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ABSTRACT

AUTOMATIC TARGET RECOGNITION OF QUADCOPTER TYPE
DRONES FROM MODERATELY-WIDEBAND ELECTROMAGNETIC
DATA USING CONVOLUTIONAL NEURAL NETWORKS

Giineri, Rutkay
Master of Science, Electrical and Electronic Engineering
Supervisor: Prof. Dr. Goniil Turhan Sayan

December 2022, 106 pages

In this thesis, the classifier design approach based on “Learning by a Convolutional
Neural Network (CNN)” will be applied to two different target library/data sets; an
ultra-wideband simulation data (from 37 MHz to 19.1 GHz) obtained for a target
library of four dielectric spheres, and a moderately-wide band measurement data
(from 3.1 to 4.8 GHz) obtained for a target library of four quadcopter type unmanned
aerial vehicles (UAVSs). While the bandwidth of simulation data for spherical targets
is about nine octaves, the bandwidth of measurement data collected for quadcopters

is even less than one octave.

As the first task, a CNN-based electromagnetic target classifier will be designed for
the spherical targets using that spectrally rich simulated database. Then, its
performance will be compared to the performance of another classifier that has been
already reported in automatic target recognition (ATR) literature as designed by the
“Wigner Distribution-Principle Component (WD-PCA) based Feature Extraction”

technique using the same target library and the same database.



After verifying the effectiveness of the CNN-based classifier design aproach through
this comparative investigation, a second CNN-based classifier will be designed for
the quadcopter type UAVs using their challenging scattered database of very modest
spectral bandwidth. Design details and performances of each classifier will be
presented through the thesis discussing the advantages and disadvantages of the
CNN-based classifier design approach.

Keywords: Automatic Target Recognition, Electromagnetic Target Classification,
Convolutional Neural Network (CNN), CNN Learning for One-Dimensional Data,

Quadcopter type UAV Classification.
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0z

DORT PERVANELI ROBOT HELIKOPTER TiPi INSANSIZ HAVA
ARACLARININ EVRIiSIMLI SiNiR AGLARI KULLANILARAK ORTA
DERECEDE BANT GENIiSLiGIiNE SAHiP ELEKTROMANYETIK
SINYALLERDEN OTOMATIK YONTEMLERLE TANINMASI

Giineri, Rutkay
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi
Tez Yoneticisi: Prof. Dr. Goniil Turhan Sayan

Aralik 2022, 106 sayfa

Bu tezde, “Evrigimli Sinir Agi (CNN) ile Ogrenme” yontemine dayali siniflandiric
tasarim yaklasimy, iki farkli hedef kiitiiphanesi/veri seti icin uygulanacaktir. 1k veri
seti, dort dielektrik kiireden olusan bir hedef kiitiiphanesi i¢in elde edilen ultra-genis
bantli (37 MHz'den 19.1 GHz'e kadar) simiilasyon verilerini i¢erirken, ikinci veri seti
dort pervaneli robot helikopter tipi insansiz hava araglarindan (IHA’lar) olusan bir
hedef kiitiiphanesi i¢in orta derecede bant genisligine sahip (3.1 ila 4.8 GHz arasinda)
Olgiilmiis verilerden olugmaktadir. Kiiresel hedefler igin hesaplanan simiilasyon
verilerinin bant genisligi yaklasik dokuz oktav iken, quadkopterler i¢in toplanan

Ol¢iim verilerinin bant genigligi bir oktavdan azdir.

Ilk is olarak, dielektrik kiirelere ait ultra-genis bantli simiilasyon veritabani
kullanilarak  kiiresel  hedeflerin  tammmmasma  yonelik CNN-tabanli  bir
elektromanyetik hedef siniflandirict tasarlanacaktir. Daha sonra, bu hedef
simiflandiricinin  performansi, ayni hedef seti ve ayni veritabami kullanilarak
tasarlanmig, otomatik hedef tanima (ATR) literatiiriinde yer alan ve  “Wigner

Dagilimi-Temel Bilesenler Analizi (WD-PCA) tabanl Oznitelik Cikarma” teknigi
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olarak adlandirlan yonteme dayanan diger bir hedef siniflandiricinin performansi ile

karsilastirilacaktir.

Sozii edilen kargilastirmali inceleme sonucunda etkinliginin dogrulanmasini takiben,
CNN-tabanli hedef tanima yontemi dort pervaneli robot helikopter tipi hedefler igin
de hedef siniflandirici tasarimi igin kullanilacaktir. Bu ikinci tasarimda diistik bant
genisligine sahip dezavantajli bir veri tabaninin Kullanilacak olmasi problemin
zorluk derecesini arttirmaktadir. Tasarlanan iki siniflandiricinin da tasarim detaylari
ve performans sonuglar tez icerisinde verilecek, CNN-tabanli siniflandirici tasarim

yOnteminin avantaj ve dezavantajlari tartigilacaktir.

Anahtar Kelimeler: Otomatik Hedef Tanima, Elektromanyetik Hedef Siniflandirma,
Evrisimli Sinir Ag1 (CNN), Tek-Boyutlu Veriler icin CNN Ogrenimi, Dort Pervaneli
Robot Helikopter Tipi IHA Siniflandirmast.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Automatic Target Recognition (ATR) is a wide research area where both civilian and
military applications exist. A broad variety of techniques could be used to distinguish
objects from each other based on the types of data collected by sensors which may
operate at different frequency regimes and in different data formats in a given ATR
scenario. For example, electro-optical sensors such as FLIR (Forward Looking
Infrared) cameras or radars operating at microwave frequencies can be used in
detection and recognition of targets with quite different techniques used for signal
processing and interpretation. Itis a critical task to quickly and correctly recognize
a detected target in certain applications such as the classification of a plane as a
fighter aircraft or a passenger airplane in battlefield or around an airport. Such
applications call for the use of real-time ATR techniques. In order to recognize or
classify a target successfully, manifestation of the target properties (such as its size,
shape, material composition, speed, temperature, etc.) in the collected data needs to

be well understood.

Design of electromagnetic target classifiers must utilize multi-aspect and/or multi-
polarization data because of the strong dependence of scattered signals on aspect
angle and polarization. As described by the Singularity Expansion Method (SEM),
complex natural resonance (CNR) frequencies are aspect/polarization independent
descriptors of an object, hence they have the power to characterize a target uniquely
as the bandwidth of electromagnetic data approaches to infinity [1-4]. Therefore, use

of ultra-wideband scattered signals is strongly preferred in electromagnetic target



classifier design to provide excellent time resolution and highly improved accuracy
in the extraction of physics-based target features which are indirectly based on
complex natural resonance (CNR) frequencies [5-8]. The quality of extracted target
features is expected to decline for moderately-wide data bandwidths leading to
decreasing classifier performance [9]. In such a case, if a sufficiently large amount
of scattered data is available, it may be not only meaningful but also necessary to
investigate the usefulness of an alternative target classification technique that is

based on deep learning algorithms.

In this thesis, use of two different classifier design approaches, the “Wigner
Distribution-Principal Component Analysis (WD-PCA) Method” that is a well-
established ATR method based on physics-based feature extraction [10-11] and the
“Learning by Convolutional Neural Network (CNN) Method” [12-13] will be
investigated in a comparative manner. The CNN-based design approach will be
applied to design electromagnetic target classifiers from scratch for two different
target library/data sets; an ultra-wideband analytically computed simulation data,
from 37 MHz to about 19GHz, obtained for a target library of four similar dielectric
spheres, and a moderately-wide band measurement data, from 3.1 to 4.8 GHz,
obtained for a target library of four quadcopter type drones. While the bandwidth of
simulation data for spherical targets is about nine octaves, the bandwidth of
measurement data collected for quadcopters is relatively poor, less than one octave.

As the first task, a CNN-based electromagnetic target classifier will be designed for
the spherical targets using that spectrally rich simulated database. Then, its
performance will be compared to the performance of another classifier that has been
already reported in automatic target recognition (ATR) literature [11] as designed by

the WD-PCA based technique using the same target library and the same database.

After verifying the effectiveness of the CNN-based classifier design aproach through
this comparative investigation, a second CNN-based classifier will be designed for
the quadcopter type UAVs using their challenging scattered database of very modest

spectral bandwidth. Design details and performances of each classifier will be



presented through the thesis discussing the advantages and disadvantages of the

CNN-based classifier design approach.

Use of Artificial Neural Networks (ANNs) in ATR problems have been
demonstrated in literature since late 80’s and 90’s [14-17]. In recent years with the
advancements in artificial intelligence, different deep learning methods are
introduced [18] and applied to a wide variety of fields including radar signal
processing [19] where the use of deep learning based algorithms are ranging from
radar waveform recognition to automatic target recognition. Applications of
convolutional neural networks (CNNs) to one-dimensional data [20-22] and
especially to two-dimensional (i.e. image type) data [12], [23-25] are becoming more
common for the purpose of automatic target recognition. When exposed to very large
training datasets, CNNs can learn target features hidden in the input signals by the
help of the convolutional layers. Elimination of the need for specially designed
feature extraction steps in target classifier design looks to be the major advantage of

the CNN learning approach.

1.2 Related Work and Literature Review

The use of ultra-wideband electromagnetic signals to identify objects was initiated
by the Kennaugh’s work in 1958 [1]. For the first time, Kennaugh et al. applied the
impulse response concept to electromagnetic scattering problems, and it was
observed that damped sinusoidal oscillations occur in the transient responses of
targets. This behavior was associated with complex poles (i.e. complex natural
resonance (CNR) frequencies) of the targets’ system functions and formulated by
Baum as Singularity Expansion Method (SEM) in mid-70’s [3]. The CNR frequency
values of a target are affected by the physical and electrical properties of a given
target such as its size, geometry, material composition and electrical parameters
(permittivity, permeability and conductivity). The CNR frequencies are perfectly
independent of aspect angle and polarization. However, the residues associated with
these system poles are strong functions of aspect/polarization. Consequently, the



scattered response of a target is highly dependent on these measurement conditions.
For instance, for a given target, time response at two different aspect angles may
look very different from each other. Yet, target responses belonging to two different
targets may look very similar at a given aspect angle. Due to these facts, feature
extraction from raw electromagnetic scattered data is a crucial step in various target
recognition methods. Further details of the SEM formalism and the linear, time-
invariant representation of the aspect dependent system function of a target are given

in Appendix A.

Early ATR research based on the SEM theory aimed to extract target poles (i.e. the
CNR frequencies) directly from the electromagnetic scattered signals [2]. However,
the success of this approach was shown to degrade dramatically in the presence of
noise. Due to even small errors in estimated pole values, the accuracy of overall
classification performance deteriorates quickly as the signal-to-noise ratio (SNR) of

data gets lower.

As opposed to using the CNR frequencies directly for ATR purposes, Kennaugh
proposed another target identification method based on the indirect utilization of
SEM methodology in 1981 [4]. Designing a special time limited excitation signal,
called Kill pulse (K-pulse), was the main idea in this method. K-pulse should be
designed in a way to annihilate target poles. So, the late-time response of the target
becomes time-limited only when the target is excited by its own K-pulse [5-6].

Later, quadratic time-frequency representation (TFR) techniques [26] such as
Wigner-Ville distribution and Page distribution, have been used to obtain energy
based target features which are indirectly related to the information of complex
natural frequencies [10-11], [16]. In this case, the late-time portion of the scattered
electromagnetic signals are used (after the forced response is completely over) for
target feature extraction in a way to utilize the effects of target poles only. In [16],
the late-time features are extracted by Wigner distribution (WD) and a self-
organizing map type neural network (SOM) is used for classification. Another WD-

based method is proposed by Turhan-Sayan in [10]. The classifier decides on the



correct target choosing the maximum of all correlation coefficients computed
between the late-time feature vector of the test signal and reference feature vectors,
which are obtained at a small number of training aspect angles for each target in the
classifier library. This method is further improved in [11] by using the principal
component analysis (PCA) to merge the reference feature vectors computed for a
given target at all training aspect angles to obtain a single target-specific feature
vector [40]. In addition to WD-based classifiers, Se¢gmen and Turhan-Sayan
proposed in [8] that MUSIC algorithm could be used to extract CNR-based features
from the late-time response. Similar to [11], the feature matrices obtained by MUSIC
algorithm in only a few reference angles are combined, and a single feature called
Fused MUSIC Spectrum Matrix (FMSM) is obtained for each target. The MUSIC

algorithm-based method is also applied for multiple target recognition in [27].

With the developments in artificial intelligence, the use of different types of neural
networks in electromagnetic target recognition applications has increased. The
application of conventional neural networks (supervised or unsupervised) still
needed the use of feature extraction for NN training for better ATR results [16-17].
However, the need for hand-crafted feature extraction prior to neural network
training is completely eliminated by the convolutional neural networks (CNNs). For
example, Selver etal in [21] used a 1D convolutional neural network to classify small
scale model aircrafts. The work was based on the 1D CNN foundation stated by
Kiranyaz et al in [20] for ECG signal classification. In [21], the classifier designed
for small scale model aircraft was composed of three stages. In the first stage, the
neural networks are trained with analytically generated and simulated scattering
signals of various spheres and dielectric rods. By using transfer learning, the neural
networks trained in the first stage are fine-tuned with the small number of measured
signals of model aircraft in the second stage. At last, the results of each neural

network are ensembled to obtain the final output in the third stage.

The CNN based three stage classifier mentioned above is improved by Toprak et al
in [22]. In this work, two different methods are proposed. The first method utilizes

magnetic spheres when training the first stage CNN in addition to Selver et al [21].



So, new diverse features are obtained with the addition of the magnetic properties.
Secondly, a new architecture is proposed which includes long short-term memory
(LSTM) network along with CNN. By the CNN-LSTM architecture, the small
number of scattered signals of small scale model aircraft are used directly to train the

proposed network.

1.3 Novel Contributions of the Thesis

The novel contribution of this thesis is the design of a CNN-based electromagnetic
target classifier for a library of four similar quadcopter type commercial drones using
totally experimental, one dimensional (1-D) aspect/polarization dependent scattered
field data with a highly restricted bandwidth of 3.1 to 4.8 GHz. Previous research
papers reporting CNN-based classifiers for 1-D time-domain signals in ATR design
either use very low frequency ECG signals [20] which do not suffer from the
physically dictated complications of aspect/polarization dependencies, or they use
electromagnetic scattered data like we use but utilize ultra-wideband simulation data
as well as ultra-wideband measurement data not for full-size targets but for small-

scale targets over a very large bandwidth of 1-12 GHz in their design work [21-22].

1.4 The Outline of the Thesis

In Chapter 1, problem definition and motivation of the study are presented together
with literature survey. The novel contributions of the thesis are also mentioned

briefly in this Introduction chapter.
Basic theoretical background of artificial neural networks is outlined in Chapter 2.

Design of a CNN-based electromagnetic classifier for lossless dielectric spheres
using ultra-wideband simulation data is presented in full detail in Chapter 3. The

performance of this classifier is compared to the performance of another classifier



reported in literature (designed by the WD-PCA based feature extraction method) to

verify the capacity and usefulness of the CNN-based target classifiers.

In Chapter 4, the CNN-based classification approach is used to classify quadcopter
type UAVs. Target parameters, properties of measured database and measurement
setup are presented in this chapter together with full details of the classifier design

process.
Finally, the conclusions and plans for future work are given in Chapter 5.
The thesis has also six Appendices.

Appendix A provides details on the Singularity Expansion Method (SEM) and
summarizes the representation of system response for an electromagnetic target.

Appendix B presents waveform plots for scattered signals in the dielectric sphere

database.
Performance metrics of the CNN-based classifiers are defined in Appendix C.

Appendix D presents the confusion matrices obtained in the testing stage of the

CNN-based classifier with noisy signals belonging to the dielectric sphere database.

Details of experimental setup used for the measurement of scattered fields of the

guadcopter type UAVs are presented in detail in Appendix E.

Finally, the Phyton codes developed for the CNN-based dielectric sphere classifier
and the CNN-based quadcopter type UAV classifier are provided in Appendix F and
Appendix G, respectively.






CHAPTER 2

BACKGROUND FOR NEURAL NETWORKS

In this chapter, the basic background of artificial neural networks (ANNSs) and
convolution neural networks (CNNs) are explained briefly for the sake of

completeness.

2.1 Artificial Neural Networks

Neural networks are one of the most popular fields in machine learning. The building
blocks of an artificial neural network are neurons which are inspired by biological
neural systems [35]. A neuron is simply a computational unit that produces an output
according to its input values as shown in Figure 2.1. At first, input values are
multiplied by the corresponding weights of the neuron. The weighted inputs are
summed, and a bias is added to the summation. Then the result is pass through an
activation function to produce the output of the neuron. There are commonly used
activation functions in neural networks such as sigmoid, tanh, and rectified linear

unit (ReLU), which are shown in Figure 2.2.

(g

Figure 2.1. Mathematical model of a neuron
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Figure 2.2. Commonly used activation functions (a) sigmoid (b) tanh (c) rectified
linear unit (ReLU) [35]

Neurons are organized in layers to create a neural network. The architecture of a
neural network is composed of an input layer, several hidden layers, and an output
layer in general. As seen in Figure 2.3, a neuron is connected to all neurons in the
previous and the preceding layer; therefore, this type of layer is named fully
connected layer. In addition, there is no connection between neurons in the same
layer. An artificial neural network is named according to the number of layers. Input
layer, however, is not counted for the total number of layers in a neural network. For
example, the network illustrated in Figure 2.3 is a 2-layer neural network composed
of a single hidden layer and an output layer. Meanwhile, the number of hidden layers

and neurons in each layer is a design consideration.
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input layer

hidden layer

Figure 2.3. A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and

one output layer with 2 neurons), and three inputs

The training process of a neural network could be explained basically as optimizing
the weights of the network to minimize the loss function. As seen in Figure 2.4, two
processes contribute to the loss function which are data loss and regularization loss.
The data loss arises from the difference between the output of the network and the
true labels. On the contrary, only the weights determine the regularization loss.
Various optimization algorithms are preferred to minimize the loss function of a
neural network. For example, Gradient Descent and Adam are the popular choices
which are iterative optimization techniques. While training a neural network, the
weights are randomly initialized at the beginning, and the training dataset is passed
through the network. The output is then compared with the true labels to calculate
the data loss. In every iteration, the parameters are updated regarding to the loss

value.
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Figure 2.4. Summary of forward propagation to compute loss function [35]

2.2  Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a special class of artificial neural
networks (ANNSs) used commonly in the resent years. Although, these networks are
broadly preferred in image and video processing problems, numerous applications
of CNNs are reported in the field of radar signal processing [35]. The main difference
of CNNs from the regular artificial neural networks is the convolutional layers.
Different from a fully connected layer, neurons are connected to a small portion of
the previous layer while the convolution operation is performed. Since the
parameters of the convolutional layers are trainable, a CNN can learn features of the
concerned signal. By this way the feature extraction effort in signal processing

research is eliminated.
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Figure 2.5. A convolutional neural network illustration [36]

A convolutional neural network is composed of several different layers which are
convolutional layer, pooling layer, and fully connected layer (FCL) as shown in
Figure 2.5. Convolutional layer is the layer where convolutional operation between
the output of the previous layer and each neuron in the layer is computed. Similar to
fully connected layers, an activation function is placed at the output of convolutional
layer neurons, where rectified linear unit (ReLU) is selected in general. After the
convolutional layers, down-sampling operation is performed in the pooling layers so
that the spatial size is reduced. At the end, CNNs include fully connected layers at
the output. The classification of the input is handled by the fully connected layers.
The chosen classifier is varying according to number of target classes. For example,
sigmoid function is commonly used for binary classification. Meanwhile, softmax is

a very popular choice in classification of multiple targets.
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CHAPTER 3

ELECTROMAGNETIC TARGET CLASSIFIER DESIGN FOR DIELECTRIC
SPHERES BY CONVOLUTIONAL NEURAL NETWORKS

In this chapter, we will develop the design procedure for a convolutional neural
network (CNN) based target classifier for the target library of four lossless dielectric
spheres using an ultra-wideband analytically simulated database. Then, the
performance of the resulting CNN-based classifier will be compared to the
performance of a WD-PCA based classifier designed for the same spherical target
set using exactly the same database to validate the effectiveness of the CNN-based
classifier. As the design details and the performance results for the WD-PCA
classifier are already reported in literature [11], WD-PCA classifier design for the

spherical targets will not be repeated in this work.

3.1  Properties of the Target Library

The target library is composed of four lossless dielectric spheres with the same size
(with diameter of 10 cm) but slightly different permittivity values as presented in
Table 3.1. These are exactly the same targets used in [11]. Although the geometry
of the spherical targets looks perfectly symmetrical and simple, classification of
dielectric spheres is a challenging problem as a dielectric sphere has a highly dense
target pole pattern due to interior resonating modes [6-7]. Using spherical targets in
classifier design [8,10-11,21-22, 27] comes handy as the ultra-wideband far field
scattered signals can be conveniently computed by using the Mie series formulation
[28].
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Table 3.1 Properties of the dielectric spheres

er r Radius (cm)
Target 1 3 1 10
Target 2 4 1 10
Target 3 5 1 10
Target 4 6 1 10

3.2  Properties of the Database Simulated for the Dielectric Spheres

The far-field scattered responses from each spherical target were already computed
at 13 different bi-static aspects by Turhan-Sayan [10] in frequency domain using the
excitation/observation scenario presented in Figure 3.1. Then, the resulting
frequency domain data were windowed to minimize Gibbs phenomena and
transformed to time domain by using the inverse fast Fourier transformation (IFFT).
Signals in the time-domain database were also normalized to have unit energy prior
to being used in the WD-PCA based feature extraction and classifier design
approach. One of the important aspects in WD-PCA classifier design is to minimize
the volume of data needed for design. Accordingly, the scattered field database was
created at only 13 aspects; only 5 of these aspects were used in classifier design, and
the remaining 8 aspects were used for testing the classifier. In the case of deep
learning approach however, the neural networks such as the CNN require very large
volumes of datasets for training. So, we needed to augment the available time domain
database. This task is done in this thesis work by creating the noisy versions of the
database at various SNR levels just by synthetically adding random Gaussian noise
to original noise-free data as discussed in the subsection 3.2.2. The resulting
augmented dataset is then divided into training, validation and test subsets as

described in section 3.2.3.
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Figure 3.1. Problem geometry used to generate electromagnetic signals scattered

from the spherical dielectric targets

3.2.1 Simulation of Scattered Database for Dielectric Spheres

The scattered electromagnetic signals of dielectric spheres are generated for the
problem geometry given in Figure 3.1. The excitation plane wave is linearly

polarized in x direction and propagates in z direction. As seen in Figure 3.1, the

scattered fields are calculated at the ¢p = g plane for different 6 angles. Due to the

perfect spherical symmetry, the scattered responses had to be computed at bi-static
aspect angles. Otherwise, we would obtain the same monostatic response in each
angle. In [10], thirteen different 8 angles are chosen as 5°, 15°, 30°, 45°, 60°, 75°,
90°, 105°, 120°, 135°, 150°, 165°, and 179° for the WD-PCA based classifier design.
We also use the same aspect angles to form our dataset for the CNN based classifier

design here.

The frequency domain scattered responses are computed over the ultra-wide
bandwidth from 37 MHz to 19.1 GHz at 512 equally spaced frequency points. An
example of frequency response is illustrated in Figure 3.2 for the dielectric sphere
with permittivity 3 at the aspect angle 165°. In order to obtain the time domain

scattering signal, we firstly apply Gaussian windowing to the frequency response so

17



that the effect of Gibbs’ phenomenon is decreased. Afterwards, the Inverse Fast
Fourier Transform (IFFT) is employed with 1024 points. A time domain scattered
signal with a total observation duration of 26.81 ns is obtained at the end of this
process as seen in Figure 3.3. As a result, a total of 52 different scattering signals are

obtained for four different dielectric spheres at 13 bi-static aspect angles.

Scattered E-Field in Frequency Domain
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Figure 3.2. The magnitude of the far-field frequency response of the dielectric sphere

with €,, = 3 where the bistatic angle is 165°.
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Figure 3.3. The far-field time domain scattered signal of dielectric sphere with €, =

3 where the bistatic angle is 165°.
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Figure 3.4. The simulated far-field time domain scattered signals of four different

dielectric spheres with €,, = 3, €. = 4,¢€,, = 5 and €, = 6 where the bistatic angle is
165°.

Time-domain scattered signals of four dielectric spheres at the same aspect angle of
165° are illustrated in Figure 3.4 to examine the small variations in the signals. As
the targets are very similar to each other, their transient responses are also very

similar, which complicates the classification problem.
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Figure 3.5. Simulated far-field time domain scattered signals of the dielectric sphere
with €, = 3 at the bistatic angles 179° (almost back-scattered aspect), 150°, 120°,
90°, 60°, 30°.

In addition to the arbitrarily chosen aspect angle of 165°, the scattered signals at
aspect angles of 179°, 150°, 120°, 90°, 60° and 30° are also presented for the
spherical target with €, = 3 in Figure 3.5. Similar database signals for the other
spherical targets are plotted in Appendix B. The extensive changes in early-time
responses could be observed in these figures as the aspect angles vary. Therefore, it
is a difficult task to discriminate targets only using the early-time response. On the
other hand, late-time response contains the effects complex natural resonance
frequencies, which do not depend on the aspect angle. So, designing a classifier with
minimal sensitivity on aspect variation becomes possible by utilizing the late-time

responses.
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3.2.2 Data Augmentation

Thirteen different bistatic aspect angles are chosen to compose our dataset for
dielectric spheres. Turhan-Sayan [10-11] used only five of them as reference for the
WD-PCA based classifier design and the remaining eight aspect angles are used to
test the performance of the classifier. However, a large dataset is required to develop
a CNN based classifier. Hence, we need to augment the analytically generated
dataset. For image classification purposes, a wide range of methods could be utilized
to augment the original dataset [38]. For example, flipping, cropping, rotating and
noise injection are some common image augmentation techniques. On the other
hand, we could not take advantage of the vast majority of these techniques for 1D
electromagnetic signals. This is because the important features of the scattered
signals could be disrupted. For instance, temporal information of the signal could not

be maintained when flipping is applied.

Han et al. apply three different augmentation methods for FMCW radar signals in
[13], which are frequency shifting, noise addition and time stretching. Moreover,
Selver et al. state in [21], adding Gaussian noise is an effective technique to augment
ultra-wideband scattering signal database. When we examine these methods,
frequency shifting and time stretching are seen not suitable for our problem since the
target specific complex natural resonance frequencies could not be maintained. So,
we decide to add Gaussian noise at three SNR levels of 15 dB, 17 dB and 20 dB to
the generated noise-free signals for augmentation. In Figure 3.6, an example of a
scattered signal with 17 dB SNR is illustrated for the dielectric sphere with €,, = 3 at
the aspect angle 165°. In addition, the samples of noisy scattered signals at each SNR
levels are shown in Figure 3.7. It can be observed from these figures that noiseless
signal and the signal with 20 dB are very similar to each other because the noise level
of the latter signal is quite low. Therefore, we do not add the noiseless signals in the

dataset.

The analytically generated dataset is augmented with 30 different trials of randomly

and independently generated Gaussian noise at three different SNR levels of 15 dB,
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17 dB and 20 dB for each aspect angle. By this way, a total of 1170 scattered signals
are obtained for each sphere at thirteen bi-static aspect angles, and the dataset for all
dielectric spheres contains 4680 ultra-wideband scattered signals as stated in Table
3.2.

Table 3.2 Details of Dielectric Sphere Dataset

Bistatic Angles SNR Levels  For Single Target For All Targets
5°, 15°, 30°, 45°, 60°, 75°, 15dB
90°, 105°, 120°, 135°, 150°, 17 dB 1170 4680
165°, 179° 20 dB
Scattered Signal in Time Domain
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Figure 3.6. An example of a noise-added scattered signal for the dielectric sphere
with €, = 3 where the bistatic angle is 165° and SNR level 17 dB.
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Figure 3.7. Noisy scattered signals with three different SNR levels of 20 dB, 17 dB
and 15 dB for the sphere with €,, = 3 at the bistatic angle of 165°.

3.2.3 Separation of Training, Validation and Test Sets

The development process of a neural network simply requires the dataset should be
divided into sufficiently large training and test sets. However, our dataset of
dielectric spheres is of very limited size. In this thesis, for CNN-based classifier
design, we utilize nested cross validation to obtain an unbiased model and observe
the generalization performance [29]. Therefore, the generated dataset is separated
into training, validation, and test sets to implement nested cross validation. As seen
in Figure 3.8, nested cross validation is composed of an outer loop and an inner loop.
The test samples are set apart in the outer folds to evaluate the model performance.
In the inner folds, the model is fitted with the training set, and the validation set is

used for investigation of the learning procedure and parameter selection.
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In our original dataset, the distinct information is contained in the 13 aspect angles.
Therefore, we split the data into 13 groups to perform nested cross validation. In
each outer fold, one group is separated as the test set. For the inner folds, the
remaining samples belong to 12 aspect angles are grouped into six where every group
contains two different aspect angles. From these six groups, one of them is
established as the validation set of that fold. With this separation, the number of
samples in each subset is summarized in Table 3.3. As a result, 6-folds are carried
out in every inner loop along with 13 outer folds. In total, we are able to fit our model
with 78 different dataset separations to examine the effects of hyper-parameters and
observe the generalization performance of the network.

Table 3.3 Number of Samples in Each Set for Nested Cross Validation

Training Set Validation Set Test Set Total
3600 720 360 4680

\

™ [

Inner Folds—

Validation

Figure 3.8. Data Separation for Nested Cross Validation
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3.3 Preprocessing of the Input Signal for CNN

To improve the training process of the neural network, the input signal should be
preprocessed with a couple of simple operations. The first preprocessing operation
is normalization where the distribution of the input signal is converted into zero mean
and unit variance. Secondly, the dataset is shuffled because the scattered signals are
generated in a row. For a successful training process, the data should be given in a

mixed order to the neural network.

3.4 CNN Architecture of the Dielectric Sphere Classifier

The number of the training samples directly affects the size of a neural network
model because of the data-driven nature of neural networks. As the size of the dataset
grows, we could train deeper networks. Since our dataset of dielectric spheres has a
limited number of samples, we choose to work with a shallow model. The network
to classify dielectric spheres is chosen to be composed of mainly three convolution
layers as illustrated in Figure 3.9. The activation function of these three convolution
layers is selected as rectified linear unit (ReLU) function. Zero padding is also

applied so the output of a convolutional layer has the same shape as the input.

Filters with trainable coefficients forms a convolution layer, and a convolution layer
basically performs convolution operation between the input signal and each trainable
filter. By the help of these filters, the target specific features could be extracted in
the network. So, we do not need to extract hand-crafted features but the features of

the targets are learned from the training data samples.

Weight regularization methods are included in the network besides the convolution
layers. With the help of regularization, the network can avoid overfitting, and the
statistics of the given dataset can be learned successfully. The regularization methods
are only executed during training stage and not included after training is finished. As
a common choice in the field of neural networks [23], two techniques of

regularization which are L2 regularization and dropout (with the rate of 0.5) are used
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together in the network. At the early steps of the development process, it is clearly
observed that overfitting occurs immediately if any regularization method is not
used. In fact, the limited number of scattered signals could be considered as the main
reason of that situation. So, we also apply batch normalization after each
convolutional layer to avoid overfitting. Although batch normalization has a
regularization effect, the primary advantage of this method is to accelerate the
training procedure and produce a more robust neural network [30]. We take
advantage of batch normalization and achieve satisfying results with small number

of epochs like 20.

In CNNs, pooling layers are placed between convolution layers to reduce the number
of parameters and the computation cost. Pooling layers can achieve this effect by
down-sampling the output of the previous convolutional layer. In our architecture,
we choose to use max pooling with the pooling size 2. This means that the size of
the signal is reduced to its half in every pooling layer by taking the maximum value

of two consecutive time samples of the signal.

After three convolutional layers, a fully connected layer with 64 hidden units takes
place where the classification task is performed. Fully connected layers are indeed
similar to regular artificial neural networks. Each neuron in the hidden layer is
connected to previous and following layers. Lastly, a softmax layer follows the fully
connected layer as the output layer. Since we have four different dielectric spheres
as targets, the softmax layer contains four units. At the output of softmax layer, we
obtain the classification probabilities for each target. The output values computed by
softmax function are located between zero and one, and the sum of all values are
equal to one. An ultra-wideband scattered signal is then classified as belonging to

one of the four library targets according to the highest probability value.

The CNN architecture described so far is implemented in Python with TensorFlow
framework, and the code written for this purpose is given in Appendix F. The
hardware used for training the CNN model for dielectric classification is NVIDIA
Quadro K2200 GPU and Intel Xeon E5-1603 CPU.
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Figure 3.9. CNN architecture used for dielectric sphere classification
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35 Hyper-parameter Optimization for Dielectric Sphere Classifier

The general architecture of the CNN developed for dielectric sphere classification is
described in the previous section. To obtain an optimum deep learning model, we
search different hyper-parameters which are the kernel size of convolutional layers,
learning rate and the mini-batch size. The different hyper-parameters are tested by

applying grid search. The grid search experiments are listed in Table 3.4.

In the convolutional layers, we use 16, 32 and 64 filters respectively. To simplify the
parameter selection procedure, we prefer to use the same number of kernels in each
three convolutional layers. The values of 3, 5 and 7 are examined to determine the

optimum kernel size.

During the training stage of the deep learning model, the optimizer is chosen as
Adam algorithm which is a computationally efficient form of stochastic gradient
decent. The common choice of the learning rate used with Adam algorithm is 0.001.
Hence, we start with this value in our experiments. Since it is observed in the first
trials that overfitting could occur due to high learning rates, we examine the lower
values instead. So, 0.001, 0.0005 and 0.0003 values are picked in our grid search for

learning rate.

Training of a neural network occurs in an iterative manner. All samples in the
training set could be used several times to update weights of the network. An epoch
represents the iterations when all the training samples have been seen once by the
network. However, an epoch could be divided into mini batches of training set. The
choice of the mini-batch size directly affects training procedure because the loss
function is computed in every iteration with the selected number of samples in the
batch. For the sake of more efficient computations, mini-batch size is selected as the

powers of 2. Therefore, we pick the values 32, 64 and 128 during our grid search.
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Table 3.4 List of Hyper-parameter Optimization Experiments for Sphere

Classification

Experiment No | Kernel Size |Learning Rate | Mini-Batch Size | Accuracy
Experiment 1 3,3,3) 0.001 32 0.8077
Experiment 2 3,3,3) 0.001 64 0.7962
Experiment 3 3, 3,3) 0.001 128 0.7695
Experiment 4 3,3,3) 0.0005 32 0.8049
Experiment 5 (3, 3,3) 0.0005 64 0.8027
Experiment 6 3,3,3) 0.0005 128 0.7991
Experiment 7 3,3,3) 0.0003 32 0.7954
Experiment 8 (3, 3,3) 0.0003 64 0.8014
Experiment 9 3,3,3) 0.0003 128 0.7996
Experiment 10 | (5, 5, 5) 0.001 32 0.8143
Experiment 11 (5,5,5) 0.001 64 0.7957
Experiment12 | (5, 5, 5) 0.001 128 0.7728
Experiment 13 [ (5, 5, 5) 0.0005 32 0.8121
Experiment 14 (5,5,5) 0.0005 64 0.7872
Experiment 15 (5,5,5) 0.0005 128 0.8140
Experiment 16 (5,5,5) 0.0003 32 0.8006
Experiment17 [ (5, 5, 5) 0.0003 64 0.8021
Experiment 18 (5,5,5) 0.0003 128 0.8147
Experiment 19 (7,7, 7) 0.001 32 0.8161
Experiment 20 (7,7,7) 0.001 64 0.8132
Experiment 21 (7,7, 7) 0.001 128 0.8034
Experiment22 [(7,7,7) 0.0005 32 0.7948
Experiment 23 (7,7, 7) 0.0005 64 0.8146
Experiment 24 (7,7, 7) 0.0005 128 0.7884
Experiment25 | (7,7,7) 0.0003 32 0.8106
Experiment 26 (7,7, 7) 0.0003 64 0.7806
Experiment 27 (7,7,7) 0.0003 128 0.7965
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The hyper-parameter experiments are conducted with nested cross validation as
described in 3.2.3. For evaluation, accuracy, precision, and recall are selected as the
performance metrics. The definitions of the metrics are stated in Appendix C. The
resulting metrics of cross-validation are averaged and illustrated in Figure 3.10. As
seen in the Table 3.4 and Figure 3.10, we obtain the best result from Experiment 19
with 81.6% accuracy. In this configuration, the kernel size is 7, learning rate is 0.001
and mini-batch size is 32. The individual effect of each parameter on performance

of the model is discussed in the following sections.
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Figure 3.10. The results of hyper-parameter optimization experiments
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351 Impact of the Kernel Size

The individual scores of different hyper-parameters are computed by averaging the
results of the grid search while keeping the corresponding hyper-parameter constant.
The obtained scores for kernel size are shown in Figure 3.11. It is observed that the
best score is achieved with the kernel size 7. The result is consistent with the outcome
of Experiment 19. As seen in Figure 3.11, the performance metrics increase while
the kernel size grows. It could be said that the features representing the damped

sinusoids due to the natural resonance mechanism are learned better with larger

kernel size.
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Figure 3.11. Impact of different kernel sizes on the performance of the classifier



3.5.2 Impact of the Learning Rate

When we examine the effect of learning rate on the model performance, it is observed
that changes in the learning rate have a slight influence on the network. Although the
scores for the three different values are almost the same, the highest score is obtained
with the learning rate 0.0005. However, we receive the optimum result with the
learning rate 0.001 in the grid search. The difference could be ignored since the

learning rate has a small effect on the network performance as seen in Figure 3.12.
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Figure 3.12. Impact of different learning rates on the performance of the classifier
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3.5.3 Impact of the Mini-batch Size

Among the three different hyper-parameters, the mini-batch size has the most
dramatic effect on the network. As seen in Figure 3.13, the performance metrics of
our network are decreasing while the mini-batch size increase from 32 to 128. We
obtain the best score with the mini-batch size of 32. This situation is also seen in the

result of the overall grid search where Experiment 19 gives the highest score.
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Figure 3.13. Impact of the mini-batch size on the performance of the classifier
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3.6  Training and Evaluation of the Optimized Network

The hyper-parameter optimization is carried out in the previous section for the
defined CNN architecture in section 3.4. We conclude that the classifier performs
better with the increasing number of kernel size. In addition to kernel size, it is seen
that the mini-batch size has a high influence on the classification performance. For
dielectric sphere classifier, using a small value of mini-batch size works better. On
the other hand, the learning rate is seen not an effective hyper-parameter of the

proposed network.

The optimized deep learning model with the hyper-parameters used in Experiment
19 is summarized in Table 3.5. The total number of parameters of the network is
543204. We train the optimized network with the dataset of the outer fold 3 through
20 epochs. In the training process, the learning curves are obtained as in Figure 3.14.
From the loss curve, we could say that the model is trained in a good manner. This
is because the validation loss follows the training loss which decays exponentially.
Besides, the accuracy curve shows that overfitting is not occurred. If overfitting was
occurred, there would be a big gap between the training accuracy and the validation
accuracy. Also, the validation loss would not follow the training loss, and diverge
from it. As a result of this training process which essentially use the complete dataset
for the sphere targets at all 13 aspects due to the use of cross-validation approach,
we obtain the confusion matrix illustrated in Figure 3.15 reported for only the bi-
static aspect angle of 30 degrees, as an example. The achieved test accuracy for this

sample case is 97.8%.
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Table 3.5 Model Summary of Optimized Network for Sphere Classification

Layers Output Shape
Input Layer 1024
Conv 1D, ReLU, L2 Regularization (1024, 16)
Batch Normalization (1024, 16)
Dropout (1024, 16)
Max Pooling 1D (512, 16)
Conv 1D, ReL U, L2 Regularization (512, 32)
Batch Normalization (512, 32)
Dropout (512, 32)
Max Pooling 1D (256, 32)
Conv 1D, ReL U, L2 Regularization (256, 64)
Batch Normalization (256, 64)
Dropout (256, 64)
Max Pooling 1D (128, 64)
Flatten 8192

Fully Connected Layer, L2 Regularization 64

Dropout 64

Softmax Layer 4
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Figure 3.14. The learning curves of the optimized network for dielectric sphere

classification
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Figure 3.15. Confusion matrix of the optimized network for dielectric sphere

classification considering only the test data at 30 degrees bi-static aspect angle.

3.7 Training the Optimized Network with a Smaller Training Set

As described in section 3.2.3, the available dataset for the spherical targets is split
into training, validation and test set and the nested cross validation approach is
utilized to examine the generalization performance of the CNN network for dielectric
sphere classification by exposing the network to all the available data for four targets,
13 aspect angles, three SNR levels. One of our aims in Chapter 3 is to verify the
performance of the CNN-based classifier design method against the performance of
the WD-PCA based classifier design method for the target library of dielectric
spheres over the same database. For this reason, we will separate the sphere dataset
into training and test sets for the next CNN-based sphere classifier design in such a

way that is compatible with the training/testing data set separation used in [11]. It
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should be also mentioned that the same set of hyper-parameters optimized in the
previous CNN-based classifier design (i.e. kernel size of 7, mini batch size of 32 and

learning rate of 0.001) will be maintained in the classifier design to be reported next.

3.7.1 Separation of Training and Test Sets

In this case, the training dataset is composed of the scattered signals simulated at five
different aspect angles while the rest of the dataset at eight more aspect angles
belongs to the test dataset. The bi-static aspect angles of the training set are 5°, 45°,
90°, 135°, 179° while the aspect angles of the test dataset are 15°, 30°, 60°, 75°,
105°, 120°, 150°, 165° as selected in the WD-PCA classifier design approach in
Turhan-Sayan’s work in [11]. As a result, for each dielectric sphere, the training
dataset contains 450 samples while the testing dataset contains 720 samples as shown
in Table 3.6.

Table 3.6 Training and Test Sets compatible with [11]

Dataset Bistatic Angles | SNR Levels | For Single Target | For All Targets
) 5°,45°,90°, 135°,

Train 450 1800

179° 15dB
15°, 30°, 60°, 75°, 17 dB

Test 105°, 120°, 150°, 20dB 720 2880
165°

3.7.2 Training and Evaluation of the Network

In this section, the previously optimized network stated in Table 3.5 is trained by

also using the previously optimized hyper-parameters but making use of an aspect-
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wise restricted dataset this time as described in section 3.7.1, instead of using the

whole available dataset.

As the network is trained with the mentioned dataset, we observe a variation in the
performance of the classifier at different training repetitions. The accuracy of the
classifier varies between 78.5% and 99.4% when we train the network from scratch
5 times. 89.9% mean accuracy is acquired for the 5 repetitions. Here, in Figure 3.16
and Figure 3.17, we report the results of the classifier with the best performance of
99.4% accuracy out of these five design trials. During training of the network, we
obtain the learning curves shown in Figure 3.16. Even though a smaller training set
is used, no overfitting is observed. As seen in the figure, the validation loss follows
the training loss with a small bias. Moreover, the validation accuracy reaches 90%
after epoch 5. As a result, the confusion matrix illustrated in Figure 3.17 is obtained.
We achieve 99.4% test accuracy along with 99.6% precision and 98.2% recall for

dielectric sphere classification.
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Figure 3.16. The learning curves of the best optimized network (out of five trials)

when the dataset described in section 3.7.1 is used.
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Figure 3.17. Confusion matrix of the best optimized network (out of five trials) when

the dataset described in section 3.7.1 is used for training.

3.7.3 Noise Performance of the CNN-based Classifier for Dielectric

Spheres

The deep learning model is developed with the training and test sets which both
include scattered signals with the SNR levels of 15 dB, 17dB, and 20 dB. To
observe the performance of the CNN-based classifier under noise and to make a
comparison with the WD-PCA method, a new testing dataset is generated. Bi-static
aspect angles are kept the same, but SNR levels differ in the new test dataset. Five
different noisy datasets are generated with the SNR levels 0 dB, 5 dB, 10 dB, 15
dB, and 20 dB. For the signals with 20 dB SNR, the accuracy of the classifier is

observed to be 100% as seen in

Table 3.7. As SNR level of the signal decreases, the accuracy of the classifier
decreases to 98.7%, 97.5% and 93.4% for 15 dB, 10 dB and 5 dB SNR, respectively,

as expected. In the case of 0 dB SNR, the classifier produces 81.6% accuracy where
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the classifier maintains its high performance under noise. The corresponding

confusion matrices are given in Appendix D.

The testing accuracy levels of the WD-PCA based classifier were reported to be 100
%, 96 %, 91 % and 75 % at 20 dB, 15 dB, 10 dB and 5 dB SNR levels, respectively
in [11] where the classifier was designed using only noise-free data. In previous
research, it has been demonstrated that use of noisy training data having moderate
noise levels in classifier design leads to notable improvements in the classification
accuracy rates at lower SNR testing levels [33-34]. While both CNN-based and WD-
PCA based classifiers reach 100% accuracy at 20 dB SNR level, the former classifier
demonstrates better accuracy performance at lower SNR values probably due to this
biasing effect as the noisy data at 20 dB, 17 dB and 15 dB are utilized in training the

CNN classifier because of the need for dataset augmentation.

Table 3.7 Noise Performance of the CNN-based Classifier

SNR Level Accuracy Precision Recall
0dB 81.6% 86.5% 72.2%
5dB 93.4% 95.4% 91.5%
10 dB 97.5% 97.8% 97.2%
15dB 98.7% 99.1% 98.1%
20 dB 100% 100% 100%

3.8  Effect of Number of Aspect Angles in the Training Set

In the previous section, the network with optimized hyper-parameters is trained with
a training set containing signals from 5 different aspect angles to compare the CNN-
based and WD-PCA based classifiers. On the other hand, we would like to examine

the effect of the number of the aspect angles in the training set in this section.
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Although it is seen that a high performance is achieved in section 3.7, there is a large
variance in the performance of the designed networks at different trials. In this
section, a different set of hyper-parameters (the kernel size of 3, the learning rate of
0.0005, and the mini-batch size of 128) is utilized while investigating the effect of
using training data over a wider selection of the aspect angle. The network with the
mentioned hyper-parameters is trained with three different training sets including 5,

6 and 7 bi-static aspect angles, and the results are presented below.

3.8.1 Training Set Containing 5 Aspect Angles

We start with 5 aspect angles to examine the effect of training set size on the
performance of the classifier. The scattered signals from the aspect angles 5°, 45°,
90°, 135° and 179° construct the training set. The remaining signals are used for
testing. When we train the network from scratch 5 times, it is observed that the
accuracy of the classifier changes between 90.4% and 97.4% with the mean accuracy
of the 5 trials being 93.2%. Here, the classifier design procedure looks more stable
as we observe a smaller performance variation as compared to the results of Section
3.7.2 where the accuracy rate was found to change between 78.5% and 99.4%. As
an example among the 5 design trials of this section, the learning curves of the CNN
classifier with the accuracy of 91.5% are illustrated in Figure 3.18. Also, the
confusion matrix belonging to this specific classifier design is shown in Figure 3.19.
For this classifier, the precision and the recall metrics are also obtained as 93.1% and

84.4%, respectively.
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Figure 3.18. The learning curves of the sample CNN classifier when 5 aspect angles

(5°, 45°,90°, 135° and 179°) are used in the training dataset.
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Figure 3.19. Confusion matrix of the sample CNN classifier when 5 aspect angles
(5°, 45°, 90°, 135° and 179°) are used in the training dataset.

3.8.2 Training Set Containing 6 Aspect Angles

This time, the training dataset is composed of the scattered signals from the aspect
angles 15°, 45°, 75°,105°, 135°, and 165°. When we trained the CNN classifier at 5
different aspect angles, we achieved 93.2% average accuracy over 5 repetitions of
training. Now, however, when the number of aspect angles are increased to 6, the

mean accuracy over 5 trials becomes 98.4%. In different repetitions of training, the
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accuracy of the classifier varies in a much narrower range between 96.5% and 100%,
i.e. the training of the CNN classifier becomes more stable. In other words, we
observe a performance improvement with the increased training information
regarding the coverage of aspect angles. In Figure 3.20, the learning curves are
plotted for the network with 96.5% accuracy; 99.7% precision and 91.2% recall are
also achieved with this network. The confusion matrix of the network is shown in
Figure 3.21. All signals from Target 1, Target 2, and Target 4 are recognized
correctly. Only 87 signals from Target 3 are misclassified as Target 4.
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Figure 3.20. Learning curves of the sample CNN classifier when 6 aspect angles
(15°, 45°, 75°,105°, 135°, and 165°) are used in the training dataset.
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Figure 3.21. Confusion matrix of the sample CNN classifier when 6 aspect angles
(15°, 45°, 75°, 105°, 135°, and 165°) are used in the training dataset.

3.8.3 Training Set Containing 7 Aspect Angles

It is observed that with the increasing number of aspect angles, the CNN-based
dielectric sphere classifier performs better. Hence, we train the deep learning model
with a training set containing 7 aspect angles which are 5°, 30°, 60°, 90°, 120°, 150°,
and 179°. Again, the training procedure is repeated 5 times to see if there exists any
fluctuation of performance in different trials. With the training set including 7 aspect
angles, 100% accuracy is obtained at all trials. An example learning curve is shown
in Figure 3.22, and all signals in the test subset are classified correctly as seen in
Figure 3.23.

As a conclusion, the performance of the CNN-based dielectric sphere classifier is
improved with the increasing number of aspect angles. This behavior could be
explained as the network learns better with more information in the training dataset.
When the mentioned 7 aspect angles are chosen for the training dataset, the
performance metrics all reach to 100% and variance in the performance metrics is

not observed in different trails of training procedure.
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Figure 3.22. Learning curves of the sample CNN classifier when 7 aspect angles
(5°, 30°, 60°, 90°, 120°, 150°, and 179°) are used in the training dataset.
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Figure 3.23. Confusion matrix of the sample CNN classifier when 7 aspect angles
(5°, 30°, 60°, 90°, 120°, 150°, and 179°) are used in the training dataset.
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CHAPTER 4

ELECTROMAGNETIC TARGET CLASSIFIER DESIGN FOR QUADCOPTER
TYPE UNMANNED AERIAL VEHICLES BY CONVOLUTIONAL NEURAL
NETWORKS

After validating the effectiveness of the CNN-based electromagnetic target classifier
design approach in Chapter 3, a second and more challenging target classifier will
be designed in this chapter for a set of four quadcopters having similar properties

using their measured scattered field database over a relatively narrow bandwidth.

In the present chapter, we will design a CNN-based classifier for commercial
quadcopter type UAVSs using what we learned from dielectric sphere classification
exercise. The target set is composed of four different models of quadcopters. The
database of wideband far field scattered signals for these targets are constructed
totally by measurements over a very modest bandwidth from 3.1 GHz to 4.8 GHz
using a portable wideband radar kit as opposed to the simulated database of spheres
with almost nine-octaves bandwidth. Keeping these significant differences between
the databases of spheres and quadcopters in mind, the CNN-based classifier will be

designed and its performance will be investigated in the rest of this chapter.

4.1  Properties of the Target Library

The target library for this classifier design includes four different quadcopter type
commercial drones which are AR Drone 2.0, DJI Phantom, DJI Spark, and MJX
Bugs 5W. The picture for each quadcopter is presented in Figure 4.1. As stated in
Table 4.1, the targets could be divided into two main groups regarding their
dimensions. AR Drone 2.0 and DJI Phantom belong to the “bigger targets” set while
DJI Spark and MJX Bugs 5W belong to the “smaller targets” set. In Table 4.1, the
diagonal dimension between two motors is given to show the largest physical length

of each target.
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Table 4.1 Physical properties of the commercial UAV targets

Target Type Diagonal Distance Weight
AR Drone 2.0 40 cm 420 ¢
DJI Phantom 35cm 1200 g
DJI Spark 17 cm 300 g
MJX Bugs 5W 25¢cm 400 g

AR Drone 2.0 DJI Phantom

# i

MJX Bugs SW

Figure 4.1. Commercial UAV target set composed of four quadcopters
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4.2 Measurement Setup

The scattered field measurements of the quadcopters are collected with the wideband
radar kit with brand name TimeDomain PulsON 440. The radar module operates
over the frequency band 3.1 to 4.8 GHz having transmitter/receiver antennas with
omnidirectional pattern in the H-plane (azimuth plane). Due to this antenna pattern,
measurements are strongly affected by environmental cluttering. Therefore, the
scattered data had to be collected in an anechoic chamber as seen in Figure 4.2 to
obtain almost clutter-free measurements. The characteristics of the excitation pulse
generated by the module and details of the measurement setup are explained in
Appendix E.

UAV Under Test

W PulsON 440

5 meter

Figure 4.2. Measurement setup in anechoic chamber for UAVs

4.3 UAYV Dataset Measured with PulsON 440

The measurements are taken in a total of twenty orientations for each UAV as stated
in Table 4.2. Ten orientations are obtained by rotating the UAV under test in azimuth
plane from 0° to 90° when the quadcopters are placed parallel to the ground. Since

quadcopters have a four-fold symmetry, only the angles between 0° and 90° are
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considered as illustrated in Figure 4.3 to eliminate redundant measurements. In
addition, the UAVs are tilted by 30° in the elevation plane and rotated again to
measure the target responses in different azimuth angles to cover the aspect angles
seeing the UAVs from the bottom. For each aspect angle 500 scans are collected.
With 20 different incidence angles, the total number of signals measured for each
UAV becomes 10,000. As a result, the UAV dataset is composed of 40,000 wideband

electromagnetic scattered signals in total.

We set the PulseON 440 radar module to listen for 105 nanoseconds after each pulse
is transmitted. However, the raw signals cannot be used directly for the classifier
design due to the following reason: The first 20 nanoseconds of the measured signals
(corresponding to a two-way propagation range of three meters) are strongly
contaminated by systematic clutter signals stemming from the hardware of the radar
unit as shown in Figure 4.4. Mutual couplings between the closely placed
transmitting and receiving antennas are partially responsible for this contamination.
So, we placed our targets 5 meters away from the radar unit in the anechoic chamber
to avoid these strong clutter signals. Another undesired echo shows up systematically
in the measurements right after 100 nanoseconds as shown in Figure 4.5. This echo
is caused by the subsequent transmitted pulse. This is because the pulse repetition
frequency of the radar unitis 10 MHz, which corresponds to a repetition time interval
of 100 nanoseconds. Therefore, time gating is applied to measured signals to select
the time range from 30 nanoseconds to 92.4 nanoseconds that provides a clean
measurement segment with a time span of 62.4 nanoseconds sampled in 1024 equally
spaced points. This time range is long enough to send the excitation pulse to the
target (that is 5 meters away from the radar unit) and to receive the returned signal
as shown in Figure 4.6. In this figure, the acquired target response is plotted with 8.6
dB average SNR value. Examples of the scattered signals for all quadcopters are

shown in Figure 4.7.
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Table 4.2 Details of the Measured UAV datasets

Incident Angles Number of Signals ~ Total Number of

Azimuth Elevation PErAspect Angle Signals for a Target

0°, 10°, 20°, 30°, 40°,
50°, 60°, 70°, 80°, 90°

0°, 30° 500 10,000

OO

Figure 4.3. The incident angles of the UWB signal to the UAVs

51



%108 AR Drone 2.0

3
2
1
@
=
2
= 0
=
<
-1
-2
A | . . . |
0 20 40 60 80 100
Time (ns)

Figure 4.4. An example of the measured signal with PulseON 440 radar module
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Figure 4.5. The measured signal after the elimination of initial clutter signal.
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be used in the classifier design.
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Figure 4.7. Examples of measured scattered signals for each one of four different

quadcopters.
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In CNN-based classifier, we utilize 5-fold cross validation to evaluate the
performance of the neural network. Therefore, the measured dataset is divided into
5 non-overlapping subsets. Before separating the dataset, we randomly shuffle
measured scattered signals with respect to aspect angles. Afterwards, the training set
is constructed with the scattered signals of 16 different aspect angles in each fold.
For the test set, remaining 4 aspect angles are utilized. With this data separation, the

number of scattered signals for the training and test sets are given in Table 4.3.

Table 4.3 Number of Samples in Each Set for 5-fold Cross Validation

Training Set Test Set Total
32,000 8,000 40,000

4.4  Preprocessing the Input Signal for CNN

Similar to what we did to preprocess the scattered signals of dielectric spheres, two
preprocessing methods are applied to the measured UAV signals before they are
given as inputs to the CNN. Firstly, we normalize the signals such that the mean
becomes zero and the variance is one. Later, shuffling operation is performed to store

the input signals in a random order.

45 Initial CNN Architecture for UAV Classification

At the first step of UAV classifier design, we start with the network architecture that
was proposed in Chapter 3 for the classification of dielectric spheres. The
architecture is composed of three convolutional layers, and the hyper-parameters are

optimized for the scattered signal dataset of dielectric spheres.
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We start to apply 5-fold cross validation to the network. But we finish the cross
validation process early after training with the dataset of fold 3 is completed. This is
because it is observed that the network could not learn well for 3 different folds.
When the training with the dataset of fold 3 is completed, we obtain 83.2% accuracy
with the learning curves shown in Figure 4.8. Both in accuracy and loss curves, a
gap between training and validation is seen. In addition, validation loss does not
decrease over epochs as expected. However, Goodfellow et al. state that a good
model is achieved when there is a small gap in between training and validation curves
[18]. Even though a relatively good result obtained with the confusion matrix as
shown in Figure 4.9, we improve the architecture for UAV classification by
deepening the network. The details of the improved CNN architecture are discussed

in the following section.
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Figure 4.8. The learning curves of the optimized network for the UAV classification
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Confusion Matrix for Test Data
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Figure 4.9. Confusion matrix of CNN-based UAYV classifier when the architecture

optimized for the dielectric spheres is used.

4.6  Improved CNN Architecture for the UAV Classification

Following our first experiments with the initial architecture optimized previously for
the database of dielectric spheres, we decided to increase the depth so that the
representation power of the network can be enhanced. However, the growth of the
total number of parameters is a major concern while deepening a network. This is
because a complex model cannot learn the features of the signals from a small
dataset, and under-fitting occurs. Although we collect 40,000 scattered signal
measurements in total, it is not enough to train a very deep learning model. In this
thesis, we propose a CNN architecture inspired by VGG architecture [37] which is a
popular image classification network. Simonyan and Zisserman state in [37] that the
model performance can be improved by increasing the number of layers. At the same

time, the VGG architecture contains stacks of several convolutional layers with small
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kernel sizes, so the number of parameters does not grow as much as compared to a

network using large convolutional filters.

For our UAV target set, we introduce a CNN architecture with three convolutional
layer groups similar to VGG architecture. In the first group, two convolutional layers
are stacked while there are three convolutional layers in the second and third groups
as illustrated in Figure 4.10. Batch normalization is also added to each convolutional
layer. We set 32 filters for the first group, and the remaining groups are composed
of 64 filters. After each convolutional layer group, down-sampling is performed with
max pooling layers over window size of 2. Following the convolutional layers, a
fully connected layer (FCL) with 512 hidden units is placed. For each layer, rectified
linear unit is chosen as the activation function. Furthermore, L2 regularization and
dropout are defined to avoid overfitting. At the output layer, the activation function
is set to softmax function to classify four different UAV targets. We use TensorFlow
framework to implement the described CNN architecture on Python. In Appendix G,
the code describing the network with TensorFlow functions is given. The training of
the CNN model is carried out with NVIDIA Quadro K2200 GPU and Intel Xeon E5-
1603 CPU.
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4.7 Hyper-parameter Optimization for the UAV Classifier

For the architecture defined to classify UAVS in the previous section, we perform a
hyper-parameter search to achieve an optimum classifier network. As given in Table
4.4, a total of 27 experiments are conducted to find best values for the kernel size,
learning rate and mini-batch size. Similar to dielectric sphere classifier design, the
effect of the parameters on the performance of the network is examined with grid
search. Accuracy, precision and recall metrics are computed when the network
trained with different values of each hyper-parameter, and the results are shown in
Figure 4.11.

In each convolutional layer, the kernel size is kept the same to narrow the search
space. We work with the kernel size values of 3, 5 and 7 just like in the dielectric
sphere classifier design. In addition to kernel size, the examined mini-batch sizes are

also selected the same as 32, 64 and 128.

Adam algorithm is utilized as the optimizer of the network. In the initial training
practices, we observed that decreasing the learning rate during training process
reduces the swing in the learning curves. Therefore, being different from the
dielectric sphere classification network, we add a decaying learning rate
configuration to the grid search. Besides the constant values of 0.001 and 0.0005 for
all epochs, a learning rate scheme starting with 0.001 and reducing to 0.0005 is
included in our hyper-parameter search domain. In this case, we train the network

for a total of 20 epochs and decrease the learning rate after epoch 10.

As a result of the grid search, the highest performance is achieved in Experiment 18
with the kernel size 5 and the mini-batch size 128. In Experiment 18, the learning
rate is set to 0.001 for the first ten epochs and it drops to 0.0005 for the remaining
ten epochs. With these hyper-parameter values, an average accuracy of 89.5% is
obtained by 5-fold cross validation. In addition to the overall result of the grid search,
the influence of each hyper-parameter on the model performance is discussed in the

following sections.
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Table 4.4 List of Hyper-parameter Optimization Experiments for UAV

Classification

Experiment No  Kernel Size  Learning Rate Mini-Batch Size  Accuracy

Experiment 1 (3,3,3) 0.001 32 0,8878
Experiment 2 (3,3,3) 0.001 64 0,8571
Experiment 3 (3,3,3) 0.001 128 0,8732
Experiment 4 (3,3,3) 0.0005 32 0,8691
Experiment 5 (3,3,3) 0.0005 64 0,8471
Experiment 6 (3,3,3) 0.0005 128 0,8599
Experiment 7 (3,3,3) [0.001, 0.0005] 32 0,8924
Experiment 8 (3,3,3) [0.001, 0.0005] 64 0,8753
Experiment 9 (3,3,3) [0.001, 0.0005] 128 0,8756
Experiment10 (5,5, 5) 0.001 32 0,8630
Experiment 11 (5, 5,5) 0.001 64 0,8759
Experiment 12 (5,5,5) 0.001 128 0,8829
Experiment13  (5,5,5) 0.0005 32 0,8780
Experiment 14 (5,5, 5) 0.0005 64 0,8718
Experiment15  (5,5,5) 0.0005 128 0,8875
Experiment 16 (5, 5,5) [0.001, 0.0005] 32 0,8751
Experiment17  (5,5,5) [0.001, 0.0005] 64 0,8739
Experiment 18 (5, 5, 5) [0.001, 0.0005] 128 0,8946
Experiment19  (7,7,7) 0.001 32 0,8356
Experiment 20 (7,7, 7) 0.001 64 0,8796
Experiment 21 (7,7,7) 0.001 128 0,8313
Experiment22  (7,7,7) 0.0005 32 0,8693
Experiment 23 (7,7,7) 0.0005 64 0,8528
Experiment 24 (7,7,7) 0.0005 128 0,8272
Experiment25  (7,7,7) [0.001, 0.0005] 32 0,8435
Experiment26  (7,7,7) [0.001, 0.0005] 64 0,8686
Experiment27  (7,7,7) [0.001, 0.0005] 128 0,8495
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Figure 4.11. The results of hyper-parameter optimization experiments for the UAV
classifier.
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4.7.1 Impact of the Kernel Size

The variation in the average performance metrics is examined while working with
different kernel sizes in the convolutional layers. The results are illustrated in Figure
4.12, and the best scores are obtained for the kernel size 5 where the average accuracy
is obtained as 87.8%. For the UAV classifier, we do not observe the positive effect
of the kernel size as in the dielectric sphere classifier. When the kernel size is chosen
as 7 all performance metrics decrease, and the average accuracy becomes 85%. On
contrary, 87% and 87.8% average accuracy is achieved for the kernel sizes 3 and 5
respectively. Therefore, we choose to 5 as the kernel size in the UAV classifier

network.
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Figure 4.12. Impact of different kernel sizes on the performance of the UAV

classifier.



4.7.2 Impact of the Learning Rate

Learning rate is an important hyper-parameter because it is the main multiplier of
weight update. Hence, it has a direct influence on the training procedure. In our
experiments, we notice that learning rate of 0.001 is a high value for the proposed
network architecture. This is because it leads to fluctuations in the learning curves
during training. On the other hand, dropping the value to 0.0005 does not solve the
problem completely. The training is slowing down, and the validation accuracy does
not reach the expected accuracy values as in the case of the learning rate of 0.001.
The results shown in Figure 4.13 summarize the situation. The average accuracy for
the rate 0.0005 stays at 86% while 86.5% average accuracy is achieved with the rate
0.001.

When we look for another solution to increase classifier performance, it is found that
decreasing the learning rate during the training procedure gives better results.
Therefore, a learning rate schedule starts with 0.001 and drops to 0.0005 in the
middle of the training is utilized. As a result, we obtain an average accuracy of 87.2%
with this configuration, which is the highest score among the other learning rate

values. The result is also consistent with the outcome of Experiment 18.
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Figure 4.13. Impact of different learning rates on the performance of the UAV
classifier.
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4.7.3 Impact of the Mini-batch Size

Compared to other hyper-parameters, mini-batch size has no dramatic effect on the
UAV classifier network as seen in Figure 4.14. Even though the maximum accuracy
of 86.8% is achieved with the mini-batch size 32, the mean accuracy for three
different values is received as 86.6%. Besides, the overall best result is obtained with
mini-batch size 128 in Experiment 18. This difference could be neglected since the
individual effect of the mini-batch size on the performance of the network is
negligible. Eventually, we select the mini-batch size of our network as 128 as
obtained from the Experiment 18.
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Figure 4.14. Impact of the mini-batch size on the performance of the UAV
classifier.
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4.8  Training and Evaluation of the Optimized Network

The optimized network for UAV classification is obtained with the grid search for
the hyper-parameters stated in the previous section. The best values of the kernel
size, learning rate and mini-batch size are determined for the CNN architecture
described in section 4.7. As the result of grid search, we achieve the highest
performance with the kernel size of 5, decaying learning rate from 0.001 to 0.0005,
and mini-batch size of 128. When using these hyper-parameters, the model summary

given in Table 4.5 is obtained with a total number of parameters 3,989,348.

We train the optimized network for 20 epochs with the fold 3 to illustrate the
performance of the classifier. The learning curves seen in Figure 4.15 arise during
the training process. It is easily seen that with the learning rate schedule shown in
Figure 4.16 the swing in the curves reduces as the rate decreases to 0.0005. So, the
validation curves converge the training curves smoothly. At the end of the training,
the confusion matrix shown in Figure 4.17 is obtained. We observe that the classifier
makes correct decisions with 92.8% accuracy. In addition, the precision and the
recall metrics are obtained as 93% and 92.5% respectively. However, 17% of the
samples belong to AR Drone 2 are misclassified as DJI Phantom. Similarly, the

classifier predicts 7% of the MJX Bugs 5W measurements as DJI Spark.
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Figure 4.15. The learning curves of the optimized network for the UAV

classification.
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Figure 4.16. The learning rate variation during the training process.

We can explain the confusion between targets with the natural resonance mechanism.
This is because the wideband electromagnetic signals are utilized to excite target
specific complex natural resonance (CNR) frequencies [3]. As a signal with a larger
bandwidth is incident upon a target, a higher number of CNR frequencies could be
excited within the selected bandwidth. The CNR frequencies of a target are
determined essentially by the material properties as well as the shape and dimensions
of a target. Since commercial UAVs are generally made of similar materials and
components, the dimensions mainly affect the CNR frequencies. In our target set we
observe the confusion between the targets with similar dimension, and the targets are
divided into two groups regarding their dimension which stated in Table 4.1. AR
Drone 2 and DJI Phantom belong to the bigger target group while the smaller target
group is composed of DJI Spark and MJX Bugs 5W.
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Figure 4.17. Confusion matrix of the optimized network for UAV classification.

Table 4.5 Model Summary of Optimized Network for UAV Classification

Layers Output Shape
Input Layer 1024
Conv 1D, ReL U, L2 Regularization (1020, 32)
Batch Normalization (1020, 32)
Dropout (1020, 32)
Conv 1D, ReL U, L2 Regularization (1016, 32)
Batch Normalization (1018, 32)
Dropout (1016, 32)
Max Pooling 1D (508, 32)
Conv 1D, ReLU, L2 Regularization (504, 64)
Batch Normalization (504, 64)
Dropout (504, 64)
Conv 1D, ReL U, L2 Regularization (500, 64)
Batch Normalization (500, 64)
Dropout (500, 64)
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Table 4.5 (continued)

Conv 1D, ReL U, L2 Regularization (496, 64)
Batch Normalization (496, 64)
Dropout (496, 64)
Max Pooling 1D (248, 64)
Conv 1D, RelLU, L2 Regularization (244, 64)
Batch Normalization (244, 64)
Dropout (244, 64)
Conv 1D, RelL U, L2 Regularization (240, 64)
Batch Normalization (240, 64)
Dropout (240, 64)
Conv 1D, ReL U, L2 Regularization (236, 64)
Batch Normalization (236, 64)
Dropout (236, 64)
Max Pooling 1D (118, 64)
Flatten 7552
Fully Connected Layer, L2 Regularization 512
Dropout 512
Softmax Layer 4

4.9  Training of the Optimized Network with a Smaller Training Set

49.1 The Dataset Separation

To observe the effect of training set size on the performance of classifier, 50%, 60%
and 70% of the dataset is separated as the training subset. The first training set is
constructed by the scattered signals from 10 aspect angles, and the remaining 10
aspect angles are left for testing. The selected angles for the training and test sets are

summarized in Table 4.6. We prefer to separate the dataset in azimuth angles. So,
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the scattered signals measured at 0° and 30° elevation angles are included in both
datasets. By adding the scattered signals from 30° azimuth angle, the second training
set is established which is 60% of all signals as shown in Table 4.7. Finally, the third
training set containing 70% of all data is constructed by including the scattered
signals from 70° azimuth angle. The aspect angles composing the third training set
are outlined in Table 4.8, and the performance of the resulting networks are

compared in the next section.

Table 4.6 Dataset separation: 50% training, 50% test

Incident Angles

Dataset
Azimuth Elevation
Training 0°, 20°, 40°, 60°, 80° 0°, 30°
Test 10°, 30°, 50°, 70°, 90° 0°, 30°

Table 4.7 Dataset separation: 60% training, 40% test

Incident Angles

Dataset
Azimuth Elevation
Training 0°, 20°, 30°, 40°, 60°, 80° 0°, 30°
Test 10°, 50°, 70°, 90° 0°, 30°

Table 4.8 Dataset separation: 70% training, 30% test

Incident Angles

Dataset
Azimuth Elevation
Training 0°, 20°, 30°, 40°, 60°, 70°, 80° 0°, 30°
Test 10°, 50°, 90° 0°, 30°
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4.9.2 Training and Evaluation of the Network

The optimized CNN architecture summarized in Table 4.5 is trained with smaller
training datasets to examine the effect of training set size. The aspect angles
constituting the training and test sets are selected in 3 different ways as stated in
Table 4.6, Table 4.7, and Table 4.8. For the first training subset, the dataset is split
with 50%-50% ratio. When we train the deep learning model with this training set
and use the test set for direct validation only (without using any cross-validation and
without making any changes either in the structure or in the hyper-parameters) the
learning curves shown in Figure 4.18 are obtained. It is seen in the loss curve that
the network is trained without overfitting similar to previous curves in Figure 4.15.
However, the same performance could not be achieved. The accuracy is obtained as
84.3% with the training set stated in Table 4.6, and the confusion matrix seen in
Figure 4.19 isacquired. When the training of the network is repeated two more times,
82.5% mean accuracy is achieved. Besides, with this classifier 82.7% average
precision and 82.4% average recall are received. This performance degradation is
expected because the network attempts to learn signal characteristics using a smaller
amount of information. Therefore, a gap between the training and validation
accuracy occurs and, we reach a weaker classifier compared to the one stated in

section 4.8.
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Figure 4.18. The learning curves of the optimized network when the dataset is

composed of the aspect angles in Table 4.6 with 10 different aspects.
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Figure 4.19. Confusion matrix of CNN-based UAV classifier when the training

dataset is composed of the aspect angles in Table 4.6 with 10 different aspects.

In the second training set, we increase the number of aspect angles to 12 by including
the scattered signals from 30° azimuth angle. As a result of 3 repetition of training
the network from scratch, we achieve accuracy values of 81.9%, 86% and 86.6%
whose average is 84.8%. So, 2.3% rise in the average accuracy of the classifier is
observed by increasing the number of aspect angles to 12. In Figure 4.20, the learning
curves are shown for the network with 86% accuracy. 86.1% precision and 85.9%
recall is received with this network and the confusion matrix is illustrated in Figure
4.21. We could say that an improvement in the performance of the classifier is
occurred with the training set stated in Table 4.7. Furthermore, the performance

metrics approaches the values reported in section 4.8.
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Figure 4.20. The learning curves of the optimized network when the dataset is
composed of the aspect angles in Table 4.7 with 12 different aspects.

Confusion Matrix for Test Data

AR 3500

3000

_ DJiP 2500
a

n - 2000
o

'E IR - 1500

- 1000

)% 14 1032 - 500
T - |}

AR oje DOl s Mx
Predicted label

Figure 4.21. Confusion matrix of CNN-based UAV classifier when the training
dataset is composed of the aspect angles in Table 4.7 with 12 different aspects.

After examining the performance of the network trained with the dataset containing
12 aspect angles, we add the scattered signals from 70° azimuth angles to the training
set also as given in Table 4.8. By increasing the number of aspect angles to 14,

87.3%, 88.9% and 93.7% accuracy values are achieved as a consequence of 3 repeats
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of training. For these 3 trials, 89.9% average accuracy is achieved which is 5.1%
more than the case for 12 aspect angles. It is observed that the performance of
classifier reported in section 4.8 is exceeded with 93.7% accuracy in one of the trials.
For this network, the learning curves seen in Figure 4.22 are obtained, and the
resulting confusion matrix is shown in Figure 4.23. The precision and recall metrics
of the network is received as 94% and 93.4%, respectively. In conclusion, we
observe that the performance of the CNN-based quadcopter classifier improves with
the increasing number of aspect angles in the training set. It is an expected result
because the network could learn better when more information in additional aspect

angles is provided.
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Figure 4.22. The learning curves of the optimized network when the dataset is

composed of the aspect angles in Table 4.8 with 14 different aspects.
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Figure 4.23. Confusion matrix of CNN-based UAV classifier when the training

dataset is composed of the aspect angles in Table 4.8 with 14 different aspects.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, the convolutional neural network (CNN) type deep learning approach
is applied to the electromagnetic target classification problem for two different target
set libraries; for a library of four lossless dielectric spheres of the same size but with
slightly different dielectric constants, and a library of four quadcopter type drones of
similar sizes. The datasets used for training, validation and testing in these classifier
design problems are composed of one-dimensional, broadband, time-domain
scattered signals. Aspect and polarization dependence of these scattered signals
makes the target recognition problem complicated calling for the use of ultra-wide
band data, because using wider bandwidth means better characterization of the
targets as explained by the SEM theory. While there exist various physics-based
methods for electromagnetic target recognition, most of them rely on the direct or
indirect use of targets’ complex natural resonance frequencies. One of the recent and
well-established methods falling into this group is the WD-PCA method that utilizes
target features extracted by the help of Wigner distribution and principal component
analysis [11]. The WD-PCA method is used as the comparison case to verify the
feasibility of the CNN-based classifier design when it is applied to a target set of

lossless dielectric spheres using an ultra-wide band simulation data.

As shown in Chapter 3, when both WD-PCA based classifier and the CNN-based
classifier are trained using exactly the same 5-aspect sphere database (composed of
the bi-static aspect angles of 5°, 45°, 90°, 135° and 179°), the WD-PCA classifier
reached 100% accuracy rate at 20 dB SNR level (and also at noise-free case) but the
CNN-based classifier could only reach an average accuracy rate of 93.2 %. While
the classifier design by the WD-PCA method is perfectly repeatable, the classifier
design by the CNN method shows fluctuating performances, the accuracy rate ranges
from 90.4% to 97.4% in 5 repetitions of the classifier design. The CNN-based

75



classifier design method reaches the performance level of WD-PCA based classifier
design method only when additional information on aspect angles are provided in
the training phase, including data at 7 aspects (5°, 30°, 60°, 90°, 120°, 150°, and
179°).

Regarding the noise performances of the classifiers, the accuracy rate of the CNN-
based classifier (designed in Section 3.7) remains over 90% while the WD-PCA
classifier’s accuracy drops to 75% at 5 dB SNR level. Although the CNN classifier’s
noise performance looks much better than that of the WD-PCA classifier, this
comparison is biased due to the fact that a large amount of noisy database signals at
15, 17 and 20 dB SNR values are used for CNN training due to need for data
augmentation. The WD-PCA classifier on the other hand, uses a very small amount
of noise-free training data. More research is needed to make unbiased comparisons

in this respect.

As the novel part of this thesis, the CNN-based target classifier design approach is
applied to a set of four similar commercial quadcopters using an experimentally
constructed scattered database over an extremely limited bandwidth. Various
classifiers are designed for different network structures and hyper-parameter values
using training databases at varying combinations of aspect angles. Successful
quadcopter classifier designs are realized attaining the correct decision rates up to
93.7% in this challenging problem demonstrating the feasibility and usefulness of
the CNN-based electromagnetic target classification technique. Provided that a
sufficiently large database is available, even when the bandwidth of the database is
extremely restricted as in the case of quadcopter database, the classifier still succeeds
in attaining accuracy levels above 90% with careful tuning of the hyper-parameters

of the CNN-training process.

Most of the previous research papers reporting CNN-based classifiers using one-
dimensional time-domain signals in ATR design have used very low frequency ECG
signals [20] which do not suffer from physically dictated complications of

aspect/polarization dependencies. Only a few studies use electromagnetic scattered
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data like we do but they mostly make use of ultra-wideband simulation data as well
as ultra-wideband measurement data [21-22]. Another distinct aspect of the CNN-
based classifier design approach presented in this thesis is that our design is
completed in a single stage rather than needing multiple stages as reported in [21-
22].

The major drawback of the CNN-based classification method is the need for a huge
training dataset. The CNN based design also needs data with more variation in aspect
angle as compared to the WD-PCA classifier approach. While the WD-PCA method
is consistently repeatable to design classifiers with very high correct decision rates
using a very small amount of noise-free scattered dataset (at five aspects for each
one of four spherical targets, i.e. composed of only 20 scattered signals), the CNN
based classifier design can reach this level of consistency and accuracy after using
data at 7 aspects for each spherical target with a high level of data augmentation
involving three different SNR levels with 30 repetitions at each target/aspect/SNR
level combination, with a total of 2520 scattered signals.

Although the need for a large database size sounds to be a disadvantage of the CNN-
based classifier design approach, each method has its own advantages and
disadvantages depending upon the characteristics of the available scattered database.
On one hand, the physics based WD-PCA approach is superior if the size and aspect
variation of the training dataset are extremely restricted. On the other hand, the CNN
based classifier design approach is superior if a sufficiently large database with
enough aspect variation is available. The need for physics-based feature extraction
in the WD-PCA approach is eliminated in the CNN based classifier design method.
This highly appreciated asset of the CNN approach is made possible by the
convolutional layers of the CNN structure, which learn the target features hidden in

the one-dimensional electromagnetic scattered database.

Design of a WD-PCA based classifier for the quadcopter target set using the same

limited bandwidth data is planned as a future work to better evaluate the capacity of
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the CNN-based electromagnetic classifier design approach as compared to the WD-

PCA classifier design technique.
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APPENDICES

A. Singularity Expansion Method (SEM) and Representation of the System

Response for an Electromagnetic Target

An isolated object with a finite size can be represented as a linear time-invariant
(LTI) system with an aspect and polarization dependent system function in complex

frequency domain (i.e. the Laplace Transform of the object’s impulse function) as
[1-4]

Rn(S; 04, (bd)
S — Sn)(s - S;i)

H(s, 04, ¢gq) = E(s,04,¢q) + Z ( (A1)
n=1

where s = a + jw is the complex frequency with w = 2 tf; 6, and ¢, are the
elevation and azimuth angles in spherical coordinates; Hyoyceq(s, 04, dq) is the
forced component of the system function formed basically by the specular returns
from the object, hence it is highly aspect/polarization dependent; (s, s;) are the
complex-conjugate system pole pairs (i.e. the complex natural resonance (CNR)
frequencies which are independent of aspect/polarization variations) having the

aspect/polarization dependent residues R, (s, 04, ¢4) forn =1,2,3, ...

The inverse Laplace transform of H(s,8,, ¢4) can be expressed as

h(t, 04, 0a) = hrorcea(t, 84, da) + z by (84, Pa)e“ntcos (wt +6,) (A2)

n=1

where hgqpcea(t, 84, P 4)is the forced response component that exists only during the
direct interaction of the excitation signal with the object, hence it is time limited and

effective only at early times. The summation terms, on the other hand represents the
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superposition of damped sinusoidal signal components created by complex
conjugate pole pairs. These sinusoidal terms are excited as the excitation signal
passes through the object, they partially overlap with the forced response but exist
until very late times while exponentially decaying in time. Oscillation frequencies
and decaying rates of damped sinusoids are determined by the target poles (i.e. CNR
frequencies) and their magnitudes depend on the values of residues R,,’s defined in
Equation (A.1). When the attenuation constant a of a pole pair is small, then the
associated sinusoidal signal is called “dominant” as its oscillations persist for a
longer time. As the strength of such dominant modes are determined by aspect
dependent residues, a dominant mode becomes effective at varying orders at
different aspect angles. Therefore, a target can be characterized more completely by
using its scattered signals at a collection of many different aspects and/or

polarizations.

The transient response of a target could be divided into two parts as early-time
response and late-time response as illustrated in Figure A.1. Mostly, the direct
reflections from the target are observed along with just starting damping sinusoids
in the early-time response. The early-time portion of the scattered signal is not
distinctive for physics-based feature extraction purposes because the effects of CNR
frequencies are not dominant yet. On the other hand, the use of target specific late-
time response is preferable in target classifiers such as those designed by the WD-

PCA method after the time-limited forced response vanishes.

However, the CNN-based classifier design presented in this thesis uses both early-
time and late-time portions of the scattered target response signals without isolating

any part.
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Figure A.1. Early-time and late-time responses of a scattered signal
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B. Scattered Far-Field Time-Domain Signals of the Dielectric Sphere Database

Details of the data simulation procedure for the database of dielectric spheres are
outlined in section 3.1.2.1. The resulting time-domain far field scattered signals
(computed from Mie series solutions) are presented in this Appendix B for four

different dielectric sphere targets are given below in Figures B.1, B.2, B.3 and B.4.
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Figure B.1. The simulated time domain scattered signals of the dielectric sphere
with €, = 3 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°.
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Figure B.2. The simulated time domain scattered signals of the dielectric sphere

with €, = 4 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°.
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Figure B.3. The simulated time domain scattered signals of the dielectric sphere
with €, = 5 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°.
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Figure B.4. The simulated time domain scattered signals of the dielectric sphere

with €, = 6 at the bi-static angles 179°, 150°, 120°, 90°, 60°, 30°.

91



C. Performance Metrics of the Neural Network Based Classifiers

In this Appendix section, the performance metrics to evaluate the CNN-based
classifiers are stated. We select three performance measures in this thesis as
accuracy, precision, and recall. These metrics could be defined by the help of the
confusion matrix of binary classification as seen in Table C.1. The accuracy of a
classifier is the ratio of correct decisions (tp + tn) to all predictions as formulated
in Equation (C.1). In [39], the accuracy is defined as the overall effectiveness of a
classifier. Whereas precision is the metric corresponding to the correct decisions
among the positive predictions as seen in Equation (C.2). How many of the actually

positive cases are predicted correctly is also defined as recall by Equation (C.3).

Table C.1 Confusion Matrix for Binary Classification

Prediction
Positive Negative
Actual Data| Positive tp fn
Class Negative fr tn
Accuracy = bt m (C.1)
tp+fn+fp+tn
Precision = i (C.2)
tp + fp
Recall = ‘P (C.3)
tp+fn
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D. Confusion Matrices for Noisy Dielectric Sphere Signals

In section 3.7.3, the noise performance of the CNN-based classifier for dielectric
spheres is discussed. The network is trained with a smaller training set as stated in
section 3.7.1. The resulting confusion matrices for different sets of testing signals at
the SNR levels of 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB are shown in figures D.1 thru
D.5.

Confusion Matrix for Test Dataset

Tue label

T
-Er=3' -E.I':'q' -E.r=5 -Er=5
Predicted label

Figure D.1. Confusion matrix of CNN-based dielectric sphere classifier when SNR
level of the signal is 0 dB
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Figure D.2. Confusion matrix of CNN-based dielectric sphere classifier when SNR
level of the signal is 5 dB
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Figure D.3. Confusion matrix of CNN-based dielectric sphere classifier when SNR
level of the signal is 10 dB
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Figure D.4. Confusion matrix of CNN-based dielectric sphere classifier when SNR
level of the signal is 15 dB
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Figure D.5. Confusion matrix of CNN-based dielectric sphere classifier when SNR
level of the signal is 20 dB
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E. Details of Experimental Setup used for the scattered field measurements of
Quadcopter Type UAVs

The UWB Radar Module: “TimeDomain PulsON 440” Radar Kit

TimeDomain PulsON 440 radar kit is used to collect wideband scattered signals from
the quadcopters. The device is portable and easily operated with both USB and
Ethernet interfaces as shown in Figure E.1. The radar kit operates between 3.1 and
4.8 GHz band as given in Table E.1. The transmitted pulse has a duration of 1 ns,

and the characteristics of the pulse could be seen in Figure E.2.

Figure E.1. TimeDomain PulsON 440 Radar Kit [31]
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Figure E.2. PulsON 440 UWB pulse plotted in both time and frequency domains [32]
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Table E.1 Technical Specifications of PulsON 440 [31]

Property Value
Operating Band 3.1t0 4.8 GHz
Center Frequency 4.3 GHz
Average Transmit Power -13 dBm
Nominal Pulse Repetition Rate 10 MHz
Receive Noise Figure 4.8 dB

Measurement Interfaces

The communication of the TimeDomain PulsON 440 UWB radar module with a
computer could be accomplished over USB or Ethernet interfaces. For both
interfaces, MATLAB and C functions are provided by TimeDomain. In addition, the
software called Monostatic Radar Module Reconfiguration and Evaluation Tool
(MRM RET) is supplied to configure and acquire data from the module from a
graphical user interface as illustrated in Figure E.3. We use MRM RET software to
gather measurement for the UAV dataset. However, for initial examinations of the
radar module, a MATLAB GUI is prepared as a part of this thesis work as shown in
Figure E.4. The different configurations and the operational features of the module

are evaluated with the prepared GUI.
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Figure E.3. TimeDomain MRM RET Software
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Figure E.4. MATLAB GUI prepared in this thesis work to take measurements by the
PulsON440 Radar Kit.

D221 Anechoic Chamber

To measure the wideband scattered response of the quadcopters by avoiding
unknown scattered mechanisms as much as possible, the anechoic chamber in the
Laboratory D-221 of the Electrical-Electronics Department (METU) is used. This
electromagnetically isolated chamber is normally used to measure antenna patterns.
The PulsON 440 radar kit is placed at the position normally reserved for the
transmitting antenna in the anechoic chamber for this study as illustrated in Figure
E.5. The quadcopter type UAV target under test is placed on the opposite side of the
anechoic chamber where normally antenna under test (AUT) is positioned. The
placement of two quadcopters AR Drone 2.0 and DJI Phantom is shown in Figure
D.6 and Figure E.7.
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Figure E.5. Placement of PulsON 440 radar kit inside the anechoic chamber

Figure E.6. Placement of AR Drone 2.0 drone inside the anechoic chamber
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Figure E.7. Placement of DJI Phantom drone inside the anechoic chamber
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F. Python Code for Dielectric Sphere Classification

In this Appendix section, the Python code produced for the implementation of the
CNN architecture described in section 3.4 is given. Tensorflow framework is utilized
to define the neural network layers. Furthermore, all training and testing procedures

are performed by using the functions in Tensorflow libraries.

from tensorflow import keras
from tensorflow.keras import layers

from tensorflow.keras import optimizers

model = keras.Sequential( [
layers.Conv1D(filters=16, kernel_size=7, activation="relu",
input_shape=(1024,1), kernel_regularizer=('12")),
layers.BatchNormalization(),
layers.Dropout(0.5),
layers.MaxPooling1D(pool_size=2),

layers.Conv1D(filters=32, kernel_size=7, activation="relu",
kernel_regularizer=('12"),

layers.BatchNormalization(),

layers.Dropout(0.5),

layers.MaxPooling1D(pool_size=2),

layers.Conv1D(filters=64, kernel_size=7, activation="relu",
kernel_regularizer=('12")),

layers.BatchNormalization(),

layers.Dropout(0.5),

layers.MaxPooling1D(pool_size=2),

102



layers.Flatten(),
layers.Dense(64, activation="relu", kernel_regularizer=('12"),
layers.Dropout(0.5),

layers.Dense(num_classes, activation="softmax")

1)

batch_size = 32
epochs = 20

opt = optimizers.Adam(learning_rate=0.001);

model.compile(loss="categorical_crossentropy", optimizer=opt,

metrics=["Accuracy" ,"Precision"”,"Recall"])
model.fit(train_data, train_label, batch_size=batch_size, epochs=epochs,
validation_data=(test_data, test_label), verbose=1, shuffle=True,

callbacks=[tensorboard])

model.evaluate(test_data, test_label, verbose=1)
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G. Python Code for Quadcopter Type UAV Classification

In this Appendix section, the Python code defines classifier for UAV targets is given.
The CNN architecture described in section 4.6 is implementing with Tensorflow
framework. All training and testing procedures are performed by using the functions

in Tensorflow libraries.

from tensorflow import keras
from tensorflow.keras import layers

from tensorflow.keras import optimizers

dropout_rate = 0.5
model = keras.Sequential( [
# Conv-1
layers.Conv1D(filters=32, kernel_size=5, activation="relu",
input_shape=(1024,1), kernel_regularizer=('12"),
layers.BatchNormalization(),

layers.Dropout(dropout_rate),

layers.Conv1D(filters=32, kernel_size=5, activation="relu",
kernel_regularizer=('12")),
layers.BatchNormalization(),

layers.Dropout(dropout_rate),
layers.MaxPooling1D(pool_size=2),

# Conv-2

layers.Conv1D(filters=64, kernel_size=5, activation="relu",

kernel_regularizer=('12"),

layers.BatchNormalization(),
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layers.Dropout(dropout_rate),

layers.Conv1D(filters=64, kernel_size=5,
activation="relu" kernel_regularizer=('12"),
layers.BatchNormalization(),

layers.Dropout(dropout_rate),

layers.Conv1D(filters=64, kernel_size=5,
activation="relu" kernel_regularizer=('12"),
layers.BatchNormalization(),

layers.Dropout(dropout_rate),

layers.MaxPooling1D(pool_size=2),

# Conv-3

layers.Conv1D(filters=64, kernel_size=5,
activation="relu",kernel_regularizer=('12")),

layers.BatchNormalization(),

layers.Dropout(dropout_rate),

layers.Conv1D(filters=64, kernel_size=5,
activation="relu",kernel_regularizer=('12")),
layers.BatchNormalization(),

layers.Dropout(dropout_rate),

layers.Conv1D(filters=64, kernel_size=5,
activation="relu",kernel_regularizer=('2"),
layers.BatchNormalization(),

layers.Dropout(dropout_rate),
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layers.MaxPooling1D(pool_size=2),

#FCL

layers.Flatten(),

layers.Dense(512, activation="relu" kernel_regularizer=('12")),
layers.Dropout(0.5),

layers.Dense(num_classes, activation="softmax")

1)

batch_size = 128
epochs = 20

boundaries = [(32e3/batch)*10]

values = [0.001, 0.0005]

Ir_schedule = optimizers.schedules.PiecewiseConstantDecay(boundaries, values)

opt = optimizers.Adam(learning_rate=Ir_schedule);

model.compile(loss="categorical_crossentropy", optimizer=opt,
metrics=["Accuracy" ,"Precision”,"Recall"])

model.fit(train_data, train_label,
batch_size=batch_size, epochs=epochs,
validation_data=(test_data, test_label),

verbose=1, shuffle=True, callbacks=[tensorboard])

model.evaluate(test_data, test_label, verbose=1)
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