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A B S T R A C T   

The out-of-plane flexural bending capacity of masonry is a fundamental property for understanding the behavior 
of masonry structures. This study investigates the behavior of unreinforced masonry wallettes subjected to 
combined compression-flexural loading using the discrete element method (DEM), and provides a novel 
framework to estimate the masonry strength. A simplified micro-modeling strategy is utilized to analyze a 
masonry wallette, including the variation of the mechanical properties in masonry units and joints. Stochastic 
DEM analyses are performed to simulate brickwork assemblages, assuming a strong unit-weak joint material model 
typical of most masonry buildings, including historical ones. Once the proposed computational approach is 
validated against the experimental findings, the effect of spatial and non-spatial variation of mechanical prop-
erties is explored. Two failure types are identified: joint failure and brick failure. For each failure mechanism, the 
variability of the response and the effects of the modeling parameters on the load-carrying capacity is quantified. 
Afterward, Lasso regression is employed to determine predictive equations in terms of the material properties 
and vertical pressure on the wallette. The results show that the most important parameters changing the response 
are the joint tensile strength and the amount of vertical stress for joint failure, whereas the unit tensile strength 
dominates the response for brick failure. Overall, this research proposes a novel framework adopting validated 
advanced computational models that feed on simple test results to generate data that is further utilized for 
training response prediction models for complex structures.   

1. Introduction 

Masonry structures constitute a vast majority of residential and 
historical buildings worldwide. The workmanship, such as the 
morphology of the wall cross-sections, arches, etc., and the material 
used in the masonry construction reveal substantial differences in 
different regions of the world as this type of construction relies heavily 
on the local-construction culture and available resources [1,2]. Typi-
cally, this widespread construction technique consists of units, such as 
clay brick, stone blocks, adobe, and a binding material, e.g., cement or 
lime-based mortar, where each constituent has different mechanical 
properties. On the other hand, composite material characteristics of 
masonry are influenced by the mortar, unit, and unit-mortar-interface 

properties and their mechanical interaction. The considerable differ-
ence in stiffness and strength parameters of masonry unit and mortar 
joints yields weak planes at the interfaces where cracking and sliding 
failures are likely to occur, so-called strong unit-weak joint (SU-WJ) 
action. However, it is also possible to obtain a weak unit-strong joint 
(WU-SJ) response, where considerable damage is found in masonry 
units, primarily because of incompatible selection of mortar-type (stiffer 
and stronger than the units) or highly deteriorated/damaged bricks or 
blocks [3,4]. In both cases, the overall fracture pattern, deformability, 
and strength of masonry are controlled by the distinct features and 
mechanical interaction among the units and mortar joints. 

Various computational modeling strategies have been proposed in 
the last three decades to better understand the complex fracture 
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mechanism of masonry and the mechanics of masonry structures [5]. 
These strategies can be categorized as continuum and discontinuum- 
based solutions. The former technique represents the composite nature 
of masonry as a homogenous isotropic or orthotropic medium consid-
ering plasticity or other macro-scale constitutive laws (referred to as 
macro-modeling) [6–10]. The damage is smeared through the contin-
uous medium since no distinction between the units and mortar is made. 
The latter approach, called micro-modeling, implements the disconti-
nuities (displacement jumps) and mechanically interacting rigid/ 
deformable bodies in the numerical formulation [11]. The discontinuous 
finite element analysis (D-FEA) and the discrete element method (DEM) 
are the most common techniques used in micro-modeling [12–23]. 
Although the discontinuum models offer a detailed representation of 
inherent characteristics of the masonry and its mechanical behavior 
compared to the conventional continuum models, their computational 
demand and a large number of required input parameters prevent their 
widespread use. 

The mechanical properties of each constituent of the masonry often 
differ spatially, which may yield significant variation in the macro and 
mesoscale strength parameters of masonry. In this respect, probabilistic 
modeling of masonry structures has gained more attention in the last 
decades due to its promising features, such as explicitly considering the 
uncertainties in modeling parameters, quantifying the variability of the 
structural response, and the propagation of parameter uncertainties into 
response variables. Masonry units [3], structural components like ma-
sonry walls [24–30], pier-spandrel systems [31–33], buildings [34–36], 
and bridges [37–39] have been investigated using probabilistic assess-
ment. However, there is still a limited number of studies in the literature 
compared to their deterministic counterparts. This gap is especially 
prevalent for masonry units and small-scale assemblages like masonry 
prisms and wallettes. Experimental investigations testing the effect of 
SU-WJ and WU-SJ behavior on the macro-response of masonry under 
various load patterns, such as direct tension parallel to bed joints, 
combined compression-bending, or tension-bending, are limited in the 
literature. On the other hand, numerical investigations studying this 
phenomenon [3,40,41] have become more available without consid-
ering the associated uncertainties. 

2. Research motivation, novelty, and methodology 

There is a need for further experimental and analytical research, 
especially when the complex behavior of masonry subjected to the 
combined actions of compression, bending, shear, or torsion is consid-
ered. This need is amplified for detailed computational models consid-
ering uncertainty in the parameters and their spatial variation. One type 
of behavior where joint actions are observed is the horizontal bending of 
masonry, commonly observed in the out-of-plane behavior of masonry 
piers and spandrels. Horizontal bending can show complex behavior, 
including combined tension, shear, and torsion at the joints. The hori-
zontal bending strength, i.e., one-way out-of-plane flexural bending 
capacity of masonry, is a fundamental parameter for masonry design 
[42–44] and will be addressed in this study. 

The application of advanced statistical models, such as machine 
learning algorithms, in the structural assessment of masonry construc-
tions is limited due to the lack of data. Amongst a few examples, most 
research is dedicated to predicting masonry compressive strength 
[45–50], partly because masonry compression experiments are the most 
widespread. The database of masonry tests has been growing signifi-
cantly. However, it is not feasible to test all possible combinations, given 
the large variability of the masonry properties [45]. Also, challenges 
related to the data quality and heterogeneity of the database continue to 
exist [51]. To this end, two research questions lay the foundation of this 
research: (i) How can we improve our knowledge and predictive models for 
masonry structures in addition to extensive testing? (ii) Can response data be 
generated by leveraging less complicated and inexpensive tests? 

In the context of these general questions, this research aims to 
contribute to the understanding of masonry behavior, specifically under 
horizontal bending. We present and motivate a novel idea that adopts 
advanced computational modeling, which feeds on inexpensive and 
simple test results, to generate data for training response prediction 
models for more complicated structures. To this end, we first aim to 
accurately model the horizontal bending behavior of masonry wallettes. 
Discontinuum models are utilized and validated by comparing the pre-
dicted and observed responses. The discrete element method (DEM) 
[52] is used to simulate the composite behavior of brickwork assem-
blages based on the simplified micro-modeling strategy [53]. A masonry 
wallette is analyzed by explicitly representing the units and unit-mortar 
interfaces to address the combination of SU-WJ, which is typical for 
most masonry buildings, including historic masonry constructions. 
Elasto-plastic blocks are adopted to replicate the masonry units, and 
mortar joints are prescribed as zero-thickness interfaces. 

Once the proposed modeling approach is validated against experi-
mental findings presented in the literature, stochastic analyses are per-
formed on masonry wallettes to quantify the effects of the variability of 
modeling parameters on the overall behavior and load-bearing capacity. 
The uncertainty in the masonry properties is considered by explicitly 
taking into account the variation in the elasticity modulus and tensile 
strength of brick units and the joint tensile strength and friction angle of 
masonry. The effect of vertical pressure on masonry behavior is also 
considered by employing five different pre-compression stress levels. In 
stochastic analyses, a total of 1000 sets of parameters are generated, and 
computations are conducted for each set. In half of the analysis, the 
mechanical properties of the masonry are assumed to be spatially con-
stant (i.e., no spatial variation of material properties). In the remaining 
half, the spatial variation of the joint and unit properties for each wallet 
is considered, and the effects of spatial variation on the wallette’s 
behavior are evaluated. 

Finally, using the dataset created by the numerical analysis, pre-
dictive equations to estimate the load-bearing capacity of the wallettes 
are developed and compared with experimental results from the litera-
ture to test the prediction models. Using the presented approach (nu-
merical and predictive models) in conjunction with experimental 
results, this study targets to alleviate broad and costly experimental 
campaigns and to improve the predictive equations provided by 

Fig. 1. A deformable block and point-contact representation.  
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guidelines and standards. 

3. Computational background of DEM: deformable blocks 

To be able to realistically simulate the behavior of small-scale stone 
or brickwork assemblages (e.g., prisms and wallettes) under complex 
loading, it is essential to explicitly consider masonry units and mortar 
joints in the numerical formulation. The detailed representation of 
masonry texture provides an accurate prediction of the capacity and a 
better understanding of the fracture mechanisms in composite structures 
of masonry. Furthermore, inherent material uncertainty, both spatial 
and non-spatial, can be addressed. 

In the present research, the masonry wallette is represented by a 
group of deformable polyhedra in a discontinuum-based setting where 
each masonry unit is expanded up to the half-thickness of the mortar 
joints so that units are simulated as rectangular continuum blocks, 
whereas mortar joints are represented by zero-thickness interfaces. 
Hence, unlike methods tailored for continua (e.g., standard finite 
element analysis), no continuity is sought between the pre-defined 
blocks, which can independently rotate, slide or displace, relying on 
the surrounding forces within the discontinuous system. The action/ 
reaction forces developing between the adjacent blocks are obtained 
using orthogonal springs (kn, ks) defined at the sub-contact points along 
the contact surface; see Fig. 1. 

The deformability of discrete blocks is introduced by discretizing 
them into constant strain tetrahedra (internal three-dimensional mesh), 
as shown in Fig. 1a, where the vertices are denoted as gridpoints 
(nodes). The motion of a deformable discrete block is computed based 
on Newton’s second law, which is applied for each gridpoint defined 
within the block domain. The governing differential equations are 
solved numerically via explicit finite difference formulation, where 
Cundall’s local non-viscous damping is adopted to obtain quasi-static 
solutions efficiently [54]. In Equation 1, the central difference solution 
of the equations of motion for a gridpoint is presented. Note that the new 
velocities (u̇t+Δt/2

i ) are calculated at the mid-intervals of the time step 
(Δt). 

u̇t+Δt
2

i = u̇t− Δt
2

i +
Δt
m

(

ΣFt
i − α

⃒
⃒ΣFt

i

⃒
⃒sgn

(

u̇t− Δt
2

i

))

(1) 

Here, ΣFi, m and α are the summation of force vectors (also referred 
to as nodal unbalanced force), gridpoint (nodal) mass representing the 
sum of mass contributions from all tetrahedra having the gridpoint in 
common, and non-dimensional damping constant which is typically set 
to 0.8 for fast convergence [54]. Also, sgn( • ) is the sign function, which 
imposes the following condition: sgn(ξ) = 1, if ξ ≥ 0; sgn(ξ) = − 1, if 
ξ < 0. The total force vector includes external forces, sub-contact forces 
(only for gridpoints prescribed at the block surface), body forces due to 
gravity, and the contribution of the internal stresses in the tetrahedral 
elements adjacent to the gridpoint. The obtained nodal velocities are 
then utilized to update block positions and calculate the relative contact 
displacements employed to determine contact forces. The gridpoint 

displacements can then be obtained using Equation 2. Typically, the 
Coulomb-Slip joint model with tension cut-off is utilized in the literature 
to simulate the mechanical behavior at the contact points, which re-
quires initial and residual cohesion (c0, cres), friction angle (ϕ0, ϕres), and 
tensile strength (ft). Although the standard/simple contact models pro-
vide an acceptable compromise between accuracy and required input 
parameters, they may yield significant underestimation and severe local 
instabilities in the solutions, as demonstrated in [55]. Once the contact 
forces are obtained, they are utilized in the equations of motion to 
calculate new gridpoint velocities. 

ut+Δt
2

i = ut− Δt
2

i +

(

u̇t+Δt
2

i

)

Δt (2) 

Failure within the blocks (consisting of constant strain tetrahedral 
(CST) elements) is simulated using the elasto-plastic material model. 
Based on the known velocity field, the incremental components of the 
strain tensor (Δεij) can be derived from each CST as follows: 

Δεij =
Δt
2

⎛

⎝∂u̇i

∂xj
+

∂u̇j

∂xi

⎞

⎠ (3) 

The mixed discretization technique is adopted to avoid any mesh- 
locking response due to CST elements and provide more volumetric 
flexibility, as detailed in [56,57]. An incremental numerical algorithm is 
used to compute and update the new stress state for each CST corre-
sponding to the time at t + Δt. Note that the nonlinear material model is 
simulated within the framework of an explicit solution scheme in DEM 
by relying on predictor (elastic guess) and corrector procedure to update 
the stress state based on the Mohr-Coulomb failure criteria. Specifically, 
at each time step principle elastic strain increments (Δeelastic

i ) are ob-
tained to get principle stress increments (Δσi) that is computed by 
substructing the plastic strain (Δeplastic

i ) from total increments (Δei) based 
on the plasticity theory. Then, the new stress state (σt+Δt

i ) is obtained by 
adding the computed stress increment to the previous one (σt

i) and is 
updated according to the prescribed failure criterion. Therefore, the 
initial elastic guess is replaced by plastic corrections in case the failure 
criterion is violated, and the new stress state is updated by mapping it 
back to the yield surface. It is also important to note that a perfectly- 
plastic non-associated flow rule for shear and a softening associated 
flow rule for tensile failure is adopted during the analyses. The readers 
are referred to [58] for further details. Throughout this research, a 
commercial three-dimensional discrete element code, 3DEC, developed 
by ITASCA, is used, in which the explained elasto-plastic constitutive 
model for blocks is readily provided. However, instead of using standard 
brittle contact models mentioned earlier, coupled fracture energy-based 
contact constitutive laws, recently implemented by the authors [59], are 
adopted to better capture the material behavior at the mesoscale. It is 
worth noting that the adopted contact models do not include any stiff-
ness degradation in the unloading regime, which makes them applicable 
to pushover types of analysis in line with the scope of this study (e.g., 

Fig. 2. Contact constitutive laws in the normal and shear directions: tension (left) and shear (right).  
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monotonic loading instead of cyclic). 
Since the primary motivation of this research is to explore the out-of- 

plane response of masonry wallettes, only tensile and shear failure 
modes at the joints are considered. The proposed contact models are 
shown in Fig. 2, where linear softening branches are defined for post- 
peak regimes controlled by the mode-I and II fracture energies (GI

f , 
GII

f ) once the contact stresses go beyond the peak stresses. It is worth 
noting that the relative contact displacements in normal (un) and shear 
(us) directions are utilized in contact stress-displacement laws that are 
later converted to forces by multiplying them with the assigned contact 
area. Similar to deformable blocks, a contact stress update routine is 
executed based on the proposed contact models, where, at each step, the 
computed contact stresses are corrected (if applicable) according to the 

defined failure criteria; see Fig. 2. The adopted contact model is written 
in C++ and compiled as a dynamic link library (DLL) into 3DEC soft-
ware using the user-defined constitutive model option. 

Thus, a dynamic computation cycle is run in the pseudo-time 
domain. Note that the explicit numerical procedure of DEM provides a 
conditionally stable solution. As a result, it requires limitations in the 
timestep to satisfy the stability criterion for the computation of inter- 
block relative displacement and internal block deformation. To ensure 
numerical stability, a sufficiently small-time step less than the critical 
time step, Δtc (Equation 3) is adopted. 

Δtc = 2
̅̅̅̅̅̅m
kgp

√

(4) 

where kgp represents the nodal stiffness obtained by adding zone and 
contact (only the gridpoint on the faces) stiffness [60]. 

In the next section, validation of the proposed modeling strategy is 
presented by comparing it with the experimental results. 

4. Validation: deterministic analysis 

The horizontal bending strength, i.e., one-way out-of-plane (OOP) 
flexural bending capacity, is a fundamental parameter for masonry wall 
design [42]. This type of behavior is commonly observed in the seismic 
behavior of perforated walls. Compared to a one-way vertical bending 
associated with a bed-joint failure, horizontal bending usually displays a 
complex torsion-shear interaction at unit-mortar interfaces. Moreover, 
the confining action of the vertical stress can increase the torsional 
resistance developing at the bed joints [42]. To explore this phenome-
non, Willis et al. [61] performed a comprehensive testing campaign 
using unreinforced masonry wallettes with clay brick dimensions of 230 
⨯ 65 ⨯ 114 mm3 (length ⨯ height ⨯ width) and 10 mm thickness of mortar 
joints. The reference experiment is utilized as a benchmark study in this 
section. The illustration of the test setup, including loading and 
boundary conditions, is shown in Fig. 3. The adopted mechanical 
properties for blocks and joints are given in Table 1. The readers are 
referred to Willis et al. [61] for detailed information about the 
experiment. 

The experimental and numerical results are presented in Fig. 4, 
where the vertical compressive stress is set to σ = 0 and σ = 0.15 MPa 
and applied prior to the horizontal load. As can be seen from the results 
(Fig. 4), the proposed modeling approach predicts well the ultimate load 
capacity of the wallette as well as its initial stiffness and post-peak 
behavior. In this regard, it is worth noting that the employed contact 
constitutive law uses constant stiffness (kn, ks) which is independent of 
the vertical pressure (or normal stress). However, the stiffness of 
masonry-like materials may be affected by the vertical pressure and, for 
dry-stacked masonry, shows a nonlinear trend even in the linear elastic 
regime, demonstrated and discussed in [62]. This phenomenon can also 
be noticed in Fig. 4, where a higher initial stiffness was obtained in the 
reference study, even if more tests would be needed to confirm this 
result. Despite this, a good overall match is obtained between the 
experimental results and the proposed discontinuum-based modeling 
strategy, which will be further utilized for stochastic analysis in the 
following section. 

5. Flexural behavior of masonry wallette: stochastic analyses 

The mechanical properties of masonry structures are probabilistic 
due to the inherent variability in masonry constituents, the construction 
features, and the uneven degradation of the material [63]. Furthermore, 
the loading and boundary conditions, which can significantly affect and 
alter structural behavior and capacity, contribute to the uncertainty. To 
this end, stochastic models provide more realistic solutions for structural 
engineering problems [64]. As mentioned earlier, these uncertainties 
have been recognized by the research community, and probabilistic 

Fig. 3. Illustration of the reference study, including the loading and boundary 
conditions, RS: Roller Support – brickwork wallette subjected to combined 
vertical stress and horizontal bending. 

Table 1 
Masonry unit (block) and joint properties used in the discontinuum model.  

Eb(GPa) v( − ) f t,u(MPa) cu(MPa) GI
f ,u(N/m) 

15 0.2 3.75 1.5 ft 100 
kn ,ks(GPa/m) f t,j, cj(MPa) ϕ0,ϕres(◦) GI

f ,j(N/m) GII
f ,j(N/m) 

165, 0.4 kn 0.30, 0.36 35, 35 9 10 GI
f,j  

Fig. 4. Force-deflection curves: Comparison between experimental results [61] 
and proposed DEM-based analysis. 
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assessment of masonry structures has recently been employed for 
various structural typologies [24,29–31,34,37]. While such studies 
showed the importance of stochastic modeling in predicting the 
behavior and capacity of masonry, they also demonstrated a further 
need for quantifying the uncertainties included in the analysis. 

5.1. Sampling of the model parameters 

In the probabilistic analysis approach, the unit and joint properties 
are considered deterministic, random, or dependent variables. The most 
sensitive parameters associated with the strength of masonry wallettes 
are designated as random variables. Moreover, the parameters indi-
cating significant variations based on the experimental findings are also 
taken as random variables. As such, throughout this study, the joint (or 
bond) tensile strength (ft,j), the unit (brick) tensile strength (ft,u), the 
joint friction angle (ϕ), and the elasticity modulus of masonry units (Eb) 
are considered random variables in the stochastic analysis. Furthermore, 
the cohesion of the bricks and joints are defined as variables dependent 
on the unit (ft,u) and joint tensile strength (ft,j), respectively, using the 
following relationships: cu = 1.5ft,u and cj = 1.2ft,j. Similarly, the mode-I 
and II fracture energies (GI

f and GII
f ) are calculated based on the strength 

values suggested in [65,66]; hence, they are treated as dependent var-
iables. Moreover, other relationships are adopted based on the recom-
mendations given in the literature [67]. In Table 2, both random and 
dependent variables are presented. 

A probability distribution is assigned to each random variable for the 
sampling process. The unit and joint tensile strength and the elasticity 

modulus of bricks follow a lognormal distribution to prevent negative 
values during sampling, similar to the related literature [34,68]. The 
normal distribution is utilized for the joint friction angle [3,24]. The 
mean and the coefficient of variation (COV) of the tensile strength of 
units are obtained from experimental results [69]. The COV of the joint 
tensile strength is determined as 0.40 based on the highly scattered test 
results [42,70]. 

The data sampling is performed after defining the probability dis-
tributions for the random variables. The Latin Hypercube Sampling 
(LHS) method [71] is used to derive the sample values from each 
probability distribution. It is assumed that a 50% correlation exists be-
tween Eb and ft,u in order to prevent unrealistic cases of high brick tensile 
strength accompanied by very low elasticity modulus. No other corre-
lation is defined between the random variables. Note that the sampling 
procedure is slightly different for the non-spatial and spatial stochastic 
analyses. For the non-spatial analysis, where the spatial variation of the 
variables is not considered, 100 sample values are generated for each 
random variable to be used in the simulations. In every Monte Carlo 
simulation, each parameter has a single value that is uniform over the 
entire structure. Therefore, each of the 100 sample values of a variable is 
being used in 100 different simulations of the wallette response. Five 
vertical pre-compression stress levels are considered in the analyses: 0, 
0.075, 0.15, 0.25, and 0.50 MPa. The same 100 samples are used in 
every loading scenario, resulting in 500 simulations. The number of 
simulations is determined by observing the change in the average 
maximum force obtained from the analyses. For instance, Fig. 5 displays 
the variation in the mean of the maximum force with an increasing 
number of analyses when the vertical stress is 0.50 MPa, and the vari-
ation in the mean maximum force stabilizes after approximately 80 
simulations. Therefore, a minimum of 100 analyses can be considered to 
sufficiently represent the variation in the obtained maximum force for 
each set of analyses. 

For the spatial stochastic analysis, the parameter values are defined 
as variables adopting the following approach. First, an identification 
number is defined separately for each joint (or contact plane) and ma-
sonry unit in the discrete block system, as shown in Fig. 6. There are 24 
masonry units and 38 joints considered. Using the prescribed distribu-
tions given in Table 2 and LHS, different tensile strength and elasticity 
modulus values are assigned to each of the 24 masonry units, whereas 
different bond tensile strength and friction angle values are assigned to 
each joint. Therefore, in each of the 100 simulations, 24 brick properties, 
and 38 bond properties are sampled. Similar to the non-spatial analyses, 
the identical vertical stress levels are considered using the same 
parameter values at the units and joints; hence, a total of 500 simula-
tions are conducted. 

5.2. Non-spatial analysis 

This section summarizes the results of the numerical analysis where 
the spatial variation in the random variables is ignored, i.e., where the 
value of each random variable is constant throughout the entire wall. As 
a result of the numerical analysis, the wallettes displayed two distinct 
failure types, referred to as “brick failure” and “joint failure” hereafter. 
Joint failure is denoted as the separation and/or sliding displacement of 
contacts, whereas brick failure refers to the cracking of bricks accom-
panied by joint failure. Fig. 7 illustrates an example of each failure 
pattern. It is worth noting that these two cases are separated using an 
automated code-based procedure. Specifically, the results of computa-
tional models are grouped by monitoring the plastic strains associated 
with the tensile damage in bricks representing the cracking failure in 
masonry units. A similar force–displacement graph is observed for brick 
and joint failures within each group. For example, the joint failures have 
a smooth plateau or a descending branch after the inelastic behavior 
starts, but the brick failure shows a more complex behavior with stress 
drop(s) due to cracking in the units. The force–displacement curves 
separated for each failure pattern at different vertical pressure levels are 

Table 2 
Information for Strong Unit - Weak Joint Combination.  

Random 
Variable 

Probability 
Distribution 

Mean 
(μ) 

Coefficient of 
Variation 
(COV) 

ft,j(MPa) Lognormal 0.3  0.40 
ft,u(MPa) Lognormal 3.75  0.25 
ϕj(◦) Normal 35  0.10 
Eb(MPa) Lognormal 15,000  0.30 

Dependent 
Variable 

Relationship 

cj 1.2ft,j 
GI

f ,j 0.03ft,j 
GII

f ,j 10GI
f ,j 

cu 1.5ft,u 

GI
f ,u 0.04f0.7

t,u 

kn Eb × Em

t × (Eb − Em)

t: Mortar joints thickness (0.01 m), Em: Mortar elastic modulus (≈ 0.1Eb)  

Fig. 5. Example of the average maximum force vs. the number of simulations 
(vertical stress of 0.50 MPa). 
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given in Appendix (Fig. 15). 
The results also highlight the prominent effect of the vertical stress 

on the OOP loading capacity of the masonry wallettes, see Table 3. With 
the increasing vertical stress, the maximum load capacity increases 
significantly. It is noted that the increase is more substantial for the joint 
failure than the brick failure since the cohesive bond strength at the 
horizontal joints increases with the normal stress, leading to a delay in 
the failure in the joint and resulting in higher load-bearing capacity. The 
mean load capacity increased by 64.5% and 16.7% for joint and brick 
failures, respectively, when the normal stress is increased from null to 
0.5 MPa. On the other hand, the variability of the load capacity de-
creases considerably for the joint failure mode with an increase in the 
normal compressive stress, as indicated in Table 3 with the associated 

Fig. 6. Numbering (a) contact surface for joints and (b) masonry units.  

Fig. 7. Fracture mechanism obtained from the computational model: (a) joint (b) brick failure.  

Table 3 
Summary of the results - non-spatial analysis.   

Fmax(kN)  

Joint Failure Brick Failure All Data 

Vertical Pressure (MPa) Mean COV Mean COV Mean COV 

0  10.84  0.30  13.59  0.22  11.17  0.30 
0.075  11.72  0.25  14.43  0.26  12.15  0.27 
0.15  12.76  0.23  14.58  0.22  13.20  0.23 
0.25  14.17  0.21  14.99  0.19  14.49  0.20 
0.50  17.83  0.14  15.86  0.19  16.28  0.18  

Fig. 8. Influence of the parameters on the OOP load capacity of wallettes (Brick failure, σv=0.25 MPa).  
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COV values. As can be seen, the COV decreases from 30% to 18% when 
all data are considered. The decrease is even more paramount for joint 
failure, whereas brick failure indicates a minor change in terms of ca-
pacity and its COV. 

Additionally, the influence of the material properties on the ultimate 
load is investigated for both failure modes by inspecting the correlation 
between the material properties and the load-carrying capacity. Here, 
the degree of correlation is represented by Pearson product-moment 
correlation coefficient, ρx,y, given in Equation 4. The correlation coef-
ficient quantifies a linear statistical dependence between two random 
variables (x, y) and ranges between 0 and 1, indicating zero and full 
correlation, respectively. 

ρx,y =
Σ(xi − x)(yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(xi − x)2
(yi − y)2

√ (4) 

Fig. 8 and Fig. 9 illustrate the effect of the variables on the OOP load- 
carrying capacity of wallettes for the vertical stress of 0.25 MPa, for 
brick and joint failure, respectively. Further presented in the legend of 
Fig. 8 and Fig. 9 is the correlation of each parameter with the lateral 
load-carrying capacity computed using Equation 4. Specifically, a strong 
correlation is noted between the masonry unit parameters and the load- 
carrying capacity for the brick failure mode (Fig. 8), as expected. 
Moreover, a 98% linear correlation is found between the joint tensile 

strength (note that this property is also linked to the joint cohesion) and 
the load capacity in joint failure mode; see Fig. 9. These figures also 
display how the considered variables change concerning their mean 
values for each failure mode. For example, in Fig. 8 for the brick failure, it 
is observed that the joint tensile strength (ft,j) values are often higher 
than their mean values, as indicated by the majority of the points being 
on the right hand side of the zero line, which means that the higher joint 
strength is more likely to be associated with brick failures. 

The correlation of the load-carrying capacity of the wall with each of 
the random variables considered in the stochastic analysis is presented 
in Fig. 10 for different levels of vertical stress. This quantifies the effect 
of each modeling parameter on the wallette OOP load-carrying capacity. 
For the brick failure mode, the capacity of the wallette is strongly 
correlated, unsurprisingly and above 90%, with the brick tensile 
strength (ft,u). A physically meaningful correlation between the capacity 
and elasticity modulus of bricks (Eb) is also observed (between 65 and 
80%). It is also interesting to observe that, for the brick failure mode, the 
correlation between the capacity of wallettes and the joint tensile 
strength (ft,j) or the elastic modulus of bricks decrease with increasing 
vertical stress. In terms of joint failures, the wallette strength is almost 
directly correlated with the joint tensile strength for low vertical 
stresses. With the increasing normal stresses, the effect of the joint 
friction angle (ϕ) on the load carrying capacity of the wallette increases. 

Fig. 9. Influence of the parameters on the OOP load capacity of wallettes (Joint failure, σv=0.25 MPa).  

Fig. 10. Change of the correlation coefficient values with respect to the vertical pressure: (Left) brick failure, (Right) joint failure.  

S. Gonen et al.                                                                                                                                                                                                                                   



Engineering Structures 278 (2023) 115492

8

Similarly, the correlation coefficient between the Eb and wallette 
strength increases because higher values of brick elasticity modulus 
cause joint failures, which at the same time result in higher capacity due 
to the increased normal stress. 

5.3. Spatial analysis 

In this section, the results of the numerical analysis where the spatial 
variation of the random variables throughout the wallette is considered 
will be discussed. Similar to the non-spatial analysis, brick and joint 
failures are grouped using an automated code-based procedure. Force- 
displacement curves separated for brick and joint failures for all verti-
cal stress levels can be found in Appendix (Fig. 16). The results of the 
spatial analyses are summarized in Table 4. It is noted that the wallette 
strength increases significantly with the increasing vertical stress. A 
substantial increase is found for the joint failure, with an 88% change 
between the zero and maximum vertical pressure (0.50 MPa), whereas a 
less pronounced effect is obtained for brick failure (40.4%). It should be 

noted that when all data are considered, the increase is 46.7%, which is 
almost the same as the increase observed in the first case where the 
spatial variation in the random variables was ignored (45.7%). 

Regarding the variability of the load capacity, the COV values are 
much smaller in the case of spatial analysis compared to the non-spatial. 
In the case of joint failure, the COVs slightly decrease with the increasing 
normal stress. As mentioned earlier, brick failure displays increasing 
variability in the wallette capacity as the vertical pressure increases. 
This increase is associated with the increasing number of brick failures 
and the variability of the unit tensile strength. In other words, the 
wallette strength is affected by the variability of the brick tensile 
strength (ft,u), spatially varying based on the statistical data given earlier 
in Table 2. 

A noticeable outcome of the vertical pressure is a change in the 
number of failure modes. The relationship between the vertical stress 
and the percentage of the observed failure modes is plotted in Fig. 11 for 
the two cases where the spatial variation is ignored and considered. As 
depicted in the plot, the percentage of the cases failing in brick failure 
mode increases almost linearly with the normal stress for both cases of 
spatial and non-spatial variation. This trend also implies that with a 
further increase in vertical pressure, it may not be possible to observe 
joint failures anymore. It is worth recalling that brick failure includes 
brick cracking followed by joint separation. The total number of joint 
and brick failures is 330 and 170, respectively, in the case of the non- 
spatial analysis. On the other hand, the spatial analysis has 258 joint 
failures and 242 brick failures. 

Table 4 
Summary of the results - spatial analysis.   

Fmax(kN)  

Joint Failure Brick Failure All Data 

Vertical Pressure (MPa) Mean COV Mean COV Mean COV 

0  10.97  0.06  11.38  0.04  11.05  0.06 
0.075  12.14  0.06  12.15  0.05  12.14  0.05 
0.15  13.44  0.06  13.00  0.06  13.26  0.06 
0.25  15.29  0.05  14.04  0.08  14.57  0.08 
0.50  20.62  0.04  15.97  0.13  16.21  0.14  

Fig. 11. Percentage of the failure modes vs. the vertical pressure levels.  

Fig. 12. Comparison of maximum stresses obtained from DEM and Equation 10: (a) DEM vs. Equation 10a; DEM vs. Equation 10b.  

Fig. 13. Prediction error for joint failure.  
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6. Prediction of wallette strength 

After classifying the failure types and the effect of modeling pa-
rameters on the OOP capacity of the masonry wallettes, the question 
remains as to whether we can accurately predict the wallette strength for 
the given configuration and boundary conditions with limited infor-
mation, i.e., without conducting numerical analysis or extensive tests. 
The prediction can be made using parametric models such as explicit 
equations or non-parametric models like support vector machines (SVM) 
or artificial neural networks (ANN), which apply an algorithm to the 
data and do not have a closed-form solution. Ultimately, these predic-
tion models can be used to estimate the OOP load-carrying capacity of 
the masonry wallettes. In this regard, a linear regression approach is 
followed using only the joint tensile strength (ft,j), unit tensile strength 
(ft,u) and the vertical pressure (σv) and explicit formula in terms of these 
predictor variables is provided. These parameters are relatively easier to 
obtain in a standard construction materials laboratory. On the other 
hand, obtaining the elasticity modulus of bricks (Eb) and joint friction 
angle (ϕ) requires more effort and a complex experimental setup. 

Linear regression is one of the simplest and most commonly used 
regression techniques. The response is modeled as an explicit equation 
in terms of the predictor variables and for an input vector of x = (x1,x2,

⋯,xp), the real-valued response y is estimated. A linear regression model 
has the form given in Equation 5. 

f (x) = w0 +
∑p

j=1
wjxj (5) 

Here, wj are the coefficients (or unknown parameters) of the model 

and p is the number of input parameters. The coefficients of the model 
are estimated using a set of predictor variables and response data, i.e., 
(x1, y1), ⋯, (xn, yn). Each xi = (xi1, xi2,⋯, xip) is a vector of predictor 
variables for the ith case. The estimation is often performed by using least 
squares, in which the coefficients (wj) are selected to minimize the re-
sidual squared error or the residual sum of squares (RSS) [72]. 

RSS(w) =
∑n

i
(yi− f (xi))

2
=
∑n

i=1

(

yi − w0 −
∑p

j=1
wjxij

)2

(6) 

The least squares estimates often have low bias, but the large vari-
ance and small changes in data may result in a very different set of co-
efficients. It is possible to sacrifice a little bias by shrinking the 
coefficients (or setting some of them to zero) and increasing the pre-
diction accuracy. This regularization technique is called “Least Absolute 
Shrinkage and Selection Operator” (Lasso) [73] and is used in this study 
to determine the coefficients of the regression model. In Lasso regres-
sion, the coefficients are shrunk by imposing a penalty on their size. 
Introducing the penalty term reduces the variance of the coefficients and 
minimizes the prediction error (RSS). The Lasso estimate is defined by 
Equation 7. 

ŵlasso
= argmin

w

∑n

i=1

(

yi − w0 −
∑p

j=1
wjxij

)2  

subject to
∑p

j=1

⃒
⃒wj
⃒
⃒ ≤ t (7) 

Equation 7 can be written in the equivalent Lagrangian form, as 

Fig. 14. Comparison of the experimental results [69] against the proposed formula (Equation 10a-b).  
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follows: 

ŵlasso
= argmin

w

{
1
2
∑n

i=1
(yi − w0 −

∑p

j=1
wjxij)

2
+ λ
∑p

j=1

⃒
⃒wj
⃒
⃒

}

(8) 

where λ ≥ 0 is a tuning parameter and controls the amount of 
shrinkage applied to the estimates. The larger the values of λ, the greater 
the shrinkage of the coefficients toward zero. Note that a one-to-one 
correspondence exists between the parameters t and λ, given in Equa-
tions 7 and 8 [72]. The Lasso regression imposes the penalty term on the 
l1 norm of the coefficients. Because of the form of the Lasso penalty, the 
coefficients of the insignificant variables shrink to zero while the most 
significant variables are retained, i.e., there is automatic variable se-
lection [74]. 

In this study, Lasso regression is carried out to obtain the response 
estimates ŷ using the predictor variables x = (ft,u, ft,j, ft,u2

, ft,j2, σv). The 
dataset from the non-spatial analysis only is used as this approach rep-
resents a real-world application better. The value of the lambda 
parameter is determined by observing the changes in the mean square 
error (MSE) given in Equation 9. Five-fold cross-validation is applied to 
assess and improve the predictive performance of the regression model. 
In each round of cross-validation, the dataset is partitioned into a 
training set and a test set. In this case, the dataset is divided into five 
randomly chosen subsets of roughly equal size. Four subsets are used to 

train the model, while the remaining subset is used to validate the 
trained model. This process is repeated five times until all subsets are 
used once to test the model. The readers are referred to Hastie et al. [72] 
for further information on the cross-validation techniques. 

MSE =
1
n
∑n

i=1
(y − ŷ)2 (9) 

The data sets of brick and joint failures are used separately in Lasso 
regression to obtain the coefficients and the intercepts of the linear 
regression equations. Consequently, two formulas, one for each failure 
mode, are given in Equation 10. Equations 10a and 10b predict the 
wallette strength (in MPa) for joint and brick failures, respectively. Here, 
it should be noted that the forces are converted to bending stresses using 
σ = 6M/(bh2), as strength is represented in terms of stress capacity, in 
line with [67] and engineering applications. The moment generated by 
lateral loading is M = 0.1375 • P (in kN.m), base is b = 0.44 m and 
height h = 0.114 m. The maximum stress obtained from the computa-
tional models and the predictions made by Equation 10 are compared in 
Fig. 12. The prediction error is calculated in terms of its absolute value 
and ratio (%) to the response value, presented in Fig. 13. The figure 
shows that most predictions are in the range of ± 10% of the response 
values. Also, the mean average prediction percentage (MAPE) error is 
3.71 %. 

Fig. 15. Force-displacement curves for non-spatial analyses: brick failure (left) and joint failure (right) when the vertical pressure is 0 (top) and 0.5 MPa (bottom).  
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σJF = 0.24+ 0.017ft,u + 4.515ft,j + 2.46σv (10a)  

σBF = 0.53+ 0.50ft,u + 0.176ft,j (10b) 

Only apriori information about the values of the predictor variables is 
required to predict the wallette strength, which will be the lesser of the 
two estimates. In other words, to estimate the failure type and wallette 
strength, Equations 10a and 10b are used, and the lower value is taken 
as the wallette capacity in horizontal bending. The failure type will be 
associated with the lower strength estimate. This approach is applied, 
and the results obtained from Equation 10 are compared to the experi-
mental findings presented by Willis [69], as shown in Fig. 14. The 
proposed equations for joint and brick failure modes are plotted 
considering the mean values of ft,j and ft,u given in Table 2. Therefore, 
only one deterministic value for each of these two variables is taken, and 
these values can practically be the mean values obtained from the 
relatively simple component tests of masonry. To better evaluate the 
comparison of test and prediction values, the standard deviations in 
Table 3 for the force capacity are used to offset the mean prediction 
values and plot the shaded regions in between. 

Additionally, two lower-bound tensile strength formulations for a 

masonry wallette (ft,M) subjected to tension parallel to bed joints, rec-
ommended in [67], are compared against the experimental results and 
proposed expressions. The first formula corresponds to the stepped 
cracking or joint failure (Equation 11) in the absence of vertical pres-
sure; hence it gives conservative predictions, whereas the second one is 
related to the brick failure (Equation 12), assuming the masonry tensile 
strength equal to half of the unit tensile strength. 

ft,M =
cjlo

hb
(11) 

where, lo and hb are the units overlapping length and unit height, 
respectively. 

ft,M =
ft,u

2
(12) 

An important observation is that the provided equations predict 
conservatively compared to the experiments. Also, all test results fall 
within the predicted regions except for one outlier. Compared with the 
experimental results, a similar number of bricks and joint failures are 
observed. An inverse comparison is carried out, predicting the strength 
values for the observed failure modes. In other words, the experimental 

Fig. 16. Force-displacement curves for spatial analyses: brick failures (left) and joint failures (right) when the vertical pressure is 0 (top) to 0.5 MPa (bottom).  
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strength values are similar to the predicted capacities for the same 
failure modes observed in the tests. Fig. 14(b) and 14(c) show failure 
patterns observed in the experimental campaign. It should be noted that 
the vertical stress levels are extrapolated in the computational models to 
account for various scenarios; however, [69] does not include experi-
mental results for higher levels of normal stress, such as 0.50 MPa. 

It is worth noting that the proposed expressions (Equation 10) are 
limited to the given range of parameter values, unit types, and 
geometrical proportions; however, the authors would like to display the 
potential of the proposed framework that can be modified, including 
additional parameters for general relevance, such as the geometry of the 
brick. A key finding of this study highlights the most important input 
parameters on the out-of-plane bending response of masonry wallettes, 
which play a foundation role in future studies to propose a more general 
formula. 

7. Conclusions 

This study proposes a novel approach to generate data for the sta-
tistical learning algorithms to predict the failure mode and capacity of 
complex masonry systems by using less complicated and inexpensive 
test results and an advanced discontinuum-based modeling strategy. 
Masonry wallettes subjected to out-of-plane horizontal bending are 
analyzed using discrete element models incorporating elasto-plastic 
blocks interacting with each other along their boundaries. The adop-
ted modeling technique provides detailed information regarding the 
shear and coupled tension-shear behavior of the unit-mortar interface. 
The DEM-based model, which is first validated using experimental data, 
is utilized to perform stochastic analysis, implementing the material 
uncertainties. 

Throughout the study, the importance of implementing the vari-
ability in mechanical properties of the masonry is demonstrated. The 
results contribute to the knowledge in quantifying the variability of the 
wallette capacity and the effects of the material parameters on the 
failure mechanism and strength of the masonry wallettes. They also 
show that the most critical parameters changing the response are the 
joint tensile strength and the amount of normal stress for joint failure, 
whereas the unit tensile strength dominates the response in the brick 
failure condition. The spatial variation of modeling properties is also 
taken into account in the spatial stochastic analysis, and the results are 
compared to the non-spatial case where each parameter has a single 
value for the entire wallette. The stochastic analysis with spatial vari-
ability generally resulted in lower variation in the wallette capacity, 
complying with the existing literature. However, different from the 
previous findings, it is noticed that this trend is also failure-mode 
dependent. The coefficient of variation of the wallette capacity in-
creases for the higher levels of vertical pressure as the number of brick 
failures increase significantly. 

Furthermore, a data set generated by stochastic computational sim-
ulations is used to develop prediction models for the load-bearing ca-
pacity of the wallette for the different failure types. A good agreement is 
observed between the predictions and the experimental results obtained 
from the literature. Overall, it is demonstrated that the prediction of the 
capacity and behavior of masonry structures using advanced stochastic 
discontinuum-based models, fed by experimental data obtained on 
smaller structural scales, promises great potential for research and 
practice. 

The application of the proposed approach should be extended to 
include various configurations, materials, typology, geometry, and 
boundary conditions. The future work will investigate the application of 
the proposed methodology to the standardized masonry tests on 
components. 
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