements are strongly affected by environmental cluttering. Therefore, the 

scattered data had to be collected in an anechoic chamber as seen in Figure 4.2 to 

obtain almost clutter-free measurements. The characteristics of the excitation pulse 

generated by the module and details of the measurement setup are explained in 

Appendix E. 

 

 

Figure 4.2. Measurement setup in anechoic chamber for UAVs  

 

4.3 UAV Dataset Measured with PulsON 440 

The measurements are taken in a total of twenty orientations for each UAV as stated 

in Table 4.2. Ten orientations are obtained by rotating the UAV under test in azimuth 

plane from 0° to 90° when the quadcopters are placed parallel to the ground. Since 

quadcopters have a four-fold symmetry, only the angles between 0° and 90° are 
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considered as illustrated in Figure 4.3 to eliminate redundant measurements. In 

addition, the UAVs are tilted by 30° in the elevation plane and rotated again to 

measure the target responses in different azimuth angles to cover the aspect angles 

seeing the UAVs from the bottom. For each aspect angle 500 scans are collected. 

With 20 different incidence angles, the total number of signals measured for each 

UAV becomes 10,000. As a result, the UAV dataset is composed of 40,000 wideband 

electromagnetic scattered signals in total.  

We set the PulseON 440 radar module to listen for 105 nanoseconds after each pulse 

is transmitted. However, the raw signals cannot be used directly for the classifier 

design due to the following reason: The first 20 nanoseconds of the measured signals 

(corresponding to a two-way propagation range of three meters) are strongly 

contaminated by systematic clutter signals stemming from the hardware of the radar 

unit as shown in Figure 4.4. Mutual couplings between the closely placed 

transmitting and receiving antennas are partially responsible for this contamination. 

So, we placed our targets 5 meters away from the radar unit in the anechoic chamber 

to avoid these strong clutter signals. Another undesired echo shows up systematically 

in the measurements right after 100 nanoseconds as shown in Figure 4.5. This echo 

is caused by the subsequent transmitted pulse. This is because the pulse repetition 

frequency of the radar unit is 10 MHz, which corresponds to a repetition time interval 

of 100 nanoseconds. Therefore, time gating is applied to measured signals to select 

the time range from 30 nanoseconds to 92.4 nanoseconds that provides a clean 

measurement segment with a time span of 62.4 nanoseconds sampled in 1024 equally 

spaced points. This time range is long enough to send the excitation pulse to the 

target (that is 5 meters away from the radar unit) and to receive the returned signal 

as shown in Figure 4.6. In this figure, the acquired target response is plotted with 8.6 

dB average SNR value. Examples of the scattered signals for all quadcopters are 

shown in Figure 4.7. 
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Table 4.2 Details of the Measured UAV datasets 

Incident Angles Number of Signals 

per Aspect Angle 

Total Number of 

Signals for a Target 
Azimuth Elevation 

0°, 10°, 20°, 30°, 40°, 

50°, 60°, 70°, 80°, 90° 
0°, 30° 500 10,000 

 

 

 

 

Figure 4.3. The incident angles of the UWB signal to the UAVs 
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Figure 4.4. An example of the measured signal with PulseON 440 radar module 

 

Figure 4.5. The measured signal after the elimination of initial clutter signal. 
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Figure 4.6. The time span of a measured scattered signal selected by time gating to 

be used in the classifier design. 

  

  

Figure 4.7. Examples of measured scattered signals for each one of four different 

quadcopters. 
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In CNN-based classifier, we utilize 5-fold cross validation to evaluate the 

performance of the neural network. Therefore, the measured dataset is divided into 

5 non-overlapping subsets. Before separating the dataset, we randomly shuffle 

measured scattered signals with respect to aspect angles. Afterwards, the training set 

is constructed with the scattered signals of 16 different aspect angles in each fold. 

For the test set, remaining 4 aspect angles are utilized. With this data separation, the 

number of scattered signals for the training and test sets are given in Table 4.3.  

 

Table 4.3 Number of Samples in Each Set for 5-fold Cross Validation 

Training Set Test Set Total 

32,000 8,000 40,000 

 

4.4 Preprocessing the Input Signal for CNN 

Similar to what we did to preprocess the scattered signals of dielectric spheres, two 

preprocessing methods are applied to the measured UAV signals before they are 

given as inputs to the CNN. Firstly, we normalize the signals such that the mean 

becomes zero and the variance is one. Later, shuffling operation is performed to store 

the input signals in a random order. 

4.5 Initial CNN Architecture for UAV Classification 

At the first step of UAV classifier design, we start with the network architecture that 

was proposed in Chapter 3 for the classification of dielectric spheres. The 

architecture is composed of three convolutional layers, and the hyper-parameters are 

optimized for the scattered signal dataset of dielectric spheres.  
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We start to apply 5-fold cross validation to the network. But we finish the cross 

validation process early after training with the dataset of fold 3 is completed. This is 

because it is observed that the network could not learn well for 3 different folds. 

When the training with the dataset of fold 3 is completed, we obtain 83.2% accuracy 

with the learning curves shown in Figure 4.8. Both in accuracy and loss curves, a 

gap between training and validation is seen. In addition, validation loss does not 

decrease over epochs as expected. However, Goodfellow et al. state that a good 

model is achieved when there is a small gap in between training and validation curves 

[18]. Even though a relatively good result obtained with the confusion matrix as 

shown in Figure 4.9, we improve the architecture for UAV classification by 

deepening the network. The details of the improved CNN architecture are discussed 

in the following section. 

 

  

Figure 4.8. The learning curves of the optimized network for the UAV classification 



 

 

56 

 

Figure 4.9. Confusion matrix of CNN-based UAV classifier when the architecture 

optimized for the dielectric spheres is used. 

 

4.6 Improved CNN Architecture for the UAV Classification 

Following our first experiments with the initial architecture optimized previously for 

the database of dielectric spheres, we decided to increase the depth so that the 

representation power of the network can be enhanced. However, the growth of the 

total number of parameters is a major concern while deepening a network. This is 

because a complex model cannot learn the features of the signals from a small 

dataset, and under-fitting occurs. Although we collect 40,000 scattered signal 

measurements in total, it is not enough to train a very deep learning model. In this 

thesis, we propose a CNN architecture inspired by VGG architecture [37] which is a 

popular image classification network. Simonyan and Zisserman state in [37] that the 

model performance can be improved by increasing the number of layers. At the same 

time, the VGG architecture contains stacks of several convolutional layers with small 
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kernel sizes, so the number of parameters does not grow as much as compared to a 

network using large convolutional filters.  

For our UAV target set, we introduce a CNN architecture with three convolutional 

layer groups similar to VGG architecture. In the first group, two convolutional layers 

are stacked while there are three convolutional layers in the second and third groups 

as illustrated in Figure 4.10. Batch normalization is also added to each convolutional 

layer. We set 32 filters for the first group, and the remaining groups are composed 

of 64 filters. After each convolutional layer group, down-sampling is performed with 

max pooling layers over window size of 2. Following the convolutional layers, a 

fully connected layer (FCL) with 512 hidden units is placed. For each layer, rectified 

linear unit is chosen as the activation function. Furthermore, L2 regularization and 

dropout are defined to avoid overfitting. At the output layer, the activation function 

is set to softmax function to classify four different UAV targets. We use TensorFlow 

framework to implement the described CNN architecture on Python. In Appendix G, 

the code describing the network with TensorFlow functions is given. The training of 

the CNN model is carried out with NVIDIA Quadro K2200 GPU and Intel Xeon E5-

1603 CPU. 
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Figure 4.10. CNN architecture used for UAV classification 
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4.7 Hyper-parameter Optimization for the UAV Classifier 

For the architecture defined to classify UAVs in the previous section, we perform a 

hyper-parameter search to achieve an optimum classifier network. As given in Table 

4.4, a total of 27 experiments are conducted to find best values for the kernel size, 

learning rate and mini-batch size. Similar to dielectric sphere classifier design, the 

effect of the parameters on the performance of the network is examined with grid 

search. Accuracy, precision and recall metrics are computed when the network 

trained with different values of each hyper-parameter, and the results are shown in 

Figure 4.11. 

In each convolutional layer, the kernel size is kept the same to narrow the search 

space. We work with the kernel size values of 3, 5 and 7 just like in the dielectric 

sphere classifier design. In addition to kernel size, the examined mini-batch sizes are 

also selected the same as 32, 64 and 128. 

Adam algorithm is utilized as the optimizer of the network. In the initial training 

practices, we observed that decreasing the learning rate during training process 

reduces the swing in the learning curves. Therefore, being different from the 

dielectric sphere classification network, we add a decaying learning rate 

configuration to the grid search. Besides the constant values of 0.001 and 0.0005 for 

all epochs, a learning rate scheme starting with 0.001 and reducing to 0.0005 is 

included in our hyper-parameter search domain. In this case, we train the network 

for a total of 20 epochs and decrease the learning rate after epoch 10. 

As a result of the grid search, the highest performance is achieved in Experiment 18 

with the kernel size 5 and the mini-batch size 128. In Experiment 18, the learning 

rate is set to 0.001 for the first ten epochs and it drops to 0.0005 for the remaining 

ten epochs. With these hyper-parameter values, an average accuracy of 89.5% is 

obtained by 5-fold cross validation. In addition to the overall result of the grid search, 

the influence of each hyper-parameter on the model performance is discussed in the 

following sections. 
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Table 4.4 List of Hyper-parameter Optimization Experiments for UAV 

Classification 

Experiment No Kernel Size Learning Rate Mini-Batch Size Accuracy 

Experiment 1 (3, 3, 3) 0.001 32 0,8878 

Experiment 2 (3, 3, 3) 0.001 64 0,8571 

Experiment 3 (3, 3, 3) 0.001 128 0,8732 

Experiment 4 (3, 3, 3) 0.0005 32 0,8691 

Experiment 5 (3, 3, 3) 0.0005 64 0,8471 

Experiment 6 (3, 3, 3) 0.0005 128 0,8599 

Experiment 7 (3, 3, 3) [0.001, 0.0005] 32 0,8924 

Experiment 8 (3, 3, 3) [0.001, 0.0005] 64 0,8753 

Experiment 9 (3, 3, 3) [0.001, 0.0005] 128 0,8756 

Experiment 10 (5, 5, 5) 0.001 32 0,8630 

Experiment 11 (5, 5, 5) 0.001 64 0,8759 

Experiment 12 (5, 5, 5) 0.001 128 0,8829 

Experiment 13 (5, 5, 5) 0.0005 32 0,8780 

Experiment 14 (5, 5, 5) 0.0005 64 0,8718 

Experiment 15 (5, 5, 5) 0.0005 128 0,8875 

Experiment 16 (5, 5, 5) [0.001, 0.0005] 32 0,8751 

Experiment 17 (5, 5, 5) [0.001, 0.0005] 64 0,8739 

Experiment 18 (5, 5, 5) [0.001, 0.0005] 128 0,8946 

Experiment 19 (7, 7, 7) 0.001 32 0,8356 

Experiment 20 (7, 7, 7) 0.001 64 0,8796 

Experiment 21 (7, 7, 7) 0.001 128 0,8313 

Experiment 22 (7, 7, 7) 0.0005 32 0,8693 

Experiment 23 (7, 7, 7) 0.0005 64 0,8528 

Experiment 24 (7, 7, 7) 0.0005 128 0,8272 

Experiment 25 (7, 7, 7) [0.001, 0.0005] 32 0,8435 

Experiment 26 (7, 7, 7) [0.001, 0.0005] 64 0,8686 

Experiment 27 (7, 7, 7) [0.001, 0.0005] 128 0,8495 
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Figure 4.11. The results of hyper-parameter optimization experiments for the UAV 

classifier. 
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4.7.1 Impact of the Kernel Size 

The variation in the average performance metrics is examined while working with 

different kernel sizes in the convolutional layers. The results are illustrated in Figure 

4.12, and the best scores are obtained for the kernel size 5 where the average accuracy 

is obtained as 87.8%. For the UAV classifier, we do not observe the positive effect 

of the kernel size as in the dielectric sphere classifier. When the kernel size is chosen 

as 7 all performance metrics decrease, and the average accuracy becomes 85%. On 

contrary, 87% and 87.8% average accuracy is achieved for the kernel sizes 3 and 5 

respectively. Therefore, we choose to 5 as the kernel size in the UAV classifier 

network.   

 

 

Figure 4.12. Impact of different kernel sizes on the performance of the UAV 

classifier. 
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4.7.2 Impact of the Learning Rate 

Learning rate is an important hyper-parameter because it is the main multiplier of 

weight update. Hence, it has a direct influence on the training procedure. In our 

experiments, we notice that learning rate of 0.001 is a high value for the proposed 

network architecture. This is because it leads to fluctuations in the learning curves 

during training. On the other hand, dropping the value to 0.0005 does not solve the 

problem completely. The training is slowing down, and the validation accuracy does 

not reach the expected accuracy values as in the case of the learning rate of 0.001. 

The results shown in Figure 4.13 summarize the situation. The average accuracy for 

the rate 0.0005 stays at 86% while 86.5% average accuracy is achieved with the rate 

0.001.  

When we look for another solution to increase classifier performance, it is found that 

decreasing the learning rate during the training procedure gives better results. 

Therefore, a learning rate schedule starts with 0.001 and drops to 0.0005 in the 

middle of the training is utilized. As a result, we obtain an average accuracy of 87.2% 

with this configuration, which is the highest score among the other learning rate 

values. The result is also consistent with the outcome of Experiment 18. 

 

 

Figure 4.13. Impact of different learning rates on the performance of the UAV 

classifier. 
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4.7.3 Impact of the Mini-batch Size 

Compared to other hyper-parameters, mini-batch size has no dramatic effect on the 

UAV classifier network as seen in Figure 4.14. Even though the maximum accuracy 

of 86.8% is achieved with the mini-batch size 32, the mean accuracy for three 

different values is received as 86.6%. Besides, the overall best result is obtained with 

mini-batch size 128 in Experiment 18. This difference could be neglected since the 

individual effect of the mini-batch size on the performance of the network is 

negligible. Eventually, we select the mini-batch size of our network as 128 as 

obtained from the Experiment 18. 

 

 

Figure 4.14. Impact of the mini-batch size on the performance of the UAV 

classifier. 
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4.8 Training and Evaluation of the Optimized Network 

The optimized network for UAV classification is obtained with the grid search for 

the hyper-parameters stated in the previous section. The best values of the kernel 

size, learning rate and mini-batch size are determined for the CNN architecture 

described in section 4.7. As the result of grid search, we achieve the highest 

performance with the kernel size of 5, decaying learning rate from 0.001 to 0.0005, 

and mini-batch size of 128. When using these hyper-parameters, the model summary 

given in Table 4.5 is obtained with a total number of parameters 3,989,348. 

We train the optimized network for 20 epochs with the fold 3 to illustrate the 

performance of the classifier. The learning curves seen in Figure 4.15 arise during 

the training process. It is easily seen that with the learning rate schedule shown in 

Figure 4.16 the swing in the curves reduces as the rate decreases to 0.0005. So, the 

validation curves converge the training curves smoothly. At the end of the training, 

the confusion matrix shown in Figure 4.17 is obtained. We observe that the classifier 

makes correct decisions with 92.8% accuracy. In addition, the precision and the 

recall metrics are obtained as 93% and 92.5% respectively. However, 17% of the 

samples belong to AR Drone 2 are misclassified as DJI Phantom. Similarly, the 

classifier predicts 7% of the MJX Bugs 5W measurements as DJI Spark.  

 

  

Figure 4.15. The learning curves of the optimized network for the UAV 

classification. 
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Figure 4.16. The learning rate variation during the training process. 

 

We can explain the confusion between targets with the natural resonance mechanism. 

This is because the wideband electromagnetic signals are utilized to excite target 

specific complex natural resonance (CNR) frequencies [3]. As a signal with a larger 

bandwidth is incident upon a target, a higher number of CNR frequencies could be 

excited within the selected bandwidth. The CNR frequencies of a target are 

determined essentially by the material properties as well as the shape and dimensions 

of a target. Since commercial UAVs are generally made of similar materials and 

components, the dimensions mainly affect the CNR frequencies. In our target set we 

observe the confusion between the targets with similar dimension, and the targets are 

divided into two groups regarding their dimension which stated in Table 4.1. AR 

Drone 2 and DJI Phantom belong to the bigger target group while the smaller target 

group is composed of DJI Spark and MJX Bugs 5W.  
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Figure 4.17. Confusion matrix of the optimized network for UAV classification. 

 

Table 4.5 Model Summary of Optimized Network for UAV Classification 

Layers Output Shape 

Input Layer 1024 

Conv 1D, ReLU, L2 Regularization (1020, 32) 

Batch Normalization (1020, 32) 

Dropout (1020, 32) 

Conv 1D, ReLU, L2 Regularization (1016, 32) 

Batch Normalization (1016, 32) 

Dropout (1016, 32) 

Max Pooling 1D (508, 32) 

Conv 1D, ReLU, L2 Regularization (504, 64) 

Batch Normalization (504, 64) 

Dropout (504, 64) 

Conv 1D, ReLU, L2 Regularization (500, 64) 

Batch Normalization (500, 64) 

Dropout (500, 64) 
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Table 4.5 (continued) 

Conv 1D, ReLU, L2 Regularization (496, 64) 

Batch Normalization (496, 64) 

Dropout (496, 64) 

Max Pooling 1D (248, 64) 

Conv 1D, ReLU, L2 Regularization (244, 64) 

Batch Normalization (244, 64) 

Dropout (244, 64) 

Conv 1D, ReLU, L2 Regularization (240, 64) 

Batch Normalization (240, 64) 

Dropout (240, 64) 

Conv 1D, ReLU, L2 Regularization (236, 64) 

Batch Normalization (236, 64) 

Dropout (236, 64) 

Max Pooling 1D (118, 64) 

Flatten 7552 

Fully Connected Layer, L2 Regularization 512 

Dropout  512 

Softmax Layer 4 

 

4.9 Training of the Optimized Network with a Smaller Training Set 

4.9.1 The Dataset Separation 

To observe the effect of training set size on the performance of classifier, 50%, 60% 

and 70% of the dataset is separated as the training subset. The first training set is 

constructed by the scattered signals from 10 aspect angles, and the remaining 10 

aspect angles are left for testing. The selected angles for the training and test sets are 

summarized in Table 4.6. We prefer to separate the dataset in azimuth angles. So, 
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the scattered signals measured at 0° and 30° elevation angles are included in both 

datasets. By adding the scattered signals from 30° azimuth angle, the second training 

set is established which is 60% of all signals as shown in Table 4.7. Finally, the third 

training set containing 70% of all data is constructed by including the scattered 

signals from 70° azimuth angle. The aspect angles composing the third training set 

are outlined in Table 4.8, and the performance of the resulting networks are 

compared in the next section. 

Table 4.6 Dataset separation: 50% training, 50% test  

Dataset 
Incident Angles 

Azimuth Elevation 

Training 0°, 20°, 40°, 60°, 80° 0°, 30° 

Test 10°, 30°, 50°, 70°, 90° 0°, 30° 

 

Table 4.7 Dataset separation: 60% training, 40% test 

Dataset 
Incident Angles 

Azimuth Elevation 

Training 0°, 20°, 30°, 40°, 60°, 80° 0°, 30° 

Test 10°, 50°, 70°, 90° 0°, 30° 

 

Table 4.8 Dataset separation: 70% training, 30% test 

Dataset 
Incident Angles 

Azimuth Elevation 

Training 0°, 20°, 30°, 40°, 60°, 70°, 80° 0°, 30° 

Test 10°, 50°, 90° 0°, 30° 
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4.9.2 Training and Evaluation of the Network 

The optimized CNN architecture summarized in Table 4.5 is trained with smaller 

training datasets to examine the effect of training set size. The aspect angles 

constituting the training and test sets are selected in 3 different ways as stated in 

Table 4.6, Table 4.7, and Table 4.8. For the first training subset, the dataset is split 

with 50%-50% ratio. When we train the deep learning model with this training set 

and use the test set for direct validation only (without using any cross-validation and 

without making any changes either in the structure or in the hyper-parameters) the 

learning curves shown in Figure 4.18 are obtained. It is seen in the loss curve that 

the network is trained without overfitting similar to previous curves in Figure 4.15. 

However, the same performance could not be achieved. The accuracy is obtained as 

84.3% with the training set stated in Table 4.6, and the confusion matrix seen in 

Figure 4.19 is acquired. When the training of the network is repeated two more times, 

82.5% mean accuracy is achieved. Besides, with this classifier 82.7% average 

precision and 82.4% average recall are received. This performance degradation is 

expected because the network attempts to learn signal characteristics using a smaller 

amount of information. Therefore, a gap between the training and validation 

accuracy occurs and, we reach a weaker classifier compared to the one stated in 

section 4.8. 

  

Figure 4.18. The learning curves of the optimized network when the dataset is 

composed of the aspect angles in Table 4.6 with 10 different aspects. 
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Figure 4.19. Confusion matrix of CNN-based UAV classifier when the training 

dataset is composed of the aspect angles in Table 4.6 with 10 different aspects. 

 

In the second training set, we increase the number of aspect angles to 12 by including 

the scattered signals from 30° azimuth angle. As a result of 3 repetition of training 

the network from scratch, we achieve accuracy values of 81.9%, 86% and 86.6% 

whose average is 84.8%. So, 2.3% rise in the average accuracy of the classifier is 

observed by increasing the number of aspect angles to 12. In Figure 4.20, the learning 

curves are shown for the network with 86% accuracy. 86.1% precision and 85.9% 

recall is received with this network and the confusion matrix is illustrated in Figure 

4.21. We could say that an improvement in the performance of the classifier is 

occurred with the training set stated in Table 4.7. Furthermore, the performance 

metrics approaches the values reported in section 4.8. 
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Figure 4.20. The learning curves of the optimized network when the dataset is 

composed of the aspect angles in Table 4.7 with 12 different aspects. 

 

 

Figure 4.21. Confusion matrix of CNN-based UAV classifier when the training 

dataset is composed of the aspect angles in Table 4.7 with 12 different aspects. 

 

After examining the performance of the network trained with the dataset containing 

12 aspect angles, we add the scattered signals from 70° azimuth angles to the training 

set also as given in Table 4.8. By increasing the number of aspect angles to 14, 

87.3%, 88.9% and 93.7% accuracy values are achieved as a consequence of 3 repeats 
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of training. For these 3 trials, 89.9% average accuracy is achieved which is 5.1% 

more than the case for 12 aspect angles. It is observed that the performance of 

classifier reported in section 4.8 is exceeded with 93.7% accuracy in one of the trials. 

For this network, the learning curves seen in Figure 4.22 are obtained, and the 

resulting confusion matrix is shown in Figure 4.23. The precision and recall metrics 

of the network is received as 94% and 93.4%, respectively. In conclusion, we 

observe that the performance of the CNN-based quadcopter classifier improves with 

the increasing number of aspect angles in the training set. It is an expected result 

because the network could learn better when more information in additional aspect 

angles is provided. 

 

  

Figure 4.22. The learning curves of the optimized network when the dataset is 

composed of the aspect angles in Table 4.8 with 14 different aspects. 
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Figure 4.23. Confusion matrix of CNN-based UAV classifier when the training 

dataset is composed of the aspect angles in Table 4.8 with 14 different aspects. 
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CHAPTER 5  

5 CONCLUSIONS AND FUTURE WORK 

In this thesis, the convolutional neural network (CNN) type deep learning approach 

is applied to the electromagnetic target classification problem for two different target 

set libraries; for a library of four lossless dielectric spheres of the same size but with 

slightly different dielectric constants, and a library of four quadcopter type drones of 

similar sizes. The datasets used for training, validation and testing in these classifier 

design problems are composed of one-dimensional, broadband, time-domain 

scattered signals. Aspect and polarization dependence of these scattered signals 

makes the target recognition problem complicated calling for the use of ultra-wide 

band data, because using wider bandwidth means better characterization of the 

targets as explained by the SEM theory. While there exist various physics-based 

methods for electromagnetic target recognition, most of them rely on the direct or 

indirect use of targets’ complex natural resonance frequencies. One of the recent and 

well-established methods falling into this group is the WD-PCA method that utilizes 

target features extracted by the help of Wigner distribution and principal component 

analysis [11]. The WD-PCA method is used as the comparison case to verify the 

feasibility of the CNN-based classifier design when it is applied to a target set of 

lossless dielectric spheres using an ultra-wide band simulation data.  

As shown in Chapter 3, when both WD-PCA based classifier and the CNN-based 

classifier are trained using exactly the same 5-aspect sphere database (composed of 

the bi-static aspect angles of 5°, 45°, 90°, 135° and 179°), the WD-PCA classifier 

reached 100% accuracy rate at 20 dB SNR level (and also at noise-free case) but  the 

CNN-based classifier could only reach an average accuracy rate of  93.2 %.  While 

the classifier design by the WD-PCA method is perfectly repeatable, the classifier 

design by the CNN method shows fluctuating performances, the accuracy rate ranges 

from 90.4% to 97.4% in 5 repetitions of the classifier design. The CNN-based 
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classifier design method reaches the performance level of WD-PCA based classifier 

design method only when additional information on aspect angles are provided in 

the training phase, including data at 7 aspects (5°, 30°, 60°, 90°, 120°, 150°, and 

179°). 

Regarding the noise performances of the classifiers, the accuracy rate of the CNN-

based classifier (designed in Section 3.7) remains over 90% while the WD-PCA 

classifier’s accuracy drops to 75% at 5 dB SNR level. Although the CNN classifier’s 

noise performance looks much better than that of the WD-PCA classifier, this 

comparison is biased due to the fact that a large amount of noisy database signals at 

15, 17 and 20 dB SNR values are used for CNN training due to need for data 

augmentation. The WD-PCA classifier on the other hand, uses a very small amount 

of noise-free training data. More research is needed to make unbiased comparisons 

in this respect.  

As the novel part of this thesis, the CNN-based target classifier design approach is 

applied to a set of four similar commercial quadcopters using an experimentally 

constructed scattered database over an extremely limited bandwidth. Various 

classifiers are designed for different network structures and hyper-parameter values 

using training databases at varying combinations of aspect angles. Successful 

quadcopter classifier designs are realized attaining the correct decision rates up to 

93.7% in this challenging problem demonstrating the feasibility and usefulness of 

the CNN-based electromagnetic target classification technique. Provided that a 

sufficiently large database is available, even when the bandwidth of the database is 

extremely restricted as in the case of quadcopter database, the classifier still succeeds 

in attaining accuracy levels above 90% with careful tuning of the hyper-parameters 

of the CNN-training process. 

Most of the previous research papers reporting CNN-based classifiers using one-

dimensional time-domain signals in ATR design have used very low frequency ECG 

signals [20] which do not suffer from physically dictated complications of 

aspect/polarization dependencies. Only a few studies use electromagnetic scattered 
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data like we do but they mostly make use of ultra-wideband simulation data as well 

as ultra-wideband measurement data [21-22]. Another distinct aspect of the CNN-

based classifier design approach presented in this thesis is that our design is 

completed in a single stage rather than needing multiple stages as reported in [21-

22].  

The major drawback of the CNN-based classification method is the need for a huge 

training dataset. The CNN based design also needs data with more variation in aspect 

angle as compared to the WD-PCA classifier approach. While the WD-PCA method 

is consistently repeatable to design classifiers with very high correct decision rates 

using a very small amount of noise-free scattered dataset (at five aspects for each 

one of four spherical targets, i.e. composed of only 20 scattered signals), the CNN 

based classifier design can reach this level of consistency and accuracy after using 

data at 7 aspects for each spherical target with a high level of data augmentation 

involving three different SNR levels with 30 repetitions at each target/aspect/SNR 

level combination, with a total of 2520 scattered signals.  

Although the need for a large database size sounds to be a disadvantage of the CNN-

based classifier design approach, each method has its own advantages and 

disadvantages depending upon the characteristics of the available scattered database. 

On one hand, the physics based WD-PCA approach is superior if the size and aspect 

variation of the training dataset are extremely restricted. On the other hand, the CNN 

based classifier design approach is superior if a sufficiently large database with 

enough aspect variation is available. The need for physics-based feature extraction 

in the WD-PCA approach is eliminated in the CNN based classifier design method. 

This highly appreciated asset of the CNN approach is made possible by the 

convolutional layers of the CNN structure, which learn the target features hidden in 

the one-dimensional electromagnetic scattered database. 

Design of a WD-PCA based classifier for the quadcopter target set using the same 

limited bandwidth data is planned as a future work to better evaluate the capacity of 
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the CNN-based electromagnetic classifier design approach as compared to the WD-

PCA classifier design technique. 
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APPENDICES 

A. Singularity Expansion Method (SEM) and Representation of the System 

Response for an Electromagnetic Target 

An isolated object with a finite size can be represented as a linear time-invariant 

(LTI) system with an aspect and polarization dependent system function in complex 

frequency domain (i.e. the Laplace Transform of the object’s impulse function) as 

[1-4] 

 𝐻(𝑠, 𝜃𝑑, 𝜙𝑑) = 𝐸(𝑠, 𝜃𝑑, 𝜙𝑑) + ∑
𝑅𝑛(𝑠, 𝜃𝑑, 𝜙𝑑)

(𝑠 − 𝑠𝑛)(𝑠 − 𝑠𝑛
∗)

∞

𝑛=1

 (A.1) 

 

where 𝑠 = 𝛼 + 𝑗𝜔 is the complex frequency with 𝜔 = 2 𝜋𝑓; 𝜃𝑑 and 𝜙𝑑 are the 

elevation and azimuth angles in spherical coordinates; 𝐻𝑓𝑜𝑟𝑐𝑒𝑑(𝑠, 𝜃𝑑, 𝜙𝑑) is the 

forced component of the system function formed basically by the specular returns 

from the object, hence it is highly aspect/polarization dependent; (𝑠𝑛, 𝑠𝑛
∗)  are the 

complex-conjugate system pole pairs (i.e. the complex natural resonance (CNR) 

frequencies which are independent of aspect/polarization variations) having the 

aspect/polarization dependent residues 𝑅𝑛(𝑠, 𝜃𝑑, 𝜙𝑑) 𝑓𝑜𝑟 𝑛 = 1,2, 3, … .  

The inverse Laplace transform of  𝐻(𝑠, 𝜃𝑑, 𝜙𝑑) can be expressed as 

 

 ℎ(𝑡, 𝜃𝑑, 𝜙𝑑) = ℎ𝑓𝑜𝑟𝑐𝑒𝑑(𝑡, 𝜃𝑑, 𝜙𝑑) + ∑ 𝑏𝑛(𝜃𝑑, 𝜙𝑑)𝑒𝛼𝑛𝑡cos (𝜔𝑡 + 𝛿𝑛)

∞

𝑛=1

 (A.2) 

 

where ℎ𝑓𝑜𝑟𝑐𝑒𝑑(𝑡, 𝜃𝑑, 𝜙𝑑)is the forced response component that exists only during the 

direct interaction of the excitation signal with the object, hence it is time limited and 

effective only at early times. The summation terms, on the other hand represents the 
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superposition of damped sinusoidal signal components created by complex 

conjugate pole pairs. These sinusoidal terms are excited as the excitation signal 

passes through the object, they partially overlap with the forced response but exist 

until very late times while exponentially decaying in time. Oscillation frequencies 

and decaying rates of damped sinusoids are determined by the target poles (i.e. CNR 

frequencies) and their magnitudes depend on the values of residues 𝑅𝑛’s defined in 

Equation (A.1).  When the attenuation constant 𝛼 of a pole pair is small, then the 

associated sinusoidal signal is called “dominant” as its oscillations persist for a 

longer time. As the strength of such dominant modes are determined by aspect 

dependent residues, a dominant mode becomes effective at varying orders at 

different aspect angles. Therefore, a target can be characterized more completely by 

using its scattered signals at a collection of many different aspects and/or 

polarizations.  

The transient response of a target could be divided into two parts as early-time 

response and late-time response as illustrated in Figure A.1. Mostly, the direct 

reflections from the target are observed along with just starting damping sinusoids 

in the early-time response. The early-time portion of the scattered signal is not 

distinctive for physics-based feature extraction purposes because the effects of CNR 

frequencies are not dominant yet. On the other hand, the use of target specific late-

time response is preferable in target classifiers such as those designed by the WD-

PCA method after the time-limited forced response vanishes. 

However, the CNN-based classifier design presented in this thesis uses both early-

time and late-time portions of the scattered target response signals without isolating 

any part. 
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Figure A.1. Early-time and late-time responses of a scattered signal 
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B. Scattered Far-Field Time-Domain Signals of the Dielectric Sphere Database 

Details of the data simulation procedure for the database of dielectric spheres are 

outlined in section 3.1.2.1. The resulting time-domain far field scattered signals 

(computed from Mie series solutions) are presented in this Appendix B for four 

different dielectric sphere targets are given below in Figures B.1, B.2, B.3 and B.4. 

 

 

Figure B.1. The simulated time domain scattered signals of the dielectric sphere 

with 𝜖𝑟 = 3 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°. 
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Figure B.2. The simulated time domain scattered signals of the dielectric sphere 

with 𝜖𝑟 = 4 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°. 



 

 

90 

 

Figure B.3. The simulated time domain scattered signals of the dielectric sphere 

with 𝜖𝑟 = 5 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°. 
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Figure B.4. The simulated time domain scattered signals of the dielectric sphere 

with 𝜖𝑟 = 6 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°. 
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C. Performance Metrics of the Neural Network Based Classifiers 

In this Appendix section, the performance metrics to evaluate the CNN-based 

classifiers are stated. We select three performance measures in this thesis as 

accuracy, precision, and recall.  These metrics could be defined by the help of the 

confusion matrix of binary classification as seen in Table C.1. The accuracy of a 

classifier is the ratio of correct decisions (𝑡𝑝 + 𝑡𝑛) to all predictions as formulated 

in Equation (C.1). In [39], the accuracy is defined as the overall effectiveness of a 

classifier. Whereas precision is the metric corresponding to the correct decisions 

among the positive predictions as seen in Equation (C.2). How many of the actually 

positive cases are predicted correctly is also defined as recall by Equation (C.3). 

 

Table C.1 Confusion Matrix for Binary Classification 

 

Prediction 

Positive Negative 

Actual Data 

Class 

Positive 𝑡𝑝 𝑓𝑛 

Negative 𝑓𝑝 𝑡𝑛 

 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝 + 𝑡𝑛
 (C.1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (C.2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (C.3) 
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D. Confusion Matrices for Noisy Dielectric Sphere Signals 

In section 3.7.3, the noise performance of the CNN-based classifier for dielectric 

spheres is discussed. The network is trained with a smaller training set as stated in 

section 3.7.1. The resulting confusion matrices for different sets of testing signals at 

the SNR levels of 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB are shown in figures D.1 thru 

D.5. 

 

 

Figure D.1. Confusion matrix of CNN-based dielectric sphere classifier when SNR 

level of the signal is 0 dB 
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Figure D.2. Confusion matrix of CNN-based dielectric sphere classifier when SNR 

level of the signal is 5 dB 

 

 

Figure D.3. Confusion matrix of CNN-based dielectric sphere classifier when SNR 

level of the signal is 10 dB 
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Figure D.4. Confusion matrix of CNN-based dielectric sphere classifier when SNR 

level of the signal is 15 dB 

 

 

Figure D.5. Confusion matrix of CNN-based dielectric sphere classifier when SNR 

level of the signal is 20 dB 



 

 

96 

E. Details of Experimental Setup used for the scattered field measurements of 

Quadcopter Type UAVs 

The UWB Radar Module: “TimeDomain PulsON 440” Radar Kit 

TimeDomain PulsON 440 radar kit is used to collect wideband scattered signals from 

the quadcopters. The device is portable and easily operated with both USB and 

Ethernet interfaces as shown in Figure E.1. The radar kit operates between 3.1 and 

4.8 GHz band as given in Table E.1. The transmitted pulse has a duration of 1 ns, 

and the characteristics of the pulse could be seen in Figure E.2. 

 

Figure E.1. TimeDomain PulsON 440 Radar Kit [31] 

 

 

Figure E.2. PulsON 440 UWB pulse plotted in both time and frequency domains [32] 
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Table E.1 Technical Specifications of PulsON 440 [31] 

Property Value 

Operating Band 3.1 to 4.8 GHz 

Center Frequency 4.3 GHz 

Average Transmit Power -13 dBm 

Nominal Pulse Repetition Rate  10 MHz 

Receive Noise Figure 4.8 dB 

 

Measurement Interfaces 

The communication of the TimeDomain PulsON 440 UWB radar module with a 

computer could be accomplished over USB or Ethernet interfaces. For both 

interfaces, MATLAB and C functions are provided by TimeDomain. In addition, the 

software called Monostatic Radar Module Reconfiguration and Evaluation Tool 

(MRM RET) is supplied to configure and acquire data from the module from a 

graphical user interface as illustrated in Figure E.3. We use MRM RET software to 

gather measurement for the UAV dataset. However, for initial examinations of the 

radar module, a MATLAB GUI is prepared as a part of this thesis work as shown in 

Figure E.4. The different configurations and the operational features of the module 

are evaluated with the prepared GUI.  
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Figure E.3. TimeDomain MRM RET Software 
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Figure E.4. MATLAB GUI prepared in this thesis work to take measurements by the 

PulsON440 Radar Kit. 

 

D221 Anechoic Chamber 

To measure the wideband scattered response of the quadcopters by avoiding 

unknown scattered mechanisms as much as possible, the anechoic chamber in the 

Laboratory D-221 of the Electrical-Electronics Department (METU) is used. This 

electromagnetically isolated chamber is normally used to measure antenna patterns. 

The PulsON 440 radar kit is placed at the position normally reserved for the 

transmitting antenna in the anechoic chamber for this study as illustrated in Figure 

E.5. The quadcopter type UAV target under test is placed on the opposite side of the 

anechoic chamber where normally antenna under test (AUT) is positioned. The 

placement of two quadcopters AR Drone 2.0 and DJI Phantom is shown in Figure 

D.6 and Figure E.7. 
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Figure E.5. Placement of PulsON 440 radar kit inside the anechoic chamber 

 

Figure E.6. Placement of AR Drone 2.0 drone inside the anechoic chamber 
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Figure E.7. Placement of DJI Phantom drone inside the anechoic chamber 
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F. Python Code for Dielectric Sphere Classification 

In this Appendix section, the Python code produced for the implementation of the 

CNN architecture described in section 3.4 is given. Tensorflow framework is utilized 

to define the neural network layers. Furthermore, all training and testing procedures 

are performed by using the functions in Tensorflow libraries. 

 

from tensorflow import keras 

from tensorflow.keras import layers 

from tensorflow.keras import optimizers 

 

model = keras.Sequential( [  

  layers.Conv1D(filters=16, kernel_size=7, activation="relu", 

input_shape=(1024,1), kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(0.5), 

  layers.MaxPooling1D(pool_size=2), 

  #-------------------------------------------------------------------------------------- 

  layers.Conv1D(filters=32, kernel_size=7, activation="relu", 

kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(0.5), 

  layers.MaxPooling1D(pool_size=2), 

 #-------------------------------------------------------------------------------------- 

  layers.Conv1D(filters=64, kernel_size=7, activation="relu",  

kernel_regularizer=('l2')), 

 layers.BatchNormalization(), 

 layers.Dropout(0.5), 

 layers.MaxPooling1D(pool_size=2), 

#-------------------------------------------------------------------------------------- 
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  layers.Flatten(), 

  layers.Dense(64, activation="relu", kernel_regularizer=('l2')), 

  layers.Dropout(0.5), 

  layers.Dense(num_classes, activation="softmax") 

  ] ) 

  

  batch_size = 32 

  epochs = 20 

 

  opt = optimizers.Adam(learning_rate=0.001); 

  

 model.compile(loss="categorical_crossentropy", optimizer=opt, 

metrics=["Accuracy" ,"Precision","Recall"]) 

 

  model.fit(train_data, train_label, batch_size=batch_size, epochs=epochs,            

validation_data=(test_data, test_label), verbose=1, shuffle=True,               

callbacks=[tensorboard]) 

 

  model.evaluate(test_data, test_label, verbose=1) 
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G. Python Code for Quadcopter Type UAV Classification 

In this Appendix section, the Python code defines classifier for UAV targets is given. 

The CNN architecture described in section 4.6 is implementing with Tensorflow 

framework. All training and testing procedures are performed by using the functions 

in Tensorflow libraries. 

 

from tensorflow import keras 

from tensorflow.keras import layers 

from tensorflow.keras import optimizers 

 

dropout_rate = 0.5 

model = keras.Sequential( [ 

  # Conv-1 

  layers.Conv1D(filters=32, kernel_size=5, activation="relu", 

input_shape=(1024,1), kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(dropout_rate), 

         

  layers.Conv1D(filters=32, kernel_size=5, activation="relu", 

kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(dropout_rate), 

         

  layers.MaxPooling1D(pool_size=2), 

  #-------------------------------------------------------------------------------------- 

  # Conv-2 

  layers.Conv1D(filters=64, kernel_size=5, activation="relu", 

kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 
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  layers.Dropout(dropout_rate), 

          

  layers.Conv1D(filters=64, kernel_size=5, 

activation="relu",kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(dropout_rate), 

         

  layers.Conv1D(filters=64, kernel_size=5, 

activation="relu",kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(dropout_rate), 

         

  layers.MaxPooling1D(pool_size=2), 

  #-------------------------------------------------------------------------------------- 

  # Conv-3 

  layers.Conv1D(filters=64, kernel_size=5, 

activation="relu",kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(dropout_rate), 

 

  layers.Conv1D(filters=64, kernel_size=5, 

activation="relu",kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(dropout_rate), 

 

  layers.Conv1D(filters=64, kernel_size=5, 

activation="relu",kernel_regularizer=('l2')), 

  layers.BatchNormalization(), 

  layers.Dropout(dropout_rate), 
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  layers.MaxPooling1D(pool_size=2),         

  #-------------------------------------------------------------------------------------- 

  # FCL 

  layers.Flatten(), 

  layers.Dense(512, activation="relu",kernel_regularizer=('l2')), 

  layers.Dropout(0.5), 

  layers.Dense(num_classes, activation="softmax") 

  ] ) 

 

  batch_size = 128 

  epochs = 20 

   

  boundaries = [(32e3/batch)*10] 

  values = [0.001, 0.0005] 

  lr_schedule = optimizers.schedules.PiecewiseConstantDecay(boundaries, values) 

  opt = optimizers.Adam(learning_rate=lr_schedule); 

  model.compile(loss="categorical_crossentropy", optimizer=opt, 

metrics=["Accuracy" ,"Precision","Recall"]) 

 

  model.fit(train_data, train_label,  

              batch_size=batch_size, epochs=epochs,  

              validation_data=(test_data, test_label), 

              verbose=1, shuffle=True, callbacks=[tensorboard]) 

     

  model.evaluate(test_data, test_label, verbose=1) 
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