
INVESTIGATION OF NEW ARCHITECTURAL FEATURES TO
SUPPORT PERFORMANCE IMPROVEMENT IN EMBEDDED

PROCESSORS

A THESIS SUBMITTED TO

THE BOARD OF GRADUATE PROGRAMS
OF

MIDDLE EAST TECHNICAL UNIVERSITY, NORTHERN CYPRUS
CAMPUS

BY

AHMAD OTHMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2022

Approval of the Board of Graduate Programs

Prof. Dr. Cumali Sabah
Chairperson

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

Prof. Dr. Murat Fahrioğlu
Program Coordinator

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science .

Dr. Gürtaç Yemişcioğlu Prof. Dr. Murat Fahrioğlu
Co-supervisor Supervisor

Examining Committee Members

Prof. Dr. Mustafa Uyguroğlu EMU / EEE

Prof. Dr. Murat Fahrioğlu METU NCC / EEE

Dr. Gürtaç Yemişcioğlu METU NCC / EEE

Assoc. Prof. Dr. Enver Ever METU NCC / CNG

Asst. Prof. Dr. Hüseyin Sevay NEU / ISE

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Surname: Ahmad, Othman

Signature :

v

ABSTRACT

INVESTIGATION OF NEW ARCHITECTURAL FEATURES TO
SUPPORT PERFORMANCE IMPROVEMENT IN EMBEDDED

PROCESSORS

Othman, Ahmad
Master of Science, Electrical and Electronics Engineering Program

Supervisor: Prof. Dr. Murat Fahrioğlu
Co-Supervisor: Dr. Gürtaç Yemişcioğlu

August 2022, 62 pages

Recent advances in process automation, wireless sensor networks, and machine-to-machine

(M2M) interfaces have caused embedded systems to be a blooming computing segment, with

significant research focus on performance and energy efficiency. The embedded systems mar-

ket witnessed enormous growth over the past decades and is foreknown to be boosted in the

upcoming years. It has become harder to scale CMOS technologies compared to past and get

performance and energy benefits through technology and circuits. Therefore, benefits that can

be obtained through architectural optimizations are even more important than before. The

focus of this thesis is identification and analysis of new architectural features to potentially

improve performance in embedded open-source RISC-V integer processor. Energy efficiency is

ultimately enhanced as well, when such enhancements are implemented with little additional

power dissipation cost. The integer core of an open-source reference (Rocketchip) processor

is enhanced through new fused instructions and hardware features. Statistical data collected

on the common Dhrystone and Coremark benchmarks leads to the addition of five fused in-

structions to the RISC-V integer Instruction-Set-Architecture (ISA), and the Rocket Chip

processor organization is modified to support the new instructions. Expected performance

benefits are quantified as a result of these changes as compared to the reference Rocket Chip

RISC-V processor. 4.4% and 6.1% reduction in instruction count is demonstrated on 500,000

vi

iterations of Dhrystone and 5000 iterations of Coremark benchmarks, respectively, by lever-

aging a particular original set of fused instructions. This results in 3.8% and 5.4% reduction

in execution time for Dhrystone and Coremark benchmarks, respectively.

Keywords: Processor performance, Macro-op fusion, Micro-op fusion, Integer

benchmarks, Embedded systems

vii

ÖZ

GÖMÜLÜ İŞLEMCİLERDE PERFORMANS
İYİLEŞTİRMELERİNİ DESTEKLEMEK ÜZERE YENİ MİMARİ

ÖZELLİKLERİN ARAŞTIRILMASI

Othman, Ahmad
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Programı

Tez Yöneticisi: Prof. Dr. Murat Fahrioğlu
Ortak Tez Yöneticisi: Dr. Gürtaç Yemişçioğlu

Ağustos 2022, 62 sayfa

Proses otomasyonu, kablosuz sensör ağları ve makineden makineye (M2M) arayüzlerdeki son

gelişmeler, gömülü sistemlerin, performans ve enerji verimliliğine odaklanan önemli araştırma-

larla gelişen bir bilgi işlem segmenti olmasına neden oldu. Gömülü sistemler pazarı, geçtiğimiz

on yıllarda muazzam bir büyümeye tanık oldu ve önümüzdeki yıllarda daha da artacağı bi-

liniyor. CMOS teknolojilerini eskiye göre ölçeklendirmek, teknoloji ve devreler aracılığıyla

performans ve enerji avantajları elde etmek zorlaştı. Bu nedenle mimari optimizasyonlar ile

elde edilebilecek faydalar eskisinden daha da önemlidir. Bu tezin odak noktası, gömülü açık

kaynaklı RISC-V tamsayı işlemcisinde performansı potansiyel olarak geliştirmek için yeni mi-

mari özelliklerin tanımlanması ve analizidir. Enerji verimliliği de, bu tür geliştirmeler çok az ek

güç kaybı maliyeti ile uygulandığında eninde sonunda artırılır. Açık kaynaklı bir referans (Roc-

ketchip) işlemcisinin tamsayı çekirdeği, yeni birleştirilmiş yönergeler ve donanım özellikleri ile

geliştirilmiştir. Ortak Dhrystone ve Coremark kıyaslamalarında toplanan istatistiksel veriler,

RISC-V tamsayılı Talimat-Set-Mimarisine (ISA) beş birleştirilmiş talimatın eklenmesine yol

açar ve Rocket Chip işlemci organizasyonu, yeni talimatları desteklemek için değiştirilir. Bek-

lenen performans faydaları, referans Rocket Chip RISC-V işlemci ile karşılaştırıldığında bu

değişikliklerin bir sonucu olarak ölçülür. Talimat sayısında 4,4% ve 6,1%’lik azalma, belirli bir

orijinal kaynaşmış talimat kümesinden yararlanılarak sırasıyla 500.000 Dhrystone yineleme ve

viii

5000 yineleme Coremark kıyaslamada gösterilmiştir. Bu, Dhrystone ve Coremark kıyaslamaları

için yürütme süresinde sırasıyla 3,8% ve 5,4% azalma ile sonuçlanır.

Anahtar Kelimeler: İşlemci performansı, Makro-operasyon füzyonu, Mikro-operasyon

füzyonu, Tamsayı karşılaştırmaları, Gömülü Yazılım

ix

To the special ones who gave me unconditional love all these years. I am

thankful for your presence in my life. All the people in my life who left a

blossom in my story and touched my heart, I dedicate this thesis to you.

x

ACKNOWLEDGMENTS

Nothing can express my gratitude to my two professors, Ali Muhtaroğlu and

Gürtaç Yemişcioğlu, who gave countless hours of reading, supporting, reflecting,

and above all, patience during the whole process. My deepest appreciation for

your guidance and feedback throughout this project and for every insight you

offered into this study. And last but not least, I would like to thank my parents,

who have taught me that with care and hard work, there is nothing you can’t

do if you aspire to achieve.

xi

TABLE OF CONTENTS

ABSTRACT . vi

ÖZ . viii

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xii

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.1.1 Motivational Example . 2

1.2 Proposed Methods and Models 3

1.3 Thesis Contribution . 4

1.4 Thesis Outline . 5

2 BACKGROUND AND LITERATURE 7

2.1 Processor evolution for embedded systems 7

2.1.1 Early processors . 8

2.1.2 Processor segmentation to support embedded systems . . 9

xii

2.1.3 Trends in embedded system processors 9

2.2 Embedded RISC-V open-source architecture 11

2.2.1 RISC-V architectural features 11

2.2.2 Rocket Chip organization 12

2.3 Instruction Sets . 16

2.3.1 RISC vs. CISC instruction sets 16

2.3.2 RISC-V instruction set for embedded systems 17

2.3.3 Fused instructions and benefits 17

2.4 Common benchmarks for embedded systems 26

2.5 Chipyard environment for processor architecture performance eval-
uation . 28

2.5.1 Processor modeling . 28

2.5.2 ISA compilation . 29

2.5.3 Benchmark execution and execution time estimation . . . 29

3 DESIGN AND ANALYSIS . 31

3.1 Identification of fused candidates 31

3.2 Fused Instruction Format . 38

3.3 Changes to Rocket Chip Organization 39

4 RESULTS AND DISCUSSIONS . 53

5 CONCLUSION AND FUTURE WORK 57

5.1 Future Work . 57

REFERENCES . 59

xiii

LIST OF TABLES

TABLES

Table 2.1 RISC vs CISC [1] [2]. 16

Table 4.1 Dhrystone 500 Iterations Results. 53

Table 4.2 Dhrystone Results With Different Numbers Of Iterations. . . 54

Table 4.3 Reduction In Execution Time For Each Fusion Pair. 54

Table 4.4 Benchmarks Overall Performance Improvement. 54

Table 4.5 Proposed Work Vs Literature. 55

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Thesis workflow. 4

Figure 2.1 Performance evolution of general-purpose microprocessors [3]. 9

Figure 2.2 Base RISC-V instructions format [4]. 11

Figure 2.3 Rocket Chip system [5]. 13

Figure 2.4 In-order Rocket Core pipeline [5]. 13

Figure 2.5 Rocket Core microarchitecture [6]. 15

Figure 2.6 Overview of the proposed x86 design [7]. 18

Figure 2.7 Formats for fusable micro-ops [7]. 19

Figure 2.8 x86-mode and macro-op mode pipelines [7]. 20

Figure 2.9 IPC performance comparison [7]. 21

Figure 2.10 The geometric mean of the instruction counts of the twelve

SPECInt benchmarks is shown for each of the ISAs, normalized to

x86-64 [8]. 22

Figure 2.11 Curl instruction format [9]. 23

Figure 2.12 Curl Block Diagram [9]. 24

Figure 2.13 Coremark Workflow [10]. 27

Figure 3.1 Dhrystone fusion pair candidates. 36

Figure 3.2 Coremark fusion pair candidates. 36

xv

Figure 3.3 Dhrystone 500 iterations fusion pair candidates. 37

Figure 3.4 Coremark 5000 iterations fusion pair candidates. 37

Figure 3.5 Fused Instruction Format. 38

Figure 3.6 Rocket Core Architectural Diagram. 40

Figure 3.7 Modified Rocket Core Architectural Diagram. 41

Figure 3.8 LEA overlay. 44

Figure 3.9 Indexed Load overlay. 45

Figure 3.10 Clear Upper Word overlay. 47

Figure 3.11 (LUI+ADD) overlay. 48

Figure 3.12 (LUI+Load) overlay. 48

Figure 3.13 (AUIPC+ADD) overlay. 50

Figure 3.14 (AUIPC+Load) overlay. 50

xvi

LIST OF ABBREVIATIONS

ABBREVIATIONS

MOP Macro OPeration

SIMD Single Instruction Multiple Data

ALU Arithmetic Logic Unit

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computer

VM Virtual Machine

ISA Instruction Set Architecture

IPC Instruction Per Cycle

SoC System on Chip

PC Program Counter

xvii

xviii

CHAPTER 1

INTRODUCTION

One of the main trends in computer architecture is the growth of computa-

tion speed over the years. Higher performance CPUs typically consume more

power. However, a simple uni-processor that is optimized to satisfy the power

and performance needed can be more useful in embedded applications. Embed-

ded processors use less energy, smaller in size, and operate at lower frequencies

than general-purpose processors. Most of the embedded system applications are

integer in nature, which further supports low-energy operation.

An embedded system is built to do specific tasks. The more specific the proces-

sor, the more it can be optimized. Computer architects take advantage of this to

increase embedded system performance and reliability, and reduce its cost, size,

and energy. These include compiler optimization, architecture optimization, and

hardware organization.

The main goal of this research is to explore incremental architectural and or-

ganizational enhancements through a particular technique called instruction fu-

sion. Identification of effective fused instructions based on a given set of bench-

marks associated with embedded system applications is investigated. This is fol-

lowed by implementation of sample fusion enhancements on open-source RISC-V

Rocket Chip processor to quantify performance benefits.

1.1 Motivation and Problem Definition

The Instruction Set Architecture (ISA) is a set of instructions the processor

can understand and execute. Research on instruction set architectures shows

1

that ISAs have an important role in processor overall performance. Computer

architecture community has divided into two fronts: While many argue the

recent compiler and microarchitecture advances the ISA no longer has significant

impact on processor performance, others still believe that the ISA still plays a

significant role in processor performance [11].

RocketChip processor uses RISC instructions. The difference between RISC

and CISC is that RISC instructions minimize the number of used standard

instructions to make the ISA and corresponding hardware implementation as

simple as possible. The main idea behind fused instructions is increasing the

performance by decreasing the number of instructions executed by the processor.

This can be observed through the processor performance equation:

seconds

program
=

seconds

cycle
∗ cycles

instruction
∗ instructions

program

Maintaining cycles
instruction

, or CPI and seconds
cycle

, or frequency, while reducing instructions
program

will boost processor performance. Customizing the RISC-V architecture to sup-

port a new set of fused instructions will target reduction in instructions
program

. The

proposed architectural design maintains CPI and frequency by adding a mini-

mum set of logic blocks to the existing processor data-path to avoid changing

frequency by taking advantage of the time wasted on existing memory and reg-

ister file accesses in order to support new fused instructions.

1.1.1 Motivational Example

Let us consider a scenario where there are N instructions in a program and each

instruction takes one clock cycle time, T on the average to execute on a given

processor. The total processor execution time would then be N x T, which leads

to a performance of 1/NT. If the average power dissipation per instruction is

P, then the total energy dissipated by the program is NT x P. What if 20% of

the instructions can be executed at the same time as other instructions through

fusion of tasks due to the addition of few fused instructions and corresponding

new hardware blocks? What if the hardware changes could be implemented with

2

only 5% increase in average power dissipation without affecting the worst case

speedpath (i.e. maximum clock frequency)? Based on this conceptual scenario,

the new execution time is 0.8 x NT, i.e. the performance improvement is 125%.

In addition, the new energy dissipation for this task is 0.8NT x 1.05P = 0.84 x

NTP, i.e. energy is reduced by 84%.

1.2 Proposed Methods and Models

One can appreciate the concept of instruction fusion better through an exam-

ple. Consider the following example that implements a new Fused multiply-add

instruction to replace all cases when the original multiply (MUL) instruction

is immediately followed by an addition (ADD) performed on the same operand

(X1):

// X4 = X1*X2+X4

MUL X1,X1,X2

ADD X4,X4,X1

The positive impact of the fused multiply-add is proportional to the number

of times the original MUL-ADD instruction sequence occurs in the targeted

code sets. Another example is the repeat-move instruction in x86, which copies

data from one location to another. After identifying commonly executed micro-

operations that are possible to fuse, the hardware dynamically fuses these in

the decode stage prior to execution. After that, the fused operations are fed to

the pipeline and executed as one operation. How can a processor execute two

instructions as one? For example, there are many ways to handle fused multiply-

add. One can add a new multiply-add logic unit to the processor datapath, add

a second ALU to the pipeline stages that will be responsible for the addition

after the first ALU completes the multiplication, or enhance the existing ALU

to support the fused operation. The way fused instruction is handled in this

research is by adding a second ALU to the memory stage, taking advantage

of the memory delay to ensure no impact to worst case processor speedpath

or maximum clock frequency. Furthermore, functional units are added to the

3

execution stage carefully to support the rest of fused instructions with minimum

or no speedpath impact. A workflow diagram of this research is shown in figure

1.1.

Figure 1.1 Thesis workflow.

1.3 Thesis Contribution

Our contributions are as follows:

• Identify pairs of instructions that are good fusion candidates based on

Dhrystone and Coremark benchmarks running on Rocketchip RISC-V em-

bedded processor;

• Propose and implement a 5-stage Rocket modified core design capable of

executing five fusion pair candidates.

• Demonstrate performance improvement by running Dhrystone and Core-

mark benchmarks simulations on the proposed enhanced Rocketchip pro-

4

cessor model.

1.4 Thesis Outline

Chapter 2 provides background on processor evolution and segmentation to ad-

dress embedded systems, summarizes relevant benchmarks, and reviews liter-

ature on recent RISC-V architecture and fused instruction benefits. Chipyard

development environment for building and simulating RISC-V based processor

models is also presented in Chapter 2. Analytical data to identify suitable fusing

candidates, and resulting RISC-V ISA and Rocketchip hardware enhancements

are discussed in Chapter 3. Chapter 4 summarizes results from Dhrystone and

Coremark benchmarks simulations. Finally, Chapter 5 provides conclusions and

future work.

5

6

CHAPTER 2

BACKGROUND AND LITERATURE

An embedded system can be defined as a system that is formed by tightly cou-

pling software and hardware components, built to perform a specific task. It

cannot typically be programmed by the end user, and forms a subsystem of a

larger system. Embedded systems are everywhere, deeply ingrained into every

corner of our life. Embedded systems can be found in education, healthcare, and

other industries, forming smart modules in cars, surveillance cameras, planes,

mobile phones, washing machines, defence equipment, and many other systems.

The central component of any embedded system is an embedded processor pro-

viding it with computational processing capability. These embedded processors

perform highly efficient limited tasks, with lower power consumption compared

to general purpose processors. This chapter provide a snapshot of the most

important aspects of the historical changes and current trends in embedded

processors, different instruction sets, common embedded benchmarks, and the

environment used in this research.

2.1 Processor evolution for embedded systems

Embedded system concept is old. In a sense, embedded systems introduce a

framework for general purpose computer concept. Early electronic computing

devices, such as Apollo Guidance Computer and Colossus Mark I and II com-

puters, were closer to embedded systems in functionality than general purpose

computers.

7

2.1.1 Early processors

The evolution of processors for embedded systems follows the evolution of mi-

croprocessors. After the emergence of microprocessors in the 1970s, embedded

processors witnessed rapid developments and changes. In 1971, Intel launched

the first microprocessor and named it Intel 4004, which could perform 4-bit

arithmetic operations. Meanwhile, Texas Instrument (TI) followed Intel and in-

troduced its first microprocessor in 1974, TMS1000, a 4-bit microprocessor with

1KB ROM and 32-byte RAM. A couple of years after Intel 4004, Intel followed

it by Intel 8008 and 8080 microprocessors. Intel later updated the 8080 8-bit

processor to Intel 8085 by increasing its instructions, input/output pins, and in-

terrupts. At the same time, Motorola developed MC6800 8-bit microprocessor.

These microprocessors were basically used as embedded applications rather than

CPUs. Intel 8080 evolved into the famous Intel 8086 and Intel 8087 eventually.

The evolution in microprocessors continued during the 1980s and 1990s, re-

sulting in 16-bit, 32-bit, and 64-bit CPU designs, and even 128-bit width in

some specialized CPUs nowadays. Moreover, reduced instruction set computer

(RISC) architecture has been introduced [12], providing hardware optimizations

within the same resources compared to the multi-chip concept. Many proces-

sors adopted this idea, including UC Berkeley RISC I/II processors [13], MIPS

R2000, Motorola 68020, Intel 80360DX, and Acorn RISC Machine (ARM). After

the pipeline concept was introduced, the microprocessors market witnessed the

addition of deeper pipeline stages, higher issue rates, multilevel caches, wider

bandwidths, and more on-chip functional units [14]. In the 1990s, the micro-

processor market was overtaken by superscalar processors, which increased the

previous performance limits [15].

Afterward, in the mid-2000s, Companies like Intel and AMD stopped increasing

their processor clock frequency due to power dissipation barriers. Later, the

power density wall was overcome by parallel computing techniques by using

more than one processor on a single chip [16]. Figure 2.1 shows the trends in

the main characteristics of popular general-purpose CPUs over time.

8

Figure 2.1 Performance evolution of general-purpose microprocessors [3].

2.1.2 Processor segmentation to support embedded systems

As computers became ubiquitous across personal, industrial, and scientific appli-

cations, the processor market became segmented to serve each category of users

better. 8085 Intel processor released in 1977 was mainly targeted for embedded

applications. In the 1980s, other segments, such as mobile, server, and desktop

emerged.

2.1.3 Trends in embedded system processors

Lately, embedded processors got involved in almost every aspect of our life. In

this section recent emerging trends in embedded processors [17] are reviewed.

ARM (Advanced RISC Machine)

From ARM1 to the latest ARM11 processors core, ARM architecture developed

significantly over the years. ARM11 is a 32-bit RISC core with an 8-stages

pipeline. ARM switched its architecture from Von Neumann to Harvard after

9

ARM 7.

• ARM11

Maximum frequency 335 MHz, 1.2 MIPS/MHz, and a 16X32 multiplier.

AVR

Embedded AVR core processors designed by Atmel used modified Harvard ar-

chitecture design. Some of the AVR embedded processors used nowadays are:

• 32-bit AVR

It has video and audio processing features and includes SIMD and DSP instruc-

tions. Its instruction set is similar to RISC cores.

• XMEGA AVR –ATxmega

Has internal ADC, 44-64-100 Pin package, and a 16-384 KB Program Memory.

• Tiny AVR

Limited peripheral set, 16KB Program Memory, and 6-32 Pin package.

• Mega AVR-ATmega

Large memory, ISA is extendable, extensive peripheral set, 28-100 Pin package,

and a 512KB Program Memory.

• Application specific AVR

512KB Program Memory, 28-100 Pin package, LCD Controller, USB Controller,

Advanced PWM, CAN.

PIC

Some of the PIC embedded processors used nowadays are:

• Baseline core devices (12 bit)

PIC10 series, as well as by some PIC16 and PIC12 devices. 12-bit wide code

memory, 32-byte register file, Two-tiny-level deep call stack, 6-pin to 40-pin

packages.

• dsPIC16 and PIC 24-bit microcontrollers

10

Hardware MAC (multiply–accumulate), Barrel shifting, Bit reversal, (16×16)-

bit single-cycle multiplication and other DSP operations, Hardware divide assist

(19 cycles for 16/32-bit divide), Hardware support for loop indexing, Direct

memory access.

• PIC32 32-bit microcontrollers

The highest execution speed 80 MIPS Flash, memory: 512 kByte, One instruc-

tion/clock cycle execution, First cached processor, Allows execution from RAM,

Full Speed Host/Dual Role, OTG USB capabilities, Full JTAG, 2-wire program-

ming and debugging Real-time trace.

2.2 Embedded RISC-V open-source architecture

RISC-V is an open-source instruction set (ISA) developed and designed by UC

Berkeley. Berkeley Architecture Group set two goals while developing RISC-

V: i. Free, open-source ISA implementation, and ii. suitability for almost any

computing device or computing segment.

2.2.1 RISC-V architectural features

RISC-V base ISA is designed to be simple, clean, and suitable for hardware im-

plementation. Figure 2.2 below summarizes the base 32-bit RISC-V instruction

format.

Figure 2.2 Base RISC-V instructions format [4].

11

RISC-V was built according to RISC design principles and has the following

features and characteristics:

• Load-store architecture design;

• Simple, fixed base, stable, and standard extensions feature,

• Simple CPU multiplexers as a result of bit patterns,

• Fast sign extension, due to its designed fixed format,

• It supports a wide range of uses, from microcontrollers to personal com-

puters to supercomputers,

• Flexible design, with the ability to add more encoding bits and predefined

extensions for specialized CPUs.

RISC-V architecture is chosen for this research because of many factors. RISC-V

is open-source; many academic studies and innovations use this baseline proces-

sor architecture. It has a simple ISA without special instructions, which means

it is the best choice to study the effect of Instruction fusion. RISC-V simplifies

multiplexers in a processor, and the immediate values are placed at a fixed lo-

cation to speed up sign extension; such architecture makes it easier to modify

to execute fused instruction with fewer functional units.

2.2.2 Rocket Chip organization

Rocket Chip is one of the SoC generators that Chipyard environment provides.

The generator is written in Chisel language and contains many parts besides

the CPU (Rocket core). Figure 2.3 shows an example of Rocket Chip instance

[5]. Rocket Chip consists of parameterized Chisel RTL libraries that allow one

to generate different SoC variants. The tile consists of rocket core, optional

L1 caches(data and instructions), and page table walker. Rocket Chip caches

communicate through what is called a tile bus to a simulated DRAM.

12

Figure 2.3 Rocket Chip system [5].

Figure 2.4 In-order Rocket Core pipeline [5].

13

This research uses Rocket Core as baseline, and does not explore any of the

peripherals. Rocket Core is an in-order, scalar 5-stages RISC-V processor de-

veloped at University of California, Berkeley(Figure 2.4). Rocket core is also

written in Chisel language and can support 32-bit or 64-bit RISC-V ISA with

all the optional extensions (I, M, A, F, D, C). A detailed Rocket microarchitec-

ture is shown in Figure 2.5.

There are several reasons why Rocket Chip is chosen for this research. The

simplest version of Rocket core serves effectively as an embedded system pro-

cessor using RISC-V ISA. It is compatible with RISC-V tools, and is written in

chisel, a fast C emulator can be generated for debugging and simulating hard-

ware designs. Rocket Core architecture design can be modified to execute fused

instructions while minimizing the number of functional units added.

The Chisel C Emulator

Chisel can generate a fast C emulator from a scala source for debugging and

simulating hardware designs. C emulator is capable of cycle-accurate simulation

of the Rocket core. Using the verbose mode in the emulator prints debug

information to the console each cycle.

The RISC-V Tools

The RISC-V toolchain is a standard GNU cross compiler used to compile, as-

semble, and link source files.

Spike

Spike is a software simulator widely used in processor development. Takes care of

providing a complete hardware base system to run programs prepared for "bare

metal", those programs are executables that run without an operating system,

or it can be specified to use a kernel proxy [18] with protocol HTIF/FESVR

transmission to be able to run programs that need a kernel to manage.

14

Figure 2.5 Rocket Core microarchitecture [6].

15

2.3 Instruction Sets

2.3.1 RISC vs. CISC instruction sets

CISC and RISC are the main two types of ISAs used in embedded systems.

CISC ISA are more complex and tend to sacrifice the number of cycles per

instructions to achieve a lower number of instructions per program. On the

other hand, RISC focuses on making the instructions in the ISA as simple as

possible in order to achieve a lower clock cycle value. Table2.1 shows the main

differences between RISC and CISC characteristics and features.

Table 2.1 RISC vs CISC [1] [2].

RISC CISC
Simple Instructions Complex instructions

Have more general purposes registers Have fewer general purposes registers

Load/Store instructions are independent Load/Store instructions can be involved
with other instructions

Large code size Small code size

avoid any special instructions Usually have special instructions

Simple binary encoding of instructions Complex binary encoding of instructions

Fixed length instructions Variable length instruction

Fewer addressing modes More addressing modes

Examples: ARM, SPARC Examples: IBM 370/168, VAX 11/780

Modern ISAs, including RISC-V, have converged to RISC. On the other hand,

the approach has been revisited recently due to the potential benefit of having

some instructions in the ISA that have higher complexity than the others in

order to achieve better overall performance and energy efficiency. The study

of instruction fusion is an example of such diversion from a "blind" RISC type

design.

16

2.3.2 RISC-V instruction set for embedded systems

RISC-V offers an extension that supports embedded systems applications called

RV32E Base Integer Instruction Set. RV32E is a reduced version of RV32I. It

has 16 general-purpose registers and no counters, unlike RV32I which uses 32

general-purpose registers and mandate counters. RV32E can only extend with

M, A, and C user-level standard extensions.

2.3.3 Fused instructions and benefits

Fused instructions or macro-op fusion have been applied with many variants

and different microarchitectures on different types of processors, including su-

perscalar processors, scalar processors, and VLIW. These methods vary and may

involve specialized functional units to support a few fused instructions, microar-

chitecture pipeline changes to support instruction dynamic binary translation

or designed microarchitecture with macro-op scheduling. Fusing instructions

can be done within the pipeline after fetching the instructions using a hardware

translator and scheduler or before feeding the instructions to the processors us-

ing software to fuse the dependent instructions into fused instructions that are

supported by the processor. Most of the studies used the potential of paral-

lelism, e.g., SIMD, to schedule and feed the fused instructions to the proposed

microarchitecture processor. Fused instruction concept has only been applied on

a small scale. The nature of instructions having strong dependencies is the key

that makes fused instruction a strong optimization option. This section explores

critical past studies on instruction fusion.

x86 Processor Implementations

The concept of fused instructions is not new and has been applied to many CISC

processors before. The AMD k7/k8 micro microarchitecture [19] reduced the dy-

namic instruction count using internal Macro-Operations in the pipeline front-

end. Another example is the Intel Pentium M microarchitecture [20], which fuses

ALU operations with memory store/load instructions. An x86 processor MOP

microarchitecture implementation is discussed in [7]. In that work, a CISC co-

17

design that uses fused instructions has been proposed and analyzed to increase

performance. Considering the complexity, a fully transparent dynamic trans-

lation software was utilized to decompose CISC instructions into one or more

RISC-style micro-ops and then fuse the dependent instructions after reordering

them. The resulting macro-ops are fetched into the proposed microarchitecture

as single instructions. A 3-input ALU and pipeline scheduling logic are used to

implement the functionality of the fused instructions.

The research proposed new architectural features, which allowed the processor

to translate CISC instructions into micro-ops. Then a two-level decoder was

used to feed the control signals into the pipeline. A two-level decoder in Figure

2.6 provides two modes: Fused macro-op mode and x86-mode. x86-mode is

activated when the program starts up, allowing the hardware to detect frequent

dependent instructions or potential frequent code regions. The instructions are

organized and translated using VM software into fused macro-ops and sent to a

concealed code cache. Taking advantage of superscalar out-of-order processor,

other instructions can be fetched while fused macro-ops are being prepared.

When fused instruction is ready, the macro-op mode is turned on, and the first

level of the decoder is bypassed. Moreover, while executing fused macro-ops

from the cache, the first-level decode logic can be turned off to save energy.

Figure 2.6 Overview of the proposed x86 design [7].

As programs run on this processor, the co-designed VM software will repeatedly

switch between the two modes.

18

Fused macro-op instruction set is shown in Figure 2.7. This fusable ISA consists

of RISC-like micro-ops with 16-bit and 32-bit formats. Using a format for fused

instructions is not essential, but it provides more flexibility to the translator.

As shown in the figure, the 32-bit format uses three register operands which

utilize the three inputs of the added 3-input ALU, In comparison, the 16-bit

format uses two operands where one of the operands is both a source and the

destination.

Figure 2.7 Formats for fusable micro-ops [7].

The co-designed microarchitecture and the conventional x86 processor have the

same pipeline stages (Figure 2.8). The only difference here is that using the

added two-way decoder and the 3-input ALU the processor can process fused

macro-ops instructions in coarse-grained parallelism through the superscalar pro-

cessor pipeline.

Since there are two modes of operation because of using the two-level decoders,

there are two pipeline flows. The x86 mode pipeline flow is slightly different

from fused macro-op mode as depicted in the figure. When an x86 code starts

up, the pipeline works exactly as the conventional x86 superscalar processor.

The co-designed processor can recognize and process the fused macro-ops in-

structions through a special "fuse" bit. After pairing the dependent micro-ops

and sending them in an adjacent way to the memory to create a macro-op code

and fetch them, these instructions are fused. Two critical stages are considered

in this design: Issue stage pipeline and ALU with result forwarding logic. As a

result of the need to execute back-to-back instructions and the fact that there

19

Figure 2.8 x86-mode and macro-op mode pipelines [7].

are only a few single-cycle result-register instructions, the processor is designed

to have a two-stage instruction issue without any performance loss. ALU and

result forwarding logic can use two cycles. The 3-input ALU can be thought of

as two back-to-back ALUs, where the first ALU result is fed to the second ALU

input while the other input of the second ALU is fed from the third operand.

Each ALU has one cycle of latency. In reality, this design uses one 3-input ALU

with two-cycle latency. There is no need for the second cycle in the regular x86

mode. The hardware is designed to take care of this, providing results like the

conventional x86 processor design.

This research, measured performance through IPC with changing issue buffer

size. Figure 2.9 shows the IPC scores for different configurations while changing

the buffer size within the range of 16 to 64.

Four-wide co-designed x86 processor performs nearly 20% better than the base-

line four-wide. The reason for that comes from the need to increase the issue

buffer size results from using the macro-op execution engine and binary transla-

tion. In general, macro-op co-designed superscalar processor performed better

than the conventional x86 superscalar processor using SPEC2000 benchmark.

In embedded systems, a uni-processor or a scalar processor often provides better

efficiency than complex designs and is, therefore, the design of choice. Thus, the

research area of this thesis does not directly overlap with the one presented in [7].

Macro-op For RISC-V

Instruction fusion requires the addition of specialized functional units. Many

20

mechanisms and microarchitectures are proposed to support different types of

fused instructions. Many factors play a role in designing and implementing a

processor that can run fused instructions or even translate instructions into other

macro-op instructions. The following two discussions concern two papers that

used instruction fusion on RISC-V ISA. The first paper presents the impact of

fused instructions on different ISAs, focusing on RISC-V using a compiler and

SPECINT2006 benchmark [8]. Meanwhile, the other modifies one stage RISC-V

processor to support a single fused instruction.

Figure 2.9 IPC performance comparison [7].

Avoiding ISA Bloat with Macro-Op Fusion for RISC-V

This paper studied the impact of adding fusion pair candidates on the dynamic

instruction count for different ISAs. Using SPEC CINT2006 benchmark to com-

pare the different ISA they show the reduction in dynamic instruction count after

adding fused macro-ops. They cover a detailed explanation of the benchmark’s

behavior by presenting the most common loops in SPECInt 2006. In addition

to that, they show eight fusion pair candidates and their effect on a processor

from cost and complexity. The geometric mean of the instruction counts of dif-

ferent ISAs evaluated from SPECInt benchmarks normalizes to the conventional

21

x86-64 ISA is shown in Figure 2.10.

Figure 2.10 The geometric mean of the instruction counts of the twelve
SPECInt benchmarks is shown for each of the ISAs, normalized to x86-64 [8].

This analysis showed that an RV64 processor could reduce its effective instruc-

tion count up to 5.4% when it supports macro-op fusion. However, the research

also states that adding more complexity to the microarchitecture to support

macro-op fusion may not be optimal, especially when the programs running on

that processor are unknown and may result in less efficiency. Our research adds

on top of this new proposed Fusion Pair Candidate and chooses these candi-

dates in a way to reduce complexity and cost as much as possible. Additionally,

modifying a processor (Rocket Chip) to support these instructions and studying

the changes needed for these fused instructions on both hardware and software

aspects is done.

SHA256-Efficient CPU Based on RISC-V Architecture

This analysis showed that an RV64 processor could reduce its effective instruc-

22

tion count up to 5.4% when it supports macro-op fusion. However, the research

also states that adding more complexity to the microarchitecture to support

macro-op fusion may not be optimal, especially when the programs running on

that processor are unknown and may result in less efficiency. Our research adds

on top of this new proposed Fusion Pair Candidate and chooses these candi-

dates in a way to reduce complexity and cost as much as possible. Additionally,

modifying a processor (Rocket Chip) to support these instructions and studying

the changes needed for these fused instructions on both hardware and software

aspects is done.

lw -> srliw -> slliw -> or -> sext

The next step is the proposed instruction design. One instruction is designed

to do all the above instructions called CURL. It is capable of loading data and

shifting it right and left. Then, ’Or’ the shifted left data with the sifted right

data to get the result. Figure 2.11 shows the format of the customized added

CURL instruction to RISC-V ISA.

Figure 2.11 Curl instruction format [9].

The design process explained in this paper can be presented as follows:

• Adding CURL instruction to the existing ISA by modifying the RISC-V

compiler.

• Writing a C code to test the added fused macro-op instruction.

• Modify Spike and Gem5 simulators to define and recognize the function-

ality of the new fused instruction.

23

• Propose a co-design RV32-1-stage architecture capable of executing the

new instruction.

• Simulate SHA256 program using Gem5 to see the impact of the fused

macro-op.

• Hardware emulation using both C and Verilog to compare area, power, and

performance between the modified processor and original RISCV-SODOR.

They modify the existing ALU to support the new instruction based on Figure

2.12. Overall, they managed to prove that their modified CPU is 2x times more

efficient than the original RISCV-SODOR single-stage processor when it runs

SHA256 F1.

Figure 2.12 Curl Block Diagram [9].

Trace Cache

One possible way to take advantage of instruction fusion is through the instruc-

tion stream of a trace cache [21] [22] [23]. Taking advantage of the repeated

loops, trace cache analyzes and collects them in what are called trace lines.

These trace lines is called later on when the processor is executing the same

instruction address. Instead of fetching the stream of instructions from the in-

struction cache, they are fetched from the trace cache using the address of the

loop as an entry in the trace cache. A trace line can be created from three

24

branches with 16 instructions across them. A couple of studies proposed some

dynamic optimization to perform on trace cache [22] [23]: instruction fusion,

dead code elimination, and dependency collapsing. One of the disadvantages of

using trace cache is that their performance depends on branch prediction. This

disadvantage almost disappears in modern branch predictors with a high pre-

diction rate. However, still having the recovery time when the loops end when

the prediction is missed, all instructions fetched from the trace cache have to be

flushed. Such optimization and others can make more sense when considering

the processor’s application.

Other studies used instruction fusion [24] [25] [26] [27]. "Macro-op scheduling:

Relaxing scheduling loop constraints " [24] added a single cycle ALU with three

operands beside the scheduler, allowing a superscalar out-of-order processor to

fuse dependent instructions dynamically. One of the fused instructions they

work on is combined instruction from control (branch) instruction and store

address generation instruction. In addition, they used a large instruction window

to overcome the gap between the processor core and the memory resulting in

concealing memory latency. "Interlock Collapsing Alu’s " [25] used what they

call Interlock Collapsing ALUs to create "multi-operation instructions." Simply

put, they created an ALU capable of doing two operations with three inputs.

These operations are logical operations and 2’s complement, such as:

//before using Interlock Collapsing Alu’s

R1 = R1-R3

R2 = R2-R1

//After using Interlock Collapsing Alu’s

R2 = R2-(R1-R3)

"Dataflow mini-graphs" [27] managed to achieve an overall processor perfor-

mance gain of 2%, 6%,7%, and 12% on SPECint, CommBench, MiBench, and

MediaBench, respectively, by using what they called "Dataflow mini-graphs" to

fuse multiple instructions statically. Using "handles," the processor uses a chain

of ALUs (3-stage non-collapsing ALU pipeline) with two reads and one write

to amplify the pipeline’s execution stage. After expanding the instruction for

25

execution by a dynamic instruction stream editor (DISE) through consulting a

Mini-Graph Table, the ALU selects its input from any stage in the pipeline to

achieve the required fusion. The research ended up with the best improvements

using only two instruction mini-graphs.

"Static strands: safely collapsing dependence chains for increasing embedded

power efficiency" [26] takes advantage of the dependence instruction chains to

save energy in modern embedded systems. According to this research, the val-

ues generated within the strand feed only a single instruction and tend to be

transient operands. These intermediate values can be bypassed and not written

into the register file. The authors managed to obtain a 15% increment in the

number of Instructions Per Cycle (IPC), which in return added energy reduction

to the existing one from the issue logic (16-24% energy reduction), bypass logic

(17-20% energy savings), and register file accesses (13-14% energy reduction);

as a result of the values which are not written to the register file.

2.4 Common benchmarks for embedded systems

Dhrystone

It was created by Dr. Reinhold P.Weicker to measure the performance of a pro-

cessor. Dhrystone consists of functions that focus on string handling. Because

of the nature of this benchmark as an integer benchmark, it is considered a good

embedded systems processor performance benchmark.

Coremark

Benchmark developed by EEMBC to test the functionality of the processor core

(central processing units (CPUs) and microcontrollers (MCUs) used in embed-

ded systems). It’s designed to replace the antiquated Dhrystone benchmark. It

contains the following algorithm: State machine (determine if an input stream

contains valid numbers), which is repeated by a defined number of iterations,

list processing (find and sort), which is done along with initializing data and

getting the parameters, matrix manipulation (common matrix operations), and

26

CRC (cyclic redundancy check). After the iterations, the time is captured, and a

CRC check is done to verify the results. Figure 3.7 illustrate Coremark workflow.

SPECint2006

Integer performance benchmark built to test the performance of modern server

computer systems.

Figure 2.13 Coremark Workflow [10].

27

Studying a benchmark and finding the fused opportunities, then modifying the

benchmark code to adopt fused instructions, is time-consuming. Dhrystone and

Coremark are chosen as reference benchmarks to study the performance benefits.

2.5 Chipyard environment for processor architecture performance

evaluation

2.5.1 Processor modeling

Chipyard is a framework that connects a collection of libraries and tools to

provide a platform that uses commercial tools and open sources to develop

SoCs. Chipyard framework provides different processor cores, such as BOOM

and Rocket Core, in addition to other peripherals such as accelerators; Chipyard

uses what is called Rocket Chip parameter system and Cake Pattern / Mixing

to provide processor modeling that is easy to build and customize. Architects

can easily build any customized SoC by using collection of parameters with pre-

defined values to control generator architecture and having the ability to merge

multiple systems components. Without going into too many details, the fol-

lowing example shows a small portion of a Chipyard default top that composes

various traits into a fully-featured SoC.

c l a s s Dig ita lTop (imp l i c i t p : Parameters)

extends ChipyardSystem

with t e s t c h i p i p . CanHavePeripheryCustomBootPin

//Enables op t i ona l custom boot pin

with t e s t c h i p i p . HasPeripheryBootAddrReg

//Use programmable boot address r e g i s t e r

with t e s t c h i p i p . CanHaveTraceIO

// Enables op t i o na l l y adding t r a c e IO

Chipyard provides many predefined configurations, such as BOOM and Rocket

Chip configurations.

28

2.5.2 ISA compilation

Chipyard uses the riscv-tools software toolchain, which includes the RISC-V

compiler and assembler, proxy kernel, the Berkeley Boot Loader (BBL), and

functional ISA simulator (spike). Riscv-tools have a parameter that controls the

ISA extensions. This parameter must be set according to the designed processor

model architecture. For example, the floating point unit is optional in Rocket

Chip configuration, and by default, it is used. Remove the floating point unit;

the processor can no longer execute instructions from the "F" extension.

2.5.3 Benchmark execution and execution time estimation

Chipyard has two types of simulators RTL simulators and FPGA-accelerated

simulators. Using the Verilator RTL simulator is the optimal choice as it is an

open-source, free simulator. Compiling any design other than default using RTL

simulator setting up the config parameter to one of the predefined configura-

tions or a user-customized configuration is mandatory. After that, the User can

run any code on the compiled design using riscv-tools or run the pre-packaged

benchmarks.

Chipyard uses Verilator (Open-Source) and Synopsys VCS (License Required)

as Software RTL Simulators. If the core is implemented correctly, it ought to be

able to execute RISC-V binaries. Running the Verilator under debugging mode

provides a cycle-accurate output file, including the number of cycles needed and

the CPU clock frequency. Using the number of cycles that are required to fin-

ish a test or benchmark and the clock cycle of the implemented core, we can

calculate the execution time using the equation:

CPU execution time = CPU clock cycles ∗ Clock Cycle

29

30

CHAPTER 3

DESIGN AND ANALYSIS

This chapter discusses the design method and analysis of the proposed design.

The differences are explained across macro-op fusion, micro-fusion, and instruc-

tion fusion. The fusion candidate selection process is described before present-

ing the fused instruction format. The last section in this chapter explores the

changes to Rocket Chip organization and describes the implementation and sim-

ulation method.

3.1 Identification of fused candidates

Macro fusion, micro fusion, or instruction fusion all refer to the method of

combining two or more instructions or operations into one instruction. Intel [28]

describes micro-fusion as fusing multiple micro-ops from the same instruction

into a single complex micro-op. In contrast, macro-fusion is done by merging

multiple micro-ops from different instructions into a single complex micro-op.

Instruction fusion, on the other hand, represents the idea of merging two or more

instructions into a single instruction, for example, at compile time. Processors

that support fusion generally have the same pipeline stages as the conventional

processors. The fusion into one single fused macro-operation is done during the

decoding stage or before it. This hardware optimization requires the instructions

to be adjacent and have a dependency; otherwise, either a scheduler is needed,

or the compiler needs to be enhanced to detect dependencies and rearrange the

instructions to be adjacent without affecting the program’s functionality. Fusion

method targets reduction in the instruction count to achieve better performance.

The following two hypothetical RISC-V codes demonstrate the potential benefit

31

of fusing instructions.

//un-fused

ADDI R1, R1, 16

loop:

ADD R5, R5, R6

ADD R8, R8, R5

ADDI R1, R1, -1

BNE R1, 0, loop

//Fused

ADDI R1, R1, 16

loop:

MADD R8, R8, R5 ,R6 //lets call this fused instruction MADD

//which is equal to R8 = R8+R5+R6

ADDI R1, R1, -1

BNE R1, 0, loop

The un-fused code has 65 instructions, while the fused code has 49 instructions.

Therefore, the run time is reduced by 25% in this example.

Many fused instruction can be created. ALU instructions can be fused with other

ALU instructions, control instructions, or memory instructions. Implementing

more fused instructions leads to adding more complexity to the processor orga-

nization. Identification of fused instructions requires selection of benchmarks for

the targeted processor segment. Dhrystone and Coremark integer benchmarks

have been selected in this work for analysis.

In this section, fusion pair candidates are presented as described in [8]; Addi-

tional two idioms are explained which are repeated in Dhrystone benchmark.

Statistical data is provided about each benchmark fusion pair candidate. De-

tails statistical data shows the reduction in "effective" instruction count. The

following idioms are good candidates for macro-op fusion.

• Load Effective Address

32

This idiom computes the memory location effective address and sends it to a

register.

// &(array[offset])

slli rd, rs1, {1,2,3}

add rd, rd, rs2

• Indexed Load

This instruction enables the processor to load data from an address resulting

from adding two registers.

// rd = array[offset]

add rd, rs1, rs2

ld rd, 0(rd)

• Clear Upper Word

This idiom clears the upper word of a 64-bit register by zeroing the upper 32-bits.

// rd = rs1 & 0xffffffff

slli rd, rs1, 32

srli rd, rd, 32

• Load Immediate Idioms (LUI-based idioms)

RISC-V ISA offers only a 12-bit immediate value. When we need to use larger

values, we can use load upper immediate instruction to increase the immediate

range up to 32 bits. There are two LUI idioms; the first idiom loads 32 bits to

a register.

// rd = imm[31:0]

lui rd, imm[31:12]

addi rd, rd, imm[11:0]

The second idiom loads a value into the memory with an address range up to

32 bits.

33

// rd = *(imm[31:0])

lui rd, imm[31:12]

ld rd, imm[11:0](rd)

• AUIPC-based idioms

Load global is an instruction that uses AUIPC to add an immediate to PC

address, allowing the processor to access memory at arbitrary locations.

// ld rd, symbol[31:0]

auipc rd, symbol[31:12]

ld rd, symbol[11:0](rd)

After studying Dhrystone assembly code, other two AUIPC-based idioms were

identified that are not mentioned in the literature. The first is AUIPC + ADDI,

and the second is formed from the first idiom (AUIPC + ADDI) and load in-

struction. This idiom happens when we need a larger immediate value for load

global.

// rd = imm[31:0] + PC

auipc rd, symbol[31:12]

addi rd, imm[11:0]

// ld rd, 0(imm[31:0] + PC)

auipc rd, symbol[31:12]

addi rd, imm[11:0]

ld rd,0(rd)

• Additional RISC-V Macro-op Fusion Pairs

This section shows some addition fused instructions that have not been imple-

mented in this research.

Load-pair/Store-pair

One of the famous idioms used by ARMv8 is load-pair/store-pair, which allow

the processor to read/write up to 128-bits from/into two registers using one

single instruction. This is possible to implement in RISC-V by fusing back-to-

back loads/stores.

34

// ldpair rd1,rd2, [imm(rs1)]

ld rd1, imm(rs1)

ld rd2, imm+8(rs1)

Load-pair/Store-pair are not cheap, as they require adding extra wire-port to the

register file and two read-ports to the memory. Furthermore, adding complex

load/store units always leads the processor to suffer from additional complexity.

Wide Multiply/Divide & Remainder

Multiplication in RISC-V generates a product of size 2*xlen. Two separate

instructions are needed to get the full 2*xlen of the product(MUL and MULH).

MULH[[S]U] rdh, rs1, rs2

MUL rdl, rs1, rs2

RISC-V user-level manual recommends fusing this idiom along with divide/re-

mainder idiom.

DIV[U] rdq, rs1, rs2

REM[U] rdr, rs1, rs2

Post-indexed Memory Operations

This idiom performs a load/store from a memory address and increments the

base memory address.

// ldia rd, imm(rs1)

ld rd, imm(rs1)

add rs1, rs1, 8

Post-indexed load operations require two write-ports, making it not profitable

for all micro-architectures [20].

AUIPC+JALR

AUIPC can be used when jumping to address more than 1 MB in the distance.

auipc rd, symbol[31:12]

jalr rd

35

Figure 3.1 Dhrystone fusion pair candidates.

Figure 3.2 Coremark fusion pair candidates.

36

Figure 3.3 Dhrystone 500 iterations fusion pair candidates.

Figure 3.4 Coremark 5000 iterations fusion pair candidates.

37

Using riscv-tools, assembly codes for both Coremark and Dhrystone were ob-

tained. After that, a python code is written to find the fusion pair candidates in

each assembly code and collect statistical data. Figure 3.1 and figure 3.2 show

the percentage of each fusion pair.

The next step is to run these benchmarks on the original Rocket Chip environ-

ment to collect data about the reduction in instruction count in each benchmark.

Therefore, the Verilator is set to verbose mode, and a cycle-accurate output is

obtained. Moreover, Dhrystone and Coremark were simulated under 500 and

5000 iterations, respectively. Afterward, a Python code is written to collect sta-

tistical data about each benchmark’s instruction count reduction, as shown in

figure 3.3 and figure 3.4.

It can be concluded that three idioms contribute to reducing instruction count in

each benchmark. Based on that, five candidates are chosen to implement (Clear

upper word, Load effective address, LUI-idioms, AUIPC-idioms, and Indexed

load). Nevertheless, AUIPC idioms are implemented except (AUIPC+JALR).

Section 3.3 demonstrates how fusion pair candidates are implemented in the

hardware.

3.2 Fused Instruction Format

Figure 3.5 Fused Instruction Format.

Designing a customized instruction format must follow the general format rules

of RISC-V ISA. Since Rocket core architecture propagates the instruction to all

38

the pipeline stages, using the same RISC-V format with different opcodes for

the fused instructions is less complex and keeps the ISA clean and simple. Using

a format for fused instructions is not essential. Still, it provides more flexibility

to the translator or the compiler.

3.3 Changes to Rocket Chip Organization

This research focuses on integer extension ISA to support embedded systems

applications; thus, we set riscv-tools to RV64IM. Rocket Chip offers many pa-

rameters that can be changed as knobs to customize the design, such as the

number of floating-point pipeline stages, the cache parameters, and TLB sizes.

RISC-V tools help implement a new processor without re-designing everything

from scratch. Furthermore, since it allows different models to be connected with-

out re-designing them again, it is easier to implement a new architecture at a

low level of abstraction. A five-stage pipeline streams one instruction per cycle

if there are no stalls or flushes. Suppose the processor fuses two instructions; the

processor saves an extra cycle whenever it executes this fusion. Having a loop

with fused instructions leads to an increase in the reduced number of cycles.

Loops typically tend to iterate many times, potentially using such optimization

techniques. Before going to the modified processor pipeline datapath, let us

observe the original datapath of the Rocket Core architectural diagram (Figure

3.6).

Design Choices

Rocket core 5-stage executes instructions like any single-issue core. One in-

struction is issued each cycle, and each instrucioın needs five stages to complete.

However, Rocket Chip supports branch prediction, TLB, and memory hierarchy.

Therefore, the instruction fetch can be held whenever memory hierarchy misses,

or branch misprediction occurs. Fusion pair candidates can be categorized into

two types. The first type needs two arithmetic operations, and the second one

needs 32-bit Immediate.

39

Figure 3.6 Rocket Core Architectural Diagram.

40

Proposed Rocketchip Architecture

Figure 3.7 Modified Rocket Core Architectural Diagram.

41

The proposed work added to the reference Rocket Chip RISC-V processor a

mux, second ALU, control fused signals, 12-bit execute stage register, and sign

extension unit and modified the Immediate unit and the mux before the write-

back register data to support executing fused instructions. Figure 3.7 illustrates

the modified Rocket core architectural diagram.

The Immediate unit was modified to append the Immediate[11:0] with Imme-

diate[31:12] to form the 32-bit immediate when needed; otherwise, it works as

the original Immediate unit. Another way to feed the processor with the 32-bit

Immediate would be through a 32-bit execute register to hold the Immediate

value and a mux after the Immediate unit controlled by a fused control signal to

select between 32-bit Immediate and the Immediate unit output. Nevertheless,

this increases the number of added register bits.

The added Second ALU is used to perform the second arithmetic operation

that the rest of the fusion pair candidates need. Moreover, the second ALU is

controed by two muxes and fused control signals. The first mux selects between

the second operand memory register and the sign-extended Immediate from the

memory instruction register. Meanwhile, besides its function, the second mux

was modified to work as a bypass unit for the second ALU. However, the second

ALU is added to the memory stage instead of modifying the existing ALU to

maintain the system’s frequency and avoid adding latency to the execute stage

by taking advantage of memory latency.

Fused control signals are generated by comparing the fused opcode with the one

that resides in the instruction registers.

Rocketchip can be modified to fetch and decode up to two 4-byte instructions

every cycle [8]. Controlling the processor with a fused control signal to fetch

two instructions provides an opportunity to feed the pipeline with the 12-bit

Immediate needed by some fusion pair candidates.

One of the critical factors in CPU design is the speedpath and its effect on

performance. Hence, design choices were made to avoid affecting the speedpath.

Therefore, considering all the possibilities of logic changes needed to implement

42

a processor capable of executing the fusion pair candidates, decisions were made

to keep the Rocket Chip clock cycle time the same as the reference. It can

be seen that the second ALU, mux, and sign extension unit were added in

the memory stage to take advantage of memory latency and work in parallel.

Moreover, since the memory latency is expected to be more than the latency of

the speedpath of the added hardware, the speedpath of the memory stage will not

change. Furthermore, modifying the Immediate unit to have an extra condition

for fused instruction will not change the speedpath in the execute stage since the

Multiplication/Division unit latency is more than the ALU latency resulting in

compensating for the additional time needed by the modified Immediate unit.

Lastly, the 12-bit Immediate in the execute stage is not affecting any speedpath.

Overall, The modified Rocket clock cycle time did not change as a result of fused

instruction changes.

• Load Effective Address

Figure 3.8 shows an overlay of how Load Effective Address is executed in the

modified Rocket core.

Fetch stage

The instruction is fetched from the instruction cache, and the program counter

PC increases by four.

Decode stage

The two operand registers values are loaded from the register file and sent to

the execute stage registers.

Execute stage

The first ALU muxes select the first register and Immediate values. Next, The

ALU shifts the value of the first register by a number of bits specified in the Im-

mediate and sends the output to the write-data memory register. Furthermore,

the second operand value is sent to the memory stage register.

43

Memory stage

The second ALU mux selects the second operand memory register. Then the

second ALU adds the second operand value to the first ALU output. The write-

data mux selects the output of the second ALU and sends it to the write-back

write-data register.

Write-back stage

The second ALU output is stored in the destination register.

Figure 3.8 LEA overlay.

• Indexed Load

Figure 3.9 shows how Indexed Load is executed in the modified Rocket core.

Fetch stage

The instruction is fetched from the instruction cache, and the program counter

PC increases by four.

44

Decode stage

The two operand registers values are loaded from the register file and sent to

the execute stage registers.

Execute stage

The first ALU muxes select the first and second register values. Next, The first

ALU adds the two values and sends the output to the memory stage write data

register.

Memory stage

The First ALU output is sent to the data cache as a load address.

Write-back stage

The loaded data is stored in the destination register.

Figure 3.9 Indexed Load overlay.

• Clear Upper Word

Figure 3.10 shows how this instruction is executed in the modified Rocket core.

45

Fetch stage

The instruction is fetched from the instruction cache, and the program counter

PC increases by four.

Decode stage

The two operand registers values are loaded from the register file and sent to

the execute stage registers.

Execute stage

The first ALU muxes select the first register and Immediate values. Next, The

ALU shifts the value of the first register left by a number of bits specified in the

Immediate and sends the output to the write-data memory register.

Memory stage

The second ALU mux selects the Sign-extended Immediate. Then the second

ALU shifts the value of the first ALU output right by a number of bits specified

in the Immediate. The write-data mux selects the output of the second ALU

and sends it to the write-back write-data register.

Write-back stage

The second ALU output is stored in the destination register.

• Load Immediate Idioms (LUI-based idioms)

Figure 3.11 and figure 3.12 shows how LUI idioms are executed in the modified

Rocket core.

Fetch stage

The instruction is fetched from the instruction cache. However, a fused control

signal is sent to the Instruction cache to fetch two instructions in the next cycle.

Hence, the program counter PC increases by eight instead of four in the next

cycle.

46

Figure 3.10 Clear Upper Word overlay.

Decode stage

One of the two fetched instructions holds the lower 12-bit Immediate value and is

sent directly to the decode stage. Meanwhile, The two operand registers values

are loaded from the register file and sent to the execute stage registers.

Execute stage

The Immediate unit appends the lower 12-bit Immediate with the upper 20-

bits. Then the first ALU muxes select the first register and Immediate values.

Followed by adding the Immediate value with register zero, and the output is

sent to the write-data memory register.

Memory stage

The First ALU output is sent to the data cache as a load address for the

LUI+Load idiom, whereas it is sent to the write-back write-data register for

the LUI+addi idiom.

47

Figure 3.11 (LUI+ADD) overlay.

Figure 3.12 (LUI+Load) overlay.

48

Write-back stage

For the LUI+addi idiom, the write-back write-data register value is stored in the

destination register. In contrast, the LUI+Load idiom stores the loaded data in

the destination register.

• AUIPC-based idioms

Figure 3.13 and figure 3.14 demonstrate overlays on how AUIPC idioms are

executed in the modified Rocket core. These idioms behave the same as LUI

idioms with only one difference the Immediate is added to program counter PC

instead of register zero.

Fetch stage

The instruction is fetched from the instruction cache. However, a fused control

signal is sent to the Instruction cache to fetch two instructions in the next cycle.

Hence, the program counter PC increases by eight instead of four in the next

cycle.

Decode stage

One of the two fetched instructions holds the lower 12-bit Immediate value and is

sent directly to the decode stage. Meanwhile, The two operand registers values

are loaded from the register file and sent to the execute stage registers.

Execute stage

The Immediate unit appends the lower 12-bit Immediate with the upper 20-bits.

Then the first ALU muxes select the program counter and Immediate values.

Followed by adding the Immediate value with register zero, and the output is

sent to the write-data memory register.

Memory stage

The First ALU output is sent to the data cache as a load address for the

LUI+Load idiom, whereas it is sent to the write-back write-data register for

the LUI+add idiom.

49

Figure 3.13 (AUIPC+ADD) overlay.

Figure 3.14 (AUIPC+Load) overlay.

50

Write-back stage

For the AUIPC+addi idiom, the write-back write-data register value is stored in

the destination register. In contrast, the AUIPC+Load idiom stores the loaded

data in the destination register.

Implementation and Simulation

Scala codes of the chipyard environment are modified to implement the proposed

Rocket Chip design. Furthermore, benchmark codes are manually searched for

fusion pairs candidates and replaced with the fused instructions. In contrast,

the Verilator is used to simulate the modified binary files of the benchmarks.

Moreover, as mentioned in the literature review, the Verilator output file is used

to obtain execution time for both benchmarks. Modifying the Rocket Chip

will result in a slight increment in power and area. However, the reduction in

execution time will reduce the processor’s energy.

51

52

CHAPTER 4

RESULTS AND DISCUSSIONS

Dhrystone and Coremark are run on the modified Rocket Chip to show the per-

formance benefits of Macro-Op Fusion for RISC-V embedded processors. Dhry-

stone benchmark provides two scores to measure performance Microseconds and

Dhrystones Per Second.

Microseconds =
Runtime

Number of iterations
∗ 1000000

frequency

Dhrystones Per Second =
frequency ∗Number of iterations

Runtime

First, Dhrystone is run with the default riscv-tools 500 iterations, and the results

in table 4.1 are obtained. However, the reduction in execution time was not

sufficiently noticeable. Hence, Dhrystone was run for more number of iterations

table 4.2.

Table 4.1 Dhrystone 500 Iterations Results.

Original Rocket Core Modified Rocket Core
Dhrystones Per Second 2239 2349

Microseconds 446 425
Eff. Inst. Counts 234563 225180
Eff. Inst. Counts 234563 225180

Reduction in Eff. Inst. Counts = 4%

Coremark is run with 5000 iterations. Using the two equations listed below

and the Verilator clock cycle and CPU clock cycles reports, the reduction in

execution time is obtained and summarized in table 4.3 and table 4.4.

CPU execution time = CPU clock cycles ∗ Clock Cycle

53

Table 4.2 Dhrystone Results With Different Numbers Of Iterations.

Iterations Original RC Inst. Counts Modified RC Inst. Counts
10 16273 15948
100 56399 54594
400 190057 182645
500 234563 225180

10,000 390617185 373624397
500,000 390617185 373624397

Reduction in execution time =
original time−modified time

original time
∗ 100%

Table 4.3 Reduction In Execution Time For Each Fusion Pair.

Fusion candidate Coremark Dhrystone
LEA 0.4% 0.67%

Indexed Load —— 0.93%
Clear Upper Word 4.5% ——
LUI-based idioms 0.5% ——

AUIPC-based idioms —— 2.2%

Table 4.4 Benchmarks Overall Performance Improvement.

Benchmark Execution time reduction
Coremark 5.4%
Dhrystone 3.8%

PLEASE REWRITE THIS AS:

The new modified Rocket Core has increased the overall processor performance

by decreasing the execution time by 5.4% and 3.8% for Coremark and Dhrystone

benchmarks, respectively.

According to [29], Coremark runs under approximately 120mW for a Rocket Chip

case study. In recent publications, the added functional units can be estimated

to consume power between 0.5mW and 2.5mW. Based on these findings, the

overall reduction in the energy dissipation of Coremark for 5000 iterations can

be calculated as 5%.

As the number of iterations increases, the number of fused instructions executed

increases, making the rest of the code residing outside the loops impact decrease

54

and vanish at some point.

These observations will result in a reduction in instruction count while the num-

ber of iterations increases.

All the previously proposed methods have done the fusion technique on super-

scalar processors except [9], which they have applied on a 1-stage RISC-V-

SODOR processor.

Macro-op fusion is not only a technique for high-performance super-scalar cores,

but single-issue cores with no compressed ISA support like the RV64G 5-stage

Rocket processor can also benefit [29]. "The renewed case for the reduced in-

struction set computer: Avoiding ISA bloat with macro-op fusion for RISC-

V". [8] evaluates the SPECINT2006 benchmark performance using effective in-

struction count by running it on the SPIKE ISA simulator and provides a design

proposal on adding macro-op fusion to the Berkeley Rocket in-order core.

This research has added fusion idiom (AUIPC+ADD), designed the Berkeley

Rocket in-order core to support macro-op fusion, and studied the performance

benefit using execution time on both Dhrystone and Coremark benchmarks.

Compared to [9], this research has applied the fusion technique on a 5-stage

RISC-V processor instead of a 1-stage processor and used five fused instructions

instead of one. Table 4.5 Compares the proposed method to these two methods

in the literature [8] [9].

Table 4.5 Proposed Work Vs Literature.

Research Processor Benchmark Reduction in instruction count
Literature [9] 1-stage SHA256 50%
Literature [8] Compiler SPECINT2006 5.4%
This research 5-stages Coremark 6.1%
This research 5-stages Dhrystone 4.4%

In conclusion, we have learned that analyzing the software level is essential in

such optimization techniques and plays a significant role in the obtained results.

55

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

Our modified processor proved that using instruction fusion as an optimization

technique can increase the overall performance, especially for application-specific

processors. In particular, the Rocket Chip processor that supports instruction

fusion could see a 3.8% and 5.4% reduction in its execution time for Dhrystone

and Coremark benchmarks, respectively. There are too many constraints and

trade-offs in processor optimization techniques. Therefore, Instruction fusion

may not be a good idea for a general-purpose processor because it may not be

applicable for future applications, programs, and compilers since it can not be

predicted that they will have sufficient fusion pairs candidates. However, the

behavior of the ISAs and standard programs can assure instruction fusion op-

portunities even for general-purpose processors. In the end, We can say that

instruction fusion is a powerful optimization technique if it is applied to a pro-

cessor that has specific known applications, such as embedded processors.

5.1 Future Work

In the future, instruction fusion can be applied to encryption technologies to sup-

port future internet infrastructure after investigating its behavior. In addition,

One of the leading technologies in computer architecture these days is acceler-

ators. Specialized hardware accelerators can provide an alternative to harness

a wider machine’s potential and the abundance of transistors in a die. These

accelerators have been introduced to support ISAs. By changing the design of

accelerator hardware, such optimizations can be applicable under a reasonable

design complexity and power budget. Two types of accelerators can use the

57

potential of macro-op fusion FU-based accelerators and Coarse-grained acceler-

ators [30]. Moreover, an energy study can be done on the proposed modified

design.

58

REFERENCES

[1] T. Jamil, “Risc versus cisc,” Ieee Potentials, vol. 14, no. 3, pp. 13–16, 1995.

[2] A. D. George, “An overview of risc vs. cisc,” in Proceedings The Twenty-

Second Southeastern Symposium on System Theory. IEEE Computer So-

ciety, 1990, pp. 436–437.

[3] F. H. Khan, M. A. Pasha, and S. Masud, “Advancements in microprocessor

architecture for ubiquitous ai—an overview on history, evolution, and up-

coming challenges in ai implementation,” Micromachines, vol. 12, no. 6, p.

665, 2021.

[4] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, V. I. U. level Isa, A. Wa-

terman, Y. Lee, and D. Patterson, “The risc-v instruction set manual,”

Volume I: User-Level ISA’, version, vol. 2, 2014.

[5] B. A. Research, “Chipyard documentation,” URL:

https://chipyard.readthedocs.io/en/stable/.

[6] B. Keller, “Risc-v, spike, and the rocket core,” CS250 Laboratory, vol. 2,

2013.

[7] S. Hu, I. Kim, M. H. Lipasti, and J. E. Smith, “An approach for imple-

menting efficient superscalar cisc processors,” in The Twelfth International

Symposium on High-Performance Computer Architecture, 2006. IEEE,

2006, pp. 41–52.

[8] C. Celio, P. Dabbelt, D. A. Patterson, and K. Asanović, “The renewed case

for the reduced instruction set computer: Avoiding isa bloat with macro-op

fusion for risc-v,” arXiv preprint arXiv:1607.02318, 2016.

[9] T.-Y. Wu, M.-K. Lin, and W.-K. Chang, “Sha256-efficient cpu based on

risc-v architecture.”

59

[10] S. Gal-On and M. Levy, “Exploring coremark a benchmark maximizing

simplicity and efficacy,” The Embedded Microprocessor Benchmark Consor-

tium, 2012.

[11] A. Akram and L. Sawalha, “The impact of isas on performance,” in Work-

shop on Duplicating, Deconstructing and Debunking (WDDD) co-located

with 44th International Symposium on Computer Architecture (ISCA),

Toronto, Canada, 2017.

[12] D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction set

computer,” ACM SIGARCH Computer Architecture News, vol. 8, no. 6, pp.

25–33, 1980.

[13] D. A. Patterson and C. H. Sequin, “Risc i: A reduced instruction set vlsi

computer,” in 25 years of the international symposia on Computer archi-

tecture (selected papers), 1998, pp. 216–230.

[14] D. A. Patterson and J. L. Hennessy, “Computer organization and design:

the hardware/software interface, (rev. ed. of: Computer organization and

design/john l. hennessy, david a. patterson. 1998.),” 2012.

[15] M. W. Welker and O. A. Place, “Amd processor performance evaluation

guide,” ADVANCED MICRO DEVICES One AMD Place, 2003.

[16] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams

et al., “The landscape of parallel computing research: A view from berke-

ley,” 2006.

[17] G. S. S. Gurvinder Singh, AditiTrivedi, “Emerging trends in embedded pro-

cessors,” Journal of Engineering Research and Applications (IJERA) ISSN,

vol. 4, no. 5, pp. 77–80, May 2014.

[18] A. Waterman, Y. Lee et al., “Spike, a risc-v isa simulator,” repository officiel:

https://github. com/riscv/riscv-isa-sim, 2011.

[19] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The amd

opteron processor for multiprocessor servers,” IEEE Micro, vol. 23, no. 2,

pp. 66–76, 2003.

60

[20] S. Gochman, “The intel pentium m processor: microarchitecture and per-

formance,” Intel technology journal, vol. 7, no. 2, 2003.

[21] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency

approach to high bandwidth instruction fetching,” in Proceedings of the

29th Annual IEEE/ACM International Symposium on Microarchitecture.

MICRO 29. IEEE, 1996, pp. 24–34.

[22] W. Zhang, S. Checkoway, B. Calder, and D. M. Tullsen, “Dynamic code

value specialization using the trace cache fill unit,” in 2006 International

Conference on Computer Design. IEEE, 2006, pp. 10–16.

[23] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Putting the fill unit to work:

Dynamic optimizations for trace cache microprocessors,” in Proceedings.

31st Annual ACM/IEEE International Symposium on Microarchitecture.

IEEE, 1998, pp. 173–181.

[24] I. Kim and M. Lipasti, “Macro-op scheduling: Relaxing scheduling loop

constraints,” in Proceedings. 36th Annual IEEE/ACM International Sym-

posium on Microarchitecture, 2003. MICRO-36. IEEE, 2003, pp. 277–288.

[25] S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock collapsing alu’s,” IEEE

Transactions on Computers, vol. 42, no. 7, pp. 825–839, 1993.

[26] P. G. Sassone, D. S. Wills, and G. H. Loh, “Static strands: safely collapsing

dependence chains for increasing embedded power efficiency,” in Proceedings

of the 2005 ACM SIGPLAN/SIGBED conference on Languages, compilers,

and tools for embedded systems, 2005, pp. 127–136.

[27] A. Bracy, P. Prahlad, and A. Roth, “Dataflow mini-graphs: Amplifying

superscalar capacity and bandwidth,” in 37th International Symposium on

Microarchitecture (MICRO-37’04). IEEE, 2004, pp. 18–29.

[28] I. Coorporation, “Intel 64 and ia-32 architectures op-

timization reference manual, february 2022,” URL:

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-

architectures-optimization-manual.pdf.

61

[29] D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee, J. Bachrach,

and K. Asanović, “Strober: Fast and accurate sample-based energy sim-

ulation for arbitrary rtl,” ACM SIGARCH Computer Architecture News,

vol. 44, no. 3, pp. 128–139, 2016.

[30] A. Deb, J. M. Codina, A. Gonz et al., “A co-designed hw/sw approach

to general purpose program acceleration using a programmable functional

unit,” in 2011 15th Workshop on Interaction between Compilers and Com-

puter Architectures. IEEE, 2011, pp. 1–8.

[31] Open4Tech, “Memory layout of embedded c programs,” URL:

https://open4tech.com/memory-layout-embedded-c-programs/.

[32] A. Akram, “A study on the impact of instruction set architectures on pro-

cessor’s performance,” 2017.

[33] A. S. PATIL and U. J. TUPE, “Recent trends in platforms of embedded

systems.”

[34] A. Deb, “Hw/sw mechanisms for instruction fusion, issue and commit in

modern u-processors,” 2012.

62

TEZ İZİN FORMU / THESIS PERMISSION FORM

PROGRAM / PROGRAM

Sürdürülebilir Çevre ve Enerji Sistemleri / Sustainable Environment and Energy Systems

Siyaset Bilimi ve Uluslararası İlişkiler / Political Science and International Relations

İngilizce Öğretmenliği / English Language Teaching

Elektrik Elektronik Mühendisliği / Electrical and Electronics Engineering

Bilgisayar Mühendisliği / Computer Engineering

Makina Mühendisliği / Mechanical Engineering

YAZARIN / AUTHOR
Soyadı / Surname : ..

Adı / Name : ..

Programı / Program : ..

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : ...
..
..
..

TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master Doktora / PhD

 1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately for access
worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or proprietary
purposes for a period of two years. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six months. *

Yazarın imzası / Author Signature Tarih / Date

Tez Danışmanı / Thesis Advisor Full Name: ……………………………….

Tez Danışmanı İmzası / Thesis Advisor Signature: ……………………..

Eş Danışmanı / Co-Advisor Full Name: ……………………………….

Eş Danışmanı İmzası / Co-Advisor Signature: ……………………..

Program Koordinatörü / Program Coordinator Full Name: ……………………………

Program Koordinatörü İmzası / Program Coordinator Signature: …………………..

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation and Problem Definition
	Motivational Example

	Proposed Methods and Models
	Thesis Contribution
	Thesis Outline

	Background and Literature
	Processor evolution for embedded systems
	Early processors
	Processor segmentation to support embedded systems
	Trends in embedded system processors

	Embedded RISC-V open-source architecture
	RISC-V architectural features
	Rocket Chip organization

	Instruction Sets
	RISC vs. CISC instruction sets
	RISC-V instruction set for embedded systems
	Fused instructions and benefits

	Common benchmarks for embedded systems
	Chipyard environment for processor architecture performance evaluation
	Processor modeling
	ISA compilation
	Benchmark execution and execution time estimation

	DESIGN AND ANALYSIS
	Identification of fused candidates
	Fused Instruction Format
	Changes to Rocket Chip Organization

	Results and Discussions
	Conclusion and Future Work
	Future Work

	REFERENCES

