
A FORWARD PREDICTION BASED OUT OF SEQUENCE MEASUREMENT
PROCESSING METHOD FOR KALMAN AND IMM FILTERING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OZAN EREL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2022

Approval of the thesis:

A FORWARD PREDICTION BASED OUT OF SEQUENCE
MEASUREMENT PROCESSING METHOD FOR KALMAN AND IMM

FILTERING

submitted by OZAN EREL in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Umut Orguner
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Emre Özkan
Electrical and Electronics Engineering, METU

Prof. Dr. Umut Orguner
Electrical and Electronics Engineering, METU

Prof. Dr. Mehmet Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Engineering, METU

Prof. Dr. Murat Efe
Electrical and Electronics Engineering, Ankara University

Date: 13.12.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ozan Erel

Signature :

iv

ABSTRACT

A FORWARD PREDICTION BASED OUT OF SEQUENCE
MEASUREMENT PROCESSING METHOD FOR KALMAN AND IMM

FILTERING

Erel, Ozan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Umut Orguner

December 2022, 92 pages

Processing measurements from the same target which arrive at the processing center

not in the order they were obtained (i.e., out of sequence) due to delayed commu-

nications is a challenging (OOSM) problem in target-tracking applications. If this

problem is not given special care, the quality of the tracking may degrade rather than

improve. Therefore, this thesis is focused on the study of forward prediction based

OOSM processing methods for linear Gaussian systems and their extension for jump

Markov linear systems. The main idea of these methods is to fuse a forward-predicted

version of a past target track which incorporates the OOSM, with the current track.

Among the proposed methods for linear Gaussian systems, the best-performing one

turns out to be a preferable option since it performs close to existing solutions and

has similar computational cost and data storage requirements with them. In the case

of jump Markov linear systems, as well, the best-performing proposed method seems

to be a good option for practical applications when the optimization parameter used

in its fusion step can be chosen smaller to reduce the computational cost without

experiencing considerable performance degradation.

v

Keywords: out of sequence measurement, track fusion, interacting multiple filter

vi

ÖZ

KALMAN VE IMM FİLTRELEME İÇİN İLERİYE YÖNELİK TAHMİN
TABANLI SIRA DIŞI ÖLÇÜM İŞLEME YÖNTEMİ

Erel, Ozan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Umut Orguner

Aralık 2022 , 92 sayfa

Aynı hedeften elde edilen ve gecikmeli iletişim nedeniyle elde edilme sırasına göre

işlem merkezine ulaşmayan (yani sıra dışı) ölçümlerin işlenmesi, hedef takip uygu-

lamalarında zorlu bir (OOSM) problemdir. Bu probleme özel bir önem verilmezse,

takip kalitesi artmak yerine düşebilir. Bu nedenle, bu tez doğrusal Gauss sistemleri

için ileri tahmin tabanlı OOSM işleme yöntemleri ve bunların atlamalı Markov doğ-

rusal sistemleri için genişletilmesi üzerine odaklanmıştır. Bu yöntemlerin ana fikri,

OOSM’yi içeren geçmiş bir hedef izinin ileriye dönük tahmin edilen bir versiyonunu

güncel hedef iziyle birleştirmektir. Doğrusal Gauss sistemleri için önerilen yöntem-

ler arasında en iyi performans göstereni, mevcut çözümlere yakın performans gös-

termesi ve onlarla benzer hesaplama maliyeti ve veri depolama gereksinimlerine sa-

hip olması nedeniyle tercih edilebilir bir seçenek olarak ortaya çıkmaktadır. Atlamalı

Markov doğrusal sistemler söz konusu olduğunda da, önerilen en iyi performans gös-

teren yöntem, füzyon adımında kullanılan optimizasyon parametresinin kayda değer

bir performans düşüşü yaşamadan hesaplama maliyetini düşürmek adına daha küçük

seçilebildiği pratik uygulamalar için iyi bir seçenek gibi görünmektedir.

vii

Anahtar Kelimeler: sıra dışı ölçüm, iz füzyonu, etkileşimli çoklu model

viii

To my future self, who I hope will be able to assess the consequences of his

decisions and their impact on him beforehand..

ix

ACKNOWLEDGMENTS

I have to admit that before I started writing my thesis, I never imagined that there

would be so many people I would want to mention in this section, so the lesson

learned here is not to count the chickens before they hatch.

First of all, I would like to express my sincere gratitude to my professor Umut

Orguner, who always provided me with the help and feedback I needed. I would

also like to express my eternal gratitude to my colleague, my first and always polar

star Görkem Abla for the constant guidance and support she has given me with her

30 years of experience, I don’t know what I would have done without her divine in-

terventions. I would also like to share my special thanks to my beloved girlfriend

Beste, who guided me through difficult times with her exceptional and, according to

her, effortless speeches. I would also like to thank my brothers Köse, Kemal and

Berkay, who have been there to support me throughout this whole process and made

me realize the value of our friendship once again. To Hande and Çağrı, whose joy and

fun they brought to our workplace helped me loosen up during this stressful period,

I promise you that I will do my best to get my mention in your acknowledgments.

My dear friends Mert and Şimşek, I want you to show that I always carry the regret

of not writing to you in the high school yearbook and that you are in my mind by

mentioning you here.

Last but not least, to my parents, who have the biggest contribution to raising me to

become who I am today, and to my biggest role model, the most caring sister a sibling

could wish to have, whose footsteps I have always followed in my quest to be a better

person in life, this thesis is as much your work as it is mine, I love you all very much.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Literature Review . 1

1.2 The Outline of the Thesis . 3

2 BACKGROUND . 5

2.1 OOSM Problem for Linear Gaussian Systems 5

2.1.1 OOSM Problem Definition 5

2.1.2 In Sequence Estimation (Kalman Filter) 8

2.1.3 Existing Solutions for the OOSM Problem 9

2.1.3.1 Bl1 Algorithm . 9

2.1.3.2 Forward Prediction Fusion and Decorrelation (FPFD) . 14

xi

2.2 OOSM Problem for Jump Markov Linear Systems 19

2.2.1 OOSM Problem Definition 20

2.2.2 In Sequence Estimation (IMM filter) 21

2.2.3 Existing Solutions for the OOSM Problem 24

2.2.3.1 Bl1IMM Algorithm 24

2.3 Correlation Independent Fusion Methods 27

2.3.1 Naive Fusion . 29

2.3.2 Covariance Intersection (CI) 30

2.3.3 Largest Ellipsoid Algorithm (LEA) 31

3 PROPOSED METHOD . 39

3.1 Proposed Solution for Linear Gaussian Systems 39

3.1.1 Algorithm . 39

3.1.2 Data Storage Requirement 42

3.1.3 Computational Cost . 43

3.2 Proposed Solution for Jump Markov Linear Systems 44

3.2.1 Algorithm . 45

3.2.1.1 Naive Fusion applied in FPFIMM 47

3.2.1.2 CI Fusion applied in FPFIMM 48

3.2.1.3 LEA Fusion applied in FPFIMM 51

3.2.2 Data Storage Requirement 51

3.2.3 Computational Cost . 52

3.3 Advantages and Disadvantages . 53

3.3.1 Advantages . 53

xii

3.3.2 Disadvantages . 53

4 NUMERICAL RESULTS . 55

4.1 Performance Testing of FPF Methods 55

4.1.1 2-D Linear Measurement Model Example 55

4.1.1.1 Single-Lag Scenario 57

4.1.1.2 Multi-Lag Scenario 63

4.1.2 2-D Nonlinear Measurement Model Example 68

4.2 Performance Testing of FPFIMM Methods 71

4.2.1 Model Match Case . 71

4.2.2 Model-Mismatch Case . 75

4.2.2.1 Effect of the OOSM Lag 76

4.2.2.2 Effect of the OOSM Time 77

5 CONCLUSIONS AND FUTURE WORK 87

REFERENCES . 89

xiii

LIST OF TABLES

TABLES

Table 3.1 Number of scalars required to be stored in terms of lmax for a state

vector with 6 elements. 43

Table 3.2 Number of operations required to be performed for any l. 44

Table 3.3 Number of scalars required to be stored in terms of lmax when the

number of state variables in xk is 4 and number of IMM filter models is 2. 52

Table 3.4 Number of operations required to be performed in IMM application

for any lmax. 52

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 The illustration of the OOSM problem. 7

Figure 2.2 The illustration of one-step lag OOSM problem. 10

Figure 2.3 The illustration of the equivalent measurement concept. 12

Figure 2.4 The illustration of the equivalent measurement processing concept. 13

Figure 2.5 The illustration of the FPFD method for OOSM track update. . . 18

Figure 2.6 The illustration of the resulting ellipsoid after CI fusion. 32

Figure 2.7 The illustration of the steps of LEA between the two estimates

x1 and x2. 36

Figure 2.8 The illustration of the resulting ellipsoids after CI and LEA fusion. 37

Figure 3.1 The illustration of the proposed method for OOSM track update. 41

Figure 4.1 Position RMSE comparison of FPF methods and existing solu-

tions for different process noise intensities. 59

Figure 4.2 Velocity RMSE comparison of different FPF methods and exist-

ing solutions for different process noise intensities. 60

Figure 4.3 NEES comparison of FPF methods and existing solutions for

different process noise intensities. 61

Figure 4.4 NEES comparison of FPF methods and existing solutions for

different process noise intensities (Zoomed version of Fig. 4.3). 62

xv

Figure 4.5 Position RMSE comparison of FPF methods and existing solu-

tions for different OOSM lags. 64

Figure 4.6 Velocity RMSE comparison of different FPF methods and exist-

ing solutions for different OOSM lags. 65

Figure 4.7 NEES comparison of different FPF methods and existing solu-

tions for different OOSM lags. 66

Figure 4.8 NEES comparison of different FPF methods and existing solu-

tions for different OOSM lags (Zoomed version of Fig. 4.7). 67

Figure 4.9 Time-averaged RMS position errors for different lags. 68

Figure 4.10 Time-averaged RMS velocity errors for different lags. 69

Figure 4.11 Position RMSE Values. 71

Figure 4.12 Velocity RMSE Values. 72

Figure 4.13 NEES Values. 73

Figure 4.14 NEES Values (Zoomed version of Fig. 4.13). 74

Figure 4.15 Position RMSE for 1 lag OOSMs. 75

Figure 4.16 Position RMSE for 3 lag OOSMs. 76

Figure 4.17 Velocity RMSE for 1 lag OOSMs. 77

Figure 4.18 Velocity RMSE for 3 lag OOSMs. 78

Figure 4.19 Mean NEES for 1 lag OOSMs. 78

Figure 4.20 Mean NEES for 3 lag OOSMs. 79

Figure 4.21 Mean NEES for 1 lag OOSMs (Zoomed version of Fig. 4.19). . . 79

Figure 4.22 Mean NEES for 3 lag OOSMs (Zoomed version of Fig. 4.20). . . 80

xvi

Figure 4.23 True and In-Seq estimate trajectories of the target in the model-

mismatch scenario. The red dot denotes the starting point of the target

trajectory. 80

Figure 4.24 Position RMSE for 1 lag OOSMs. 81

Figure 4.25 Position RMSE for 3 lag OOSMs. 81

Figure 4.26 Velocity RMSE for 1 lag OOSMs. 82

Figure 4.27 Velocity RMSE for 3 lag OOSMs. 82

Figure 4.28 Mean NEES for 1 lag OOSMs. 83

Figure 4.29 Mean NEES for 3 lag OOSMs. 83

Figure 4.30 Position RMSEs with respect to OOSM times for different OOSM

lags. 84

Figure 4.31 Position RMSEs with respect to OOSM times for different OOSM

lags (Zoomed version of Fig. 4.30). 85

xvii

LIST OF ABBREVIATIONS

CI Covariance Intersection

FPF Forward Prediction based Fusion

FPFD Forward Prediction Fusion and Decorrelation

GMTI Ground Moving Target Indication

IMM Interacting Multiple Model

JMLS Jump Markov Linear System

KF Kalman Filter

LEA Largest Ellipsoid Algorithm

MC Monte Carlo

MSE Mean Square Error

NEES Normalized Estimation Error Squared

OOSM Out of Sequence Measurement

RMS Root Mean Square

RMSE Root Mean Square Error

xviii

CHAPTER 1

INTRODUCTION

In this section, we first give a brief literature review about the Out of Sequence Mea-

surement (OOSM) problem, and then we give the outline of the thesis.

1.1 Literature Review

In multisensor tracking systems that operate in a centralized manner [1], i.e., the sys-

tems in which the processing of the measurements from all the sensors is done at a

single center, there are usually different time delays in the arrival of the measurement

data from the various sensors to the center. This may arise from many factors, such as

sensor diversity, and/or random delays over communication networks. This leads to

a possibility that the measurements from the same target may not be received in the

order they have originated, in other words out of sequence. Therefore, it may occur

that a measurement at a given time arrives at the processing center after the corre-

sponding track has already been updated with one, or more, more recently collected

measurements. The resulting problem of how to update the current state estimate with

an “older” measurement has appeared in the literature under various names such as

the Out Of Sequence Measurements (OOSM) problem [2, 3], the problem of tracking

with random sampling and delays [4, 5, 6], the problem of negative-time measurement

update [2], and the problem of incorporating random time delayed measurements [7].

A direct solution to the OOSM problem is simply to ignore the OOSM in the pro-

cessing. This solution leads obviously to a loss of the information contained in the

OOSM. In order to avoid such a drawback, one can simply reprocess all measure-

ments that are collected from the OOSM time to the current time in chronological

1

order and achieve the optimal solution. Nevertheless, this solution turns out to be

inefficient due to its high computation and storage requirements, especially in a case

where data association is handled by a complex algorithm like a multiple hypothesis

tracker (MHT). Thus, instead of reprocessing an entire sequence of measurements,

such measurements have to be processed as OOSMs.

Several methods have been proposed for Linear Gaussian systems in the literature to

deal more efficiently with the OOSM problem. Firstly, the work in [2] developed the

optimal procedure for incorporating a 1 lag measurement into a Kalman filter (KF)

and showed that a simpler algorithm, designated as B (originated in [4]), is nearly

optimal for processing such an OOSM. Algorithm Bl [8] generalized algorithm B for

an l lag OOSM, however, requires l steps to carry out the update. Subsequently, [9]

and [3] showed that an l lag OOSM can be processed similarly to a 1 lag OOSM, in

one single step via another algorithm called Bl1, rather than in l steps that would be

required by algorithm Bl. In [10] the Forward Prediction Fusion and Decorrelation

(FPFD) method which is based on forward prediction and decorrelation to overcome

the OOSMs problem is suggested, without the need for backward prediction. The

proposed method has proved to compare favorably to the aforementioned algorithms.

There are also some methods for updating the state estimate optimally with an out-of-

sequence measurement (OOSM) by using augmented state smoothing [11, 12]. The

works of [13, 14] solve for the update with an arbitrary lag OOSM, but they both

require an iteration back for l steps and a considerable amount of storage.

Since the state-of-the-art tracker for real (maneuvering) targets is the interacting mul-

tiple model (IMM) estimator, algorithms for incorporating OOSM into an IMM es-

timator have also been developed in the literature. For maneuvering target tracking

problems, it is popular to consider multiple model-based approaches as the maneu-

ver behavior of a target can be more precisely described by using multiple models.

The standard interacting multiple model (IMM) algorithm, proposed in [15] is the

most effective suboptimal multiple model algorithm and has been adapted to many

applications for maneuvering target tracking [16]. An IMM-PDA (probabilistic data

association) filter for processing an OOSM was presented in [17] using state aug-

mentation. The algorithm for incorporating OOSMs into the IMM estimator via the

Bl1 approach [4, 5], is discussed in [18]. In the realistic GMTI examples presented

2

there, the IMM estimator that processes the OOSM via the Bl1 approach performs

practically as well as the IMM which reorders and reprocesses the measurements in

sequence, and, consequently, this is a practical approach suitable for real-time imple-

mentation. In this thesis, we propose a forward prediction-based OOSM processing

solution which can be applicable to both linear Gaussian and jump Markov linear

systems.

1.2 The Outline of the Thesis

Chapter 2 gives the OOSM problem definition and describes two of the existing

solutions in the literature along with some of the well-known track-to-track fusion

techniques. Chapter 3 discusses our proposed solutions as forward prediction-based

OOSM processing methods which can be applied to JMLSs as well as linear Gaus-

sian systems. In Chapter 4, the performance of our proposed methods is tested under

various simulation scenarios and compared with existing solutions based on the nu-

merical results obtained. Chapter 5 provides concluding remarks on the proposed

methods and comments on the work presented.

3

4

CHAPTER 2

BACKGROUND

2.1 OOSM Problem for Linear Gaussian Systems

In this section, the definition of the OOSM problem in linear Gaussian systems is

given first. Then it is explained how the estimation is performed through Kalman

Filter for the in-sequence measurement(ISM) case in which the OOSM problem is

not encountered. Finally, methods that adapt this KF estimation procedure to the

OOSM problem are presented.

2.1.1 OOSM Problem Definition

The problem is defined under the framework in which the state xk of a target of

interest evolves over time according to the linear stochastic dynamics given below:

xk = Fk,k−1xk−1 + wk,k−1 (2.1)

where Fk,k−1 is the state transition matrix from time tk−1 to tk and wk,k−1 represents

the process noise accumulated over this interval. Notice here that, instead of the more

familiar index-only notation, the one with two arguments is adopted for clarity.

The measurement is modeled with the following equation:

zk = Hkxk + vk, (2.2)

where Hk is the measurement matrix and vk is the measurement noise. It is assumed

5

that the noises are zero mean and the noise sequences are independent, i.e., white. In

addition, the covariances of process and measurement noises are given as follows:

E[wk,j(wk,j)
T] = Qk,j, E[vkv

T
k] = Rk. (2.3)

The process and measurement noise sequences are assumed to be uncorrelated as

expressed below:

E[wk,jv
T
m] = 0. (2.4)

The OOSM collected at time tτ is given as:

zτ = Hτxτ + vτ , (2.5)

where τ denotes the time instant OOSM originated at. Assume that at time tk be-

fore the OOSM arrives, the tracking system computes the state estimate x̂k|k and its

corresponding estimated error covariance matrix Pk|k, defined as below:

x̂k|k
∆
= E[xk|Zk], Pk|k

∆
= cov[xk|Zk], (2.6)

where Zk which stands for the cumulative set of measurements excluding the out-of-

sequence measurement zτ is defined as below:

Zk ∆
= {zi}ki=1. (2.7)

Subsequently, the measurement zτ arrives upon the calculation of the state estimate

(2.6). The problem which is illustrated in Fig. 2.1 arises then as to how to update the

current estimate with an older measurement (2.5), namely, how to calculate

x̂k|k,τ = E[xk|Zk, zτ], Pk|k,τ = cov[xk|Zk, zτ]. (2.8)

6

To summarize the discussion above, the OOSM problem emerges when a measure-

ment arrives to update the current track but the time at which it is collected shown by

tτ falls behind the last update time tk, i.e., tτ < tk.

In standard (in-sequence) processing which will be discussed in the following subsec-

tion, however, an estimator which is used interchangeably with a tracker expects the

next measurement to be collected later than that of the last measurement updating the

track. For this reason, a measurement that arrives in a way that disrupts this sequential

flow is referred to as the out-of-sequence measurement, and incorporating this mea-

surement into the current track (estimate) is called the out-of-sequence measurement

problem.

Figure 2.1: The illustration of the OOSM problem.

Furthermore, the concept of step lag which can be defined as the number of state up-

dates made after tτ , is introduced. Step lag l can be found according to the expression

below:

tk−l < tτ < tk−l+1. (2.9)

Depending on the values that the step lag (delay) can take, the OOSM problem is

divided into two categories. In the literature, when the lag is equal to one, the problem

is referred to as one-step lag or single-step lag OOSM. Otherwise, it is referred to as

multi-step (lag) or multi-lag OOSM.

7

2.1.2 In Sequence Estimation (Kalman Filter)

KF (Kalman Filter) is an optimal (in MMSE sense) solution to the state estimation

problem for linear Gaussian systems modeled by (2.1) and (2.2). In the KF frame-

work, the posterior distribution is represented by a Gaussian density as follows:

p(xk|Zk) = N (xk; x̂k|k, Pk|k), (2.10)

where x̂k|k and Pk|k are defined in (2.6).

As a Bayesian recursive filter, KF calculates the current posterior distribution p(xk|Zk)

from the prior distribution p(xk−1|Zk−1) by propagating the previous estimate x̂k−1|k−1

and the corresponding covariance Pk−1|k−1. The propagation takes place in two steps

which are time update and measurement update. In the time update step, the predicted

state estimate and covariance are obtained as follows:

x̂k|k−1 = Fk,k−1x̂k−1|k−1, (2.11a)

Pk|k−1 = Fk,k−1Pk−1|k−1(Fk,k−1)
T +Qk,k−1. (2.11b)

In the measurement update step, the predicted estimate x̂k|k−1 and covariance Pk|k−1

are updated with measurement zk to yield the estimate x̂k|k and covariance Pk|k as

follows:

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1), (2.12a)

Pk|k = Pk|k−1 −KkSkK
T
k , (2.12b)

where the predicted measurement zk|k−1, the innovation covariance Sk and the Kalman

gain Kk, are found as below:

8

ẑk|k−1 = Hkx̂k|k−1, (2.13a)

Sk = HkPk|k−1(Hk)
T +Rk, (2.13b)

Kk = Pk|k−1(Hk)
T (Sk)

−1. (2.13c)

Thus, the updated state estimate and the corresponding covariance which characterize

the posterior distribution p(xk|Zk) are obtained. Notice that for optimal processing,

the next measurement zk should be collected later than zk−1, the last measurement

updating the distribution, i.e, zk and zk−1 are ISMs (In Sequence Measurements).

Since the parts of the KF filter are going to be used as building blocks in the following

section, we define the following functions.

• [x̄, P̄] = KFPrediction(x, P):

This is the functional representation of the above-described KF filter time up-

date (2.11) which takes the previous state estimate and covariance x̂k−1|k−1,

Pk−1|k−1 and returns the predicted state estimate and covariance x̂k|k−1, Pk|k−1.

• [x, P] = KFUpdate(x̄, P̄ , z):

This is the functional representation of the above-described KF filter measure-

ment update (2.12) which takes the predicted state estimate and covariance

x̂k|k−1, Pk|k−1 along with the measurement zk and returns the updated state

estimate and the covariance x̂k|k, Pk|k.

2.1.3 Existing Solutions for the OOSM Problem

In this subsection, two algorithms in the literature developed for the linear Gaussian

systems for the OOSM problem will be presented.

2.1.3.1 Bl1 Algorithm

Bl1 is a generalized version of B1 which is an approximate solution to the one-step-

lag problem illustrated in Fig. 2.2, for the multi-step case [3]. Notice that the letter l

9

in Bl1 refers to step-lag l as it generalizes the previous one-step lag B1 to an arbitrary

lag. Since Bl1 is the multi-step lag extension to the sub-optimal one-step-lag algo-

rithm B1, derived in [2], the discussion about Bl1 starts with the explanation of the

latter algorithm.

Figure 2.2: The illustration of one-step lag OOSM problem.

B1, which is the simplified and suboptimal version of the A1 algorithm, as mentioned

before is developed for one-step lag, i.e., a special case of the OOSM problem. The

procedure followed in the B1 algorithm consists of backward prediction (state retro-

diction), filter gain computation, and update of the state estimate with the OOSM.

The equations of the first step which yields retrodicted state and the corresponding

(filter-calculated) covariance are given below:

x̂τ |k = Fτ,kx̂k|k, (2.14)

Pτ |k = Fτ,k[Pk|k + Pww
k,τ |k − P xw

k,τ |k − (P xw
k,τ |k)

T]F T
τ,k, (2.15)

where

Pww
k,τ |k

∆
= cov[wk,τ |Zk] = Qk,τ , (2.16)

P xw
k,τ |k

∆
= cov[xk, wk,τ |Zk] = Qk,τ − Pk|k−1H

T
k S

−1
k HkQk,τ . (2.17)

10

The innovation covariance Sτ |k and the cross-covariance P xz between x and z, which

are needed to compute the filter gain, are obtained by the expressions below:

Sτ |k = HτPτ |kH
T
τ +Rτ , (2.18)

P xz
k,τ |k = (Pk|k − P xw

k,τ |k)F
T
τ,kH

T
τ . (2.19)

Subsequently, the filter gain to be used in the state update is found as follows:

Wk,τ |k = P xz
k,τ |kS

−1
τ |k. (2.20)

As the last step, the update with the OOSM is carried out using the KF measurement

update equations (2.12) as below:

x̂k|k,τ = x̂k|k +Wk,τ |k(zτ −Hτ x̂τ |k), (2.21)

Pk|k,τ = Pk|k −Wk,τ |kSτ (Wk,τ |k)
T . (2.22)

However, these equations yield only a sub-optimal solution because the dependence

of the process noise wk,τ on the measurement zk is fully ignored in (2.14) and par-

tially ignored in (2.15) while performing the state retrodiction step. However, there

indeed exists a correlation because zk is dependent on xk which contains wk,τ . This

dependency is shown by the following expression where xk is written in terms of xτ

by substituting the variable τ for k − 1 in the state transition equation (2.1)

xk = Fk,τxτ + wk,τ . (2.23)

In the optimal version of the one-step lag solution B1, referred to as Algorithm A

in [2], instead of assuming zero, wk,τ |k is estimated and then compensated for. The

reason for such a simplification on Algorithm A also called A1 in [3] is to avoid

11

the storage need for innovation value, which does not appear in the equations given

above.

Bl1 solution, which is in the framework of algorithm B1, makes use of the equivalent

measurement concept to adopt the solution to the multi-step lag case. In this approach,

all the measurements from zk−l+1 to zk given as

Zk
k−l+1 = {zk−l+1, ..., zk} (2.24)

are replaced by an equivalent measurement at time tk as illustrated in Fig. 2.3. Then

the OOSM falls in the interval between tk−l and tk in which the only measurement

is the equivalent measurement at time tk. In this manner, the OOSM with an l-step

lag problem turns into a single-step lag one and B1 becomes applicable for updating

the state estimate at time tk with the l-step-lag OOSM in a single giant leap [3]. The

resulting algorithm solving the multi-step OOSM problem in one step is referred to

as Bl1[3].

Figure 2.3: The illustration of the equivalent measurement concept.

The equivalent measurement at discrete time instant k can be defined as below:

z∗k = H∗
kxk + v∗k (2.25)

with covariance R∗
k.

12

Assuming that at discrete time k one has the state estimate x̂k|k and its covariance

Pk|k, R∗
k can be found by using the measurement update equation in the information

form as below:

P−1
k|k = P−1

k|k−l +H∗
k
TR∗

k
−1H∗

k . (2.26)

Choosing H∗
k as an identity matrix, R∗

k is found by rearranging (2.26) as follows:

R∗
k
−1 = P−1

k|k − P−1
k|k−l. (2.27)

Lastly, in order to apply the procedure of algorithm B1, the equivalent innovation

covariance S∗
k corresponding to Sk in (2.16) is calculated as below.

S∗
k = Pk|k−l +R∗

k. (2.28)

After this substitution, the procedure of algorithm B1 can be applied in the same

manner as illustrated in Fig. 2.4. One can notice the resemblance of this diagram

with the one in Fig. 2.2. The difference is that since no actual transmission of the

equivalent measurement occurs in reality, it is shown by a dashed line in the latter

figure.

Figure 2.4: The illustration of the equivalent measurement processing concept.

13

2.1.3.2 Forward Prediction Fusion and Decorrelation (FPFD)

Unlike the Bl1, the FPFD method is not based on retrodiction, where the estimated

current state is predicted backwards in order to incorporate the OOSM. The approach

followed in this method, as its name implies, is based on forward prediction and

decorrelation. In this method, instead of bringing the current track to the time OOSM

measurement is obtained, as the retrodiction methods do, the aim is to bring the

OOSM itself to the last track update time in a sense.

This task is accomplished by first utilizing an auxiliary filter which is initialized with a

track estimate calculated prior to the OOSM being acquired (i.e.,tτ) and then updating

this filter with OOSM while performing forward prediction to the last track update

time. This track is called pseudo-track (tracklet) in [10]. However, according to the

definition in [19], it is not convenient to call as such because of the fact that its errors

still are cross-correlated with the errors of the actual track. This correlation is caused

by the prior estimate of the actual track which is used for initializing the new track.

Thus, until the uncorrelated version of it is obtained which is the next step of the

algorithm, it is referred to as the OOSM track as it contains the OOSM information.

As a next step, in order to make these tracks uncorrelated, i.e., for obtaining a tracklet

from the OOSM track, similar decorrelation is applied as in channel filter [20]. Previ-

ous communication can be the cause of common information in a fusion architecture

[21]. To make an analogy with that, the initialization of the OOSM track corresponds

to the fact that the actual (principle) track gives feedback to the newly created one.

For finding this redundant common information another auxiliary filter is utilized as

before but this time without getting updated with OOSM. Then decorrelation opera-

tion simply turns into a subtraction of this information from that of the OOSM track in

the information domain. Since the redundant information inside of the OOSM track

is discarded after this, it can now be called a tracklet. As a final step, the decorrelated

information sources are fused by performing addition in the information space. This

algorithm lays the groundwork for the proposed solution to be discussed in the next

chapter.

To summarize, instead of approaching the problem as retrodiction methods which

14

suggest directly incorporating OOSM into the current state estimate, i.e., measure-

ment to track fusion, FPFD proposes to pass the OOSM information to a track whose

main purpose is to carry this information and to combine this track with the current

state estimate, i.e., track-track fusion. Consequently, FPFD and other retrodiction

methods represent two OOSM processing methodologies which differ in the type of

fusion they perform.

The abovementioned methodology for overcoming the OOSM problem is formulated

next. For this purpose, assume that at time tk the tracking system computes the state

estimate x̂k|k and its covariance matrix Pk|k. In addition to that, let the statistics of

the OOSM track obtained after the forward prediction and prior to the decorrelation

be represented similarly to (2.8) as follows:

x̂k|b,τ
∆
= E[xk|Zb, zτ], Pk|b,τ

∆
= cov[xk|Zb, zτ], (2.29)

where b represents the discrete index of tb the time at which the auxiliary filters are

initialized. To recall the definition of the OOSM track at time tk, derivation of its

statistics can be given based on the state estimate calculated at time tb prior to the

OOSM, i.e., tb < τ . The corresponding state estimate and its error covariance matrix

are denoted as x̂b|b and Pb|b respectively.

On the way to achieving the OOSM track at time tk, one needs to update the auxiliary

track with the OOSM itself. To that end, first xb|b is predicted to the OOSM time

which can be carried out through (2.11) as follows:

x̂τ |b = Fτ,bx̂b|b, (2.30)

Pτ |b = Fτ,bPb|b(Fτ,b)
T +Qτ,b. (2.31)

The next step is to take OOSM into account, which corresponds to obtaining the pos-

terior state estimate x̂τ |b,τ . One way of achieving this is to perform KF measurement

15

update (2.12). The other alternative utilized in FPFD is to apply the counterpart of

these equations in the information form by the so-called information filter (inverse

covariance filter). The equations carrying out the same operations in a simpler and

more intuitive way are given as follows:

P−1
τ |b,τ = P−1

τ |b +HT
τ R

−1
τ Hτ , (2.32)

P−1
τ |b,τ x̂τ |b,τ = P−1

τ |b x̂τ |b +HT
τ R

−1
τ zτ . (2.33)

Finally, applying the prediction procedure as before, the OOSM track is obtained as

follows:

x̂k|b,τ = Fk,τ x̂τ |b,τ , (2.34)

Pk|b,τ = Fk,τPτ |b,τF
T
k,τ +Qk,τ . (2.35)

However, as mentioned before, since this track shares the same history x̂b|b with the

actual track, for an optimal fusion (i.e., for reaching the same estimate as the in-

sequence measurements reprocessing method) one must take great care not to use the

same information twice, i.e., double counting. Hence before fusing these two sources,

the information provided by the common history at time tk needs to be estimated

and then compensated for. In FPFD this is achieved by estimating the redundant

information, denoted xk|b, as predicted xb|b to tk and subsequently removing it using

information decorrelation approach [22]. The mean and the covariance statistics of

xk|b can be calculated from xb|b as follows:

x̂k|b = Fk,bx̂b|b, (2.36)

16

Pk|b = Fk,bPb|bF
T
k,b +Qk,b. (2.37)

Hereupon, FPFD obtains OOSM incorporated estimate by first applying decorrela-

tion and then fusion. However, since applying these steps separately may lead to

implementation issues such as incompatible covariance problems mentioned in [23],

an equivalent step in which these operations are performed together is given as fol-

lows. This information decorrelation approach is also referred to as a generalized

information matrix filter, a generalization of the information filter for asynchronous

tracklets, or simply a channel filter [24].

P−1
k|k,τ = P−1

k|k + P−1
k|b,τ − P−1

k|b , (2.38)

P−1
k|k,τ x̂k|k,τ = P−1

k|k x̂k|k + P−1
k|b,τ x̂k|b,τ − P−1

k|b x̂k|b. (2.39)

One shall notice that in this way the calculation of the problematic decorrelated

OOSM track (tracklet) term which would otherwise be calculated explicitly is avoided.

As mentioned previously, by incorporating OOSM into the current estimate using

pseudo-track, FPFD builds its solution on track-to-track fusion, which is illustrated

in Fig. 2.5. Since subsequent fusion leads to an optimal result only when the tracks to

be fused are independent of each other, the decorrelation step carried out with (2.38)

and (2.39) plays an important role in obtaining the optimal solution achieved by se-

quential reprocessing of all measurements, including OOSM. In FPFD, the excess

information to be discarded is assumed to be xk|b which represents the piece of infor-

mation common to both the current estimate and the OOSM track. The assumption

that the common history or more generally previous communication is the only cor-

relation source, however, may not match the reality due to the process noise in the

state transition model which goes into estimation errors of both [25]. Thus except for

the single lag case where not taking the process noise into account does not harm the

optimality, optimal decorrelation cannot be achieved with this method in general as

17

Figure 2.5: The illustration of the FPFD method for OOSM track update.

only the correlation caused by the common past is compensated. The reason behind

this can be explained from the information-theoretic point of view as follows.

For one lag case, the current track estimate can be written as a combination of the

predicted prior estimate information and the last measurement prior to OOSM infor-

mation as follows:

P−1
k|k = P−1

k|b +HT
k R

−1
k Hk, (2.40)

P−1
k|k x̂k|k = P−1

k|b x̂k|b +HT
k R

−1
k zk, (2.41)

which allows us to rewrite (2.38) and (2.39) by substituting the measurement-related

terms for the ones related to the difference between the current estimate and the pre-

dicted prior estimate as below:

18

P−1
k|k,τ = P−1

k|b,τ +HT
k R

−1
k Hk, (2.42)

P−1
k|k,τ x̂k|k,τ = P−1

k|b,τ x̂k|b,τ +HT
k R

−1
k zk. (2.43)

One can notice that the obtained equations are the information filter counterpart of

the measurement update equations similar to (2.32) and (2.33), which reveals another

way of interpreting the fusion carried out in FPFD. In this interpretation, it is con-

sidered that the solution is reached by updating the OOSM track with the equivalent

measurement which is obtained by subtracting the predicted prior estimate informa-

tion from actual track information rather than fusing the OOSM tracklet with the

actual track. As a special case, in one lag scenario, the missing piece of information

for the OOSM track to yield the optimal solution turns out exactly to be this extracted

measurement information. For all the other cases, however, since the equivalent mea-

surement doesn’t satisfy (2.4) for some process noises, one of the fundamental KF

assumptions is violated, thus the aforementioned update yields a suboptimal solution

only. In other words, the performance of algorithm FPFD does degrade as the number

of step-lag increases, compared to the in-sequence reprocessing of the measurements.

2.2 OOSM Problem for Jump Markov Linear Systems

In this subsection, firstly, the definition of the OOSM problem in JMLS (Jump Markov

Linear Systems) is given, and then IMM (Interacting Multiple Model) filter, a stan-

dard estimation approach for JMLS when this problem does not exist (the measure-

ments are in sequence), is described. Finally, the IMM application of the aforemen-

tioned Bl1, which adapts the standard estimation procedure of the IMM to the OOSM

problem is presented.

19

2.2.1 OOSM Problem Definition

The problem is defined under the framework in which the state of a target of interest

along with the measurement evolves over time according to linear stochastic dynam-

ics which undergo a change in time also. The model of the described dynamics is

referred to as Jump Markov Linear System(JMLS) and is expressed as follows:

xk = F rk
k,k−1xk−1 + wrk

k,k−1, (2.44a)

zk = Hrk
k xk + vrkk , (2.44b)

where xk and rk ∈ {1, ..., Nr} stand for the base state (i.e., continuous-valued states)

and the mode state modeled by a homogeneous Markov chain respectively. All the

terms with subscript rk can be defined the same as in linear Gaussian Systems, em-

phasizing that they are mode dependent, i.e., depending on the mode state rk. For

example, the term wrk
k,k−1 denotes a mode dependent process noise with a covariance

Qrk
k,k−1 whereas the term vrkk represents a mode dependent measurement noise with a

covariance Rrk
k .

The OOSM collected at time tτ is given as:

zτ = Hrτ
τ xτ + vrττ , (2.45)

where τ denotes the discrete-time instant OOSM originated at. Assume that at time tk

before the OOSM arrives, the state estimator for JMLS computes the posterior mode

probabilities µi
k|k and, the mode-matched state estimates x̂i

k|k and state covariances

P i
k|k, defined as below:

µi
k|k

∆
= P (rk = i|Zk), (2.46a)

x̂i
k|k

∆
= E[xk|rk = i, Zk], (2.46b)

P i
k|k

∆
= E[(xk − x̂i

k|k)(xk − x̂i
k|k)

T |rk = i, Zk], (2.46c)

20

where i = 1, ..., Nr.

Subsequently, the measurement zτ arrives upon calculation of (2.46) which charac-

terizes the joint posterior density. The problem emerges then as to how to update this

density with an older measurement (2.45), namely, how to calculate

µi
k|k,τ = P (rk = i|Zk, zτ), (2.47a)

x̂i
k|k,τ = E[xk|rk = i, Zk, zτ], (2.47b)

P i
k|k,τ = E[(xk − x̂i

k|k)(xk − x̂i
k|k)

T |rk = i, Zk, zτ]. (2.47c)

for i = 1, ..., Nr.

As in the linear Gaussian case, in order for ISM processing which will be discussed in

the following subsection to be performed optimally, the next measurement is required

to be collected later than that of the last measurement updating the joint density. For

this reason, incorporating the older measurement into the current density again falls

into the OOSM problem category.

2.2.2 In Sequence Estimation (IMM filter)

IMM filter is a suboptimal state estimation algorithm developed for the JMLS in

(2.44) where the mode state process rk is modeled by a homogeneous Markov chain

with a transition probability matrix Πk,k−1 = [πji
k,k−1

∆
= P (rk = i|rk−1 = j)].

One can notice that, when Nr = 1, i.e., the JMLS consists of only a single model,

the solution to the estimation problem turns out to be the Kalman filter in which the

posterior distribution is represented by a single Gaussian. When Nr > 1, on the

other hand, the posterior distribution p(xk|Zk) is approximated by the IMM filter as

a Gaussian mixture as follows:

p(xk|Zk) =
Nr∑
i=1

µi
k|kN (xk; x̂

i
k|k, P

i
k|k), (2.48)

21

where x̂i
k|k and P i

k|k represent mode-conditioned state estimate and covariance respec-

tively while µi
k|k denotes the approximate posterior mode probability as before.

IMM filter iteratively calculates the current summary statistics {µi
k|k, x̂

i
k|k, P

i
k|k}

Nr
i=1

from the previous statistics {µi
k−1|k−1, x̂

i
k−1|k−1, P

i
k−1|k−1}

Nr
i=1, through the prediction

update and measurement update steps as the KF. However, because of the nature

of IMM running multiple Bayesian filters in an interactional manner, both steps are

needed to be modified with additional operations. The modified IMM prediction up-

date can be divided into three steps which are mode probability prediction, mixing,

and mode-matched prediction update. In the first step the predicted mode probabili-

ties {µi
k|k−1}

Nr
i=1 are calculated as follows:

µi
k|k−1 =

Nr∑
j=1

πji
k,k−1µ

j
k−1|k−1 (2.49)

for i = 1, ..., Nr.

In the mixing step, mixing probabilities µji(k − 1) to realize the interaction between

models are calculated first as below:

µji
k−1 =

πji
k,k−1µ

j
k−1|k−1

µi
k|k−1

(2.50)

for i, j = 1, ..., Nr.

Then the interaction in which the estimate and the covariance of each mode contribute

to another depending on the mixing probabilities is carried out. The mixed estimates

{x̂0i
k−1}

Nr
i=1 and covariances {P 0i

k−1}
Nr
i=1 are calculated as follows:

x̂0i
k−1 =

Nr∑
j=1

µji
k−1x̂

j
k−1|k−1, (2.51a)

P 0i
k−1 =

Nr∑
j=1

µji
k−1[P

j
k−1|k−1 + (x̂j

k−1|k−1 − x̂0i
k−1)(·)T] (2.51b)

for i = 1, ..., Nr. In (2.51b) the notation (x)(·)T denotes the outer product xxT .

22

As the last step of the IMM prediction, mode-matched prediction update is performed

for each model through KF time update equations (2.11) and predicted estimate x̂i
k|k−1

and P i
k|k−1 are calculated from the mixed estimate and covariance as follows:

x̂i
k|k−1 = F i

k,k−1x̂
0i
k−1, (2.52a)

P i
k|k−1 = F i

k,k−1P
0i
k−1(F

i
k,k−1)

T +Qi
k,k−1 (2.52b)

for i = 1, ..., Nr.

IMM measurement update also can be divided into two steps which are mode-matched

measurement update and mode probability update. Mode-matched measurement up-

date is carried out for each model through standard KF measurement update equations

(2.12) using the corresponding mode parameters and updated estimate x̂i
k|k and co-

variance P i
k|k are calculated from the predicted estimate x̂i

k|k−1 and covariance P i
k|k−1

as below:

x̂i
k|k = x̂i

k|k−1 +Ki
k(zk − zik|k−1), (2.53a)

P i
k|k = P i

k|k−1 −Ki
kS

i
k(K

i
k)

T , (2.53b)

zik|k−1 = H i
kx̂

i
k|k−1, (2.53c)

Si
k = H i

kP
i
k|k−1(H

i
k)

T +Ri
k, (2.53d)

Ki
k = P i

k|k−1(H
i
k)

TSi
k
−1 (2.53e)

for i = 1, ..., Nr.

In the second step, predicted mode probabilities found prior to the mixing are updated

with a measurement zk as follows:

µi
k|k =

µi
k|k−1N (zk; z

i
k|k−1;S

i
k)∑Nr

l=1 µ
l
k|k−1N (zk; zlk|k−1;S

l
k)

(2.54)

for i = 1, ..., Nr.

23

Now that the current summary statistics are obtained, the overall output estimate x̂k|k

and covariance Pk|k of the posterior distribution of the base state in (2.48) can be

calculated as follows:

x̂k|k =
Nr∑
i=1

µi
k|kx̂

i
k|k, (2.55)

Pk|k =
Nr∑
i=1

µi
k|k[P

i
k|k + (x̂i

k|k − x̂k|k)(·)T]. (2.56)

Since the parts of the IMM filter are going to be used as building blocks in the fol-

lowing section, we define the following functions.

•
[
{µ̄i, x̄i, P̄ i}Nr

i=1

]
= IMMPrediction

(
{µi, xi, P i}Nr

i=1

)
:

This is the functional representation of the above-described IMM filter predic-

tion (2.49)-(2.52) which takes the previous mode probabilities, estimates, and

covariances {µi
k−1|k−1, x̂

i
k−1|k−1, P

i
k−1|k−1}

Nr
i=1 and returns the predicted mode

probabilities, estimates, and covariances {µi
k|k−1, x̂

i
k|k−1, P

i
k|k−1}

Nr
i=1.

•
[
{µi, xi, P i}Nr

i=1

]
=IMMUpdate

(
{µ̄i, x̄i, P̄ i}Nr

i=1, z
)
:

This is the functional representation of the above-described IMM filter update

(2.53)-(2.54) which takes the predicted mode probabilities, estimates, and co-

variances {µi
k|k−1, x̂

i
k|k−1, P

i
k|k−1}

Nr
i=1 along with the measurement zk and re-

turns the updated mode probabilities, estimates, and covariances {µi
k|k, x̂

i
k|k, P

i
k|k}

Nr
i=1.

2.2.3 Existing Solutions for the OOSM Problem

In this subsection, we illustrate the existing solution for the OOSM problem for JMLS

in the literature, which is the adaptation of the Bl1 algorithm to the IMM filter.

2.2.3.1 Bl1IMM Algorithm

Bl1IMM, the application of the Bl1 algorithm to IMM estimator [18], discussed here-

after. The main idea of Bl1IMM is to apply Bl1 to each mode of the IMM filter. The

24

procedure followed in the algorithm consists of state retrodiction, measurement retro-

diction, mode likelihood function calculation, filter gain computation, and update of

the state estimate and the current mode probabilities with the OOSM. The equations

of the first step which yield mode matched retrodicted state and the corresponding

covariance are given below:

x̂i
τ |k = F i

τ,kx̂
i
k|k, (2.57a)

P i
τ |k = F i

τ,k[P
i
k|k + Pww,i

k,τ |k − P xw,i
k,τ |k − (P xw,i

k,τ |k)
T](F i

τ,k)
T (2.57b)

for i = 1, ..., Nr.

The covariances related to the state retrodiction given above are expressed as follows:

Pww,i
k,τ |k = Qi

k,τ , (2.58a)

P xw,i
k,τ |k = Qi

k,τ − P i
k|k−l(S

∗i
k)

−1Qi
k,τ , (2.58b)

where

(S∗i
k)

−1 = (P i
k|k−l)

−1 − (P i
k|k−l)

−1P i
k|k(P

i
k|k−l)

−1 (2.59)

for i = 1, ..., Nr.

Recall that, the expression above, which follows from (2.28), is the essence of the

Bl1 which reduces the l-step lag OOSM problem to the 1-step lag problem.

In the next step, the mode-matched retrodicted measurement and the mode-matched

innovation covariance are calculated as follows:

ẑiτ |k = H i
τ x̂

i
τ |k, (2.60a)

Si
τ |k = H i

τP
i
τ |kH

i
τ
T +Ri

τ (2.60b)

25

for i = 1, ..., Nr.

Now that we have ẑiτ |k and Si
τ |k, the likelihood function of each mode, which is used

for updating the mode probabilities is calculated as below:

Λi
τ = N (zτ ; ẑ

i
τ |k, S

i
τ |k) (2.61)

for i = 1, ..., Nr.

The equations related to mode-matched base state update are formulated as follows.

First, mode-matched filter gain is obtained as below:

W i
k,τ = P xz,i

k,τ |k(S
i
τ |k)

−1, (2.62)

where

P xz,i
k,τ |k = [P i

k|k − P xw,i
k,τ |k](F

i
τ,k)

T (H i
τ)

T (2.63)

for i = 1, ..., Nr.

Then using the mode-matched filter gain, the mode-matched current state estimate

x̂i
k|k and the corresponding covariance P i

k|k are updated with the OOSM by the fol-

lowing expressions:

x̂i
k|k,τ = x̂i

k|k +W i
k,τ [zτ − ziτ |k], (2.64a)

P i
k|k,τ = P i

k|k − P xz,i
k,τ |k(S

i
τ |k)

−1(P xz,i
k,τ |k)

T (2.64b)

for i = 1, ..., Nr.

Using the likelihood functions and the transition probability matrix πji
τ,k, the current

26

mode probability for each mode µi
k|k are updated as follows:

µi
k|k,τ =

1

c

Nr∑
j=1

Λj
τπ

ji
τ,kµ

i
k|k, (2.65)

where

c =
Nr∑
l=1

Nr∑
j=1

Λj
τπ

jl
τ,kµ

l
k|k (2.66)

for i = 1, ..., Nr.

Now that all the sufficient statistics characterizing the joint posterior distribution

p(xk, rk|Zk, zτ) are acquired, the overall output estimate x̂k|k,τ and covariance Pk|k,τ

of the posterior distribution after the incorporation of OOSM can be calculated by

marginalizing rk out as follows:

x̂k|k,τ =
Nr∑
i=1

µi
k|k,τ x̂

i
k|k,τ , (2.67)

Pk|k,τ =
Nr∑
i=1

µi
k|k,τ [P

i
k|k,τ + (x̂i

k|k,τ − x̂k|k,τ)(·)T]. (2.68)

Bl1 algorithm discussed above is based on backward prediction. There is no forward

prediction-based OOSM processing method such as FPFD applied to JMLSs in the

literature. The aim of the thesis is to propose such a method.

2.3 Correlation Independent Fusion Methods

In this section, along with a detailed discussion of the correlation-independent fusion

methods, an overview of the general fusion solutions to the correlation problem is

given. These solutions whose aim is to fuse the information coming from two sources

by removing the common information caused by two main correlation sources, pre-

vious communication, and process noise, can be categorized into three approaches.

In the first category, the main idea is to extract the correlation information and utilize

this in the fusion as in [26] in which the previous communication caused correlation

27

term is not addressed. For some fusion architectures, such a case where the corre-

lation is dominated by the previous communication may occur. In that case, finding

the transferred information may not be feasible because it necessitates possessing the

knowledge of the fusion architecture and information flow, which may not be possible

in practice. Moreover, for complex architectures, keeping track of the communicated

information might be challenging too. Storage requirement is also a major concern

since every piece of information that has been transmitted need to be stored. In ad-

dition, for some cases, correlation matrix calculations need to be made in every mea-

surement update between fusion times (not just when there is fusion), which brings

additional computational costs. For example, for the fusion architecture given in [23],

even though the fusion takes place once in 3 measurement updates, computations are

carried on because of the fact that the correlation matrix is calculated in a recursive

manner according to [25].

The second category consists of methods developed to remove the correlations orig-

inating from the previous communication. In fusion architectures with memory or

feedback, the fusion takes place between two tracks that share common information

from the past. Examples can be given as the architectures called hierarchical with

memory and hierarchical with feedback without memory diagrams from [21]. These

methods apply a procedure for subtracting, i.e., decorrelating the common part in-

corporated into both tracks at the time they interacted in the past so that no double

counting of the data occurs. This subtraction is performed on the transmitted or re-

ceived information. If it is performed on the transmitted information, the decorrelated

quantities are called equivalent measurements or tracklets (a pseudo track).

The last category involves the methods which provide a consistent fused estimate even

though there is no correlation information available. The most well-known methods

in this category are covariance intersection [27], ellipsoidal intersection [28], and

LEA [29]. These methods assume the worst case at the cost of the independent infor-

mation to preserve consistency regardless of correlations. As a result, depending on

the fusion architecture and the information flow, they can yield overly conservative

results with lower performance than the other two approaches by which correlations

can be estimated, and compensated. As the proposed solution applies a method from

the last category for fusion operation, these algorithms are discussed below.

28

2.3.1 Naive Fusion

Naive fusion, due to the optimistic assumption made within, is the most simplistic

solution among all the correlation-independent fusion methods. The naive fusion on

densities to be fused is composed of direct multiplication and normalization steps,

which can be written as below:

f̄(x) =
f1(x)f2(x)∫
f1(x)f2(x)dx

, (2.69)

where f1(x) and f2(x) are the two probability density functions to be fused.

When both probability densities are Gaussian with mean and covariance x̂1,Σ1 and

x̂2,Σ2 respectively, one can use the below multiplication rule in Gaussian algebra to

obtain the fused density with mean ˆ̄x and covariance Σ̄:

N (x; x̂1,Σ1)N (x; x̂2,Σ2) = N (x̂1; x̂2,Σ1 + Σ2)N (x; ˆ̄x, Σ̄), (2.70)

where

Σ̄−1 = Σ−1
1 + Σ−1

2 , (2.71)

Σ̄−1 ˆ̄x = Σ−1
1 x̂1 + Σ2

−1x̂2. (2.72)

After normalization, the first term on the right-hand side of (2.70) is canceled out and

the fused density is obtained as N (x; ˆ̄x, Σ̄). Regarding the inverse covariance as the

information, since no subtraction of common prior information is performed, it is as-

sumed that the maximum information is obtained with (2.71). In other words, when

it comes to the dependency of the sources the naive approach optimistically assumes

the best case in which the information sources are independent, i.e., there is no cor-

relation between them at all. However, this assumption does not hold in general due

to the process noise caused by the motion of the target under observation common

to both of the information sources. When the independence can not be assured, the

fused covariance could be much smaller than in the reality. As a result of this, the

29

obtained estimate might have a large error and this error may grow unbounded over

time, i.e., divergence. The reason for that is by counting on the estimates to be in-

dependent the fused estimate gets overconfident and starts ignoring measurements in

subsequent filtering.

2.3.2 Covariance Intersection (CI)

The unreliability of the naive fusion due to the performance and consistency issues

mentioned above motivates the development of the Covariance Intersection. With

this motivation, CI is designed to generate a consistent solution to the fusion problem

under unknown correlations [27].

As CI is generalized by the CF (Chernoff Fusion) [30], which can be applied to all

random variables, first CF is expressed mathematically:

f(x) =
f1(x)

w∗
f2(x)

(1−w∗)∫
f1(x)w

∗f2(x)(1−w∗)dx
, (2.73)

where w∗ ϵ [0, 1] denotes an optimization parameter minimizing some cost function

which will be discussed below while f1(x), f2(x) are two probability density func-

tions being fused.

In the case where the densities are Gaussian, the fusion takes the special name Co-

variance Intersection and (2.73) can be simplified to the analytical expressions below:

Σ̄−1 = w∗Σ−1
1 + (1− w∗)Σ−1

2 , (2.74)

Σ̄−1 ˆ̄x = w∗Σ−1
1 x̂1 + (1− w∗)Σ2

−1x̂2. (2.75)

The optimization procedure applied for finding w∗ is given as follows:

Σ̄(w)−1 = wΣ−1
1 + (1− w)Σ−1

2 , (2.76)

30

w∗ = arg min
wϵ[0,1]

g(Σ̄(w)). (2.77)

In the above, optimization parameter w is found by minimizing the cost function

denoted by g(.) which can either be the trace or determinant operator. Moreover, as

these functions are convex with respect to w, there is only one minimum within the

interval and thus almost any optimization method can be applied. After finding w∗

the fused estimate is obtained by taking a convex combination as in (2.74) and (2.75).

After giving the mathematical procedure of the CI, the discovery by which the CI

is inspired is discussed here. The discovery is that the fused estimate’s covariance

ellipsoid (for a covariance matrix Σ this is the level curve points s : sTΣ−1s= c

where c is a constant) is always inside of the intersection of the ellipsoids of the

covariances to be fused regardless of what the cross-correlation matrix is. Thus, the

presented method comes up with a procedure so that the covariance of the fused

estimate always encircles the intersection region as illustrated in Fig. 2.6. In this

way, for all choices of the cross-correlation covariance matrix, a consistent result is

achieved which is proven in Appendix A of [27]. This is the reason why the CI

method is referred to as pessimistic in its estimation since it always expects the worst

in terms of the correlation, i.e., full correlation case. Notice here that naive fusion

and CI represent the two edges of the fusion approaches in terms of the correlation

amount they assume.

Contrary to naive fusion, CI assumes the worst-case scenario in which some of the

independent information is not used by compromising the quality of the estimate for

the sake of consistency which is arguably more important. Since the method provides

a consistent solution, which means the fused covariance is larger than or equal to (in

a positive semi-definite sense) the true covariance of the fused estimate, it tackles the

divergence problem which may occur when applying naive fusion.

2.3.3 Largest Ellipsoid Algorithm (LEA)

As mentioned earlier, while naive fusion underestimates the actual covariance result-

ing in inconsistency issues, CI finds an upper bound for the actual covariance in order

31

Figure 2.6: The illustration of the resulting ellipsoid after CI fusion.

to bring a robust solution to the fusion problem. Nonetheless, although inconsistency

is avoided with the latter approach, since the fusion is performed conservatively, inde-

pendent information is not used. Moreover, as the fused covariance matrix is greater

than the actual one, in subsequent local filtering the measurements contribute to the

estimate more than they should, i.e., the estimate is contaminated by the measurement

noise which leads to a decrease in performance. In order to improve the performance,

the largest ellipsoid algorithm is introduced, which is less conservative but consistent

and based on the estimation of the intersection region of covariance matrices.[29].

The fact that the intersection region defined by the intersection of the covariance el-

lipsoids of the fused sources represents an upper limit for the actual covariance matrix

and as CI overestimates means that there is room for improvement. LEA decreases

this overestimated region by computing the largest ellipsoid contained within this in-

tersection region, which leads to an improvement in performance. The procedure for

the largest ellipsoid algorithm consists of decoupling the states in the estimates and

keeping the most informative one from each estimate as the corresponding state of

the fused estimate. Since the orientation of the covariance ellipsoids is different in

general, a direct comparison of states in the estimates is not possible. To solve this

problem, both covariance matrices are diagonalized jointly which will be discussed

next.

32

Allow x1 and x2 to be the correlated estimates of x, for which mean and covariances

are x̂1,Σ1 and x̂2,Σ2 respectively. In the first step, a linear transformation obtained by

eigendecomposition of Σ1 is applied to make the states in the estimate independent

as follows:

Σ1 = U1Λ1U
−1
1 , (2.78)

where U1 is the matrix columns of which are composed of eigenvectors, and Λ1 is the

diagonal matrix whose diagonal elements are the eigenvalues.

As UT
1 = U−1

1 due to Σ1 being a symmetric matrix, a linear transformation T1 which

decorrelates x1 can be defined as below:

T1 = Λ
−1/2
1 UT

1 . (2.79)

The transformed estimate x1
1 with mean x̂1

1 and covariance Σ1
1 is given as follows:

x̂1
1 = T1x̂1, (2.80)

Σ1
1 = T1Σ1T

T
1 , (2.81)

where Σ1
1 is an identity matrix which means the states of the transformed estimate x1

1

are now decoupled and the covariance ellipsoids (level curves) turn into circles. The

same transformation is also applied to the estimate x2 as follows:

x̂1
2 = T1x̂2, (2.82)

Σ1
2 = T1Σ2T

T
1 , (2.83)

33

where Σ1
2 is the covariance matrix of the transformed estimate x1

2, whose states are

still correlated. In the second step, another transformation is applied to make the

states in x2 independent. For this purpose, eigendecomposition of Σ1
2 is obtained as

below:

Σ1
2 = U2Λ2U

T
2 . (2.84)

The second transformation which only consists of rotation, i.e., there is no scaling as

in (2.38), is defined as below:

T2 = UT
2 . (2.85)

By applying T2 to the estimates transformed by T1, jointly diagonalized estimates x̂12
1

and x̂12
2 are obtained as follows:

x̂12
1 = T2x̂

1
1, (2.86a)

Σ12
1 = T2Σ

1
1T

T
2 = I, (2.86b)

x̂12
2 = T2x̂

1
2, (2.86c)

Σ12
2 = T2Σ

1
2T

T
2 = Λ2. (2.86d)

Notice that the states of x12
1 remain independent after the rotational transformation

T2 as they are equally uncertain in all directions prior to the operation. After joint

diagonalization, since the states in the estimates become orthogonal to each other and

hence are ready to be compared, the most informative estimate can be found for each

direction separately (independently), i.e., by comparing the diagonal elements and

choosing the smallest one. This procedure is written mathematically as follows:

34

[ˆ̄x12]i
∆
=

[x̂12
1]i [Λ2]ii ≥ 1

[x̂12
2]i [Λ2]ii < 1

, (2.87)

[Σ̄12]ij
∆
=

[Σ12

1]ii i = j, [Λ2]ii ≥ 1

[Σ12
2]ii i = j, [Λ2]ii < 1

0 i ̸= j

(2.88)

for i, j ∈ {1, ..., nx} where nx denotes the number of elements in the state vector.

where ˆ̄x12 and Σ̄12 represent the mean and the covariance of the fused estimate in

the transformed space respectively. Thus, the fused estimate in the initial (original)

space is obtained by applying the reverse of the two transformations, where the mean

is computed according to [24].

ˆ̄x = T−1 ˆ̄x12, (2.89a)

Σ̄ = T−1Σ̄12T−T , (2.89b)

where the overall transformation denoted as T is written as below:

T = T2T1, (2.90)

= UT
2 Λ

−1/2
1 UT

1 . (2.91)

Consequently, the largest ellipsoid algorithm yields an estimate with a covariance

enclosing the intersection region tighter than the overestimated one computed by CI

as can be seen in Fig. 2.8, and thus, a considerable amount of useful information is

recovered. The overall process steps are illustrated in Fig. 2.7.

Since the described fusion methods are going to be used as building blocks in the next

section, we define the following functions.

35

Figure 2.7: The illustration of the steps of LEA between the two estimates x1 and x2.

• [x̄, Σ̄] = Naive(x1, Σ1, x2, Σ2):

This is the functional representation of the above-described Naive fusion (2.71)-

(2.72) which takes the state estimate and covariance of the Gaussian densities

to be fused x1, Σ1, x2, Σ2 and returns the fused state estimate and covariance

x̄, Σ̄.

• [x̄, Σ̄, w∗] = CI(x1, Σ1, x2, Σ2):

This is the functional representation of the above-described CI fusion (2.74)-

(2.77) which takes the state estimate and covariance of the Gaussian densities

to be fused x1, Σ1, x2, Σ2 and returns the fused state estimate and covariance

x̄, Σ̄ along with the optimization parameter w∗ found by (2.77).

• [x̄, Σ̄] = LEA(x1, Σ1, x2, Σ2):

This is the functional representation of the above-described LEA fusion (2.78)-

(2.91) which takes the state estimate and covariance of the Gaussian densities

to be fused x1, Σ1, x2, Σ2 and returns the fused state estimate and covariance

x̄, Σ̄.

36

Figure 2.8: The illustration of the resulting ellipsoids after CI and LEA fusion.

37

38

CHAPTER 3

PROPOSED METHOD

In this chapter, we propose a forward prediction-based OOSM processing method

such as FPFD, which can be applied to linear Gaussian systems as well as to

JMLSs. Since the direct adaptation of FPFD to JMLSs is not feasible due to

the decorrelation problem, which will be discussed in detail in the following

sections, the main goal of the proposed solution is to tackle this correlation

problem.

The proposed method overcomes the aforementioned challenge by eliminat-

ing the separate decorrelation step and utilizing a fusion algorithm in which

the decorrelation is handled within it. For this reason, we refer to our pro-

posed solution as FPF (Forward Prediction and Fusion). In the following, the

proposed solution FPF will be described first for linear Gaussian and then for

jump Markov linear systems.

3.1 Proposed Solution for Linear Gaussian Systems

In this section, first, the algorithm of the proposed solution for linear Gaus-

sian systems is given. Data storage need and computational cost of the FPF

algorithm will be presented and compared with the existing solutions next.

3.1.1 Algorithm

The algorithm of the proposed solution for linear Gaussian systems which con-

sists of two parts, i.e., forward prediction and fusion is given as follows.

39

FPF Algorithm

– Given:{x̂b|b, Pb|b, x̂k|k, Pk|k, zτ}.

– Initialization:

ˆ̄xb|b = x̂b|b, (3.1a)

P̄b|b = Pb|b. (3.1b)

– Forward Prediction:

[ˆ̄xτ |b, P̄τ |b] = KFPrediction(ˆ̄xb|b, P̄b|b), (3.2a)

[ˆ̄xτ |b,τ , P̄τ |b,τ] = KFUpdate(ˆ̄xτ |b, P̄τ |b, zτ), (3.2b)

[ˆ̄xk|b,τ , P̄k|b,τ] = KFPrediction(ˆ̄xτ |b,τ , P̄τ |b,τ). (3.2c)

– Fusion:

if Fusion Method is Naive

[x̂k|k,τ , Pk|k,τ] = Naive(ˆ̄xk|b,τ , P̄ k|b,τ , x̂k|k, Pk|k). (3.3)

elseif Fusion Method is CI

[x̂k|k,τ , Pk|k,τ] = CI(ˆ̄xk|b,τ P̄ k|b,τ , x̂k|k, Pk|k). (3.4)

elseif Fusion Method is LEA

[x̂k|k,τ , Pk|k,τ] = LEA(ˆ̄xk|b,τ , P̄ k|b,τ , x̂k|k, Pk|k). (3.5)

end

In the given algorithm, forward prediction is performed almost as in FPFD. The

only difference is, compared to the forward prediction of FPFD which uses two

auxiliary filters, here only one auxiliary filter is used. In the first step of the

algorithm, this auxiliary filter is initialized as in (3.1) with an estimate x̂b|b cal-

culated by the principal filter before OOSM measurement is collected. This

estimate is then predicted (3.2a) to the time tτ at which the OOSM arrives. In

the next step, the predicted estimate is updated with OOSM through (3.2b).

40

Finally, the OOSM track is predicted to the current time (3.2c). The forward

prediction is illustrated at the bottom of Fig. 3.1. Since the decorrelation is

carried out implicitly by a fusion algorithm, the knowledge of how much two

tracks are correlated is not required, which, as mentioned previously, distin-

guishes our solution from FPFD. For this reason, the second auxiliary filter

employed for decorrelation purposes in the FPFD is not utilized, which reduces

the computational burden of the FPF.

Figure 3.1: The illustration of the proposed method for OOSM track update.

In the second and final part, one of the previously discussed correlation-independent

fusion algorithms, Naive, CI, and LEA, is chosen to combine the predicted

OOSM track with the current track. As a result of the fusion operation, the esti-

mate x̂k|k,τ which contains the OOSM information is obtained. In Fig. 3.1, the

OOSM incorporation process of FPF is illustrated. In the following sections,

depending on which fusion method it applies, the algorithm may be referred to

as "FPF followed by the name of that method", e.g., FPF CI.

41

3.1.2 Data Storage Requirement

Even though the quantities needed to be stored may not seem large while pro-

cessing the OOSM for a single target, as the number of tracked targets increases

the data storage might become an important issue. Therefore, in this subsec-

tion, the storage requirements of the proposed methods and the existing solu-

tions are analyzed and then compared considering the number of scalars they

need to hold in memory.

To begin with, all the methods necessitate storing the last update time tk along

with the estimate x̂k|k and the covariance Pk|k calculated at that time. This

amounts to 1, n, and n(n+1)/2 number of scalars respectively, where n stands

for the number of state variables. In addition to the current quantities, forward

prediction-based FPFD and FPF methods also require storing the time, state es-

timate, and covariance values between tk−lmax and tk−1, where lmax represents

the maximum expected lag.

For Bl1, on the other hand, it is sufficient to store the time and state covariance

values between tk−lmax and tk−1, i.e. the previous state estimate values are not

required to be stored in Bl1. The reason for this can be explained as follows.

In Bl1, past quantities are stored for the calculation of the covariance of the

equivalent measurement. Since the previous estimates are not required in the

calculation of this covariance value, they do not need to be stored. This is the

reason for subtracting the nlmax term in (3.7).

In summary, the total number of scalars needed to be stored for each algorithm

is given below:

FPFD :

[
lmax + 1

2

]
(n2 + 3n+ 2), (3.6)

Bl1 :

[
lmax + 1

2

]
(n2 + 3n+ 2)− nlmax, (3.7)

FPF Naive :

[
lmax + 1

2

]
(n2 + 3n+ 2), (3.8)

FPF CI :
[
lmax + 1

2

]
(n2 + 3n+ 2), (3.9)

FPF LEA :

[
lmax + 1

2

]
(n2 + 3n+ 2). (3.10)

42

Table 3.1 presents the data storage requirements for different lmax values when

the number of state variables in xk is 6.

lmax 1 2 3 4

FPFD 56 84 112 140

Algorithm Bl1 50 72 94 116

FPF Naive 56 84 112 140

FPF CI 56 84 112 140

FPF LEA 56 84 112 140

Table 3.1: Number of scalars required to be stored in terms of lmax for a state vector

with 6 elements.

As can be seen from the table, the storage requirements all depend on the value

of lmax, and the difference in storage requirements between the prediction-

based algorithms and Bl1 grows as the maximum delay gets larger.

3.1.3 Computational Cost

In this subsection, a computation-wise comparison of the proposed methods

and the existing solutions is presented. The computational costs of the algo-

rithms FPFD, Bl1, and FPF in terms of the number of operations performed

per OOSM are shown below in Table 3.2 where Ne is the number of function

evaluations required by the solution of the optimization problem in FPF CI.

In the forward prediction step of the FPFD, two KF time updates and a sin-

gle KF measurement update are performed. In subsequent steps, two more

measurement updates are applied, assuming that the decorrelation and fusion

processes have the same computational complexity of a single KF measurement

update. In Bl1, along with a single measurement update for the incorporation

of the OOSM, a total of two time updates are performed, one for the calcu-

lation of P (k|k − l) which is required to obtain the equivalent measurement

and one for the state retrodiction. Since FPF Naive is the simplified version

43

Operations # of Meas. Updates # of Time Updates # of Diags.

FPFD 3 3 -

Bl1 1 2 -

FPF Naive 2 2 -

FPF LEA 1 2 2

FPF CI Ne + 1 2 -

Table 3.2: Number of operations required to be performed for any l.

of FPFD in which the decorrelation step is not performed, the computational

cost of FPF is less than that of FPFD by one time update for the calculation

of the information to be decorrelated in the forward prediction step and one

measurement update for decorrelation step. The computational cost of the FPF

CI consists of two time updates and a single measurement update carried out

for forward prediction, and Ne measurement updates required for evaluating

the cost functions while solving the CI optimization problem. In the FPF LEA,

two time updates and one measurement update for the forward prediction as

well as two diagonalizations (Diags.) performed within the LEA fusion make

up the computational cost.

3.2 Proposed Solution for Jump Markov Linear Systems

The encountered challenge in applying FPFD to JMLSs is that it involves a

decorrelation process corresponding to the division of two densities, which

cannot be performed in a straightforward manner since the division of JMLSs’

posterior distributions (i.e., Gaussian mixtures) does not have an analytical ex-

pression as for the Kalman Filter. In [20] it is discussed that even though the

ratio of two Gaussian mixtures is again a mixture, the components turn out

to be non-Gaussian, which leads to the development of approximate solutions

to work with IMMs. For example [20] approximates these components with

Gaussians by importance sampling. Another approximate solution is proposed

in [31], in which the decorrelation is not applied on the Gaussian mixtures but

44

on the joint posterior of the continuous base-state and discrete mode-state pro-

vided by the IMM filter. However, even in this approach, since IMM involves

several approximations, some implementation issues arise, and one of them

concerns the non-invertibility of the decorrelation information matrix [23]. In

order to avoid these challenging and problematic issues an extension of the

forward prediction-based OOSM processing solution proposed in the previous

section for jump Markov linear systems is presented next.

3.2.1 Algorithm

The algorithm of the proposed solution for jump Markov linear systems which

consists of two parts, i.e., forward prediction and fusion is given as follows.

FPFIMM Algorithm

– Given:{µi
b|b, x̂

i
b|b, P

i
b|b}

Nr
i=1, {µi

k|k, x̂
i
k|k, P

i
k|k}

Nr
i=1, zτ .

– Initialization:

µ̄i
b|b = µi

b|b, i = 1, ..., Nr, (3.11a)

ˆ̄xi
b|b = x̂i

b|b, i = 1, ..., Nr, (3.11b)

P̄ i
b|b = P i

b|b, i = 1, ..., Nr. (3.11c)

– Forward Prediction:

[
{µ̄i

τ |b, ˆ̄x
i
τ |b, P̄

i
τ |b}Nr

i=1

]
= IMMPrediction

(
{µ̄i

b|b, ˆ̄x
i
b|b, P̄

i
b|b}Nr

i=1

)
,

(3.12a)[
{µ̄i

τ |b,τ , ˆ̄x
i
τ |b,τ , P̄

i
τ |b,τ}Nr

i=1

]
= IMMUpdate

(
{µ̄i

τ |b, ˆ̄x
i
τ |b, P̄

i
τ |b}Nr

i=1, zτ
)
,

(3.12b)[
{µ̄i

k|b,τ , ˆ̄x
i
k|b,τ , P̄

i
k|b,τ}Nr

i=1

]
= IMMPrediction

(
{µ̄i

τ |b,τ , ˆ̄x
i
τ |b,τ , P̄

i
τ |b,τ}Nr

i=1

)
.

(3.12c)

– Fusion:

∗ Mode Matched Fusion:

for i = 1 : Nr

45

if Fusion Method is Naive

[x̂i
k|k,τ , P

i
k|k,τ] = Naive(ˆ̄xi

k|b,τ , P̄
i
k|b,τ , x̂

i
k|k, P

i
k|k). (3.13)

elseif Fusion Method is CI

[x̂i
k|k,τ , P

i
k|k,τ , w

∗] = CI(ˆ̄xi
k|b,τ , P̄

i
k|b,τ , x̂

i
k|k, P

i
k|k). (3.14)

elseif Fusion Method is LEA

[x̂i
k|k,τ , P

i
k|k,τ] = LEA(ˆ̄xi

k|b,τ , P̄
i
k|b,τ , x̂

i
k|k, P

i
k|k). (3.15)

end

end

∗ Mode Probability Fusion:

if Fusion Method is Naive or LEA

[µi
k|k,τ] = ModeProbabilityUpdateNaive(

{µ̄i
k|b,τ , ˆ̄x

i
k|b,τ , P̄

i
k|b,τ}Nr

i=1, {µi
k|k, x̂

i
k|k, P

i
k|k}Nr

i=1

)
. (3.16)

elseif Fusion Method is CI

[µi
k|k,τ] = ModeProbabilityUpdateCI(
w∗, {µ̄i

k|b,τ , ˆ̄x
i
k|b,τ , P̄

i
k|b,τ}Nr

i=1, {µi
k|k, x̂

i
k|k, P

i
k|k}Nr

i=1

)
. (3.17)

end

In the forward prediction part of the algorithm, first, the auxiliary IMM filter

used to carry the information coming from the OOSM is initialized with the

summary statistics of the principal filter at time tb. Then, forward prediction is

performed as in the FPF by applying the IMM filter counterparts (3.2) of the

prediction and update equations of KF. As a result, summary statistics of the

OOSM track {µ̄i
k|b,τ , ˆ̄x

i
k|b,τ , P̄

i
k|b,τ}

Nr
i=1 are obtained.

In the fusion part of the algorithm, the information contained in the forward

predicted auxiliary filter is incorporated into the summary statistics of the prin-

cipal (original) filter in two steps i.e., mode matched estimate and covariance

fusion step and mode probability fusion step. In the former, each mode of the

46

primary filter is combined with the corresponding identical mode of its dupli-

cated version by one of (3.13)-(3.15), depending on the chosen fusion method.

As a result, mode matched fused estimate and covariance statistics {ˆ̄xi
k|k,τ , P̄

i
k|k,τ}

Nr
i=1

are obtained. In the next and final step, depending on the method chosen in the

previous step, the mode probabilities of the principal filter are combined with

those of the auxiliary filter by one of (3.16)-(3.17), formulated and defined in

the following derivations of the fusion methods.

3.2.1.1 Naive Fusion applied in FPFIMM

Just as in [31] decorrelation is performed over joint densities, in FPFIMM naive

fusion is applied to joint densities p(xk, rk|Zk) and p̄(xk, rk|Zb, zτ), which are

scaled Gaussian distributions given as follows.

p(xk, rk|Zk) = µrk
k|kN (xk, x̂

rk
k|k, P

rk
k|k), (3.18a)

p̄(xk, rk|Zb, zτ) = µrk
k|b,τN (xk, ¯̂x

rk
k|b,τ , P̄

rk
k|b,τ). (3.18b)

Notice here that, FPFIMM naive fusion can be applied to these two joint densi-

ties because the auxiliary IMM filter utilizes the identical motion models as the

principal filter.

Naive fusion of these two joint distributions gives the following fused joint

distribution.

p(xk, rk|Zk, zτ) ∝ p(xk, rk|Zk)p̄(xk, rk|Zb, zτ), (3.19a)

= µrk
k|kµ̄

rk
k|b,τN (xk, x̂

rk
k|k, P

rk
k|k)N (xk, ¯̂x

rk
k|b,τ , P̄

rk
k|b,τ). (3.19b)

By applying the well-known multiplication rule of the Gaussian algebra, (3.19b)

can be written as a scaled Gaussian, which results in

47

p(xk, rk|Zk, zτ) ∝ µrk
k|kµ̄

rk
k|b,τN (x̂rk

k|k,
¯̂xrk
k|b,τ , P

rk
k|k + P̄ rk

k|b,τ)N (xk, x̂
rk
k|k,τ , P

rk
k|k,τ).

(3.20)

The fused mode probabilities are proportional to the scaling coefficient in (3.20),

as expressed below

µrk
k|k,τ ∝ µrk

k|kµ̄
rk
k|b,τN (x̂rk

k|k,
¯̂xrk
k|b,τ , P

rk
k|k + P̄ rk

k|b,τ). (3.21)

Thus the fused mode probabilities µrk
k|k,τ can be found after normalization as

follows

µrk
k|k,τ =

µrk
k|kµ̄

rk
k|b,τN (x̂rk

k|k,
¯̂xrk
k|b,τ , P

rk
k|k + P̄ rk

k|b,τ)∑Nr

rk=1 µ
rk
k|kµ̄

rk
k|b,τN (x̂rk

k|k,
¯̂xrk
k|b,τ , P

rk
k|k + P̄ rk

k|b,τ)
. (3.22)

As a result of combining the mode probabilities, the complete updated sum-

mary statistics {µ̄i
k|k,τ , ˆ̄x

i
k|k,τ , P̄

i
k|k,τ}

Nr
i=1 are obtained. In the following sections,

this method is referred to as FPFIMM Naive.

The function of the above-described mode probability update (3.16) used in the

algorithm can now be defined as follows.

– [µ̃i] = ModeProbabilityUpdateNaive
(
{µi, x̂i, P i}Nr

i=1, {µ̄i, ˆ̄xi, P̄ i}Nr
i=1

)
:

This is the functional representation of the above described mode prob-

ability update (3.21) which takes the summary statistics of the principal

and auxiliary IMM filters {µi
k|k, x̂

i
k|k, P

i
k|k}

Nr
i=1 and {µ̄i

k|b,τ , ˆ̄x
i
k|b,τ , P̄

i
k|b,τ}

Nr
i=1

respectively and returns the updated/fused mode probabilities µrk
k|k,τ .

3.2.1.2 CI Fusion applied in FPFIMM

In FPFIMM, Chernoff fusion, an extension of CI, is applied on the joint densi-

ties p(xk, rk|Zk) and p̄(xk, rk|Zb, zτ), which yields the fused information given

as follows.

48

p(xk, rk|Zk, zτ) ∝
(
p(xk, rk|Zk)

)w (
p̄(xk, rk|Zb, zτ)

)1−w
(3.23a)

= (µrk
k|k)

w(µ̄rk
k|b,τ)

1−w
(
N (xk, x̂

rk
k|k, P

rk
k|k)
)w (

N (xk, ¯̂x
rk
k|b,τ , P̄

rk
k|b,τ)

)1−w

(3.23b)

Using the fact that, the wth power of the Gaussian distribution N (x, x̂, P) turns

out to be as the scaled Gaussian as below:

(N (x, x̂, P))w = c(w)N (x; x̂, w−1P), (3.24)

where

c(w)
∆
=

(|2πw−1P |)0.5

(|2πP |)w/2
, (3.25)

(3.23) can be written as follows

p(xk, rk|Zk, zτ) ∝ (µrk
k|k)

w(µ̄rk
k|b,τ)

1−wcrkk|k(w)c̄
rk
k|b,τ (w)N (xk, x̂

rk
k|k, w

−1P rk
k|k)

×N (xk, ¯̂x
rk
k|b,τ , (1− w)−1P̄ rk

k|b,τ). (3.26)

By applying the multiplication rule, (3.26) can be written as a scaled Gaussian,

which results in

p(xk, rk|Zk, zτ) ∝ (µrk
k|k)

w(µ̄rk
k|b,τ)

1−wcrkk|k(w)c̄
rk
k|b,τ (w)

×N

(
x̂rk
k|k,b,

¯̂xrk
k|b,τ ,

P̄ rk
k|k

w
+

P̄ rk
k|b,τ

1− w

)
N (xk, x̂

rk
k|k,τ , P

rk
k|k,τ), (3.27)

where mode-conditioned state estimates x̂rk
k|k,τ and covariances P rk

k|k,τ are given

by CI function in (3.14) described at the end of the section on correlation inde-

pendent fusion methods in Chapter 2.

49

The fused mode probabilities µrk
k|k,τ are proportional to the scaling coefficient

in (3.27), as expressed below

µrk
k|k,τ ∝ (µrk

k|k)
w(µ̄rk

k|b,τ)
1−wcrkk|k(w)c̄

rk
k|b,τ (w)N

(
x̂rk
k|k,

¯̂xrk
k|b,τ ,

P rk
k|k

w
+

P̄ rk
k|b,τ

1− w

)
,

(3.28)

and hence can be found after normalization over different modes as follows

µrk
k|k,τ =

(µrk
k|k)

w(µ̄rk
k|b,τ)

1−wcrkk|k(w)c̄
rk
k|b,τ (w)N

(
x̂rk
k|k,

¯̂xrk
k|b,τ ,

P
rk
k|k
w

+
P̄

rk
k|b,τ
1−w

)
∑Nr

rk=1(µ
rk
k|k)

w(µ̄rk
k|b,τ)

1−wcrkk|k(w)c̄
rk
k|b,τ (w)N

(
x̂rk
k|k,

¯̂xrk
k|b,τ ,

P
rk
k|k
w

+
P̄

rk
k|b,τ
1−w

) .

(3.29)

The mode probabilities of the fused estimate are obtained by substituting the

optimal value w∗ given by the CI function in (3.14) for w in (3.29).

As a result of combining the mode probabilities, the complete updated sum-

mary statistics {µ̄i
k|k,τ , ˆ̄x

i
k|k,τ , P̄

i
k|k,τ}

Nr
i=1 are obtained. In the following sections,

this method is referred to as FPFIMM CI.

The function of the above-described mode probability update (3.29) used in the

algorithm can now be defined as follows.

– [µ̃i] = ModeProbabilityUpdateCI
(
w, {µi, x̂i, P i}Nr

i=1, {µ̄i, ˆ̄xi, P̄ i}Nr
i=1

)
:

This is the functional representation of the above described mode proba-

bility update (3.21) which takes the optimum value w∗, summary statis-

tics of the principal and auxiliary IMM filters {µi
k|k, x̂

i
k|k, P

i
k|k}

Nr
i=1 and

{µ̄i
k|b,τ , ˆ̄x

i
k|b,τ , P̄

i
k|b,τ}

Nr
i=1 respectively and returns the updated/fused mode

probabilities µrk
k|k,τ .

50

3.2.1.3 LEA Fusion applied in FPFIMM

Since LEA is not a method that can be applied to distributions like Chernoff and

Naive fusion, its derivation cannot be given in the same manner as was done

for the methods mentioned above. Nonetheless, by considering the architecture

that enables mode-by-mode fusion as revealed by the above derivations, the

following solution can be proposed. In this solution, mode-matched estimate

and covariance fusion is performed by LEA in (3.15), while the fused mode

probabilities are calculated in (3.16) by the mode probability update function

derived for naive fusion.

In the following sections, this method is referred to as FPFIMM LEA.

3.2.2 Data Storage Requirement

In this subsection, the storage requirements of the proposed methods and the

algorithm Bl1IMM are analyzed and then compared in terms of the number of

scalars they need to hold in memory.

To begin with, all the methods necessitate storing the last update time tk along

with the summary statistics {µi
k|k, x̂

i
k|k, P

i
k|k}

Nr
i=1 obtained at that time. In addi-

tion to these current quantities, all the methods require to keep the summary

statistics obtained from tk−lmax to tk−1 and the respective update times, which

shows that storage requirements depend on the value of lmax.

All Methods : (lmax + 1)

[
Nr

(
n2 + 3n+ 2

2

)
+ 1

]
. (3.30)

(3.31)

Table 3.3 presents the data storage requirements for different lmax values when

the number of state variables in xk is 4.

It can be noticed from the table that when Bl1 is adapted to IMM, the method

loses its storage advantage over forward prediction-based methods.

51

lmax 1 2 3 4

BlIMM1 62 93 124 155

FPFIMM Naive 62 93 124 155

FPFIMM CI 62 93 124 155

FPFIMM LEA 62 93 124 155

Table 3.3: Number of scalars required to be stored in terms of lmax when the number

of state variables in xk is 4 and number of IMM filter models is 2.

3.2.3 Computational Cost

In this subsection, computation-wise comparison of the proposed FPFIMM

methods and the existing solutions is presented.

Table 3.4 below shows the computational costs of Bl1IMM and FPFIMM meth-

ods in terms of the number of operations they perform per OOSM:

Ops. # of Meas. Upds. # of Time Upds. # of Mixs. # of Diags.

Bl1IMM Nr 2Nr 1 -

FPFIMM Naive 2Nr 2Nr 2 -

FPFIMM LEA Nr 2Nr 2 2Nr

FPFIMM CI Nr(Ne + 1) 2Nr 2 -

Table 3.4: Number of operations required to be performed in IMM application for

any lmax.

where computational costs of the mode probability update operation are not

given since they do not bring a significant computational burden.

Since KF measurement update and time update operations are applied by Nr

filters in the JMLS case, the number of operations performed is Nr times the

values in Table 3.2. In addition to these operations, Bl1IMM performs an IMM

mixing to compute P i
k|k−l for the calculation of equivalent measurement covari-

ance.

52

Moreover, two IMM mixings performed in the forward prediction step are

added to the computational cost of FPFIMM methods and since fusion is per-

formed for each mode, the number of diagonalization operations of the FP-

FIMM LEA increases by a factor of Nr compared to FPF LEA.

3.3 Advantages and Disadvantages

3.3.1 Advantages

1. Forward prediction-based FPF and FPFIMM methods are intuitive com-

pared to the retrodiction-based Bl1, as the natural flow of time is forward.

Therefore, unlike Bl1 and Bl1IMM, they do not require the state transition

matrix to be invertible.

2. By combining information in a conservative manner, FPF can be expected

to bring an improvement in estimation performance against FPFD or Bl1

in some cases, as it does not suffer from the previously discussed process

noise dependence problem of other methods.

3. FPFIMM method requires no modification in the IMM filter implemen-

tation when one of the models is non-linear such as the coordinated turn

model. In such a case, only the IMM prediction update operations carried

out in the forward prediction step of the proposed method are expected

to undergo changes. Since the standard KF estimating equations (2.52)

cannot be applied due to the nonlinearities, one modification is required

in the mode-matched prediction update step. If there are differences in

dimensionality and type of the model states, modification is also required

in the IMM mixing step.

3.3.2 Disadvantages

1. As can be seen from Table 3.2, the computational cost of all FPF meth-

ods is higher than that of Bl1, which also applies to the comparison of

FPFIMM and Bl1IMM. The FPF naive has fewer operations to perform

than the FPFD, but this lower computational load comes at the cost of

53

some performance. While the computational cost of the FPF LEA is ex-

pected to be comparable to the FPFD, the FPF CI has the potential to be

computationally more expensive than the FPFD depending on Ne due to

the measurement update operation load brought by the optimization step.

These comparisons will be supported by the average CPU time results of

the Monte Carlo simulations as imprecise approximations of the compu-

tational complexity of the algorithms in the next section.

2. As the property of conservativeness mentioned in advantage 2. may also

lead to some independent information not being used in the fusion, FPF is

expected to yield degraded estimation performance against FPFD or Bl1

in some cases.

54

CHAPTER 4

NUMERICAL RESULTS

In this chapter, the performance of the FPF and FPFIMM algorithms is tested

under various simulation scenarios and compared with existing solutions based

on the numerical results obtained.

4.1 Performance Testing of FPF Methods

The performance of the proposed FPF methods will be analyzed for two cases

in this section. In the first case, the measurement model is linear, while in

the second case, where a more practical scenario is examined, the nonlinear

measurement model is considered.

4.1.1 2-D Linear Measurement Model Example

In this example, as a kinematic model (2.1), discretized continuous white noise

acceleration model commonly used in tracking is considered[32]. The state

vector xk composed of two positions denoted as p and two velocities denoted

as v one for each coordinate is defined as follows:

xk
∆
=
[
px vx py vy

]T
, (4.1)

where superscripts x and y denote the dimensions.

Starting with the state transition matrix, the model parameters are given below:

55

Fk,k−1 =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , (4.2)

where T (taken as 1 sec in the upcoming scenarios) stands for the sampling in-

terval. The covariance of the accumulated continuous white noise acceleration

is written as follows:

Qk,k−1 = q

T 3/3 T 2/2 0 0

T 2/2 T 0 0

0 0 T 3/3 T 2/2

0 0 T 2/2 T

 , (4.3)

where q denotes the process noise intensity which is modeled to be the same

for each coordinate. Since only the positions are measured in the following

examples, measurement matrices Hk and Hτ are written as follows

Hk = Hτ =

1 0 0 0

0 0 1 0

 , (4.4)

and the measurement noise covariances Rk and Rτ are given as follows

Rk =

σ2
px 0

0 σ2
py

 , Rτ =

ρ2px 0

0 ρ2py

 , (4.5)

where σpx ,σpy are the standard deviations for the in-sequence position measure-

ments and ρpx ,ρpy are the standard deviations for the OOSMs.

56

4.1.1.1 Single-Lag Scenario

Here we consider a scenario where 5 OOSMs with a single lag arrive at random

time instants alongside sequential measurements collected at each sampling in-

terval. These delayed (OOSM) measurements are obtained immediately after

tk−1 i.e., exactly one lag case. The considered scenario uses above described

discretized continuous white noise acceleration model with three different val-

ues for the process noise intensity (q=25 m2/s3,100m2/s3,400m2/s3) and the

measurement models where σpx = ρpy = 100 m and σpy = ρpx = 25 m.

Based on the above-described scenario, the FPF methods are compared with

the in-sequence measurements reprocessing method (In-seq), OOSM ignoring,

and the existing solutions FPFD and Bl1. The in-sequence measurement re-

processing method which provides the optimal solution is the simple approach

which reprocesses all the past measurements chronologically starting from the

OOSM time tτ , and the ignore approach simply discards the OOSM. Related to

the methods using CI, we found from simulation studies that there is no signif-

icant improvement in the performance of the FPFIMM CI method when Ne is

chosen large, while there is a significant increase in the computational cost, i.e.

the improvement in the performance is not worth the increase in the computa-

tional cost. Therefore, for this and all the following scenarios and cases, Ne is

chosen as 3 to make these methods feasible in practice.

The performance results of the algorithms are obtained through the simulations

which take 50 time steps. The Kalman filters of each method have identical

parameters, which are matched to the true target parameters given above. The

KFs are initialized with the state estimate and covariance given below.

x̂0|0 =
[
5000m 20m/s 5000m 20m/s

]T
, (4.6)

P0|0 = diag
[
1002m2 52m2/s2 1002m2 52m2/s2

]
. (4.7)

The true initial state of the target is realized from a Gaussian random variable

distributed as N (x; x̂0|0, P0|0) at the beginning of each Monte Carlo (MC) run.

57

A total of 10000 Monte Carlo runs are made by changing the target state tra-

jectory, measurement noise realizations, and time instants of OOSM arrivals.

For different process noise intensities, the root mean square (RMS) position

errors, RMS velocity errors, and the mean normalized estimation error squared

(NEES) are shown in Fig. 4.1-4.4. Notice that Fig 4.4 is a zoomed version of

Fig 4.3. As for NEES, the closer the value of the average NEES is to the num-

ber of state variables in xk (4 in our case), the better the consistency properties

of the filter, i.e., the covariance matrix computed by the filter better represents

the true estimation error. On a more evaluative level, a method can be said

to be consistent if the NEES results of the method are within the confidence

region, bounded by the upper (99.5% probability) and lower (0.5% probabil-

ity) thresholds, denoted as γU , γL, which will be shown later in the respective

graphs.

As can be seen from the figures, the solutions with the lowest RMSE are FPFD

and Bl1 as expected. In terms of RMS position and velocity errors, both FPFD

and Bl1 have very similar performances. Outside of these methods, the FPF

LEA stands out as the best-performing method. The reason for this is that the

OOSM solutions have the characteristics of fusion methods as can be deduced

from Fig. 4.3. In other words, FPF Naive has larger NEES because of the over-

confident behavior of the Naive fusion, which leads to inconsistent processing

of subsequent measurements. This is why naive yields the worst RMSE per-

formance among all. Furthermore, due to the overly conservative nature of the

fusion algorithm CI, FPF CI has lower NEES, leading to less confident process-

ing of future data and higher RMSE than FPF LEA. Also notice that as process

noise intensity q increases, RMS position and velocity errors of the OOSM

methods approach those of Ignore, which implies that all methods have some

form of ignoring capability. This is due to increased process noise reducing the

useful information content of the OOSM. All in all, among the FPF methods

for one-lag problems, it seems reasonable to prefer FPF LEA since FPF Naive

is not consistent and FPF CI has larger RMSE results due to sacrificing some

more information than FPF LEA.

58

0 5 10 15 20 25 30 35 40 45

Time (s)

46

48

50

52

54

56

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(a) q = 25m2/s3.

0 5 10 15 20 25 30 35 40 45

Time (s)

54

56

58

60

62

64

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(b) q = 100m2/s3.

0 5 10 15 20 25 30 35 40 45

Time (s)

62

64

66

68

70

72

74

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(c) q = 400m2/s3.

Figure 4.1: Position RMSE comparison of FPF methods and existing solutions for

different process noise intensities.

59

0 5 10 15 20 25 30 35 40 45

Time (s)

14

14.2

14.4

14.6

14.8
V

e
lo

c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(a) q = 25m2/s3.

0 5 10 15 20 25 30 35 40 45

Time (s)

23

23.5

24

24.5

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(b) q = 100m2/s3.

0 5 10 15 20 25 30 35 40 45

Time (s)

38

38.5

39

39.5

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(c) q = 400m2/s3.

Figure 4.2: Velocity RMSE comparison of different FPF methods and existing solu-

tions for different process noise intensities.

60

0 10 20 30 40 50

Time (s)

4

4.5

5

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(a) q = 25m2/s3.

0 10 20 30 40 50

Time (s)

3.8

4

4.2

4.4

4.6

4.8

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(b) q = 100m2/s3.

0 10 20 30 40 50

Time (s)

3.8

4

4.2

4.4

4.6

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(c) q = 400m2/s3.

Figure 4.3: NEES comparison of FPF methods and existing solutions for different

process noise intensities.

61

0 5 10 15 20 25 30 35 40 45

Time (s)

3.9

3.95

4

4.05

4.1
N

E
E

S
Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(a) q = 25m2/s3.

0 5 10 15 20 25 30 35 40 45

Time (s)

3.9

3.95

4

4.05

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(b) q = 100m2/s3.

0 5 10 15 20 25 30 35 40 45

Time (s)

3.85

3.9

3.95

4

4.05

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(c) q = 400m2/s3.

Figure 4.4: NEES comparison of FPF methods and existing solutions for different

process noise intensities (Zoomed version of Fig. 4.3).

62

4.1.1.2 Multi-Lag Scenario

This scenario is identical to the one-lag scenario, except that previously the

methods were compared for different process noise intensities, whereas now

the methods will be compared for different lags (l = 1, 2, 3).

The considered scenario uses discretized continuous white noise acceleration

model with the process noise intensity q=100 m2/s3 and the measurement mod-

els where σpx = ρpy = 100 m and σpy = ρpx = 25 m.

The performance results of the algorithms are obtained through the simulations

which take 50 time steps. A total of 10000 Monte Carlo runs are made by

changing the target state trajectory, measurement noise realizations, and time

instants of OOSM generation in each run. For different lags, the RMS position

errors, RMS velocity errors, and the mean NEES are shown in Fig. 4.5-4.8.

Notice that Fig. 4.8 is a zoomed version of Fig. 4.7.

As can be seen from the figures, much of the previous discussion on the nu-

merical results of single-lag scenarios can also be applied to the multi-lag case.

For example, FPFD and Bl1 are the best algorithms in terms of RMS position

and velocity errors. In addition, FPF LEA outperforms the other FPF methods.

Also notice that as the number of lag increases, RMSEs of the OOSM methods

approach those of Ignore. In fact, in the case with 3 lag, FPF CI gives the same

RMSE results as Ignore in Figures 4.5c and 4.6c, which proves the OOSM

ignoring capability of FPF CI. This is due to increased process noise diminish-

ing the information content of measurement. However, ignoring OOSM means

sacrificing information; hence, FPF CI performs as badly as FPF Naive.

The performance comparison of all these approaches in terms of time-averaged

RMS position and velocity errors for different lags (l = 1, 2, 3, 4, 5) is given in

Fig. 4.9-4.10.

Table 4.1 shows the total CPU times of the algorithms Bl1, FPFD, FPF Naive,

FPF CI, and FPF LEA for 1000 runs (processing 1000 OOSMs). Since CPU

times are only an approximation of the computational cost of the algorithms,

63

0 5 10 15 20 25 30 35 40 45

Time (s)

54

56

58

60

62

64
P

o
s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(a) 1 lag OOSMs.

0 5 10 15 20 25 30 35 40 45

Time (s)

54

56

58

60

62

64

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(b) 2 lag OOSMs.

0 5 10 15 20 25 30 35 40 45

Time (s)

54

56

58

60

62

64

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(c) 3 lag OOSMs.

Figure 4.5: Position RMSE comparison of FPF methods and existing solutions for

different OOSM lags.

64

0 5 10 15 20 25 30 35 40 45

Time (s)

23

23.5

24

24.5

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

)
Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(a) 1 lag OOSMs.

0 5 10 15 20 25 30 35 40 45

Time (s)

23

23.5

24

24.5

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(b) 2 lag OOSMs.

0 5 10 15 20 25 30 35 40 45

Time (s)

23

23.5

24

24.5

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

(c) 3 lag OOSMs.

Figure 4.6: Velocity RMSE comparison of different FPF methods and existing solu-

tions for different OOSM lags.

65

0 10 20 30 40 50

Time (s)

3.8

4

4.2

4.4

4.6

4.8

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(a) 1 lag OOSMs.

0 10 20 30 40 50

Time (s)

3.6

3.8

4

4.2

4.4

4.6

4.8

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(b) 2 lag OOSMs.

0 10 20 30 40 50

Time (s)

3.8

4

4.2

4.4

4.6

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(c) 3 lag OOSMs.

Figure 4.7: NEES comparison of different FPF methods and existing solutions for

different OOSM lags.

66

0 5 10 15 20 25 30 35 40 45

Time (s)

3.9

3.95

4

4.05

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(a) 1 lag OOSMs.

0 5 10 15 20 25 30 35 40 45

Time (s)

3.8

3.85

3.9

3.95

4

4.05

4.1

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(b) 2 lag OOSMs.

0 5 10 15 20 25 30 35 40 45

Time (s)

3.95

4

4.05

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

(c) 3 lag OOSMs.

Figure 4.8: NEES comparison of different FPF methods and existing solutions for

different OOSM lags (Zoomed version of Fig. 4.7).

67

1 2 3 4 5

Lag

54

56

58

60

62

64

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

Figure 4.9: Time-averaged RMS position errors for different lags.

they are given here to support the results in Table 3.2. As can be seen from

above, in accordance with Table 3.2, all FPF methods have a higher computa-

tional complexity than Bl1, and FPF naive has a lower computational load than

FPFD. It is also shown that the computational cost of the FPF LEA is compara-

ble to the FPFD as expected. Moreover, the FPF CI turns out to be practically

feasible, since its cost is close to other methods for a small Ne, which in this

case is 3. Finally, from the fact that the CPU times in the table do not differ

much between lags, it can be concluded that the number of lags has little effect

on computational complexity.

4.1.2 2-D Nonlinear Measurement Model Example

In this example, using the nonlinear measurement model instead of (2.2), FPF

algorithms are tested with measurement covariances whose orientations change

in state space. In this way, the performance of the fusion algorithms used in

FPF is exploited to a larger extent. This example, therefore, differs from the

previous one by considering a nonlinear measurement model used in practice.

The nonlinear counterpart of in-sequence (2.2) and out-of-sequence (2.5) mea-

surement models are given as follows:

68

1 2 3 4 5

Lag

22.8

23

23.2

23.4

23.6

V
e
lo

c
it
y
 R

M
S

E
 (

m
/s

)
Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

Figure 4.10: Time-averaged RMS velocity errors for different lags.

zk = h(xk) + vk, (4.8a)

zτ = h(xτ) + vτ , (4.8b)

where the measurement function h(.) is defined as below:

h(xk) =

fR(xk)

fθ(xk)

 =

(px)2 + (py)2

tan−1(py/px)

 . (4.9)

Here subscripts R and θ denote the range and azimuth (bearing) measurements,

typical radar outputs for applications such as Ground Moving Target Indication

(GMTI).

The covariances of measurement noises vk and vτ are given as follows:

Rk =

1002m2 0

0 0.012rad2

 , Rτ =

10002m2 0

0 0.0012rad2

 , (4.10)

where σR, σθ are range and the bearing standard deviations for in sequence

measurements and ρR, ρθ are the standard deviations for the OOSMs. The

69

considered scenario uses discretized continuous white noise acceleration model

with the process noise intensity q=10 m2/s3 and the measurement models with

σR = 100m, σθ = 0.01rad and ρR = 1000m = ρθ = 0.001rad.

The performance results of the algorithms are obtained through the simula-

tions which take 50 time steps of 2.5 seconds. The Kalman filters of each

method have identical parameters, which are matched to the true target param-

eters given above. The KFs are initialized with the state estimate and covariance

given below.

x̂0|0 =
[
50000m 20m/s 50000m 20m/s

]T
, (4.11)

P0|0 = diag
[
1002m2 52m2/s2 1002m2 52m2/s2

]
. (4.12)

The true initial state of the target is realized from a Gaussian random variable

distributed as N (x; x̂0|0, P0|0) at the beginning of each MC run. A total of

10000 MC runs are made by changing the target state trajectory and measure-

ment noise realizations. Furthermore, in each run, 5 OOSMs with random lags

between 1 and 5 are generated at random time instants to evaluate the overall

performance of the algorithms, i.e., averaging the performance over lags from

1 to 5. The performance of the following approaches is obtained in the simu-

lations: Ignoring OOSM, In-Seq, Bl1, FPFD, FPF Naive, FPF CI, FPF LEA.

The RMS position errors, RMS velocity errors, and the mean NEES are shown

in Fig. 4.11-4.14. Notice that Fig. 4.14 is a zoomed version of Fig 4.13.

As shown in the figures, the performance of the algorithms relative to each other

is similar to the results in the previous example. The nonlinearity in the mea-

surement model does not change the performance ranking of the algorithms.

Among the FPF methods, the FPF LEA seems to be preferable in this case

as well since it overall yields the smallest RMSEs and is the most consistent

according to Fig 4.13.

70

0 20 40 60 80 100 120

Time (s)

300

320

340

360

380

400

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

Figure 4.11: Position RMSE Values.

4.2 Performance Testing of FPFIMM Methods

The performance of the proposed FPFIMM methods will be tested for two 2-D

target tracking scenarios in this section. In the first scenario, the target makes a

maneuver in a way that is matched to our filter model i.e., IMM filter parameters

are the true target parameters, while in a more practical second scenario, the

target makes a maneuver and there is a mismatch between the true target motion

and filter parameters.

4.2.1 Model Match Case

In this case, the true state data will be generated using a JMLS (2.44). The

number of models used in JMLS is two, i.e., rk ∈ {1, 2}, and the mode state xk

which consists of Cartesian x,y positions and velocities is defined as below.

xk
∆
=
[
pxk vxk pyk vyk

]T
. (4.13)

Discretized continuous white noise acceleration models with different process

noise covariance values given below are used in JMLS.

71

20 40 60 80 100 120

Time (s)

39

40

41

42

43
V

e
lo

c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

Figure 4.12: Velocity RMSE Values.

Qi
k,k−1 = qi

T 3/3 T 2/2 0 0

T 2/2 T 0 0

0 0 T 3/3 T 2/2

0 0 T 2/2 T

 , (4.14)

where qi is the process noise intensity of the i’th mode. In our case, q1 = 1m2/s3

and q2 = 100m2/s3.

Mode-dependent state transition matrices F i
k,k−1, are the same for each model

and are given as follows.

F 1
k,k−1 = F 2

k,k−1 =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 . (4.15)

The measurement equation for each model is nonlinear as in the above de-

scribed 2-D nonlinear measurement model example and given as follows.

zik = hi(xk) + vik, (4.16)

72

0 20 40 60 80 100 120 140

Time (s)

3.8

4

4.2

4.4

4.6

4.8

N
E

E
S

Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

Figure 4.13: NEES Values.

where the measurement function hi(.) is the same as h(.) defined in (4.8) for

all i. In addition, the measurement noise covariances of each mode are also the

same and are given as

E[vik(v
i
k)

T]
∆
= Ri

k =

(σR)2 0

0 (σθ)2

 , (4.17)

where σR = 100m and σθ = 0.01rad are the range and bearing standard devia-

tions for each model, respectively. The standard deviations of OOSMs, on the

other hand, are ρR = 1000m, ρθ = 0.001rad.

The transition probability matrix Πk,k−1 for the JMLS is given below

Πk,k−1 =

0.95 0.05

0.05 0.95

T

, (4.18)

where T denotes the sampling interval.

The FPFIMM methods are compared with the In-seq, Ignore, and Bl1IMM.

The performance results of the algorithms are obtained through the simulations

which take 100 time steps of 1 second. The IMM filters of each method have

73

0 20 40 60 80 100 120

Time (s)

3.8

3.85

3.9

3.95

4

4.05

4.1
N

E
E

S
Ignore

In-Seq

Bl1

FPFD

FPF Naive

FPF CI

FPF LEA

L

U

Figure 4.14: NEES Values (Zoomed version of Fig. 4.13).

identical parameters, which are matched to the true target parameters given

above. The mode-conditioned estimates and covariances of the IMM filters are

initialized as in (4.12) and (4.13) respectively. The initial mode probabilities

are chosen to be equal in all IMM filters. The true initial base state of the target

is generated as in FPF scenarios and the mode state is initiated at r0 = 1.

A total of 1000 Monte Carlo runs are made by changing the target state tra-

jectory, measurement noise realizations, and time instants of OOSM arrivals.

Here the number of OOSMs generated within each run is 10. These OOSMs

arrive at random time instants alongside sequential measurements collected at

each sampling interval.

For this scenario, the performance of the following algorithms is obtained in

the simulations: Ignore, In-Seq, Bl1IMM, IMMFPF Naive, IMMFPF CI, and

IMMFPF LEA. For two different lags (l = 1, 3), the RMS position errors, RMS

velocity errors, and the mean NEES are shown in Fig. 4.15-4.22. Notice that

Fig. 4.19 and 4.20 are zoomed versions of Fig 4.21 and 4.22 respectively.

It can be seen from the RMSE plots that Bl1IMM yields the best RMS error per-

formance. We also see that, unlike previous results, the FPFIMM LEA has an

RMSE between FPF Naive and FPF CI methods, and among the FPF methods,

the one that performs close to optimal is no longer LEA but CI. The reason for

74

0 10 20 30 40 50 60 70 80 90

Time (s)

160

180

200

220

240

260

280

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.15: Position RMSE for 1 lag OOSMs.

this is FPFIMM LEA performs mode probability update with FPFIMM Naive’s

update function. This is why we see in the NEES results of FPFIMM LEA the

properties of Naive fusion, not LEA. This inconsistency in FPFIMM LEA leads

to poorer performance, making FPFIMM CI the best among FPFIMM methods

in terms of RMS position and velocity errors. On the other hand, the FPFIMM

CI shows similar characteristics to the FPF CI, by being underconfident. Due

to this, it has a slightly worse performance than Bl1IMM which is neither over-

confident nor underconfident according to Fig. 4.21-4.22.

4.2.2 Model-Mismatch Case

In this case, we consider the fixed true target trajectory shown in Fig. 4.23,

where the target maneuvers in the middle of the scenario. The models and the

parameters used in the model-match case are kept the same as in the model-

match case. Thus, in this scenario, there is a mismatch between the true target

dynamics and the filter parameters.

75

0 10 20 30 40 50 60 70 80 90

Time (s)

160

180

200

220

240

260

280

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.16: Position RMSE for 3 lag OOSMs.

4.2.2.1 Effect of the OOSM Lag

In this example, for performance evaluation, 1000 Monte Carlo runs are made

by changing the measurement noise realizations and time instants of OOSM

arrivals. Here the number of OOSMs generated within each run is 10. These

OOSMs arrive at random time instants alongside sequential measurements col-

lected at each sampling interval. For two different lags (l = 1, 3), the RMS

position errors, RMS velocity errors, and the mean NEES are shown in Fig.

4.24-4.29.

In the non-maneuvering parts of the scenario, the best performance is achieved

by FPFIMM LEA since it is overconfident in its estimate. This is in effect

equivalent to the IMM filter using a lower process noise covariance which mod-

els the constant velocity motion of the target better. This overconfidence which

yields larger NEESs can be seen in Fig. 4.28 and 4.29. Moreover, the per-

formance of FPFIMM CI is slightly worse than that of the Bl1IMM as in the

model match case.

In the maneuvering parts of the scenario, after In-Seq, the second best per-

formance is achieved by Bl1IMM which is followed by FPFIMM CI. The

FPFIMM LEA performs closer to the FPFIMM CI in this case than in the

model match case because of the overconfidence issue discussed in the non-

76

0 10 20 30 40 50 60 70 80 90

Time (s)

27

28

29

30

31

V
e
lo

c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.17: Velocity RMSE for 1 lag OOSMs.

maneuvering part. As can be seen in Figures 4.28 and 4.29, the NEESs of

FPFIMM LEA are again between those of FPFIMM Naive and FPFIMM CI

and closer to the value 4, which indicates consistency.

4.2.2.2 Effect of the OOSM Time

In this example, the arrival times of the OOSMs are changed from 40th sec-

ond to 120th second. For each time instant, 2000 Monte Carlo runs are made

by changing the measurement noise realizations and in each MC run, a single

OOSM arrives at the relevant time. For this example, the performance of the

following algorithms is obtained in the simulations: Ignore, In-Seq, Bl1IMM,

IMMFPF Naive, IMMFPF CI, and IMMFPF LEA. For three different lags (l

= 1, 2, 3), the RMS position errors of these methods are presented for three

different lags (l = 1, 2, 3) in Fig. 4.30-4.31. Notice that Fig. 4.31 is a zoomed

version of Fig 4.30.

Notice that, in the previous simulations, Position RMSEs are higher because

there are some MC runs where no OOSM arrives at a particular time. On the

other hand, in this example, the RMSEs are low as we consider the case where

it is certain that in each MC run an OOSM arrives for a particular time.

77

0 10 20 30 40 50 60 70 80 90

Time (s)

26

28

30

32

V
e
lo

c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.18: Velocity RMSE for 3 lag OOSMs.

0 50 100 150

Time (s)

2

4

6

8

10

12

N
E

E
S

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

L

U

Figure 4.19: Mean NEES for 1 lag OOSMs.

78

0 50 100 150

Time (s)

2

4

6

8

10

12

N
E

E
S

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

L

U

Figure 4.20: Mean NEES for 3 lag OOSMs.

0 20 40 60 80 100 120 140

Time (s)

3.7

3.8

3.9

4

4.1

4.2

4.3

N
E

E
S

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

L

U

Figure 4.21: Mean NEES for 1 lag OOSMs (Zoomed version of Fig. 4.19).

79

0 20 40 60 80 100 120 140

Time (s)

3.6

3.8

4

4.2

4.4

N
E

E
S

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

L

U

Figure 4.22: Mean NEES for 3 lag OOSMs (Zoomed version of Fig. 4.20).

1 1.05 1.1 1.15 1.2

x (m) 10
4

0.9

0.95

1

1.05

1.1

1.15

y
 (

m
)

10
4

True

In-Seq Estimate

Figure 4.23: True and In-Seq estimate trajectories of the target in the model-mismatch

scenario. The red dot denotes the starting point of the target trajectory.

80

0 50 100 150

Time (s)

50

60

70

80

90

100

110
P

o
s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.24: Position RMSE for 1 lag OOSMs.

0 50 100 150

Time (s)

50

60

70

80

90

100

110

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.25: Position RMSE for 3 lag OOSMs.

81

0 50 100 150

Time (s)

6

8

10

12

14

16

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.26: Velocity RMSE for 1 lag OOSMs.

0 50 100 150

Time (s)

6

8

10

12

14

16

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.27: Velocity RMSE for 3 lag OOSMs.

82

0 50 100 150

Time (s)

1

2

3

4

5

6

N
E

E
S

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.28: Mean NEES for 1 lag OOSMs.

0 50 100 150

Time (s)

1

2

3

4

5

6

7

N
E

E
S

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

Figure 4.29: Mean NEES for 3 lag OOSMs.

83

40 50 60 70 80 90 100 110 120

OOSM Time (s)

40

50

60

70

80

90

100

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

(a) 1 lag OOSMs.

40 50 60 70 80 90 100 110 120

OOSM Time (s)

40

50

60

70

80

90

100

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

(b) 2 lag OOSMs.

40 50 60 70 80 90 100 110 120

OOSM Time (s)

40

50

60

70

80

90

100

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

(c) 3 lag OOSMs.

Figure 4.30: Position RMSEs with respect to OOSM times for different OOSM lags.

84

40 50 60 70 80 90 100 110 120

OOSM Time (s)

45

50

55

60

65

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

(a) 1 lag OOSMs.

40 50 60 70 80 90 100 110

OOSM Time (s)

45

50

55

60

65

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

(b) 2 lag OOSMs.

40 50 60 70 80 90 100 110

OOSM Time (s)

40

45

50

55

60

65

70

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Ignore

In-Seq

Bl1IMM

FPFIMM Naive

FPFIMM CI

FPFIMM LEA

(c) 3 lag OOSMs.

Figure 4.31: Position RMSEs with respect to OOSM times for different OOSM lags

(Zoomed version of Fig. 4.30).

85

86

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this work, by adopting the forward prediction and fusion ideas of FPFD

which is a forward prediction-based OOSM processing method for linear Gaus-

sian systems, we propose OOSM processing methods called Forward Predic-

tion and Fusion (FPF) for linear Gaussian systems and its extension called FP-

FIMM for jump Markov linear systems. Due to the decorrelation challenge

of Gaussian mixtures, which are the posterior distributions of JMLSs, direct

adaptation of FPFD to these systems is not possible, and thus there was no

forward prediction-based OOSM processing method applied to JMLSs in the

literature. We believe that, with FPFIMM, which overcomes the decorrela-

tion challenge encountered in FPFD by eliminating the separate decorrelation

step and using a fusion algorithm where it is handled internally, a valuable

contribution to the literature has been made. However, the proposed methods

have higher RMS errors than the existing methods and cannot compensate for

this performance degradation by either lower computation cost or storage re-

quirement. Therefore, it can be argued that FPF and FPFIMM do not bring

any improvements over the existing methods. The only advantage of the pro-

posed methods can be considered as the fact that they are forward prediction

based and therefore do not require the state transition matrix to be invertible,

unlike the backward prediction-based Bl1 and Bl1IMM. The best performing

FPF method, FPF LEA, shows an acceptable performance degradation com-

pared to FPFD and Bl1 methods and has computational complexity and data

storage requirements close to these methods, making it still a preferable OOSM

processing alternative in practice. When it comes to the FPFIMM methods on

the other hand, the best performing one turns out to be FPFIMM CI, rather

87

than FPFIMM LEA which is the extension of FPF LEA for IMM filter. This

is due to the fact that the FPFIMM LEA method performs the mode probabil-

ity updates in the same way as the overconfident FPFIMM Naive method and

therefore yields poorer solutions in general. By being underconfident unlike

other FPFIMM methods, FPFIMM CI shows an acceptable performance drop

compared to Bl1IMM, one of the practically efficient algorithms in the liter-

ature. Moreover, it also has comparable computational complexity and data

storage requirements to Bl1IMM, which makes it a preferable alternative. For

all these reasons, FPFIMM CI, which performs the best among the forward

prediction-based methods but is worse than Bl1 in general, may be applica-

ble in practice as long as keeping the number of function evaluation points for

the optimization step in the CI algorithm small does not lead to a significant

decrease in performance. All in all, considering the inability of the proposed

methods to outperform the existing ones in the literature, we can draw a conclu-

sion that being conservative and sacrificing the independent information from

the OOSM in order to avoid double counting due to common process noise

leads to a performance loss rather than an improvement in general.

As mentioned already, the mode probability update in FPFIMM LEA is per-

formed in a heuristic manner with the update function of FPFIMM Naive, yield-

ing results worse than that of the Bl1IMM. In order to improve the performance

of FPFIMMM LEA, our future plan is to work on developing a mode probabil-

ity update function so that the method adopts the characteristics of one of the

underconfident fusion algorithms, LEA or CI, instead of Naive as in the current

version.

88

REFERENCES

[1] Y. Bar-Shalom and X.-R. Li, Multitarget-multisensor tracking: principles

and techniques, vol. 19. YBs Storrs, CT, 1995.

[2] Y. Bar-Shalom, “Update with out-of-sequence measurements in tracking:

Exact solution,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 38, pp. 769–778, 7 2002.

[3] Y. Bar-Shalom, H. Chen, and M. Mallick, “One-step solution for the mul-

tistep out-of-sequence-measurement problem in tracking,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 40, pp. 27–37, 1 2004.

[4] R. D. Hilton, D. A. Martin, and W. D. Blair, “Tracking with time-delayed

data in multisensor systems,” tech. rep., Naval surface warfare center

dahlgren div va, 1993.

[5] S. C. Thomopoulos and L. Zhang, “Decentralized filtering with random

sampling and delay,” Information Sciences, vol. 81, no. 1-2, pp. 117–131,

1994.

[6] Y. Bar-Shalom and G. Marcus, “Tracking with measurements of uncer-

tain origin and random arrival times,” IEEE Transactions on Automatic

Control, vol. 25, no. 4, pp. 802–807, 1980.

[7] T. Larsen, N. Andersen, O. Ravn, and N. Poulsen, “Incorporation of

time delayed measurements in a discrete-time Kalman filter,” in Pro-

ceedings of the 37th IEEE Conference on Decision and Control (Cat.

No.98CH36171), vol. 4, pp. 3972–3977 vol.4, 1998.

[8] M. Mallick, S. Coraluppi, and C. Carthel, “Advances in asynchronous and

decentralized estimation,” in 2001 IEEE Aerospace Conference Proceed-

ings (Cat. No.01TH8542), vol. 4, pp. 4/1873–4/1888 vol.4, 2001.

[9] Y. Bar-Shalom, M. Mallick, H. Chen, and R. Washburn, “One-step solu-

tion for the general out-of-sequence-measurement problem in tracking,”

in Proceedings, IEEE Aerospace Conference, vol. 4, pp. 4–4, 2002.

89

[10] F. Rheaume and A. Benaskeur, “Out-of-sequence measurements filtering

using forward prediction,” Online 2007.

[11] S. Challa and J. Legg, “Track-to-track fusion of out-of-sequence tracks,”

in Proceedings of the Fifth International Conference on Information Fu-

sion. FUSION 2002. (IEEE Cat.No.02EX5997), vol. 2, pp. 919–926 vol.2,

2002.

[12] S. Challa, R. J. Evans, X. Wang, and J. Legg, “A fixed-lag smoothing

solution to out-of-sequence information fusion problems *,” 2002.

[13] K. Zhang, X. R. Li, and Y. Zhu, “Optimal update with out-of-sequence

measurements for distributed filtering,” Proceedings of the 5th Inter-

national Conference on Information Fusion, FUSION 2002, vol. 2,

pp. 1519–1526, 2002.

[14] K. Zhang, X. Li, and Y. Zhu, “Optimal update with out-of-sequence

measurements,” IEEE Transactions on Signal Processing, vol. 53, no. 6,

pp. 1992–2004, 2005.

[15] H. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm

for systems with markovian switching coefficients,” IEEE Transactions

on Automatic Control, vol. 33, no. 8, pp. 780–783, 1988.

[16] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting mul-

tiple model methods in target tracking: a survey,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 34, no. 1, pp. 103–123, 1998.

[17] X. Wang and S. Challa, “Augmented state IMM-PDA for OOSM solution

to maneuvering target tracking in clutter,” in 2003 Proceedings of the In-

ternational Conference on Radar (IEEE Cat. No.03EX695), pp. 479–485,

2003.

[18] Y. Bar-Shalom and H. Chen, “IMM estimator with out-of-sequence mea-

surements,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 41, pp. 90–98, 1 2005.

[19] O. E. Drummond, “Track and tracklet fusion filtering,” Signal and Data

Processing of Small Targets 2002, vol. 4728, pp. 176–195, 8 2002.

[20] K. C. Chang, C. Y. Chong, and S. Mori, “Analytical and computational

90

evaluation of scalable distributed fusion algorithms,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 46, pp. 2022–2034, 10 2010.

[21] M. E. L. Ii, C.-Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, and

S. Thomopoulos, “Distributed fusion architectures and algorithms for tar-

get tracking,” Proceedings of the IEEE, vol. 85, pp. 95–107, 1 1997.

[22] C. Y. Chong, S. Mori, W. H. Barker, and K. C. Chang, “Architectures

and algorithms for track association and fusion,” IEEE Aerospace and

Electronic Systems Magazine, vol. 15, pp. 5–13, 1 2000.

[23] D. Acar and U. Orguner, “Decorrelation of previously communicated in-

formation for an interacting multiple model filter,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 57, pp. 404–422, 2 2021.

[24] J. Nygards, V. Deleskog, and G. Hendeby, “Safe fusion compared to

established distributed fusion methods,” IEEE International Conference

on Multisensor Fusion and Integration for Intelligent Systems, vol. 0,

pp. 265–271, 7 2016.

[25] Y. Bar-Shalom, “On the track-to-track correlation problem,” IEEE Trans-

actions on Automatic Control, vol. 26, pp. 571–572, 1981.

[26] Y. Bar-Shalom and L. Campo, “The effect of the common process

noise on the two-sensor fused-track covariance,” IEEE Transactions on

Aerospace and Electronic Systems, vol. AES-22, pp. 803–805, 1986.

[27] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm

in the presence of unknown correlations,” Proceedings of the American

Control Conference, pp. 2369–2373, 6 1997.

[28] J. Sijs, M. Lazar, and P. P. Bosch, “State fusion with unknown correla-

tion: Ellipsoidal intersection,” Proceedings of the 2010 American Control

Conference, ACC 2010, pp. 3992–3997, 2010.

[29] A. R. Benaskeur, “Consistent fusion of correlated data sources,” IECON

Proceedings (Industrial Electronics Conference), vol. 4, pp. 2652–2656,

2002.

[30] M. Günay, U. Orguner, and M. Demirekler, “Chernoff fusion of Gaussian

mixtures for distributed maneuvering target tracking,” 18th International

Conference on Information Fusion, pp. 870–877, 7 2015.

91

[31] D. Acar and U. Orguner, “Information decorrelation for an interacting

multiple model filter,” 2018 21st International Conference on Information

Fusion, FUSION 2018, pp. 1527–1534, 9 2018.

[32] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Applica-

tions To Tracking and Navigation. 2001.

92

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Literature Review
	The Outline of the Thesis

	BACKGROUND
	OOSM Problem for Linear Gaussian Systems
	OOSM Problem Definition
	In Sequence Estimation (Kalman Filter)
	Existing Solutions for the OOSM Problem
	Bl1 Algorithm
	Forward Prediction Fusion and Decorrelation (FPFD)

	OOSM Problem for Jump Markov Linear Systems
	OOSM Problem Definition
	In Sequence Estimation (IMM filter)
	Existing Solutions for the OOSM Problem
	Bl1IMM Algorithm

	Correlation Independent Fusion Methods
	Naive Fusion
	Covariance Intersection (CI)
	Largest Ellipsoid Algorithm (LEA)

	PROPOSED METHOD
	Proposed Solution for Linear Gaussian Systems
	Algorithm
	Data Storage Requirement
	Computational Cost

	Proposed Solution for Jump Markov Linear Systems
	Algorithm
	Naive Fusion applied in FPFIMM
	CI Fusion applied in FPFIMM
	LEA Fusion applied in FPFIMM

	Data Storage Requirement
	Computational Cost

	Advantages and Disadvantages
	Advantages
	Disadvantages

	Numerical Results
	Performance Testing of FPF Methods
	2-D Linear Measurement Model Example
	Single-Lag Scenario
	Multi-Lag Scenario

	2-D Nonlinear Measurement Model Example

	Performance Testing of FPFIMM Methods
	Model Match Case
	Model-Mismatch Case
	Effect of the OOSM Lag
	Effect of the OOSM Time

	Conclusions and Future Work
	REFERENCES

