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Abstract: Digital texts in many languages have examples of missing or misused diacritics which makes it hard for
natural language processing applications to disambiguate the meaning of words. Therefore, diacritics restoration is a
crucial step in natural language processing applications for many languages. In this study we approach this problem
as bidirectional transformation of diacritical letters and their ASCII counterparts, rather than unidirectional diacritic
restoration. We propose a context-aware character-level sequence to sequence model for this transformation. The model
is language independent in the sense that no language-specific feature extraction is necessary other than the utilization
of word embeddings and is directly applicable to other languages. We trained the model for Turkish diacritics correction
task and for the assessment we used Turkish tweets benchmark dataset. Our best setting for the proposed model improves
the state-of-the-art results in terms of F1 score by 4.7% on ambiguous words and 1.24% over all cases.

Key words: Natural language processing, diacritics restoration, diacritics correction, sequence to sequence learning,
LSTM

1. Introduction
Diacritics are orthographic manipulations indicating a change in the pronunciation of the letter they apply to.
Most of the languages with Latin alphabet other than English (Croatian, Spanish, German, Romanian, Turkish,
etc.) and many other languages with other alphabets (Arabic, Vietnamese, etc.) have diacritical letters. In
languages like Turkish, where diacritics are used to distinguish between letters, a missing diacritic can either
result in an out-of-vocabulary (OOV) word or cause an ambiguity problem, e.g., the diacritic-free surface form
aksam is ambiguous between aksam (‘component’) and akşam (‘evening’).1

Ever growing use of mobile devices and social media has increased the spelling errors on the web especially
those caused by ignoring diacritics while typing.2 The transformation of diacritical letters to their ASCII
counterparts is a trivial task, yet, the opposite transformation, namely diacritics restoration (DR), is an active
subfield of text normalization, a vital prerequisite for various NLP pipelines.

Diacritics restoration, as the name implies, is usually seen as a task of restoring missing diacritics in words
typed in ASCII. The present model aims to draw attention to the presence of examples in digital text which call
∗Correspondence: tuba.koksal@boun.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.

1Based on the counting of the 1 trillion tokens validated by TRmorph morphological analyzer [1] from the Oscar corpus [2],
roughly 28% of Turkish words include diacritics, with 1.57 diacritics per word on average. Turkish diacritic letters and their ASCII
counterparts are as follows: <ç,c> , <ş,s> , <ğ,g> , <ö,o> ,<ü,u> , < ı,i> .

2Koksal et al. [3] report that with 44.94%, diacritic errors are the most common cause of misspellings in Turkish tweets.
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for the opposite diacritic-to-ASCII conversion (see below for examples). Therefore, both transformations are
required for proper text normalization. For this reason, we prefer to define the correction of erroneous use of
diacritical letters as diacritics correction (DC) instead of diacritics restoration (DR). In languages like Turkish,
DR is critical in resolving the ambiguity of the input text, as well. In this study, we aim not only to restore the
missing diacritics but also to correct the misused ones in both ambiguous and unambiguous words.

Our contributions in this work can be summarized as follows:

• We formulate a context-aware character-level sequence to sequence model for the bidirectional transfor-
mation of the critical letters (from ASCII characters to diacritical counterparts and vice versa).

• The proposed model beats the state-of-the art model in terms of diacritics correction.
• Our model is better in inferring the correct forms of ambiguous words, so that it incites a change where

and only where needed, without the aid of a language validator such as a morphological analyzer.

The paper is structured as follows: We give the related work in Section 2. We explain the methodology
and the proposed model in Section 3 and the experimental setup in Section 4. We provide and discuss the
results in Section 5 and finally conclude the paper in Section 6.

2. Related work
As mentioned above, since proper use of diacritics are important for NLP applications, there are many language
specific [4–8] as well as language independent [9] models proposed in the literature. Initial studies apply
statistical machine translation approaches for proper diacritics restoration.

Turkish specific studies which focus on converting ASCII characters to their diacritical forms, namely
DR, date back to the early 2000s. The first published study addressing DR in Turkish [10] proposes a hidden
Markov model which uses the state transition probabilities derived from a character-based language model. The
Emacs Turkish mode program uses a decision list created on 1 million tokens collected from Turkish news by
using a greedy prepend algorithm to correct the Turkish words written on English keyboard [11]. Okur et al.
[12] compare different statistical methods such as N-grams and machine learning classifiers trained with word
and sentence-level features concerning the ambiguity problem while restoring diacritics in Turkish. Yıldırım
and Yıldız [13] generate all candidates including all variations of diacritics and their ASCII counterparts for the
invalid Turkish words with the problematic letters. For this, the researchers initially check if there is a valid
word in the candidate set and if there are multiple in-vocabulary (IV) candidates, then they select the most
frequent one.

Turkish DR task has also attracted attention in information retrieval studies [14–16], since using only
the ASCII versions of words may result in poor performance for languages with diacritical letters. The DR task
is especially important in social media context where the users are more prone to error in the proper use of
diacritics.

Adali and Eryiğit [17] adopt a two-level approach for Turkish diacritization task. The researchers firstly
train a CRF model using character and token-level features to generate the most probable candidates and then
use a morphological analyzer to validate them. Similarly, Ozer et al. [18] initially generate candidates for all
the combinations of ASCII letters and their counterparts with diacritics. Word2Vec embeddings [19] are then
trained with Turkish words to rank the candidates. If there are more than one valid word in the candidate
set, the candidates are ranked according to the cosine similarities between the Word2Vec embeddings of the
neighboring words and the candidate of interest.
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More recent works, whether they propose language dependent or independent models, have been turning
to deep learning approaches for diacritics restoration [20–22]. Primarily, they utilize character-level represen-
tations for correctly recovering the diacritics. For instance, Náplava et al. [23] propose one-for-all architecture
for the diacritical languages, whereas Klyshinsky et al. [24] exhibit a detailed performance comparison of vari-
ous neural network architectures over many diacritical languages. However, not all studies include contextual
information into character representations. Ruseti et al. [25] incorporate fastText word embeddings together
with the sentence embeddings encoded by a BiLSTM layer to capture semantic information of the context.
Masala et al. [26] adopt similar approach by using BERT model’s prediction on token embeddings of given
sentence. Another language independent study [27] makes use of contextualized embeddings from pretrained
BERT model by adding a feed-forward neural network with softmax output layer which gives a probability over
the possible diacritics permutation given a diacritical word.

Some studies in Turkish diacritics restoration concentrate on character-level modeling, whereas others
pay attention to the context information. Nonetheless, as far as we know, Turkish DR problem has not yet been
approached by using character-level and context-related features together. On the other hand, although neural
architectures with machine translation approaches such as sequence to sequence modeling have been proposed
for DR problem in different languages [28–31], this approach has not been studied in Turkish so far.

We have been inspired by the architectures proposed and by [30] and [31]. Similarly, we formulate a
character-based representation for the input and output sequences. Additionally, we aim to train a model which
learns both character and context-level information for Turkish words. Therefore, distinctively from these
studies, we formulate the input sequence as the character vectors of the source word concatenated with the
word embeddings of its neighboring words. In this way, we make use of character and context-level information
simultaneously.

To the best of our knowledge, this is the first work adopting a sequence to sequence modeling approach
for diacritics correction in Turkish which utilizes character-level and contextual information at the same time
to better handle ambiguous words.

3. Method
In this work, we propose a sequence to sequence model for DC problem in Turkish. Before providing the details
of the model, we present some definitions that will be used throughout the paper.

We take a character to be critical in case there exist both diacritized and nondiacritized versions of it in
the alphabet. This notion should be kept apart from being a diacritical character, which denotes a character
that carries a diacritic manipulation. For instance, both s and ş are critical characters, but only the latter is a
diacritical character. A word is a critical word, if it has at least one critical character.

We describe a word as incorrect if it needs to be altered to match the target, and as correct otherwise.
A word is IV, only if it is a valid (i.e. grammatical) Turkish word. Throughout the study we use TRmorph3, a
finite-state rule-based morphological analyzer [1], to check for validity. Therefore, in our case, a word is IV as
long as TRmorph generates a result for that word, and OOV otherwise. There are various reasons that makes
a word OOV, but we are interested in only OOV words that are so due to a missing diacritic or a misused one,
we simply ignore other types of misspellings.

It should be noted that being OOV implies incorrectness, but not the vice versa: There are incorrect IV
words. One example in point would be as follows: Suppose a user intends to mean ‘sour apple’, which would

3https://github.com/coltekin/TRmorph [accessed 23 July 2021].

2435

https://github.com/coltekin/TRmorph


KÖKSAL et al./Turk J Elec Eng & Comp Sci

be rendered as ‘ekşi elma’, but types ‘eksi elma’ instead, ignoring the diacritic on ‘s’. The word eksi, although
incorrect in the sense that it differs from the target ekşi, is nevertheless a valid Turkish word, which means
‘minus’, hence IV. It, therefore, needs to be altered to ekşi resulting in ekşi elma (‘sour apple’).

3.1. Diacritization and dediacritization
One part of the task of diacritics correction is replacing misused ASCII characters with their correct diacritical
counterparts, namely the task of diacritization. For instance, the first ASCII character s in the OOV word sem-
siye should be converted into the diacritical letter ş giving the IV word şemsiye (‘umbrella’). However, we have
observed that social media texts may contain examples which also require the opposite transformation —we
name this dediacritization. As an example of dediacritization, the Turkish diacritical letter ı in the OOV word
kendım should be restored to i, thereby transforming the given OOV word to the IV word kendim (‘myself’).4

Additionally, in some situations diacritization and dediacritization may both be required. For instance, the
OOV word falçi should be transformed to the IV word falcı (‘fortune teller’) where the letter ç is dediacritized
to c and i is diacritized to ı.

We solidify the discussion in the above paragraph as follows: A word involves a diacritization error, in
case at least one critical character in it must be altered to its diacritical form. Similarly, a word involves a
dediacritization error, in case at least one critical character in it must be changed to its nondiacritic form. As
the discussion above maintains, a word may involve both error types at the same time.

3.2. Ambiguous words

What we mean by ambiguity is explained in what follows. First, an auxiliary definition is that: Given a
word w with at least one critical character, the diacritical family of w is the smallest set that includes every
word wj that can be formed only by replacing any number of the critical characters in w by their diacritized
or nondiacritized counterparts. For instance the diacritical family of the word eksi is {eksi, ekşi, eksı, ekşı} ,
likewise the diacritical family of the word saat is {saat, şaat} . We take a word to be ambiguous, only if its
diacritical family has more than one IV word, i.e.recognized by the morphological analyzer. In this respect, eksi
is ambiguous, as there are two IV words, eksi and ekşi5, in its family, while saat is not, as there is only one IV
word in its family, namely itself.

It is worth at this point to emphasize a couple of points pertaining to major contributions of the present
paper. When we focus on words that are incorrect due to diacritical reasons, it is a consequence of Turkish
orthography that there exist words that are IV but incorrect —a class that overlaps in our case with what we
take to be ambiguous. As these are IV, morphological analysis is helpless here and an effective utilization of
contextual information is called for.

Another subtlety that arises due to ambiguous words is the following. It is quite likely to encounter
critical words that are ambiguous and correct. A case in point is the phrase “eksi dokuz derece” (‘minus nine
degrees’), where eksi is such a word. It would have been a mistake, which we take care to avoid in the present
work, to translate this word to its diacritized form ekşi (‘sour’). As will be clarified in subsection 4.2, we put
this point in view while assessing the performance of relevant models.

4This example gives the rationale for our definition of diacritization as ’orthographic manipulation’ rather than ’adding extra
marks’: Here, the nondiacritic letter ‘i’ is being mapped to the diacritic version ‘ı’.

5To be precise, as the concept of diacritical family defines an equivalence relation, all the members in a given family are ambiguous
words, and therefore ekşi is also ambiguous in our terminology.
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3.3. Sequence to sequence model

It is crucial to approach an NLP problem at the most appropriate level of representation (e.g., character, word,
sentence, discourse etc.). Critical character errors occur at character-level. Moreover, word-level representations
suffer from sparsity problems due to high number of OOV words which fall outside the limits of vocabulary
size capped by limits on computational resources. Therefore, we approach the diacritics correction task as a
character-level machine translation problem where we translate the wrongly used critical characters to their
correct forms. For this translation problem we use a sequence to sequence model.

The objective of the model is two-fold: we aim firstly to correct misused critical characters, secondly to
preserve the correct usage of them.

3.3.1. Input sequence
The input sequence is the character-level representation of words from the source sentences. Each character in
an input sequence is represented by a d -dimensional one-hot-encoded vector, where d is the number of unique
characters encountered in our training data. Then, each word is initially represented by a matrix of size m× d

with padding, where each row stands for a character in the word and m is the maximum word length.

3.3.2. Context window
The correct forms of ambiguous words highly depend on the context as mentioned in subsection 3.2. Therefore,
the character-level representation mentioned above is not sufficient on its own for the model to distinguish
between the correct forms of those ambiguous words. For that matter we refer to their source sentences to
extract the context information of input words. We utilize the context information by concatenating the word
embeddings of the surrounding words in the context window to each one-hot-encoded character vector of the
corresponding word, which means that for context window size n , each character in the input sequence is then
represented with a (d+ n.e)-dimensional vector, where e is the dimension of word embedding vectors.

The context words, however, may contain OOV words. For this reason word embeddings which are highly
representative on OOV words are required.

3.3.3. Model
The model learns to map the character sequence of the source word wi to that of the target word ti conditioned
on the character sequence of wi itself and the context words wi−n, . . . , wi−1, wi+1, . . . , wi+n , where n is the
context window.

While learning this mapping, first the encoder maps wi in a source sentence encoded as a character
sequence as described above to an internal representation, and the decoder takes as input this internal repre-
sentation and the one-hot-encoded representation of the target ti , this time without the context information
concatenated. The decoder output is then carried to a softmax layer to generate a prediction.

(1) bu aksam gel

In the sample source sentence above (1), the input sequence aksam (‘component’) is ambiguous in the sense
that it should be changed to akşam (‘evening’) or it should be left as it is, depending on the context. Assuming
a context window size n = 1 , the ambiguity can be resolved by taking into account the nearby words bu (‘this’)
and gel (‘come’). This way, the target word is changed to akşam. As depicted in Figure (1), the encoder is
fed with one-hot encoded character vectors of aksam each concatenated with the word embedding vectors of its
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surrounding words bu and gel. The decoder, on the other hand, accepts only the character vectors of akşam as
input.

ca ck cs ca cm ca ck cş ca cm

wbu wbu wbu wbu wbu

wgel wgel wgel wgel wgel

a k s a m a k ş a m

Encoder Decoder

1

Figure. Input sequences of encoder and decoder blocks. The example input sequence corresponding the input
word aksam when the context window size n = 1 . The one-hot encoded character vectors, word embedding

vectors for the context word bu and gel are denoted as {ca, ck, cs, ca, cm} , wbu and wgel , respectively.

4. Experimental setup

In this section, we provide a description of our experimental setup based on the proposed method as defined in
subsection 3.3. We discuss in order, the details of the training and evaluation phases, the experimental settings,
and the baseline models used for comparison.

4.1. Training

We prepared our training and validation datasets using the Oscar corpus [2]. First, we discarded the sentences
with at least one word not recognized by the morphological analyzer. All characters were transformed to
lowercase to reduce the number of unique input characters, thereby reducing the complexity of the network.
Finally, punctuation characters except for the word-internal ones were removed. Following this filtering and
preprocessing, we randomly collected sentences from the corpus for training and validation sets. The statistics
of the datasets are given in Table 1.

In real user text, sentences usually contain more than one word with critical character errors. For this
reason, having an incorrect word with correct context words would not be a realistic assumption for training.
Therefore, to mimic real user scenarios, we manipulated source sentences such that each has both proper and
improper uses of critical characters as in (2), the correct form of which is (3).

(2) falçinin tahmınlerı dogru cıkarsa eksi elma yiyecegım

(3) falcının tahminleri doğru çıkarsa ekşi elma yiyeceğim
(‘If the fortune teller is right, I will eat sour apples.’)
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Table 1. Train and validation dataset statistics.

Train Validation
Unique characters 52 52
Critical characters 84.4 M 16.9 M
Wrong critical characters 42.2 M 8.4 M
Total words 42.6 M 8.5 M
Unique words 2.2 M 0.9 M
Sentences 3.66 M 0.7 M

We manually introduced these errors into the training input for the encoder and we used the error-free versions
in the decoder. The validation input was also manipulated by the same method. There are 84.4 M critical
characters in the training set and half of them, which were randomly selected, were replaced with their erroneous
counterparts.

In this setting the encoder and decoder input differ only with respect to their critical characters. As
described in subsection 3.1, we aim to make a 2-way correction, therefore we added both diacritization and
dedeacritization errors.

4.2. Evaluation
For the assessment of the proposed model, we used the annotated benchmark Turkish tweets dataset [3]. The
error category annotated as OOV-ill_formed-deascii in this dataset consists of diacritization and dediacritization
cases, which serves as an appropriate test dataset for the proposed model.

We selected 1165 preprocessed sentences from the Turkish tweets dataset that contain at least one
incorrect word due to critical character errors. We then replaced all other misspelled words —those that
are OOV due to other reasons— with their correct forms.6 This way, we modified Turkish tweets dataset such
that it consists of incorrect words with critical character errors and IV words. The statistics of the modified
test dataset can be seen in Table 2.

Table 2. Word counts in test dataset.

Word count
Incorrect (all) 2522
No diacritic 2221
Mixed 301
Incorrect (all) 2522
OOV 1964
IV 558
Ambiguous 1522
Incorrect 558
Correct 964

It is crucial to observe that the present scheme affords two different ways of breaking down incorrect
6Note that we crucially diverge here in terminology from Koksal et al. [3], they would take the word eksi in our example as

OOV due to diacritical reasons.
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words into subcategories. On one hand we distinguish incorrect words that consist of only ASCII characters
(Incorrect - no diacritic) from those that contain at least one diacritical character (Incorrect mixed); on the
other hand we distinguish words that are incorrect and OOV (Incorrect OOV) from those that are incorrect,
but nevertheless IV (Ambiguous incorrect).

Please note that for all the evaluations, we provided full sentences to each model to retrieve context
information. Nonetheless, we evaluated the model performances on word-level in terms of the evaluation metrics
discussed shortly below.

Our comparative evaluation of the relevant models involves the following metrics: precision, recall, F1
score and noncorruption rate as formulated in Equations (1)–(4), respectively.

Precision =
# of corrected words
# of changed words (1)

Recall = # of corrected words
# of words that need correction (2)

F1 = 2× Precision × Recall
Precision + Recall (3)

Noncorruption =
# of unchanged correct words

# of correct words (4)

Recall that the paper aims to draw attention to two aspects of the task of diacritics correction: one
concerning the bidirectional nature of diacritics correction (subsection 3.1), and the other concerning the
ambiguity problem (subsection 3.2). In order to better capture each model’s performance regarding these
aspects, we designed a two-stage evaluation:

First, we compared the models along their precision and recall performance on all incorrect words in the
test dataset. We further split the incorrect words into two mutually exclusive and exhaustive subsets: (i) words
with only diacritization errors, (ii) words with only dediacritization errors and words with both types of errors.
Note that this categorization is necessary to segregate the error types described in subsection 3.1 and does not
make a distinction between the incorrect ambiguous and incorrect OOV words.

Second, we formulated a separate evaluation to assess each model’s performance on ambiguous words
described in subsection 3.2: We selected the correct and incorrect ambiguous words (Ambiguous) and evaluated
two aspects of these ambiguous words: (i) correction of incorrect ambiguous words, and (ii) noncorruption of
correct ambiguous words.

We provide precision, recall, F1 score, and noncorruption results computed separately on the above
datatests in Section 5.

4.3. Baseline models
As a baseline for performance comparisons we take the setup where word embeddings are used to filter candidates
generated in a rule-based fashion. In Turkish DR literature we only encounter the study of Ozer et al. [18]
which incorporates word embeddings. The researchers first generate the diacritic family of a critical word. Then
they select the valid Turkish words among them by a morphological analyzer-based validator. For the cases
where more than one candidate are valid, the model should select semantically the most appropriate one. They
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train general purpose Turkish Word2Vec embeddings for this purpose and use them to distinguish between
correct forms of the ambiguous words. They compare the cosine similarities of surrounding words’ Word2Vec
embeddings with that of each candidate and select the candidate with the highest cosine similarity score as the
correct form of the incorrect word.

Similarly, we design such a correction mechanism with fastText7 embeddings proposed by Bojanowski et
al. [32] and BERT8 pretrained embeddings from the community-driven project BERTurk9 to provide a baseline
for the proposed model. We specifically prefer fastText and BERT embeddings since they are also representative
on OOV words presumably thanks to being trained on subwords as well as words themselves. We validate the
candidates with the morphological analyzer. We then compute the similarity score for each candidate as the
average of cosine similarities of corresponding word embedding vectors of each context word and the candidate
word, and select the candidate with the highest similarity score.

We compare the results of these baseline models in Tables 3 and 4 on the final dataset described in
subsection 4.2. We then utilize the embeddings with the highest score in the proposed model for training
purposes.

Table 3. Precision, recall and F1 score (in %) of the models on (1) all incorrect words (2) incorrect words with only
ASCII characters that need diacritization, (3) miscellaneous category defines the union of incorrect words containing
only dediacritization errors and those having combination of both diacritization and dediacritization errors.

All incorrect Diacritization Miscellaneous
Model Pr Rc F1 Pr Rc F1 Pr Rc F1
ITU 98.66 96.63 97.63 98.71 96.49 97.59 98.32 97.67 97.99
Emacs TM 98.71 97.02 97.86 98.81 96.89 97.84 98.0 98.0 98.0
Zemberek 98.63 96.83 97.72 98.76 96.76 97.75 97.66 97.33 97.49
fastText 97.33 95.52 96.42 97.39 95.72 96.55 96.91 94.0 95.43
BERT 96.30 90.76 93.44 96.50 90.59 93.45 94.85 92.0 93.40
T1 + Char 99.08 97.86 98.47 99.09 97.84 98.46 98.99 98.0 98.49
T2 + Char 99.0 97.98 98.49 98.95 97.97 98.46 99.32 98.0 98.65
T1 + Char + 1n 99.48 98.73 99.10 99.50 98.69 99.09 99.33 99.0 99.16
T1 + Char + 2n 99.28 98.37 98.82 99.27 98.33 98.80 99.33 98.67 99.0
T2 + Char + 1n 99.20 98.49 98.84 99.23 98.42 98.82 99.0 99.0 99.0
T2 + Char + 2n 99.36 98.45 98.90 99.41 98.38 98.89 99.0 99.0 99.0

For a much better evaluation of the effect of utilizing contextual information in character representation,
we trained another baseline model without using the contextual information in character representation, i.e.we
trained the proposed model with the context window size n = 0 . We denote this model as Char in the tables
provided in Section 5.

4.4. Experimental settings

We use unidirectional 2-layer LSTM for the encoder and a single layer unidirectional LSTM for decoder blocks.
For training the models we used batch size = 128, hidden layer size = 512, Adam optimizer with the learning

7https://fasttext.cc/docs/en/crawl-vectors.html [accessed 15 May 2021].
8https://huggingface.co/loodos/bert-base-turkish-uncased/tree/main [accessed 29 December 2021].
9https://zenodo.org/record/3770924#.YfQLehdRVhE [accessed 29 December 2021].
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Table 4. Precision, recall, F1, and noncorruption rate results (in %) of the models on all incorrect and correct ambiguous
words.

Ambiguous words (correct and incorrect)
Model Pr Rc F1 Nc
ITU 84.35 88.89 86.56 92.74
Emacs TM 89.16 92.83 90.96 94.81
Zemberek 86.59 91.40 88.93 93.36
fastText 75.74 86.74 80.87 89.11
BERT 49.08 71.68 58.27 64.21
T1 + Char 84.78 92.83 88.62 91.91
T2 + Char 84.85 93.37 88.91 92.01
T1 + Char + 1n 94.41 96.95 95.66 97.20
T1 + Char + 2n 93.01 95.34 94.16 97.0
T2 + Char + 1n 93.23 96.24 94.71 96.99
T2 + Char + 2n 84.85 93.37 88.90 92.01

rate of 10−4 and dropout of 0.2 in all of the LSTM layers. For the context-aware character representations of
input sequences we used the fastText word embeddings as they give better results in diacritics correction in all
the test cases. We trained the models with 2 different input sequence formulations: with context window size
n = 1 and 2 , denoted as Char + 1n and Char + 2n, respectively, in the tables provided in Section 5.

The source sentences in the training dataset contain words that are not in the scope of DC such as the
word araba (‘car’), which contains no critical characters. Nevertheless, we used such words in the training, since
we conjectured that they would be helpful in learning character sequences. To see the effect of such words in the
training, we performed ablation experiments with various context window sizes, where we excluded such words
from the training data. Please note that we differentiate the models in Section 5 according to their training
dataset by denoting the models trained on all words with T1 and on the second dataset with T2.

5. Results and discussion
In this section we provide the results of the proposed model and baseline models described in subsection 4.3.
We also compare our results with the following publicly available DR tools: ITU Turkish Natural Language
Processing Pipeline’s deasciifier (ITU)10 developed by Adali and Eryiğit [17], Emacs Turkish mode program
(Emacs TM)11, and the deasciifier in Zemberek-NLP tool for Turkish12, which is inspired by Emacs Turkish
mode program.

The present model aims to solve the diacritization and dediacritization errors explained in subsection 3.1
in all incorrect words. We provide the precision, recall and F1 scores of the models over all incorrect words
under the heading ‘All incorrect’ in Table 3. Recall that one of the main arguments of this paper is that the
diacritics restoration task should better be thought of as diacritics correction, which implies that we need to
take care of dediacritization as well as diacritization. To better differentiate the models’ performance regarding
this distinction, we computed the scores by using different word categories as explained in subsection 4.2: (i)

10http://tools.nlp.itu.edu.tr/Deasciifier [accessed 05 June 2021]
11http://www.denizyuret.com/2006/11/emacs-turkish-mode.html [accessed 05 June 2021]
12https://github.com/ahmetaa/zemberek-nlp [accessed 08 May 2021]
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diacritization errors on one hand, and (ii) dediacritization and mixed type of errors on the other. The results
are given under the ‘diacritization’ and ‘miscellaneous’ headings in Table 3, respectively.

We describe the proposed model as context-aware such that it can distinguish between the correct forms
of the ambiguous cases described in subsection 3.2. Namely, the model corrects the incorrect ambiguous words
while leaving intact the correct ones. We give the precision, recall, F1 and noncorruption rates of the models
only on ambiguous words in Table 4.

• In all evaluation scenarios the best performing model in F1 and noncorruption is the one with context
window size n = 1 trained on T1 dataset.

• The context-unaware baseline models T1 + Char and T2 + Char are also better than the state-of-the-art
in terms of diacritization and dediacritization of incorrect words overall. However, they fall behind the
context-aware models (both T1 and T2) in ambiguous words as expected. Character-level representation
without contextual information alone can beat the state-of-the-art over unambiguous cases; however, the
context information is indispensable for ambiguous cases.

• Char+2n models fall behind Char+1n models. One reason could be that a larger context window size, by
increasing the input dimension, might have suppressed the character-level information within the input.

• Lastly, our hypothesis for the ablation experiments was that noncritical words included in the training
process increase the capacity of the model in representing the character-level information, therefore boost
the performance in diacritics correction. The proposed model trained on T1 performs better than that
the one trained on T2. For that matter our hypothesis is proven to be effective.

6. Conclusion
The paper motivated and empirically supported a sequence to sequence model architecture for diacritics
correction task in Turkish. Our model brought a two-way perspective on diacritics correction, in modeling
both nondiacritic to diacritic and the opposite transformations. We showed that the proposed model enjoys
above state-of-the-art performance in domains with various information content regarding Turkish diacritics
correction task.

Although our assessments were based on Turkish data, the proposed model is language independent,
since it does not make use of any language dependent features, and therefore would be applicable to languages
where diacritics serve the same function they do in Turkish.

We plan the following extensions and modifications of the present system as a future work: (i) having a
trainable dense embedding layer for character-level input; (ii) fine tuning the context word embeddings and/or
learning these embeddings from scratch jointly with the task; (iii) extending the DC system to full-fledged text
normalization.
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