
Computers & Graphics 109 (2022) 65–74

t
t
a
q

a
f

p
w
3
e
m
o
p
t
a

d

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical section

Deep generation of 3D articulatedmodels and animations from 2D
stick figures✩

Alican Akman a,∗, Yusuf Sahillioğlu b, T. Metin Sezgin c

a Imperial College London, Department of Computing, London, SW7 2BX, United Kingdom
b Middle East Technical University, Computer Engineering Department, Ankara, 06800, Turkey
c Koç University, Computer Engineering Department, Istanbul, 34450, Turkey

a r t i c l e i n f o

Article history:
Received 21 March 2022
Received in revised form 9 August 2022
Accepted 11 October 2022
Available online 21 October 2022

Keywords:
Computer graphics
3D model generation
Deep learning
Sketch-based shape modeling

a b s t r a c t

Generating 3D models from 2D images or sketches is a widely studied important problem in computer
graphics. We describe the first method to generate a 3D human model from a single sketched stick
figure. In contrast to the existing human modeling techniques, our method does not require a statistical
body shape model. We exploit Variational Autoencoders to develop a novel framework capable of
transitioning from a simple 2D stick figure sketch, to a corresponding 3D human model. Our network
learns the mapping between the input sketch and the output 3D model. Furthermore, our model
learns the embedding space around these models. We demonstrate that our network can generate
not only 3D models, but also 3D animations through interpolation and extrapolation in the learned
embedding space. In addition to 3D human models, we produce 3D horse models in order to show the
generalization ability of our framework. Extensive experiments show that our model learns to generate
compatible 3D models and animations with 2D sketches.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

3D content is still not as big as image and video data. One of
he main reasons of this lack of abundance is the labor going into
he creation process. Despite the increasing number of talented
rtists and automated tools, it is obviously not as simple and
uick as hitting a record button on the phone.
3D content is, on the other hand, as important as the image

nd video data since it is used in many useful pipelines ranging
rom 3D printing to 3D gaming and filming.

With these considerations in mind, we aim to make the im-
ortant 3D content creation task simpler and faster. To this end,
e train a neural network over 2D stick figure and corresponding
D model pairs. Utilization of easy-to-sketch and sufficiently-
xpressive 2D stick figures is a unique feature of our system that
akes our system work properly even with a moderate amount
f training, e.g., 72 distinct poses of a human model and 8 distinct
oses of a horse model are used. We focus on human models as
hey are prominent in 3D applications and extend our generation
bility on horse models.
Given 2D stick figure sketches, our algorithm is able to pro-

uce visually appealing 3D point cloud models without requiring

✩ This article was recommended for publication by Dr. T Popa.
∗ Corresponding author.

E-mail address: a.akman21@imperial.ac.uk (A. Akman).
ttps://doi.org/10.1016/j.cag.2022.10.004
097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
any other input such as a statistical body shape model. After
an easy and seamless tweaking in the network, the system is
also capable of producing dynamic 3D models, i.e., animations,
between source and target stick figures as shown in Fig. 1.

2. Related work

Thanks to their natural expressive power, sketches are com-
mon modes for interaction for various graphics applications
[1,2].

The majority of sketch-based 3D human modeling methods
deal with re-posing a rigged input model under the guidance of
user sketches. [3] performs this action by transforming imaginary
lines running down a character’s major bone chains, whereas
[4,5] propose incremental schemes that pose characters one limb
at a time. [6] proposes a skeleton-based as-rigid-as-possible de-
formation energy that reposes the template model using a stick
figure. 2D stick figures to pose characters benefit from user an-
notations [7], specific priors [8], and database queries [9,10].
Bessmeltsev et al. [11] claim that ambiguity problems of all these
methods can be alleviated by contour-based gesture drawing. The
deep regression network of [12] utilizes contour drawing to allow
face creation in minutes. Another system which takes one or more
contour drawings as its input uses deep convolutional neural
networks to create a variety of 3D shapes [13]. We avoid forcing
the user to supply a statistical body shape model as input, hence

save a significant amount of effort and time that would otherwise

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cag.2022.10.004
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.10.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.akman21@imperial.ac.uk
https://doi.org/10.1016/j.cag.2022.10.004
http://creativecommons.org/licenses/by/4.0/


A. Akman, Y. Sahillioğlu and T.M. Sezgin Computers & Graphics 109 (2022) 65–74
Fig. 1. Our framework is capable of performing three tasks. (a) It can generate 3D models from given 2D stick figure sketches. (b) It can generate dynamic 3D models,
i.e., animations, between given source and target stick figures. (c) It can further extrapolate the produced 3D model sequence by using the learned interpolation
vector.
be spent on rig creation. We merely require a user sketch, which,
when fed into our network, produces the 3D model quickly in the
specified pose. For example, as the network is trained with the
SCAPE models [14], our resulting 3D shape looks like the SCAPE
actor, i.e., a 30 year-old fit man.

There also exist sketch-based modeling methods for other
specific objects such as hairs [15,16] and plants [17], as well
as general-purpose methods that are not restricted to a partic-
ular object class. These generic methods, consequently, may not
perform as accurately as their object-specific counterparts for
those objects but still demonstrate impressive results. 3D free-
form design by the pioneer Teddy model [18] is improved in
FiberMesh [19] and SmoothSketch [20] by removing the potential
cusps and T-junctions with the addition of features such as topo-
logical shape reconstruction and hidden contour completion. The
recent SymmSketch system [21] exploits symmetry assumption
to generate symmetric 3D free-form models from 2D sketches. In
order to increase quality in generating 3D models, [22] focuses on
piecewise-smooth man-made shapes. Their deep neural network-
based system infers a set of parametric surfaces that realize
the drawing in 3D. Other solutions to the sketch-based generic
3D model creation problem depend on image guidance [23,24],
snapping one of the predefined primitives to the sketch by fitting
its projection to the sketch lines [25], and controlled curvature
variation patterns [26].

3D model generation and editing have been extended to 3D
scenes as well. Dating back to 1996 [27], this line of works
generally index 3D model repositories by their 2D projections
from multiple views and retrieve the elements that best match
the 2D sketch query [28,29]. Xu et al. [30] extend this idea
further by jointly processing the sketched objects, e.g., while a
single computer mouse sketch is not easy to recognize, other
input sketches such as computer keyboard may provide useful
cues. Sketch-based user interfaces arise in 2D image generation
as well [31,32].

Sketches also arise frequently in shape retrieval applications
due to their simplicity and expressive. Our focus, the human stick
figure sketch, has been used successfully in [33] to retrieve 3D
human models from large databases. The prominent example in
66
this domain [34] as well as the convolutional neural network
based method [35] report good performance with gesture draw-
ings when it comes to retrieving humans. These three methods,
as well as many other sketch-based retrieval methods [36], are in
general successful on retrieving non-human models as well.

Although human body types under the same pose can be
learned easily with moderate amounts of data through statistical
shape modeling [37,38], this approach requires much greater
amounts of input data to learn plausible shape poses under var-
ious deformations [39,40]. In addition to the data issue, this
family of methods that are based on statistical analysis of human
body shape operate directly on vertex positions, which brings the
disadvantage that rotated body parts have a completely different
representation. This issue is addressed with various heuristics,
most successful of which leads to the SMPL model [41] that en-
ables 3D human extraction from 2D images [42,43]. Our learning-
based solution requires moderate amount of training data, and
also alleviates the rotated part issue by simply populating the
input data with 17 other rotated versions of each model. Our
method needs to be trained on a dataset of 3D models with the
same identity. In the face of auto-rigging methods that make
using a rigged 3D model a more flexible approach for different
identities, there are shape correspondence methods that enable
our framework to be used for different identities. A survey of
recent works in shape correspondence is provided in [44].

3. Overview

We have two main objectives: (i) Generating 3D models from a
single sketched stick figure, (ii) creating 3D animations between
two 3D models, generated from 2D source and target sketches.
In addition, we present an application that allows interactive
modeling using our algorithm.

Our approach is powered by a Variational Autoencoder net-
work (VAE). We train this network with pairs of 3D and 2D points.
The 3D points come from the SCAPE 3D human figure database
and TOSCA 3D horse figure database, while the 2D points are
obtained by projecting joint positions of these models on a 2D
surface. Hence the correspondence information is preserved. Our



A. Akman, Y. Sahillioğlu and T.M. Sezgin Computers & Graphics 109 (2022) 65–74

a
l

Fig. 2. Our neural network architecture. (a) Train Network: We train this network with (3D point cloud, 2D points of stick figure) pairs during training time. It
consists of a VAE: Encoder3D and Decoder consecutively, and another external encoder: Encoder2D. We use regression loss from the output of Encoder2D to the
mean vector of the VAE in addition to standard losses of VAE. While

L
represents vector addition,

N
represents multiplication for the reparameterization trick to

sample the latent vector z. (b) Test Network: We remove Encoder3D and reparameterization layer from our VAE and use Encoder2D-Decoder as our network in our
experiments.
Fig. 3. Screenshots from our user interface. (a) 3D model generation mode. (b)
3D animation generation mode. The users sketch either (iii) a 2D stick figure
to generate the corresponding 3D model, or (iv, v) sketch the initial and final
frames to generate corresponding 3D animation.

neural network model ties the 2D and 3D representations through
a latent space, which allows us to generate 3D point clouds from
2D stick figures.

The latent space that ties the 2D and 3D representations also
cts as a convenient lower dimensional embedding for interpo-
ation and extrapolation. Given a set of target key frames in the
67
form of 2D drawings, we can map them into the lower dimen-
sional embedding space, and then interpolate between them to
obtain a number of intermediate points in the embedding space.
These intermediate points can then be mapped to 3D through
the network to obtain a smooth 3D animation sequence. Further-
more, extrapolation allows extending the animation sequence
beyond the target key frames.

4. Methodology

Our method aims to generate static and dynamic 3D models
from scratch, that is, we require only the 2D input sketch and no
other data such as a statistical body shape model waiting to be
reposed. To make this possible, we learn a model that maps 2D
stick figures to 3D models.

4.1. Training data generation

The original SCAPE [14] and TOSCA [45] datasets consist of
72 key 3D meshes of a human actor and 8 key 3D meshes of a
horse respectively. They also contain point-to-point correspon-
dence information between these distinct model poses. We use a
simple algorithm to extend these datasets by rotating the existing
figures with different angles. First, we determine the axes and
the angles of the rotation with respect to the original coordinate
system shown in the wrapped figure. We ignore the rotation with
respect to the x-axis, since stick figures are less likely to be drawn
from this view. Next, we rotate the models with respect to the y-
axis and z-axis, in a range of −90 degree to 90 at intervals of 30
degrees for the y-axis, and −45 to 45 degrees at intervals of 45
degrees for the z-axis. In the end of this process, we output 21
models per key model in the SCAPE and TOSCA datasets.

Since our network is trained with (2D joints, 3D model) pairs,
we also extract 2D joints from a 3D model in a particular per-
spective. For SCAPE dataset, we designate 11 essential points
that alone can describe a 3D human pose. These are the fol-

lowing: forehead(1), elbows(2), hands(2), neck(1), abdomen(1),



A. Akman, Y. Sahillioğlu and T.M. Sezgin Computers & Graphics 109 (2022) 65–74
Fig. 4. Neural network architecture for standard autoencoder baseline.

knees(2) and feet(2). These essential points extends to 12 for
the TOSCA dataset: forehead(1), shoulder joint(1), hip joint(1)
knees(4), feet(4) and tail(1). Since the datasets have the point-
to-point correspondence information in itself, we select these 3D
points in a pilot mesh from each dataset. We project these joints
onto a 2D camera plane (x − y in our case) across the entire
datasets to create 2D joint projections. In order to be indepen-
dent from the coordinate system, we represent these points with
relative positions (�x, �y). We determine two separate specific
orders in 2D points forming a sketching path with 17 points for
our human model and 20 points for our horse model (some joints
are visited twice but in the reverse direction). These sketching
paths represent the order of visited body joints while sketching.
For example, users should follow this path for the human stick
figure: Forehead to neck, neck to shoulders (right parts first),
shoulders to elbows, elbows to hands, neck to abdomen, abdomen
to knees, knees to feet. Each sketching path determines the order
of 2D points that form the input vector of our neural network.
The input vector format also handles front/back ambiguity while
generating 3D models. We set the first point in the sketching path
as the origin, (0; 0) and then we set the remaining points with

respect to their relative position to the preceding point.

68
4.2. Neural network architecture

We build upon the work of Girdhar et al. [46] while designing
our neural network architecture. Girdhar et al. aim to learn a
vector representation that is generative, i.e., it can generate 3D
models in the form of voxels; and predictable, i.e., it can be
predicted by a 2D image. We utilize variational autoencoders
rather than standard autoencoders to build our neural network as
shown in Fig. 2. Unlike standard autoencoders, VAEs are genera-
tive networks whose latent distribution is regularized during the
training in order to be close to a standard Gaussian distribution.
This property of VAEs ensures that its latent distribution has a
meaningful organization which allows us to generate novel 3D
models by sampling in this distribution. In addition to generating
novel 3D models, since our framework is capable of learning
the vector space around these 3D models, it enables meaningful
transitions between them and extrapolations beyond them.

For our training network, we have two encoders and one
decoder for each dataset: Encoder3D, Encoder2D, and Decoder.
Encoder3D and Decoder together serve as a VAE. Our VAE takes
in a 3D point cloud as input, and reconstructs the same model as
output. While our VAE learns to reconstruct 3D models, it forces
latent distribution of the dataset to approximate normal distribu-
tion which makes the latent space interpolatable. Meanwhile, we
use our Encoder2D to predict latent vectors of corresponding 3D
models from 2D points. In order to provide our latent distribution
with similarity information between 3D models, we design this
partial architecture for our neural network instead of using a VAE
which directly generates 3D models from 2D sketches. Thus, our
Encoder3D is capable of learning relations between 3D models
rather than 2D sketches while creating a regularized latent distri-
bution. With this method, we aim to explore latent space better
and generate more meaningful transitions between 3D models. It
also prevents the model from the training difficulties of a direct
VAE where low-dimensional 2D space (34) is directly mapped to
high-dimensional 3D space (37500).

Encoder3D-Decoder VAE Network Architecture:
Our VAE takes 12500 × 3 points of human 3D model or

19248 × 3 points of horse 3D model as input. Encoder3D contains
two fully connected layers and its outputs are a mean vector and
a deviation vector. We use ReLU as an activation layer in all the
internal layers. There is no activation layer in the output layers.
Our Decoder takes the latent vector z as input. It also consists of

two fully connected layers with a ReLU activation layer and one
Fig. 5. Generated 3D human models in front and side views for given sketches using our VAE network and standard AE network. Flaws are highlighted with red
circles.


	Deep generation of 3D articulated models and animations from 2D stick figures
	Introduction
	Related Work
	Overview
	Methodology
	Training Data Generation
	Neural Network Architecture
	Training Details
	User Interface

	Experiments and Results
	Framework Evaluation
	Generating 3D models from 2D stick figure sketches
	Generation of Dynamic 3D Models - Interpolation
	Generation of Dynamic 3D models - Extrapolation
	Timing

	Conclusions
	Limitations
	Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References


