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Generalizations of incompressible 
and compressible Navier–Stokes 
equations to fractional time 
and multi‑fractional space
M. Levent Kavvas1 & Ali Ercan2,3*

This study develops the governing equations of unsteady multi‑dimensional incompressible and 
compressible flow in fractional time and multi‑fractional space. When their fractional powers in 
time and in multi‑fractional space are specified to unit integer values, the developed fractional 
equations of continuity and momentum for incompressible and compressible fluid flow reduce 
to the classical Navier–Stokes equations. As such, these fractional governing equations for fluid 
flow may be interpreted as generalizations of the classical Navier–Stokes equations. The derived 
governing equations of fluid flow in fractional differentiation framework herein are nonlocal in time 
and space. Therefore, they can quantify the effects of initial and boundary conditions better than the 
classical Navier–Stokes equations. For the frictionless flow conditions, the corresponding fractional 
governing equations were also developed as a special case of the fractional governing equations of 
incompressible flow. When their derivative fractional powers are specified to unit integers, these 
equations are shown to reduce to the classical Euler equations. The numerical simulations are also 
performed to investigate the merits of the proposed fractional governing equations. It is shown that 
the developed equations are capable of simulating anomalous sub‑ and super‑diffusion due to their 
nonlocal behavior in time and space.

The origin of fractional differentiation goes back to a letter between Leibniz and l’Hôpital in late seventeenth 
century. Later,  Euler1,  Lagrange2,  Liouville3, Grünwald4, and  Riemann5 made significant contributions to frac-
tional  calculus6. Until recently, fractional calculus has been considered as a mathematical theory without real-life 
applications. However, starting with the last quarter of twentieth century, the fractional differentiation found 
numerous applications in science, mainly due to its nonlocal nature (see the next section). Such applications are 
found in rheology, electrochemistry, chemical physics, finance, bioengineering, continuum mechanics, image 
and signal processing, plasma physics, diffusion and advection  phenomena6–10.

Navier Stokes equations (NSE) are the origin of the governing equations of flow and transport. Evidence of 
fractional flow and transport behavior in various fields of science was already reported, for example in hydrol-
ogy and  hydraulics11–15, anomalous transport of solutes in porous  media16–19, and climate  science20–23. Recently, 
a number of models in applied mathematics was also reported based on fractional derivatives, for example, 
to model propagation of long waves by fractional Korteweg-de Vries  equation24–26, and to model diffusion by 
fractional Burgers’  equation27,28.

Expressing the conservation of mass and momentum, the NSE govern the motion of fluids in above mentioned 
subfields of science including flows and turbulence in the atmosphere, rivers, lakes and soil. Fractional flow and 
transport models showed superiority in describing anomalous  diffusion9,29,30, intermittent  turbulence31, chaos-
induced turbulence  diffusion32, and multifractal behavior of velocity fields of turbulent fluids at low  viscosity33. 
As such, fractional Navier–Stokes equations have been generalized by researchers in the last decades by time 
fractional NSE (tfNSE) and/or space fractional NSE (sfNSE). Here, we generalize the governing equations of 
unsteady multi-dimensional incompressible and compressible NSE to fractional time and multi-fractional space. 
When the fractional powers in time and in multi-fractional space are unit integer values, the developed fractional 
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equations of continuity and momentum for incompressible and compressible fluid flow reduce to the classical 
NSE. The derived fractional governing equations are nonlocal in time and space. As such, they can quantify the 
effects of initial and boundary conditions better than the classical integer order NSE.

In general, tfNSE were simply obtained by replacing the time derivative in the moment equation with a frac-
tional time  derivative34–36 and sfNSE were obtained by replacing the Laplacian operator by a fractional Laplacian 
 operator37,38.  Wu39 studied the existence and uniqueness of solutions of sfNSE. Starting with sfNSE, Xu et al.38 
numerically investigated the pressure-driven flow between two parallel plates by the finite difference method. 
The tfNSE have been studied extensively by development of analytical solutions to special flow  cases34–36 and 
numerical  methods40,41. Carvalho-Neto and  Planas42 explored the existence, uniqueness, decay, and regularity 
properties of mild solutions to tfNSE and pointed out that the time fractional derivative has affected not only 
the regularity in the time variable of the solution but also that in the space variable. Zhou and  Peng43 studied 
the existence and uniqueness of global and local mild solutions of tfNSE. Replacing the time derivative in the 
moment equation with the fractional derivative in Caputo sense, El-Shahed and  Salem34 obtained exact solutions 
for three special configurations. Momani and  Odibat35 applied the Adomian decomposition method to solve the 
unsteady flow of a viscous fluid in a tube in which the velocity field is a function of one space coordinate. Kumar 
et al.36 studied the same problem by coupling Adomian decomposition method and Laplace transform method. 
However, analytical solutions of tfNSE are only available under certain assumptions about the state of the fluid 
and for simple configurations for the flow  pattern35. Utilizing fractional integrals to consider the fractality of a 
homogeneous fractional flow medium (with a constant fractal dimension D < 3), the fractional generalization 
of Navier–Stokes and Euler equations were introduced by the seminal work of  Tarasov44, in which final forms 
of the fractional governing equations with space fractional derivatives but integer order time derivative were 
developed. As such, the scaling factors appear only for space fractional derivative terms in the fractional govern-
ing equations in  Tarasov44.

This study introduces dimensionally consistent governing equations for the motion of fluids in fractional time 
and multifractional space. Unlike most of the previously introduced fractional fluid flow equations, the proposed 
governing equations herein have scaling factors for both the fractional time and fractional space derivative terms, 
which also assure dimensional consistency. As explained in  Zaslavsky30, fractional governing equations account 
for the anomalous flow processes, including sub-diffusive (i.e., slow) and super-diffusive (i.e., fast) processes. 
Numerical simulations are performed in this study to show the importance of fractional time and space deriva-
tive powers and to investigate the anomalous behaviour in the fNSE.

Physical framework of the fractional derivative. The fractional derivative of order 0 < α for a func-
tion f(t) in Caputo framework is defined as  follows8

where Γ( . ) is the gamma function, and m = 1,2,3,…. Accordingly, the fractional derivative of a function depends 
on its values over an entire interval [a, t] and therefore can handle nonlocal effects. The fractional derivative 
definition in Eq. (1) can represent the fractional derivative with respect to time or space, depending on whether 
the variable t is defined as time or spatial location.

For 0 < α ≤ 1 , a first-order approximation of Caputo’s fractional time derivative over a given time interval 
[0, T], which is divided into N equal subintervals of increment dt = T/N by using nodes  tn = n.dt, n = 0,1,2,…,N, 
can be written  as45:

where f n = f (tn) and the weight w(α)
j = j1−α −

(

j − 1
)1−α.

As shown in Eq. (2), the fractional derivative of f (tN ) is estimated from the difference between f (tN ) and 
f (tN−1) , f (tN−2) . . . , f (t1), and f (t0) with weights w(α)

j  for j = 1, 2,…,N. The difference between f (tN ) and 
f (tN−1) contributes with w(α)

1  , between  f (tN ) and f (tN−2) contributes with w(α)
2  , and so on (see Fig. 1a). For 

increasing j, weights decrease slower as α gets smaller, and weights decrease faster as α gets larger  (see Fig. 1b). 
As such, function values away from tN contribute to the fractional derivative of f (tN ) with higher weights as 
fractional parameter α decreases from 1. In other words, the effect of past lessens for time fractional derivative 
and the effect of long distances reduces for space fractional derivative as fractional parameter goes to 1. Similarly, 
the effect of past for time fractional derivative and the effect of long distances for space fractional derivative grow 
as fractional parameter decreases from 1. By such a definition of the fractional derivative, a physical phenomenon 
taking long memory in time and long-range dependence in space can be realistically modeled. Time dependence 
not only at the time of interest but also at previous times can be modeled by time fractional governing equations. 
Similarly, long-range dependence in space can be modeled by space fractional governing equations, so that the 
space dependence not only at the location of interest but also at other spatial locations can be realistically mod-
eled by space fractional governing equations. As such, the fractional governing equations can consider the effect 
of the initial conditions for long times, and the effect of the boundary conditions for long distances.

Continuity equation of unsteady fluid flow in fractional time and multifractional space. To β
-order the Caputo fractional derivative aD

β
x f (x) of a function f(x) may be defined  as46–49:

(1)aD
α
t f (t) =

1

Ŵ(m− α)

t
∫

a

f (m)(τ )dτ

(t − τ)α+1−m
, 0 ≤ m− 1 < α < m, t ≥ a

(2)Dα
t f

n =
1

Ŵ(2− α)

1

dtα

n
∑

j=1

w
(α)
j

(

f n−j+1 − f n−j
)
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where ξ represents a dummy variable in the equation.
It was shown that one can obtain a βi-order (i = 1,2,3) approximation to a function f (xi) around xi−�xi  as15:

In Eq. (4), for f(xi) =  xi an analytical relationship between �xi and (�xi)
β (i = 1,2,3) that will be applicable 

throughout the modelling domain is possible when the lower limit in the above Caputo derivative in Eq. (4) is 
taken as zero (that is, �xi = xi)15.

Within the above framework one can express the net mass outflow rate from the control volume in Fig. 2 as:

Then by introducing Eq. (4) into Eq. (5) with �xj = xj , j = 1,2,3, and expressing the resulting Caputo derivative   
0D

β
x f (x)  (taking �x = x renders the lower limit in the Caputo derivative of Eq. (4) to be 0) by  ∂

β f (x)

(∂x)β
 for conveni-

ence, the net mass flux from the control volume in Fig. 2 may be expressed to βi-order, i = 1,2,3 as:

where x = (x1, x2, x3), ρ is the fluid density and ui(x; t) is the component of the flow velocity vector in xi direc-
tion, i = 1,2,3. 

It also follows from Eq. (4) with f(xi) = xi  that15

(3)aD
β
x f (x) =

1

Ŵ(1− β)

x
∫

a

f �(ξ)

(x − ξ)β
dξ , 0 < β < 1, x ≥ a

(4)f (xi) = f (xi −�xi)+
(�xi)

βi

Ŵ(βi + 1)
xi−�xiD

βi
xi
f (xi), i = 1, 2, 3.

(5)

[ρu1(x1 , x2, x3; t)− ρu1(x1 −�x1 , x2, x3; t)]�x2�x3 + [ρu2(x1 , x2, x3; t)− ρu2(x1 , x2 −�x2, x3; t)]�x1�x3

+[ρu3(x1 , x2, x3; t)− ρu3(x1 , x2, x3 −�x3; t)]�x1�x2.

(6)

(�x1)
β1

Ŵ(β1 + 1)

(

∂

∂x1

)β1

(ρu1(x̄; t))�x2�x3 +
(�x2)

β2
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(

∂
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)β2
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Figure 1.  (a) Schematic description of weights w(α)
j  (for j = 1, 2, …, N) in estimating the fractional derivative 

Dα
t f (tN ) and (b) weights as a function of j.
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with respect to βi-order fractional space in the i-th direction, i = 1,2,3.
Introducing Eq. (7) into Eq. (6) yields for the net mass outflow rate through the control volume

to βi-order, i = 1,2,3.
The time rate of change of mass within the control volume in Fig. 2 may be expressed as

Introducing Eq. (4), with fractional power βi replaced by α , and x replaced by t, into Eq. (9), and expressing 
the resulting Caputo derivative operator with its lower limit as 0, by ∂α

(∂t)α   for convenience, yields the time rate 
of change of mass within the control volume with respect to α-fractional time increments:

to α-order. With respect to the Caputo derivative 0Dα
t t =

∂α t
(∂t)α :

which when combined with Eq. (4) (with x replaced by t and βi replaced by α ) yields the approximation

to α-order. Introducing Eq. (12) into Eq. (10) yields for the time rate of change of mass within the control volume 
in Fig. 2 with respect to α-order fractional time increments:

Since the time rate of change of mass within the control volume of Fig. 2 is inversely related to the net flux 
through the control volume, Eqs. (8) and (13) can be combined to yield

(7)(�xi)
βi =

Ŵ(βi + 1)Ŵ(2− βi)

x
1−βi
i

(�xi), i = 1, 2, 3

(8)

Ŵ(2− β1)

x
1−β1
1

(

∂

∂x1

)β1

(ρu1(x; t))�x1�x2�x3 +
Ŵ(2− β2)

x
1−β2
2

(

∂

∂x2

)β2

(ρu2(x; t))�x1�x2�x3

+
Ŵ(2− β3)

x
1−β3
3

(

∂

∂x3

)β3

(ρu3(x; t))�x1�x2�x3, x = (x1, x2, x3)

(9)
ρ(x, t)− ρ(x, t −�t)

�t
�x1�x2�x3

(10)
(�t)α

�tŴ(α + 1)

(

∂

∂t

)α

ρ(x, t)�x1�x2�x3

(11)
∂αt

(∂t)α
=

t1−α

Ŵ(2− α)

(12)(�t)α =
Ŵ(α + 1)Ŵ(2− α)

t1−α
(�t)

(13)
Ŵ(2− α)

t1−α

∂αρ(x, t)

(∂t)α
�x1�x2�x3.

Figure 2.  The control volume for the water flow in three-dimensional space.
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as the general continuity equation of unsteady, multidimensional fluid flow in fractional time and multi-fractional 
space which holds both for compressible as well as incompressible flows.

Fractional continuity Eq. (14) for fluid flow can also be written as

Performing a dimensional analysis on Eq. (15) results in

which shows the dimensional consistency of the fractional continuity equation of the fluid flow.
Podlubny8 has shown that for n−1 < α,βi < n where n is any positive integer, as α and βi → n, the Caputo 

fractional derivative of a function f(y) to order α or βi (i = 1, 2, 3) becomes the conventional n-th derivative of the 
function f(y). Therefore, specializing the result of  Podlubny8 to n = 1, for α and βi → 1, (i = 1, 2, 3), the continuity 
equation of fluid flow transforms into

which is the conventional continuity equation for fluid flow in integer time-space50,51.
From the general fractional continuity Eqs. (14) or (15) for fluid flow it follows that the continuity equation for 

incompressible fluid flow with constant density in fractional time and multi-fractional space reduces to the form

which when α and βi → 1 (i = 1, 2, 3) results in

which is the conventional continuity equation for incompressible fluid flow.

Momentum equations of unsteady flow in fractional time and multifractional space. The net 
momentum flux through the control volume in Fig. 2 may be expressed as:

along directions xi, i = 1,2,3. Meanwhile the net pressure forces on the control volume surface may be expressed as:

Again, referring to Fig. 3, the net stress (viscous) forces on the control volume surface may be expressed as:

along directions xi, i = 1,2,3. Finally, the body force on the control volume may be expressed as:

By introducing Eq. (4) into Eqs. (20)–(23) with �xi = xi , i = 1,2,3, and expressing the resulting Caputo deriva-
tive 0D

β
x f (x) by ∂

β f (x)

(∂x)β
 , the net momentum flux in the  xi direction, may be expressed to βi-order, i = 1,2,3, as:

(14)
Ŵ(2− α)

t1−α

∂αρ(x, t)

(∂t)α
= −

3
∑

i=1

Ŵ(2− βi)

x
1−βi
i

(

∂

∂xi

)βi

(ρ(x, t)ui(x, t)), x = (x1, x2, x3),

(15)
∂αρ(x, t)

(∂t)α
= −

3
∑

i=1

t1−α

Ŵ(2− α)

Ŵ(2− βi)

x
1−βi
i

(

∂

∂xi

)βi

(ρ(x, t)ui(x, t)), x = (x1, x2, x3).

(16)M/L3

Tα
=

T1−α

L1−βi

1

Lβi

M

L3
L

T
=

M/L3

Tα

(17)
∂ρ(x, t)

∂t
= −

3
∑

i=1

∂

∂xi
(ρ(x, t)ui(x, t)), x = (x1, x2, x3),

(18)
3

∑

i=1

Ŵ(2− βi)

x
1−βi
i

(

∂

∂xi

)βi

(ui(x, t)) = 0

(19)
3

∑

i=1

∂

∂xi
(ui(x, t)) = 0

(20)

[

ρ uiu1|(x1 ,x2, x3;t) − ρuiu1|(x1−�x1 ,x2, x3;t)
]

�x2�x3 +
[

ρuiu2|(x1,x2, x3;t) − ρuiu2|(x1,x2−�x2, x3;t)
]

�x1�x3

+
[

ρuiu3|(x1 ,x2, x3;t) − ρuiu3|(x1 ,x2, x3−�x3;t)
]

�x1�x2.

(21)

(

P|(x1,x2,x3;t) − P|(x1−�x1,x2,x3;t)
)

�x2�x3
(
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(

τi2|(x1,x2,x3;t) − τi2|(x1,x2−�x2,x3;t)
)

�x1�x3

+
(

τi3|(x1,x2,x3;t) − τi3|(x1,x2,x3−�x3;t)
)

�x1�x2

(23)−ρFi�x1�x2�x3, i = 1, 2, 3.
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Introducing Eq. (7) into Eq. (24) results in the net momentum flux expressed with respect to βi-order frac-
tional space in the xi direction, i = 1,2,3, as:

(24)

(�x1)
β1

Ŵ(β1 + 1)

(

∂

∂x1

)β1

(ρ(x; t)ui(x; t)u1(x; t))�x2�x3

+
(�x2)

β2

Ŵ(β2 + 1)

(

∂

∂x2

)β2

(ρ(x; t)ui(x; t)u2(x; t))�x1�x3

+
(�x3)

β3

Ŵ(β3 + 1)

(

∂

∂x3

)β3

(ρ(x; t)ui(x; t)u3(x; t))�x1�x2

+
(�xi)

βi

Ŵ(βi + 1)

(

∂

∂xi

)βi

(P(x; t))�xj�xk

+
(�x1)

β1

Ŵ(β1 + 1)

(

∂

∂x1

)β1

(τi1(x; t))�x2�x3

+
(�x2)

β2

Ŵ(β2 + 1)

(

∂

∂x2

)β2

(τi2(x; t))�x1�x3

+
(�x3)

β3

Ŵ(β3 + 1)

(

∂

∂x3

)β3

(τi3(x; t))�x1�x2 − ρFi�x1�x2�x3,

i = 1, 2, 3, j �= k �= i, j + k + i = 3, 1 ≤ j, k ≤ 3, j and k integers.

Figure 3.  Surface forces in the momentum equation.
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Meanwhile, the change of momentum within the control volume during (t−Δt, t) may be expressed as:

Hence, the time rate of change of momentum within the control volume may be expressed as:

Following the same procedure that led to Eqs. (10)–(12) with ρui  replacing ρ in these equations, one obtains 
the time rate of change of momentum within the control volume with respect to α-order fractional time incre-
ments as:

Since the time rate of momentum change within the control volume is inversely related to the net momentum 
flux through the control volume, Eqs. (25) and (28) can be combined to yield

as the general momentum equation of unsteady fluid flow in fractional time and multi-fractional space. The 
body force Fi, i = 1,2,3, can be interpreted as the gravitational force gi, i = 1,2,350. Under this interpretation the 
general momentum equations of unsteady fluid flow in fractional time and multi-fractional space may also be 
expressed as

where the surface forces τij will need to be defined in terms of flow velocities differently for incompressible and 
compressible fluid flows for the closure of the equation. This issue will be addressed later in the study.

The fractional momentum Eq. (30) for incompressible fluid flow can also be written as

(25)
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Euler’s equation in fractional time–space. If the fluid flow has no friction, that is, if the shearing 
stresses τij are zero and the normal forces are simply the pressure forces, the flow system is called inviscid. Then 
Eqs. (30) or (31) simplify to

In analogy to Euler’s equation for inviscid fluid flow in integer time–space, Eq. (32) may be called as “Euler’s 
equation for fluid flow in fractional time–space”.

Momentum equations for incompressible fluid flow under Stokes viscosity law in fractional 
time and multifractional space. For incompressible fluid flow, the shear stresses can be expressed in 
terms of flow velocities using Stokes viscosity law  as50:

in the conventional integer space. In Eqs. (33) and (34) µ is the viscosity coefficient. Then using Eqs. (4) and (7) 
on Eqs. (33) and (34) results in

and

 for the Stokes viscosity relations in multi-fractional space.
Substituting Eqs. (35) and (36) into Eq. (29) and noting the fluid density is constant for incompressible fluid 

flow results in the momentum equations

Next, the flow velocities ui(x; t) (i = 1,2,3) are considered analytic functions, and it is noted that the fractional 
scaling powers in time and space are between zero and one, that is 0 < α,βi < 1 , (i = 1,2,3). As such, the Caputo 
fractional derivatives 

(
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)βj
 and 

(
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∂xi
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 that operate on the flow velocities uj(x; t) (j = 1,2,3) will  commute52. 

Combining this property of the above Caputo fractional derivatives on the last line on the right-hand-side of 
Eq. (37) with the fractional continuity Eq. (18) for incompressible fluid flow results in the governing equation
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as the momentum equations for incompressible fluid flow with constant density ρ and constant viscosity µ in βi
-scaled (i = 1,2,3) multi-fractional space and in α-scaled fractional time.

As mentioned earlier,  Podlubny8 has shown that for n−1 < α,βi < n where n is any positive integer, as α and 
βi  → n, the Caputo fractional derivative of a function f(y) to order α or βi (i = 1, 2, 3) becomes the conventional 
n-th derivative of the function f(y). Therefore, specializing the result of  Podlubny8 to n = 1, for α or βi → 1, (i = 1, 
2, 3), the fractional momentum Eqs. (38) of incompressible fluid flow transform into

which reduce to

which are the conventional Navier–Stokes equations for Newtonian, incompressible fluid flow with constant 
density and  viscosity50. Within this framework, the Eq. (38) for incompressible fluid flow in fractional time and 
multi-fractional space may be interpreted as the extension of the corresponding Navier–Stokes equations to 
fractional time and multi-fractional space.

Momentum equations for compressible fluid flow under Stokes viscosity law in fractional time 
and multifractional space. In the case of compressible viscous fluid flow, while the shear stresses are the 
same as in incompressible flow, the Stokes relations need to be modified for the effect of volume change in the 
fluid due to compression, leading to the normal forces σii (i = 1,2,3) being expressed  as51,53,

Then using Eqs. (4) and (7) on Eq. (42) results in

Combining Eqs. (36) and (43) with modified normal forces due to fluid compression, with Eq. (29) results 
in the fractional momentum equations

for compressible fluid flow in βi-scaled (i = 1,2,3) multi-fractional space and in α-scaled fractional time.
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Again specializing the result of  Podlubny8 to n = 1, for α or βi → 1, (i = 1, 2, 3), that the Caputo fractional 
derivative of a function f(y) to order α or βi (i = 1, 2, 3) becomes the conventional derivative of the function f(y), 
and applying it to Eq. (44) results in

which are consistent with the conventional Navier–Stokes momentum equations for compressible  flow54. Intro-
ducing the continuity Eq. (17) into Eq. (45) results in

which are the conventional Navier–Stokes equations for compressible flow in detailed form. Hence, the conven-
tional Navier–Stokes equations system (46) for compressible flow can be interpreted as the special case of the 
fractional equations system (44) for compressible flow in fractional time and multi-fractional space when the 
fractional powers become unity.

Numerical application. In order to investigate the capabilities of the proposed fractional governing equa-
tions of hydrodynamics, the first Stokes Problem (i.e., flow due to a wall suddenly set into motion) is selected. A 
fluid with constant density and viscosity is bounded by a solid wall (at x2 = 0 ), which is set in motion in positive 
 x1 direction at t = 0 with a constant velocity  U0. There is no pressure gradient or gravity force in  x1 direction. 
Then the conventional Navier–Stokes Equation (NSE) for this situation may be expressed as (see example 4.1–1 
in Bird et al.55):

where the initial and boundary conditions are

This is a simple unsteady flow problem with analytical solution (Equation 4.1-15 in Bird et al.55)

where erfc is the complementary error function (i.e., erfc(x) = 1− erf(x) ) and ν = µ/ρ . In this application, vis-
cosity ν is 0.001  m2/s, total simulation time T is 5 h, and velocity U0 is 1 m/s. The fractional form of this problem 
can be written as

with the same initial and boundary conditions.
In order to solve Eq. (50) numerically, a first-order approximation of the Caputo’s fractional time  derivative45 

and a second-order accurate Caputo’s fractional space  derivative56 schemes are coupled similar to the numerical 
solution of the fractional open channel flow problem as reported in Ercan and  Kavvas57. When the fractional 
powers of space and time derivatives of Eq. (50) become one, the solution should converge to that of the con-
ventional form of this Eq. (47).  x1-direction velocity  u1 normalized by the boundary velocity  U0 (i.e.,  u1/U0) is 
plotted in Fig. 4. As shown in Fig. 4, the velocity profiles of the analytic solution (Eq. 49) of the conventional 
governing Eq. (47) compare well with those of the numerical solution of the fractional governing Eq. (50) when 
powers of the fractional space and time derivatives are one (β = α = 1).

In order to explore the contribution of powers of space and time fractional derivatives on flow, Figs. 5, 6 
and 7 are plotted for the simple flow due to a wall suddenly set into motion. This is still a relatively simple flow 
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problem due to above listed assumptions, and will help us to understand the effects of fractional powers on flow. 
As explained in  Zaslavsky30, fractional governing equations account for the non-Fickian flow processes, including 
sub-diffusive (i.e., slow) and super-diffusive (i.e., fast) processes. In this regard,  Zaslavsky30 defined the transport 
exponent of his fractional kinetic equation as µ = α/β, expressed here as such in order to be consistent with the 
above notation, to quantify competing time and space fractional derivative powers. Therefore, the transport 
exponent µ quantifies competing sub- and super-diffusivity. µ = 1 corresponds to normal diffusion, µ < 1 sub-
diffusion, and µ > 1 super-diffusion. Before investigating the effects of the time and space fractional powers, note 
that flow velocities are fixed at the boundary conditions at x2 = 0 and x2 = ∞ . Therefore, the effects are smaller 
in the vicinity of these boundaries and higher away from them. As such, the comparisons below for the solu-
tions of fractional and integer order governing equations correspond to x2 locations away from the boundaries.

For the case when the power of the time fractional derivative is one (α = 1), the velocities by fractional 
governing equations are higher as power of the space fractional derivative is less than one (β < 1). In this case 
 Zaslavsky30’s transport exponent µ = α/β > 1 corresponds to super-diffusion. The difference between the velocity 
by the conventional governing equation (β = α = 1) and that by the fractional governing equation (when β < 1 
and α = 1) increases through time for a fixed  x2 location. The same initial condition is used for the fractional and 
integer governing equations; therefore, the velocity differences are smaller close to t = 0. Furthermore, for a fixed 
simulation time, the velocity for a specific  x2 location (especially away from the moving plate) increases as the 
fractional space derivative power decreases from 1 (see Fig. 5a–c).

For the case when the power of the space fractional derivative is one (β = 1), the velocities by fractional 
governing equations are lower as the power of the time fractional derivative is less than one (α < 1). In this case 
 Zaslavsky30’s transport exponent µ = α/β < 1 corresponds to sub-diffusion. The difference between the velocity by 
the conventional governing equation (or the fractional governing equation when β = α = 1) and that by the frac-
tional governing equation (β < 1, α = 1) increases at later times because the initial condition dominates for smaller 
times, similar to α = 1 case. However, for a fixed simulation time, the velocity at a specific  x2 location (especially 
away from the moving plate) decreases as the fractional time derivative power decreases from 1 (see Fig. 6a–c).

When the time and space fractional derivative powers are equal and less than one (β = α < 1), the effects of 
sub- and super-diffusion are superimposed (Fig. 7). The transport coefficient for this case becomes µ = α/β = 1, 
displaying normal diffusion in theory. However, as shown in Fig. 7, when α and β are equal and close to 1, the 
velocity, at a fixed  x2 location close to the moving plate at x2 = 0, does not change for both the conventional and 
the fractional governing equations. However, for a fixed simulation time, the velocity for a specific  x2 location 
away from the moving plate increases as the fractional space and time derivative powers decrease from 1 (see 
Fig. 7a–c).

Concluding remarks
The governing equations of unsteady multi-dimensional incompressible and compressible flows in fractional 
time and multi-fractional space were developed in this study. Since the time behaviour of fluid flows in various 
fields of engineering are as important as their behaviour in space, the governing multi-dimensional fluid flow 
equations not only in multi-fractional space but also in fractional time were attempted to be developed in this 
study. Also, due to the observed anisotropy in fluid flow processes in nature, the fractional scaling of fluid flows 
was addressed by different fractional powers in different Euclidean directions, resulting in governing equations 
in multi-fractional space. When their fractional powers in time and in multi-fractional space are specified to 
unit integer values, the developed fractional equations of continuity and momentum for incompressible and 
compressible fluid flows reduce to the corresponding conventional Navier–Stokes equations. As such, these 
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Figure 4.  Velocity profiles of  x1 direction velocity  u1 normalized by boundary velocity  U0 when space and time 
fractional derivative powers are 1. Solid lines correspond to simulations by fractional governing equation (F.E.) 
when time t = 0.1 T, 0.2 T, 0.5 T¸ T. Shapes (diamond, square, triangle, and circle) represent the corresponding 
analytical solutions (A.S.) of the conventional governing equation, respectively.
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fractional governing equations for incompressible and compressible fluid flows may be interpreted as gener-
alizations of the conventional Navier–Stokes equations. For the frictionless flow conditions, the corresponding 
fractional governing equations were also developed as a special case of the fractional governing equations of 
incompressible flow. When their derivative fractional powers are specified to unit integers, these equations are 
shown to reduce to the conventional Euler equations.

The capabilities of the developed fractional governing equations of hydrodynamics were investigated by 
the first Stokes Problem (i.e., flow due to a wall suddenly set into motion). It was first shown that the results of 
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Figure 5.  Velocity profiles of  x1 direction velocity u1 normalized by boundary velocity  U0 when time and 
space fractional derivative powers α = 1 and (a) β = 0.9, (b) β = 0.8, (c) β = 0.7 . Solid lines correspond to 
simulations by the fractional governing equation (F.E.) when time t = 0.1 T, 0.2 T, 0.5 T¸ T. Shapes (diamond, 
square, triangle, and circle) represent the analytical solutions (A.S.) of the conventional governing equation at 
corresponding times.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19337  | https://doi.org/10.1038/s41598-022-20911-3

www.nature.com/scientificreports/

fractional governing equations when powers of the fractional space and time derivatives are one (β = α = 1) are 
the same as the analytical solution of the conventional integer order governing equations. Next, the sub- and 
super-diffusive behaviour of the fractional governing equations were explained in the context of  Zaslavsky30’s 
transport exponent framework. As shown in this numerical application’s results, the developed fractional equa-
tions of fluid flow have the potential to accommodate both the sub-diffusive and the super-diffusive flow condi-
tions in addition to the conventional case.
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Figure 6.  Velocity profiles of  x1 direction velocity u1 normalized by boundary velocity  U0 when space and 
time fractional derivative powers when β = 1 and (a) α = 0.9, (b) α = 0.8, (c) α = 0.7. Solid lines correspond 
to simulations by the fractional governing equation (F.E.) when time t = 0.1 T, 0.2 T, 0.5 T¸ T. Shapes (diamond, 
square, triangle, and circle) represent the analytical solutions (A.S.) of the conventional governing equation at 
corresponding times.
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Figure 7.  Velocity profiles of  x1 direction velocity u1 normalized by boundary velocity  U0 when space and 
time fractional derivative powers are equal, (a) α = β = 0.9, (b) α = β = 0.8, (c) α = β = 0.7. Solid lines 
correspond to simulations by the fractional governing equation (F.E.) when time t = 0.1 T, 0.2 T, 0.5 T¸ T. Shapes 
(diamond, square, triangle, and circle) represent the analytical solutions (A.S.) of the conventional governing 
equation at corresponding times.
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