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ABSTRACT

A COMPARATIVE STUDY OF FINITE
ELASTOSTATICS OF COMPRESSIBLE

HYPERELASTIC MATERIALS

AKYUZ, Ugurhan
M.S. in Civil Engineering
Supervisor : Prof. Dr. Aybar ERTEPINAR

June, 1992, 110 pages

In this work, the behavior of hollow, circular cylindrical shells made
of compressible, hyperelastic materials and undergoing large elastic
deformations is investigated. The responses of three material models, namely,
Blatz, Blatz-Ko, and Levinson-Burgess models are compared when the shells

are subjected to:



a. anti-plane shear,
b. constant spin and circumferential shear,

¢. uniform circumferential shear,

'The theory of finite elasticity is used in the formulation of the problems. The
method of adjoints is used to solve the highly non-linear governing differential
equations numerically. The stress and the displacement fields are obtained for
various values of material constants. The validity of existing models is

discussed.
Key words: Finite elastic deformation, compressible hyperelastic materials

Science Code: 625.01.01




Oz
SIKISTIRILABILIR HIPERELASTIK MALZEMELERIN

ELASTOSTATIK DAVRANISLARININ KARSILASTIRILMASI

AKYUZ, Ugurhan
Yiiksek Lisans tezi, insaat Mlhendisligi Anabilim Dall
Tez Yoneticisi: Prof.Dr. Aybar ERTEPINAR

Haziran, 1992, 110 sayfa

Bu calismada, sikistinlabilir, hiperelastk malzemelerden
yapilan i¢i bos, dairesel silindirik kabuklarin blytk elastik sekil degistirmeler
altindaki davraniglari incelenmisgtir. Dlzlem disi kesme, sabit dénme ve
cevresel kesme, dlzgln yayil cevresel kesme kuvvetlerine maruz kalan
kabukiar Blatz, Blatz-Ko ve Levinson-Burgess modelleri kullanilarak
kargllagtrimigtir. Problemin formulasyonunda soniu elastisite teorisi
kullaniimigtir. Lineer olmayan diferansiyel denklemler adjointler metoduyla
nUmerik olarak ¢ézUimustir. Gerilme ve sekil degistirme bilegenleri malzeme

sabitlerinin degisik dederleri icin elde edilmigtir. Mevcut modellerin gecerliligi



tartisiimigtir.

Anahtar Kelimeler: Sonlu gekil degistirme, sikistnlabilir hiperelastik

malzemeler

Bilim Kodu: 625.01.01
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CHAPTER |

INTRODUCTION

The research in finite elasticity began in 1940’s with the increasing
importance of rubber and rubber-like materials in industrial applications.
During the last fifty years, several researchers investigated the mechanical
properties of this type of materials. The early researchers assumed the
materials to be ideally elastic, isotropic, homogeneous, and incompressible.
The works on the compressible materials have begun in 1970’s. These works

can be classified as

- theoretical and experimental studies performed for determining
a suitable strain energy density function for such materials,

- works which investigate deformations, stresses, and surface
tractions in materials of different geometry which undergo finite

elastic deformations for various boundary conditions.



It has been shown that qualitative differences exist between the
bodies made of incompressible and compressible elastic materials for the
same boundary value problems. The incompressible material models are
considerably easier than their compressible counterparts, and give an idea
about the behaviour of the body under a large variety of static and dynamic
loading. These models,however, cannot fully explain the behaviour of
hyperelastic materials, and hence the compressibility of the material must be
taken into account for a closer approximation to the real behaviour. But, with
the compressible material models, only equilibrium type of problems have so
far been solved, except some relatively easy problems. Stability and
propagation type problems are yet to be investigated with compressible

material models due to their mathematical complexity.

Before proceeding with a detailed description of the contents of
this study, it is suitable to give a brief review of the historical developments

relevant to the subject.

M. Mooney [1] was the first scientist to investigate the expression
for the strain energy function of a hyperelastic body subjected to a finite
homogeneous strain field. If the body is isotropic and the strains are smali,
it is known that the energy can be expressed in terms of strains and two

2



material constants, the compression modulus and the rigidity modulus.
However, the deformations which rubber and similar substances undergo are
too large to be included in the classical theory of small strains, even when the
theory is extended to the second and higher approximations. Mooney
proposed a strain energy density function for rubber-like materials. He
assumed that, besides being homogeneous and free from hysteresis, the
material is isotropic, the deformations are isochoric (i.e.' without change in
volume), shear is proportional to the traction in simple shear in any isotropic
plane for linear case, and the traction in simple shear is an analytic function
of the shear for non-linear traction-shear relation. He calculated the forces
necessary to produce isochoric simple stretch in a tensile test specimen.
Calculated forces agreed closely with experimental data on soft rubber from

400 percent elongation to 50 percent compression.

Then, in late 1940’s, R. S. Rivlin [2,3,4] considered the problem of
determining the strain energy density function for rubber-like materials from
both theoretical and experimental points of view. He wrote a series of papers
about large elastic deformations of isotropic materials. First, he gave the
stress-strain relations, equations of motion and boundary conditions for an
incompressible material, the so-called "neo-Hookean" material which has the
simplest strain energy density function with one constant and depending on

3



only the first strain invariant. Then, he calculated the surface tractions
necessary to produce simple deformation field in a right-circular cylinder and
in a tube of circular cross-section of the same material. Next, the stress-strain
relations, equations of motion and boundary conditions for an incompressible
material which is isotropic in its undeformed state and for which the strain
energy density function is a function of two strain invariants, were derived in
a form suitable for the calculation of the forces necessary to produce a
specified deformation, without any explicit form for the strain energy density
function being assumed. Then, these equations were applied to calculate the
forces necessary to produce simple torsion in a cylinder. It was found that,
apart from an arbitrary hydrostatic pressure applied over the whole surface
of the cylinder, azimuthal and normal surface tractions must be applied to the
ends of the cylinder. In 1949, he expressed the forces necessary to produce
simple deformation field in a tube of incompressible, highly elastic, isotropic
material by using the so-called Mooney strain energy density function which
is a linear equation with two constants, and depends on the first two strain
invariants [4]. In this study, he first considered three types of simple

deformation fields individually. These were

- a uniform simple extension,
- a uniform simple inflation of the tube, in which its length remains

4



constant,
- a uniform simple torsion, in which planes perpendicular to the .
axis of the tube are rotated in their own plane.
Then, he examined the first two deformations followed successively by simple

shears about the axis of the tube and parallel to it.

The neo-Hookean, and the Mooney strain energy densities may be
viewed as the simplest such representations of W for incompressible

materials.

Riviin’s theory was later generalized by Green and Zerna [5] usiné
a curvilinear coordinate system moving with the body. The problems of small
twist superposed upon a finite extension, upon a hydrostatic pressure, or
upon a combined hydrostatic pressure and tension were solved by Green

and Shield [6].

Treloar [7] approached the problem both from a molecular and a
phenomenological point of view. His molecular theory is based on the
conception of vulcanized rubber as an assembly of long chain molecules,
linked together at a relatively small number of points. He supplemented his
theory by experimental examination, and gave the photo-élastic, mechanical,

5



and dynamic properties of rubbers.

In 1968, H. Alexander [8] proposed a new constitutive relation
based on previous works and experiments performed on neoprene film. In
this study, Alexander considered a new model to represent incompressible
materials. The goal of his work was to obtain a constitutive relation for rubber
and rubber-like materials which experience large deformations under loading
with a non-linear stress-strain characteristic. He claimed all of the previous
theories to be inadequate, and he proposed a new relation to represent the
response throughout the entire range of deformations more accurately. In fact,

this was a generalization of earlier theories.

As mentioned before, there exist qualitative differences between the
bodies made of incompressible and compressible elastic materials for the
same boundary value problem. Specific forms of strain energy density
functions of some slightly compressible hyperelastic materials were first
proposed by Blatz' and then by Blatz-Ko[9]. Later Levinson-Burgess[10]
introduced the polynomial compressible material model. These models, in the

limiting cases of incompressible behaviour or infinitesimal deformations,

! Refence is made by Levinson and Burgess [10]
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reduce, respectively, to Mooney or classical Hooke materials.

In the same context, Shahinpoor [11] obtained the governing
equations of a class of finite screw-dislocations for a general strain energy
function. The solutions of these governing equations were than obtained for
some slightly compressible materials such as the Blatz, Blatz-Ko, Levinson;
Burgess and Murnaghan [12] material which has a strain energy density

function with five elastic constants, and depends on all three strain invariants.

Finite telescopic shear of a compressible hyperelastic tube was
considered by Mioduchowski and Haddow [13]. They showed that solutions
with isochoric deformation fields exist for a class of strain energy functions.
A numerical method was proposed for the analysis of the problem when a

solution with an isochoric deformatioh field does not exist.

Knowles [14,15] was the first scientist who considered the problem
of anti-plane shear in finite elasticity for a homogeneous, isotropic,
compressible elastic body which is unstressed in its undeformed state.
Agarwal [16] used Knowles theorem for anti-plane shear of compressible,
homogeneous, isotropic, elastic materials to determine some restrictions on

a strain energy density function.



The stability and the small vibrations of rectangular, layered
columns undergoing finite axial deformations were investigated by Tokdemir
and Ertepinar [17], and Ertepinar and Akkas [18]. The layers of the column
were assumed to be made of compressible, hyperelastic materials. Some
numerical results of the closed form solutions were provided to study the

effect of material and geometric properties.

One of the most important recent contributions to finite elasticity
of compressible hyperelastic materials is due to Carroll {19] who introduced
three classes of compressible isotropic elastic solids for each of which strain
energy, expressed as a function of the three principal invariants, is linear in
two of its arguments and non-linear in the third argument. He examined
several deformation fields for which the governing equations reduce to a set

of non-linear ordinary differential equations.

In late 80’s and 90’s, anti-plane shear, constant spin and
circumferential shear, and circumferential shear problems which are the
subject of this study , are worked by Ertepinar [20,21,22], by using Levinson-

Burgess model only.

The obijective of this work is to investigate the deformation fields

8



and stresses of these three types of problems using three existing models,
namely, Blatz, Blatz-Ko, and Levinson-Burgess models. In all of the problems
a long, circular cylindrical tube whose inner surface is bonded to a rigid

cylinder is considered. The deformation fields are

A. Anti-Plane Shear:

Outer surface is subjected to a uniformly distributed shear stress

applied in the axial direction.

B. Constant Spin and Circumferential Shear:

Inner surface spin with a constant angular speed while the tube is
subjected to uniformly distributed circumferential shearing tractions on its

outer surface.

C. Circumferential Shear:

Outer surface is subjected to a uniformly distributed circumferential

shearing tractions.



The general theory of finite elastic deformations is briefly reviewed
in Chapter 2, the contents of which are essentially extracted form the text of
Green and Zerna [5]. In Chapter 3, the general theory is applied to circular
cylindrical tube which is made of a compressible material. The governing
equations of the three types of problem for three models are obtained, and
these governing equations are put in a form suitable for numerical solution.
In Chapter 4, the shooting method, namely the method of adjoints, is briefly
discussed, the contents of which are essentially extracted from the text of
Robert and Shipmann [23]. The numerical solution of the problems are given
in the same chapter. Finally, a discussion pertaining to the numerical results
of these investigations, and conclusions are presented in Chapter 5, and

Chapter 6.
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CHAPTER II

THEORETICAL FOUNDATIONS

In this chapter, a brief summary of the general theory of finite
elasticity is given. The derivations are essentially based on the text of Green

and Zerna [5].

2.1 Field Equations of Finite Elastic Deformations

Let a body B, in the unstrained state be defined by a fixed
rectangular cartesian system of axes X;- Suppose that the positions of thé
points of the body B, change so that a typical material point P, moves to P
in the deformed state. The point P is referred to a new fixed rectangular
cartesian system of axes X; in the deformed state B. The material points of the
body can also be described by a set of curvilinear coordinates el which
deform with the body. Then the unique functional relations x; (ej) and X; (ei)

define the deformation of the body from B to B.



The covariant and contravariant base vectors g, reciprocal base

gy

vectors _g~' and the corresponding metric tensors gj and gij of the material

coordinates el in the undeformed body B, are given by

axk . i 66' .k
g - —1i , g - —i (2.1)
Y ax*t
ox* oxk
8y = & = PYYETY, (2.2)
" . 00t 96/
b o ol g o ZY_ OV
g =88~ 5 2.3)

where i, andik are the unit vectors along a fixed cartesian coordinate axis.
The range of free indices is three, and a repeated index indicates summation

over the range.

Similarly, the base and the reciprocal base vectors, and the metric

tensors in the deformed body B are given by

axk . ;08! .,
G - 22 , Gi - 99 ¢t (2.4)
—+ g9t ax*
ox* ox*
G, - G.G, - —— —_ (2.5)
v 50 900

12



06! 96/

GV =« GEGI = _
Xk ox*

(2.6)

In other words, consider a deformation in which a point of an
isotropic elastic body initially having cartesian coordinates P (xi) is displaced
to a new cartesian position P (Xi). The deformation tensor which characterizes

this mapping is denoted by

k k

G - 9X" oX" @7
i i i
dx' odx’

For conciseness, and without loss of generality, it is assumed in

the subsequent formulations that x; and X; coincide.

The state of strain at a point of the body is determined by the

covariant strain tensor

1
Y,‘j = E(Gu-g,,) (2‘8)

For bodies made of perfectly homogeneous, isotropic, and elastic
materials, it is assumed that the strain energy density function, (strain energy

per unit mass of the deformed body), has the form

13



W = W{,L,I) (2.9)
where the three strain invariants l,, I,, and |5 are given by

I - g'G,

L - g,G"l, | (2.10)

-8

4

in which g and G denote, respectively, the determinants of the covariant

metric tensors i and Gij.

The components of the stress tensor, which are derivable from the

strain energy density function are given by

- ®gi+yBI+pGY (2.11)
where
0. 23W
A ol,
Y - —i—:—z (2.12)
p-2 13%2'
BV - 1,§"-58"8"G,, (2.13)

14



The equations of the motion are given by
til+pFl = pf! (2.14)
where a double line denotes covariant differentiation with respect to the
strained body B (9i variable), p is the mass density of the deformed body, Fj,

and f denote the contravariant components of the body force and the

acceleration vectors, respectively.

The covariant differentiation in the equation of motion can be

expressed as

il = ¥, 4TI o7 T oY (2.15)

where 1“;17 are called the Christoffel symbols of the second kind, and they are

derived from

-1

A
)

g"(g,;,ﬁgjs’,.—g,.j,,) (2.16)

By introducing equation (2.15) in equation (2.14), the equation of

motion becomes

tl, + Tt + T = pf (2.17)
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For the static case, righthand side of the equation vanishes.

The physical components of stress can be written as

G. .
L ¥ (ij not summed) (2.18)

Gij = Gfi

Note that % is not a tensor.

2.2 Forms of Strain Energy Density Function

A hyperelastic material is a material for which the stresses are
derivable from a potential W, called the strain energy density function. The
strain energy W per unit volume of the undeformed state for a homogeneous,
isotropic, compressible hyperelastic material may be expressed as a function

of the three strain invariants (see equation (2.9))

If the material is incompressible, then I3 = 1. The most general
form of strain energy function for a homogeneous, isotropic, incompressible
elastic material may be expressed as the sum of series of terms involving

powers of (1,-3) and (1,-3)
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W - i C,; (I, -3)'(1,-3) (2.19)

i-0,j-0
where l1 = l2 = 3 for zero strain and C00 = 0 to insure that W = 0 at zero

strain, [7].

Besides its mathematical simplicity, it is reasonable to assume that
a small number of terms, corresponding to the linear terms of the series,
would predominate [7]. Therefore the strain energy density function can be

approximated as
W = C({;-3)+C,(1,-3) (2.20) -

which represents the most general first order relationship in I; and I,, and

which was derived by Mooney [1].

Treloar [7] found, by applying Gaussian statistics to a simple

model of a network of long chain molecules, that W could be expressed as
W = C,d,-3) (2.21)

This form was used by Rivlin [2,3,4] to characterize the so called Neo-
Hookean solid. Treloar [7], Blatz-Ko [9], and Alexander [8] show that Neo-
Hookean form gives a reasonabie description of the behaviour of continuum
rubber-like materials for 0.6 < A < 2.0 where A denotes the stretch ratio.

17



The Mooney-Riviin [8] material is defined by the strain energy

density
W - —;-[f(ll—3)+(1 -H,-3)] (2.22)°

where u is the shear modulus of the material for vanishingly small strains, and
f is the material constant whose value lies between zero and unity. It was

found that for a highly elastic rubber f = 0 and for a solid rubber f = 1 [11].

It is seen that when f is unity the Mooney-Rivlin material reduces
to the Neo-Hookean material. Neo-Hookean, and Mooney-Riviin strain energy
density functions may be viewed as the simplest representations of W for

incompressible materials.

It is known that for the same boundary conditions, there exist
qualitative differences between the behaviour of compressible elastic materials,

and incompressible elastic materials.
Specific forms of strain energy density functions of some slightly

compressible hyperelastic materials were first introduced by Blatz, and Blatz-

Ko [9]. Blatz proposed a material whose strain energy density is given by
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Wy = —[(J -3)- (-—-—)an ( )(J D] (2:23)

where

J=1

I2
= — 2.24
" 1 (224)

Jy = \/I—s
and v is Poisson’s ratio for the material as the deformations become
vanishingly small.

Blatz and Ko introduced the following strain energy density [9]

- SLU-H+A-pU,-3)
-2V _2v (225)
)(f(f; T D+A-HU - 1)

1-2v

+(

Blatz and Ko [9] found, experimentally, that for the polyurethane
rubber (dW/dJ,) is nearly zero. For the foam rubber as opposed to thg
continuum rubber, (OW/dJ,) is approximately zero, while (dW/dl,) is large and
positive. These results indicate that, all the shear behaviour arises from the
second Mooney-Rivlin type constant. The results of foam rubber can be

summarized as
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Table 2.1 Results of Blatz-Ko studies

Test type r (MPa) f v

Simple tension 0.262 0.13 0.25
Strip-biaxial tension 0.200 0.07 0.25
Homogeneous-biaxial tension 0.186 -0.19 0.25
Average value 0.220 0.00 0.25

For the continuum rubber, they observed that f is nearly equal to unity up to
very high compressive stresses, and the finite strain value of Poisson’s ratio
is 0.463. They concluded that under all the stress fields they considered, both

foam rubber and continuum rubber soften as the tensile stress increases.

Poisson’s ratio of 0.463 given by Blatz and Ko for a particular
polyurethane rubber seems to be the smallest experimental value found for

this parameter by workers in rubber elasticity [10].

Levinson and Burgess [10] introduced the polynomial
representation of the strain energy density function for a compressible

hyperelastic material which reduces to the Mooney-Rivlin material as v — 0.5
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W, - %[/(11-3)+(1—f)(J2—-3)

4v-1
1-2v

(2.26)

+2(1-2HU;-D+@2f+ )5~ 1)1

The strain energy density functions Wg, Wg,, and W, g reduce to
the classical Hooke's material for small strains which indicates that WB, WBK{
and W g do not differ in quadratic terms of ; which is defined as the
principal extension. On the other hand, each of these strain energy densities
is different from the others in all third and higher order terms of g;s. In other

words, their non-linear, finite strain behaviours are different.

Levinson-Burgess considered five stress fields in [10] to investigate
the deformation behaviour of bodies having these three strain energy density

functions. The five stress fields are

a. uniaxial tension

b. equal biaxial tension

c. hydrostatic stress

d. equal biaxial plane strain

e. uniaxial strain

21



To derive the equations describing these relations they used the

constitutive relation

2 ,20W_1 W J; ow
S v vR R VY
' 1 A 92 i 93

]

(2.27)

where S; is the so-called nominal stress on the undeformed cross-section, J1,

J,, and J5 can be expressed in terms of principal stretch ratios A,

Jy = o+ —+— (2.28)

T, = —s, (2.29)

The conclusions arrived at the end of their study can be

summarized as follows

a. Uniaxial Tension
For v > 0.40 all materials behave reasonably in tension and
compression, and the results are close to the Neo-Hookean material in the
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range 0.6 < A < 2.0 (Figure [2.1]).

b. Equal Biaxial Plane Stress

For v > 0.46 all materials behave reasonably in tension and
compression, and the results are similar in behaviour to the incompressible
Neo-Hookean material in the range 0.6 < A < 2.0. For v = 0.40 the Blatz,
and Blatz-Ko materials still behave reasonably over the whole range of A
considered, however the compressible polynomial material behaves somewhat

unreasonably in compression in that it softens for A < 0.8 (Figure [2.2]).

¢. Hydrostatic Stress

The behaviours of Blatz, Blatz-Ko, and compressible polynomial
material are quite different. The Blatz-Ko material stiffens under compression;
and dramatically softens under tension. The Blatz material behaves, perhaps,
in the most intuitively reasonable manner in that it shows moderate stiffening

under compression and tension (Figure [2.3])
d. Equal Biaxial Plane Strain

The behaviours of all three types are similar to those in case c,

except that the Blatz material softens slightly in tension.
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e. Uniaxial Strain
All of the materials behave as in case d, but here the polynomial

material gives a completely linear characteristic.

Reasonable means that a stiffening under compression and

tension.

This paper leads to the conclusion that the Blatz, Blatz-Ko, and
compressible polynomial materials may be used to study the qualitative
effects of slight compressibility on the finite strain behaviour of rubber-like
materials. These simple relations provide models for analysis of the theoretical
aspect, and not models for the design of rubber-like components. The term
"slightly compressible" is taken to mean that v is close to 0.5, and the

smallest v one need consider is 0.46.
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Figure 2.2 Equal Biaxial Plane Stress (taken from [10])
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Figure 2.3 Hydrostatic Stress (taken from [10])
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CHAPTER Il

FORMULATION OF THE PROBLEM

In this chapter the general theory outlined in the previous chapter
will be applied to the problems of anti-plane shear, constant spin and
circumferential shear, and pure circumferential shear. In all the problems, the
material is assumed to be hyperelastic, isotropic, homogeneous, and

compressible. Three specific types of compressible materials are investigated.

3.1 Governing Equations

3.1.1 Finite Anti-Plane Shear of Compressible Hyperelastic Tube

Subjected To External Axial Shear

Consider a long, circular, cylindrical tube whose inner surface is
assumed to be perfectly bonded to a rigid shaft. The outer surface of the
tube is subjected to a uniformly distributed shear stress applied in the axial

direction. The inner and the outer radii in the undeformed and the deformed



configurations are respectively denoted by Ry, R, and ry, r,. Identifying the
cylindrical coordinates (r,0,z) in the deformed state by e‘, and referring this

configuration to the fixed cartesian coordinates {X;}, one has

X, = rcosf
X, = rsinf 3.1)
X, =z

In an anti-plane shear deformation, a material point undergoes an
axial displacement w, and a radial displacement u which are both assumed
to be functions of radial coordinate r only. Hence, a material point whose
coordinates are (r,0,z) in the deformed state is originally at R=r-u(r), 6=e,

and Z=z-w(r) such that

x, = [r-u(r)]cosB
x, = [r-u(r)]sin6 (3.2)
X, = 2-w(r)

From equations (2.2), (2.3), (2.5), and (2.6), the metric tensors Ojp

gij, and Gij, G of the undeformed and deformed geometries are obtained as
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A-uh+w) 0 -w

8y = 0 (r-u)? O (3.3)
-w! 0 1
_ .-
1 0 w
(1-u'y (1-u’y?
1
y_| O 0 3.4
& (r-u)? S
/ N2
w 0 1+ W)
(1 -uy’ (1-u'y?
100
G, =|0 1 0 (3.5)
0 0 1
1 0 0
gl -lo Lo (3.6)
7’2
0 0 1
g = detlg} - (r-w?(1-u'y? (3.7)
(3.8)

G - det{G,.l.} = r?

In equations (3.3), and (3.4) a prime denotes differentiation with respect to r.

Three strain invariants |1, I2, and I3 of the deformation field are
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computed from (2.10). They are

I -1+ r? 1+Ww')?
S R )
AL G D L2 U0 PO (3.9)

The contravariant components of the tensor B are obtained as

2
Bt - 1 . T

a-u @-w?

r’w’
(r-u?(1-u'y

BIS - BSI r

1 1+ 1+(w’)2] (3.10)
(r-u) 1 -u'y?

BZZ -

333 - 1 + 7‘2 [1+ (W,)z
A-u? (-w? (A-d')?

BIZ_B21=B23_B32_0

Substituting equations (3.5), and (3.6) into equation (2.16), the
Christoffel symbols of the second kind are obtained for the cylindrical system

(r,0,z). The non-zero components are
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I‘%z = P:l = ';lj ; Ty, = -r (3.11)

The equations of equilibrium in terms of stress components, can
be written by inserting Christoffel symbols defined in equation (3.11) into

equation (2.17) as

a7l 1:11_,.21'.22+ o172

+ -0
or r o0
21 12 22
ot + 3t + ot -0 (312)
or r o0

atl‘."» 31.'23 1:13
+ +
or or r

-0

From equations (2.11), and (2.12) the stresses can be written as

¥ - 2 anij-i- 2 aWBij+2\/I_36—u’Gij

AC AN A al,

(3.13)

At this point, specific forms of the strain energy density functions

are introduced.
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A. Polynomial Material

As mentioned before, this model is proposed by Levinson and
Burgess [10], and the strain energy density function in terms of strain
invariants 1y, l,, and ly is given by

I
Wy = %v(11-3)+(1 -HZ-3)
3 (3.14)

+2(1-204G-D+@f+ T - 17

The non-zero components of the stress tensor are obtained by

inserting equation (3.14) into equation (3.13) as

11 _ ll[f (r"u) +(f_ 1) (r—u)(l "u/) ((1 _ul)2+(w/)2)+

r(t-u)
( r )(2 4v 1
r-wl-u)
[f (I' ll) w "'(1"'f) (I'-'ll)(l—ll)w/]
r(1-u')
Il[f( u)+(f 1) (r- u)3(1 u) (3.15)
r(r-u) r
1 4v - 1
(r(r wy(1-u)) )(f 1-2v 2v
- l“'.[(zf 1) (r ll)(l ul) f (r u) (w/)2
r(1-u’)
r 4v-1 4v-1
1-4f-
((r—u)(l—u'))(f T A LR AR )
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Since the stress components are independent of 6, and
r12=721=0, the equation of equilibrium, (3.12), in the tangential direction is
automatically satisfied. Taking the derivatives of 1, and 713 with respect to.
r, and inserting them together with the stress components into equation
(3.12), equilibrium equations in the radial and the axial directions, are
expressed in terms of displacements u, w, and their derivatives with respect

tor:

l-l[f(—l“" (r-u) u - (l—u/))+
r (-4 (r-u)

(F-1)( A-uw)* 3@-w(d-uwy ulls A-uwP ) _
A y 4 3.16
(=Y, 20-0A-u)w (r—u)3£1 “u)y, 19
r r r
ers 2 ’ L] -0

1-2v (r-w)(1-u) ) (r-u)? ’ (r-wy1-u')

”V(WT/ + (rl_ ll)%:»’; u//+ (71'"“)/ w//)+
(lr—(u’;zuw)’ (r —:t()w—’ “ (r-wy(1-u’) _
(1-A( S u" + . w')] = 0

B. Blatz-Ko Material

The strain energy density function which is proposed by Blatz and
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Ko [9] can be written in terms of strain invariants 1,,l,, and I3 as follows

Moo ack
Wik = —[f(I, 3)+(1 f)(— 3)
4 (3.18)

1 2\’){{.(13 1- 2v_1) (1—]‘)(131 2v_1)}]

The non-zero components of the stress tensor are obtained by
substituting equation (3.18) into equation (3.13) as

N A ) (r-u +(F=1) (r- u)(l u’y? -+ w')?
r(l -’ A -u’)?

_f{(r-u)(l-u)}m+(1 _ﬂ{(r—u)(l—u')}i—Ii—i]

)

N LB u) W+ (1-p = u)(l u’) W'l

r(1-u’)
1-u) (r-w?iQ- u)
riF——= il — (3.19)
S -0U-wy TR =, (P (=00 -u)y Ty
r? r r2
- |J.[(2f 1) (I‘ u)(]- u) f (?' u) (WI)Z

r(1-u’)
1-4v

f{(r u)(l u)}l 2v (1 f){(r ll)(]. u)}l 2v]

By using equations (3.12), the equilibrium equation in the radial

direction is expressed as
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1, -0 o (-u),

r r(d-uwy (r-u)

a- u’)" 3(r-wy(d-u’y? ul+ (1 -uYP W'y _
F-DI . "
-y u)(W’)z)u//+ 200-wA-uYW) v -wy(-u),,

r r4
(A-wP_ -w gy -wd-u),
r r r2

(of L (=) T g g 14y -0 (-w)Tay) _
1-2v r 1-2v r

(3.20)
and the equilibrium equation in the axial direction is identical with the equation
(3.17), since 713 is the same for both models.

C. Blatz Material

The strain energy density function proposed by Blatz [10] is written

in terms of strain invariant I1. I2, and 13 as

Wy = £10,-3)- (————)W‘ C-(L-01 G
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The non-zero components of stresses are obtained by subtituting

equation (3.21) into equation (3.13)

ol -y (r—u) p_ v 1 (r—u)(l—u’)]
r(l-u) 1-2v 1-2v r
- (r-w) ..
r(l-u’)
tm_u[(l-u’)+_2_ v 1 (r—u)(l—u’)]
r(r-uw) r21-2v 1-2v 3
:33-p[(”“)(l'“/)+("“)(“j/)2+2 vl -wd-w),
r r(1-u’) 1-2v 1-2v r

(3.22)

By using equations (3.12), the equilibrium equations in the radial,

and the axial directions are obtained as

(l)_,_ (r-u) ul - (l_ul) +

r r(]. -u/)2 (r—u) (3.23)
1 -w) , -wd-u) (1-u)
( ) u’+ - 1-0
1-2v r r2 r
Ly =8 o, (r-w)w’ u’ =0 (3.24)
r  r(l-u) r(-u’)?
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3.1.2 Compressible, Hyperelastic Spinning Tubes Subjected to

Circumferential Shear

Consider a long, circular, cylindrical tube of arbitrary, uniform wali
thickness with an inner radius R,, and outer radius R,. Let the tube be
perfectly bonded to a rigid shaft along its inner curved surface. The shait is
assumed to spin with a constant angular speed 2 while the tube is subjected
to uniformly distributed circumferential shearing tractions 7, on its outer
curved surface. Denoting the positions of a material point in the undeformed,
and deformed states by cylindrical coordinates (R,8,Z), and (r,8,z),

respectively, one has
r = R+u 0 - 8+¢p+Qr z=2 (3.25) -

where the radial displacement u, and the angular displacement ¢ depend on

the radial location only, and t denotes the time.

From equations (2.2), (2.3), (2.5), and (2.6), the metric tensors Jjj
gij, and Gii, GY of the undeformed and deformed geometries, respectively, are

obtained as
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(3.26)

((1+u’® (Q+uhd’ 0

gd = |(1+u)d/ %2- 0 (3.27)

0 0 1

1 0 O
G, -|0 (R+u)® 0 (3.28)
0O 0 1

GV =|0 (3.29)

g - det (g} - R’ (3.30)
(1 +u)?

G = det (G} = R+u) (331)

In equations (3.26), and (3.27) a prime denotes differentiation with respect to

R.
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The three strain invariants associated with this deformation field are

given from equation (2.10)

+(+uP+ R+ w2 P>

I - 1+ (R+u)?

(R+u)?
2

I, - Y+ (R+u);(21 +u)’ +(R+u)’ %+

*(1ru (3.32)

(L+u'P R+ 12 ¢
_ Rrup(1+uy?
R2

By using equation (2.13) the components of the tensor B are

obtained as

BM - (1+uly?+ (R+u);(21+u’)2 +(R+up L +u'y* ¢'*

B? - 1321 - (L+uhy¢/

g L P o 639
R2 R?
B3 (R+u) =2+ +u’)2+(R+u)2€])/2

B" -B”«B -B2 -0

Substituting equations (3.28), and (3.29) into equation (2.16), the

Christoffel symbols of the second kind are obtained for the cylindrical system

(r,8,z). The non-zero components are
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T, = -(R+u) (3.34)

The equations of equlibrium in terms of stress components can be
written by substituting the Christoffel symbols defined in equation (3.34) into
equation (2.17). The equation of equilibrium in the axial direction is trivially
satisfied. Those in the radial, and the tangential directions are given by,
respectively,

O, A48 it Ryup o] p PRew(L+u) - O
OR (R+uw) (3.35)

o2 3(+u)) 1o _
JR (R+u)

where p denotes the current mass density which is related to the mass

density p,, in the undeformed state by

o - Po R (3.36)
(R+u)(1+u’)

At this point, specific forms of the strain energy density functions

are introduced. For the stress components, equation (3.13) is used.
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A. Polynomial Material

The strain energy density function is given in equation (3.14). The
non-zero componenets of the stress tensor are obtained by inserting equation

(3.14) into equation (3.13) as

. yrq_of pRAtE)  (A-AR
T pl f+f (R+1) (R+u)(1+u’)3
4v-1. (R+u)(l+u’)

@f+ 5 b}
R /. 1- R3¢/
(R*‘u)<l> ( f)(R+u)3(1+u’)2

2 _ B ap e RHE) RR+uw)d'>
! (R+u)2[ ffR(1+u’) y 1 +u)
R3 4v-1, QA +aYR+uw)
1- +Q2f+ ~1
( f)(R+u)3(1+u’) Q@f 1_2‘,)( = )|
2
e pid-200-—R ) a-p— R,
(R+u)(1+u) R+w)(1+u)
4v-1,, (R+w)(1+u)
1_2\’)( R D]

(1+R%§/%) +

1:12 - IJ'[f

(3.37)

@f+

Substituting equations (3.37) into equations (3.35), equilibrium

equations in the radial and tangential directions are expressed as
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4v-1) R+w) ;o SRA+RYD), i

[f(R u) +@f 1-2v° R R+u)(1 +u')*
A-p— 2B gy Qew) o o R 1+3R%¢”
R+u)(1+u’) (R+u) R+w)?* R+ +u’)?
FL-rra s R L) Red e, g2 R g
R R
(3.38)
2R/ " R? /
-(1- +(1- +
( f)(R+u)3(1+u/)3u ( f)(R+u)3(1+u/)2
R // d)/ 2R¢/(1 +l¢/) 1- 3R2¢/ =0
f(R+u)¢ +f(R+u)+ (R +u)? H f)(R+u)3(1+u’)2
(3.39)

B. Blatz-Ko Material

The strain energy density function is given in equation (3.18). The

non-zero components of the stress tensor are obtained by substituting

equation (3.18) into equation (3.13) as
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R(L+u)) _ R R$?
Rew) f)((R+u)(l+u’)3+(R+u)(1+u/)3

= plf——=

1 1-4v
R Tvigop—R iy

R+w)(1+u’) (R+u)(1 +u’)

R(b/ R3¢/
(R+ u) (R+u)*(1+u')?

2 - ulf

2o B (R+u) +fR(R+u)d>’2_(1_f) R

®+w?  RA+u)  (L+uh) ®R+uP L+l

1 1-4v
A—R T, qop— Ry,

R+u)(1+u) (R+u)(1+u)

3 _ R Vi R RP¢?
' FV(R+u)(1+u’) ( ﬁ((R+u)(1+u’) R+u)(1+u')

1 1-4v
f{ R }l—2v +(1_f){ R }I—Zv]

R+u)(1+u) (R+u)(1 +u')

(3.40)
By using equation (3.35), the equilibrium equation in the radial

direction is obtained as
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U(le 5 4 (3RR+( i;::it/’;‘)‘ @+ u)l(el +u'y’ V1 -12v ( R+ uﬁl o)
T Foa +u'))_1:%}]u”—(1 T if(slqiu’)s -
f% ~f % “fRY+ (- (lel)“ ) (R1 :us;ﬁz? 2’)3 i

R+ u)l(l ) R fjtu)z){fl -12v ( (R+u)I:1 + u’)) -

-2V
Y1-2v} 4 p092£ =0
B

al-4v R

¢!
1-2v (R+u)(1 +4)

(3.41)

and the equilibrium equation in the tangential direction is identical with the

12

equation (3.39), since 7 '“ is same for both models.

C. Blatz Material

The strain energy density function for Blatz material is given in
equation (3.21). The non-zero components of the stresses are obtained by

substituting equation (3.21) into equation (3.13) as
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R(1+u’)+2 v 1 R

(R +u) 1-2v 1-2v (R+u)(1+u’)]

/
2 (R+u)<l>
2. B Rrw)  RR+ufe”
(R+up* RQ+uy  (A+u))
v 1 R
1-2v 1-2v (R+uw)(1+u))
1:33 - -2v R v

kI +2
1-2v (R+u)(1+u)) 1-2v

,rll - P[

12 .

(3.42)

By using equations (3.35) the equilibrium equations in the radial,

and the tangential directions are obtained as

/
1 R s R g, Axu)

[ 1-2v R+w)(1+uy? R+w) R+u) (3.43)

1 1 R ) 1 pe2ep,02® -0
B

(1—2V)((R+u)(1 +u’) 4 (R+u)2) R

1 R g, & L 2RY 5 54
(1+u) R+u) R+w)(1+u’) (R+u)?

3.1.3 Finite Circumferential Shearing of Compressible, Hyperelastic

Tube

Consider a long, circular cylindrical tube of arbitrary, uniform wall
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thickness with an inner radius Ry, and outer radius R,. Let the tube be
perfectly bonded to a rigid shaft along its inner curved surface. It is assumed
that the tube is subjected to uniformly distributed circumferential shearing
tractions 1, on its outer curved surface. Denoting the positions of a material
point in the undeformed and the deformed states by cylindrical coordinates

(R,8,2) and (r,0,2), respectively, one has
r = R+u 0 -0+ z=2 (3.45)

where the radial displacement u, and the circumferential displacement ¢ are

both assumed to be functions of radial coordinate R only.

The equations of section 3.1.2 are valid for this problem when the

spin speed Q is set equal to zero.

3.2 Non-Dimensionalization

For the above type of problems it is desirable to write equilibrium
equations, and the stress equations referring to undeformed configuration and
in terms of non-dimensional variables. For this purpose, the following relations

are used
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x-.__._. ;2-

u - w
= W= — (3.46)
1 Rl Rl

for non-dimensionalization of anti-plane shear problem

¢-9¢ (3.47)

- u
x- — U = —
Rl Rl

for non-dimensionalization of circumferential shear problems

The conversions from r to R, and the equations for the

dimensionless derivative terms are given in Appendix A.

3.3 Non-Dimensional Governing Equations

With the above change of variables, the equilibrium equations

reduce to two quasi-linear, coupled ordinary differential equations of the form;

(3.48)

for anti-plane shear problem
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D@,u,b,u,, o )u_+Ex,u,d,u,,0 )0, = Fx,u,0,u_,4)

for circumferential shear problems
The stress componenets are also written in dimensionless form

using the transformations mentioned in Appendix A.

3.3.1 Finite Anti-Plane Shear of Compressible Hyperelastic Tube

Subjected to External Axial Shear

For this problem the variables of equation (3.48) and the non-

dimensional stress components are as follows
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A. Polynomial Material

A = P uP A+ ) -3(F- D2 @ +u) -3 (- Dx* (v u)w+

x(+ B (L) @f+ 4"2 L

B - 2(f~-D)x*(x+up* (1 +u)w,
C = —f @+’ (L+u) - (F- Dx* @ +u (L +u) -

F-Dx2 D (+ w)wi-x(e+ D (L + )0 QS+ ‘I_‘i.z‘_l) +  (3.50)
- &V

G+ u)* (L+u,)° 2f + ‘1”; Y afr e+ AL+ )+ (- DS i)
-2V

D = -2(1-Hxw,

E - fx(+u)+(1-Hx(l+u)

F = -fQ+u)’w -(1-HL+u)w,

ST . G DN S L
[ (x+u) (x+u)(1+u) x+wy(1+u)
4v-1, G+ro+u)  4v-1
T i T
eC 13 - W _xwx _
1 (x+u) x+u)Q+u )
2 _ 2 2 _ faerw  (f-DX° (x+u)(l+u) f
B x(l+m) (x+'12)3(1+u) x
- 4f_4v 1)
-2v

9 _ ™ @f-Dx . faw}
B (x+22)(1+27) (x+'12)(1+;;)

(x+u)(1+ u) -1 4v-1
— )(2f A=A~

o+

(3.51)
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B. Blatz-Ko Material

A = PP+ -3 (F- DX @+ - 3(F- D2+ 1w, +
2
x*G+w) (L +u [ - 1 fl* 32w,
1-2v" (x+u)(1+u)
-2v
(1—4V)(1_ﬁ{ _x _}I-ZV]
1-2v (x+u)(1+u)

B - 2(f-Dx*(x+ul’ (L +u)w,
C - -2+’ +u)’ - (F-Dx?(x+u)* (1 +u) -
- D22+ +u)w +fx2 @+t (L+u)* + (F- DL +u )t +

[ +u) (1 +u ) -x3 (v + )P (L +u )] *

[- ! L= NPV S =
1-2v" (x+u)(1+u) 1-2v x+w)(1+u)
D = -2(1-fHxw,
E - fx(Q+u)+1-px1+u)
F = -f(l+u)’w -1-pA+u)w,
(3.52)
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-2

- _ <1 _fx(1+i¢x)+ D _‘x (-1 _xwx .
1] (x+u) x+w)(1+u)’ x+u)(1+u)’
1 ioay
_x __}m"'(l"f){ _x _}l—2v
x+w)(l+u) x+w)(l+u)
o3 _ B P wo+(1-p) _xwx _
B (x+w) x+u)(1+u)?
SR S M
B x(+u) G+wl@+u)  @+w(+u)
14y
e
x+w)(1+u)
S 2 Pz T,
B x+rw)(1+u) +wy(l+u) x+w)(l+u)
l—f){ _x __j1-2v
x+wy(1+u)
(3.53)
C. Blatz Material
P 1o 6 By L T oen TG By
1-2v
B =0
C - —x2(x+Z)3(1+u_x)5+1—13—-x2(x+§)3(1+u—x)3—
2 ,
— — — _ 3.54)
(L5 P L+ s+ (L oin)* 29
-2v
D=0

E - x(1+u)’
F=--(1 +u_x)3_};;
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W +uw)  1-2v 1-2v x+u)(l+u)
13

11 1+u
pt! T x( "'ux)+2 v 1 X

T X —

gt

B (x+u)
22 -
2.2 (x+z2 2V 1 _x — (355
B ox@+u) 1-2v 1-2v x+w)(1+u)
—2
?3-1:33- __x — _J_cwx_+
B x+w(l+u) +w)y(l+u)
v 1 x

1-2v 1-2v (x+}2)(1+Ex')

The equilibrium equations are linear in the second derivatives but

highly non-linear in u, D; and "v'v; and no closed form solution of the system

seems possible. Using the substitutions

u-=y u—x"ya "}’3{

(3.56)

|

= /
w =1y, w, =y = Vs
the order of the equations are reduced to one, and the number of the

equations is increased to four. These are

/
= 805
/
/
V3 = &5(%,¥(,Y3,Y,)
/
V4 = g4(x,y1,y3,)’4)
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where

8 =Y;
8 =Y,
CE-FB
. LL-FB (3.58
8 =~ 4E-BD )
g==CD—AF
4  BD-AE

which are in a form suitable for numerical solution.

As for the boundary conditions, the inner surface of the tube is
assumed to be bonded to the outer surface of a rigid shaft, therefore
displacements in the radial, and in the axial directions are zero at the inner
surface of the tube. The outer surface is under uniform axial shear only. These

conditions are expressed mathematically as

uR) =0
wiR) =0
‘Eu(Rz) =0
1:13(R2) = 1,

(3.59)

If the boundary conditions are non-dimensionalized also using the

transformations given in Appendix A, equations (3.59) become

53



u@x=1) =0

wix=1) =0
i) - 0 (3.60)
™ x=2) = T,

where

R
A R (3.61)

Dimensionless outer axial shear in equation (3.60) is defined as

=0 (3.62)

3.3.2. Compressible, Hyperelastic Spinning Tubes Subjected to

Circumferential Shear

In this problem the spin term is non-dimensionalized as

— R Q?
Q% - p, lu (3.63)
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And the variables of equation (3.49) and the dimensionless stress

equations are obtained as follows

A. Polynomial Material

PRSP UL N 227 DOV AL Y
(c+u) 1-2v" x x+u)(l+u)
2.
B=-2(1-)l————
(x+u)(l+u)’
av-1, (+)Gew) A+ (A+i) f
c-ef 1—2v)( <2 x )f(x+5) x
< 2
FRRr (2O 2 g (3.64)
* @+w)(+u) (+u)t
&
D - -2Q-fh—
Ceru)’ (L +u)t
E-f— % _iq-p—>F _
(x+wy(l+u) x+u’(l+u)?
. 2xb. 3x%¢,
F - x X - 1__ X
f((x+ﬁ)(1+u—x) ' (x+'£)2) -9 (x+uy(l+u)’?
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— 11
11=t_ =1 2f+f

T2 - 1’; = fx$,+(1-

—-22
‘r =

=3 _

cope 2yl (x+ﬁ)(1+u_,)
B (x+u) 1- 2v x
x+x°9 >

x+w)(d +E:)3

1-5

2,

G+uQ+u)

2 (R+u)2 ) 1—2f+f (x_,_;) +fx(x+ﬁ)a')‘xz_
x(1+u) (1+u)

a-p «x3 _Lof 4v-1)((1+“x)(x+"x)_1)
(x+u)’(1+u) 1-2v x
=2 o g-2pe— ).
x+w(l+u)
+ 3p 2
@f+ ‘1“’25((" WAL) T
v 2 x+w)(1+u)

56

-1)-
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B. Blatz-Ko Material

+ 2—-2
A-f—%_130-p J5(1__35 ¢f..)
(x+w ru)( +u)t
E SNV S S
E+wA+u)  1-2v @+w)Q+u)

1-4 2
(l—f) - V{ ~x ~}1—2v]
1-2v (x+u)(1+u)

y—
B--20-p—2 2
x+wy(d+u) |
— J—
i O T St S S
(x+u) X x+wy(1+u) (+u?t
2v
1 _ X 1 { X }-i_-—i;_
G+wyA+u) @+u?  1-2v (x+u)(1+u)
1-4v PR
1-p 1}
1-2v x+u)(1+u)
2.
D= -2(1-fl———
G+u)’ (1 +u )t
E-f—X  s-p—o=®
(x+w)(1+u) x+uP(+u)
. il o
Fofide 220, g 350
G+u)(l+u)  (c+u)? G+u)(l+u)’
(3.66)
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— —2
—n _ 1 x(1+ux)_ ) x+x°,

- f

—

T Gy
1 1-4v
{ _x -_}1~2v+(1_f){ ‘x __}l—2v
x+w(1+u) (x+uy(1+u)

¢,

(e+u)’(1+u)’

T 3 - fxd_+(1-p
p

3

T2 | 2 (R+u)? _ (x+u) +fx(x+;)¢—x2_(1 -h X +
b x(1+w) (14w (L +a,)
1 1-4v
X v, gopt—F o
A+u)(x+u) C+w)(l+u)
=3 _ ™ x —(1- x s 9, _
b (e Grw(l+n)  Gru)(1+u)
_1 1-4v
{ _x —}1-2v +(1_f){ .—x _}I—Zv
e+ 0)(1+2y) (o) (1 +2,)

(3.67)
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C. Blatz

A-_% . 1 X

G+u) 1-2V (x+u)(l+u)?
B-0
C-—(1+“")+l+x&>_’+ 1 1 X

Cru) * 7 1-2V Grw)(lew)  (eru)?
xQ? (3.68)

D=0
E = X

(x+u)(lfux)
o ?5; . 2x$;

Grw)(L+u) @+u)

o ot x(1+u) bp_ v 1 x
[ (x+1) 1-2v 1-2v (x+i¢-)(1+;4:)
—_ 12 —_
12 _ T X,
. b )
2 . 2@ | @y  ZE0e, (3.69)
B x(l+u) (1+u)
v 1 X
1-2v  1-2v (1+u)(x+u)
_ 33
B _ T 5V _x_+2v
B 1-2v G+u)(l+u) 1-2v

The dimensionless equilibrium equations are linear in the second

derivatives, but highly non-linear in u, u,, and 8,, and no closed form solution
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seems possible. Using the substitutions

- - /
u - u, =y -y
7 * 73 ? (3.70)

Y /
¢=Y2 ‘bx:y‘; = Y4

2

the equilibrium equations are converted to four first order, ordinary, non-linear

differential equations. These are

J’{ - 8,03
}’é - 8,09
}’; = 83(%,¥1,¥3,Y,)
Vi = 84(:Y1,Y307)

(3.71)

where

81 =3
8 = Y4
_ CE-FB
8 " 4E_BD
_ CD-AF
& " BD_AE

(3.72)

which are in the suitable form for numerical solution.

As for the boundary conditions the inner surface of the tube is
assumed to be perfectly bonded to the outer surface of a rigid shaft, and the
outer curved surface is subjected to uniformly distributed circumferential

shearing tractions 7. These conditions are mathematically expressed as
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u(R) = 0
(b(Rl) =0
Ry - 0 (3.73)
1.'12(R2) = T,

If the boundary conditions are non-dimensionalized, also, using the

transformations given in Appendix A, equation (3.73) become,

u(x=-1) - 0

¢(x-1) =0
1) - 0 (3.74)
?z(x-).) - ?;

where the dimensionless outer axial shear is defined as

% = (Bru(R))-2 (375)

3.3.3 Finite Circumferential Shearing of Compressible Hyperelastic

Tube

For this problem the non-dimensional equilibrium equations, are
obtained by taking @ equal to zero in the non-dimensional equlibrium
equations of section 3.3.2, and the dimensionless stress equations are equal
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to dimensionless stresses given in 3.3.2. Similarly the boundary conditions are

the same as given in section 3.3.2.
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CHAPTER IV
METHOD OF ADJOINTS AND THE NUMERICAL SOLUTION

OF THE PROBLEMS

4.1 Method of Adjoints

In this section, the way how the method of adjoints for linear
problems can be applied in an iterative fashion to solve non-linear problems
is given. The material of this section is a brief summary of the relevant topic

covered in [23].

Boundary value problems are not very suitable for the numerical
analysis done by computer. To make it suitable, the boundary value problem
is transformed to an initial value problem. The shooting methods are
developed for this transformation. Method of adjoints is one of the shooting

methods, and is suitable for the solution of boundary value problems.

Now, consider the set of non-linear ordinary differential equations



y‘{ = gi(yl,yz, ,,,,,,,, ,yn,x) i=1,2,.... N} (4.1)

with the initial conditions
Y;(Xp) = ¢; i=1,2,,.. T 4.2)
and the terminal conditions

¥, &) =< m=1,2,... -1 (4.3)

If y;(x), i=1,2,........ N ; Xg < X < X, is the solution of equation (4.1),
let us consider a nearby solution, y;(x)+8y;(x), where 8y;(x) is often called the
variation, a first order correction to y;(x). y;(x) may be thought of as solutions
corresponding to guessed values of the missing initial conditions, and §y;(x)
as corrections necessary to produce the actual solution of the boundary value

problem.

If equation (4.1) is subtracted from the differential equations of the

nearby equations, it is obtained

n

5y;0) = ¥ —Z—i—iﬁy,.(x) i=1,2,n (4.4)

j=1 Y
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These equations are linear ordinary differential equations with

variable coefficients, and are called the variational equations.

The equations which are adjoint to the variational equations can

be formed as

n

o
fi@ - -y %‘fj(x) i=1,2,sn (4.5)
j-1 ¥

The matrix of coefficients of the adjoint equations is the negative
transpose of the matrix of coefficients in equation (4.4). The adjoint equations

are again linear ordinary differential equations in f;, i=1,2,........ n.

The fundamental identity of the method of adjoints for the linear
ordinary differential equations &y;(x) in equation (4.4), and the adjoint

equations f;'(x) in equation (4.5) is reduced to

Y fi(x) 8,(x) -y fixp 8y (xp) = O (4.6)
ic1 ie1

The variation 8y;(x) is the difference between the true, but unkown

profile and the calculated profile; that is
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85, = Oerue®) ~ 0Dt ®) i=1,2,..,n XoSx5X, (47)

but, since &y;(x) are only the approximate systems, the process of finding the
true profiles will be an iterative process which terminates when &y;(x),

i=1,2,.....,n; X5 < X < X, are sufficiently smail.

The fundamental identity given by equation (4.6) can be used to
find the corrections Syi(xo), i=r+1,........ ,n to the set of missing initial conditions
Yi(Xg), i=r+i,... ,n. The Kronecker delta is assigned as the terminal

conditions for the adjoints variables f;(x;):

1 for i=i
) - s mo=1,2,sn—r (48
0 for i#i

m

where fi(m)(xf) = the terminal conditions for the m'" backward
integration of the adjoint equations,
im = the set of indices specified in equation (4.3);

and the adjoint equations are integrated backward.

The fundamental identity for the (n-r) backward integrations of the
adjoint equations provides a set of (n-r) linear algebraic equations in the (n-r)
unkowns Syi(k)(xo). In order to integrate the adjoint equations the partial
derivatives dgy/ p ij=1,2,.....,n must be developed analytically. To evaluate
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numerically these analytical partial derivatives requires assuming trial values
for the missing initial conditions y;(xy), i=r+1,r+2,.....,n. Once the y;(x),

i=1,2,......,n profiles are known, the partial derivatives can be evaluated.

For the next iteration through the process the new initial conditions

are found from

P @) = 3,60 - ¢ i=1,2,mr
)’i(hl)(xo) = )’i(k)*“ Byfk)(xo) i=r+l,..,n-r

If there are explicit boundary conditions at one boundary, and

implicit boundary conditions at the other

g, = y;,(x)-¢c;, =0 i=1,2,..... ,r (4.10)

q”i(yl(xf),yz(xf), ...... ,yn(xf)) =0 i=1,2,...... n-r (411)
Since the first r initial conditions are specified in equation (4.10),
trial values need be assumed only for y _ .(xy), i=1.2,....... n-r. The adjoint

equations (4.5) are integrated backward once for each yj(xf) that appears in

equation (4.11), and the fundamental identity gives
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n
Y £20)8y,(x) = 8,(x) j=1,24,n (412)

i=r+1

Since &Yy;(xy)=0, i=1,2,........ [ by virtue of equation (4.10) the

summation in equation (4.12) is taken over i=r+i,........ n.

For the terminal conditions the variation is written as

*  dq
6qr-l-’ = __'_ﬂ_ay(x) i=1,2,.... ,n-r (413)
‘ Jz-; ay,e) 7 \

Substitution of equation (4.12) in the variation of equation (4.11)

which is given by equation (4.13) yields

n n

oq,, \
8q,.; - E Fy‘%ayj(xf){ Z f;(’)(xg)éyp(xo)} i=-1.2,.,n-r
j=1 ¥Wjtp p-r+l

(4.14)

If 6qi = (qi)true - (qi)calc i=1,2, ........ N

since (Q;),,,e = 0 it follows that 6q; = - () g 1=1:20mmve .

The expression given in equation (4.14) is a set of (n-r) equations

in (n-r) unknowns &y, ;(Xg), i=1,2,........ J-T.



To recapitulate, the non-linear two-point boundary value problem
with explicit and implicit boundary conditions is solved by the following

procedure:

1. Determine analytically the partial derivatives agi/c‘}yj Lj=12,........ N

from equation (4.1).

2. Determine analytically the partial derivatives oq, +i/ayi(xf)

i=1,2,........ n-rj=1,2,....... ,n from equation (4.11).
3. Initialize the counter on the iterative process. Set k=0.

4. For k=0 guess the missing initial conditions

yOk) =@  i=12.n

5. Integrate equation (4.1) using the specified, and the guessed

initial conditions, and store the profiles.

6. Using the calculated terminal values yj(k)(xf) i=1.2,........ n

evaluate q  (x) i=1,2,........ ,n-T.
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7. Set 89, = - Q4% i=1,2,........nT.

8. Integrate the adjoint equations backward using the Kronecker

delta terminal conditions, equation (4.8). Save fi(D(xo) =12y N

9. On the basis of the item 2, and the profiles in item 5 evaluate
numerically the partial derivative dg, H/ayi(xf), and form the matrix of
coefficients.

10. Solve 8y, _H(xo) i=12....... ,n-r

11. f max(sq, ,; i=1.2,....... ,n-r) is less than a specified tolerance
terminate the calculation, otherwise go to item 12.

12. Form the next set of trial initial conditions

13. Set k = k + 1. Return item 5.
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4.2 Numerical Solution of the Problems

In the previous chapter, the governing differential equations, and
the associated boundary conditions of three problems were obtained. The

governing differential equations are

/
1 = 805
/
Y2 = 800 (4.15)
’ .
Y3 = (X, ¥,¥3,¥)
/
/T 84(4\7,)’1,}’3,)’4)

where x is defined in the interval 1 < x < A. The boundary conditions can be

expressed as

Yihoy =
Yoheor =
gsl.y =
AR

(4.16)

O O OO

where the boundary conditions at x = 1 are of explicit type, and the ones at

x = A are of implicit type.

4.2.1 Implicit Boundary Conditions

71



4.2.1.1 Anti-Plane Shear

A. Polynomial Material

AAey) ooy M)
Aey, (3L +ye)’

4v-1 (A+y)(1+y)
@159 A

Q3"f

gy 0

A —
v+ (L= y,-T, = 0
(A+y)* A+y)(L+yp *

Q4"'f

B. Blatz-Ko Material

A(l+y) ol Ay
A+ (A+y)(1+yy)°

1 1-4v

A 1_37_,_ = A 1-2v
Ramaay Py ay 0 @)

A A
Yo+(1-P
ot A+y)(L+y,P

qg"f

y4‘;; -0
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C. Blatz Material

g = 24y 2v 1 M ]
3
A+vy,  1-2v 1-2v (A+y)(l+
3 41 v ( yl)( }’3) (4.19)
Gy = —2—y4=Tp = 0
4 ()‘+y1)4 0

4.2.1.2 Constant Spin and Circumferential Shear

A. Polynomial Material
A(l+y AL +22y2)

g5 - fl—’2 +(f-1) *

¥ A+y)(A+y)

. 4v—1)((l+y1)(1+y3)
1-2v A
)'3

Y

Gy P21y "

@f ~1)+1-2f =0 (4.20)

4, = fAy,+(1-H -1, =0
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B. Blatz-Ko Material

2
A(1+y,) cF-1) A(l+ A2y4)

4 = f - -
P hey (A +y)(1+y)
1 1-4v
A - A T 5y
1 2v+(1_f){ }-2v _ ¢ 4.2
Gy d+y) Gy L+ (421)
Fry,+(-p— 2 -0
g, = fAy,+(1- Ya~To =
‘ * Qory2(L+y )+ "
C. Blatz Material
_ Al "')’3) . 2v 1 A

- =0
P A+y,  1-2v 1-2v (A+y)+y) (4.22)
4y = A¥,~T = 0
4.2.1.3 Circumferential Shear

The boundary conditions of the constant spin and circumferential

shear problem are also valid for this problem.

In equations (4.17)-(4.22), y,, v, and y, denote the values of these
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variables evaluated at x = A.

Equations (4.15) together with the boundary conditions (4.16) can
be solved numerically by the method of adjoints [23] which is briefly
discussed in section 4.1. Numerical integrations mentioned in method of
adjoints are carried out with fourth order Runge-Kutta integration formulas
[24] with equal spacing between pivotal points in the interval 1 < x < A. For

a function g(x,y), fourth order Runge-Kutta algorithm is given by

Yie1 = yi+%(k1+2k2+2k3+k4) (4.23)

where

k, = hg(x;sy)
1

h
kz = hg(xi"' —z‘ayi+ _Z‘kl)
(4.24)

h 1
k. =h +—, Y, +—
3 8(x, 2 Vi 2k2)
k4 hg(x;+hayi+k3)

h is the distance between the two pivotal points.
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4.3 Computational Procedure

In order to solve the system of non-linear equations (4.15)
subjected to boundary conditions (4.16), using the method of adjoints, a
computer program is developed. All computations reported in this work were
carried out on PC’s with 16 digits. The typical computer program for one type,
and one model problem is given in Appendix B. The general computer

program is given in a 5% floppy disk with a user manual given in Appendix B.
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CHAPTER V

DISCUSSION

In this work, the static behaviours of hollow, circular cylindrical
shells made of three different compressible, hyperelastic material models
under three different types of loading are investigated using the theory of finite
elasticity. Explicit results, obtained by applying the method of adjoints to the

non-linear differential equations are discussed in this chapter.

The variations of the stress components, and the displacemenf
fields with the surface traction 7, constant spin speed 0, radii ratio A, and the
material constants f and v are obtained by considering several examples. In
all the examples considered, 21 pivotal points along the radial direction are
used to obtain sufficient accuracy in the numerical intégration of the first order
differential equations. The figure in which no model is indicated is valid for all
models. Unless the otherwise stated, the radii ratio A is taken as 1.25 in the

figures.



Figures 5.1 to 5.16 show the results of anti-plane shear problem.
The figures 5.17 to 5.28 show the results of constant spin and circumferential
shear problem. Figures 5.29 to 5.42 show the results of uniform

circumferential shear problem.

5.1 Finite Anti-Plane Shear of Compressible Hyperelastic Tubes

Figures 5.1 to 5.4 show the variation of the radial displacement,

and the stress components with external axial shear as a function of

11

dimensionless radial position x. U, 7', and 722 vanish for Blatz model. For

the polynomial material model, all of the stress components have a common
trend of decreasing from inner boundary towards outer boundary, whereas
the displacements increase linearly in the same direction. This trend is also
valid for Blatz-Ko model, except for 722 which increases from inner boundary

towards outer boundary. For the primary components, that is for axial

_33

13, and axial stress 77, all the models give the

displacement w, shear stress 7
same results. On the other hand, there are some differences between

polynomial material model and Blatz-Ko model for radial displacement u,

radial-stress F", and hoop stress ?22, and this components vanish for Blatz

1

model. The differences in 7 1, and 722 decrease from inner boundary towards
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outer boundary, whereas the difference in U increases in the same direction.

Figures 5.5 to 5.9 display the variation of displacements at the
outer boundary (x=A4), and the stress components at the inner boundary
(x=1.0) as a function of f. In these figures Blatz model is not given, since the
effect of f is not considered in his strain energy density funcion. When f
approaches unity, radial deformation approaches zero. Figures 5.6 and 5.7
indicate that the axial displacement w, and the shearing stress 713 are not
affected by parameter f. When f equal to unity, the strain energy density
functions do not depend on the second strain invariant. Numerical studies
indicate that the radial surface traction at the inner boundary is affected most
significantly by changes in parameter f. ?“, and 722 observed to be larger
for smaller f values. This means that second strain invariant is more

1 and 722. Whereas for the axial stress 7 the opposite is

pronounced for 7
observed. For f=1.0 all of the stress components, and the displacements
become independent of v and the material model. Although the trends from

f=0.7 to f=1.0 are the same for both polynomial material and Blatz-Ko

1 =22

models, there are significant differences for stress components 7! , 775, and
793 The differences decrease as f increases. For the displacements the

differences become smaller as v increases.
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In figures 5.10 to 5.12 the effect of v on the radial displacement,
and the stress components displayed. Calculations indicate that, when {=1.0
the value of the material constant v, which is a measure of compressibility,
does not affected the displacement and the stress components, and the

results are the same for the three models. The trends for 11 and 2 are

same as 7'° and respectively. For the polynomial material model, axial
displacement w, and stresses 711 and 712 are almost constant. For f=0.7 the
radial displacement u at the outer boundary is seen to decrease as v

22 and 133 at the inner

increase. For the polynomial material model r
boundary increase as v increases. However for Blatz-Ko model all of the
stress components decrease until v reaches to O..4, and then increase as v
increases. This behaviour may find its explaination in the fact that, in Blatz-Ko
strain energy density function (see equation (3.18)), v affects third strain
invariant as a power number. This power is less than unity when v is smaller
than 0.33, and greater than unity when v is larger than 0.33. For v=0.4 this
power is equal to 2.0. On the other hand, ih polynomial strain energy density
function (see equation (3.14)), v affects the third strain invariant as a muitiple.

This multiplier is zero for v=0.25 and approaches to infinity as v approaches

to 0.5.

The effect of tube thickness A on radial displacement u, and stress
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=13 =22 1

components T -, T°°, and 733 are plotted in figures 5.13 to 5.16. U, 7! , and
722 vanish for Blatz model. It is observed that, the displacements and the
stress components increase in a linear fashion with increasing R,/R, ratio,
except for the radial displacement u of the Blatz-Ko model which is almost

constant. Similarly, for w, 713

, and 7> all of the models give essentially the
same results. But, there are some differences for u, 711, and 722, For ?22,
polynomial material model gives positive results, and Blatz-Ko model give

negative resulits.

5.2 Compressible, Hyperelastic Spinning Tubes Subjected to Circumferential

Shear

Figure 5.17 to 520 show variation of radial and angular
displacements, and radial and hoop stress components with constant spin
speed as a function of dimensionless radial position x. For radial displacement
u, polynomial material model and Blatz-Ko model behave similarly, but Blatz-
Ko model gives higher results as spin speed 11 increases. For all the models,
displacements increase from inner boundary towards outer boundary, and
stresses decrease in the same direction. Calculations indicate that angular

12

displacement ¢ and shear stress 7 < are independent from spin speed and
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same for all the models. For radial stress r”, all the models give the same

22

result. For hoop stress <, and the axial stress 733 polynomial material model

and Blatz-Ko model behave similarly, but Blatz-Ko model gives smaller results
as spin speed increases. When shear traction 7, and spin speed q are equal

to 1.0, r'' and 2 are almost equal to zero along the radial position x.

Figures 5.21 to 5.23 display the variation of radial displacement u
at the outer boundary (x=1), and the stress components 'V and 72 at the
inner boundary (x=1.0). Since f effect is not considered in Blatz strain energy
density function this model is not given in these figures. For 7,=1.0 and
0=1.0, polynomial material model and Blatz-Ko model give essentially the
same results for displacements, and stress components. As mentioned iﬁ
section 5.1, when f=1.0 the strain energy density functions do not depend on

the second strain invariant; decreasing f indicates increasing l,-dependence

22

and decreasing |;-dependence. u, %, and 33 observed to be larger for

smaller f values. This means that second strain invariant is more pronounced

22

for u, <, and 733, The amount of compressibility plays an important role on

22 33

the radial displacement profile. T and ™ increase as v increases for

smaller f values, whereas for the region where f is nearly equal to one the

trend is opposite. Calculations indicate that angular displacement ¢, radial

1 12

stress 7! and shear stress 712 are independent from f and v.
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In figures 5.24 to 5.26 effect of v on the radial displacement, and
the stress components displayed. Similar to the anti-plane shear problem, for
f=1.0 v which is a measure of compressibility, does not affect the stress
components and the displacement fields, and the results are same for all the
three models. Again polynomial material model and Blatz-Ko model give
essentially the same results for the displacements, and stress components.

Calculations show that v effect is rather insignificant for angular displacement

1 33

¢, and radial stress r11. The trend for u, T 2, and 77" is decreasing as v

22 increases as v increases.

increases, whereas 1

The variations of displacement fields at the outer boundary, and
hoop and shear stresses at the inner boundary as a function of spin speed
are presented in figures 5.27 and 5.28 for a tube with R,/R,=1.25, v=0.458,

125 independent from

f=0.7, and 7,=1.0. It is observed that shear stress r
spin speed q. For f = 0.7 Blatz model does not give results far from other
two model. This means that f is rather insignificant. For spin speed less thaﬁ
3.0, polynomial material model and Blatz-Ko model give same results for
displacement fields. For greater spin Blatz-Ko model give smaller results than

22 increases almost linearly as

the polynomial material model. Hoop stress 1
spin speed increases. Blatz model gives the smallest results, but these are
not very different from the results of other two models.
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5.3 Finite Circumferential Shearing of Compressible Hyperelastic Tubes

Figures 5.29 to 5.33 represent the variation of displacement fields,
and stress components with external circumferential shear as a function of
dimensionless radial position x. For the three models, all the stress
components have a common trend of decreasing from inner boundary
towards outer boundary, whereas the displacements increase in the same

11

direction. For angular displacement @, radial stress 7 ', and shearing stress

22

712 all the three models give the same results. For the hoop stress 7

, which
is the dominant stress component for this problem, polynomial material model
and Blatz-Ko model give the same results. However Blatz model give high
results at the inner boundary as external circumferential shear increases. For

the radial displacement U the difference between Blatz model and the other

two model increases towards the outer boundary.

Figures 5.34 to 5.36 show the variation of radial displacement at
the outer boundary (x=1), and shearing and hoop stresses at the inner
boundary (x=1.0) as a function of f. In these figures Blatz model is not given,

because f effect is not considered in Blatz strain energy density function.

11

Numerical results indicate that angular displacement ¢, radial stress 7 ', and

12

shearing stress 7 “ are not significantly affected by the material constant f.
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The only significant effect of material constant f is on hoop stress 722 which
decreases with decreasing f. For 10=1.O, polynomial material model, and
Blatz-Ko model give essentially the same resuits for the displacements and

stress components.

In figures 5.37 to 5.39 effect of v on the radial, and stress
components displayed. Calculations show that the angular displacement ¢,

1 are not significantly affected by Poisson’s ratio v. The

and radial stress T
radial displacement u shows a v-dependent behaviour. When v approaches
to 0.5, which means that material become more incompressible, u approaches
to zero for all f. Figure 5.37 together with figure 5.34 show that for a speciﬁed
value of v, u is positive for small f, it decreases with increasing value of f and
becomes negative for f greater than 0.91. The circumferential shear stress 12
is seen to be little affected by a change in either f or v. Figure 5.39 shows
that for f=1.0 hoop stress %2 decreases sharply with iﬁcreasing v, and for
f=0.7 it is less affected by a change in v. Only for f=1.0, as v decreases
there become some differences between the three models in hoop stress 122;
polynomial material model gives the highest values. In other stress

components and displacements, for all f and v values, the results are

essentially the same.
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Figures 5.40 to 5.42 display the variation of displiacements at the
outer boundary (x=A), and stress components at the inner boundary (x=1.0)
as a function of applied surface traction. Since in these figures f is taken as
0.8, Blatz model is not given. Figure 5.40 shows that the radial displacement
is very small compared to angular displacement. Angular displacement
increases linearly with increasing applied surface traction. Figures 5.41 and
5.42 showé that stress components, also, incerase with increasing surfacé
traction. Radial and axial stresses are compressive stresses, and hoop and
circumferential shearing stresses are tensile stresses. There is no any

significant difference between polynomial material model and Blatz-Ko model.
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CHAPTER Vi

CONCLUSIONS

The following cbnclusions can be stated on the bases of the

numerical investigation.

In the finite anti-plane shear, for the dominant components which

13, and axial stress 133, the

are axial displacement w, axial shearing stress r
three models give the same result for v greater than 0.458. For smaller values
of f and v, there are significant differences between the three models. In the
light of experimental findings of Blatz-Ko, it must be marked that smaller

values of f and v belong to foam rubber for which continuum theory is no

longer valid.

In the constant spin and circumferential shear, the dominant
components are angular displacement ¢, circumferential shearing stress 7 12,
and hoop stress 722 for which there is no any significant difference between

the three models. Similarly, as f and v decrease the differences increase.



In the uniform circumferential shear, the dominant components are

12, and hoop stress

angular displacement ¢, circumferential shearing stress r
722 for which the three models give essentially the same results for bigger

values of f and v.

In all the problems, there are differences between the three model

for radial displacement u which is a second order effect for all problems.

Calculations show that the effect of material constants f and v on
the axial displacement for anti-plane shear, and on the angular displacement

for circumferential shear problems are rather insignificant.

Due to the complexity of Blatz-Ko strain energy density function,
in the circumferential shear problems, it is met with computational problems.
For f greater than 0.9, and applied surface traction greater than 1.6, no results

can be obtained due to the overflow errors.

The initial boundary conditions are guessed in the method of
adjoints. These guess values do not play an important role in the number of
iteration for polynomial material model and Blatz model. However, for Blatz-Ko

model the rate of convergency is dependent to the initial guess values.
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The simplest strain energy density function is proposed by Blatz,
in which material constant f is not considered which leads to the
independency of strain energy density function from second strain invariant.

Because of this simplicity the number of iteration is less for this model.

For f nearly equal to 1.0, Blatz model give the same results as the
other two models. In this region, Blatz model can be used to take the results

of dominant components fast.

The most suitable strain energy density function for the numerical
analysis, is proposed by Levinson and Burgess which is a polynomial material
model. For all values of {, v, R2/R1, Ty and @, it gives the results in less than

50 iterations.
Although the calculations show that the material compressibility is
essentially represented same in all the three models, it is proposed to use

polynomial model to get the resuits without facing with any problem.

As a final conlusion, it is believed that the correctness of these

analytical results must be checked with the experimental studies.
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APPENDIX A

TRANSFORMATION FORMULAS

A.1 Transformation Formulas for Defining Variables in Terms of R

In equation (3.25) radial displacement is expressed as
r = R+u(r)

If equation (A.1) is differentiated with respect to r,

R =1-u,
or applying the chain rule
R = 1-ugR,
from (A.3)
R - 1

(A1)

(A2)

(A3)

(Ad) .



By inserting (A.4) into (A.2)

Up
u, - (A.5)
1+up
if equation (A.1) is differentiated two times with respect to r
R - -u, (A6)
that is
R, - -[—2] (AT)
1ug ™’
therefore
u
R --—F (A.8)
(TN
and from (A.6)
Upr
u, = (A.9)
T (Lvuy)?

First derivative of the axial displacement w with respect to r can be

expressed as

w, = wpR (A.10)

4
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If (A.4) is substituted into (A.10)

WR
w, = (A.11)
1+ug
and if (A.11) is differentiated once more with respect to r,
w Wold
w” - RR  "R™RR ( A.12)

Aru? (14w

A.2 Formulas for the Dimensionless Terms

Dimensionless variables for radial position x, radial displacement

u, axial displacement w and angular displacement ¢ are defined in equations

(3.46) and (3.47) as

R

X = — A3
z (a13)

- u

u=-— Al14)"
- (a14)
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- W
- — 5
w R, (A.15)
3 -0 (A.16)
From (A.13)
dR - R dx (A.17)
and
d 1 d
—_———— 1
dR R, dx (A.18)
Using (A.14) and (A.18)
du d - 1 d -~
— = —(uR) ~ ——uR
ar = ar“® R, dx “Ry) (A-19)
and
du _ du (A20)
dR dx

Differentiating equation (A.19) once more with respect to R,

du ddu _d du
dR? dRdx Rdx dx

(A.21)
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therefore

Pu 1 &
dR2 R1 dx2

Similarly, for the axial displacement

dw _ dw
dR dx
and
dw 1 d’w
dR2 R1 dx2
Finally, for the angular displacement
4 _ 14d¢
dR R, dx
and
2o _ 1%

dR? R12 dx?
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APPENDIX B

COMPUTER PROGRAM USER’'S MANUAL

The general computer program is given in a 5% floppy disk. To run
the program write "ELASTO". Then the program will ask you the problem type
and the material model. After choosing the problem type and material model,

the program requires the following datas:

GUESS1= Missing initial condition, y,(1)

GUESS2= Missing initial condition, y ,(1)

PR= Poisson’s ratio, v

F= Material constant, f (not needed for Blatz model)

R2/R1= Thickness ratio, Fl2/R1

SHEAR= Surface traction, g

OMEGA= Spin speed, a (only for constant spin and circumferential
shear problem)

N= number of pivotal points



This a sample program which is used in the solution of constant

spin and circumferential shear problem by using Blatz-Ko model

OO0

OO0

OO0 0000

IMPLICIT REAL*8 (A-H,0-2)

CHARACTER FILEN*2,0UT*12

DIMENSION Y1(100),Y2(100),Y3(100),Y4(100),X(100),F1(100),F2(100),
*F3(100),F4(100),CM(2,2)

WRITE(*,*)’INPUT GUESS1,GUESS2,F,PR,R2/R1,SHEAR,OMEGAN’
READ(*,*)G1,G2,F,PR,RATIO,SHEAR,OMEGA,N
WRITE(1,60)F,PR,R2/R1,SHEAR,OMEGA,N

BETA=PR/(1.-2*PR)

initialize the counter on the iterative process. set k=0

K=0
Y10=0.
Y20=0.

for k=0 guess the missing initial conditions

Y30=G1
Y40=G2
D=(RATIO-1.)/(N-1.)
X1=1.

integrate the governing equations with the initial conditions
by using runge-kutta method. (store the profiles)

1 CALL RUNKUT(D,N,X1,F,OMEGA,BETA,Y10,Y20,Y30,Y40,X,Y1,Y2,Y3,Y4)

using the trial initial values and the calculated terminal values,
evaluate &qi: q3(tf),q4(tf)

Y1F=Y1(N)

Y2F=Y2(N)

Y3F=Y3(N)

Y4F=Y4(N)

CALL QI(F,RATIO,BETA,SHEAR,Y1F,Y3F,Y4F,Q3,Q4)
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ONQ)

O000

OO0

o000

OO0

set §g3=-q3(if) and &q4=-g4{tf)

DELTAQ3=-Q3
DELTAQ4=-Q4
DD=1.
DK=0.

integrate the adjoint equations backward using the kronecker
delta. the profiles yi(t) are used. save xi(t0).

CALLKUTRUN(D,N,X1,RATIO,F,OMEGA,BETA,Y10,Y20,Y30,Y40,X,F1,F2,
*F3,F4,F31,F41,DD,DK,DK,DK)

F311=F31

F411=F41
CALLKUTRUN(D,N,X1,RATIO,F,OMEGA,BETA,Y10,Y20,Y30,Y40,X,F1,F2,
*F3,F4,F31,F41,DK,DK,DD,DK)

F313=F31

F413=F41
CALLKUTRUN(D,N,X1,RATIO,F,OMEGA,BETA,Y10,Y20,Y30,Y40,X,F1,F2,
*F3,F4,F31,F41,DK,DK,DK,DD) :
F314=F31

F414=F41

evaluate partial derivatives

CALL PD(RATIO,F,BETA,Y1F,Y3F, Y4F,Q3Y1,Q3Y3,Q3Y4,Q4Y1,
*Q4Y3,Q4Y4,SHEAR)

form the matrix coeficients

CM(1,1)=Q3Y1*F311+Q3Y3*F313+Q3Y4*F314
CM(1,2)=Q3Y1*F411+Q3Y3*F413+Q3Y4*F414
CM(2,1)=Q4Y1*F311+Q4Y3*F313+Q4Y4*F314
CM(2,2)=Q4Y1*F411+Q4Y3*F413+Q4Y4*F414

solve &yi(t0) i=1,2,.....,n
DET=CM(1,1)*CM(2,2)-CM(1,2)*CM(2,1)

DELTAY3=(CM(2,2)*DELTAQ3-CM(1,2)*DELTAQ4)/DET
DELTAY4=(CM(1,1)*DELTAQ4-CM(2,1)*DELTAQ3)/DET

122



C
C
C

if maximum &qji is less than a specified tolerance terminate the
calculation

ACC3=ABS(DELTAQ3)
ACC4=ABS(DELTAQ4)
IF(ACC3.GT.0.000001) GOTO 2
IF(ACC4.LT.0.000001) GOTO 3

2 Y30=DELTAY3+Y30

Y40=DELTAY4+Y40
K=K-+1
GOTOH1

3 WRITE(1,10)

WRITE(1,20)
WRITE(1,30)
DO 4 1=1,N
J=N-I+1
U1=Y1(l)
u2=Y2(l)
U3=Y3(l)
U4=Y4(l)
Us=X(J)
Us=X(J)+Y1(l)
U7=1.+Y3(l)
Us=U5/(U6*U7)
CALL STRESS(F,BETA,U4,U5,U6,U7,U8,511,512,522,5S33)

4 WRITE(1,40) X(J),Y1(),Y2(l),511,512,522,S33

WRITE(1,50) K,DELTAQ3,DELTAQ4,Y3F,Y4F

10 FORMAT (4X,’RADIAL’,7X’RADIAL",6X," ANGULAR )
20 FORMAT (3X,’LOCATION’,4X,'DISPLACEMENT’,2X,'DISPLACEMENT’,

*4X,’STRESS11’,6X,’STRESS12',6X,'STRESS22',6X,"STRESS33’)

30 FORMAT (100(_")
40 FORMAT (7(E11.4,3X))
50 FORMAT (3X,'NUMBER OF ITERATIONS=",15,5X, DELTAQ3=",E15.8,5X,

*DELTAQ4=",E15.8,/,3X,'Y3(R2)=",E15.8,5X,'Y4(R2)=",E15.8)

60 FORMAT (F ='F6.3/'PR ='F6.3/’R2/R1="

*,F6.3,/,’'SHEAR="F6.3,/ OMEGA="F6.3/'N ='l5,)
STOP
END
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OO0

SUBROUTINE RUNKUT(D,N,X1,F,OMEGA,BETA,Y10,Y20,Y30,Y40,X,Y1,
*Y2,Y3,Y4)
IMPLICIT REAL*8 (A-H,0-2Z)

fourth order runge-kutta forward integration subroutine for
governing equations

DIMENSION X(100),Y1(100),Y2(100),Y3(100),Y4(100)

X(1)=X1 |

Y1(1)=Y10

Y2(1)=Y20

Y3(1)=Y30

Y4(1)=Y40

DO 5 I1=1,N-1

FF11=D*DY1(Y3(l))

FF12=D*DY2(Y4(]))

FF13=D*DY3(F,OMEGA,BETAX()),Y1(1),Y3(1),YA(D))

FF14=D*DY4(F,OMAGE,BETA,X(),Y1(),Y3()),Y4(!))

FF21=D*DY1(Y3(l)+FF13/2.)

FF22=D*DY2(Y4(l)+FF14/2.)

FF23=D*DY3(F,OMEGA,BETA, (X(I)+D/2.),(Y1 () +FF11/2.),(Y3(l) +FF13
*/2.),(Y4() +FF14/2.)

FF24=D*DY4(F,OMEGA,BETA, (X()+D/2.),(Y1 (I) + FF11/2.),(Y3(l) + FF13
*/2),(Y4() +FF14/2.))

FF31=D*DY1(Y3(l)+FF23/2.)

FF32=D*DY2(Y4(l)+FF24/2.)
FF33=D*DY3(F,OMEGA,BETA, (X(I)+ D/2.),(Y1 (I) + FF21/2.),(Y3(l) + FF23
*/2.),(Y4() +FF24/2.))

FF34=D*DY4(F,OMEGA,BETA, (X() +D/2.),(Y1(l) + FF21/2.),(Y3(l)+ FF23
*2),(Y4(l) +FF24/2.))

FF41=D*DY1(Y3(l)+FF33)

FF42=D*DY2(Y4(l)+FF34)

FF43=D*DY3(F,OMEGA,BETA, (X() +D),(Y1(l)+FF31),(Y3() + FF33),
*(Y4(l)+FF34))

FF44=D*DY4(F,OMEGA,BETA, (X(I)+D),(Y1 () +FF31),(Y3(l) + FF33),
*(Y4()+FF34))

Y1(1+1)=Y1(l) + (FF11+2.*FF21 +2.*FF31+FF41)/6.

Y2(1+1) =Y2(l) + (FF12+2.*FF22+ 2. *FF32+ FF42)/6.
Y3(1+1)=Y3(l) + (FF13+2.*FF23+2.*FF33+FF43)/6.
Ya(l+1)=Y4(l) + (FF14+2.*FF24+ 2 *FF34+FF44)/6.

5 X(1+1)=X()+D
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RETURN
END

SUBROUTINEKUTRUN(D,N,X1,RATIO,F,OMEGA,BETA,Y10,Y20,Y30,Y40,
*X,F1,F2,F3,F4,F31,F41,X10,X20,X30,X40)
IMPLICIT REAL*8 (A-H,0-Z)

C

C fourth order runge-kutta backward integration subroutine for

DIMENSION X(100),F1(100),F2(100),F3(100),F4(100),Y1(100),Y2(100),
*Y3(100),Y4(100)

CALL RUNKUT(D,N,X1,F,OMEGA,BETA,Y10,Y20,Y30,Y40,X,Y1,Y2,Y3,Y4)

X(1)=RATIO

F1(1)=X10

F2(1)=X20

F3(1)=X30

F4(1)=X40

DO 6 I=1,N-1

K=N-1+1

FF11=D*DG1(F,OMEGA,BETA,X(1),Y1(K),Y3(K),Y4(K),F3(),F4(I))

FF12=D*F2())

FF13=D*DG3(F,OMEGA,BETA,X(I),Y1(K),Y3(K),YA(K),F1 (1), F3(1),F4())

FF14=D*DG4(F,OMEGA,BETA,X(1),Y1(K),Y3(K),Y4(K),F2(1),F3(1),F4())

FF21=D*DG1 (F,OMEGA,BETA, (X()-D/2.),Y1 (K-1),Y3(K-1),Y4(K-1),
*(F3(1)+FF13/2), (F4() +FF14/2.)

FF22=D*F2())

FF23=D*DG3(F,OMEGA,BETA, (X()-D/2.),Y1(K-1),Y3(K-1), Y4(K-1),
*(F1()+FF11/2.), (F3() +FF13/2.), (F4() + FF14/2.))

FF24=D*DG4(F,OMEGA,BETA, (X(1)-D/2.),Y1(K-1),Y3(K-1),Y4(K-1),
*(F2()+FF12/2.), (F3() +FF13/2.), (F4(1) + FF14/2.))

FF31=D*DG1 (F,OMEGA,BETA, (X(1)-D/2.),Y1(K-1),Y3(K-1),Y4(K-1),
*(F3(l) +FF23/2.), (F4(l) + FF24/2.))

FF32=D*F2(l)

FF33=D*DG3(F,OMEGA,BETA, (X())-D/2.),Y1 (K-1),Y3(K-1),Y4(K-1),
*(F1(l)+FF21/2.), (F3() + FF23/2.), (F4(l) + FF24/2.))
FF34=D*DG4(F,OMEGA,BETA, (X(1)-D/2.),Y1(K-1),Y3(K-1),Y4(K-1),
*(F2(l)+FF22/2.), (F3(1) + FF23/2.), (F4(l) + FF24/2.))

FF41=D*DG1 (F,OMEGA,BETA, (X()-D),Y1 (K-1), Y3(K-1),Y4(K-1),
*(F3(1)+FF33),(F4(l) +FF34))

FF42=D*F2(l)

FF43=D*DG3(F,OMEGA,BETA, (X(1)-D),Y1(K-1),Y3(K-1),Y4(K-1),
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OO0

C
C
C

*(F1(1) +FF31),(F3(1) + FF33), (F4(l) + FF34))
FF44=D*DG4(F,OMEGA,BETA, (X()-D),Y1 (K-1),Y3(K-1),Y4(K-1),
*(F2(l) + FF32),(F3(l) + FF33), (F4(l) + FF34))
F1(1+1)=F1(l)+ (FF11+2*FF21+2*FF31+FF41)/6.
F2(1+1)=F2(l) + (FF12+2*FF22-+2*FF32+ FF42)/6.
F3(I+1)=F3(l) + (FF13+2*FF23+2*FF33-+ FF43)/6.
F4(l+1)=FA(l) + (FF14+2*FF24+2*FF34+ FF44)/6.
6 X(I+1)=X(1)-D
F31=F3(N)
F41=F4(N)
RETURN
END

SUBROUTINE QI(F,RATIO,BETA,SHEAR,Y1F,Y3F,Y4F,Q3,Q4)
IMPLICIT REAL*8 (A-H,0-Z) .

boundary equations at the outer surface

E1=RATIO+Y1F

E3=1.+Y3F

EE=RATIO/(E1*E3)

Q3=F*RATIO*ES/E1-(1.-F)*RATIO*(1.-+ RATIO**2*Y4F**2) /(E1 *E3**3)-
*  F*EE**(2 *BETA+1.)+(1.-F)*EE**(1.-2.*BETA)
Q4=F*RATIO*Y4F +(1.-F)*RATIO**3*Y4F/(E1**2*E3**2)-SHEAR
RETURN

END

SUBROUTINE STRESS(F,BETA,U4,U5,U6,U7,U8,S11,512,522,533)
IMPLICIT REAL*8 (A-H,0-2)

subroutine for the calculation of stresses

S11=F*US*U7/U6-(1.-F)*(U5-+U5**3*U4**2)/(U6*UT**3)-F*U8**(2.*BETA

*  +1.)+(1.-F)*U8**(1.-2.*BETA)
S12=F*U5*U4+(1.-F) *U5**3*U4/(UB**2*U7**2)
S22=F*U6/(U5*U7)+F*US*UB*U4**2/U7-(1.-F) *U5**3/(U6**3*U7)

*  _F*Ug**(2 *BETA+1.)+(1.-F)*U8**(1.-2.*BETA)
S33=F*(U5/(U6*U7))-(1.-F)*(U8+UB*U5**2*J4**2)-F*U**(2 *BETA-+1.)
*  +(1.-F)*U8**(1.-2.*BETA)

RETURN
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END

SUBROUTINE PD(RATIO,F,BETA,Y1F,Y3F,Y4F,Q3Y1,Q3Y3,Q3Y4,Q4Y1,
*Q4Y3,Q4Y4,SHEAR)
IMPLICIT REAL*8 (A-H,0-2)

subroutine for the partial derivatives of boundary equations

E1=RATIO+Y1F
E3=1.+Y3F

EE=RATIO/(E1*E3)

Q3Y1=F*(-RATIO*E3/E1**2) +(1.-F)*RATIO*(1 + RATIO**2*Y4F *+2)/(E1 **
*  o*EZ**3)+ (-F*(1.+2.*BETA)*EE**(2.*BETA) + (1.-F)*(1.-2.*BETA)*
*  EE**(-2.*BETA))*(-EE/E1)

Q3Y3=F*RATIO/E1 +(1.-F)*3*RATIO*(1 + RATIO**2*Y4F **2)/(E1 *E3**4)
* 4 (-F*(1.+2.*BETA)*EE**(2.*BETA)+(1.-F)*(1.-2. *BETA)*

*  EE**(-2.*BETA))*(-EE/E3)
Q3Y4=-(1.-F)*2*RATIO**3*Y4F/(E1*E3**3)

Q4Y1 =-(1.-F)*2*RATIO**3*Y4F/(E1**3*E3**2)
Q4Y3=-(1.-F)*2*RATIO**3*Y4F/(E1**2*E3**3)
Q4Y4=F*RATIO+(1.-F)*RATIO**3/(E{**2*E3**2)

RETURN

END

DOUBLE PRECISION FUNCTION DY1(Y3)
IMPLICIT REAL*8 (A-H,O-2)

DY1=Y3

RETURN

END

DOUBLE PRECISION FUNCTION DY2(Y4)
IMPLICIT REAL*8 (A-H,0-2)

DY2=Y4

RETURN

END

DOUBLE PRECISION FUNCTION DY3(F,OMEGA,BETA,X,Y1,Y3,Y4)
IMPLICIT REAL*8 (A-H,0-2)

E1=X+Y1

E3=1.+Y3
BK=(1.+2.*BETA)*F*(X/(E1*E3))**(2.*BETA)-(1.-2.*BETA)*(1.-F)*
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*  (X/(E1*E3))**(-2.*BETA)
UST31 =F**2%(X/E1**2+1/(E1*E3) + X**2%Y4**2/(E1*E3))
*  _F*(OMEGA*X)**2/(E1*E3)-(1.-F)*(OMEGA**2*X**4)/((E1*E3)**3)
USTB2=F*(1.-F)*((X+X**3*Y4**D) [(E1 **2*EF**4)X**4/(E1 **5*E3)-X**3
* [(E1X*4*EG**D) + (X**2-3*X**4*Y4**2)/(E1 **I*EF**3))
USTE3=(1.-F)**2*((X**3-3*X**5XY4**D) [(E{ ¥+ 4*EF**6).X**6/(E1 **7
* *E3**3))
UST34=BK*(F*(X/(E1**2*E3**2)-X**2/(E1**3*E3)) + (1.-F) *(X**3/
*  (E{**4*E3%*4)-X**4/(E1 **5*E3**3)))
ALT31=F**2*X**2/(E1**2*E3)
ALT32=F*(1 -F)*((3*X**2+ B*X**4*Y4**D)/(E{ **2XE**5) -+ X**4/(E1**4
%* *E3**3))
ALT33=(1.-F)**2% (XX *4-X**G*Y4**D) [(E1 **4*EZ**7)
ALT34=BK*(F*X**2/(E1**2*E3**3) + (1.-F) *X**4/(E1 **4*E3**5))
UST3=UST31+UST32+UST33+UST34
ALT3=ALT31+ALT32+ALT33+ALT34
DY3=UST3/ALT3
RETURN
END

DOUBLE PRECISION FUNCTION DY4(F,OMEGA,BETA,X,Y1,Y3,Y4)
IMPLICIT REAL*8 (A-H,0-2)

E1=X+Y1

E3=1.+Y3 -
BK=(1.+2.*BETA)*F*(X/(E1*E3))**(2.*BETA)-(1.-2.*BETA) *(1.-F)*

*  (X/(E1*E3))**(-2.*BETA)

UST41 =F**2*(X*Y4/(E1**2%E3) + 2XX**2*Y4/E1 **3)

* 4 (1.-F)*2*OMEGA**2XX**4*Y4/(E1 **3*E3%*4)
UST42=F*(1.-F)*(5*X**G*Y4/(E1**4*ES**3) + (AXX**2XY 4+ 4*X**4*Y4%*3)
* [(E1**B*ES**4) + (3*X*Y4+3*X**IXY4**3)/(E] **2*E3**5))
UST43=(1.-F)**2%((7*X**3*Y 4+ B*X**5XY4**3) [ (E1 ¥*4*EF**7) 4. DxX**g*
*  Y4/(E1**7*E3**4))
UST44=BK*(F*(X*Y4/(E1**2*E3**3) + 2*X**2*Y4/(E1**3*E3**2)) + (1.-F)*
* (X**BHY4/(E1**4*ESH*E)+ 2XX**4*Y4/(E1**5*E3**4)))

ALT41 =-F**2%X**2/(E1**2*E3)

ALT42=-F*(1 -F)*((3*X**2+ BX**4*Y4*%D) [(E1 **2*XEF**5) 4. X**4/(E1**4
* *E3%*3))

ALT43=-(1.-F)**2*(BX**4-X**GrY4**D)/(E1 **4*E3**7)
ALT44=-BK*(F*X**2/(E1**2*E3**3) +(1.-F)*X**4/(E1**4*E3**5))
UST4=UST41+UST42+UST43+UST44
ALT4=ALT41+ALT42+ALT43+ALT44
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DY4=UST4/ALT4
RETURN
END

DOUBLE PRECISION FUNCTION DG1(F,OMEGA,BETAX,Y1,Y3,Y4,F3,F4)
IMPLICIT REAL*8 (A-H,0-2)

E1=X+Y1

E3=1.+Y3
BK=(1.+2.*BETA)*F*(X/(E1*E3))**(2.*BETA)-(1.-2.*BETA)*(1.-F)*

*  (X/(E1*E3))**(-2.*BETA)
DBK=((1.+2.*BETA)*2*BETA*F*(X/(E1*E3))**(2.*BETA-1.) + (1.-2.*BETA)
*  **BETA*(1.-F)*(X/(E1*E3))**(-2.*BETA-1.))*(-X/(E1**2*E3)) '
UST31 =F**2*(.X/E1%*2+ 1/(E1*E3) + X**2%Y4**2/(E1*E3))

*  _F*(OMEGA*X)**2/(E1*E3)-(1.-F)*(OMEGA**2*X**4)/((E1*E3)**3)
UST32=F*(1.-F)*((X+X**3*Y4**2)[(E1 ¥*2*EG**4)-X**4/(E1 **5*EZ)-X**3
* [(E1**A*ES*AD) + (X**2-F*X*+4*Y4**2)/(E1 **F*EF**3))
USTB3=(1.-F)**2%((X**3-B*X**5RY4**) [(E1 ¥*4*EB**)-X**6/(E1**7

* *E3**3))
UST34=BK*(F*(X/(E1**2*E3**2).X**2/(E1**3*ES)) + (1.-F) *(X**3/

*  (E1%*4*E3**4)-X**4/(E1**5*E3**3)))

ALT31 =F**2%X**0/(E{ **2*E3)

ALT32=F*(1.-F)*((BX**2-+ 3*X**4*Y4%*D)(E1 **2*EZ**5) +- X**4/(E1**4
* *E3**3))

ALT33= (1.-F)**2%(B*X**4-X**ErY4**2)/(E1 **4*E3**7)
ALT34=BK*(F*X**2/(E1 **2*E3**3) + (1.-F)XX**4/(E1**4*E3**5))
UST3=UST31+UST32+UST33+UST34
ALT3=ALT31+ALT32+ALT33+ALT34

UST41 =F**2%(X*Y4/(E1**2*E3) + 2*X**2*Y4/E1**3)

¥ 4(1.-F)*2*OMEGA**2*X**4*Y4/(E1 **3*E3**4)
USTA2=F*(1.-F)*(5*X**3¥Y4/(E1 **4*E3**3) + (4*X**2XY 4+ 4*X**4*Y 4*%3)
¥ [(E1**3*E3**4) + (3*X*Y4+3*X**3*Y4**3)/(E1 **2*E3**5))
UST43=(1.-F) **2*((7*X**3¥Y4+ FEX**5AY4**3) [(E1 ¥*4*EZ**7) + 2%X**6*
*  Y4/(E1**7T*E3**4))

UST44=BK*(F* (X*Y4/(E1**2*E3**3) + 2XX**D*Y4/(E1*+F*EF**2)) + (1 -F)*
X (X**GHY4/(E1*+4*ESHHE) + 2XX**4*Y4/(E1¥+5*EZ**4)))
UST4=UST41+UST42+UST43+UST44

ALT4=-ALT3

G3Y11 =F**2%(2%X/E1 **3-1/(E1**2*E3)-X**2*Y4**D/(E1 **2*E3)) + F*(
FOMEGA*X)**2/(E1 **2*E3) + (1.-F)*3*(OMEGA**2*X**4)/(E1 **4*E3**3)
G3Y12=F*(1.-F)*((-2*X-2*X**3*Y4**2)/(E1**3*E3**4) + 5*X**4/(E1**6
*  HEG) 4 4*XHHG/(E1HHEHEGHHD) + (-3HXF A2+ GFXH*4XY4* D) /(E1**4
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%* *E3**3))
G3Y13=(1.-F) **2%((-4*X**3+ 1 2XX**BXY4**D) /(E1 **5*E3**6) +
*x 7EX**G/(E1**8*E3**3))
G3Y14=DBK*(F*(X/(E1**2*E3**2)-X**2/(E1**3*ES3)) + (1.-F) *(X**3/
(E1**4*E3**4)-X**4/(E1 **5*E3**3))) + BK*(F*(-2*X/(E1**3*E3**2)
X L RXERRJ(E1HHA*ER)) + (1.-F)* (-4*X**3/(E1**E*ES**4) +5*X**4/
*  (E1**6*E3**3)))
G3Y15=F**2%(-2%X**2/(E1**3*EB)) +F*(1.-F)*((-6*X**2-6*X**4*Y4**2)
¥ J(E1**3*E3**5)-4*X**4/(E1**5¥EZ**3)+(1.-F)**2*(-12*X**4+
* 4*X**6*Y4**2) / (E1 **5*E3**7))
G3Y16=DBK*(F*X**2/(E1**2*E3**3) + (1.-F) *X**4/(E1**4*E3**5)) +
* BK*(-2*F*X**2/(E1**3*E3**3)-(1.-F) *4*X**4/(E1**5*E3**5))
GAY11=F**2%(-25X*Y4/(E1**3*E3)-6*X**2*Y4/E1**4)
¥ (1.-F)*6*OMEGA**2*X**4*Y4/(E1**4*E3**4)
GAY12=F*(1.-F)*(-20*X**3*Y4/(E1 **5*E3**3)-(12%X**2*Y4+12%X**4
* Y4RR3)[(ETFHAES**A)-(6*X*Y4-+E*X**3*Y4**3)/(E1 *+F*EF**5))
GAY13= (1.-F) ¥*2%((-28*X**3*YA-1 24X **5*Y4**3)[(E1 **5*E3**7)-
* {4*X**BRY4/(E1**B*E3**4))
GA4Y14=DBK*(F* (X*Y4/(E1**2*E3**3) + 2¥X**2*Y4/(E1**3*EZ**2)) + (1.-F
* )R(X**BRYA/(E1**4*ES*HE) +2XX**4*Y4/(E1**5*EB**4))) + BK*(F*
* (-2*K*Y4/(E1**3*E3**3)-6*X**2*Y4/(E1**4*E3**2)) + (1.-F)*
* (-4*K*EGXY4/(E1**EHES**E)-10%X**4*Y4/(E1**6*E3**4)))
G3Y1=((G3Y11+G3Y12+G3Y13+G3Y14)*ALT3-(G3Y15+G3Y16)*UST3)/
*ALT3**2
G4Y1=((GAY11+G4Y12+ GAY13+ GAY14)*ALT4+ (G3Y15-+G3Y16)*UST4)/
*ALT4**2
DG1=-(G3Y1*F3+G4Y1*F4)
RETURN
END

DOUBLEPRECISIONFUNCTIONDG3(F,OMEGA,BETA,X,Y1,Y3,Y4,F1,F3,
*F4)
IMPLICIT REAL*8 (A-H,0-2)
E1=X+Y1
E3=1.+Y3
BK=(1.+2.*BETA)*F*(X/(E1*E3))**(2.*BETA)-(1.-2.*BETA)*(1.-F)*
*  (X/(E1*E3))**(-2.*BETA)
DBK=((1.+2.*BETA)*2*BETA*F*(X/(E1*E3))**(2.*BETA-1.)+(1.-2.*BETA)
*  2*BETA*(1.-F)*(X/(E1*E3))**(-2.*BETA-1.))*(-X/(E1*E3**2))
UST31=F**2*(-X/E1**2+1/(E1*E3) + X**2*Y4**2/(E1*EJ))
* -F*(OMEGA*X)**2/(E1*E3)-(1.-F)*(OMEGA**2*X**4)/((E1*E3)**3)
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UST32=F*(1.-F)*((X+X**3*Y4**2)/(E1 **2*E3**4)-X**4/(E1**5*E3)-X**3
* J(E1**4*EZ**D) 4+ (X**2-3*X**4*Y4**2)/(E1 **3*E3**3))

UST33=(1.-F)**2%((X**3-3*X**5*Y4**2) [(E1 **4*EZ**6)-X**6/(E1**7
%* *E3**3))

UST34=BK*(F*(X/(E1 **2*E3**2).X**2/(E1**3*E3)) + (1.-F)*(X**3/

*  (E1**4*E3**4)-X**4/(E1**5*E3**3)))

ALT31=F**2%X*%2/(E{ **2*EJ)

ALT32=F*(1.-F)*((3*X**2+ 3*X**4*Y4**2)/(E1 **2*E3**5) -+ X**4/(E1**4
%* *E3**3))

ALT33= (1.-F)**2% (3K *4-X**ErY4**2) /(E1 **4*E3**7)

ALT34=BK*(F*X*42/(E1**2*E3**3) + (1.-F) *X*+4/(E1 **4*E3**5))

UST3=UST31+UST32+UST33+UST34

ALT3=ALT31+ALT32+ALT33-+ALT34

UST41 =F**2%(X*Y4/(E1 *+2*E3) + 2*X**2*Y4/E1 **3)

* 3 (1.-F)*2*OMEGA**2*X**4*Y4/(E1**3*E3**4)

USTA2=F*(1.-F)*(5*X**3*Y4/(E1**4*EG**3) + (4*X**2¥Y4+ 4*X**4*Y4*+*3)
* [(E1**3*EZ**4) +(3X*Y4-+3*X**3*Y4**3)/(E1**2+*E3**5))

USTA3= (1.-F) 2% ((7*X**3XY 4+ B **5Y4**3) [(E1 **4*EF**7) + 2*X**6*
*  Y4/(E1**T*E3**4))

UST44=BK*(F*(X*Y4/(E1**2*E3**3) + 2*X**2*Y4/(E1 **3+E3**2)) + (1.-F)*
£ (X**BRYA/(E]HHAXESHAE) 4 2¥X**4*Y A/ (E1 F+EXES**4)))

UST4=UST41+UST42+UST43+UST44

ALT4=-ALT3

G3Y31 =F**2*(-1/(E1*EG**2)-X**2*Y4**2/(E1*E3**2)) + F*(OMEGA*X) **
*  2/(E1*E3**2)+(1.-F)*(OMEGA**2*X**4)/(E1**3*E3**4)

G3YB2=F*(1.-F)*((-4*X-4*X**3*Y4**2) [(E1 **2*EG**5) + X**4/(E1**5
* KEGRRD) L 2XKHRG/(E1HHAXESHAD) + (-BHXF A2+ QXX *4HY4**D)/

* (E1 **3*E3**4))

G3Y33=(1.-F)H*2%((-5*X**3+18*X**5*Y4*+2)/(E1 **4*EB**7) +3*X**6/
* (E1**7*E3**4))

G3Y34=DBK*(F*(X/(E1**2*E3**2)-X**2/(E1**3*E3))+ (1.-F)*(X**3/
*  (E1%**4*E3**4)-X**4/(E1**5*E3**3))) + BK*(F*(-2*X/(E1**2*E3**3)

FX**DY(E1 **F*EF**2)) + (1.-F) *(-4*X**3/(E1 **4*EF**5) + 3*X**4/
* (E1**5*E3**4)))

G3Y35=-(F*X/(E1*E3))**2-F*(1.-F)*((15*X**2-+ 15*X**4*Y4**2)/(E1 **2
*  *EGR*E) 1 3¥(X/(ETHED))**4) + (1.-F) 2 (21 XX**4+ THX**6FY4**2)
* /(E1 **4*E3**8)

G3Y36=DBK*(F*X**2/(E1**2*E3**3) + (1.-F) *X**4/(E1**4*E3**5)) +
*  BK*(-F*3*X**2/(E1**2*E3**4)-(1.-F)*5*X**4/(E1**4*E3**6))

GAY31 =F**2%(-X*Y4/(E1 **2*E3**+2))

* L(1.-F)*8*OMEGA**2¥X**4*Y4/(E1 **3+E3**5)
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GAY32=F*(1.-F)*(-15*X**3*Y4/(E1**4*E3**4)-(16*X**2*Y4+16*X**4*

*  Y4**3)/(E1**3¥E3**5)-(15*X*Y4+15*X**3*Y4**3)/(E1**2*E3**6))
GAY33=(1.-F)**2%((-49*X**3¥Y4-21 *X**5*Y4**3)/(E1 **4*E3**8)-8*X**6
*  *Y4/(E1**T*E3**5))

G4Y34=DBK*(F*(X*Y4/(E1 **2*E3**3) + 2*X**2*Y4/(E1 **I*E3**2)) +(1.-F)
*  X(XEABRYA/(E1**4XEHHE) + 24X **4*Y4/(E1**5XEZ**4))) + BK*(F*(-3*
*  X*Y4/(E1**24E3**4)-4*X**2*Y4/(E1**3*EZ**3)) +(1.-F)*

* (BEX**BAYA/(E1**4*ES**6)-8*X**4*Y4/(E1**5*E**5)))

G3Y3=((G3Y31+G3Y32+G3Y33+G3Y34)*ALT3-(G3Y35+G3Y36)*UST3)/
*ALT3**2

G4Y3=((GAY31+G4Y32+G4Y33+G4Y34)*ALT4+(G3Y35+G3Y36) *UST4)/
*ALT4**2

DG3=-(F1+G3Y3*F3+G4Y3*F4)

RETURN

END

DOUBLEPRECISIONFUNCTIONDG4(F,OMEGA,BETA,X,Y1,Y3,Y4,F2,F3,
*F4)
IMPLICIT REAL*8 (A-H,0-2)
E1=X+Y1
E3=1.4+Y3
BK=(1.+2.*BETA)*F*(X/(E1*E3))**(2.*BETA)-(1.-2.*BETA)*(1.-F)*
*  (X/(E1*E3))**(-2.*BETA)
UST31 =F**2*(-X/E1 **2+1/(E1*E3) + X**2*Y4**2/(E1*E3))
*  _F*(OMEGA*X)**2/(E1*E3)-(1.-F)*(OMEGA**2*X**4)/((E1*E3)**3)
UST32=F*(1.-F)*((X-+X**3*Y4**2)/(E1 **2*E3**4)-X**4/(E1 **5*E3)-X**3
X [(E1**4*ES*D) 4 (X**2-3XX**4XY4**0)/(E1 **F*EF**3))
UST33=(1.-F)**2%((X**3-3*X**5*Y4**D) [(E1 **4*EG**6).X**6/(E1**7
* *E3%*3))
UST34=BK*(F*(X/(E1**2*E3**2)-X**2/(E1**3*E83)) + (1.-F) *(X**3/
*  (E1**4*E3**4)-X**4/(E1**5*E3**3)))
ALT31 = Fr*0xX**0/(E{**2*E3)
ALT32=F*(1.-F)*((B¥X**2-+ B*X**4*Y4**D) [(E{ ¥*D*XEF**5) + X**4/(E1 **4
* *E3**3))
ALT33= (1.-F)**2% (*X**4-X**GHY 4%%D) | (E1 ¥*4*E3**7)
ALT34=BK*(F*X**2/(E1**2*E3**3) + (1.-F) *X**4/(E1 **4*E3**5))
UST3=UST31+UST32+UST33+UST34
ALT3=ALT31+ALT32+ALT33+ALT34
UST41 =F**2% (X*Y4/(E1**2*E3) +2*X**2*Y4/E1**3)
* 1 (1.-F)*2*OMEGA**2*X**4*Y4/(E1 **3*E3**4)
UST42=F*(1.-F)*(5*X**3*Y4/(E1**4*EB**3) + (4*X**2XY4+ 4*X**4*Y4**3)
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* [(E1**3*E3**4) + (3*X*Y4+ 3*X**3Y4**3)/(E1 **2*E3**5))
UST43=(1.-F)*2*((7*X**3*Y 4+ F*X**5*Y4**3)/(E1 **4*EF**7) + 25X **6*
*  Y4/(E1**T*E3**4)) ,
UST44=BK*(F*(X*Y4/(E1**2*E3**3) + 2XX**2*Y4/(E1**3*E3**2)) +(1.-F)*
* (K¥*BY4/(E1**4*EZ*AE) + 25K *4*Y 4/(E1**5*E3**4)))
UST4=UST41+UST42+UST43+UST44
ALT4=-ALT3
GBY4 =F**2%2%X**2%Y4/(E1*E) +F*(1.-F)*(2*X**3*Y4/(E1 **2*E3**4)-
¥ GRX*HARY4/(E1**GXES**3))-(1.-F)**2*E*X**5*Y4/(E1**4*E3**6)
G3Y42=F*(1.-F)*6*X**4*Y4/(E1**Q*E3**5)-(1.-F) **2%2*X**6*Y4/
%* (E1 **4*E3**7)
G4Y41 =F**2%(X/(E1**2*E3) + 25X **2/E1**3)
* 4(1.-F)*2*OMEGA**2*X**4/(E1**3*E3**4)
G4Y42=F*(1.-F)*(5*X**3/(E1 **4*E3**3) + (4*X**2+ 1 25X**4*Y4**2)/
* (E1**3*E3**4)+(3*X+G*X**3rY4**2)/(E1 **2*E3**5))
GAY43=(1.-F)**2%((7X**3+ Q=X *5*Y4*#2)/(E1 **4*EZ**7) + 2*X**6/
* (E1**7*E3**4))
G4Y44=BK*(F*(X/(E1**2*E3**3) + 2%X**2/(E1**3*E3**2)) + (1.-F)*
*x  (X**3[(E1**4*E3**5) + 2*X**4/(E1**5*E3**4)))
G3Y4=(G3Y41*ALT3-UST3*G3Y42)/ALT3**2
G4Y4=((GAY41 +GAYA2+GAY43+GAY44)*ALT4+ G3Y42*UST4)/ALT4**2
DG4=-(F2+G3Y4*F3+G4Y4*F4)
RETURN
END
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