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ABSTRACT 

 

NONLINEAR VIBRATIONS AND REDUCED ORDER MODELING OF 

BOLTED JOINTS 

 

 

Beyan, Hümeyra 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Ender Ciğeroğlu 

 

 

November 2022, 95 pages 

 

 

Due to ease of mounting, high strength feature and availability, bolted joints are one 

of the most common and widely used connection method. The contact between 

connected bodies is ensured by preload force on bolts which affect the stiffness and 

damping characteristics of the assembled system and introduce nonlinearity. To 

obtain the dynamic characteristic of systems with bolted joints accurately, the 

nonlinearity effect should be included. 

With high fidelity contact model’s accurate response can be obtained whereas the 

computational cost is drastically increased. The reduced-order modeling of bolted 

connections is essential to obtain the nonlinear dynamic response with adequate 

accuracy.  

The aim of the work represented in this thesis is to decrease the computational cost 

of the reduced contact model by utilizing modal superposition method with response-

dependent nonlinear modes. 

Keywords: Reduced Order Joint Model, Modal Superposition Method, Response 

Dependent Mode Shapes, Nonlinear Vibrations 
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ÖZ 

 

CİVATALI BAĞLANTILARIN DOĞRUSAL OLMAYAN TİTREŞİMİ VE 

İNDİRGENMİŞ MODELİ 

 

 

 

Beyan, Hümeyra 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ender Ciğeroğlu 

 

Kasım 2022, 95 sayfa 

 

Cıvatalı bağlantılar montaj kolaylığı, yüksek dayanım özelliği ve bulunabilirlik 

nedeniyle sıkça kullanılan bir bağlantı yöntemidir. Bağlanan parçalar arasındaki 

temas önyükleme kuvveti ile sağlanmakta olup sistemin direngenlik ve sönüm 

karakteristiğini etkilemekte ve doğrusal olmayan davranış göstermektedir. Cıvataları 

bağlantıların olduğu sistemlerin dinamik davranışını doğru elde edebilmek için 

doğrusal olmayan davranışın etkisi hesaba katılmalıdır. 

Yüksek doğrulukta temas modelleri ile hassas sonuçlar elde edilebilse de hesaplama 

maliyeti oldukça artmaktadır. İndirgenmiş cıvatalı bağlantı modelleri doğrusal 

olmayan dinamik davranışın yeterli doğrulukla elde edilmesi için gereklidir. 

Bu tezde yer alan çalışmanın hedefi indirgenmiş temas bağlantısının hesaplama 

maliyetini cevaba bağlı doğrusal olmayan sistem modlarını kullanarak azaltmaktır. 

 

Anahtar Kelimeler: İndirgenmiş Bağlantı Modeli, Modal Süperpozisyon Yöntemi, 

Cevaba Bağlı Mod Şekli, Doğrusal Olmayan Titreşimler 
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CHAPTER 1  

1 INTRODUCTION  

To obtain the realistic behavior of mechanical systems, the nonlinear characteristics 

within the structures should be considered. The complexity of the solution process 

is significantly increased as the nonlinearity effect is imposed within system 

equations of large nonlinear structures.  

The sources of nonlinearities could be divided into three effects: geometric 

nonlinearities, material nonlinearities, and contact in-between parts. The geometric 

nonlinearities can be observed in systems such as high-level vibrating beam-like 

structures which undergo large deformations. The hardening phenomenon also 

referred to as stress stiffening, is a widely seen example of this nonlinearity type. 

The overall stiffness of the system increases as displacement values changes. 

Another source of nonlinearity could be the nonlinear elastic behavior of materials 

such as elastomeric mounts. The most common source of nonlinearity is the contact 

status in-between parts, leading to stiffness and/or damping changes. This 

phenomenon is apparent, especially in a system where bolted joints connect bodies. 

1.1 Literature Survey  

Nonlinear dynamic equations could be solved with time and frequency domain 

methods. The earliest studies which determined the response of nonlinear dynamical 

systems were conducted in time domain methods. The method proposed by Cameron 

and Griffin [1] used both frequency and time domain methods to calculate the steady-

state response of the systems under harmonic excitations. In 2017, Rezaiee et al. [2] 

proposed an explicit higher-order time integration algorithm. In spite of the 

straightforward solution process and relatively reliable results which can be obtained 
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by these methods, the significance of the required solution time is the major 

drawback that restrains their application to small-scale dynamic problems. There are 

many studies available in the literature which examines a more efficient algorithm 

for time-domain solution methods [3]  and hybrid solution methods [4] [5] [6] . 

The frequency domain methods are better alternatives for the calculation of large-

scale physical systems due to decreased computational time requirement. The 

harmonic balance method (HBM) which was proposed by Urabe [7] in 1965 is one 

of the most efficient solution methods which was applied when strong nonlinearities 

are present [8] [9] . 

As the number of harmonics required to model a nonlinear system is increased, the 

accuracy of the solution with HBM is increased with increased computational time. 

To overcome this time limitation many HBM algorithms are studied [10] [11] [12] 

[13] [14] . The number of harmonics can be fixed or different for each degree of 

freedom in the system. The harmonics number can be fixed throughout the solution 

process or increased with a predetermined amount based on a criterion.  

Sert and Ciğeroglu [15]  proposed a two-step pseudo-response-based adaptive 

harmonic balance method. The unnecessary harmonics are eliminated by a two-step 

harmonic selection criterion. The decreased computational time and improved 

accuracy level of obtained results make this adaptive algorithm state of the art.  

In 1985, Menq and Griffin [16] published a new method that examined the response 

of a frictionally damped beam under harmonic motion where the nonlinear force is 

calculated by using the first two terms of Fourier series expansion. In 1986, Menq 

et. al. [17] [18] proposed a new method in which the dynamic response of frictionally 

damped systems under high normal loads is examined. The most vital outcome of 

their study is to show the significance of including partial slip phenomena when the 

contact pressure in between parts is high compared to excitation force. 

In 1989, Budak and Ozguven [19] represented a method for the response of systems 

in which symmetrical nonlinearities are present. In this method, the nonlinearities 
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are represented as springs and dampers. The extended method [20] shows the 

application of describing function method for the calculation of nonlinear force in 

matrix form. Tanrıkulu et al. [21] extended this methodology by generalizing the 

implementation procedure of describing function at which the harmonic vibration 

analysis is conducted for multi-degree of freedom (MDOF) nonlinear systems. 

Kuran and Ozguven [22] developed a modal superposition method that defined the 

multi-harmonic nonlinear force utilizing describing function method. The number of 

equations which is necessary to solve was decreased by the implementation of linear 

system modes to equations. The calculated response in the resonance region was 

reliable even though only one mode was used. 

In 1998, Yang et al. [23] proposed a new contact model which includes both 

tangential motions of friction and normal motion. The detailed study on stick-slip 

characteristics showed that the source of stiffness change is separation motion. Chen 

and Menq [24] used constrained mode shapes of frictionally constrained blade 

systems to predict the response at the resonance region. Receptance method was also 

utilized, which decreased the dimension of the solved equation set, hence the 

decrease in required computational time.  

Cigeroglu et al. [25] proposed a new modal superposition method with a distributed 

parameter two-dimensional microslip friction model. In the continuation of this work 

published in 2008 [26] , the three-dimensional relative motion between contact 

surfaces is expressed by the modal superposition method and decomposed into two 

one-dimensional in-plane components and an out-of-plane component which 

decreases the required solution time further.  

Petrov [27]  proposed a method in which the effect of mode number retained in the 

calculation of the FRF matrix is examined. The significant advantage of this method, 

besides its accurate results, is its applicability to finite element models easily. The 

accurate results of the bladed disk model at which contact is modeled were obtained. 
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Krack et al. [28]  extended the work of Rosenberg [29]  at which nonlinear normal 

modes (NNM) are calculated to find the response of structures with self-excitation 

and harmonic forcing. The following study by Krack [30] extended this concept even 

further by considering the systems under periodic motion. The work conducted by 

Touze [31] pointed out that for the increased response levels, the accuracy of the 

reduced model decreases.  

The calculation of NNMs of large-scale systems is a challenging task that limits the 

availability of using NNM method while the response of large physical systems is 

considered. To overcome this difficulty, Karaagacli et al. [32] examined a case study 

in which response dependent nonlinear modes are used in the calculation of NNMs. 

Ferhatoglu et al. [33] proposed a new modal superposition method with the hybrid 

mode shape (HM) concept. For certain types of nonlinearities, the nonlinearity acts 

as if it has two limiting conditions. For example, for gap nonlinearity, the limiting 

stiffness value is equivalent to the stiffness of the nonlinear element. The nonlinear 

force contribution is defined by describing function method. For each nonlinear 

element, the ratio of the real part of describing function and the limiting stiffness 

value is engaged to calculate hybrid modes, which will be used in the modal 

superposition step. The continuation of this work [34] [35] reorganized the system 

matrix definitions such that the required solution time for the solution of complex 

systems is further decreased.  

Ferhatoglu et al. [41]  proposed a modal superposition method with response-

dependent nonlinear modes (RDNM) for the periodic vibration analysis of large 

MDOF nonlinear systems. In this study, the contribution of the real part of the 

nonlinearity matrix to overall stiffness is taken into account, and the updated 

eigenvalue problem at each response level is solved. The resulting RDNMs are used 

in system equations to decrease the number of nonlinear equations. 
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The research on the modeling of joint connections is mainly focused on high-fidelity 

models since the linear joint models available in the literature could not model the 

energy loss of the system adequately.  

In 2005, Segalman [36] proposed a four-parameter Iwan model for lap-type joints. 

A parallel-series Iwan system is implemented to equations by using trancuated 

power-law spectra. With this approach, both microslip and macroslip regimes of 

friction in harmonically loaded lap joints were captured accurately.  

In 2016, Brake et. al. [37]  tested three different modeling approaches available in 

the literature on the Brake-Reuss beam [38] . The first method was Sandia’s 

modeling approach using a four-parameter Iwan element at which transient time 

domain analysis is conducted. In the other two modeling methods, the contact 

elements were based on Jenkins elements. The investigated methods were able to 

capture the nonlinear responses similarly. They show that the microslip behavior 

present in small-amplitude responses can be modeled by implementing multiple 

Jenkins elements whose computational cost is not feasible. The shortcoming of the 

whole-joint element was its inability to capture the detailed contact state distribution.  

In 2019, Karapıstık and Cigeroglu [39]  [40] developed a new reduced-order 

modeling method for the response determination of bolted joint connections. A two-

step reduction methodology is followed. Instead of modeling the contact behavior 

between parts with macroslip elements, a microslip friction element at which 

macroslip elements are connected is implemented to decrease the dimension of the 

equation of motion. These microslip elements are reduced by optimization of the 

number and parameters of included macroslip elements. 

 

 



 

 

6 

1.2   Objective of the Thesis 

The bolted joints are one of the most common and widely used connection method. 

To obtain the dynamic characteristic of systems with bolted joints accurately, the 

nonlinearity effect should be included. With high-fidelity contact models, an 

accurate response can be obtained whereas the computational cost is drastically 

increased. The reduced-order modeling of bolted connections is essential to obtain a 

nonlinear dynamic response with adequate accuracy.  

The aim of the work represented in this thesis is to decrease the computational cost 

of the reduced contact model by utilizing modal superposition method with response 

dependent nonlinear modes. 

In this thesis, the reduced-order model of bolted joint connections is presented. The 

contact model is reduced by the two-step reduction methodology proposed by 

Karapistik [40] . The nonlinear response of bolted joint connection is solved utilizing 

the response-dependent nonlinear modes.  

The first step of contact model reduction is defining a joint region that consists of 

macroslip elements connected as parallel springs. The response characteristic of the 

joint region is similar to microslip friction elements. The second step of contact 

modal reduction is the optimization of the number of elements inside the joint region 

of interest. With reduced joint definition, the same hysteresis loop is obtained with 

fewer macroslip elements inside joint regions. The computational time required to 

calculate the nonlinear force is further decreased with a decrease in the number of 

macroslip elements. 

With the utilization of RDNM, the number of modes included to the response 

calculation is reduced; hence, the computational time is reduced while preserving the 

accuracy of the response. The accuracy of the proposed method and the superior 

performance of RDNM are investigated in two case studies where representative 

finite element models of lap joint connection models are constructed and the results 
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are compared with results of the modal superposition method with linear mode 

shapes. 

1.3 Outline of the Thesis 

In Chapter 2, modeling methods for forced vibrations of nonlinear systems is 

examined. First, frequency domain solution methods Harmonic Balance Method 

(HBM), Modal Superposition Method (MSM) and Modal Superposition Method 

with Response Dependent Mode Shapes (RDNM) are inspected in detail. Second, 

mathematical modelling of the nonlinear force calculation is explained. The 

transition angles are given for single harmonic motion. Lastly, the numerical solution 

procedures: Newton’s Method, Arc-Length Continuation Method, and Predictor for 

Path Following Method are summarized. 

In Chapter 3, the validation of the proposed reduction method is demonstrated in two 

case studies while both 1D dry friction elements with constant normal load and 

variable normal load are defined separately. The first case study model consists of 

two beams connected with three bolts, whereas in the second case study four bolts 

are used for the connection. The two-step contact reduction methodology is 

explained in detail. At each reduction step, the effect of implementing the response-

dependent nonlinear modes is demonstrated.  

In Chapter 4, the summary of the study is given along with the possible future studies 

on the reduction method.  
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CHAPTER 2  

2 MODELLING OF FORCED VIBRATIONS OF NONLINEAR SYSTEMS 

2.1 The Nonlinear Equation of Motion 

The most straightforward notation for the equation of motion of a vibratory system 

(EOM) at which a nonlinear effect is present can be written as follows 

𝑀 ∙ 𝑥(𝑡)̈ + 𝐶 ∙ 𝑥(𝑡)̇ + 𝑖 ∙ 𝐻 ∙ 𝑥(𝑡) + 𝐾 ∙ 𝑥(𝑡) + 𝐹𝑁(𝑡) = 𝐹(𝑡)  ( 2.1) 

where x(t) is the displacement vector of the system. M, C, H, and K stand for mass, 

viscous damping, structural damping, and stiffness matrices of the system of interest. 

𝐹𝑁(𝑡) and 𝐹(𝑡) are the internal nonlinear forcing vector and the excitation force, 𝑡 is 

time, respectively. 

2.1.1 Harmonic Balance Method (HBM) 

By representing the excitation force 𝐹(𝑡) as a harmonic forcing, the displacement 

vector 𝑥(𝑡) is expected to be in the form of harmonic motion whose mathematical 

equivalence is defined in Equation ( 2.2) and Equation ( 2.3) by implementing 

Fourier series expansion.  

𝐹(𝑡) = 𝐹0 + ∑ 𝐹𝑠𝑖 ∙ sin(𝑖 ∙ 𝜔 ∙ 𝑡) + 𝐹𝑐𝑖 ∙ cos(𝑖 ∙ 𝜔 ∙ 𝑡)
𝑁ℎ
𝑖=1   ( 2.2) 
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𝑥(𝑡) = 𝑥0 + ∑ 𝑥𝑠𝑖 ∙ sin(𝑖 ∙ 𝜔 ∙ 𝑡) + 𝑥𝑐𝑖 ∙ sin(𝑖 ∙ 𝜔 ∙ 𝑡)
𝑁ℎ
𝑖=1   ( 2.3) 

where 𝐹0 and 𝑥0 are bias terms of excitation forcing and response vectors, 

respectively. Subscript within summation operator “𝑖” stands for 𝑖𝑡ℎ harmonic, and 

𝑁ℎ is the total number of harmonics. 𝐹𝑠𝑖 , 𝐹𝑐𝑖, 𝑥𝑠𝑖 , and 𝑥𝑐𝑖 are sine and cosine 

coefficients of corresponding harmonics, and 𝜔 is the frequency. 

The integral formulae for the internal nonlinear forcing vector 𝐹𝑁(𝑡) are provided in 

Equations ( 2.4), ( 2.5), and ( 2.6) where 𝜃 = 𝜔 ∙ 𝑡. 

𝐹𝑁0 =
1

2𝜋
∙ ∫ 𝑓𝑁(𝜃) ∙ 𝑑𝜃

2𝜋

0
  

( 2.4) 

𝐹𝑁𝑠𝑖 =
1

𝜋
∙ ∫ 𝑓

𝑁
(𝜃) ∙ sin⁡(𝑖 ∙ 𝜃) ∙ 𝑑𝜃

2𝜋

0
  ( 2.5) 

𝐹𝑁𝑐𝑖
=

1

𝜋
∙ ∫ 𝑓𝑁(𝜃) ∙ cos⁡(𝑖 ∙ 𝜃) ∙ 𝑑𝜃

2𝜋

0
  ( 2.6) 

After implementing the expanded displacement, nonlinear force, and excitation force 

vectors to EOM, the coefficients of similar trigonometric terms are balanced to 

determine the unknown terms. 

The single harmonic motion of systems is examined within the scope of this thesis.  

2.1.2 Modal Superposition Method (MSM) 

With the utilization of HBM, although the EOM is represented with real terms, the 

number of nonlinear equations to be solved can be very large, especially for systems 

with many degrees of freedom (DOF). Consequently, numerical difficulties such as 

the decrease in convergence rate and increase in computation time can be 

encountered. In order to decrease the number of equations to be solved, Modal 

Superposition Method (MSM) is used in this study.  

The response vector is defined in terms of the linear system modes as Equation ( 

2.7). 
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𝑥(𝑡) = ∑ 𝑎𝑚 ∙ 𝜙𝑚 ∙ 𝑒
𝑖∙𝜔𝑡𝑁𝑚

𝑚=1   ( 2.7) 

where 𝜙𝑚 is the 𝑚𝑡ℎ mass normalized mode shape of the linear system,  𝑎𝑚 is the 

complex coefficient of  𝑚𝑡ℎ mode, and 𝑁𝑚 is the number of modes. Substituting the 

new form of the response Equation ( 2.7) into the EOM Equation ( 2.1) and pre-

multiplying with ⁡𝜙𝑇 , the motion equation can be expressed as follows 

𝜙𝑇 ∙ (−𝜔2 ∙ 𝑀 + 𝑖 ∙ 𝜔 ∙ 𝐶 + (𝐾 + 𝑖 ∙ 𝐻)) ∙ 𝜙 ∙ 𝑎 + 𝜙𝑇 ∙ 𝐹𝑁 = 𝜙𝑇 ∙ 𝐹  ( 2.8) 

Since mass normalized mode shapes are considered, Equation ( 2.8) reduces to 

Equation ( 2.9). 

(−𝜔2 ∙ 𝐼 + 𝑖 ∙ 𝜔 ∙ 𝐶𝑑 + Ω + 𝑖 ∙ 𝐻𝑑) ∙ 𝑎 + 𝜙
𝑇 ∙ 𝐹𝑁 = 𝜙𝑇 ∙ 𝐹  ( 2.9) 

where Ω is a diagonal matrix consisting of squares of natural frequencies, 𝐼 is the 

identity matrix, 𝐶𝑑 is a modal viscous damping matrix and 𝐻𝑑 is a modal structural 

damping matrix.  

The nonlinear equation number is reduced to (3 ∙ 𝑁𝑚) when single harmonic motion 

with bias terms is examined, which is drastically less compared to the number of 

total DOFs. While deciding on the number of modes included in the solution process 

of EOM, the nonlinear force vector 𝐹𝑁 should be considered. 

2.1.3 Modal Superposition Method with Response Dependent Mode 

Shapes (RDNM) 

As the nonlinearity effect within the system increases, the number of linear modes 

required to include MSM formulation is increased to calculate the nonlinear response 

accurately. Ferhatoğlu et al. [41]  proposed a new modal superposition method called 

Response Dependent Mode Shapes (RDNM). Using Describing Function Method 

(DFM), the internal nonlinear forcing vector can be defined as follows 
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𝐹𝑁(𝑥) = (∆𝑟𝑒 + 𝑖 ∙ ∆𝑖𝑚) ∙ 𝑥  ( 2.10) 

where ∆𝑟𝑒 , ∆𝑖𝑚 are real and complex parts of the nonlinearity matrix. The EOM 

Equation ( 2.1) becomes Equation ( 2.11) after implementing Equation ( 2.10) for 

the nonlinear forcing term. 

𝑀 ∙ 𝑥(𝑡)̈ + 𝐶 ∙ 𝑥(𝑡)̇ + 𝑖 ∙ (𝐻 + ∆𝑖𝑚) ∙ 𝑥(𝑡) + (𝐾 + ∆𝑟𝑒) ∙ 𝑥(𝑡) = 𝐹(𝑡) ( 2.11) 

In Equation ( 2.11), the effect of nonlinearity on the overall stiffness of the system 

is apparent. The system's new eigenvalue problem (EVP) becomes Equation 2.13, 

where obtained mode shape is response dependent mode 𝜙𝑁 of corresponding 

nonlinearity value.  

(𝐾 + ∆𝑟𝑒) ∙ 𝑢 = 𝜔𝑁
2 ∙ 𝑀 ∙ 𝑢  ( 2.12) 

The size of EVP is 𝑛𝑥𝑛 for Equation ( 2.12) where n denotes the DOF of the linear 

system. To decrease the size of EVP, Dual Space Method [41]  is implemented. The 

RDNM takes the form defined in Equation ( 2.13) where 𝜙̃ is the modal matrix 

obtained from the updated form of EVP in Equation ( 2.14) whose size is 𝑁𝑚𝑥𝑁𝑚 

and Ω is the eigenvalue matrix of linear system. 

𝜙𝑁 = 𝜙 ∙ 𝜙̃  ( 2.13) 

(Ω + 𝜙𝑇 ∙ ∆𝑟𝑒 ∙ 𝜙) ∙ 𝑢̃ = 𝜔̃
2 ∙ 𝐼 ∙ 𝑢̃  ( 2.14) 

The response dependent nonlinear mode is dependent on the nonlinearity value at 

corresponding frequency value. With changing energy level of the response, RDNM 

also changes which is similar to Nonlinear Normal Mode (NNM) concept. The 

advantage of RDNM compared to NNM is the simplicity of calculation process, 

especially for realistic large MDOF systems.  
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It should be noted that the calculation of nonlinear force with DFM is not required 

to implement RDNM. The calculated nonlinear force value with Fourier coefficients 

can also be used by calculating the corresponding stiffness value of nonlinearity by 

the real part of the ratio of force value to displacement value. 

2.2 Mathematical Modelling of Nonlinear Force 

In this thesis, the source of nonlinearity in focus is the friction caused by contact in-

between two or more bodies. There are two approaches available in the literature to 

model friction contact: macroslip and microslip. The normal force resulting from 

preload of bolted connection is small compared to the excitation force. For higher 

contact force values, partial slip occurs, which cannot be modeled with macroslip. 

Ergo, the mathematical formulation of 1D macroslip friction model is implemented 

and examined in detail.  

2.2.1 1D Dry Friction Element with Constant Normal Load 

 

Figure 2.1. Distributed Contact Model of 1D Dry Friction with Constant Normal 

Load 

The tangential motion in-between bodies are considered such that Body #2 is 

grounded, whereas Body #1 moves with relative input 𝑢(𝑡). At the contact node of 
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these two bodies, the slip motion 𝑤(𝑡) occurs. The force equality at spring located 

in-between bodies at tangential direction is as follows, 

𝑓 = 𝑘𝑢 ∙ (𝑢 − 𝑤)  ( 2.15) 

If Body #1 slips, the friction force becomes constant, and it is expressed as, 

𝑓 = ±𝜇 ∙ 𝑛0  ( 2.16) 

 

In Equation ( 2.15), 𝑘𝑢 stands for the tangential stiffness value, and in Equation ( 

2.16), 𝜇 is the friction coefficient, 𝑛0 is the normal load value.  

By assuming single harmonic motion, obtained the hysteresis loop of constant 

normal load 1D Dry friction element is given in Figure 2.2. The relative tangential 

motion is as follows 

𝑢 = 𝐴 ∙ sin(𝜃)… (𝜃 = 𝜔 ∙ 𝑡)  ( 2.17) 

Slip to stick transition occurs when both Equation ( 2.15) and Equation ( 2.16) is 

satisfied. Examining the time derivative of Equation ( 2.18) and Equation ( 2.19), it 

is apparent that this transition occurs at the instant in which relative motion 𝑢 

Figure 2.2. Hysteresis Loop of 1D Dry Friction Element with Constant Normal 

Load 
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reverses its direction. The corresponding transition angles are calculated as 

𝜋
2⁄ , 3𝜋 2⁄ . 

𝑓̇ = 𝑘𝑢 ∙ (𝑢̇ − 𝑤̇) = 0  ( 2.18) 

𝑢̇ = 𝐴 ∙ cos(𝜃) ∙ 𝜔 = 0  ( 2.19) 

Stick to positive slip transition occurs when 

𝑓 = 𝑘𝑢 ∙ (𝑢 − 𝑢0) + 𝑓0 = 𝜇 ∙ 𝑛0  ( 2.20) 

where 𝑓0 and 𝑢0 are the friction force and displacement values at the beginning of 

positive slip state which is 𝑓0 = −𝜇 ∙ 𝑛0 and 𝑢0 = 𝑢(
3𝜋

2⁄ ) = −𝐴. Implementing 

these formulae into Equation ( 2.20), 

𝜃𝑆𝑃 = 2 ∙ 𝜋 − sin−1(1 −
2∙𝜇𝑛0

𝑘𝑢∙𝐴
)  ( 2.21) 

Stick to negative slip transition occurs when 

𝑓 = 𝑘𝑢 ∙ (𝑢 − 𝑢0) + 𝑓0 = −𝜇 ∙ 𝑛0  ( 2.22) 

where 𝑓0 = 𝜇 ∙ 𝑛0 and 𝑢0 = 𝑢(
𝜋
2⁄ ) = 𝐴. Implementing these formulae into 

Equation ( 2.22), 

𝜃𝑆𝑁 = 𝜋 − sin−1(1 −
2∙𝜇𝑛0

𝑘𝑢∙𝐴
)  ( 2.23) 

The resultant friction force values are summarized in Equation ( 2.25). 

In addition to these conditions, the complete stick case is possible at which stick to 

slip transition does not occur, and the elements stay in the stick state. The 

corresponding friction force for complete stick is provided in Equation ( 2.24).  
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𝑓(𝜃) = 𝑘𝑢 ∙ 𝑢  ( 2.24) 

 

2.2.2 1D Dry Friction Element with Normal Load Variation 

 

Figure 2.3. Distributed Contact Model of 1D Dry Friction with Variable Normal Load 

The constant normal load assumption is valid if only relative motion in-between 

bodies stay on the contact plane, whereas this may not be the case for all design 

configurations. The local separation from the contact plane can be analyzed by 

including the motion in the normal direction. The representation of friction with 

normal load variation is given in Figure 2.3.  

Similar to the constant normal load case, Body #2 is taken as grounded, whereas 

Body #1 moves with relative input 𝑢(𝑡) and 𝑣(𝑡). The normal force at contact 

interface acts as follows 

𝑓(𝜃) =

{
 
 

 
 𝑘𝑢 ∙ (𝐴 ∙ sin(𝜃) − 𝐴) + 𝜇 ∙ 𝑛0 ⁡⁡⁡⁡⁡⁡…

𝜋
2⁄ < 𝜃 < 3𝜋

2⁄

−𝜇 ∙ 𝑛0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡… 𝜃𝑆𝑁 < 𝜃 <
3𝜋

2⁄

𝑘𝑢 ∙ (𝐴 ∙ sin(𝜃) + 𝐴) − 𝜇 ∙ 𝑛0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡…
3𝜋

2⁄ < 𝜃 < 𝜃𝑆𝑃⁡

𝜇 ∙ 𝑛0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡… 𝜃𝑆𝑃 < 𝜃 < 5𝜋
2⁄ ⁡⁡ }

 
 

 
 

  
( 2.25) 
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𝑛(𝑡) = {
𝑛0 + 𝑘𝜈 ∙ 𝜈⁡⁡⁡⁡⁡⁡⁡⁡ … 𝑣(𝑡) ≥

−𝑛0

𝑘𝜈

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

( 2.26) 

The friction force in tangential spring is equal to Equation ( 2.15). Unlike the 

constant normal load assumption, the direction of tangential motion may not change 

at the transition instant from slip to stick. The slip velocity of stick to positive slip 

and negative slip are stated in Equations ( 2.27) and ( 2.28). 

𝑤̇ = 𝑢̇ −
𝜇∙𝑘𝜈

𝑘𝑢
∙ 𝜈̇  ( 2.27) 

𝑤̇ = 𝑢̇ +
𝜇∙𝑘𝜈

𝑘𝑢
∙ 𝜈̇  ( 2.28) 

The criteria for positive slip to stick and negative slip to stick is provided in 

Equations ( 2.29) and ( 2.30).  

𝑢̇ −
𝜇∙𝑘𝜈

𝑘𝑢
∙ 𝜈̇ = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡&⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢̈ −

𝜇∙𝑘𝜈

𝑘𝑢
∙ 𝑣̈ < 0  ( 2.29) 

𝑢̇ +
𝜇∙𝑘𝜈

𝑘𝑢
∙ 𝜈̇ = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡&⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢̈ +

𝜇∙𝑘𝜈

𝑘𝑢
∙ 𝑣̈ > 0  ( 2.30) 

The transition from stick to positive slip and negative slip is provided in Equations  

( 2.31) and ( 2.32). 

𝑘𝑢 ∙ (𝑢 − 𝑢0) + 𝑓0 − 𝜇 ∙ (𝑛0 + 𝑘𝜈 ∙ 𝜈) = 0⁡⁡⁡⁡⁡&⁡⁡⁡𝑘𝑢 ∙ 𝑢̇ − 𝜇 ∙ 𝑘𝜈 ∙ 𝜈̇ > 0  
( 2.31) 

𝑘𝑢 ∙ (𝑢 − 𝑢0) + 𝑓0 + 𝜇 ∙ (𝑛0 + 𝑘𝜈 ∙ 𝜈) = 0⁡⁡⁡⁡⁡&⁡⁡⁡𝑘𝑢 ∙ 𝑢̇ + 𝜇 ∙ 𝑘𝜈 ∙ 𝜈̇ < 0  
( 2.32) 

As friction force in normal direction decreases, separation in tangential direction can 

occur. The criteria at the beginning of separation and at the end of separation is 

provided in Equations ( 2.33) and ( 2.34). 
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𝑛0 + 𝑘𝜈 ∙ 𝜈 = 0…⁡𝑣̇ < 0  
( 2.33) 

𝑛0 + 𝑘𝜈 ∙ 𝜈 = 0…⁡𝑣̇ > 0  
( 2.34) 

As a result, four different contact states might occur. The detailed sequences of 

friction characteristics with corresponding transition angles are taken as stated in 

Yang et. al.’s study [23] . For brevity of this document, these formulae are not 

included. 

 

2.3 Solution of Nonlinear Algebraic Equations 

The EOM given in Equation ( 2.1) is a set of nonlinear ordinary differential 

equations, whereas the corresponding nonlinear algebraic equation set is given in 

Equation ( 2.9), and its residual vector is Equation ( 2.35). As mentioned in the 

previous section, the internal nonlinear for 𝐹𝑁𝐿 depends on the value of response 𝑥. 

𝑅(𝑥, 𝜔) = (−𝜔2 ∙ 𝐼 + 𝑖 ∙ 𝜔 ∙ 𝐶𝑑 + (1 + 𝑖) ∙ Ω) ∙ 𝑎 + 𝜙
𝑇 ∙ 𝐹𝑁 − 𝜙

𝑇 ∙ 𝐹 ( 2.35) 

The algebraic equation set given in Equation ( 2.9) is dependent on both 

displacement and frequency, frequency 𝜔 is taken as a path following parameter 

since the system's response throughout a frequency range is desired. As one of the 

unknowns from Equation ( 2.35) is chosen as the path following parameter, the 

remaining unknown 𝑥 can be solved iteratively with Newton’s Method. The path 

following method Arc-Length Continuation Method is utilized to solve for path 

following parameter 𝜔.  
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2.3.1 Newton’s Method 

Expanding Equation ( 2.35) in Taylor series around x, the redefined form is as 

follows, 

𝑅𝑖(𝑥 + ∆𝑥, 𝜔) = 𝑅𝑖(𝑥, 𝜔) + ∑ (
𝜕𝑅𝑖

𝜕𝑥𝑗

𝑛
𝑗=1 ∙ ∆𝑥𝑗) + 𝑂(∆𝑥

2)  
( 2.36) 

where matrix of partial derivatives 
𝜕𝑅𝑖

𝜕𝑥𝑗
 is defined as Jacobian matrix J and 𝑖 is 

iteration number. The simplified form of displacement x is given in Equation ( 2.37). 

Iterations of displacement vector 𝑥𝑖 is stopped when a predetermined error limit for 

residual vector is achieved. 

𝑥𝑖+1 = 𝑥𝑖 − 𝐽(𝑥𝑖 , 𝜔)
−1 ∙ 𝑅(𝑥𝑖 , 𝜔)  ( 2.37) 

 

Calculating the Jacobian matrix with analytical notation is not always possible, as 

the nonlinearity effect gets more dominant the expression in Equation ( 2.35) gets 

more complex. A numerical approximation to the Jacobian matrix can be used in 

these cases. Two of these approximations are the implementation of forward 

difference and central difference formula. Since the order of central difference 

formula is nearly two times more than forward difference formula, forward 

difference notation in Equation ( 2.38) is implemented in the calculation process for 

the rest of the study. 

𝐽𝑖𝑗(𝑥𝑖 , 𝜔) =
𝑅𝑖(𝑥+ℎ𝑗∙𝑒𝑗,𝜔)−𝑅𝑖(𝑥,𝜔)

ℎ𝑗
  

( 2.38) 

where ℎ𝑗  is the step size scaled with square root of precision of the function 

calculation and 𝑒𝑗 is the unit vector in 𝑗𝑡ℎdirection. While calculating residual vector 

for new value of x which is 𝑥 + ℎ𝑗 ∙ 𝑒𝑗, the value of external force does not change. 

Hence, the difference between the remaining part of residual vector is calculated to 
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determine Jacobian matrix. To further reduce computational time for Jacobian 

calculation, one can refer to a new Jacobian calculation method proposed by Kızılay 

[42] . 

2.3.2 Arc-Length Continuation Method 

Since more than one equilibrium state is possible at same frequency value and there 

may be cases at which calculated Jacobian matrix is singular, the frequency response 

function of Equation ( 2.35) can be solved by changing the new path following 

parameter even around turning points.  

Representation of arc-length continuation method around a solution point is given 

Figure 2.4. The new path following parameter is the radius of a hypothetical 

sphere⁡(∆𝑠) in which the next solution is looked for. The new unknown vector in 

Equation ( 2.39) consists of displacement vector 𝑥 and frequency  𝜔. The equation 

of this hypothetical sphere with radius 𝑠 centered at last solution point defines the 

relationship between unknowns ⁡𝑥 and 𝜔 as stated in Equation ( 2.40). 

 

 

 

Figure 2.4. Representation of Hypothetical Circle in Arc-Length Continuation 

Method 
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𝑞 = {
𝑥
𝜔
}  ( 2.39) 

ℎ(𝑥𝑖, 𝜔𝑖) = (∆𝑞)𝑖
𝑇 ∙ (∆𝑞)𝑖 − ∆𝑠

2⁡𝑤ℎ𝑒𝑟𝑒⁡∆𝑞𝑖 = {
∆𝑥𝑖
∆𝜔𝑖

}  
( 2.40) 

Equation ( 2.35) and Equation ( 2.40) is solved with Newton’s Method whose 

solution form is stated in Equation ( 2.41). 

∆𝑞𝑖+1 = ∆𝑞𝑖 − [

𝜕𝑅({𝑥}𝑖,𝜔𝑖) 

𝜕𝑥

𝜕𝑅({𝑥}𝑖,𝜔𝑖) 

𝜕𝜔
𝜕ℎ({𝑥}𝑖,𝜔𝑖) 

𝜕𝑥

𝜕ℎ({𝑥}𝑖,𝜔𝑖) 

𝜕𝜔

]

−1

∙ {
𝑅(𝑥𝑖 , 𝜔𝑖)

ℎ(𝑥𝑖 , 𝜔𝑖)
}  

( 2.41) 

The partial derivative of additional equation is shown in Equation ( 2.42). 

2.3.3 Predictor for Path Following Method 

A good initial guess is required to ensure the convergence of Newton's Method. 1𝑠𝑡 

order predictor is included in the solution process. A tangent vector to the solution 

curve is obtained by taking the derivative of the residual vector Equation ( 2.35) with 

respect to 𝜔. Rearranging Equation ( 2.43)( 2.44), formula of tangent vector is 

obtained as Equation ( 2.44). 

[
𝜕ℎ({𝑥}𝑖,𝜔𝑖) 

𝜕𝑥

𝜕ℎ({𝑥}𝑖,𝜔𝑖) 

𝜕𝜔
] = 2 ∙ ∆𝑞𝑖

𝑇
  

( 2.42) 
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𝑑𝑅(𝑥,𝜔)

𝑑𝜔
=

𝜕𝑅(𝑥,𝜔)

𝜕𝑥
∙
𝜕𝑥

𝜕𝜔
+
𝜕𝑅(𝑥,𝜔)

𝜕𝜔
  

( 2.43) 

𝜕𝑥

𝜕𝜔
= −𝐽(𝑥,𝜔)−1 ∙

𝜕𝑅(𝑥,𝜔)

𝜕𝜔
  

( 2.44) 

The final form of the initial guess for the next iteration is given in Equation ( 2.45) 

which is calculated by implementing Equation ( 2.44) into 1𝑠𝑡⁡order Taylor series 

expansion of the solution point at the next frequency value. 

A similar approach is followed to determine the initial guess for arc-length 

continuation method. The guess vector of 𝑥⁡as shown in Equation ( 2.45), 

implemented into arc-length Equation ( 2.40) whose simplified form is stated in 

Equation ( 2.46). The sign of 𝛿𝜔 is obtained from the sign of determinant of Jacobian 

as Equation ( 2.47). 

𝑥(𝜔 + 𝛿𝜔) = 𝑥(𝜔) − 𝐽(𝑥, 𝜔)−1 ∙
𝜕𝑅(𝑥,𝜔)

𝜕𝜔
∙ 𝛿𝜔  

( 2.45) 

𝛿𝜔 = ±
∆𝑠

√(𝐽(𝑥,𝜔)−1∙
𝜕𝑅(𝑥,𝜔)

𝜕𝜔
)
2
+1

  ( 2.46) 

𝛿𝜔 = 𝑠𝑖𝑔𝑛(|𝐽(𝑥, 𝜔)|) ∙ 𝛿𝜔  
( 2.47) 
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CHAPTER 3  

3     REDUCED ORDER JOINT MODELING UTILIZING RESPONSE 

DEPENDENT NONLINEAR MODES 

In Chapter 3.1, the response of the case study model is examined by utilizing 1D dry 

friction element with constant normal load whereas in Chapter 3.2, 1D dry friction 

element with variable normal load is implemented. First, FEA model of the bolted 

joint assembly is constructed, and the normal load values on the contact surface are 

calculated with nonlinear static analysis. The node-to-node contact model is 

constructed using the modes of the linear system. To illustrate the effect of utilizing 

response dependent mode shapes, high fidelity model and the reduced contact 

models are solved with both classical MSM at which the linear system modes are 

used and MSM with RDNM. The obtained FRFs and solution times are compared. 

The performance of the reduction methodology is demonstrated on two different case 

studies: a 3-bolted half lap joint and a 4- bolted half lap joint.  

3.1 Reduced Order Modeling Utilizing 1D Dry Friction Element with 

Constant Normal Load 

3.1.1 Case Study Model 1: Three-Bolted Assembly 

The 3-bolted lap joint assembly modeled in commercial FEA software Abaqus [43]  

is given in Figure 3.1. The representative half-lap joint model consists of two beams 

connected by three M8 bolts and three nuts. Bolt and nuts are taken as a single part 

due to the threaded connection in-between them. Dimensions of the beam are given 

in Figure 3.2. The material of all parts is defined as steel, whose material properties 

are given in Table 3.1.  



 

 

24 

 

Figure 3.1. Finite Element Model of 3-Bolted Assembly 

 

Figure 3.2. Dimensions of Beam Design 1 

Table 3.1. Material Properties of Steel 

Density (𝑘𝑔/𝑚3) Elastic Modulus (GPa) Poisson’s Ratio 

7900 190 0.3 

 

The tangential behavior of contact between beams is defined with penalty friction 

formulation available in Abaqus software. The friction coefficient of penalty friction 

is defined as 0.1. The contact between beams and bolt heads/nuts is assumed to stay 

in stick since the contact area is small, resulting in high normal load distribution 

under low/ medium excitation levels. Hence, tie constraint, which restrains the 

relative motion in-between surfaces, is defined in these contact regions.  

Nonlinear static analysis is conducted for fix-free boundary condition to obtain the 

initial normal load distribution on the contact surface. The preload value of M8 bolts 

is defined as 10 kN applied from cross section located at the mid-length bolt shank. 

The obtained result of contact force distribution in the direction of contact surface 

normal is given in Figure 3.3. 

Response Node

Excitation Node

Fixed End

250.

100.

R4.5 R4.5 R4.5

25. 25. 25.

25.

25.
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Figure 3.3. Normal Force Distribution on Contact Surface of 3- Bolted Lap Joint 

3.1.1.1 Representative High-Fidelity Model 

The high-fidelity model consists of nodes in contact, a response node and an 

excitation node. The linear system model is constructed by using the mass-

normalized mode shapes of the node region of interest and the corresponding 

eigenvalues. In the nonlinear model, 1D dry friction elements with constant normal 

load are defined in-between coincident nodes in the contact surface. The location of 

the node region of interest is chosen by examining the normal force distribution 

given in Figure 3.3.The node region of interest consists of 1183 nodes, as specified 

in Figure 3.4. 

 

Figure 3.4. Locations of Interested Nodes 

Modal analysis is conducted in Abaqus FEA software to calculate the system's 

natural frequencies and mode shapes of the node region of interest. Contact 

definition between beams is removed in this analysis since modes and natural 
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frequencies of the linear system are required. The nonlinear equation set is solved by 

utilizing Modal Superposition Method. Tangential stiffness and friction coefficients 

of 1D macroslip element are given in Table 3.2. Normal load values on friction 

elements are taken from the result of nonlinear static analysis. For this part of the 

study, normal loads are taken as constant. It should be kept in mind that normal load 

stays constant for specific design configurations. The motion in the direction of 

contact surface normal not only results in a change of normal force but might also 

result in local separation of contact surfaces.  

Table 3.2. Tangential Stiffness and Friction Coefficient of 1D Dry Friction Element 

with Constant Normal Load 

𝑘𝑢 𝜇 

100⁡ 𝑘𝑁 𝑚𝑚⁄  0.1 

  

The first four bending modes of the system are implemented in mathematical model, 

which are given in Figure 3.5, Figure 3.6, Figure 3.7, and Figure 3.8. Force is applied 

perpendicular to the contact surface from node specified in Figure 3.1. The equation 

set is solved utilizing Arc-Length Continuation Method, which is examined in 

Chapter 2.  

 

Figure 3.5. First Bending Mode (71 Hz) 
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Figure 3.6. Second Bending Mode (362 Hz) 

 

 

Figure 3.7. Third Bending Mode (946 Hz) 

 

 

Figure 3.8. Fourth Bending Mode (2571 Hz) 
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Frequency response functions are calculated for several forcing values, which are 

given in Figure 3.9. The position of the response node is specified in Figure 3.1. For 

low excitation force value (0.001 N), dry friction elements stay stuck which is called 

as completed stick condition; hence energy is not lost as hysteric motion is not 

present. As excitation force increases, the response amplitude level decreases 

because the slip-stick motion transition starts to dominate the motion, resulting in 

energy loss. The presence of slip motion limits the stiffness value, which also results 

in the decrease of resonance frequency in addition to the response level.  

 

Figure 3.9. Normalized Response (mm/N) vs. Frequency (Hz) Graph 

3.1.1.2 Calculation of Response Utilizing Modal Superposition Method 

with Response Dependent Nonlinear Modes  

As stated in Chapter 2, in the classical Modal Superposition Method, the number of 

nonlinear equations equals the number of modes included in the solution process. 

For strong nonlinearities, the linear mode shapes of the system do not form an 

adequate basis to calculate the nonlinear response of the system. As a result, the 
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number of modes included in the solution should be increased to capture the accurate 

response level and characteristic. With the utilization of response dependent 

nonlinear modes, the required number of modes to obtain accurate response 

decreases since the calculated nonlinear mode shapes depend on the level of 

nonlinear force value. 

At each solution point, the stiffness contribution of nonlinear force is calculated for 

each 1D dry friction element. As stated in Chapter 2, the real value of ratio of the 

nonlinear force value at last solution point to the relative displacement value gives 

the corresponding stiffness value. The nonlinearity matrix is constructed with these 

stiffness values. The calculated response dependent mode is used throughout 

iterations of the corresponding solution point. Since the calculated mode shape is 

dependent on the last solution point's response level, it changes during the frequency 

range of interest as the total energy level of the system changes.  

High fidelity model is employed using one response dependent nonlinear mode, and 

corresponding results along with classical Modal Superposition Method’s results is 

given in Figure 3.10. 

The nonlinear mode shapes of three bolted joint assembly are well separated for low 

to medium excitation levels. Hence, the obtained FRFs with one dependent nonlinear 

mode are compatible with the results of classical modal superposition method in 

which four linear system modes is used.  

For medium to high excitation levels, as the system's total energy is decreased, the 

difference between calculated FRFs becomes more apparent. Increasing the number 

of RDNMs included in solution equations can decrease this difference for higher 

forcing levels. 

It should also be noted that although the utilization of Dual Space Method to EVP 

decreases the dimension of EVP problem, it might also decrease the accuracy of the 

calculated mode shapes. This phenomenon is due to excluding some of the terms in 

Equation ( 2.9). The effect of this phenomenon can be found in [41] . Since the 
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performance advantage of RDNMs, when constant number of modes are used in 

classical MSM, is the focus of this work, the effect of using different linear modes 

to EVP Equation is not examined further. Hence, only the first four bending modes 

of the linear system are implemented to calculate the RDNM throughout case studies.  

 

Figure 3.10. Normalized Response (mm/N) vs. Frequency (Hz) Utilizing Response 

Dependent Nonlinear Modes Graph 1 

The solution times of high-fidelity model with linear system modes and RDNM are 

given in Table 3.3. The analyses are performed on a computer with AMD Ryzen7 

4800H, a Radeon Graphics 2.90 GHz processor, 8 GB RAM, and a 64-bit operating 

system. For all excitation levels, the computational time with RDNM is nearly half 

the computational time of MSM with linear system modes. The reduced 

computational time also emphasizes that the computational time spent to solve the 

redefined form of EVP is insignificant compared to the time spent to calculate the 

nonlinear force value. 
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Since the FRFs throughout the interested frequency range are coherent with the FRFs 

calculated with classical MSM for different excitation levels and the computational 

time is reduced to nearly half, it is apparent that RDNMs form a solid basis for 

nonlinear response space.  

Table 3.3. Computational Times with Linear Modes and RDNM 

Excitation Force 

Value (N) 

Computational 

Time with 

Classical MSM(s) 

Computational 

Time MSM with 

RDNM (s) 

Reduction 

Percentage in 

Time (%) 

0.001 685.3 295.8 56.84 

1 695.3 312.1 55.11 

5 727.1 318.9 56.14 

10 699.3 321.9 53.98 

15 677.1 316.2 53.30 

25 745.1 328.8 55.88 

50 638.6 343.7 46.18 

 

3.1.1.3 First Reduction Step for Contact Model 

The contact forces around bolt holes are higher than the force values around the 

edges. The variability of contact force results in partial slip on the surface, which can 

be modeled by the microslip friction model. The reduced contact model in this part 

of the study is proposed by Karapistik [40] . The approximated microslip element is 

constructed by connecting macroslip elements as parallel spring elements. The 

contact surfaces are divided into regions of joint at which the overall force is assumed 

to be transmitted in-between coincident regions.  
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Figure 3.11. Schematic Representation of Reduced Order Joint Model 

 

The representation of the reduced order joint model is given in Figure 3.11. The 

artificial node locations of joint regions are assumed to be located in the middle of 

the contact regions. The relative displacement of the joint is given in Equation (3.1) 

where A and B stand for contact surfaces, and 𝑁 is the number of macroslip elements 

inside the joint region. The resultant total force value at artificial nodes is defined in 

Equation ( 3.2).  

𝑢𝑗𝑜𝑖𝑛𝑡 = (
1

𝑁
∙∑𝜙𝐴𝑖

𝑁

𝑖=1

−
1

𝑁
∙∑𝜙𝐵𝑖

𝑁

𝑖=1

) ∙ 𝑎 
(3.1) 

𝐹𝑁𝐿𝑗𝑜𝑖𝑛𝑡 =∑(𝐹
𝑠𝑖
∙ sin(𝑖 ∙ 𝜔 ∙ 𝑡) + 𝐹𝑐𝑖 ∙ cos(𝑖 ∙ 𝜔 ∙ 𝑡))

𝑁

𝑖=1

 
( 3.2) 

 

Two different joint regions, as four joint regions and six joint regions are selected to 

examine the effect of the joint region’s size. The joint regions are selected such that 

the normal load distribution on each joint region is similar to each other. The selected 
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joint regions and the corresponding element numbers in each region are given in 

Figure 3.12 and Figure 3.13. 

 

Figure 3.12. Location of 4 Joint Region on Contact Surface 

 

 

Figure 3.13. Location of 6 Joint Region on Contact Surface 

 

For each joint region, an artificial node located between contact surfaces is defined 

as Equation (3.1 to calculate the corresponding displacement value. The FRF plots 

are given separately for different excitation levels from Figure 3.14 to Figure 3.17. 

The results of the node-to-node contact model calculated with linear system modes 

are also specified in these plots. 
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Figure 3.14. Normalized Response (mm/N) vs. Frequency (Hz) Graph for 4 Joint 

Region Utilizing 4 Linear System Modes 

 

Figure 3.15. Normalized Response (mm/N) vs. Frequency (Hz) Graph for 4 Joint 

Region Utilizing 1 RDNM 
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Figure 3.16. Normalized Response (mm/N) vs. Frequency (Hz) Graph for 6 Joint 

Region Utilizing 4 Linear System Modes 

 

Figure 3.17. Normalized Response (mm/N) vs. Frequency (Hz) Graph for 6 Joint 

Region Utilizing 1 RDNM  
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Table 3.4. The Reduction in Computational Times of 6 Joint Region with Linear 

Modes and RDNM 

Excitation 

Force Value 

(N) 

Reduction Percentage 

in Time (%) of 6 Joint 

Region Utilizing 4 

Linear Modes 

Reduction Percentage 

in Time (%) of 6 Joint 

Region Utilizing 1 

RDNM 

0.001 99.74 99.92 

1 99.72 99.91 

5 99.77 99.91 

10 99.72 99.90 

15 99.71 99.90 

25 99.72 99.90 

50 99.74 99.90 

 

For all excitation levels, the accuracy of obtained results utilizing joint regions 

improves as the joint region number increases; in other words, the size of the joint 

region decreases. For low to medium excitation levels (𝐹 = [0.001 → ⁡10]𝑁), the 

results calculated using RDNM modes are compatible with those obtained with 

linear system modes. For medium to high excitation levels (𝐹 = [15 → 50]𝑁), the 

superior performance of RDNM is evident since the accuracy of RDNM results 

obtained with the same joint region definition is better than results of linear system 

modes even though only 1 RDNM is implemented in the calculation process.  

Since the most accurate solutions are obtained with six joint regions reduction, the 

corresponding normalized solution times are given in Table 3.4. The solution times 

are normalized with the computational time of the high-fidelity model with classical 

MSM. Even for the highest excitation value of 50 N, the computational time is 

decreased to nearly 0.3% for classical MSM. When RDNMs are utilized in the 

solution process, this value further reduces to 0.1%, which strongly emphasizes the 

advantage of using RDNMs.  
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3.1.1.4 Second Reduction Step for Contact Model 

By decreasing the number of macroslip elements inside the joint regions, the required 

time to calculate the nonlinear force is further decreased. The reduced joint elements’ 

parameters (𝑘𝑢, 𝜇𝑁) are selected such that the hysteresis loop of the reduced joint 

element is the same as the hysteresis loop of the joint element of interest. 

The cost function defined by Karapistik [40] is used as the optimization problem. In 

Equation (3.3), 𝑁 stands for the number of macroslip elements inside the interested 

joint region, and 𝑛 is the number of macroslip elements inside the reduced joint 

element. 𝐴, 𝐵, 𝐶 are the magnitude of relative displacement.  

𝐶𝑜𝑠𝑡 =

(

 

[
 
 
 
𝐹ℎ𝑦𝑠𝑡𝑁

𝐴

𝐹ℎ𝑦𝑠𝑡𝑁
𝐵

𝐹ℎ𝑦𝑠𝑡𝑁
𝐶
]
 
 
 

−

[
 
 
 
𝐹ℎ𝑦𝑠𝑡𝑛

𝐴

𝐹ℎ𝑦𝑠𝑡𝑛
𝐵

𝐹ℎ𝑦𝑠𝑡𝑛
𝐶
]
 
 
 

)

 ⁡ ∙

(

 

[
 
 
 
𝐹ℎ𝑦𝑠𝑡𝑁

𝐴

𝐹ℎ𝑦𝑠𝑡𝑁
𝐵

𝐹ℎ𝑦𝑠𝑡𝑁
𝐶
]
 
 
 

−

[
 
 
 
𝐹ℎ𝑦𝑠𝑡𝑛

𝐴

𝐹ℎ𝑦𝑠𝑡𝑛
𝐵

𝐹ℎ𝑦𝑠𝑡𝑛
𝐶
]
 
 
 

)

 

𝑇

  
(3.3)  

 

To minimize the difference between the obtained hysteresis loop and the hysteresis 

loop of the joint region of interest, nonlinear force values at three different relative 

displacement magnitudes are used. The relative displacement magnitudes are 

selected to achieve the same hysteresis loop even at high relative displacement 

magnitudes. The cost function is solved with "fmincon" a built-in MATLAB 

function [44] . The total stiffness and normal load values are defined as the limiting 

values of the parameters for reduced joint elements. With this definition, the unfitted 

regions at high displacement amplitudes are minimized. Hence, the deviation of the 

resonance frequency is omitted. The hysteresis loops of the six joint regions are 

reduced in this step.  

Three different element number at the reduced joint region is represented in this 

document. For brevity of the thesis, only the hysteresis loop of the first joint region 

which contains 210 macroslip elements, is given along the hysteresis loop of the 
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reduced joint elements with 4 and 7 elements in Figure 3.18 and Figure 3.19. The 

normal load values at the nodes positioned at the same diameter are close to each 

other, hence the relative displacement values at which change of contact state occurs 

are also similar. As nonlinear force value in the hysteresis loop of joint region 

definition is the summation of nonlinear force values at each macroslip element, the 

resultant hysteresis consists of multiple lines with different slopes. 

The tangential stiffness and normal load values of the reduced joint elements are 

given in Table 3.5 and Table 3.6. 

 

Table 3.5. Parameters of Reduced Joint Element with 5 Elements 

 

 

 

 

 

 

 

 

 𝑘1(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘2(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘3(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘4(
𝑘𝑁

𝑚𝑚⁄ ) 

1st Joint 4132.6 4801.0 3969.5 4909.3 

2nd Joint 5222.5 4801.0 4813.2 4909.3 

3rd Joint 5222.5 4117.3 4813.2 3687.4 

4th Joint 5222.5 4930.2 4813.2 5265.3 

5th Joint 4007.3 4930.2 4172.0 5265.3 

6th Joint 4801.0 4930.2 4909.3 5265.3 

 μN1(N) μN2(N) μN3(N) μN4(N) 

1st Joint 939.2 859.7 435.7 377.1 

2nd Joint 204.8 360.6 842.9 479.9 

3rd Joint 331.9 367.2 221.8 299.8 

4th Joint 467.2 470.0 355.3 185.0 

5th Joint 228.0 223.8 917.2 418.5 

6th Joint 444.0 895.5 230.7 837.0 
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Figure 3.18. Hysteresis Loop of 1st Joint Region with 210 Elements and 4 Elements 

 

Table 3.6. Parameters of Reduced Joint Element with 7 Elements 

 

 𝑘1(
𝑘𝑁

𝑚𝑚
) 𝑘2(

𝑘𝑁

𝑚𝑚
) 𝑘3(

𝑘𝑁

𝑚𝑚
) 𝑘4(

𝑘𝑁

𝑚𝑚
) 𝑘5(

𝑘𝑁

𝑚𝑚
) 𝑘6(

𝑘𝑁

𝑚𝑚
) 𝑘7(

𝑘𝑁

𝑚𝑚
) 

1st Joint 2673.1 3315.4 2727.9 2800.5 2772.1 2813.5 3029.6 

2nd Joint 3315.4 2607.4 2727.9 2800.5 2772.1 2813.5 3029.6 

3rd Joint 3315.4 2727.9 2416.8 2800.5 2772.1 2813.5 3029.6 

4th Joint 3315.4 2727.9 2800.5 2260.5 2772.1 2813.5 3029.6 

5th Joint 3315.4 2727.9 2800.5 2772.1 2314.4 2813.5 3029.6 

6th Joint 3315.4 2727.9 2800.5 2772.1 2813.5 2387.9 3029.6 

 μN1(N) μN2(N) μN3(N) μN4(N) μN5(N) μN6(N) μN7(N) 

1st Joint 187.9 416.3 629.5 88.3 193.2 434.0 371.7 

2nd Joint 123.0 306.0 184.3 151.4 107.6 145.3 169.2 

3rd Joint 22.4 306.0 243.7 586.4 193.2 198.8 261.5 

4th Joint 672.0 305.9 243.7 461.7 245.2 162.0 19.6 

5th Joint 229.7 19.0 399.2 461.7 434.0 196.8 110.7 

6th Joint 291.9 141.8 243.7 193.2 434.0 599.1 208.2 
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Figure 3.19. Hysteresis Loop of 1st Joint Region with 210 Elements and 7 Elements 

 

The obtained FRF plots at different forcing levels are given in Figure 3.20 to Figure 

3.23, along with the results of the node-to-node model with classical MSM. For all 

excitation levels, the closest result to the results of the node-to-node model is the 

reduced joint element with 7 elements.  

Since the most accurate solutions are obtained with the reduced joint region with 

seven elements, the corresponding normalized solution times are given in Table 3.7. 

Similar to first reduction step of contact model, the solution times are normalized 

with the computational time of high-fidelity model with classical MSM. For the 

highest applied excitation value of 50 N, the computational time is decreased to 

0.05% from %3 for classical MSM. When RDNMs are utilized in the solution 

process, this value further reduces to 0.03% from 0.1%. Since both the accuracy of 

the results and the decrease in computational time are better for results obtained with 

one RDNM, the superior performance of MSM utilizing RDNM is evident. 
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Figure 3.20. The Comparison of Normalized Response (mm/N) vs. Frequency (Hz) 

Graph for Reduced Joint Definition with 4 Elements Utilizing 4 Linear System 

Modes 

 

Figure 3.21. The Comparison of Normalized Response (mm/N) vs. Frequency (Hz) 

Graph for Reduced Joint Definition with 4 Elements Utilizing 1 RDNM 
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Figure 3.22. The Comparison of Normalized Response (mm/N) vs. Frequency (Hz) 

Graph for Reduced Joint Definition with 7 Elements Utilizing 4 Linear System 

Modes 

 

Figure 3.23. The Comparison of Normalized Response (mm/N) vs. Frequency (Hz) 

Graph for Reduced Joint Definition with 7 Elements Utilizing 1 RDNM 
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Table 3.7. The Reduction in Computational Times of Reduced Joint Region with 7 

Elements for Linear Modes and RDNM 

Excitation 

Force 

Value (N) 

Reduction Percentage in 

Time (%) of 7 Element 

Reduced Joint Region 

Utilizing Linear System 

Modes 

Reduction Percentage in 

Time (%) of 7 Element 

Reduced Joint Region 

Utilizing 1 RDNM 

0.001 99.955 99.978 

1 99.956 99.979 

5 99.958 99.978 

10 99.956 99.977 

15 99.954 99.976 

25 99.957 99.978 

50 99.950 99.972 

 

 

Figure 3.24. Normalized Response (mm/N) vs. Frequency (Hz) Utilizing Response 

Dependent Nonlinear Modes Around Second Resonance Region 
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The results around the second resonance region with seven elements reduced joint 

model are given in Figure 3.24. The results utilizing RDNM are compatible with the 

high-fidelity model results as in the first resonance region case.  

To summarize, the three bolted joint assembly at which 1183 nodes are in contact is 

examined by utilizing 1D dry friction element with constant normal load. First, the 

displacement at response node is calculated using classical MSM at which the first 

four bending mode shapes of the linear system are used. Then, the same node-node 

model is solved utilizing MSM with RDNMs, at which the nonlinear modes are 

calculated with the response at the last solution point. The contact model is reduced 

in two steps. In the first reduction step, the interested contact surface is divided into 

joint regions at which macroslip elements within each joint region are taken as 

parallel connected. With this definition, the number of modal coefficients is required 

to calculate nonlinear force; hence the dimension of the solved equation set is 

reduced. In the second reduction step, the approximated microslip element is further 

reduced such that the hysteresis loops of the reduced joint element are the same as 

the joint elements of interest. For both reduction steps, results of MSM with RDNMs 

and MSM with linear system modes are given to examine the performance of 

utilizing RDNM.  

At contact reduction steps, the results utilizing RDNM are more accurate than those 

with linear modes. In the meantime, the required computational time is decreased 

when RDNMs are used. 
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3.1.2 Case Study Model 2: Four-Bolted Assembly 

To examine the performance of the reduction method further, the number of 

connecting elements is increased and a 4-bolted joint assembly is constructed. The 

4-bolted lap joint assembly modeled in commercial FEA software Abaqus [43] is 

given in Figure 3.25. The representative half-lap joint model consists of two beams 

connected by four M8 bolts and four nuts. Like 3-bolted lap joint, bolt and nuts are 

taken as a single part and material of all parts is defined as steel, whose material 

properties is given in Table 3.1. Dimensions of the beam is given in Figure 3.26. 

 

Figure 3.25. Finite Element Model of 4-Bolted Assembly 

 

Figure 3.26. Dimensions of Beam Design 2 

The contact definitions and connection in-between beams and not heads are defined 

as in the case of 3 -bolted assembly. The preload value of M8 bolts is defined as 10 

kN applied from cross section located at mid-length bolt shank. Nonlinear static 

analysis is conducted for fix-free boundary condition to obtain the initial normal load 

distribution on contact surface. The obtained result of contact force distribution in 
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the direction of contact surface normal is given in Figure 3.27. The region of interest, 

which contains 1603 nodes, is given in Figure 3.28.  

 

Figure 3.27. Normal Force Distribution on Contact Surface of 4- Bolted Lap Joint 

Modal analysis is conducted in Abaqus FEA software to calculate the system's 

natural frequencies and mode shapes with same model modifications as in the case 

of 3-bolted half lap joint. The first four bending modes of system is included in the 

solution set which is given in Figure 3.29, Figure 3.30, Figure 3.31 and Figure 3.32. 

Tangential stiffness and friction coefficients of 1D macroslip element are given in 

Table 3.2.  

 

Figure 3.28. Normal Force Distribution on Contact Surface of 4-Bolted Assembly 

 

Figure 3.29. First Bending Mode (51 Hz) 
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Figure 3.30. Second Bending Mode (263 Hz) 

 

Figure 3.31. Third Bending Mode (731 Hz) 

 

Figure 3.32. Fourth Bending Mode (1899Hz) 

3.1.2.1 Results of 4-Bolted Joint: Node-to-Node Model Utilizing RDNM 

The displacements of response node represented in Figure 3.25 are given in Figure 

3.33. The corresponding FRFs are obtained with four linear system modes and one 
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RDNM mode separately. The solution times of high-fidelity model with linear 

system modes and RDNM are given in Table 3.8. 

For lower excitation levels such as 0.001⁡𝑁, 1⁡𝑁, 5⁡𝑁, 10⁡𝑁, the results obtained 

utilizing RDNM is same as the four linear modes. For those force levels, the stick 

motion dominates the response. As a result of this phenomenon, the nonlinear mode 

shapes of four bolted joint assembly are well separated for these forcing levels. 

Therefore, the implementation of one RDNM is sufficient. 

For higher excitation levels, as the slip to stick motion is present on the contact 

surface, total energy is decreased. This decrease of energy level changes the 

proximity of mode shapes which makes the difference between calculated FRFs 

more apparent. This difference could be reduced by increasing the number of 

RDNMs included in solution equations. 

For all excitation levels, the computational time with RDNM is nearly half the 

computational time of MSM with linear system modes. Since the FRFs throughout 

the interested frequency range are compatible with the FRFs calculated with classical 

MSM for different excitation levels and the computational time is reduced to nearly 

half, the superior performance of RDNM is evident. 

 

Figure 3.33. Normalized Response (mm/N) vs. Frequency (Hz) Graph 
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Table 3.8. Computational Times with Linear Modes and RDNM 

Excitation Force 

Value (N) 

Computational 

Time with 

Classical MSM 

(s) 

Computational 

Time MSM with 

RDNM (s) 

Normalized 

Time of MSM 

with RDNM % 

0.001 561 260 53.6 

1 612 276 55.0 

5 753 284 62.3 

10 784 287 63.5 

20 670 293 56.2 

30 758 295 61.1 

50 689 305 55.7 

3.1.2.2 Results of 4-Bolted Joint: First Reduction Step of Contact Model 

In the first reduction step of contact model, contact region of interest is divided into 

joint regions whose relative displacement is defined as Equation (3.1) and the 

resultant total force value at these artificial nodes is Equation ( 3.2).  

 

Figure 3.34. Location of 8 Joint Region on Contact Surface 

The contact surface of four-bolted joint is eight joint regions. The selected joint 

regions and the corresponding element numbers in each region are given in Figure 

3.34. 
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Figure 3.35. Normalized Response (mm/N) vs. Frequency (Hz) Graph of 8 Joint 

Region Utilizing Linear System Modes 

 

Figure 3.36. Normalized Response (mm/N) vs. Frequency (Hz) Graph of 8 Joint 

Region Utilizing RDNM 
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Table 3.9. The Reduction in Computational Times of 8 Joint Region with Linear 

Modes and RDNM 

Excitation Force 

Value (N) 

Reduction 

Percentage in Time 

(%) of 8 Joint 

Region Utilizing 4 

Linear Modes 

Reduction 

Percentage in 

Time (%) of 8 

Joint Region 

Utilizing 1 RDNM 

0.001 99.578 99.875 

1 99.538 99.872 

5 99.677 99.889 

10 99.662 99.870 

20 99.631 99.849 

30 99.662 99.875 

50 99.624 99.853 

 

The results of 8 joint definition are represented in Figure 3.35and Figure 3.36 along 

the results of the node-to-node contact model calculated with linear system modes.  

The solution times in Table 3.9 are normalized with the computational time of the 

high-fidelity model with classical MSM. Even for the highest excitation value of 50 

N, the computational time is decreased to nearly 0.4% for classical MSM. When one 

RDNM is utilized in the solution process, this value further reduces to 0.1%, which 

strongly emphasizes the advantage of using RDNMs.  

3.1.2.3 Results of 4-Bolted Joint: Second Reduction Step of Contact Model 

The number of macroslip elements inside joint regions are decreased such that the 

hysteresis loops of reduced joint is the same as the hysteresis loop of the joint region 

of interest. The tangential stiffness and normal load values of the macroslip elements 
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inside the reduced order joints are taken from the results of cost function in Equation 

(3.3). Similar to 3-bolted joint case, the cost function is solved with “fmincon”[44] . 

The joint region definition of 8 regions is examined in this step. The reduced joint 

regions consist of three and seven macroslip elements whose tangential stiffness and 

normal load values are given in Table 3.10, and Table 3.11. The hysteresis loops of 

first reduced joint region are represented along the joint region which contains 230 

elements in Figure 3.37 and Figure 3.38.  

The obtained FRF plots at different forcing levels are given in Figure 3.39  to Figure 

3.42, along with the results of the node-to-node model with classical MSM. For all 

excitation levels, the closest result to the results of the node-to-node model is the 

reduced joint element with 7 elements.  

 

 

Figure 3.37. Hysteresis Loop of 1st Joint Region with 230 Elements and 4 Elements 
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Figure 3.38. Hysteresis Loop of 1st Joint Region with 230 Elements and 7 Elements 
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Table 3.10. Parameters of Reduced Joint Element with 4 Elements 

 

 

  

 𝑘1(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘2(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘3(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘4(
𝑘𝑁

𝑚𝑚⁄ ) 

1st Joint 3484.7 3114.9 3228.5 3524.5 

2nd Joint 4948.1 4108.4 4070.5 3971.8 

3rd Joint 4948.1 4108.4 4070.5 3971.8 

4th Joint 4948.1 4108.4 4070.5 3971.8 

5th Joint 3644.1 3382.8 3282.1 3140.4 

6th Joint 3905.3 3986.4 4026.0 4246.4 

7th Joint 3905.3 3986.4 4026.0 4246.4 

8th Joint 3905.3 3986.4 4026.0 4246.4 

 μN1(N) μN2(N) μN3(N) μN4(N) 

1st Joint 225.2 354.4 759.1 898.4 

2nd Joint 902.1 465.2 515.6 494.1 

3rd Joint 352.5 820.6 332.1 237.5 

4th Joint 457.1 303.1 333.8 354.3 

5th Joint 400.4 456.3 279.5 320.1 

6th Joint 209.0 369.0 451.5 202.1 

7th Joint 399.4 221.5 794.8 418.2 

8th Joint 893.2 818.8 343.1 812.6 
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Table 3.11. Parameters of Reduced Joint Element with 7 Elements 

 

 𝑘1(
𝑘𝑁

𝑚𝑚
) 𝑘2(

𝑘𝑁

𝑚𝑚
) 𝑘3(

𝑘𝑁

𝑚𝑚
) 𝑘4(

𝑘𝑁

𝑚𝑚
) 𝑘5(

𝑘𝑁

𝑚𝑚
) 𝑘6(

𝑘𝑁

𝑚𝑚
) 𝑘7(

𝑘𝑁

𝑚𝑚
) 

1st Joint 3490.5 3264.0 3066.2 3638.1 3170.3 2904.1 3490.5 

2nd Joint 4004.7 3264.0 3250.1 3005.9 3170.3 3324.4 4004.7 

3rd Joint 4004.7 3101.6 3044.1 3005.9 3427.4 3105.5 4004.7 

4th Joint 4004.7 3268.1 3228.1 3005.9 3146.7 3525.8 4004.7 

5th Joint 3442.3 3105.7 3228.1 3177.3 3403.8 3525.8 3442.3 

6th Joint 3634.4 3272.2 3228.1 3088.1 3123.1 3525.8 3634.4 

7th Joint 1439.9 1636.1 1614.1 1674.3 1561.5 1762.9 1439.9 

8th Joint 1632.2 1636.4 1614.2 1585.1 1561.9 1763.3 1632.2 

 μN1(N) μN2(N) μN3(N) μN4(N) μN5(N) μN6(N) μN7(N) 

1st Joint 314.0 630.5 270.3 10.0 678.7 767.3 314.0 

2nd Joint 117.3 198.7 327.6 224.7 400.5 10.1 117.3 

3rd Joint 375.2 124.1 319.4 850.6 12.8 339.5 375.2 

4th Joint 249.4 269.5 263.3 375.2 267.4 103.4 249.4 

5th Joint 689.3 650.8 194.0 10.01 338.3 225.6 689.3 

6th Joint 191.6 130.8 347.1 470.2 440.2 289.1 191.6 

7th Joint 324.7 199.1 618.7 159.9 337.9 621.0 324.7 

8th Joint 354.5 364.5 123.2 349.8 90.5 174.4 354.5 
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Figure 3.39. Normalized Response (mm/N) vs. Frequency (Hz) Graph of Reduced 

Joint of 4 Elements Utilizing Linear System Modes 

 

Figure 3.40. Normalized Response (mm/N) vs. Frequency (Hz) Graph of Reduced 

Joint of 4 Elements Utilizing RDNM 
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Figure 3.41. Normalized Response (mm/N) vs. Frequency (Hz) Graph of Reduced 

Joint of 6 Elements Utilizing Linear System Modes 

 

Figure 3.42. Normalized Response (mm/N) vs. Frequency (Hz) Graph of Reduced 

Joint of 6 Elements Utilizing RDNM 
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Table 3.12. The Normalized Computational Times of Reduced Joint Region of 6 

Elements with Linear Modes and RDNM 

 

Excitation 

Force 

Value (N) 

Reduction Percentage in 

Time (%) of 7 Element 

Reduced Joint Region 

with Linear Modes 

Reduction Percentage in 

Time (%) of 7 Element 

Reduced Joint Region -

with RDNM 

0.001 99.9302 99.9645 

1 99.9331 99.9663 

5 99.9453 99.9712 

10 99.9473 99.9737 

20 99.9376 99.9680 

30 99.9443 99.9706 

50 99.9379 99.9668 

 

Since the most accurate solutions are obtained with the reduced joint region with 

seven elements, the corresponding normalized solution times are given in Table 3.12. 

Similar to the first reduction step of contact model, the solution times are normalized 

with the computational time of node-to-node contact model with linear system 

modes. For the highest applied excitation value of 50 N, the computational time is 

decreased to 0.06% from %0.4 for classical MSM. When RDNM is utilized in the 

solution process, this value further reduces to 0.03% from 0.1%. Since both the 

accuracy of the results and the decrease in computational time are better for results 

obtained with one RDNM, the advantage of utilizing RDNM is evident. 

To sum up, node-to-node contact model consisting of 1603 nodes at the contact 

surface is examined in this step. First, 1603 nodes are divided into 8 joint regions 

which behave as approximated microslip elements. At the second reduction step, the 

8 joint regions are reduced such that each reduced joint region consists of 6 macroslip 

elements whose hysteresis loop is the same as joint region of interest.  
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3.2 Reduced Order Modeling Utilizing 1D Dry Friction Element with 

Variable Normal Load 

3.2.1 Case Study Model 1: Three-Bolted Assembly 

The case study model is the same as the three-lap joint represented in Chapter 3.1.1. 

In this part of the study, 1D dry friction element with variable normal load is 

implemented in the mathematical model. Since variation of normal load across the 

contact surface is included into formulae, the gap distribution in-between surfaces 

resultant from preload should be included. The exaggerated deformation of three-

bolted lap joint is given in Figure 3.43. The corresponding gap distribution resultant 

at the end of preload is given in Figure 3.44. The normal load distribution taken from 

static analysis is redefined such that the gap in-between surfaces is taken as negative 

normal loads. The resultant gap formula is given in Equation ( 3.4).  

𝑛0𝑉 = 𝑛0𝑠𝑡𝑎𝑡𝑖𝑐 − 𝑘𝑣 ∙ 𝑣𝑔𝑎𝑝 ( 3.4) 

 

Figure 3.43.Exaggerageted Deformation of Three-Bolted Lap Joint 

 

Figure 3.44. Gap Distribution on Contact Surface 



 

 

60 

The stiffness value in tangential direction and normal direction are given in Table 

3.13.The algebraic model of 1D dry friction element with variable normal load is 

explained in 2.2.2. Since the gap distribution is included in this model, friction 

elements are connected in-between all of the coincident nodes on contact surface. 

The resultant friction element number is 1370. The results of high-fidelity model are 

given in Figure 3.45.  

Table 3.13. Tangential-Normal Stiffness and Friction Coefficient of 1D Dry 

Friction Element with Constant Normal Load 

𝑘𝑢 𝑘𝑣 𝜇 

100⁡ 𝑘𝑁 𝑚𝑚⁄  100⁡ 𝑘𝑁 𝑚𝑚⁄  0.1 

 

 

Figure 3.45. Normalized Response (mm/N) vs. Frequency (Hz) Graph 

For all excitation levels the result obtained with utilizing RDNM are consistent with 

the results of linear system modes. The contact states of each excitation level’s peak 

point are given in from Figure 3.46 to Figure 3.51. At lowest excitation level 𝐹 =

0.01⁡𝑁, the nodes around bolt hole are in complete stick state whereas node near the 
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edges are in full separation state. As the excitation level increases, stick-slip motion 

is seen at some of the nodes which were initially at stick condition. The resultant 

energy dissipation is apparent by examining the decreasing response level from 

Figure 3.45.As the excitation level increases the stick-slip motion with separation is 

seen at nodes located around edges whose normal load level is low. The asymmetry 

of contact states along x direction is due to fixed-free boundary condition. The 

relative displacement of right end is higher than the left end for 1st,2nd and 4th bending 

mode. 

The solution times of high-fidelity model with linear system modes and RDNM are 

given in Table 3.14. For all excitation levels, the computational time with RDNM is 

nearly %30 of the computational time of MSM with linear system modes. 

 

Figure 3.46. Contact state at the peak point of F=0.01 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 
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Figure 3.47. Contact state at the peak point of F=1 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation Green: 

Full separation) 

 

 

Figure 3.48. Contact state at the peak point of F=5 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation Green: 

Full separation) 
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Figure 3.49. Contact state at the peak point of F=10 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation Green: 

Full separation) 

 

 

Figure 3.50. Contact state at the peak point of F=20 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation Green: 

Full separation)  
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Figure 3.51. Contact state at the peak point of F=50 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation Green: 

Full separation)  

 

Table 3.14. Computational Times with Linear Modes and RDNM 

Excitation Force 

Value (N) 

Computational 

Time with 

Classical MSM 

(s) 

Computational 

Time MSM with 

RDNM (s) 

Reduction % in 

Computational 

Time with 

RDNM  

0.001 1025 304 70.4 

1 1178 315 73.2 

5 1197 331 72.3 

10 1149 336 70.8 

20 1216 338 72.2 

50 1239 382 69.2 
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3.2.1.1 First Reduction Step for Contact Model 

The same reduction method explained in Chapter 3.1.1.3 is applied in this step. The 

joint regions are selected by examining the normal load level along the nodes located 

at the mid-length of the contact surface. The normal load value along this path is 

given in Figure 3.53. The 12 joint regions and the corresponding element numbers 

are in given in Figure 3.53.  

 

Figure 3.52. Middle Section of Contact Surface 

 

Figure 3.53. Normal Load Values Along the Middle Section Path 



 

 

66 

 

Figure 3.54. Location of 12 Joint Region on Contact Surface 

The response obtained with linear system modes and 1 RDNM are given in Figure 

3.55 and Figure 3.56. Although there is slight shift of resonance frequencies at lower 

excitation levels, the peak response values at higher excitation levels are captured 

with 12 joint region definition. The results of RDNM are coherent with the results 

of obtained with linear system modes. Examining the reduction of computational 

time given in Table 3.15, it is apparent that utilization of 1 RDNM is more feasible. 

 

Figure 3.55.Normalized Response (mm/N) vs. Frequency (Hz) Graph for 12 Joint 

Region Utilizing 4 Linear System Modes 
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Figure 3.56.Normalized Response (mm/N) vs. Frequency (Hz) Graph for 12 Joint 

Region Utilizing 1 RDNM 

 

Table 3.15.The Reduction in Computational Times of 12 Joint Region with Linear 

Modes and RDNM 

Excitation 

Force 

Value (N) 

Reduction Percentage in 

Time (%) of 12 Joint 

Region Utilizing 4 Linear 

Modes 

Reduction Percentage 

in Time (%) of 12 Joint 

Region Utilizing 1 

RDNM 

0.001 17.0 78.1 

1 38.3 80.4 

5 26.4 79.7 

10 33.2 78.7 

20 29.6 78.9 

50 25.4 77.3 
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3.2.1.2 Second Reduction Step for Contact Model 

Unlike 1D dry friction element with constant normal load, the hysteresis behavior of 

the friction element also depends on the normal motion. There are individual 

hysteresis loops for different normal motion characteristics. For the simplicity of 

calculations, the contribution of normal motion to hysteresis is neglected while 

determining the reduced joint region parameters. The optimized normal stiffness 

values are taken as the same as the calculated tangential stiffness values. 

The optimization procedure explained in Chapter 3.1.1.4 is followed for the 

calculation process only considering the tangential stiffness (𝑘𝑢) and normal load 

values (𝜇𝑁). The reduced joint regions are constructed with 4 macroslip elements. 

The optimized stiffness and normal load values are given in Table 3.16. The 

hysteresis loop of 2nd joint region is given in Figure 3.57. 

The results of reduced joint region definition are given in Figure 3.58 and Figure 

3.59. The results at all excitation levels except 1𝑁 is consistent with the results of 

node-to-node model.  

 

Figure 3.57. Hysteresis Loop of 2nd Joint Region with 125 Elements and 4 Elements 
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Table 3.16. Parameters of Reduced Joint Element with 4 Elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝑘1(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘2(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘3(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘4(
𝑘𝑁

𝑚𝑚⁄ ) 

1st Joint 1730.8 2286.8 2288.3 2045.3 

2nd Joint 1734.8 2278.0 2625.6 2326.6 

3rd Joint 1734.8 2278.0 2625.6 2326.6 

4th Joint 1734.8 2278.0 2625.6 2326.6 

5th Joint 2733.4 2067.0 1825.9 2187.9 

6th Joint 3047.2 2002.7 2019.6 2437.4 

7th Joint 3047.2 2002.7 2019.6 2437.4 

8th Joint 3047.2 2002.7 2019.6 2437.4 

9th Joint 2103.2 2109.9 1882.0 1970.5 

10th Joint 2402.3 2590.0 2453.1 1936.5 

11th Joint 2402.3 2590.0 2453.1 1936.5 

12th Joint 2402.3 2590.0 2453.1 1936.5 

 μN1(N) μN2(N) μN3(N) μN4(N) 

1st Joint 35.5 195.3 352.9 243.7 

2nd Joint 213.1 20.1 205.9 505.9 

3rd Joint 35.5 238.8 575.1 156.5 

4th Joint 35.5 362.3 124.8 111.3 

5th Joint 244.2 190.4 232.8 334.0 

6th Joint 714.8 223.3 152.9 580.6 

7th Joint 410.3 349.5 188.4 127.0 

8th Joint 154.1 17.7 14.2 195.7 

9th Joint 305.6 203.0 143.0 37.1 

10th Joint 116.1 203.0 402.4 41.5 

11th Joint 177.7 203.0 208.7 281.7 

12th Joint 534.3 561.0 228.3 42.2 
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Figure 3.58. Normalized Response (mm/N) vs. Frequency (Hz) Graph of Reduced 

Joint of 4 Elements Utilizing Linear System Modes 

 

Figure 3.59. Normalized Response (mm/N) vs. Frequency (Hz) Graph of Reduced 

Joint of 4 Elements Utilizing RDNM 
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The solution times normalized with the computational time of node-to-node contact 

model with linear system modes are given in Table 3.17. For the highest applied 

excitation value of 50 N, the computational time is decreased to 3% from 75% for 

classical MSM. When RDNM is utilized in the solution process, this value further 

reduces to 2% from 77%. Since both the accuracy of the results and the decrease in 

computational time are better for results obtained with one RDNM, the advantage of 

utilizing RDNM is evident. 

 

Table 3.17. The Reduction in Computational Times of Reduced Joint Region of 4 

Elements with Linear Modes and RDNM 

Excitation 

Force 

Value (N) 

Reduction Percentage in 

Time (%) of Reduced 

Joint Region with 4 

Elements Utilizing 4 

Linear Modes 

Reduction Percentage in 

Time (%) of Reduced 

Joint Region with 4 

Elements Utilizing 1 

RDNM 

0.001 96.38 98.72 

1 96.85 98.88 

5 96.90 98.85 

10 96.75 98.74 

20 96.87 98.66 

50 96.81 98.47 

 

To examine the performance of the reduction methodology, the response of three- 

lap joint is calculated for the stiffness values given in Table 3.18. The result of high-

fidelity models is given in Figure 3.60. For all excitation levels, the response 

calculated with 1 RDNM is the same as the response calculated with linear system 

modes. The contact states represent in Figure 3.61 to Figure 3.66 are similar to states 

of 100⁡𝑘𝑁/𝑚𝑚 stiffness value. 
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Table 3.18. Tangential-Normal Stiffness and Friction Coefficient of 1D Dry 

Friction Element with Constant Normal Load 

𝑘𝑢 𝑘𝑣 𝜇 

50⁡ 𝑘𝑁 𝑚𝑚⁄  50⁡ 𝑘𝑁 𝑚𝑚⁄  0.1 

 

Figure 3.60. Normalized Response (mm/N) vs. Frequency (Hz) Graph 

 

Figure 3.61. Contact state at the peak point of F=0.01 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 
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Figure 3.62. Contact state at the peak point of F=1 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 

 

 

Figure 3.63. Contact state at the peak point of F=5 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 
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Figure 3.64. Contact state at the peak point of F=10 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 

 

 

Figure 3.65. Contact state at the peak point of F=20 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 
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Figure 3.66. Contact state at the peak point of F=50 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation Green: 

Full separation) 

 

Figure 3.67.The Comparison of Normalized Response (mm/N) vs. Frequency (Hz) 

Graph for Reduced Joint Definition with 4 Elements Utilizing 1 RDNM 

The responses of reduced joint definition for new stiffness value are given in Figure 

3.67. The response level calculated with 1 RDNM is similar to results of node-to-

node model’s results except excitation level of 1⁡𝑁.  
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To summarize, the three bolted joint assembly at which 1370 nodes are in contact is 

examined by utilizing 1D dry friction element with variable normal load. Similar to 

previous case studies, the contact model is reduced in two steps. In the first reduction 

step, the interested contact surface is divided into joint regions at which macroslip 

elements within each joint region are taken as parallel connected. In the second 

reduction step, the approximated microslip element is further reduced such that the 

hysteresis loops of the reduced joint element are the same as the joint elements of 

interest. In this step contribution of normal load variation to hysteresis loop is 

neglected. For both reduction steps, results of MSM with RDNMs and MSM with 

linear system modes are given to examine the performance of utilizing RDNM.  

3.2.2 Case Study Model 2: Four-Bolted Assembly 

The case study model is the same as the four-lap joint represented in Chapter 3.1.2. 

In this part of the study, 1D dry friction element with variable normal load is 

implemented in the mathematical model. The exaggerated deformation of four-

bolted lap joint is given in Figure 3.68. The corresponding gap distribution resultant 

at the end of preload is given in Figure 3.69. The redefined gap formula which 

includes the effect of clearance in-between surfaces is given in Equation ( 3.4). The 

responses at different excitation levels obtained with both linear system modes and 

1 RDNM is given in Figure 3.70.  

 

Figure 3.68. Exaggerated Deformation of Four-Bolted Lap Joint 
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Figure 3.69. Gap Distribution on Contact Surface 

 

Figure 3.70. Normalized Response (mm/N) vs. Frequency (Hz) Graph 

The contact states of peak points at each excitation level is given in from Figure 3.71 

to Figure 3.77. For lowest excitation level of 𝐹 = 0.001⁡𝑁, the nodes around bolt 

hole are in complete stick state. As the forcing level increases, nodes located near 

the outer edges start to slip. With increasing excitation level, the asymmetry of 

contact states along x direction becomes more apparent. This is due to fixed-free 

boundary condition and order of relative displacement along contact surface. The 

reduction in computational time resultant from the utilization of RDNM is given in 

Table 3.19. For highest excitation level, the computational time is reduced to 70%.  
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Figure 3.71. Contact state at the peak point of F=0.001 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 

 

Figure 3.72. Contact state at the peak point of F=1 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 

 

Figure 3.73. Contact state at the peak point of F=5 N (Red: Full stick motion; Blue: 

Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 
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Figure 3.74. Contact state at the peak point of F=10 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 

 

Figure 3.75. Contact state at the peak point of F=20 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 

 

Figure 3.76. Contact state at the peak point of F=30 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation) 
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Figure 3.77. Contact state at the peak point of F=50 N (Red: Full stick motion; 

Blue: Stick-slip motion without separation; Cyan: Stick-slip motion with separation 

Green: Full separation)  

Table 3.19. Computational Times with Linear Modes and RDNM 

Excitation Force 

Value (N) 

Computational 

Time with 

Classical MSM 

(s) 

Computational 

Time MSM with 

RDNM (s) 

Reduction Time 

of MSM with 

RDNM % 

0.001 1518 377 75.1 

1 1529 406 73.4 

5 1562 436 72.1 

10 1641 440 73.2 

20 1633 460 71.8 

30 1690 467 72.4 

50 1710 490 71.4 

 

3.2.2.1 First Reduction Step for Contact Model 

The reduction method explained in Chapter 3.1.1.3 is applied in this step. The joint 

regions are selected by examining the normal load level along the nodes located at 

the mid-length of the contact surface which are specified in Figure 3.78. The normal 
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load value along this path is given in Figure 3.79. The 16 joint regions and the 

corresponding element numbers are in given in Figure 3.80. 

The response obtained with linear system modes and 1 RDNM are given in Figure 

3.81 and Figure 3.82. Although there is slight shift of resonance frequencies at lower 

excitation levels, the peak response values at higher excitation levels are captured 

with 16 joint region definition. The results of RDNM are coherent with the results 

of obtained with linear system modes. Examining the reduction of computational 

time given in Table 3.20, it is apparent that utilization of 1 RDNM is more feasible. 

 

Figure 3.78. Middle Section of Contact Surface 

 

Figure 3.79. Normal Load Values Along the Middle Section Path 
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Figure 3.80. Location of 16 Joint Region on Contact Surface 

 

 

Figure 3.81. Normalized Response (mm/N) vs. Frequency (Hz) Graph for 16 Joint 

Region Utilizing 4 Linear System Modes 



 

 

83 

 

Figure 3.82. Normalized Response (mm/N) vs. Frequency (Hz) Graph for 16 Joint 

Region Utilizing 1 RDNM 

Table 3.20.The Reduction in Computational Times of 16 Joint Region with Linear 

Modes and RDNM 

 

Excitation 

Force 

Value (N) 

Reduction Percentage in 

Time (%) of 16 Joint 

Region Utilizing 4 Linear 

Modes 

Reduction Percentage 

in Time (%) of 16 Joint 

Region Utilizing 1 

RDNM 

0.001 41.6 81.7 

1 34.9 80.0 

5 32.1 79.2 

10 32.4 79.4 

20 28.9 78.9 

30 32.8 78.5 

50 35.4 77.8 
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3.2.2.2 Second Reduction Step for Contact Model 

The optimization procedure explained in Chapter 3.2.1.2 is followed for the 

calculation process only considering the tangential stiffness (𝑘𝑢) and normal load 

values (𝜇𝑁). The reduced joint regions are constructed with 4 macroslip elements. 

The optimized stiffness and normal load values are given in Table 3.21 and Table 

3.22. 

The results of reduced joint region definition are given in Figure 3.83 and Figure 

3.84. The result at lowest excitation level is the same as the result of node-to-node 

model whereas for other excitation levels FRFs are shifted slightly. 

Table 3.21.Optimized Stiffness Values of Reduced Joint Element with 4 Elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝑘1(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘2(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘3(
𝑘𝑁

𝑚𝑚⁄ ) 𝑘4(
𝑘𝑁

𝑚𝑚⁄ ) 

1st Joint 1796.9 1433.5 1352.4 1436.9 

2nd Joint 1634.4 1765.0 1784.7 1764.1 

3rd Joint 1634.4 1765.0 1784.7 1764.1 

4th Joint 1634.4 1765.0 1784.7 1764.1 

5th Joint 3286.0 2882.9 2826.9 2833.6 

6th Joint 3614.2 3183.9 3197.5 3195.9 

7th Joint 3614.2 3183.9 3197.5 3195.9 

8th Joint 3614.2 3183.9 3197.5 3195.9 

9th Joint 2180.3 2174.4 2550.9 2442.9 

10th Joint 2795.4 2796.8 2705.2 2731.5 

11th Joint 2795.4 2796.8 2705.2 2731.5 

12th Joint 2795.4 2796.8 2705.2 2731.5 

13th Joint 1682.7 1727.6 1558.5 2202.2 

14th Joint 2232.8 1763.7 2263.1 2065.3 

15th Joint 2232.8 1763.7 2263.1 2065.3 

16th Joint 2232.8 1763.7 2263.1 2065.3 
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Table 3.22. Optimized Normal Load Values of Reduced Joint Element with 4 

Elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reduction percentage in computational times for reduced joint region definition 

is given Table 3.23. For linear system modes computational time is reduced to 3% 

from 65%. For 1 RDNM, the computational time is reduced to 1% from 22%. Since 

accuracy of responses is similar for linear system modes and 1 RDNM, 

implementation of RDNM is more advantageous. 

 𝜇𝑁1(𝑁) 𝜇𝑁2(𝑁) 𝜇𝑁3(𝑁) 𝜇𝑁4(𝑁) 

1st Joint 18.6 147.4 90.3 164.6 

2nd Joint 50.5 176.7 90.3 164.6 

3rd Joint 50.5 117.7 166.9 116.1 

4th Joint 42.4 54.5 146.7 56.6 

5th Joint 591.9 517.0 267.7 277.3 

6th Joint 591.9 517.0 267.7 277.3 

7th Joint 263.5 185.3 267.6 277.3 

8th Joint 222.4 227.8 643.5 650.5 

9th Joint 324.9 317.7 320.7 253.8 

10th Joint 324.9 317.7 242.1 253.8 

11th Joint 324.9 317.7 140.1 587.0 

12th Joint 324.9 317.7 568.4 253.8 

13th Joint 107.5 156.2 149.4 148.4 

14th Joint 107.5 156.2 149.4 75.0 

15th Joint 206.6 213.9 149.4 55.9 

16th Joint 180.9 66.2 149.4 23.8 
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Figure 3.83. Normalized Response (mm/N) vs. Frequency (Hz) Graph of Reduced 

Joint of 4 Elements Utilizing Linear System Modes 

 

Figure 3.84. The Comparison of Normalized Response (mm/N) vs. Frequency (Hz) 

Graph for Reduced Joint Definition with 4 Elements Utilizing 1 RDNM 
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Table 3.23. The Reduction in Computational Times of Reduced Joint Region of 4 

Elements with Linear Modes and RDNM 

Excitation 

Force 

Value (N) 

Reduction Percentage in 

Time (%) of Reduced 

Joint Region with 4 

Elements Utilizing 4 

Linear Modes 

Reduction Percentage in 

Time (%) of Reduced 

Joint Region with 4 

Elements Utilizing 1 

RDNM 

0.001 97.0 98.9 

1 96.7 98.8 

5 96.8 98.8 

10 96.9 98.8 

20 96.8 98.8 

30 96.9 98.7 

50 96.9 98.6 

 

To summarize, the four bolted joint assembly at which 1693 nodes are in contact is 

examined by utilizing 1D dry friction element with variable normal load. Similar to 

previous case studies, the contact model is reduced in two steps. In the first reduction 

step, the contact area of interest is divided into joint regions considering the normal 

load variation across surface. In the second reduction step, the contribution of normal 

load variation to hysteresis loop is neglected while determining the optimized 

stiffness and normal load values. For all calculation steps, the accuracy of the 

response is preserved whereas the solution time is further reduced by implementing 

RDNM. 
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CHAPTER 4  

4 CONCLUSION 

To decrease the computational burden for obtaining accurate nonlinear dynamic 

response of bolted joints connections, a reduced order modeling method utilizing 

response dependent nonlinear modes is studied.  

The response dependent nonlinear modes are calculated by adding the contribution 

of the nonlinear force to stiffness matrix. The corresponding nonlinearity matrix is 

constructed by taking the stiffness value of each macroslip element as the real part 

of the ratio of the nonlinear force value to displacement.  

The contact model is reduced in two steps. In the first reduction step, the contact 

surface is divided into joint regions. The macroslip elements inside each joint region 

are connected in parallel such that the nonlinear characteristic of joint region is 

similar to microslip element. An artificial node is defined in-between contact 

surfaces. Another advantage of this reduction step is the reduction in the dimension 

of solved equation set. It was shown that the choice of joint regions can be made 

based on the normal load distribution along the contact surface.  

In the second reduction step, the approximated microslip element is further reduced 

such that the hysteresis loops of the reduced joint element are the same as the joint 

element of interest. The results are compared with the response of node-to-node 

contact model. For both reduction steps, the results obtained with RDNM is coherent 

with the results of node-to-node contact model and the calculation time is much less 

while using RDNM. Another advantage of utilizing RDNM is the increased stability 

of the nonlinear solver which is especially important for analysis of the large 

systems. 

The macroslip element with constant normal load assumption and variable normal 

load are included in models given in Chapter 3. The normal load values are taken 
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from the results of nonlinear static analysis conducted in commercial FEA software 

Abaqus. However, it should be kept in mind that normal load stays constant for 

specific design configurations. The motion in the direction of contact surface normal 

might introduce local separation of contact surfaces. The available reduced joint 

model only considers the tangential motion for the calculation of expected hysteresis 

loop. For further study, the formulae in the second reduction step can be extended to 

include the effect of normal load variation on hysteresis loop. 

In the first reduction step, the location of artificial node is taken at the center of the 

joint region. For further study the location of the artificial node hence the defined 

mode shape’s effect to results can also be examined.  
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