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Abstract: In this paper, we rigorously prove that unpredictable oscillations take place in the dynamics
of Hopfield-type neural networks (HNNs) when synaptic connections, rates and external inputs
are modulo periodic unpredictable. The synaptic connections, rates and inputs are synchronized to
obtain the convergence of outputs on the compact subsets of the real axis. The existence, uniqueness,
and exponential stability of such motions are discussed. The method of included intervals and
the contraction mapping principle are applied to attain the theoretical results. In addition to the
analysis, we have provided strong simulation arguments, considering that all the assumed conditions
are satisfied. It is shown how a new parameter, degree of periodicity, affects the dynamics of the
neural network.

Keywords: Hopfield-type neural networks; modulo periodic unpredictable synaptic connections;
rates and inputs; unpredictable solutions; exponential stability; numerical simulations

1. Introduction

It is well-known that HNNs [1,2] are widely used in the fields of signal and image
processing, pattern recognition, associative memory and optimization computation, among
others [3–8]. Hence, they have been the object of intensive analysis by numerous authors
in recent decades. With the increasing improvement in neural networks, the aforemen-
tioned systems are being modernized, and the dynamics of models with various types of
coefficients are being investigated [9–13]. Special attention is being paid to the problem of
the existence and stability of periodic and almost periodic solutions of HNNs [14–21], for
which appropriate coefficients and conditions are necessary.

A few years ago, the boundaries of the classical theory of dynamical systems, founded
by H. Poincare [22] and G. Birkhoff [23], were expanded by the concepts of unpredictable
points and unpredictable functions [24]. It was proven that the unpredictable point leads to
the existence of chaos in quasi-minimal sets. That is, the proof of the unpredictability simul-
taneously confirms Poincare chaos. Unpredictable functions were defined as unpredictable
points in the Bebutov dynamical system [25], where the topology of convergence on com-
pact sets of the real axis is used instead of the metric space. The use of such convergence
significantly simplifies the problem of proving the existence of unpredictable solutions for
differential equations and neural networks, and a new method of included intervals has
been introduced and developed in several papers [26–31].

Let us commence with the main definitions.

Definition 1 ([25]). A uniformly continuous and bounded function ψ : R→ R is unpredictable if
there exist positive numbers ε0, δ and sequences tn, sn, both of which diverge to infinity such that
|ψ(t+ tn)−ψ(t)| → 0 as n→ ∞ uniformly on compact subsets of R and |ψ(t+ tn)−ψ(t)| > ε0
for each t ∈ [sn − δ, sn + δ] and n ∈ N.
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In Definition 1, the sequences tn, sn, n = 1, 2, . . . are said to be the convergence and
divergence sequences of the function ψ(t), respectively. We call the uniform convergence
on compact subsets of R the convergence property, and the existence of the sequence sn and
positive numbers ε0, δ is called the separation property. It is known [32] that an unpredictable
function without separation property is said to be a Poisson stable function.

Let us introduce a new type of unpredictable functions, which are important objects
for investigation in the paper.

Definition 2. The sum φ(t) + ψ(t) is said to be a modulo periodic unpredictable function if
φ(t) is a continuous periodic function and ψ(t) is an unpredictable function.

In this study, we focus on the Hopfield-type neural network with two-component
coefficients and inputs:

x′i(t) = −(ai(t) + bi(t))xi(t) +
p

∑
j=1

(cij(t) + dij(t)) f j(xj(t)) + ui(t) + vi(t), i = 1, 2, . . . , p, (1)

where xi(t) stands for the state vector of the ith unit at time t. The synaptic connections,
rates and external inputs are modulo periodic unpredictable; they consist of two compo-
nents such that ai(t), cij(t), ui(t) are periodic and bi(t), dij(t), vi(t) are unpredictable. cij(t)
and dij(t) denote components of the synaptic connection weights of the jth unit with the
ith unit at time t; the functions f j(xj(t)) denote the measures of activation to its incoming
potentials of the unit j at time t.

Consider the convergence sequence tn of the unpredictable function ψ(t). For fixed
real number ω > 0, one can write that tn ≡ τn(mod ω), where 0 ≤ τn < ω for all n ≥ 1.
The boundedness of the sequence τn implies that there exists a subsequence τnl , which
converges to a number τω, 0 ≤ τω < ω. That is, there exists a subsequence tnl of the
convergence sequence tn and a number τω such that tnl → τω(mod ω) as l → ∞. We called
the number τω the Poisson shift for the convergence sequence tn with respect to the ω [33].
Denote by Tω the set of all Poisson shifts. The number κω = in f Tω, 0 ≤ κω < ω, is said
to be the Poisson number for the convergence sequence tn. If κω = 0, then we say that the
sequence tn satisfies the kappa property.

2. Methods

Due to the development of neural networks and their applications, classical types of
functions such as periodic and almost periodic are no longer sufficient to study their dy-
namics. This is especially seen in analysis of the chaotic behavior of the systems. Therefore,
in order to meet requirements of progress, many more functions are needed. To satisfy the
demands, we have combined periodic and unpredictable components in rates and inputs.
If the periodicity is inserted to serve for stability, the unpredictability guarantees chaotic
dynamics. According to Definition 1, verification of the convergence and separation proper-
ties is necessary to prove the existence of unpredictable solutions. To provide constructive
conditions for the existence of unpredictable solutions, we have determined the special
kappa property of the convergence sequence tn, with respect to the period ω.

The method of included intervals, which was introduced in paper [26] and has been
developed in [27–29,33], is a powerful instrument for verifying convergence properties.
This technique has been applied in the study of continuous unpredictable solutions of
Hopfield-type neural networks with delayed and advanced arguments [30] and in the
study of discontinuous unpredictable solutions of impulsive neural networks with Hop-
field structures [31]. All the previous models in [30,31] are considered with constant rates,
while in the present research, the rates are variable, and we have designed the new model
of Hopfield-type neural networks with modulo periodic unpredictable rates ai(t) + bi(t),
connection weights cij(t) + dij(t) and external inputs ui(t) + vi(t). The periodic compo-
nents, ai(t), serve the stability of the model, while the unpredictable components bi(t) and
vi(t) cause chaotic outputs.
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3. Main Results

Throughout the paper, we will use the norm ‖v‖ = max
1≤i≤p

|vi|, where |·| is the absolute

value, v = (v1, . . . , vp) and vi ∈ R, i = 1, 2, . . . , p.
Following the results in [34], it can be shown that the function y(t) = (y1(t), y2(t), . . . , yp(t))

is a solution of (1) if and only if it satisfies the following integral equation:

yi(t) = −
∫ t

−∞
e−
∫ t

s ai(u)du
(
− bi(s)yi(s) +

p

∑
j=1

(cij(s) + dij(s)) f j(yj(s)) + ui(s) + vi(s)
)

ds, (2)

for all i = 1, . . . , p.
Denote by S the set of vector-functions ϕ = (ϕ1, ϕ2, . . . , ϕp), where ϕi, i = 1, 2, . . . , p,

satisfy the convergence property with the common convergence sequence tn. Moreover,
|ϕi| < H, i = 1, 2, . . . , p, where H is a positive number. In the set, S determines the norm
‖ϕ(t)‖0 = max(i) |ϕi(t)|.

Define on S the operator T such that Tφ(t) = (T1φ(t), T2φ(t), . . . , Tpφ(t)), where:

Tiφ(t) ≡ −
∫ t

−∞
e−
∫ t

s ai(u)du
(
− bi(s)φi(s) +

p

∑
j=1

(cij(s) + dij(s)) f j(φj(s)) + ui(s) + vi(s)
)

ds, (3)

for each i = 1, 2, . . . , p. We will need the following conditions:

(C1) The functions ai(t), cij(t) and ui(t) are continuous ω−periodic, and
∫ ω

0 ai(u)du > 0
for each i, j = 1, . . . , p;

(C2) The functions bi(t), dij(t) and vi(t), i, j = 1, 2, . . . , p, are unpredictable with the same
convergence and divergence sequences tn, sn. Moreover, |vi(t + tn)− vi(t)| > ε0 for
all t ∈ [sn − δ; sn + δ], i = 1, 2, . . . , p, and positive numbers δ, ε0;

(C3) The convergence sequence tn satisfies the kappa property with respect to the period
ω;

(C4) There exists a positive number m f such that sup|s|<H | f (s)| = m f ;
(C5) There exists a positive number L such that the function f (s) satisfies the inequality

| f (s1)− f (s2)| ≤ L|s1 − s2| if |s1| < H, |s2| < H.

According the condition (C1), for all i = 1, . . . , p, the numbers Ki ≤ 1 and λi > 0 exist,
such that

e−
∫ t

s ai(u)du ≤ Kie−λi(t−s). (4)

For convenience, we introduce the following notations:

ma
i = sup

t∈R
|ai(t)|, mb

i = sup
t∈R
|bi(t)|, mu

i = sup
t∈R
|ui(t)|,

mv
i = sup

t∈R
|vi(t)|, mc

ij = sup
t∈R
|cij(t)|, md

ij = sup
t∈R
|dij(t)|,

for each i = 1, 2, . . . , p.
The following conditions are required:

(C6)
Ki

λi − Kimb
i
(

p

∑
j=1

(mc
ij + md

ij)m f + mu
i + mv

i ) < H;

(C7) Ki(mb
i +

p

∑
j=1

(mc
ij + md

ij)L) < λi;

(C8) Hmb
i +

p

∑
j=1

md
ijm f <

ε0

4
;

for all i, j = 1, . . . , p.

Lemma 1. The set S is a complete space.
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Proof. Consider a Cauchy sequence φk(t) in S , which converges to a limit function φ(t) on
R. Fix a closed and bounded interval I ⊂ R. We obtain:

‖φ(t + tn)− φ(t)‖ ≤ ‖φ(t + tn)− φk(t + tn)‖+ ‖φk(t + tn)− φk(t)‖+ ‖φk(t)− φ(t)‖. (5)

One can choose sufficiently large n and k, such that each term on the right side of (5) is
smaller than ε

3 for an arbitrary ε > 0 and t ∈ I. Thus, we conclude that the sequence
φ(t + tn) is uniformly converging to φ(t) on I. That is, the set S is complete.

Lemma 2. The operator T is invariant in S .

Proof. For a function ϕ(t) ∈ S and fixed i = 1, 2, . . . , p, we have that

|Ti ϕ(t)| =

∣∣∣∣∣∣
t∫

−∞

e−
∫ s

t ai(u)du

[
−bi(s)ϕi(s) +

p

∑
j=1

(cij(s) + dij(s)) f j(ϕj(s)) + ui(s) + vi(s)

]
ds

∣∣∣∣∣∣
≤

t∫
−∞

Kie−λi(t−s)

[
|bi(s)ϕi(s)|+

p

∑
j=1

(|cij(s)|+ |dij(s)|)| f j(ϕj(s))|+ |ui(s|+ |vi(s)|
]

ds

≤ Ki
λi

(
mb

i H +
p

∑
j=1

(mc
ij + md

ij)m f + mu
i + mv

i

)
.

The last inequality and condition (C6) imply that ‖Tϕ‖0 < H.
Next, applying the method of included intervals, we will show that Tϕ(t + tn) →

Tϕ(t) as n→ ∞ uniformly on compact subsets of R.
Let us fix an arbitrary ε > 0 and a section [α, β],−∞ < α < β < ∞. There exist

numbers γ, ξ such that γ < α and ξ > 0, which satisfy the following inequalities:

Ki
λi

e−λi(α−γ)
(

mb
i H +

1
4

p

∑
j=1

(mc
ij + md

ij)(LH + m f ) + mu
i + mv

i

)
<

ε

8
, (6)

Ki
λi

(eξ(β−γ) − 1)(mb
i H +

p

∑
j=1

(mc
ij + md

ij)m f + mu
i + mv

i ) <
ε

4
, (7)

and
Kiξ

λi
(mb

i + H +
p

∑
j=1

(mc
ij + md

ij)L + 2pm f + 2) <
ε

4
, (8)

for all i = 1, 2, . . . , p.
Since the functions bi(t), dij(t) and vi(t), i, j = 1, 2, . . . , p, are unpredictable, ϕ(t)

belongs to S , and the convergence sequence, tn, is common to all of them and satisfies the
kappa property. Then, the following inequalities are true: |bi(t + tn)− bi(t)| < ξ, |dij(t +
tn)− dij(t)| < ξ, |vi(t + tn)− vi(t)| < ξ, |ϕi(t + tn)− ϕi(t)| < ξ for t ∈ [γ, β]. Moreover,
applying condition (C3), one can attain that |ai(t + tn)− ai(t)| < ξ, |cij(t + tn)− cij(t)| < ξ,
and |ui(s + tn)− ui(s)| < ξ for t ∈ R, i, j = 1, 2, . . . , p. We have that:
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|Ti ϕ(t + tn)− Ti ϕ(t)| ≤
∣∣∣ ∫ t

−∞
e−
∫ t

s ai(u+tn)du
(
− bi(s + tn)ϕi(s + tn) +

p

∑
j=1

(cij(s + tn) + dij(s + tn)) f j(ϕj(s + tn)) + ui(s + tn) + vi(s + tn)
)

ds−

∫ t

−∞
e−
∫ t

s ai(u)du
(
− bi(s)ϕi(s) +

p

∑
j=1

(cij(s) + dij(s)) f j(ϕj(s)) + ui(s) + vi(s)
)

ds
∣∣∣ ≤

∫ t

−∞
|e−

∫ t
s ai(u+tn)du − e−

∫ t
s ai(u)du|

∣∣∣− bi(s + tn)ϕij(s + tn) +

p

∑
j=1

(cij(s + tn) + dij(s + tn)) f j(ϕj(s + tn)) + ui(s + tn) + vi(s + tn)
∣∣∣ds +

∫ t

−∞
e−
∫ t

s ai(u)du
∣∣∣− bi(s + tp)ϕi(s + tp) + bi(s)ϕi(s) +

p

∑
j=1

(cij(s + tn) + dij(s + tn))( f j(ϕj(s + tn))− f j(ϕj(s))) +

p

∑
j=1

(cij(s + tn)− cij(s) + dij(s + tn)− dij(s)) f j(ϕj(s)) + ui(s + tn) + vi(s + tn)− ui(s)− vi(s)
∣∣∣ds,

for all i = 1, 2, . . . , p. Consider the terms in the last inequality separately on intervals
(−∞, γ] and (γ, t]. By using inequalities (6)–(8), we obtain:

I1 =
∫ γ

−∞
|e−

∫ t
s ai(u+tn)du − e−

∫ t
s ai(u)du|

∣∣∣− bi(s + tn)ϕij(s + tn) +

p

∑
j=1

(cij(s + tn) + dij(s + tn)) f j(ϕj(s + tn)) + ui(s + tn) + vi(s + tn)
∣∣∣ds +

∫ γ

−∞
e−
∫ t

s ai(u)du
∣∣∣− bi(s + tp)ϕi(s + tp) + bi(s)ϕi(s) +

p

∑
j=1

(cij(s + tn) + dij(s + tn))( f j(ϕj(s + tn))− f j(ϕj(s))) +

p

∑
j=1

(cij(s + tn)− cij(s) + dij(s + tn)− dij(s)) f j(ϕj(s)) + ui(s + tn) + vi(s + tn)− ui(s)− vi(s)
∣∣∣ds ≤

∫ γ

−∞
2Kie−λi(t−s)

(
mb

i H +
p

∑
j=1

(mc
ij + md

ij)m f + mu
i + mv

i

)
ds +

∫ γ

−∞
Kie−λi(t−s)

(
2mb

i H +
p

∑
j=1

(mc
ij + md

ij)LH + 2
p

∑
j=1

(mc
ij + md

ij)m f + 2mu
i + 2mv

i

)
ds ≤

2Ki
λi

e−λi(α−γ)
(

mb
i H +

p

∑
j=1

(mc
ij + md

ij)m f + mu
i + mv

i

)
+

Ki
λi

e−λi(α−γ)
(

2mb
i H +

p

∑
j=1

(mc
ij + md

ij)(LH + 2m f ) + 2mu
i + 2mv

i

)
≤

4Ki
λi

e−λi(α−γ)
(

mb
i H +

1
4

p

∑
j=1

(mc
ij + md

ij)(LH + m f ) + mu
i + mv

i

)
<

ε

2
,

and
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I2 =
∫ t

γ
|e−

∫ t
s ai(u+tn)du − e−

∫ t
s ai(u)du|

∣∣∣− bi(s + tn)ϕij(s + tn) +

p

∑
j=1

(cij(s + tn) + dij(s + tn)) f j(ϕj(s + tn)) + ui(s + tn) + vi(s + tn)
∣∣∣ds−

∫ t

γ
e−
∫ t

s ai(u)du
∣∣∣− bi(s + tp)ϕi(s + tp) + bi(s)ϕi(s) +

p

∑
j=1

(cij(s + tn) + dij(s + tn))( f j(ϕj(s + tn))− f j(ϕj(s))) +

p

∑
j=1

(cij(s + tn)− cij(s) + dij(s + tn)− dij(s)) f j(ϕj(s)) + ui(s + tn) + vi(s + tn)− ui(s)− vi(s)
∣∣∣ds

≤
∫ t

γ
Kie−λi(t−s)(eξ(β−γ) − 1)

(
mb

i H +
p

∑
j=1

(mc
ij + md

ij)m f + mu
i + mv

i

)
ds +

∫ t

γ
Kie−λi(t−s)

(
(mb

i + H)ξ +
p

∑
j=1

(mc
ij + md

ij)Lξ + 2ξ pm f + 2ξ
)

ds ≤

Ki
λi

(eξ(β−γ) − 1)(mb
i H +

p

∑
j=1

(mc
ij + md

ij)m f + mu
i + mv

i ) +

Ki
λi

((mb
i + H)ξ +

p

∑
j=1

(mc
ij + md

ij)Lξ + 2ξ pm f + 2ξ) <
ε

4
+

ε

4
=

ε

2
,

for each i = 1, 2, . . . , p. This is why, for all t ∈ [α, β] and i = 1, 2, . . . , p, we have that
|Ti ϕ(t + tn)− Ti ϕ(t)| ≤ I1 + I2 < ε. So, the function Tϕ(t + tn) uniformly convergences to
Tϕ(t) on compact subsets of R, and it is true that T : S → S .

Lemma 3. The operator T is contractive in S , provided that the conditions (C1)–(C7) are valid.

Proof. For two functions ϕ, ψ ∈ S , and fixed i = 1, 2, . . . , p, it is true that

|Ti ϕ(t)− Tiψ(t)| ≤
∫ t

−∞
e−
∫ t

s ai(u)du
(
|bi(s)||ϕi(s)− ψi(s)|+

p

∑
j=1

cij(s)| f j(ϕj(s))− f j(ψj(s))|ds +

p

∑
j=1

dij(s)| f j(ϕj(s))− f j(ψj(s))|ds
)

ds ≤ Ki
λi

(
mb

i |ϕi(s)− ψi(s)|+
p

∑
j=1

mc
ijL|ϕj(s)− ψj(s)|+

p

∑
j=1

md
ijL|ϕj(s)− ψj(s)|

)
ds ≤ Ki

λi
(mb

i +
p

∑
j=1

(mc
ij + md

ij)L)‖ϕ− ψ‖0.

The last inequality yields ‖Tϕ(t)−Tψ(t)‖0 ≤ max
i

(Ki
λi

(mb
i +

p

∑
j=1

(mc
ij +md

ij)L)
)
‖ϕ(t)−

ψ(t)‖0. Hence, in accordance with condition (C7), the operator T is contractive in S .

Theorem 1. The neural network (1) admits a unique exponentially stable unpredictable solution
provided that conditions (C1)–(C8) are fulfilled.

Proof. By Lemma 1, the set S is complete; by Lemma 2, the the operator T is invariant in
S ; and by Lemma 3, the operator T is contractive in S . Applying the contraction mapping
theorem, we obtain that there exists a fixed point ω ∈ S of the operator T, which is a
solution of the neural network (1) and satisfies the convergence property.

Next, we show that the solution ω(t) of (1) satisfies the separation property.
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Applying the relations

ωi(t) = ωi(sn)−
∫ t

sn
ai(s)ωi(s)ds−

∫ t

sn
bi(s)ωi(s)ds +

∫ t

sn

p

∑
j=1

cij(s) f j(ωj(s))ds +

∫ t

sn

p

∑
j=1

dij(s) f j(ωj(s))ds +
∫ t

sn
ui(s)ds +

∫ t

sn
vi(s)ds

and

ωi(t + tn) = ωi(sn + tn)−
∫ t

sn
ai(s + tn)ωi(s + tn)ds−

∫ t

sn
bi(s + tn)ωi(s + tn)ds +

∫ t

sn

p

∑
j=1

cij(s + tn) f j(ωj(s + tn))ds +
∫ t

sn

p

∑
j=1

dij(s + tn) f j(ωj(s))ds +
∫ t

sn
ui(s + tn)ds +

∫ t

sn
vi(s + tn)ds

we obtain:

ωi(t + tn)−ωi(t) = ωi(sn + tn)−ωi(sn)−
∫ t

sn
ai(s + tn)(ωi(s + tn)−ωi(s))ds−∫ t

sn
ωi(s)(ai(s + tn)− ai(s))ds−

∫ t

sn
bi(s + tn)(ωi(s + tn)−ωi(s))ds−

∫ t

sn
ωi(s)(bi(s + tn)− bi(s))ds +

∫ t

sn

p

∑
j=1

cij(s + tn)( fi(ωi(s + tn))− fi(ωi(s)))ds +

∫ t

sn

p

∑
j=1

(cij(s + tn)− cij(s)) fi(ωi(s))ds +
∫ t

sn

p

∑
j=1

dij(s + tn)( fi(ωi(s + tn))− fi(ωi(s)))ds +

∫ t

sn

p

∑
j=1

(dij(s + tn)− dij(s)) fi(ωi(s))ds +
∫ t

sn
(ui(s + tn)− ui(s))ds +

∫ t

sn
(vi(s + tn)− vi(s))ds.

There exist positive numbers δ1 and integers l, k such that, for each i = 1, 2, . . . , p, the
following inequalities are satisfied:

6
l
< δ1 < δ; (9)

|ai(t + s)− ai(s)| < ε0(
1
l
+

2
k
), t ∈ R, (10)

|cij(t + s)− cij(s)| < ε0(
1
l
+

2
k
), t ∈ R, (11)

|ui(t + s)− ui(s)| < ε0(
1
l
+

2
k
), t ∈ R, (12)

(
ma

i + H + mb
i +

p

∑
j=1

(mc
ij + md

ij)L + 1
)
(

1
l
+

2
k
) <

1
4

, (13)

|ωi(t + s)−ωi(t)| < ε0 min(
1
k

,
1
4l
), t ∈ R, |s| < δ1. (14)

Let the numbers δ1, l and k, as well as numbers n ∈ N, and i = 1, . . . , p, be fixed. Consider
the following two alternatives: (i) |ωi(tn + sn) − ωi(sn)| < ε0/l; (ii) |ωi(tn + sn) −
ωi(sn)| ≥ ε0/l.

(i) Using (14), one can show that
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|ωi(t + tn)−ωi(tn)| ≤ |ωi(t + tn)−ωi(sn + tn)|+ |ωi(sn + tn)−ωi(sn)|+ |ωi(sn)−ωi(t)|

<
ε0

l
+

ε0

k
+

ε0

k
= ε0(

1
l
+

2
k
), i = 1, 2, · · · , p, (15)

if t ∈ [sn, sn + δ1]. Therefore, the condition (C8) and inequalities (9)–(15) imply that

|ωi(t + tn)−ωi(t)| ≥
∫ t

sn
|vi(s + tn)− vi(s)|ds−

∫ t

sn
|ωi(s)||bi(s + tn)− bi(s)|ds−

∫ t

sn

p

∑
j=1
|dij(s + tn)− dij(s)|| fi(ωi(s)|ds−

∫ t

sn
|ai(s + tn)||ωi(s + tn)−ωi(s)|ds−

∫ t

sn
|ωi(s)||ai(s + tn)− ai(s)|ds−

∫ t

sn
|bi(s + tn)||ωi(s + tn)−ωi(s)|ds−

∫ t

sn

p

∑
j=1
|cij(s + tn)|| fi(ωi(s + tn))− fi(ωi(s))|ds−

∫ t

sn

p

∑
j=1
|cij(s + tn)− cij(s)|| fi(ωi(s))|ds−

∫ t

sn

p

∑
j=1
|dij(s + tn)|| fi(ωi(s + tn))− fi(ωi(s))|ds−

∫ t

sn
|ui(s + tn)− ui(s)|ds− |ωi(sn + tn)−ωi(sn)| ≥

δ1ε0 − 2δ1Hmb
i − 2δ1

p

∑
j=1

md
ijm f − δ1ma

i ε0(
1
l
+

2
k
)− δ1Hε0(

1
l
+

2
k
)− δ1mb

i ε0(
1
l
+

2
k
)−

δ1

p

∑
j=1

mc
ijLε0(

1
l
+

2
k
)− δ1

p

∑
j=1

md
ijLε0(

1
l
+

2
k
)− δ1ε0(

1
l
+

2
k
)− ε0

l
=

δ1

(
ε0 − 2Hmb

i − 2
p

∑
j=1

md
ijm f − (ma

i + H + mb
i +

p

∑
j=1

(mc
ij + md

ij)L + 1)ε0(
1
l
+

2
k
)
)
− ε0

l
>

ε0

2l

for t ∈ [sn, sn + δ1].
(ii) If |ωi(tn + sn)−ωi(sn)| ≥ ε0/l, it is not difficult to find that (14) implies:

|ωi(t + tn)−ωi(t)| ≥ |ωi(tn + sn)−ωi(sn)| − |ωi(sn)−ωi(t)| − |ωi(t + tn)−ωi(tn + sn)|

>
ε0

l
− ε0

4l
− ε0

4l
=

ε0

2l
, i = 1, 2, . . . , p, (16)

if t ∈ [sn − δ1, sn + δ1] and n ∈ N. Thus, it can be concluded that ω(t) is an unpredictable
solution with sequences tn, sn and positive numbers δ1

2 , ε0
2l .

Next, we will prove the stability of the solution ω(t). It is true that

ωi(t) = e−
∫ t

t0
ai(u)du

ωi(t0)−
∫ t

t0

e−
∫ t

s ai(u)du
(

bi(s)ωi(s) +
p

∑
j=1

(cij(s) + dij(s)) f j(ωj(s)) + ui(s) + vi(s)
)

ds,

for all i = 1, . . . , p.
Let y(t) = (y1(t), y2(t), . . . , yp(t)), be another solution of system (1). Then,

yi(t) = e−
∫ t

t0
ai(u)duyi(t0)−

∫ t

t0

e−
∫ t

s ai(u)du
(

bi(s)yi(s) +
p

∑
j=1

(cij(s) + dij(s)) f j(yj(s)) + ui(s) + vi(s)
)

ds,

for all i = 1, . . . , p.
Making use of the relation:
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yi(t)−ωi(t) = e−
∫ t

t0
ai(u)du

(yi(t0)−ωi(t0))−
∫ t

t0

e−
∫ t

t0
ai(u)du

(
bi(s)yi(s)− bi(s)ωi(s) +

p

∑
j=1

cij f j(yj(s))−
p

∑
j=1

cij f j(ωj(s)) +
p

∑
j=1

dij f j(yj(s))−
p

∑
j=1

dij f j(ωj(s))
)

ds,

we obtain that:

|yi(t)−ωi(t)| ≤ Kie−λi(t−t0)|yi(t0)−ωi(t0)|+
∫ t

t0

Kie−λi(t−t0)
(

mb
i +

p

∑
j=1

(mc
ij + md

ij)L
)
|yi(s)−ωi(s)|ds,

for all i = 1, 2, . . . , p.
Applying the Gronwall–Belman Lemma, one can obtain:

|yi(t)−ωi(t)| ≤ Ki | yi(t0)−ωi(t0)|e
(Ki(mb

i +L ∑
p
j=1(m

c
ij+md

ij))−λi)(t−t0), (17)

for each i = 1, 2, . . . , p. So, (C7) implies that ω(t) = (ω1(t), ω2(t), . . . , ωp(t)) is an exponen-
tially stable unpredictable solution of the neural network (1). The theorem is proven.

4. Numerical Examples

Let ψi, i ∈ Z, be a solution of the logistic discrete equation:

λi+1 = µλi(1− λi), (18)

with µ = 3.91.
In the paper [25], an example was constructed of the unpredictable function Θ(t). The

function Θ(t) =
∫ t

−∞
e−3(t−s)Ω(s)ds, where Ω(t) is a piecewise constant function defined

on the real axis through the equation Ω(t) = ψi for t ∈ [i, i + 1), i ∈ Z.
In what follows, we will define the piecewise constant function, Ω(t), for t ∈ [hi, h(i +

1)), where i ∈ Z and h is a positive real number. The number h is said to be the length of
step of the functions Ω(t) and Θ(t). We call the ratio of the period and the length of step,
∇ = ω/h the degree of periodicity.

Below, using numerical simulations, we will show how the degree of periodicity
affects the dynamics of a neural network.

Example 1. Let us consider the following Hopfield-type neural network:

x′i(t) = −(ai(t) + bi(t))xi(t) +
3

∑
j=1

(cij(t) + dij(t)) f j(xj(t)) + ui(t) + vi(t), (19)

where i = 1, 2, 3, f (x(t)) = 0.2tanh(x(t)). The functions ai(t), cij(t) and ui(t) are π/2−periodic
such that a1(t) = 2+ sin2(2t), a2(t) = 3+ cos(4t), a3(t) = 4+ cos2(2t), c11(t) = 0.1 cos(4t),
c12(t) = 0.3 sin(2t), c13(t) = 0.1 cos(8t), c21(t) = 0.2 sin(8t), c22(t) = 0.05 cos(4t), c23(t) =
0.4 sin(2t), c31(t) = 0.3 cos(2t), c32(t) = 0.5 sin(4t), c33(t) = 0.1 sin(8t), u1(t) = sin(8t),
u2(t) = sin(4t), u3(t) = cos(4t). The unpredictable functions bi(t), dij(t) and vi(t) such that
b1(t) = 0.2Θ(t), b2(t) = 0.6Θ(t), b3(t) = 0.4Θ(t), d11(t) = 0.02Θ(t), d12(t) = 0.05Θ(t),
d13(t) = 0.03Θ(t), d21(t) = 0.04Θ(t), d22(t) = 0.01Θ(t), d23(t) = 0.06Θ(t), d31(t) =
0.06Θ(t), d32(t) = 0.06Θ(t), d33(t) = 0.05Θ(t), v1(t) = 3Θ(t), v2(t) = 5Θ(t), v3(t) =

4Θ(t), where Θ(t) =
∫ t

−∞
e−2.5(t−s)Ω(s)ds with the length of step h = 4π. Condition (C1) is

valid, and Ki = 1, i = 1, 2, 3, λ1 = 5π/4, λ2 = 6π/4, λ3 = 9π/4. Since the elements of the
convergence sequence are multiples of h = 4π, and the period ω is equal to π/2, condition (C3)
is valid. The degree of periodicity is equal to 1/8. Conditions (C4)–(C8) are satisfied with H = 1,



Entropy 2022, 24, 1555 10 of 14

m f = 0.2, L = 0.2, mb
1 = 0.08, mb

2 = 0.24, mb
3 = 0.16, mc

11 = 0.1, mc
12 = 0.3, mc

13 = 0.1,
mc

21 = 0.2, mc
22 = 0.05, mc

23 = 0.4, mc
31 = 0.3, mc

32 = 0.5, mc
33 = 0.1, md

11 = 0.008, md
12 = 0.02,

md
13 = 0.012, md

21 = 0.016, md
22 = 0.004, md

23 = 0.024, md
31 = 0.024, md

32 = 0.024, md
33 = 0.02,

mu
1 = mu

2 = mu
3 = 1, mv

1 = 1.2, mv
2 = 2, mv

3 = 1.6. According Theorem 1, the neural network
(19) admits a unique asymptotically stable, unpredictable solution ω(t) = (ω1(t), ω2(t), ω3(t)).
In Figures 1 and 2, the coordinates and the trajectory of the neural network are shown (19), which
asymptotically convergence to the coordinates and trajectory of the unpredictable solution ω(t).
Moreover, utilizing (17), we have that:

|x1(t)−ω1(t)| ≤ |x1(0)−ω1(0)|e−3.62(t−t0) ≤ 2e−3.62(t−t0),

|x2(t)−ω2(t)| ≤ |x2(0)−ω2(0)|e−4.26(t−t0) ≤ 2e−4.26(t−t0),

|x3(t)−ω3(t)| ≤ |x3(0)−ω3(0)|e−6.72(t−t0) ≤ 2e−6.72(t−t0).

Thus, if t > 1
3.62 (5 ln 10 + ln 2) ≈ 3.38, then ‖x(t)− ω(t)‖0 < 10−5. In other words, what is

seen in Figures 1 and 2 for sufficiently large time can be accepted as parts of the graph and trajectory
of the unpredictable solution.
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Figure 1. The time series of the coordinates x1(t), x2(t) and x3(t) of the solution of system (19) with
the initial conditions x1(0) = 0.5, x2(0) = 0.7, x3(0) = 0.3 and ∇ = 1/8.
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Figure 2. The trajectory of the neural network (19).

Example 2. Let us show the simulation results for the following Hopfield-type neural network:

y′i(t) = −(ai(t) + bi(t))yi(t) +
3

∑
j=1

(cij(t) + dij(t)) f j(yj(t)) + ui(t) + vi(t), (20)
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where i = 1, 2, 3, f (y(t)) = 0.5arctg(y(t)).
The functions ai(t), cij(t) and ui(t) are periodic with common period ω = 1, and a1(t) =

5 + cos(2πt), a2(t) = 4 + sin2(πt), a3(t) = 6 + 0.5 sin(2πt), c11(t) = 0.4 cos(2πt), c12(t) =
0.2 sin(4πt), c13(t) = 0.1 cos(8πt), c21(t) = 0.1 cos(4πt), c22(t) = 0.4 cos(2πt), c23(t) =
0.4 sin(4πt), c31(t) = 0.3 sin(2πt), c32(t) = 0.5 cos(4πt), c33(t) = 0.2 cos(2πt), u1(t) =
cos(2πt), u2(t) = 0.5 sin(4πt), u3(t) = sin(2πt). The functions bi(t), dij(t) and vi(t) are
unpredictable such that b1(t) = 0.5Θ(t), b2(t) = 0.3Θ(t), b3(t) = 0.7Θ(t), d11(t) = 0.3Θ(t),
d12(t) = 0.6Θ(t), d13(t) = 0.2Θ(t), d21(t) = 0.3Θ(t), d22(t) = 0.5Θ(t), d23(t) = 0.3Θ(t),
d31(t) = 0.1Θ(t), d32(t) = 0.2Θ(t), d33(t) = 0.5Θ(t), v1(t) = 6Θ(t), v2(t) = 8Θ(t),

v3(t) = 7Θ(t), where Θ(t) =
∫ t

−∞
e−3(t−s)Ω(s)ds with the length of step h = 1. Condition

(C1) is valid, and Ki = 1, i = 1, 2, 3, λ1 = 5, λ2 = 4.5, λ3 = 6. Conditions (C2) and (C3) are
satisfied since the elements of the convergence sequence are multiples of h = 1 and the period ω is
equal to 1. The degree of periodicity equals to 1. Conditions (C4)–(C8) are satisfied with H = 1,
m f = π/4, L = 0.5, mb

1 = 1/6, mb
2 = 1/10, mb

3 = 7/30, mc
11 = 0.4, mc

12 = 0.2, mc
13 = 0.1,

mc
21 = 0.1, mc

22 = 0.4, mc
23 = 0.4, mc

31 = 0.3, mc
32 = 0.5, mc

33 = 0.2, md
11 = 0.1, md

12 = 0.2,
md

13 = 0.07, md
21 = 0.1, md

22 = 0.17, md
23 = 0.1, md

31 = 0.34, md
32 = 0.07, md

33 = 0.17, mu
1 = 1,

mu
2 = 0.5, mu

3 = 1, mv
1 = 2, mv

2 = 8/3, mv
3 = 7/3. Figures 3 and 4 demonstrate the coordinates

and the trajectory of the solution y(t) = (y1(t), y2(t, y3(t))), of the neural network (20), with
initial values y1(0) = 0.2, y2(0) = 0.4, y3(0) = 0.6. The solution y(t) = (y1(t), y2(t, y3(t)))
asymptotically converges to the unpredictable solution ω(t). By estimation (17), one can obtain that
‖y(t)−ω(t)‖0 < 10−6 for t > 1

4.175 (6 ln 10 + ln 2) ≈ 3.48.
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Figure 3. The time series of the coordinates y1(t), y2(t) and y3(t) of the solution of system (20) with
the initial conditions y1(0) = 0.5, y2(0) = 0.7, y3(0) = 0.3, and ∇ = 1.
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Figure 4. The trajectory of the neural network (20).
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Example 3. Finally, we will show how the degree of periodicity, ∇ > 1, effects the dynamics of the
Hopfield-type neural network:

z′i(t) = −(ai(t) + bi(t))zi(t) +
3

∑
j=1

(cij(t) + dij(t)) f j(zj(t)) + ui(t) + vi(t), (21)

where i = 1, 2, 3, f (z(t)) = 0.25arctg(z(t)). The functions ai(t), cij(t) and ui(t) are periodic with
common period ω = 10π, and a1(t) = 5+ sin(2t), a2(t) = 6+ cos(4t), a3(t) = 4+ 0.5 sin(2t),
c11(t) = 0.01 sin(2t), c12(t) = 0.04 cos(4t), c13(t) = 0.02 sin(8t), c21(t) = 0.05 cos(4t),
c22(t) = 0.03 sin(2t), c23(t) = 0.03 cos(8t), c31(t) = 0.02 sin(4t), c32(t) = 0.05 cos(2t),
c33(t) = 0.01 cos(4t), u1(t) = sin(0.4t), u2(t) = cos(0.4t), u3(t) = cos(0.2t). The un-
predictable functions bi(t), dij(t) and vi(t) are such that b1(t) = 0.8Θ(t), b2(t) = 0.3Θ(t),
b3(t) = 0.4Θ(t), d11(t) = 0.04Θ(t), d12(t) = 0.05Θ(t), d13(t) = 0.02Θ(t), d21(t) =
0.05Θ(t), d22(t) = 0.01Θ(t), d23(t) = 0.06Θ(t), d31(t) = 0.01Θ(t), d32(t) = 0.06Θ(t),
d33(t) = 0.03Θ(t), v1(t) = 1.6Θ(t), v2(t) = 1.4Θ(t), v3(t) = 1.8Θ(t), where Θ(t) =∫ t

−∞
e−2(t−s)Ω(s)ds with the length of step h = 0.1π. All conditions (C1)–(C8) are valid with

Ki = 1, i = 1, 2, 3, λ1 = 50π, λ2 = 40π, λ3 = 60π, H = 1, m f = π/4, L = 0.25, mb
1 = 0.4,

mb
2 = 0.15, mb

3 = 0.2, mc
11 = 0.01, mc

12 = 0.04, mc
13 = 0.02, mc

21 = 0.05, mc
22 = 0.03, mc

23 =

0.03, mc
31 = 0.02, mc

32 = 0.05, mc
33 = 0.01, md

11 = 0.02, md
12 = 0.025, md

13 = 0.01, md
21 = 0.025,

md
22 = 0.005, md

23 = 0.03, md
31 = 0.005, md

32 = 0.03, md
33 = 0.015, mu

1 = mu
2 = mu

3 = 1,
mv

1 = 0.8, mv
2 = 0.7, mv

3 = 0.9. The degree of periodicity is equal to 100. In Figures 5 and 6,
we depict the coordinates and the trajectory of the solution z(t) = (z1(t), z2(t), z3(t)) of the
neural network (21), with initial values z1(0) = 0.8, z2(0) = 0.2, z3(0) = 0.5. The solution z(t)
asymptotically converges to the unpredictable solution ω(t).
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Figure 5. The coordinates z1(t), z2(t) and z3(t) of the solution of system (21) with the initial conditions
z1(0) = 0.8, z2(0) = 0.2, z3(0) = 0.5 and ∇ = 100.
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Figure 6. The trajectory of the neural network (21).
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Observing the graphs in Figures 1 and 3, if ∇ ≤ 1, we see that the unpredictability
prevails. More preciously, periodicity appears only locally on separated intervals if ∇ < 1,
and is not seen at all for ∇ = 1. Oppositely, if ∇ > 1, one can see in Figure 5 that the
solution admits clear periodic shape, which is enveloped by the unpredictability.

5. Conclusions

In this paper, we consider HNNs with variable two-component connection matrix,
rates and external inputs. Sufficient conditions are obtained to ensure the existence of
exponentially stable unpredictable solutions for HNNs. We introduced and utilized the
quantitative characteristic, the degree of periodicity, which differentiates contribution of
components, that is, the periodicity and the unpredictability, in the outputs of the model.
The obtained results make it possible to find effects of periodicity in chaotic oscillations,
which is very important for synchronization, stabilization and control of chaos.

Author Contributions: M.A.: conceptualization; investigation; validation; writing—original draft.
M.T.: investigation; writing—review and editing. A.Z.: investigation; software; writing—original
draft. All authors have read and agreed to the published version of the manuscript.

Funding: M.A. and A.Z. have been supported by the 2247-A National Leading Researchers Program
of TUBITAK, Turkey, N 120C138. M. Tleubergenova has been supported by the Science Committee of
the Ministry of Education and Science of the Republic of Kazakhstan, grant No. AP08856170.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef] [PubMed]
2. Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-stage neurons. Proc. Natl.

Acad. Sci. USA 1984, 81, 3088–3092. [CrossRef] [PubMed]
3. Pajares, G. A Hopfield Neural Network for Image Change Detection. IEEE Trans. Neural Netw. 2006, 17, 1250–1264. [CrossRef]

[PubMed]
4. Koss, J.E.; Newman, F.D.; Johnson, T.K.; Kirch, D.L. Abdominal organ segmentation using texture transforms and a Hopfield

neural network. IEEE Trans. Med. Imaging 1999, 18, 640–648. [CrossRef]
5. Cheng, K.C.; Lin, Z.C.; Mao, C.W. The Application of Competitive Hopfield Neural Network to Medical Image Segmentation.

IEEE Trans. Med. Imaging 1996, 15, 560–567. [CrossRef]
6. Soni, N.; Sharma, E.K.; Kapoor, A. Application of Hopfield neural network for facial image recognition. IJRTE 2019, 8, 3101–3105.
7. Sang, N.; Zhang, T. Segmentation of FLIR images by Hopfield neural network with edge constraint. Pattern Recognit. 2001, 34,

811–821. [CrossRef]
8. Amartur, S.C.; Piraino, D.; Takefuji, Y. Optimization neural networks for the segmentation of magnetic resonance images. IEEE

Trans. Med. Imaging 1992, 11, 215–220. [CrossRef]
9. Mohammad, S. Exponential stability in Hopfield-type neural networks with impulses. Chaos Solitons Fractals 2007, 32, 456–467.

[CrossRef]
10. Chen, T.; Amari, S.I. Stability of asymmetric Hopfield networks. IEEE Trans. Neural Netw. 2001, 12, 159–163. [CrossRef]
11. Shi, P.L.; Dong, L.Z. Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses.

Appl. Math. Comput. 2010, 216, 623–630. [CrossRef]
12. Juang, J. Stability analysis of Hopfield type neural networks. IEEE Trans. Neural Netw. 1999, 10, 1366–1374. [CrossRef] [PubMed]
13. Yang, H.; Dillon, T.S. Exponential stability and oscillation of Hopfield graded response neural network. IEEE Trans. Neural Netw.

1994, 5, 719–729. [CrossRef] [PubMed]
14. Liu, B. Almost periodic solutions for Hopfield neural networks with continuously distributed delays. Math. Comput. Simul. 2007,

73, 327–335. [CrossRef]
15. Liu, Y.; Huang, Z.; Chen, L. Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays.

Neural Comput. Appl. 2012, 21, 821–831. [CrossRef]
16. Guo, S.J.; Huang, L.H. Periodic oscillation for a class of neural networks with variable coefficients. Nonlinear Anal. Real World

Appl. 2005, 6, 545–561. [CrossRef]
17. Liu, B.W.; Huang, L.H. Existence and exponential stability of almost periodic solutions for Hopfield neural networks with delays.

Neurocomputing 2005, 68, 196–207. [CrossRef]

http://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
http://dx.doi.org/10.1073/pnas.81.10.3088
http://www.ncbi.nlm.nih.gov/pubmed/6587342
http://dx.doi.org/10.1109/TNN.2006.875978
http://www.ncbi.nlm.nih.gov/pubmed/17001985
http://dx.doi.org/10.1109/42.790463
http://dx.doi.org/10.1109/42.511759
http://dx.doi.org/10.1016/S0031-3203(00)00041-8
http://dx.doi.org/10.1109/42.141645
http://dx.doi.org/10.1016/j.chaos.2006.06.035
http://dx.doi.org/10.1109/72.896806
http://dx.doi.org/10.1016/j.amc.2010.01.095
http://dx.doi.org/10.1109/72.809081
http://www.ncbi.nlm.nih.gov/pubmed/18252637
http://dx.doi.org/10.1109/72.317724
http://www.ncbi.nlm.nih.gov/pubmed/18267846
http://dx.doi.org/10.1016/j.matcom.2006.05.027
http://dx.doi.org/10.1007/s00521-011-0655-x
http://dx.doi.org/10.1016/j.nonrwa.2004.11.004
http://dx.doi.org/10.1016/j.neucom.2005.05.002


Entropy 2022, 24, 1555 14 of 14

18. Liu, Y.G.; You, Z.S.; Cao, L.P. On the almost periodic solution of generalized Hopfield neural networks with time-varying delays.
Neurocomputing 2006, 69, 1760–1767. [CrossRef]

19. Yang, X.F.; Liao, X.F.; Evans, D.J.; Tang, Y. Existence and stability of periodic solution in impulsive Hopfield neural networks with
finite distributed delays. Phys. Lett. A 2005, 343, 108–116. [CrossRef]

20. Zhang, H.; Xia, Y. Existence and exponential stability of almost periodic solution for Hopfield type neural networks with impulse.
Chaos Solitons Fractals 2008, 37, 1076–1082. [CrossRef]

21. Bai, C. Existence and stability of almost periodic solutions of Hopfield neural networks with continuously distributed delays.
Nonlinear Anal. Theory Methods Appl. 2009, 71, 5850–5859. [CrossRef]

22. Poincare, H. New Methods of Celestial Mechanics; Dover Publications: New York, NY, USA, 1957.
23. Birkhoff, G. Dynamical Systems; American Mathematical Society: Providence, RI, USA, 1927.
24. Akhmet, M.; Fen, M.O. Unpredictable points and chaos. Commun. Nonlinear Sci. Nummer. Simulat. 2016, 40, 1–5. [CrossRef]
25. Akhmet, M.; Fen, M.O. Poincare chaos and unpredictable functions. Commun. Nonlinear Sci. Nummer. Simulat. 2017, 48, 85–94.

[CrossRef]
26. Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Poincare chaos for a hyperbolic quasilinear system. Miskolc Math. Notes 2019,

20, 33–44. [CrossRef]
27. Akhmet, M.; Seilova, R.; Tleubergenova, M.; Zhamanshin, A. Shunting inhibitory cellular neural networks with strongly

unpredictable oscillations. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105287. [CrossRef]
28. Akhmet, M.; Tleubergenova, M.; Akylbek Z. Inertial neural networks with unpredictable oscillations. Mathematics 2020, 8, 1797.

[CrossRef]
29. Akhmet, M. Domain Structured Dynamics: Unpredictability, Chaos, Randomness, Fractals, Differential Equations and Neural Networks;

IOP Publishing: Bristol, UK, 2021.
30. Akhmet, M.; ÇinÇin, D.A.; Tleubergenova, M.; Nugayeva, Z. Unpredictable oscillations for Hopfield–type neural networks with

delayed and advanced arguments. Mathematics 2020, 9, 571. [CrossRef]
31. Akhmet, M.; Tleubergenova, M.; Nugayeva, Z. Unpredictable Oscillations of Impulsive Neural Networks with Hopfield Structure.

Lect. Notes Data Eng. Commun. Technol. 2021, 76, 625–642.
32. Sell, G. Topological Dynamics and Ordinary Differential Equations; Van Nostrand Reinhold Company: London, UK, 1971.
33. Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Modulo periodic Poisson stable solutions of quasilinear differential equations.

Entropy 2021, 23, 1535. [CrossRef]
34. Hartman, P. Ordinary Differential Equations; Birkhauser: Boston, MA, USA, 2002.

http://dx.doi.org/10.1016/j.neucom.2005.12.117
http://dx.doi.org/10.1016/j.physleta.2005.06.008
http://dx.doi.org/10.1016/j.chaos.2006.09.085
http://dx.doi.org/10.1016/j.na.2009.05.008
http://dx.doi.org/10.1016/j.cnsns.2016.04.007
http://dx.doi.org/10.1016/j.cnsns.2016.12.015
http://dx.doi.org/10.18514/MMN.2019.2826
http://dx.doi.org/10.1016/j.cnsns.2020.105287
http://dx.doi.org/10.3390/math8101797
http://dx.doi.org/10.3390/math9050571
http://dx.doi.org/10.3390/e23111535

	Introduction
	Methods
	Main Results
	Numerical Examples
	Conclusions
	References

