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In gauge invariant theories, like Einstein-Maxwell theory, physical observables should be gauge
invariant. In particular, mass, entropy, angular momentum, electric charge, and their respective chemical
potentials, temperature, horizon angular velocity, and electric potential, which appear in the laws of black
hole thermodynamics, should be gauge invariant. In the usual construction of the laws of black hole
thermodynamics, gauge invariance of the intensive quantities is subtle; here, we remedy this and provide a
gauge invariant derivation and the proof of the zeroth and first laws of black hole thermodynamics.
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I. INTRODUCTION

Symmetries have been the main guiding principle in
formulating laws of physics. They help us identify con-
served quantities, through the celebrated Noether’s theo-
rem, as well as formulate interactions, through the notion of
local gauge symmetries. Maxwell’s theory was the first
such example, which was realized to be a gauge theory with
the Uð1Þ gauge symmetry. This symmetry appeared to be
the key to formulating quantum electrodynamics (QED).
An extension of the same notion to other gauge groups laid
the foundation of what then led to the standard model
of particle physics. In a parallel line of development,
Einstein’s equivalence principle was formulated through
diffeomorphism invariance of general relativity (GR),
which is a local gauge symmetry under general coordinate
transformations. Gauge symmetries introduce nonpropa-
gating and generically nonphysical degrees of freedom into
the description; nonetheless, all physical observables ought
to be gauge invariant.
Defining (conserved) charges has been one of the out-

standing questions in the context of GR, as the theory is not
only diffeomorphism invariant, but also background inde-
pendent. There have been several proposals to do so starting

with Komar [1] in 1958, followed by Arnowitt-Deser-
Misner [2–4], Regge-Teitelboim Hamiltonian method [5],
Brown-York [6], the ADT formulation [7–9], and more
recently [10–12], to just name a few. Each of these
formulations have their own advantages and disadvantages;
see chapter 5 of [13] for a recent review. In particular, the
covariant phase space formalism (CPSF), which was devel-
oped by many in particular by Wald and collaborators
[14–19], has provided a suitable framework to compute
diffeomorphism invariant conserved charges associated
with spacetime symmetries.
Black holes are ubiquitous solutions to theories of

gravity and have raised many questions at conceptual,
theoretical, and observational level since the conception of
Einstein’s GR in 1915. After seminal works of Bekenstein,
Hawking, and many others since early 1970s, it is now well
accepted that black holes satisfy laws of thermodynamics.
The idealized stationary black holes are classically in
thermal equilibrium at a given temperature with an entropy
and other charges and associated chemical potentials. There
have been many works on proving laws of black hole
thermodynamics from the first principles, starting from
diffeomorphism invariant theories of gravity. The first steps
were taken by Hawking in proving the constancy of surface
gravity on the horizon of a stationary black hole as the
zeroth law and the area theorem as a statement of the
second law; see Ref. [13] for a detailed discussion and
review. The next breakthroughs came by the seminal works
of Wald, where it was shown that the entropy is the
conserved charge á la Noether, associated with a Killing
vector generating the horizon [20], and then a derivation of
the first law was given as a result of diffeomorphism
invariance of the theory [15].
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Wald’s derivations were based on CPSF, and despite
the elegance and depth, the original analysis had some
loose ends; e.g., it relied on notions of mass and angular
momentum at asymptotically flat spacetimes, and the
electric charge was not included. Some of these points
were improved and addressed in later works. In particular,
it was noted in [21] that for stationary black holes with a
Killing horizon, one can relax the dependence on the
asymptotic behavior of the spacetime geometry and define
the first law at the horizon or any other codimension 2 slice
surrounding the horizon.
In this work, we address another loose end of Wald’s

derivation: It is not manifestly gauge invariant. The early
steps in this direction were taken in [21–26]; see also
Ref. [13]. In this work, we provide a full proof of gauge
invariance of each and every thermodynamical quantity
appearing in the first and zeroth laws of black hole
thermodynamics.

II. THE SETUP AND CONVENTIONS

Consider a generic D dimensional gravitational scalar-
Maxwell theory described by the action

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
L0ðgμν;ϕa;…Þ þ 1

4
σðϕaÞFμνFμν

�

¼
Z �

L0 þ
1

2
ðσ ⋆ FÞ ∧ F

�
; ð1Þ

in which the dynamical fields are the metric gμν, the gauge
field A, scalar fields ϕa, and ellipsis refer to other possible
dynamical fields which do not directly couple to A.
L0¼⋆L0 is a generic covariant gravitational Lagrangian,
and σðϕaÞ is an arbitrary differentiable function of some
scalar fields ϕa, which couples them to the electromagnetic
field. In the second equality, we have adopted form notation
of [15], where Lagrangian L0 is a D form, F ¼ dA is the
Uð1Þ gauge field strength, and Fμν denotes its components.
⋆ F is its Hodge dual, which is a D − 2 form. We are using
the conventions in which the speed of light, Planck’s
constant, and Newton’s constant are all set to one. These
may be recovered upon dimensional analysis, if needed.
For our analysis below, we need the explicit form of the
gauge field equations of motion:

dðσ ⋆ FÞ ¼ 0: ð2Þ

The above action is invariant under diffeomorphisms
xμ → xμ − ξμðxÞ as well as the gauge transformation
A → Aþ dλ. Under a diffeomorphism, a generic field X
transforms as X → X þ LξX, and under a gauge trans-
formation, only the gauge field transforms. We collectively
denote the diffeomorphism and gauge generators by
η ¼ fξ; λg.

A. Charge computation

Covariant phase space formulation of charges [14–19] is
a method that facilitates our discussion on the gauge
invariance of charges (see reviews in [13,27,28]). Here,
we recapitulate the basics of this method. The formulation
begins with a Lagrangian density L in D dimensions and
the action I ¼ R

L≡ R ⋆ L with some dynamical fields
ΦðxμÞ. Variation of the Lagrangian reads

δL ¼ EΦδΦþ dΘ; ð3Þ

where EΦ ¼ 0 are the equations of motion. We will use ≈
to denote on-shell equality, e.g., δL ≈ dΘ. By another
variation of the symplectic potential ΘðδΦ;ΦÞ, we obtain
the symplectic current ω

ωðδ1Φ; δ2Φ;ΦÞ ¼ δ1Θðδ2Φ;ΦÞ − δ2Θðδ1Φ;ΦÞ: ð4Þ

Since δ2L ¼ 0 identically, recalling the identity δd ¼ dδ
and assuming the linearized field equations δEΦ ≈ 0, the
symplectic current is locally conserved on-shell dω ≈ 0 and
by virtue of Poincaré Lemma, ω ≈ dkðδ1Φ; δ2Φ;ΦÞ.
For a generic diffeomorphism and gauge transformation

η ¼ fξ; λg, a charge variation can be defined by

=δQη ¼
Z
Σ
ωðδΦ; δηΦ;ΦÞ

¼
Z
Σ
ðδΘðδηΦ;ΦÞ − δηΘðδΦ;ΦÞÞ ð5Þ

¼
I
∂Σ
kηðδΦ;ΦÞ; ð6Þ

where Σ is a D − 1 dimensional spacelike hypersurface (a
Cauchy surface), ∂Σ is the D − 2 dimensional boundary of
Σ, δηΦ ¼ fLξΦ; δλΦg, and dkηðδΦ;ΦÞ ≈ ωðδΦ; δηΦ;ΦÞ.
Note that each term in a LagrangianL¼L1þL2þL3þ���
contributes to Θ, ω, and kη, in an additive way, i.e.,
Θ ¼ Θ1 þΘ2 þΘ3 þ � � �, ω ¼ ω1 þω2 þω3 þ � � �, and
kη ¼ k1η þ k2η þ k3η þ � � �.

B. Integrability of the charge

The charge variation δQη is not necessarily a variation of
a charge Qη on the phase space. The charge variation is
integrable if ðδ1=δ2 − δ2=δ1ÞQη ¼ 0. In general, if the sym-
metry generators η ¼ fξ; λg are also field dependent, as is
in the cases of our interest, this condition takes the form
[13,21,29]

I
∂Σ
ξ · ωðδ1Φ; δ2Φ;ΦÞ þ kδ1ηðδ2Φ;ΦÞ − kδ2ηðδ1Φ;ΦÞ ≈ 0:

ð7Þ
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III. GAUGE NONINVARIANCE OF CHARGE

While δQη in (6) is by construction diffeomorphism
invariant Lξ̃ðδQηÞ ¼ 0 for a generic ξ̃, it is not invariant

under a generic gauge transformation A → Aþ dλ̃,
δλ̃ðδQηÞ ≠ 0. To see this, consider the Lagrangian in (1);
i.e., L ¼ L0 þLA where L0 ¼ L0ðgμν;ϕa;…Þ and LA ¼
1
2
ðσðϕaÞ ⋆ FÞ ∧ F. For this Lagrangian, kη ¼ k0η þ kAη. It

is readily seen that k0η is invariant under the λ̃ gauge
transformation, and we hence focus on kAη. Starting from
LA, its symplectic potential is found to be ΘAðδAÞ ¼
ðσ ⋆ FÞ ∧ δA. Then

ωAðδ; δηÞ ¼ δððσ ⋆ FÞ ∧ δηAÞ − δηððσ ⋆ FÞ ∧ δAÞ
¼ δððσ ⋆ FÞ ∧ ðLξAþ dλÞÞ
− Lξððσ ⋆ FÞ ∧ δAÞ: ð8Þ

In the last equation, we replaced δηA ¼ LξAþ dλ and
used δλδA ¼ 0 as δλðA2 − A1Þ ¼ ðA2 þ dλÞ − ðA1 þ dλÞ−
ðA2 − A1Þ ¼ 0. Using the Cartan identity LξX ¼ ξ · dX þ
dðξ · XÞ for an arbitrary form X, we obtain

ωAðδ;δηÞ¼ δððσ ⋆FÞ∧ ðξ · dAþdðξ ·AþλÞÞÞ
−ξ · dððσ ⋆FÞ∧ δAÞ−dðξ · ðσ ⋆FÞ∧ δAÞ

¼ d½δðσ ⋆F∧ ðξ ·AþλÞÞ−ξ · ðσ ⋆F∧ δAÞ�; ð9Þ

where we used (2), δd ¼ dδ and δðσ ⋆ F ∧ ðξ · dAÞÞ≈
ξ · dðσ ⋆ F ∧ δAÞ to obtain (9). So, we find ωAðδ; δηÞ ¼
dkAη, where

kAη ¼ δðσ ⋆ F ∧ ðξ · Aþ λÞÞ − ξ · ðσ ⋆ F ∧ δAÞ: ð10Þ

While the second term in (10) is gauge invariant, the first
term is not: δλ̃ðkAηÞ ¼ δðσðξ · dλ̃Þ ⋆ FÞ ≠ 0. Note that the
above analysis on gauge noninvariance of the charge
variation also works for field-dependent gauge transforma-
tions when δλ ≠ 0.
Although (10) is not gauge invariant for an arbitrary η,

but if we augment a diffeomorphism ξ by the specific gauge
transformation,

λ ¼ −ξ · A; ð11Þ

then the first term in (10) vanishes, and the result is
manifestly gauge invariant. Explicitly, this happens because
with this choice for λ,

δηA ¼ LξA − dðξ · AÞ ¼ ξ · F; F ¼ dA; ð12Þ

is manifestly gauge invariant. So, δQη for the “augmented
diffeomorphism” η ¼ fξ;−ξ · Ag is both gauge and diffeo-
morphism invariant. This augmented diffeomorphism was
first introduced by E. Bessel-Hagen in his work [30] and is

repeatedly used in the literature (e.g., [31]). It was dubbed
“gauge covariant Lie derivative” (see, e.g., [32,33]) or
“improved diffeomorphisms” [34,35]. See also discussions
and references in [25]. We use “augmented diffeomor-
phism” in order to prevent confusion with a different
procedure that is called “improved energy-momentum
tensor” (see Refs. [35–37] to find more on their difference).
In what follows, we use η as the augmented diffeo-

morphism. We note that the CPSF and the charge variation
work for a generic field-dependent diffeomorphisms or
gauge transformations when δη ≠ 0 [13]. The above readily
generalizes to the cases with severalUð1Þ gauge fields AðaÞ,
as η ¼ ðξ;−ξ · AðaÞÞ. We note that the generalized sym-
metry generators η ¼ fξ;−ξ · Ag do not form an algebra,
as ½η1; η2� ¼ f½ξ1; ξ2�L:B;−½ξ1; ξ2�L:B · Aþ 2ξ1 · ðξ2 · FÞg.
Nonetheless, if ξ1, ξ2 are Killing vectors, ξ1 ·ðξ2 ·FÞ¼0,
and we retain an algebra structure.

IV. GAUGE INVARIANT
BLACK HOLD CHARGES

As the first step toward gauge invariant first law,we define
gauge invariant black hole charges. Consider a generic
stationary axisymmetric black hole solution to (1), with
stationarity Killing vector (KV) ξM and axisymmetry KVs
ξJi . Assume that this black hole has a nondegenerate Killing
horizon H generated by KV ξH and let κ and Ωi

H, respec-
tively, denote surface gravity and horizon angular velocities.
For a stationary black hole, ξH ¼ ξM − Ωi

HξJi . We can then
define the augmented isometries,

ηS ¼
2π

κ
fξH;−ξH · Ag; ηM ¼ fξM;−ξM · Ag;

ηJi ¼ fξJi ;−ξJi · Ag; ð13Þ

where A is the gauge field configuration corresponding to
the black hole solution. The above symmetry generators
have hence both field dependence and parametric depend-
ence (through κ;Ωi) [13,21]. In particular, we note that

ηS ¼
2π

κ

�
ηM −

X
i

Ωi
HηJi

�
; ð14Þ

which was alreadymentioned and used in Sec. 5.4.3 of [13].
As usual, we can define the charge variations as

δM ≔
I
S∞

kηMðδΦ;ΦÞ; δJi ≔
I
S∞

kηJi ðδΦ;ΦÞ;

δS ≔
I
B
kηSðδΦ;ΦÞ; ð15Þ

where B is the bifurcation horizon and S∞ denotes a
constant time slice at the spatial infinity i0. We note thatM,
Ji are the usual mass and angular momenta, and S is the
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Wald entropy. These charges as shown in [15,20] are
integrable. The virtue of our new definition, using η instead
of ξ, is that these charges are now gauge invariant by
construction.

V. GAUGE INVARIANT FIRST LAW

Consider the symplectic current ωðδΦ; δη̂Φ;ΦÞ where
η̂ ¼ fξH; 0g. Integrate the charge expression over a
(partial) Cauchy surface Σ with two end points (codi-
mension 2 surfaces) B and S∞, and recall that dω ≈ 0,
to find

Z
Σ
ωðδΦ;δη̂Φ;ΦÞ¼

I
S∞

kη̂ðδΦ;ΦÞ−
I
B
kη̂ðδΦ;ΦÞ:

ð16Þ

Next, recall that

η̂ ¼ fξM;−ξM · Ag − Ωi
HfξJi ;−ξJi · Ag − f0;−ξH · Ag

ð17aÞ

¼ ηM − Ωi
HηJi − f0;−ξH · Ag ð17bÞ

¼ κ

2π
ηS − f0;−ξH · Ag; ð17cÞ

where in the last line, we used (14).
We now calculate the left- and right-hand sides of (16).

For the lhs, we note that ξH is a KV; hence, δHatη acting on
gμν and the scalar fields ϕa vanish. Therefore, only the
Maxwell part of the action contributes, cf. (8),

ωðδΦ; δη̂Φ;ΦÞ ≈ δððσ ⋆ FÞ ∧ ðLξHAÞÞ
− LξHððσ ⋆ FÞ ∧ δAÞ: ð18Þ

Using LξHðσ ⋆ FÞ ¼ 0 and LξHδA ¼ δLξHA, we find

Z
Σ
ωðδΦ; δη̂Φ;ΦÞ ≈

Z
Σ
δðσ ⋆ FÞ ∧ ðLξHAÞ: ð19Þ

The rhs of (16) can be computed using (17b) and (17c) in
the first and second terms, respectively,

I
S∞

kη̂ðδΦ;ΦÞ −
I
B
kη̂ðδΦ;ΦÞ

¼ δM −Ωi
HδJi −

κ

2π
δS −

I
S∞

δððσ ⋆ FÞ ∧ ðξH · AÞÞ

þ
I
B
δððσ ⋆ FÞ ∧ ðξH · AÞÞ; ð20Þ

where we used the fact that κ;Ωi
H are constants and pulled

them out of the integrals and

kf0;−ξH ·AgðδΦ;ΦÞ ¼ δððσ ⋆ FÞ ∧ ð−ξH · AÞÞ: ð21Þ

Equating (19) and (20), we arrive at the first law

δM ¼ THδSþ Ωi
HδJi þ =δΨ; ð22Þ

where TH ¼ κ
2π is the Hawking temperature, and δΨ is

explicitly given as

=δΨ ¼
I
S∞

δðσ ⋆ FÞðξH · AÞ −
I
B
δðσ ⋆ FÞðξH · AÞ

þ
Z
Σ
δðσ ⋆ FÞ ∧ ðLξHAÞ

≈
Z
Σ
δðσ ⋆ FÞ ∧ ðξH · FÞ; ð23Þ

where in the last equation, we used (2) and the identity
LξHA ¼ ξH · F þ dðξH · AÞ. (As a comment, recall that
ξH · F ¼ δηHA.) While δΨ is manifestly gauge invariant,
it is not necessarily integrable. Note also that, as we
discussed δM; δJi; δS by construction and TH;Ωi

H, which
are determined only from the metric gμν, are all gauge
invariant. So, (22) is the promised gauge invariant first law.
Let us discuss the δΨ term a bit more. Recall that

the electric charge is given by the Gauss law δQ ¼H
S∞

δðσ ⋆ FÞ, which is obviously gauge invariant. We
may then define the gauge invariant electric chemical
potential μQ by

=δΨ ≔ μQδQ: ð24Þ

So, the first law can be written as

δM ¼ THδSþ Ωi
HδJi þ μQδQ: ð25Þ

While μQ is gauge invariant, one can present its explicit
expression in specific gauges. We will discuss this further
in the next section.
We close this part pointing out that our analysis and

discussions, and hence, the result, extend to the cases with
any number of Uð1Þ gauge fields [see comments below
(11)] as well as generic p-form gauge fields in any
dimension D [24] and, in particular, to the case of a
cosmological constant if it is viewed as the charge
associated with a D − 1-form field [38,39].

VI. ZEROTH LAW

To complete the gauge invariant description of black hole
thermodynamics, we also need to discuss the zeroth law.
The zeroth law is a statement about a system to be in
thermal equilibrium when the flow of charges is zero. Since
the flow of charges is proportional to the gradient of the
corresponding chemical potential, the zeroth law implies
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the constancy of the chemical potentials in the thermal
system. With the same token, the zeroth law of black hole
thermodynamics requires constancy of the temperature and
other chemical potentials on the horizon. In our case, that is
constancy of TH;Ωi

H; μQ. There are established textbook
arguments proving constancy of these for stationary black
holes with a Killing horizon; see chapter 5 of [13,40] for
analysis in beyond Einstein gravity theories. Here, we only
focus on the interplay of gauge invariance and the con-
stancy of chemical potentials. Since TH;Ωi

H and the usual
proofs for their constancy are manifestly gauge invariant,
we only discuss the case of μQ.
Since we have already established the gauge invariance

of μQ, to argue for its constancy over the horizon, without
loss of generality, we can work in a specific gauge. To this
end, note that (23) is not localized on the horizon; in
particular, it has a term which is an integral over Σ. Note
also that since ξH is a KVand a symmetry of the black hole
solution, LξHF ¼ 0. We now show that there exists a gauge
in which LξHA ¼ 0. First, we note that LξHF ¼ 0 implies
LξHdA ¼ dLξHA ¼ 0. Then, by the Poincaré Lemma
LξHA ¼ dλ for a scalar λ and if we take λ ¼ LξH λ̃, which
we can always do so, LξH Ã ¼ 0 in the Ã ¼ A − dλ̃ gauge.
In this gauge, (23) reduces to integrals over the boundaries,

=δΨ ¼
I
S∞

ΦS∞δðσ ⋆ FÞ þ
I
B
ΦHδðσ ⋆ FÞ;

ΦH ¼ ξH · AjB; ΦS∞ ¼ ξH · AjS∞ : ð26Þ

We now show the constancy of ΦH over the horizon and
ΦS∞ over S∞. In theLξHA ¼ 0 gauge, constancy ofΦH over
the horizon amounts to showing ζα∂αΦH ¼ 0 for any
horizon tangent vector ζ. To see the latter, recall that
horizon is a null hypsersurface generated by the orbits of
ξH, and for ζ ¼ ξH, we have ξαH∂αΦH ¼ LξHΦH ¼ 0. It
hence remains to show ζα∂αΦH ¼ 0 for any vector ζ
tangent to the bifurcation surface B, ðζ · ξHÞB ¼ 0:

ζα∂αΦH ¼ ζ · dðξH · AÞjB ¼ ζ · ðLξHA − ξH · dAÞjB
¼ −ζ · ðξH · FÞjB ¼ 0; ð27Þ

where in the second equality, we used the Cartan identity;
the third equality follows from the gauge choice LξHA ¼ 0,
and the last equality is a result of the vanishing of ξH on the
bifurcation horizon B where the field strength F has finite
components. In fact, using gauge field equation (2), one
can show that ξH · FjB ≈ dX for a gauge invariant scalar
function X defined at B. There can’t be any such function
X, and hence, ξH · FjB ≈ 0; see Ref. [25] for more formal
proof. (As a side comment, recalling (12), that is
δηHAjB ≈ 0.) Therefore, ΦH is constant over the horizon
H. A similar analysis also shows thatΦS∞ is a constant over
S∞. Therefore, we may rewrite (26) as

δΨ ¼ ðΦH −ΦS∞ÞδQ; ð28Þ

where we used Q ¼ H
S∞
ðσ ⋆ FÞ ¼ −

H
Bðσ ⋆ FÞ. With the

above, we recover the standard term in the first law.

VII. CONCLUDING REMARKS

We have given an explicitly gauge invariant derivation
of the zeroth and first laws of black hole thermodynamics.
We achieved this by extending the notion of Killing vectors
to symmetries that include certain field-dependent gauge
transformations. At the heart of our proposal is the gauge
invariant transformation for the gauge field (12); our
analysis here completes the discussions in [21,25].
Despite the fact that we limited our presentation to a
specific class of theories, as our arguments are within the
covariant phase space formalism (CPSF), our analyses and
results hold for any diffeomorphism and gauge invariant
theory. In particular, our analysis extends to cases with
higher p forms and/or asymptotic (A)dS black holes.
It is well known that in the context of CPSF, there are

certain “ambiguities” in the definition of charge variations
[15]. Also, there are ambiguities in Wald’s definition of the
entropy [16,20]. These ambiguities are ultimately defining
the boundary theory, its symplectic form and its Lagrangian
[41]; here. the boundary theory resides at H or i0.
Therefore, the gauge invariance of the full theory, which
is our starting point, implies gauge invariance of these
ambiguities.
CPSF leads to charge variations. While the first law deals

with charge variations, we need to make sure the charges
are well defined; i.e., they are integrable over the solution
space. It has been argued that the charge integrability in
general depends on the slicing of the solution phase space
and can be achieved with appropriate symmetry generators
[42,43]. For the case of our interest here, stationary black
holes and their thermodynamical laws, we need to make
sure of the integrability of charges under parametric
variations, variations in parameter space of black hole
solutions [13,21]. One can show that our augmented
symmetry generators η’s yield integrable charges, while
the ξ symmetry generators do not; see the Appendix for an
explicit example.
Besides the zeroth and first laws, one may naturally ask

about gauge (non)invariance of the usual derivations of
second and third laws of black hole thermodynamics.
Hawking’s area theorem [44] (and its extensions to generic
modified gravity theories) provides the basis for general-
ized second law arguments; see, e.g., [45,46]. If the notion
of the entropy (of black hole and the surrounding systems)
are gauge invariant, they lead to the gauge invariant notion
of the generalized second law. Here, we have provided such
a gauge invariant notion for the entropy. The most rigorous
derivation of the third law, to our knowledge, is due to
Israel [47]. If the thermodynamical quantities entering the
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analysis are gauge invariant, which here we established
they are, the arguments in [47] seem to be gauge invariant.
Establishing these more explicitly and in some clarifying
examples is a well worth exercise to take.
Here, we limited our analysis to stationary black holes

with a bifurcate Killing horizon, while the laws of black
hole thermodynamics can hold in general gravitational
systems where some of these conditions are relaxed or
replaced by less restrictive assumptions. For instance, it is
known that the near-horizon-extremal geometries that
are not black holes in the usual sense also obey laws of
thermodynamics, albeit at zero temperature [48]. One may
check that our analysis here readily extends to such cases
as well as to extremal black holes, which do not have a
bifurcate Killing horizon. It is also interesting to study
gauge invariance by relaxing stationarity or explore in more
detail black holes in asymptotically (A)dS cases or in more
general theories like those discussed in [49].
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APPENDIX: AN EXAMPLE:
KERR-NEWMAN BLACK HOLE

To clarify more the abstract analysis in the main text, we
present an example for which we also discuss the integra-
bility of charges, which we skipped in the general dis-
cussions. As our example, we choose the Kerr-Newman
black hole solution to the four-dimensional Einstein-
Maxwell theory

L ¼ 1

16π
ðR − F2Þ; ðA1Þ

and calculate δQη in (6). For an arbitrary η ¼ fξ; λg, kη is
found (see Ref. [50] for the details)

kημνðδg; gÞ ¼
1

16π

��
ξν∇μh − ξν∇αhμα þ ξα∇νhμα þ 1

2
h∇νξμ − hαν∇αξ

μ

�
− ½μ ↔ ν�

�

þ 1

4π

��
−
h
2
Fμν − Fρ½μhν�ρ − δFμν

�
ðξαAα þ λÞ − FμνξαδAα − Fα½μξν�δAα

�
; ðA2Þ

in which hμν ≔ gμβgνρδgβρ and h ≔ hμμ. Note that
kηαβ ≔ ϵμναβðkηÞμν, and the charge variation is diffeomor-
phism invariant only if it acts also on the η (see more details
in, e.g., [51,52]).
The Kerr-Newman (KN) metric and the gauge field

in coordinates xμ ¼ ðt; r; θ;φÞ and in an arbitrary gauge
is [53]

ds2 ¼ −ð1 − fÞdt2 þ ρ2

Δr
dr2 þ ρ2dθ2 − 2fa sin2 θdtdφ

þ ðr2 þ a2 þ fa2 sin2 θÞ sin2 θdφ2;

A ¼ qr
ρ2

ðdt − a sin2 θdφÞ þ dλ̃; ðA3Þ

where m, a, and q are free parameters,

ρ2 ≔ r2 þ a2cos2θ; Δr ≔ r2 þ a2 − 2mrþ q2;

f ≔
2mr − q2

ρ2
; ðA4Þ

and λ̃ ¼ λ̃ðt; r; θ;φÞ is an arbitrary scalar function.
Moreover,

rH ¼mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − q2

q
; κ ¼ r2H − a2

2rHðr2H þ a2Þ ;

ΩH ¼ a
r2H þ a2

; ΦH ¼ qrH
r2H þ a2

ξM ¼ ∂t; ξJ ¼ −∂φ; ξS ¼
2π

κ
ðξM −ΩHξJÞ: ðA5Þ

The first issue we want to check by this example is
whether ηM, ηJ, and ηS in (13) generate the mass, angular
momentum, and entropy, respectively. To this end, as
discussed in [21], we need to consider the parametric
variations. That is, consider set of KN solutions (A3) and
vary the solution parameters m, a, q:

δ̂gμν ¼
∂gμν
∂m

δmþ ∂gμν
∂a

δaþ ∂gμν
∂q

δq;

δ̂Aμ ¼
∂Aμ

∂m
δmþ ∂Aμ

∂a
δaþ ∂Aμ

∂q
δq: ðA6Þ

After performing the calculation using these variations in
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=̂δQηM ¼
I
S∞

dθdφ
ffiffiffiffiffiffi
−g

p
ktrηM ;

=̂δQηJ ¼
I
S∞

dθdφ
ffiffiffiffiffiffi
−g

p
ktrηJ ;

=̂δQηS ¼
I
B
dθdφ

ffiffiffiffiffiffi
−g

p
ktrηS ; ðA7Þ

we find

δ̂QηM ¼ δm; δ̂QηJ ¼ δmaþaδm;

δ̂QηS ¼
2π

κ

�
δm−ΩHðmδaþaδmÞ−

�
qrH

r2H þa2

�
δq

�
;

ðA8Þ

which are manifestly integrable if we take m, a, q to be
independent parameters and produce the standard charges

M≔QηM ¼m; J≔QηJ ¼ma; S¼ πðr2Hþa2Þ; ðA9Þ

respectively. The result is independent of λ̃, confirming that
the augmented generators in (13) produce gauge invariant
charges.
The second issue to investigate is the gauge noninvar-

iance and nonintegrability of the charge variations asso-
ciated to ξM, ξJ, and ξS and show that the charge variations
depend on λ̃ and are not integrable. To this end, it suffices to
focus on a subset of λ̃, which produces finite and coor-
dinate-independent charge variations.
Let us begin with ξM and consider λ̃ ¼ λ̃ðt; r; θÞ such that

at S∞, it tends to a linear function in time λ̃∞ðm; a; qÞt [23].
If we insert f∂t; 0g and the parametric variations (A6) into
(A2), we find

δQξM ¼ δmþ λ̃∞ðm; a; qÞδq: ðA10Þ

Presence of λ̃ in the result clearly shows its gauge
dependence. Moreover, it is not integrable for arbitrary
λ̃∞; i.e., it is not δMðm; a; qÞ for a function Mðm; a; qÞ.
To check the gauge noninvariance of the charge variation

of ξJ, we can choose λ̃ ¼ λ̃ðr; θ;φÞ such that at S∞, it tends
to a constant λ̃∞ðm; a; qÞ times φ. A similar calculation
shows

δQξJ ¼ δðma − qλ̃∞Þ; ðA11Þ

while integrable, it is gauge dependent for arbitrary λ̃∞.
To show the nonintegrability of ξS ¼ 2π

κ ξH, one can
follow similar steps while integrating over B instead of S∞.
However, there is a shortcut, which we follow here. The
point is that even for the case of λ̃ ¼ 0, ξS has nonintegrable
charge variation. This important result was first reported in
[21], and we summarize it here. Let us set λ̃ ¼ 0 in (A3). In
this gauge, the KVs ξM and ξJ are exact symmetries, and ω
in (16) vanishes for these. So by Stokes’ theorem, their
charge variations can be calculated not only at S∞ but also
on any other smooth closed codimension-2 surface that
encompasses B (including the B itself) producing the same
result. Therefore, by ξS ¼ 2π

κ ðξM −ΩHξJÞ and by setting
λ̃ ¼ 0 in (A10) and (A11), we find

δQξS ¼
2π

κ
ðδm −ΩHðmδaþ aδmÞÞ; ðA12Þ

which is not integrable over the whole set of parameters m,
a, q.
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