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ABSTRACT 

To reduce inherent noise in high dimensional transcrip-

tome data from a lung cancer cohort, a learning based 

sub-sample selection approach is adopted. Focusing on 

consensus clustering analysis, TCGA network data on 

lung cancer reached its maximum cluster stability 

when divided into three, which matches with the num-

ber of actual groups (adenocarcinoma, squamous cell 

carcinoma and normal). Using silhouette width as well 

as naive inspection of clustering performance to filter 

out samples, 840 out of 1145 samples were selected as 

core samples. The contribution of using consensus 

clustering analysis as a sample selection method was 

assessed by comparing the subtype classification accu-

racies of informative genes discovered from the “ini-

tial” set (1145 samples), “reduced” set (901 samples) 

and core set (840 samples). The list of candidate mark-

ers obtained from initial samples and core samples 

were similar, with a great increase in the prediction ac-

curacy. Taken together, the results suggest that learn-

ing based sample selection can aid in sample filtering 

while retaining most of the information and reducing 

the noise. 

 

1. INTRODUCTION 

Transcriptome data, the set of all RNA transcripts from an 

individual or a population, is always noisy due to inherent 

noise in the gene expression process or the source being a 

heterogeneous group of cells. The noise amplifies more 

when cohort data is used, i.e. from a group of dis-

ease/normal samples, in the context of e.g. cancer, which in 

turn makes the biomarker discovery studies challenging. A 

key challenge is then to obtain mechanistic information 

from the available noisy data. 

 

One way to reduce the noise from population data is the 

sample selection from the initial set for improved data quali-

ty. Briefly, the approach consists of iteratively selecting 

most informative samples among an initial set, that would 

allow best separation among groups using feature selection 

algorithms and building classifiers. Among available op-

tions, consensus clustering analysis (CCA) is a technique 

used to run a (collection of) selected clustering algorithms 

(k-means, hierarchical, biclustering etc.) recursively on sub-

samples to obtain a consensus from all the results of each 

iteration; to determine the optimum number of clusters, to 

evaluate the stability of the found clusters, to reduce data 

dimension while keeping the information content [1]–[3]. 

 

Lung cancer is the most lethal cancer type in both men and 

women, as it comes first in cancer-related deaths worldwide; 

with a survival rate of 15% in the first 5 years and 7% in 10 

years after diagnosis [4]. The high rates of mortality arise 

from not only the lack of early diagnosis strategies but also 

the lack of efficient treatments specialized for the stage and 

subtype of lung cancer the patients are suffering from [5], 

[6]. These limitations reflect an urgent need for biomarkers 

that allow for early-stage diagnosis and prognosis of lung 

cancer, which may improve the treatment patients receive 

[7]. Along with the advance of omic technologies, tran-

scriptomics has assisted greatly in the identification of bio-

logical markers for lung cancer. Identification of sensitive 

and reproducible gene markers for accurate diagnosis is of 

great interest in precision medicine. 

 

This study focuses on sample (re)selection problem and uses 

the consensus clustering analysis to select core samples rep-

resenting the 2 main subtypes of lung cancer and normal 

samples: adenocarcinoma (LUAD) and squamous cell carci-

noma (LUSC) and normal cells (N). For the case study, lung 

cancer from The Cancer Genome Atlas network consisting 

65048 genes and 1145 lung cancer samples (LUAD: 535, 

LUSC: 502, N: 108) were used.  

 

2. METHODS 

2.1 Data retrieval and preprocessing 

The transcriptome data as HTSeq counts for two main sub-

types of lung cancer were retrieved from TCGA Research 

Network Data Portal from two projects TCGA-LUAD (with 

535/59 tumor/normal samples), and TCGA-LUSC (with 

502/49 tumor/normal samples) for adenocarcinoma and 

squamous cell carcinoma samples respectively. 
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Figure 1. (a)  the relative cluster stability index (RCSI) plot (b) P-value distribution for each cluıster number (c) the portion 

of ambiguously clustering (PAC) plot (d) Consensus matrices for clusters K=2,3,4 and 5. 

 

 

Raw matrix of gene counts was annotated using biomaRt R 

package [8] and gene summarization was performed by 

keeping the transcript with highest overall count out of tran-

scripts of the same genes. Then, lowly expressed genes were 

filtered out. The data was normalized to counts per million 

(cpm) using the edgeR package [9], and log-transformed. 

Genes were then ranked according to their sample-wise vari-

ance and the genes with a variance greater than a selected 

threshold are kept for further analysis. 

 

2.2 Consensus clustering analysis 

Consensus clustering analysis was performed using the R 

package M3C [3]. Robust clusters were detected using ag-

glomerative hierarchical clustering as the basis. Euclidean 

distance was chosen as the distance metric, and the procedure 

was repeated 100 times with a subsampling rate of 80%. Op-

timum number of clusters are decided based on the cumula-

tive distribution function (CDF) graph, the relative cluster 

stability index (RCSI), the portion of ambiguously clustering 

(PAC), and the p-value for the null hypothesis that the groups 

are the same (Fig.1). 

 

2.3 Selecting core samples and evaluating classification 

performances 

To select the samples that best represent the clusters, two 

different strategies were followed: (i) removing samples with 

negative silhouette widths [10] and (ii) removing samples 

clustered into “false clusters”. Removal of samples with neg-

ative silhouette widths left 901 samples and this data set will 

be referred as the “reduced” set. The “core” set was the one 

where samples were further filtered by removing “mis-

clustered” ones, down to 840 samples. 

 

In order to measure the benefit of this filtering pipeline and 

see it improve subtying classification, a ML classification 

pipeline was built and the three data sets (“initial”, “reduced” 

and “core” set) with 1277 genes were registered to this pipe-

line. This pipeline firstly split the given data set into training 

and test set by partitioning it by 80:20. Then, the training data 

was scaled and the test set was transformed with mean and 

standard deviation calculated from the training data. 

 

In the next step, a feature selection applied to reduce 1277 

genes down to set k value. To do this, mutual information, 

which is a measure of dependence between two random vari-

ables, were used to select top k most informative genes for 

the classification. The selected genes were used as features in 

the next step’s support vector machine classification (SVM). 

Five-fold cross-validated linear SVM machines were used as 

classifiers. Predictions of the classifiers on unseen data were 

performed on held-out test data. 

 

3. RESULTS 

3.1 Preprocessing and consensus clustering analysis 

Raw count data was pre-processed and filtered. The number 

of genes dropped from 65048 to 27016 by removing lowly 

expressed and non-annotated genes. The second prepro-

cessing was performed based on sample-wise variation. The 

threshold value was selected by considering the variance of 

some known reference genes. The median expression vari-

ance of the keratin, GAPDH, beta-actin and YWHAZ refer-

ence genes [13], [14] and all isoforms of these genes were 

found to be 1.11, 1.37, 2.99 and 0.84, respectively. Thus, a 

safe threshold value of minimum 5.00 was chosen. 1277 

genes remained from this step. Finally, highly correlated 

healthy tissue samples from both projects (LUAD and 

LUSC), a total of 108, were combined. The final input ma-

trix consisted of 1277 genes and 1145 samples. 



In this work, CCA was used to re-find the subtypes of lung 

cancer from a given data, and find samples that create noise 

in the definition process of the group they belong to. Even 

though all clusters from 2 to 10 were found to be significant 

(p < 0.05), the number of clusters found most significant 

when tested against the null hypothesis K=1 was 3  (Fig. 1a, 

b and c). The consensus matrices (Fig. 1d) also did not show 

a stable distribution after K=3, supporting the finding that the 

data is clustered best in 3, matching the readily known and 

anticipitated number of classes. The entire analysis was also 

performed for 100, 500 and 1000 iterations, but no change 

was observed in the results. 

 

3.2 Selecting core samples 

Silhouette method is a quality measure for a clustering task, 

which visualizes silhouette coefficients of each sample. Sil-

houette coefficient, in turn, quantifies how much a given 

sample belong to that cluster as a function of distance. The 

silhouette plot of the transcriptome data divided into the 

three clusters shows the samples in each sample and their 

“fidelity” to that cluster. In a perfect case where all samples 

would have been clustered to their actual group, the first 

group would have 535 samples (LUAD), the second group 

would have 502 samples (LUSC), and the last group would 

have 108 (Normal) samples. However, the group numbers 

predicted by cluster analysis were found to be 585, 449 and 

111, respectively. When examined carefully, it was seen that 

all normal samples were clustered correctly along with 3 

LUAD and 1 LUSC samples, but 59 LUSC samples were 

clustered together with LUAD samples and 7 LUAD sam-

ples assigned as LUSC. 

 
Figure 2. Silhouette graph of optimum clustering at K=3. 

 

Verhaak et al. (2010) demonstrated the application of CCA 

in finding yet-to-known molecular subtypes of glioblastoma 

multiforme transcriptome data, wherein they removed sam-

ples with negative silhouette widths [10]. To achieve a re-

fined sample set also in this work, 244 samples with nega-

tive silhouette width were extracted from the dataset (Fig. 

2). The remaining 901 samples (345 LUAD, 448 LUSC and 

108 Normal) were further examined for “mis-clusterings”: 

the samples that do not agree with the label majority of the 

cluster they are assigned. To identify mis-clustered samples, 

confusion matrices were created with the cluster assign-

ments of the CCA algorithm (Table 1). 

 

Using the confusion matrix of “reduced” set (Table 1b), 

falsely clustered samples were removed manually. By sub-

tracting 8 samples from LUAD data and 53 samples from 

LUSC data, 840 samples were selected as representative 

samples and named as “core” set. This resulted in a great 

reduction in the overlap between classes in the principal 

component space (Fig. 3). 

 

Table 1. Confusion matrix of actual labels and the abundant 

labels the samples clustered into (top) before (bottom) after 

the removal of samples with negative silhouette widths (“re-

duced” set). 

 

 
 

3.3 Signature gene identification and classification per-

formance evaluation 

The effect of sample selection via CCA for subtyping bi-

omarker discovery was elaborated by using the three data 

sets, the “initial” set (1145 samples), “reduced” (901 sam-

ples) and “core set” (840 samples) in ML classification pipe-

line and comparing each classifiers performance. Training 

accuracies are averaged over cross validation folds (Fig. 4). 

The removal of samples with negative silhouette widths (“re-

duced” set) clearly reduced the variance within model per-

formances, although no appearent improvement in mean 

accuracies compared to the SVMs built with “initial” set. The 

“core” set accuracies are generally higher than the other sets’ 

results. 

 

The testing accuracies for each data set with increasing fea-

ture numbers are given in Figure 5. There is evident increase 

in accuracies for all feature numbers (k) when went from 

“initial” set to “reduced” and “core” set, respectively, apart 

from the expected increase within each set’s accuracies with 



increasing k. Also, the accuracies of “reduced” and “core” set 

are more stable than the “initial” set. 

 

(a) 

 
(b) 

 
Figure 3. Distribution of samples on principal component 

space. (a) 1145 samples, (b) 804 “core” samples. 

 

 

Figure 4. Mean training accuracies of SVM classifiers built 

with each data sets and different numbers of features (k). 

 

To consider the direct effect of denoised data on the classifi-

cation, the genes obtained from “core” sets were used to clas-

sify the “initial” set to see if the gene lists are more informa-

tive in the means of subtype classification when obtained 

from allegedly denoised “core” set (Fig. 5). This implemen-

tation resulted in considerable increase in the prediction per-

formance for 10 genes (Table 2), and slight improvement for 

40 and 50 genes. To avoid the information leakage between 

training samples of “core” set and testing of “initial” set, 

which would mislead the judgement on model performances, 

the training samples of “core” set used for feature selection 

were excluded from the testing of “initial” set. Here, as can 

be seen in the line named “1145 samples**” the accuracies 

were generally lower than it is for “initial” set model. Over-

all, performances of classifiers built with k genes selected 

from the information of 840 samples followed similar trend 

in classifying test samples of “initial” set.  

 

 
Figure 5. Overall testing accuracies of SVM classifiers 

built with one of three data sets and different numbers of 

features (k). The line named 1145 samples* represents the 

accuracies obtained from the classification of 1145 samples 

using features obtained from feature selection done on the 

“core” set. The 1145** line is again the classification of the 

“initial” set with features selected from the “core” set, where 

the training samples of “core” set are excluded from the test-

ing of “initial” set to avoid information leakage. 

 

4. DISCUSSION 

This work focuses on the learning-based sample selection 

approach to reduce noise in high dimensional transcriptome 

data. Resulting dataset contains less noisy data suspected 

from classification performance, yet still yields a similar bi-

omarker candidate list. The approach taken here yields im-

proved biomarker discovery workflow, yielding robust bi-

omarkers and the data from the remaining samples would 

yield crisper separation between groups. 

A key challenge in clustering is the need for determining the 

number of clusters a priori. CCA scans a range of cluster 

numbers and selects the optimum K for a given data through 

evaluating various performance metrics. This method is pref-

ered when the classes of data are unknown, as it was for Ver-

haak et. Al (2010) used it to find subtypes of glioblastoma 

multiforme, which were not readily known then [10]. To in-

vestigate this method in finding disease subtypes, we used 

TCGA gene expression data for lung cancer subtypes, whose 

classes were known. Indeed, CCA yielded 3 clusters as the 

optimum clustering and the clusters contained samples with 

majority of only one class. To come up with the refined sam-

ples that define its subtype robustly, first samples with nega-

tive silhouette widths were removed as [10]. Later, if a sam-

ple does not have the same actual label with the majority of 

its cluster, it was also removed from the dataset. However, as 

suggested in [10], samples with negative silhouette widths 



did not really overlapped with mis-clustered ones, hence it 

may not be the correct way of finding subtype representative 

samples. 

 

Once three data sets were produced, they were fed into ML 

classification pipeline, where most infomative k genes were 

selected by mutual information and SVM classification mod-

els were built using those genes. While 80% of samples from 

“core” set produced models with lowest variance and highest 

accuracy in training, removing of samples with negative sil-

houette widths (“reduced” set) had the effect in reduction of 

training variance without an improvement in accuracy of 

“initial” set. For testing, on the other hand, the accuracies for 

different gene numbers increased from “initial” set to “core” 

set, regardless of less samples being used for teaching the 

model. 

 

To see if the gene lists are more informative for subtype clas-

sification when selected from allegedly denoised data, genes 

obtained from “core” set were used to classified all available 

data, the “initial” set. When the same samples used for test-

ing the model of “initial” set were also used for the model 

that uses genes of “core” set, it resulted in information leak-

age from 140 intersecting samples of training data of “core” 

set into the testing prediction for this set up. Thus, genes 

from “core” samples seemed to performed better in “initial” 

set. However, when training samples of “core” set were ex-

cluded from the testing samples of this implementation, the 

accuracies were less than it was with genes selected from 

“initial” set. However, this difference in performance can be 

reduced by tuning classifiers for each input data to improve 

the learning, instead of using default settings for SVM. To 

further infer the effect of reducing samples with CCA-based 

procedure, other types of ML algorithms can also be used 

since there is no rule of thumb for selecting best classifier for 

different data. 

 

Between the first 10 genes of “initial” set and the “core” set, 

RNF138 and DSC1 seem to be replaced with UBA5 and 

PTPDC1, which may be the features that contributed the 

difference in the accuracy (Table 2). RNF138 has shown to 

be a therapy and drug resistance indicator in various tumors 

as RNF family proteins are known to be involved in tumor-

igenesis [15-16]. Decreased desmocollin 1 (DSC1) expres-

sion was found to be associated with poor prognosis in hu-

man lung cancer [17]. There is no study indicating ubiquitin-

like modifier-activating enzyme 5 (UBA5) is a marker of 

lung cancer, however it is reported that the inhibition of 

UBA5 can impede tumor development [18]. PTPDC1, being 

a regulator of signal transduction and cell cycle can be a tu-

mor progressor and found to be linked to progression of gas-

tric cancer [19]. The rest of the the gene lists obtained from 

1145 samples and 840 samples were quite similar to each 

other. The most informative gene in all lists, AGBL4, the 

family of ATP/GTP Binding Protein Like proteins are also 

known to have a predictive value for lung cancer [20-21]. 

PLEKHM3 is another that appears only on “reduced” set and 

was found to be mutated in LUAD patients with overexpres-

sion of TMED2 and to be positively correlated in lymphoid 

neoplasm diffuse large B-cell lymphoma patients [22-23]. 

 

Table 2: Top 10 candidate gene marker lists obtained from 

all samples, reduced sample-set and “core” samples. 

1145 samples 901 samples 840 samples 

AGBL4 AGBL4 AGBL4 

SLC37A4 APH1A UBA5 

ALPK1 SLC37A4 SLC37A4 

RNF138 ALPK1 ALPK1 

DSC1 RNF138 TRMT1L 

TRMT1L PLEKHM3 COQ8A 

COQ8A PTPDC1 PTPDC1 

PRKCA AC026954.2 PRKCA 

GPR157 GPR157 GPR157 

LONRF2 LONRF2 LONRF2 
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