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Abstract: With the advances in the IoT era, the number of wireless sensor devices has been growing
rapidly. This increasing number gives rise to more complex networks where more complex tasks
can be executed by utilizing more computational resources from the public clouds. Cloud service
providers use various pricing models for their offered services. Some models are appropriate for the
cloud service user’s short-term requirements whereas the other models are appropriate for the long-
term requirements of cloud service users. Reservation-based price models are suitable for long-term
requirements of cloud service users. We used the pricing schemes with spot and reserved instances.
Reserved instances support a hybrid cost model with fixed reservation costs that vary with contract
duration and an hourly usage charge which is lower than the charge of the spot instances. Optimizing
resources to be reserved requires sufficient research effort. Recent algorithms proposed for this
problem are generally based on integer programming problems, so they do not have polynomial time
complexity. In this work, heuristic-based polynomial time policies are proposed for this problem. It
is exhibited that the cost for the cloud service user which uses our approach is comparable to optimal
solutions, i.e., it is near-optimal.

Keywords: public cloud; cost optimization; resource reservation; cloud computing

1. Introduction

Fifth-generation (5G) communications technology is finally here with its promised
low-latency performance and high speed. Many intriguing cloud computing developments
loom with it. In addition, via the redefinition of business networks, 5G will change many
roles of networks and cloud computing in storing, moving, and accessing data as innovation
drives and provides digital business transformation many technological applications. The
impact of 5G on cloud computing can be observed in transforming edge computing,
redefining the function of the cloud, converging in the cloud, and the dawn of network
cloudification [1].

Recently, wireless sensor networks (WSNs) have been applied to various fields, such
as environment monitoring, manufacturing, critical infrastructure monitoring, healthcare,
public safety systems, and military monitoring. On the other hand, as WSNs have limits of
scalability, communication, computational power, memory, and energy, it is very important
to manage the large number of WSN data efficiently. They need a scalable high-performance
computing and massive storage infrastructure to process data in real time and store them,
in addition to analyzing the processed information within its context, using inherently
complex models to extract events of interest. As a promising technology to mitigate the
limitations of WSNs, cloud computing provides a low-cost, scalable, virtualized solution
for a flexible stack of software services, storage, and massive computing. Consequently,
the sensor-cloud infrastructure has recently become popular, which provides a flexible,
open, and reconfigurable platform for WSNs to shift their storage and computations to
remote clouds in many controlling and monitoring applications [2]. To date, many studies
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have handled various integration concerns of WSNs with the cloud. Sensors can reach
resources in the public clouds by resource reservation with a price depending on various
price schemes provided by cloud service providers. The resource provisioning for sensors
in public clouds still remains an open issue.

In the following subsection, we give the motivation of the paper and why resource
reservation policies are important for WSNs in the 5G and Internet of things (IoT) era where
sensors may need more computational resources provided by public clouds in the beyond
5G and IoT era. In the following, we present the common pricing schemes provided by
cloud service providers. Then, we present the main contributions of the paper and outline
the rest of the paper.

1.1. Motivation

With the advances in the beyond 5G and IoT era, more and more wireless-sensor-
equipped devices are expected to be connected to the Internet for achieving connectivity
through the world. These devices, especially the mobile ones such as ground nodes and
uncrewed aerial vehicles (UAV), need computational resources to achieve their tasks while
keeping their security and privacy. For example, a recent article [3] tackle energy-aware
and quality-aware data collection problem where a UAV plans a trajectory to collect data
from ground nodes. As the trajectory optimization problem tackled in these papers is
harder than orienteering problem [4], which is a combination of two NP-hard problems
(traveling salesman problem [5] and knapsack problem [6]), the computational workload
is excessive for a UAV depending on the topology of the network. In this case, the UAV
can benefit from the computational resources provided by the public cloud. On the other
hand, ground robots in a robotics and wireless sensor network, especially cluster head
robots, may need more computational resources depending on the workload of data fusion
and the number of robots in their cluster. The book chapter [7] investigates blockchain-
aided IoT platforms which monitor transportation and sense vehicles. This chapter also
investigates the use of blockchain in robotic networks. The paper [8] investigates the
use of blockchain in the Internet of drones. Depending on the required security level
in these mobile systems, more complex blockchain protocols need to be applied, which
brings the necessity for more computational resources in those systems. From another
perspective, the cyberphysical systems which require RF-domain security solutions may
need computational resources if they use deep learning techniques, as explained in the
paper [9–11]. Hence, future cyberphysical systems and IoT devices will need more cloud-
based computational resources.

Cloud providers are working intensively to build services, tools and infrastructures,
whereas many mobile operators deploy 5G access networks to provide their customer best
service. To improve the service experience for customers, public cloud service providers
and 5G network operators can work together in several areas in the forthcoming years.
Some can be listed as back-office systems, 5G mobile edge, private mobile networks, and
network functions [12].

Resource provisioning has emerged as a promising technique which allocates virtual-
ized resources to users. If cloud service providers accept the users’ requests for resources,
they use resource-provisioning techniques for creating and allocating an appropriate num-
ber of VMs based on demand [13]. Furthermore, their main responsibility is ensuring users’
QoS-based needs fulfillment of service-level agreement (SLA) negotiations in addition to
mapping incoming workloads/applications to resources [14]. Resource provisioning brings
several advantages including reducing the makespan and response times for submitted
workloads, reducing overprovisioning and underprovisioning, reducing the startup delay
of VMs, providing fault tolerance capabilities, and reducing power consumption [15].

In the last decade, practices for dedicated access to computers belonging to users
(individuals, organizations, etc.) have been replaced by those of on-demand access to
resources shared among many users. Cloud computing enables significantly this shift by
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providing a pervasive and on-demand network access for shared regulatable computing
resource [16].

Current studies consider that cloud service users (CSUs) demand resources from cloud
service providers (CSPs) and CSPs allocate virtualized resources to CSUs by considering
the needs of CSUs. During these requests, CSUs are faced with a big challenge because
of the resource pricing schemes offered by CSPs. Resources are accessible on a spot (or
on demand) and reservation basis. Resource reservation is done with a constant pricing
scheme for a fixed contract duration. On the other hand, a reservation for a longer duration
or more resources than the ones needed to cover the demands for resources cause a higher
cost for CSUs and overprovisioning [17]. Nevertheless, if the resources are allocated only
on a spot basis (no reservation is made in this case), then the cost for CSUs will again be
high, because spot prices are generally more than reserved prices in general. From the
CSUs’ perspective, to decrease the cost of total resource usage, efficient and low-complexity
policies are required.

In this work, we tackle a resource provisioning problem occurring in public clouds,
where we determine the quantity of resources to reserve for minimizing the costs of
executing an application. For this purpose, we tackle the problem under multiple pricing
schemes given in the following subsection.

1.2. Pricing Schemes

CSPs offer computing resources as a utility and software as a service (SaaS) over
networks. CSUs pay for these services or resources depending on their usage. To optimize
the cost of services and resources from a CSU’s perspective is quite a hard problem since
the CSPs generally present nonfixed pricing models for utilizing their resources. For this
purpose, we need to understand the common pricing models well.

Descriptions of common pricing models that CSPs offer are provided as follows.

• Fixed cost—CSPs charge resource instances according to their types and duration in
terms of months or years. Here, for each fixed time duration, one price is assigned. The
cost is found by multiplying that price with the number of service units or resource
instances which users request. CSUs pay a fixed cost even if resources are never
utilized the whole time.

• Variable cost—CSPs provide services to the users on a variable-cost pay-as-you-go
basis determined by their volume of transactions and the number of users. CSPs
charge resource instances according to their types and usage (e.g., per hour) and
with no long-term commitments or upfront payments. Resources are allocated on an
on-demand basis which means that a user does not need to make a payment unless a
resource is used.

• Hybrid cost—a mixture of fixed and variable costs, which includes both variable and
fixed parts.

• Flexible cost—Resource instances are charged by the CSPs according to their time and
type of usage. At a certain instant, the resource cost is set by considering the resource
demand. Unless CSUs use the resources, they do not need to pay.

We need some more notions to tackle the resource provisioning problem in public
clouds. In our work, for cost minimization, we considered reserved and spot instances,
which are explained as follows.

• A flexible cost is used for spot instances that have a flexible utilization charge on an
hourly basis.

• Reserved instances use hybrid cost models with fixed reservation costs. These costs
vary with the contract duration and have an hourly usage charge which is lower than
the charge of the spot instances.
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1.3. Our Contributions

Our main contributions can be summarized as follows:

• To the best of our knowledge, this paper is the first work in which the uncertainty of
demands and prices have been considered for the problem at hand.

• This problem is considered analytically to obtain the structure of optimal resource
provisioning policies.

• A heuristic approach is proposed and shown to be near-optimal for the problem at hand.

1.4. Organization

The rest of this paper is organized as follows. Section 2 provides the related work.
Section 3 gives the system model and problem formulation. In Section 4, a heuristic
approach is presented for this resource provisioning problem. In Section 5, a policy based on
this heuristic approach is proposed and shown to be near-optimal. In Section 6, numerical
results show that this heuristic-based policy is efficient which is verified by the results in
Section 5. Section 7 concludes this paper by providing a discussion and future directions.

2. Related Work

In recent years, multiple pricing schemes were investigated in [18–24] from different
perspectives. Most of these papers considered resource provisioning problems under
reserved vs. on-demand pricing schemes. Refs. [18,19] presented an analysis of various
kinds of spot instances. Refs. [20,21] showed the effectiveness of multiprice schemes,
such as on-demand and reservation schemes, which many CSPs follow these days. Cost
optimization for a CSU was studied in [22–24] by considering different pricing schemes.
The papers [22,23] used stochastic integer programming models to optimize the costs of
SLA-aware resource provisioning in clouds. In [24], reserved and on-demand instances
were considered for minimizing the total processing times for budget-limited jobs and the
cost of deadline-constrained jobs. To apply these solutions, the demands for resources
needed to be predicted. Based on historical data, ref. [25] developed demand-predicting
models over twelve months.

Ref. [26] proposed a cloud application as solution for multiphysics/multidomain
problems. For this purpose, the authors utilized cloud technologies for managing network,
hardware, the operating system, and applications. In particular, related to computational
demands in the resource provisioning problem, the user could have the results from any
place and any device without any other concerns. The user determined the parameters of
the problem, selected a more appropriate solution for the specific problem, and obtained
a solution for this problem. Minimum possible resources were allocated automatically in
the background without the user’s interference. Ref. [27] proposed an optimal resource
allocation scheme for maximizing the utilization of available resources on a vehicular cloud
which was created by vehicles. An expected average reward maximization problem was
formulated as a semi-Markov decision process (SMDP) and then solved by an iterative
algorithm. Numerical results showed that the proposed approach maintained the block
rate as 0.2, with the priority of maximizing the utilization of available resources.

With a deterministic resource provisioning approach, many works have tackled this
problem as a single-phase optimization algorithm that only considers resources with
reserved contracts from IaaS providers. They do not consider the ambiguity of users’
demands. Instead, they apply deterministic provisioning schemes for future workloads
under the assumption of fixed-valued demands [28,29]. Ref. [28] considered converged
optical network and computing infrastructures and designed cloud service provisioning
schemes for them. To address the challenge of the evaluation and exploitation of the
systems working with renewable energy, stochastic linear programming (SLP) was used for
proposing a new service provisioning scheme. The proposed approach achieved stability
and a fast convergence to optimality. With renting cost minimization, Ref. [29] considered
the scheduling problem of periodical workflow applications. The novelty of that work came
from its more realistic objective function than the ones commonly considering makespan
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minimization. For this problem, the authors constructed an integer programming model.
By considering three types of initial schedule construction methods, they developed a
precedence-tree-based heuristic. Two improvement procedures were proposed based on
an initial schedule. Numerical results showed that the presented policy was effective
and efficient.

With a dynamic resource provisioning approach, the following papers applied elastic
cloud resource provisioning mechanisms for handling the uncertainty of users’ demands.
Ref. [30] constructed resource cost optimization models for periodically performed data and
computationally intensive applications at hourly intervals. Ref. [31] dynamically adjusted
resources to meet predicted short-term workload for cost minimization, while avoiding
SLA violations. Although these approaches met varying demands better, the resultant costs
became considerably larger due to the utilization of only expensive on-demand resources.

Ref. [32] proposed a framework for packing short jobs into the deals of a buying
group. In this framework, flexible resource sharing was allowed among different users.
Thus, it achieved resource efficiency for the provider and cost effectiveness for the cloud
user. Ref. [33] proposed a cloud service framework which offered on-demand and reserved
instances by considering the reservation cost-minimization problem for distributed data
centers as an integer programming problem. An online rolling-horizon-based policy and an
offline heuristic-greedy policy were proposed for this problem. Numerical results showed
that the proposed algorithms could handle large volumes of instance demands via a higher
reservation resource utilization by saving significant service costs.

Ref. [34] introduced an advanced cluster-based metaheuristic-driven energy-aware
routing technique for IoT-enabled WSNs. The proposed technique aimed to achieve maxi-
mum network lifetime and energy utilization. Its performance was investigated in several
aspects. Numerical results showed its enhancements over recent approaches in the liter-
ature. As a result, the suggested technique was applied for tests with a full simulation
capability of NS-3.26. The simulation results showed that its performance was improved
with respect to the packet delivery ratio (PDR), energy consumption, network lifetime,
proportion of dead nodes, and latency.

Ref. [35] suggested a secure, cost- and energy-aware heuristic-based policy to schedule
real-time workflow jobs processing IoT data by considering different security needs. That
study worked with a four-tier architecture which consisted of layers of mist, IoT, fog, and
cloud. Mist, fog, and cloud tiers had heterogeneous resources. The suggested technique was
compared with a secure (not cost- and energy-aware) baseline strategy. Their performance
was evaluated via simulations, under various security-level probabilities for the initial
IoT input data of workflow jobs. Numerical results showed that the proposed technique
both achieved a better QoS than the benchmark technique and reduced monetary costs by
saving energy.

The paper [36] proposed techniques for determining reservation amounts, and future
spot prices were not known for them. However, the first technique had an assumption of
knowing future demands while the other technique made no such assumption but could
ensure the reservation cost and usage of cloud resources considerably. In addition, the
paper formulated the problem as an integer linear programming (ILP) problem. Numerical
results demonstrated that the proposed technique achieved a considerably smaller cost
than ILP.

The paper [37] presented an energy-aware cluster-based routing protocol where cluster
heads (CHs) were elected via several routing metrics including distances between sink
and sensors, number of neighbors, residual energy, and times when a node acts as a CH.
When compared with some techniques in the literature, it was shown that the suggested
technique extended the network lifetime in addition to improving throughput considerably.

In [38], the closest study to our work, reserved and on-demand instances were con-
sidered for optimizing the cost of resource reservation. First, a structure for an optimal
algorithm was obtained with the knowledge of all demands during the scenario (omni-



Sensors 2022, 22, 9034 6 of 19

scient case). Then, some low-complexity, heuristic policies were proposed and shown to
be efficient.

The works for minimizing the costs mostly apply integer programming models that
are naturally NP-hard. Efficient heuristics have not been found for cost optimization
problems with spot instances in polynomial time. Thus, several heuristic policies have been
proposed for cost optimization problems. This paper also proved that the heuristic policy
achieved optimality in certain scenarios.

Table 1 provides a gap analysis in the related literature.

Table 1. Brief comparison of resource provisioning policies in public clouds.

Related Works On-Demand Pricing Spot Pricing Knowing Demands Not Knowing Demands

[18] no yes yes no

[19] no yes yes no

[20] yes no yes no

[21] yes no yes no

[22] no yes yes no

[23] no yes yes no

[24] yes no yes no

[32] yes no yes no

[33] yes no yes yes

[36] no yes yes yes

[38] yes no yes yes

This work no yes yes yes

3. System Model and Problem Formulation

In this section, we first present the system model briefly. Then, we formulate the
resource provisioning problem in public clouds.

3.1. System Model

We tackled the resource reservation problem occurring in public clouds similar to the
problem in [38]. We determined the quantity of resources to be reserved for minimizing
the costs of executing applications. Figure 1 shows a resource provisioning framework in
public clouds.

The two main modules in this resource provisioning framework are the controller
module and deployer module. The deployer module analyzes applications statically to
determine their optimal resource requirement. The controller module fine-tunes the provi-
sioned resources dynamically to alleviate underprovisioning and overprovisioning cases.

3.2. Problem Formulation

In this resource provisioning problem, we determined the quantity of resources to be
reserved for minimizing the costs of executing an application. For the problem at hand, the
following assumptions were made:

• An application is run through different stages denoted by t, 1 ≤ t ≤ T. The number of
hours per stage (h) determines the granularity of a stage.

• Its demand for resources, denoted by D, is known (or estimated using the mechanisms
described in [25]) at every stage of execution of the application. The predicted values
of the demand vector are available at each stage t, 1 ≤ t ≤ T.

• Reserved resources have a one-time fixed charge for the contract duration and a
variable-usage charge to be paid for hourly usage basis.
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• If the demand at a given stage t is more than the reserved resource, that difference
between the demanded and reserved instances is made up with spot instances.

A CSP offers K different types of reservation contract. Each type of contract (k) is
associated with a one-time reservation cost (Rk), a usage cost (rk) per hour, and its duration
(tk) in number of stages. At every stage (t), the number of instances to be reserved (xRk

t )
needs to be decided. We also need to determine the number of instances to be launched

based on the reservation from contract k (xrk
t ) in addition to spot instances (x

oj
k

t ). The cost
of spot instances is more than the usage cost of reserved instances (oj

k > rk). Meanwhile,
a reservation increase incurs high reservation costs. Therefore, by balancing these two
factors, we aimed to find an optimal reservation.

Costt denotes the cost at any given stage t, i.e,

Costt ,
K

∑
k=1

(
xRk

t Rk + xrk
t rkh + x

oj
k

t oj
kh
)

. (1)

The first, second, and last terms in (1) stand for the reservation cost under contract k,
the usage costs of the reserved instances, and the costs of using spot instances, respectively.
There exist some policies which can minimize the cost in (1) optimally. However, there
is no polynomial-time policy for an optimal solution of the problem since an integer
programming problem is NP-hard. Therefore, we looked for low-complexity algorithms to
solve the problem at hand.

Figure 1. Resource provisioning framework in the public cloud.

4. Heuristic-Based Resource Reservation

Here, some heuristic policies are derived for the resource provisioning problem in
polynomial times. It is shown that when there is a single-type contract k with a contract
duration of tk stages, and the demand vector is available for stages t = 1, . . . , tk, it is possible
to determine the optimal value for the reservation under contract k. It is assumed each
stage lasts 1 h. The usage cost for a demand d in a single stage with x reserved instances
under contract k is:
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Costu(x, d) ,
{

d · rk if d ≤ x
x · rk + (d− x) · o if d > x

(2)

= rk ·min(x, d) + o ·max(d− x, 0) (3)

Heuristic with Known Demand Vector

In this subsection, an approach similar to that in [38] is used to sort the demands in
a single contract duration. Please see Figure 2 for an example of sorting demands in a
contract of duration tk.

1 2 3 tt-1t-2j j+1. . . . . .

. . . . . .

D
e
m
a
n
d

Figure 2. Sorting demands in a contract of duration t.

It is assumed that a vector of demands D for the duration of tk stages is available.
x denotes the quantity of resources reserved under contract k; Ex denotes the total cost
corresponding to demand vector D, which consists of reservation costs and resource-usage
costs. Hence, by combining Equation (1) with reservation costs, Ex is

Ex = x · Rk + ∑
i,Di≤x

Di · rk + ∑
i,Di>x

[
x · rk + (Di − x) · oDi

]
(4)

where the spot price, denoted by oDi , is defined for the demand in hour i, Di, as

oDi , rk + αk · Di, (5)

where αk is a positive constant determined by contract k.
As an example for spot pricing in the previous Equation (5), let us consider the

following example.

Example 1. For this example, let us take the hourly usage cost as 0.136 USD/h and the α parameter
as 0.00001. Let us consider the number of demanded virtual machines (VMs) from 0 to 8000 with a
mean of 4000. Please see Figure 3 for the trend of spot prices per hour vs. the number of demanded
virtual machines (VMs). Under this spot pricing, the hourly usage cost becomes 0.216 USD/h for a
demand of 8000 VMs whereas the hourly usage cost becomes 0.136 USD/h for no demanded VM.
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Figure 3. Spot prices per hour vs. the number of demanded virtual machines (VMs) with the hourly
usage cost as 0.136 USD/h and the α parameter as 0.00001.

From (5), the spot price can be expressed for the demand in hour j, Ds
j , as

oj
k = rk + αkDs

j ,

= rk + aj
k (6)

If the number of reserved instances per hour is set to the demand level Ds
j , the cost

can be expressed as

EDs
j
= Ds

j · Rk +
j

∑
i=1

Ds
i · rk +

tk

∑
i=j+1

[
Ds

i · rk +
(

Ds
i − Ds

j

)
· oi

k

]
. (7)

From (6), (7) yields

EDs
j

= Ds
j · Rk +

j

∑
i=1

Ds
i · rk +

tk

∑
i=j+1

[
Ds

i · rk +
(

Ds
i − Ds

j

)
·
(

rk + ai
k

)]

= Ds
j · Rk +

tk

∑
i=1

Ds
i · rk +

tk

∑
i=j+1

(
Ds

i − Ds
j

)
· ai

k. (8)

Similarly, if the number of reserved instances per hour is set to the demand level Ds
j+1,

the cost can be expressed as

EDs
j+1

= Ds
j+1 · Rk +

tk

∑
i=1

Ds
i · rk +

tk

∑
i=j+2

(
Ds

i − Ds
j+1

)
· ai

k. (9)
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From (8) and (9), the cost difference is

∆EDs
j ,Ds

j+1
=
(

Ds
j+1 − Ds

j

)
· Rk +

tk

∑
i=j+2

(
Ds

i − Ds
j+1

)
· ai

k −
tk

∑
i=j+1

(
Ds

i − Ds
j

)
· ai

k

=
(

Ds
j+1 − Ds

j

)
· Rk +

tk

∑
i=j+2

(Ds
i − Ds

j+1 − Ds
i + Ds

j ) · ai
k −

(
Ds

j+1 − Ds
j

)
· aj+1

k

=
(

Ds
j+1 − Ds

j

)
·
(

Rk −
tk

∑
i=j+1

ai
k

)
(10)

By using (10), we obtain the structure of optimal policy. First, we provide the follow-
ing lemmas.

Lemma 1. Rk <
tk

∑
i=1

ai
k for all contract type k.

Proof. The proof is by contradiction. Assume that Rk ≥
tk

∑
i=1

ai
k. Then, from (10), ∆EDs

0,Ds
1
≥ 0

(note that EDs
0
= 0) and ∆EDs

j ,Ds
j+1

> 0 for 1 ≤ j ≤ tk. This implies that all increases in the
level of reserved instances increase the total cost instead of decreasing it. In this case, it is
better not to reserve any instance. Therefore, for any contract type k, the following inequality

should hold for a CSU to reserve an instance from the CSP, Rk <
tk

∑
i=1

ai
k.

Lemma 2 ([38], Lemma 2). The number of instances to be reserved, for which the total cost is
minimized, is always a member of the demand vector.

Theorem 1. For a single type contract k, with demand vector D available for t = 1, 2, . . . tk stages,
there exists a value of

jk = arg min
j

∣∣∣∣∣Rk −
tk

∑
i=j+1

ai
k

∣∣∣∣∣,
such that the cost is minimum with the reservation of Ds

jk
.

Proof. From (6) and (10),

∆EDs
j ,Ds

j+1

Ds
j+1 − Ds

j
= Rk −

tk

∑
i=j+1

αk · Ds
i . (11)

From Lemma 1,

Rk <
tk

∑
i=1

αk · Ds
i . (12)

Therefore,

Rk −
tk

∑
i=j+1

αk · Ds
i < 0 (13)

for some j and

Rk −
tk

∑
i=j+1

αk · Ds
i > 0 (14)

for other j.
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Since Ds
j+1 − Ds

j ≥ 0 ∀1 ≤ j ≤ tk,

EDs
1
≥ EDs

2
≥ . . . ≥ EDs

jk

EDs
jk
≤ EDs

jk+1
≤ . . . ≤ EDs

tk

where

jk , arg min
j

∣∣∣∣∣Rk −
tk

∑
i=j+1

ai
k

∣∣∣∣∣
= arg min

j

∣∣∣∣∣Rk − α
tk

∑
i=j+1

Ds
i

∣∣∣∣∣. (15)

Hence, if the reservation is made for a quantity of resources equal to Ds
jk

, the cost is
minimized from Equation (15).

5. Heuristic Resource Reservation Policies

In the previous section, we derived heuristic-based resource reservation schemes
analytically. By benefiting from these derivations in the previous section, we look for robust
heuristic policies in this section.

In this section, we propose three heuristic policies for this problem: single-contract
resource reservation policy, no-resource reservation policy, mean-resource reservation policy.

5.1. Single-Contract Resource Reservation Policy (SCRRP)

A single-contract resource reservation policy is proposed by the intuition from the
heuristic approach in the previous section. Just one contract (k) is considered with the
SCRRP. Contract k is denoted as (Rk; tk, ak) where Rk is the reservation cost, tk is the contract
duration (in stages), and ak is the discount on the usage cost over a spot resource.

In this policy, first, the demand vector D[1, . . . , T] is sorted as in previous section.
Then, we look for

jk = arg min
j

∣∣∣∣∣Rk − α
tk

∑
i=j+1

Ds
i

∣∣∣∣∣
under contract k. See Algorithm 1.

Algorithm 1 Single-Contract Resource Reservation Policy
Input: Demand vector D[1, . . . , T], contract k.

(1)Ds ← sort(D);
(2) lastsum , Rk

α from Theorem 1;
i = 0;
sum = 0;
while (sum < lastsum) do

i = i + 1;
sum = sum + Ds(T − i + 1);

endwhile
(3) Number of reserved instances← Ds(T − i + 1)× T;

5.2. Mean-Resource Reservation Policy (MRRP)

With mean-resource reservation policy, a CSU decides to reserve the average/mean
of the hour-based demanded instances in one day (the first day of the contract) during a
contract duration of 1 year. See Algorithm 2. Although this policy is smarter than the no-
resource reservation policy, it cannot reduce the cost as much as the single-contract resource
reservation policy. This can be used as another benchmark policy for the comparison with
the single-contract resource reservation policy.
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Algorithm 2 Mean-Resource Reservation Policy
Input: Demand cector D[1, . . . , T], Contract k.

(1)Ds ← sort(D);
# The mean of the hour-based demands in one day is reserved for each hour in a

year.
(2) Number of reserved instances← mean(D(1 : 24))× T;

5.3. No-Resource Reservation Policy (NRRP)

With the no-resource reservation policy, a CSU decides not to reserve any instance
during the contract duration. In this case, the CSU has to pay the spot price determined by
the CSP at each hour. Therefore, the policy is not smart, but it can show how much a smart
policy can make a difference.

6. Numerical Results

The heuristic-based resource reservation policies (SCRRP, MRRP, NRRP) were applied.
Then, the performance values of the policies were compared with each other in terms of the
total cost and cost percentage with respect to the no-resource reservation policy. For this
purpose, the reserved pricing models Amazon EC2 offers were taken. A one-year contract
was considered for the reserved pricing model. The demand vector of VMs was formed
with an exponential distribution via mean = 4000 VMs and a uniform distribution with
mean = 4000 VMs. From the Amazon EC2 pricing model, the reservation cost (one-year)
was considered as USD 243 and the reserved VM (one-month) usage cost was considered
as 0.136 USD/h. Moreover, we chose α = 0.00001 to determine the spot price from (5) (we
chose α = 0.00002 in the last subsection).

Our mean-resource reservation policy (MRRP) was almost the same structurally as the
realistic reservation and scheduling with spot price (RRS-SP) in [36]. In fact, the MRRP was
better because it considered 12-month average of demands while the RRS-SP considered
just a 1-month average. Therefore, we did not compare our policies with the RRS-SP.

In this section, we investigate the performance of heuristic-based resource reserva-
tion policies for the following three cases in three subsections. In Section 6.1, this paper
investigates exponentially distributed demand traffic with α = 0.00001. In Section 6.2, this
paper investigates Poisson distributed demand traffic with α = 0.00001. In Section 6.3,
this paper investigates Poisson distributed demand traffic with α = 0.00002. Hence, we
consider differences in both the distributions and values of the α parameter.

6.1. Exponential Demand Traffic

In Figures 4–7, it is observed that the SCRRP shows the best performance compared
with the MRRP and NRRP. In other words, the SCRRP has the least cost among the three
policies. Moreover, the cost under the MRRP is much less than under the NRRP.

In Figure 4, we see that the NRRP achieves a monthly cost of USD 760. In Figure 5,
we see that the SCRRP’s total cost is considerably less than NRRP. In fact, it reduces the
monthly cost more than 11% compared with that of the NRRP under exponential traffic.
Moreover, the MRRP achieves a 4.8% lower monthly cost than the NRRP, both under
exponential demand traffic.
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Figure 4. Monthly cost vs. month. The demand traffic is modeled as an exponential stochastic process
with mean = 4000 VMs. Monthly cost (in USD).
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Figure 5. Relative monthly cost vs. month. The demand traffic is modeled as an exponential stochastic
process with mean = 4000 VMs. Monthly cost (in USD).

In Figure 6, we see that the NRRP achieves an annual cost of USD 9110. In Figure 7,
the SCRRP reduces the annual cost by more than 11% compared with that of the NRRP
under exponential traffic. Moreover, the MRRP achieves a 4.8% lower annual cost than the
NRRP, both under exponential demand traffic.

Regarding Figures 4–7, we wish to make a remark. The relative performance of different
resource reservation policies was affected slightly by the distribution of the demand data
because we performed 10,000 Monte Carlo trials.
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Figure 6. Total cost vs. month. The demand traffic is modeled as an exponential stochastic process
with mean = 4000 VMs. Monthly cost (in USD).
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Figure 7. Relative total cost vs. month. The demand traffic is modeled as an exponential stochastic
process with mean = 4000 VMs. Monthly cost (in USD).

6.2. Poisson Demand Traffic

In Figures 8–11, it is observed that the SCRRP shows the best performance compared
with the MRRP and NRRP. In other words, the SCRRP has the least cost among the three
policies. Moreover, the cost under the MRRP is much less than that under the NRRP.
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Figure 8. Monthly cost vs. month. The demand traffic is modeled as a Poisson stochastic process
with mean = 4000 VMs. Monthly cost (in USD).
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Figure 9. Relative monthly cost vs. month. The demand traffic is modeled as a Poisson stochastic
process with mean = 4000 VMs. Monthly cost (in USD).

In Figure 8, we see that the NRRP achieves a monthly cost of USD 750. In Figure 9,
we see that the SCRRP makes the total cost considerably less than the NRRP. In fact, it
reduces the monthly cost more than 9.5% compared with the NRRP under Poisson traffic.
Moreover, the MRRP achieves a 4.6% lower monthly cost than the NRRP, both under
Poisson demand traffic.

In Figure 10, we see that the NRRP achieves an annual cost of nearly USD 9000. In
Figure 11, the SCRRP reduces the annual cost by more than 9.33% compared with the
NRRP under Poisson traffic. Moreover, the MRRP achieves a 4.63% lower annual cost than
the NRRP under Poisson demand traffic.
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Figure 10. Total cost vs. month. The demand traffic is modeled as a Poisson stochastic process with
mean = 4000 VMs. Monthly cost (in USD).
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Figure 11. Relative total cost vs. month. The demand traffic is modeled as a Poisson stochastic
process with mean = 4,000 VMs. Monthly cost (in USD).

By considering Figures 4–11, we wish to make a remark. The relative performance of
different resource reservation policies were affected slightly from the distribution of the
demand data. Because we performed 10,000 Monte Carlo trials, the differences caused by
the distributions are smoothed.

6.3. Poisson Demand Traffic with Larger Alpha Values

From Table 2, it is observed that the SCRRP shows the best performance compared
with the MRRP and NRRP. In other words, the SCRRP has the least cost among the three
policies. Moreover, the cost under the MRRP is much less than that under the NRRP.



Sensors 2022, 22, 9034 17 of 19

Table 2. Monthly cost with Poisson demand traffic with α = 0.00002.

Month 1 2 3 4 5 6 7 8 9 10 11 12

NRRP 937 951 944 938 947 949 934 941 945 937 952 944

MRRP 756 767 763 758 765 766 754 761 763 756 769 763

SCRRP 685 651 648 645 650 651 641 646 648 644 651 648

From Table 2, we see that the NRRP achieves a monthly cost of USD 944 whereas the
SCRRP provides a total cost of USD 648, considerably less than the NRRP. In fact, it reduces
the monthly cost by more than 30.8% compared with the no-resource reservation policy
under exponential traffic. Moreover, the MRRP achieves USD 763, a 19.2% lower monthly
cost than the NRRP, both under exponential demand traffic.

From Table 2, the SCRRP reduces the annual cost to USD 7808, nearly 31.0% less
than the NRRP, which has a total cost of USD 11,319 under Poisson traffic. Moreover, the
MRRP achieves an annual cost of USD 9141, 19.2% less than the NRRP under Poisson
demand traffic.

7. Conclusions and Future Works
7.1. Conclusions

This work investigated resource reservation problems occurring in public clouds. First,
the problem was investigated analytically, and the structure of the optimal policy was
derived. Then, we proposed a heuristic policy, the single-contract reservation policy, to
solve the cloud resource provisioning problem in polynomial time. It was analytically
proved that the single-contract resource reservation policy became efficient under a pricing
scheme with reserved and spot instances. In addition, the mean-resource reservation
policy was proposed as a simpler heuristic which performed better than the no-resource
reservation policy, although it could not reduce the cost as much as the single-contract
resource reservation policy. The polynomial-time heuristics enabled us to work on hourly
demand data for a duration of 1 year or more with no difficulties. It is concluded that
the proposed heuristic policy makes the total cost considerably less than the no-resource
reservation policy.

7.2. Discussion and Future Works

In this work, we considered a spot pricing scheme. On the other hand, different spot
pricing schemes can be used depending on the cloud service providers. In this work,
we generated demand traffic, but datasets for cloud workloads could also be used. In
this paper, we considered CPU bounds, but there exist some other requirements such as
IO bounds.

As future work, we plan to work on achieving optimality or near-optimality in the case
where CSUs do not know the demand vector. In addition, different spot pricing schemes
can be considered. In our future work, we also plan to work with datasets for cloud
workloads instead of generating demand traffic. As other future work, we can consider the
different types of instances and requirements. The novel concepts and approaches in this
paper can give insight to those scholars who investigate the problem with similar pricing
schemes in the beyond 5G and IoT era.
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Abbreviations
The following abbreviations are used in this manuscript:

5G fifth-generation (communications)
IoT Internet of things
UAV uncrewed aerial vehicle
SLA service level agreement
VM virtual machine
CSU cloud service user
CSP cloud service provider
SMDP semi-Markov decision process
SLP stochastic linear programming
NP nonpolynomial
NRRP no resource reservation policy
MRRP mean resource reservation policy
SCRRP single-contract resource reservation policy
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