2104.05829v1 [cs.PF] 12 Apr 2021

arXiv

NekRS, a GPU-Accelerated Spectral Element Navier—Stokes Solver

Paul Fischer?®?, Stefan Kerkemeier®, Misun Min®*, Yu-Hsiang Lan®, Malachi Phillips®, Thilina
Rathnayake®, Elia Merzari®®, Ananias Tomboulides®?®, Ali Karakusf, Noel Chalmers®, Tim Warburton”

% Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL 60439
b Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
¢Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
4 Department of Nuclear Engineering, Penn State, PA 16802
¢ Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece 54124

fMechanical Engineering Department, Middle East Technical University, 06800, Ankara, Turkey
IAMD Research, Advanced Micro Devices Inc., Austin, TX 78735
hDepartment of Mathematics, Virginia Tech, Blacksburg, VA 24061

Abstract

The development of NekRS, a GPU-oriented thermal-fluids simulation code based on the spectral
element method (SEM) is described. For performance portability, the code is based on the open concurrent
compute abstraction and leverages scalable developments in the SEM code Nek5000 and in libParanumal,
which is a library of high-performance kernels for high-order discretizations and PDE-based miniapps.
Critical performance sections of the Navier—Stokes time advancement are addressed. Performance results
on several platforms are presented, including scaling to 27,648 V100s on OLCF Summit, for calculations

of up to 60B gridpoints.

Keywords: NekRS, Nek5000, libParanumal, OCCA, GPU, Scalability, Performance, Spectral Element
Method, Incompressible Navier—Stokes, Exascale Applications

1. Introduction

A fundamental challenge in fluid mechanics and
heat transfer is to accurately simulate physical
interactions over a large range of spatial and tem-
poral scales. Such simulations can involve billions
of degrees of freedom evolved over hundreds of
thousands of timesteps. Simulation campaigns for
these problems can require weeks or months of
wall-clock time on the world’s fastest supercom-
puters. One of the principal objectives of high-
performance computing (HPC) is to reduce these
runtimes to manageable levels.

We are interested in modeling turbulent flows
using either direct numerical simulation (DNS) to
capture all scales of motions, large eddy simulation
(LES) to capture the modes that dominate momen-
tum and thermal transport, or Reynolds-averaged
Navier—Stokes (RANS) formulations that emulate
both small- and large-scale transport with closure
models. Applications include reactor thermal hy-
draulics, internal combustion engines, ocean and
atmospheric flows, vascular flows, astrophysical
problems, and basic turbulence questions for the-
ory and model development. Simulations in these

*Corresponding author
Email address: mmin@mcs.anl.gov (Misun Min)

Preprint submitted to arXiv

areas present significant challenges with respect to
scale resolution, multiphysics, and complex com-
putational domains. In many cases, experimental
data are expensive or impossible to obtain, mak-
ing simulation on leadership computing platforms
critical to informed analysis.

With current exascale computing programs in
the U.S. and elsewhere developing GPU-based
HPC platforms it is imperative to exploit the
performance potential of these powerful node ar-
chitectures. In this paper, we describe the de-
velopment of a new GPU-oriented open-source
code for thermal-fluid analysis, NekRS, which
has emerged out of two HPC software projects.
Nek5000 [1] was one of the first production-level
single-program multiple-data (SPMD) codes de-
ployed on distributed-memory parallel computers
[2]. It has demonstrated scalability to leading-edge
platforms through the SPMD era [3, 4] and readily
scales to millions of MPI ranks [5]. Early GPU
efforts for Nek5000 commenced with OpenACC
ports [6] and [7] (for NekCEM). libParanumal [8, 9]
is a self-contained high-order finite element library
that uses highly optimized kernels based on the
portable Open Concurrent Compute Abstraction
(OCCA) [10, 11]. Tt includes sublibraries for dense
linear algebra, Krylov solvers, parallel mesh han-

April 14, 2021

dling and polynomial approximation, p-type and
algebraic multigrid, time stepping, gather-scatter
operations and halo exchanges, and core miscella-
neous operations. The libParanumal sublibraries
support meshes consisting of triangles, quadrilat-
erals, tetrahedra, or hexes. The libParanumal
project also includes mini-apps providing GPU
accelerated solvers for a wide variety of transport-
dominated physics applications. A significant fea-
ture of the libParanumal kernels is that, in the
majority of cases, they are tuned to meet the
roofline performance limits. For example, FP64
performance in excess of 1 TFLOPS is realized for
local SEM matrix-vector product (matvec) kernels
on the NVIDIA V100 [8, 12]. Each solver supports
multi-GPU simulation via Nek5000’s gslib for ef-
ficient MPI-based gather-scatter operations and
halo exchanges [13].

In the present work, we describe a new code,
NekRS, which is written in C++/OCCA. The
performant kernels in NekRS started as an early
fork from libParanumal and were tailored and
expanded to meet the specific requirements of
large-scale turbulent flow applications in complex
domains. NekRS provides access to the standard
Nek5000 interface and features (e.g., conjugate
heat transfer), which allows users to leverage exist-
ing application-specific source code and data files
on GPU-based platforms.

The remainder of this article is organized as
follows. In Section 2 we provide relevant details of
the governing equations and spectral element dis-
cretization. In Section 3 we describe the parallel
GPU development, including parallel communica-
tion and partitioning strategies at exascale and
present an illustration of high-performance kernels
for GPU-based nodes. In Section 4 we provide
extensive performance studies at scale, including
weak- and strong-scale studies on all of Summit.
We conclude with remarks and discussion in Sec-
tion 5.

2. Formulations

We simulate thermal transport governed by the
incompressible Navier—Stokes (NS) and energy
equations,

ou B 1 _,
E—Fu-Vu = —Vp—i— EV u, (1)

V-u = 0, (2)
aT 1,

subject to appropriate velocity (u), pressure (p),
and temperature (7') initial conditions in © and
boundary conditions on 0f). For typical applica-
tions, the Reynolds (Re) and Peclet (Pe) numbers

are large, implying that the flows are advection
dominated. For high Re, in fact, the flows are fully
turbulent, implying a need for highly accurate nu-
merical discretizations in order to avoid numerical
dispersion and dissipation [14]. (We note that
NekRS currently supports conjugate heat transfer
where T may be defined on a domain that is larger
than Q. In what follows, however, we omit further
discussion of the energy equation (3).)

2.1. BDF Time Discretization

We begin with a backward difference (BDFk)
approximation to %—‘t‘ to derive an implicit Stokes
substep for velocity and pressure at time level ¢7,

@ n __ i * n i 2..n
oY T At Vp" + Rev u”, (4)
V-u" =0, (5)

where u* accounts for quantities known from prior
substeps and is computed in one of two ways. The
standard (Courant- or CFL-limited) formulation
is BDFk/EXTk,

k
ut = — Z (ﬁju"_j + At aju”_j : Vun_j) , (6)

Jj=1

where the 3;s are the kth-order BDF coefficients
and the ojs are kth-order extrapolation coeffi-
cients. An alternative formulation that avoids
the CFL constraint on stepsize At is the semi-
Lagrangian approach with

uto= =) gt (7)

Here, each 0" 7(x) represents the value of
u" 7 (x*), where x* is the foot of the characteristic
that would be found by integrating the velocity
field backward in time over [t",#"~1]. In practice,
the off-grid interpolation required for direct eval-
uation of u"~7(x*) can be avoided by solving a
hyperbolic advective subproblem on [t"~7, "],

%Jru'VW:O, (8)

with initial condition w(x,t"~7) = u"~J [15, 16].
We typically use the third-order (k = 3) formula-
tion for (6) with a Courant number of CFL=0.5.
For (7), CFL=2-4 is most common, but we typi-
cally use only second-order in time (k = 2) because
of the relative expense of the hyperbolic substeps
(8), which are fully dealiased [17].

2.2. Implicit Stokes Solve

The unsteady linear Stokes problem (4)—(5) is
further decoupled via a fractional step method that
treats the divergence-free and viscous terms as sep-
arate subproblems. A pressure-Poisson problem
derives from taking the divergence of (4),

ny_ V-ou' 1
-V (Vp") = At + EV (Vxw), (9)
where w = Z?Zl a;V x u™J is the extrapolated

vorticity, which serves to control divergence er-
rors at the boundaries. Additional details on
the boundary conditions for (9) can be found in
[18, 19, 20, 21].

The final substep requires the solution of

1
——Vu" + —u

= 10

Re At At (10)
where u** is the divergence-free velocity

u™t =u* - AtVp™. (11)

The advantage of (4)—(11) is that it decouples
the NS equations into independent substeps, each
of which can be efficiently treated by techniques
tailored to the governing physics: hyperbolic sub-
steps for advection, diagonally preconditioned con-
jugate gradient (PCQ) iteration for the viscous
Helmholtz problems, and multilevel PCG or GM-
RES for the pressure solve. Because it governs
the fastest modes (i.e., the acoustic modes, which
are infinitely fast in the incompressible model),
the pressure-Poisson problem is intrinsically the
stiffest substep. Isolating it from the other govern-
ing operators results in a fast algorithm because
there is no need to evaluate viscous or advection
operators with each iteration, which would be re-
quired of a fully implicit approach.

2.8. Spectral Element Discretization

To develop an efficient spatial discretization, we
employ high-order spectral elements (SEs) [22] in
which the solution, data, and test functions are
represented as locally structured Nth-order tensor
product polynomials on a set of E globally un-
structured curvilinear hexahedral brick elements.
The approach yields two principal benefits. First,
for smooth functions such as solutions to the in-
compressible NS equations, high-order polynomial
expansions yield exponential convergence with ap-
proximation order, implying a significant reduction
in the number of unknowns (n ~ EN3) required
to reach engineering tolerances. Second, the lo-
cally structured forms permit local lexicographical
ordering with minimal indirect addressing and,
crucially, the use of tensor-product sum factoriza-
tion to yield low O(n) storage costs and O(nN)

work complexities [23]. As we demonstrate, the
leading order O(nN) work terms can be cast as
small dense matrix-matrix products (tensor con-
tractions) with favorable O(N) work-to-storage
ratios (computational intensity) [24].

The equations for the SE basis coefficients are
derived from a weighted residual formulation for
each subproblem. For example, (6) and (10)—(11)
become Find u™, p" € XN (Q) x XV (Q) such that
for all v,q € X{¥ x XV,

=X (3w

j
Ataj(v,u"7-Vu 7)), (12)

—

1 *
-~ (0 V)

1

ﬁ(Vv,Vu)+ %(v u”) =
Here, (v,u) = [, v - u dV is the L? inner
product on Q; X} is the subset of X satisfying
the Dirichlet conditions on 92; X2 is the subset of
X" satisfying homogeneous Dirichlet conditions
on 9Q; and XV C H' is the set of continuous Nth-
order spectral element basis functions described
in [24]. H! is the usual Sobolev space of functions
that are square integrable on €2, whose derivatives
are also square integrable.

(Vq,Vp") = é(Vq, V x w)(13)

1
At(v u™). (14)

The discrete systems of equations are derived
by formally expanding the test and trial functions
in terms of a basis {¢;} for X*. Consider the weak
form of the Poisson equation, Find u € X{ such
that (Vv, Vu) = (v, f) for allv € XJ, with

SEDIINC (15)

Inserting this expansion and taking v = ¢;, we get
Au = b, (16)
un]T the vector of unknown basis

with u = [ug ...
coefficients and

Aij = (v¢ivv¢j)a (17)

the symmetric positive definite (SPD) stiffness
matrix associated with the Poisson operator. Ele-
ments of the data vector b are computed by evalu-
ating inner products b; := (¢, f).

To derive fast matrix-free operator evaluations
for iterative solution of (16), we introduce the local
SE basis functions. To begin, we assume 2 =
LJeE:1 Q¢ where the non-overlapping subdomains
(elements) Q¢ are images of the reference domain,

{5 T S R R
5 ‘_VA'.uv-n'v"” A
Lo ® o2 B-QE-“ i ® e NE B e
\e G R SN 05 o SZ o s
\ . - S B

\e %L 0o o o o o oo

A

Figure 1: 9th-order SE mapping from canonical domain
) to physical subdomain Q¢ ¢ R2.

reQ=[-1,1]3, given by

x“(r, s,t)
N N N

DN xGrhalr) hy(s) hi(1), (18)

k=0 j=0 i=0

X|ge =

as illustrated in Fig. 1. Here, hi(r) (s, or t)
€ Py is assumed to be a cardinal Lagrange poly-
nomial, h;(§;) = 6;;, based on the Gauss-Lobatto—
Legendre (GLL) quadrature points, &; € [—1,1],
4 =0,..., N. This choice of points yields well-condi-
tioned operators and allows for accurate pointwise
quadrature with a diagonal mass matrix.

All functions in X have a form similar to (18).
For example, the scalar u(x)|g. = u(x°(r)) =:
u®(r) is written in terms of the (N + 1)3 local
basis coefficients u® := {ug;,; },

N N N

ulge = > D> Tl ha(r) hi(s) hi(t). (19)

k=0 j=0 i=0

An important consequence of the GLL-based

tensor-product Lagrange polynomial representa-

tion is that differentiation with respect to r, s,

and ¢ at quadrature points §;;; = (&,&5,€;) can

be expressed as efficient tensor contractions. Let
A dh;

Dii = 2
dr ¢ (20)

be the one-dimensional differentiation matrix map-
ping from the nodal points to the (identical)
quadrature points, and let I be the (N+1) x (N+1)
identity matrix. Let uf, uf, uf denote partial
derivatives of u®(r) with respect to the coordi-
nates r = (r,s,t) = (r1,r2,73) evaluated at the
GLL points. Then

ul = Diu® = (j@ j@ b) u® = ZDiiugjka (21)
ul = Douf 1= (f ®D® f)ye = Zﬁjjufjka (22)
J
Qf _ Dgge — (D ® j’ ® f)ge = ZDH%UZE (23)
E

The chain rule is used to differentiate with respect
to x = (x,y, 2) = (1, 2, x3):

Ou’ 3 (8r Ou’
Veu = Du’ = —— = Z Z) ,(24)
(‘3331; tor oot 8xp orq €iin

where derivatives with respect to r, are computed
by (21)—(23). The array of metrics s s found

e
ozg

by inverting (at each grid point, &;;) the 3 x 3

matrix, g% = Dyxy.

Note that evaluation of the full gradient (24)
involves three tensor contractions, (21)—(23), each
requiring 2(N +1)# operations and (N + 1)? mem-
ory references, followed by three pointwise contrac-
tions, ug = 22:1 Tgze U5, , Tequiring 15(N + 1)3
operations and 9(N + 1) memory references (as-
suming that uy, is cached from the V, operation).
For the full field, the gradient (u,,u,,u,) <— u
thus requires 10E(N + 1)® ~ 10n memory refer-
ences and 6 E(N +1)2+15E(N +1)3 ~ n(15+6N)
operations. We note that the O(N*) work terms
(21)—(23) are readily cast as dense matrix-matrix
products [3, 24].

In addition to differentiation, the weighted
residual formulation requires integration, which
is effected through GLL quadrature. For any
u,v € XV, we define the discrete inner products,

M=

(Ua U)N = (U, u)e) (25)
e=1
N N N
(v,u)” = Zzzvz‘ejkpijk%?kufjk (26)
k=0 j=0 i=0
—_ <ye>TBeEe. (27>
Here, pijr = pipjpr is the product of one-
dimensional GLL quadrature weights; J¢(r) =
‘gi: is the Jacobian associated with the map

x¢ from Q to Q¢ and Be=diag(pijrJy) is a
local, diagonal mass matrix. For affine maps,
(v,u)® = [, vudV whenever the product vu is
a polynomial of degree 2N — 1 or less. The high
accuracy realized by the GLL quadrature is suf-
ficient to ensure stability for the Poisson opera-
tor when (Vé;, Vo;)n replaces (Vo;, Vo;) in (17)
[25], but not for the advection operator, where
the integrand is of degree 3N and thus requires
higher-order integration [17].

Equipped with the basic calculus tools (21)-(27),
we evaluate the bilinear form (Vu, Vu) as follows,

M=

(Vo,Vu) = S (Ve Vub)e (28)

®
Il
—_

()T A%u® = vl Apuy,

Il
M=

)
Il
—_

where u; = [u! - - u”] is the collection of all local
basis vectors and Ap=block-diag(A®) comprises

the local stiffness matrices given in factored form

by

T
D, G?l sz Gfs D,

A= Dy || GSy GSy GS3 || D2 |- (29
D3 /) \Gis Gis G/ \Ds

Here, the six local geometric factors Gf; = GY;
are diagonal matrices with one nontrivial entry for
each gridpoint &;;,

3
. Orm OT
[Gmm’]ijk = |JZ_; 81.16 &Tf

Evaluation of A%u® thus requires 7(N + 1)3 mem-
ory references (six for G¢,,., and one for u°) and
12(N + 1)* + 15(N + 1)3 operations, per element.
Aside from preconditioning, A%u®, constitutes the
principal work for the pressure-Poisson problem
and for the viscous solves. In the case of the Jacobi-
preconditioned viscous substeps, it is the only work
term that scales as O(nN). The other contribu-
tions in Jacobi PCG total to ~ 12n floating-point
operations.

To ensure interelement continuity (u,v € X~ C
H'), one must constrain local basis coefficients at
shared element interfaces to be equal. That is, for
any given sets of coefficient indices (4, j, k, ¢) and

(ia ja]%7 é)7

€ —
Xk =X

; (30)

ijk-

ijk

Aé]% — ug = u . (31)
The statement (31) leads to the standard finite
element procedures of matrix assembly and assem-
bly of the load and residual vectors. Matrix-free
algorithms that use iterative solvers require assem-
bly only of vectors, since the matrices are never
formed.

To implement (31), we introduce a global-to-local
map, formally expressed as a sparse matrix-vector
product, u; = Qu, which takes global (uniquely
defined) degrees of freedom w; from the index set
I € {1,...,n} to their (potentially multiply defined)
local counterparts ug;,. The continuity require-
ment leads to

viAru, = vT QTALQu = v Au, (32)

from which we conclude that the global stiffness
matrix is A = QTA;Q. We refer to Ay as the
unassembled stiffness matrix and A as the as-
sembled stiffness matrix.! With this factored
form, a matrix-vector product can be evaluated

1We typically denote QTA;Q =: A as the Neumann
operator, which is orthogonal to the constant vector, and
A = RART as the SPD stiffness matrix, where R is a restric-
tion matrix that discards rows corresponding to Dirichlet
data [24]. Application of R does not impact complexity so
we do not discuss it further.

as w = QTA;Qp, which allows parallel evalua-
tion of the work-intensive step of applying A€ to
basis coefficients in each element Q¢. Applica-
tion of the Boolean matrices @ and QT represents
the communication-intensive phases of the pro-
cess.2 We note that Q and Q7 are the spectral
element /finite element emthod equivalents of the
finite difference “halo” exchange. Unlike finite
differences, however, Q and Q7 have a unit-depth
stencil for all N, and the discretization is thus
communication minimal.

3. Parallel GPU Development

Our parallel approach to solving the incompress-
ible NS equations follows the standard SPMD
paradigm of partitioning the domain across P MPI
ranks, each with its own private address space,
and time advancing the equations in a cooperative
fashion using iterative solvers to solve the elliptic
subproblems for the velocity, temperature, and
pressure. On each node, we run one MPI rank per
GPU. All data resides on the device, with a copy
back to the host only when needed (e.g., for I/O
or analysis of turbulence statistics).

NekRS has been developed in close collabora-
tion with the libParanumal project, [8, 9, 26, 27]
which provides high-performance kernels for high-
order methods on GPUs. The GPU kernels are
written in the portable Open Concurrent Com-
pute Abstraction (OCCA) library [10, 11, 28] to
abstract between different parallel languages such
as OpenCL, CUDA, and HIP. OCCA allows de-
velopers to implement the parallel kernel code
in a slightly decorated C++ language, OKL. At
runtime, the user can specify which parallel pro-
gramming model to target, after which OCCA
translates the OKL source code into the desired
target language and Just-In-Time (JIT) compiles
kernels for the user’s target hardware architecture.
In the OKL language, parallel loops and variables
in special memory spaces are described with sim-
ple attributes. For example, iterations of nested
parallel for loops in the kernel are annotated with
@outer and @inner to describe how they are to be
mapped to a grid of work-item and work-groups in
OpenCL or threads and thread-blocks in CUDA
and HIP. All iterations that are annotated with
@outer or @inner are assumed to be free of loop
carried dependencies. We describe several of the
kernels in detail below.

We note that experience with Mira [5] has es-
tablished that the strong-scale limit for Nek5000

2In the case of nonconforming elements, Q is not Boolean
but can be factored into a Boolean matrix times a local
interpolation matrix [24].

is around n/P = 20004000 points per MPI rank
(in -¢32 mode), meaning using just 2 to 8 elements
per rank for typical orders of N=7 to 11. By con-
trast, the strong-scale limit on modern GPUs such
as the Nvidia V100 is around n/P = 2-4 million
points per rank (i.e., per GPU), or about 4,000
to 8,000 elements [12]. Moreover, “hero” runs on
Mira were at the level of about 15 million elements,
which could easily be run on a million ranks. On
Summit, NekRS routinely is run with 175 million
elements and N =7 (n = 60B). The quantitative
differences have an impact on considerations such
as communication hiding and the importance of
internode latency. We discuss these issues further
in Section 4.

3.1. Domain Partitioning

For the large runs that are now routine on Sum-
mit, we partition the domain using parallel re-
cursive spectral bisection (parRSB) [29] in such
a way that the number of elements on each pro-
cessor differs by at most 1. The Fiedler vector
for parRSB is computed by using either restarted
Lanczos or inverse iteration with lean algebraic
multigrid (AMG) [30] on the element-centered con-
nectivity graph. Prior to running parRSB, we ex-
ecute recursive coordinate bisection (parRCB) in
order to organize the graph into reasonably con-
nected subsets on each processor. Otherwise, the
parRSB iterations can incur significant communi-
cation overhead because one or more processors
may have each of its elements connected to dif-
ferent processors if the ordering is arbitrary (e.g.,
partitioned according to the original element num-
bering). Prepartitioning with parRCB can cut
parRSB run times by a factor of 100. On GPU-
based systems parRCB/RSB are run on the CPUs
because the number of elements, F, in the SEM is
typically three orders of magnitude smaller than
the number of grid points, n = EN?>. On 8,100
cores of Summit, the partition time for £ = 60
million is about 40 seconds using Lanczos with a
parRCB preprocessing time of 0.8 seconds.

3.2. Parallel Communication

Time advancement of the discretized NS equa-
tions effectively amounts to executing a sequence
of matrix-vector products. Because both the
trial and test spaces (u,p and v,q) are contin-
uous, these products involve a map of the form
w = QTZ;Qu, where Zp=block-diag(Z¢) repre-
sents some localized physics (e.g., advection or dif-
fusion), Q7 reflects the continuity of the test func-
tions, and @ the continuity of the trial functions.
When recast as w; = QQTZru,, the paralleliza-
tion is clear: each processor evaluates w® = Z¢u¢,

e=1,...,E,, where E, is the number of elements
on rank p (With the private memory model, other
discriminators are not required for Z¢ or u® be-
cause their data is implicitly indexed by p.) This
parallel work step is followed by the communica-
tion phase, w; = QQT@;, which corresponds to
an exchange and sum of shared interface values
between adjacent elements. On Mira, QQ7 is al-
most 100% communication (latency) dominated in
the strong-scale limit of one or two elements per
rank. On GPUs there are thousands of elements
per rank. A significant portion of the elements are
thus interior to the local partition, and there is
consequently an opportunity to overlap work and
communication.

QQT is implemented in parallel by using
the open-source communication library g¢slib,
which supports multiple data types and associa-
tive/commutative operations (e.g., min, max, *,
+) for scalar and vector fields, as well as one-sided
operations @ and Q7. The adjacency graph is pre-
scribed by a simple interface: The user provides
indices in a vector, g = of length n, = Ey(N + 1)3
on each processor, p =0,..., P — 1. The indices
correspond to global pointers, while their positions,
1,...,n, correspond to local pointers. Passing g
to gs_setup returns a handle, gsh, which is then
used when executing gs_op(gsh,w; ,+) to produce
w; +— QQTw; . The user does not need to know
which processor holds the adjacent elements or
anything else about the shared indices. If a global
pointer is unique in the set Up{gp}, then the cor-
responding entry in w; will be unchanged. If one
knows a priori that certain entries in g are sin-
gletons, a 0 index may be supplied in 9, which
saves work in the discovery phase of gs_setup. (We
typically set all element-interior pointers 0.)

At setup time, gslib picks a communication strat-
egy (pairwise, crystal router? or all-reduce) that
yields the lowest maximum time over a set of trials
for the given adjacency graph. We have found this
optimization to be particularly important (10x)
in the context of AMG for solution of distributed
coarse-grid problems [4]. When the number of
nonzeros per row is large, the pairwise exchange
can require a large number of messages, whereas
crystal router requires only log, P messages. The
all-reduce approach has a nominal log, P cost; but
with hardware support, the cost is effectively in-
dependent of P and (on Mira) bounded by 4x
the latency for short messages, even with P >1M.
gs-setup executes in O(log P) time and is quite fast.
For example, with 3B gridpoints on a million ranks
of Mira, the time (including setup and 10 trials

3Crystal router is a scalable generalized all-to-all [31].

Algorithm 1: Advection operator, 2D thread configuration
Output: Vector Cq, size 3 x N x N, indexed as Cqlelement] [x/y/z] [ix] [iy] [iz]
Input: Vector g, size 3 x Ng x Ny, indexed as q[element] [x/y/z] [ix] [iy] [iz],
differentiation matrix D'2, size N, x N,, volumetric geometric factors G, size Ny x N, x 12
1 for e € {0,1,..., Ny — 1} do

2 | Allocate sU, sV, sW, sD as (p+ 1) - (p + 1) shared memory arrays;

3 Allocate rlU, £V, rW as (p + 1) register arrays;

4 for k€ {0,1,...,p} do

8 for each thread i,j do

6 If k == 0, load D' into sD;

7 sUL3] (4] = qle] [0] [k] [3] [1], sVIj][i] = qle] [1] [k] [3] [i1;

5 sWlj1 (4] = qlel [2] [k] [3] [1];

° if k==0 then

10 rUL:] = qlel (01 [:1[jI[4], xV[:] = qlel [1I[:1051[i];

1 ri(:] = qlel (2] [:] [3] [i);

12 end

13 end

14 sync_threads();

15 for each thread i,j do

16 dudr = 37 _; sD[i] [n]*sU[j] [n], duds = 3°5_;sD[j] [n]*sU[n] [i];
17 dudt = 37 _ sD[K] [n]*rU[n], dvdr = Y7 _ sD[i] [n]*sV[j][n];
18 dvds = Y & _;sD[j1[n]*sV(n] [i], dvdt = 3" _ sD[k] [n]*rV([n] ;
1 dwdr = 3, eD[i] [n] *sW[j] [n], dwds = Y ,_; eD[j] [n]*sW[n] [];
20 dwdt = 30 _, sD (k] [n]*rW(nl;

n Load drdx, drdy, drdz, dsdx, dsdy, dsdz, dtdx, dtdy, dtdz from G.,;

n // Apply chain rule;

23 dudx = drdx * dudr + dsdx * duds + dtdx * dudt;

P dudy = drdy * dudr + dsdy * duds + dtdy * dudt;

25 dudz = drdz * dudr + dsdz * duds + dtdz * dudt;

26 dvdx = drdx * dvdr + dsdx * dvds + dtdx = dvdt;

a7 dvdy = drdy * dvdr + dsdy * dvds + dtdy * dvdt;

28 dvdz = drdz * dvdr + dsdz * dvds + dtdz * dvds;

290 dwdx = drdx * dwdr + dsdx * dwds + dtdx * dwdt;

50 dwdy = drdy * dwdr + dsdy * dwds + dtdy * dwdt;

9 dwdz = drdz # dwdr + dsdz * dwds + dtdz * dwdt;

52 u = qlel (0] (k] [j1[i], v = qle] [1] (k] [j1 (i1, w = qle] [2J kD[] [i1:
33 Cqle] (0] (k] [j]1[i] =u * dudx + v * dudy + w * dudz;

34 Cqlel (1] (k] [j1[i] = u * dvdx + v * dvdy + w * dvdz;

a5 Cqlel (2] k] [§] (i) =u * dwdx + v * dwdy + w * dwdz;

38 end

a7 sync_threads();

38 end

Figure 2: Two-dimensional thread-block for advection.

each for pairwise and crystal router) is less than
one second. For this example, the corresponding
gs—op times are .000325 seconds for pairwise and
.0046 seconds for the crystal router.

For device-based implementations of QQT, we
extend the autotuning approach to test device-to-
device transfers (i.e., GPU direct), transfers via
the host with buffers packed on the host, and trans-
fers via the host with buffers packed on the GPU.
Since overlapped communication and computation
is also supported, the determination of the fastest
algorithm requires testing under overlapped run
conditions, which is enabled through a call-back
function that allows the setup to be tested in tan-
dem with execution of the relevant kernel. The
overlap works as follows. All elements with nonlo-
cal adjacency connections are evaluated first (i.e.,

W = Zeiyfr where e,; spans the set of ele-
ments having nonlocal connections). The nonlocal
communication is initiated, and the remaining lo-
cal products are evaluated. Incoming off-device

contributions are then added to the result, w; .

3.3. High-Order Kernels

The O(N) computational intensity of the spec-
tral element method, coupled with minimal indi-
rect addressing, provides significant performance
opportunities on GPU architectures. Moreover,
for vector- (e.g., velocity-) oriented operations,
the O(N3) geometric factors associated with each
element can be reused across each velocity compo-
nent (e.g., when computing Vu on Q¢). While the
majority of NekRS simulations are run with N=7,

it is not uncommon to require N=11-15 for some
applications, implying that the dealiased advec-
tion operators will be evaluated on N, g quadrature
points, with N, = 13-23. For these cases, a 2D
thread structure must be used, as illustrated in
Fig. 2. For relatively low N, operations may be
organized into 3D thread structures and still be
within shared-memory and thread-block limits, as
illustrated in Fig. 3.

NVIDIA imposes a hard limit of 1,024 threads
per thread block, meaning that a triply nested 3D
thread structure of size N, x N, x N, mandates
N, < 10. Therefore, the maximum achievable
polynomial order in the 3D thread structure ad-
vection operator, illustrated in Algorithm 2, is
N = 9. The 2D thread structure of Algorithm
1, however, does not reach the 1,024 threads per
threadblock restriction until N, = 32. Further,
using a 2D thread structure allows for the shared-
memory usage to be better optimized. For exam-
ple, in Algorithm 1, only four 2D shared-memory
structures are needed. This approach is already
available in libParanumal [8]. A small develop-
ment building on this earlier work is the addi-
tion of using 2D shared-memory structures with a
1D register memory structure. Since each thread
(4,4) has its own register data, array lookups of
the form A[*][j][i] can be reduced into one-
dimensional register array lookups of the form
rA[*], where rA is a register array for thread
(4,7) and rA[k]1=A[k] [j][i] corresponds to val-
ues of A along the k-index for a fixed (i,j). A
major advantage of this approach is reducing the
number of (relatively) slow shared-memory loads
by nearly a factor of three. In addition, this helps
preserve the 48 kB of shared memory available
on the NVIDIA V100, which can hold only 6,144
double-precision words. Because OCCA allows for
runtime JIT-compilation of kernels,* either the 2D
or 3D thread structure kernel may be used for the
case Ny < 10, based on which is more performant.

3.4. Poisson Solve Preconditioning

As noted above, the pressure-Poisson solve is
intrinsically the stiffest substep in NS time ad-
vancement. It is easy to understand why this is so
by considering the example of flow in a pipe. When
flow is suddenly forced in at a given flow-rate on
one end of the pipe, it must leave at the same
rate at the far end of the pipe and must have the
same mean value throughout the pipe—all by the
end of the current timestep. A consequence of the
divergence-free constraint is that the Poisson prob-
lem is intrinsically communication intensive—all
processors must “know” about an inlet condition,
which might be prescribed only on one processor.
Fast scalable Poisson solvers are thus of paramount

Algorithm 2: Advection operator, 3D thread configuration
Output: Vector Cg, size 3 x Net x Ny, indexed as Cq[element] [x/y/2] [ix] [iy] [iz],
Input: Vector q, size 3 x Ny x Ny, indexed as q[element] [x/y/z] [ix] [iy] [iz],
differentiation matrix D2, size N; x N, volumetric geometric factors Gy, size Ny x N, x 12

1 fore€ {0,1,...,Ny — 1} do

2 | Allocate sU, sV, sW, sD as (p+1) - (p+ 1) - (p + 1) shared memory arrays;
for each threads ijk do
4 If k == 0, load D'” into sD;
5 sU[K] [§1[4] = qle] (01 (k][3I [4], sV (k] [31[1] = qlel [1] (k1 [§1[il;
° sWlk] (31 (1] = qle] (2] (k] (I [i];
T end
8 sync.threads();
o | for each thread ijk do
10 dudr = 57 _, sD[1] [n]*sU k] [3] [n], duds = 5* _; sD[3] [n]*sULK] [n] [1];
n dudt = 3" _sD[k] [nl#sU[n] [3] [], dvdr = >_7_ sD[i] [n]#sV k] [j] [n);
12 dvds = S sD[j] [n]*sV (k] [n) [], dvdt = 53 sD[k]) [n]#sV [n] (3] [];
13 dwdr = Y _sD[i] [n]*sW(k] [j] [n], dwds = 3" _ sD[j] [n)#sW(k] (n] [i];
14 dwdt = o sD[k] [n]*sWln] [3] [i];
1 Load drdx, drdy, drdz, dsdx, dsdy, dsdz, dtdx, dtdy, dtdz from Gi;
18 // Apply chain rule;
1 dudx = drdx * dudr + dsdx * duds + dtdx * dudt;
18 dudy = drdy * dudr + dsdy * duds + dtdy * dudt;
1 dudz = drdz * dudr + dsdz * duds + dtdz * dudt;
20 dvdx = drdx * dvdr + dsdx * dvds + dtdx * dvdt;
21 dvdy = drdy * dvdr + dsdy * dvds + dtdy * dvdt;
22 dvdz = drdz * dvdr + dsdz * dvds + dtdz * dvdt;
23 dwdx = drdx * dwdr + dsdx * dwds + dtdx * dwdt;
24 dwdy = drdy * dwdr + dsdy * dwds + dtdy * dwdt;
a5 dwdz = drdz * dwdr + dsdz * dwds + dtdz * dwdt;
26 u = gqle] [0] (k] [J][i], v = qlel (11 (k1 [j][i], w = qlel [2] (kI [j] [il;
ar Cqlel (01 (K1 [jI[4i] = u * dudx + v * dudy + w * dudz;
= Cqle) (1] (k] (3] [i] =u # dvdx + v * dvdy + w = dvdz;
0 Cqlel (2] K [j1[4] = u * dwdx + v * dudy + w * dwdz;
a0 end

Figure 3: Three-dimensional thread-block for advection.

concern for incompressible simulations. Because
the setup is amortized over tens of thousands or
hundreds of thousands of timesteps, we care more
about solve times than setup costs.

For CPU-based applications, we have devel-
oped a p-multigrid strategy that uses an over-
lapping additive Schwarz method (ASM) as a
smoother [32, 33]. The local solves are effected
in ~ 12E(N + 3)* operations by using tensor-
contraction-based fast-diagonalization methods
(FDMs) [24]. Typical multigrid schedules use ap-
proximation orders N, N/2, and N =1 at succes-
sively coarser levels. For modest-sized meshes (e.g.,
E < 500K), the O(E)-sized coarse-grid problem is
solved by using a fast direct solver that requires
a minimal 2log, P message exchanges [34]. For
larger problems on CPU platforms, the coarse-
grid problem is solved by using communication-
minimal implementations of algebraic multigrid.
Here, the adaptability of gslib is essential because
of the stencil growth in the lower levels of AMG.
At each level, communication is effected by the
fastest supported algorithm in gslib, resulting in a
5- to 10x improvement over simply using pairwise
exchanges for stencil updates [4]. Our CPU imple-
mentation of ASM also uses an additive approach
between levels, which means that there is only one
proper matvec in A per PCG iteration. The idea
is that each element of the Krylov subspace should
be projected, rather than using cycles for unpro-
jected iterations. On BG/Q, which has hardware
support for all-reduce (< 20us for P = 1M [5]),
dot products for projection incur only a fraction of
a percent of total run time. We use flexible PCG
because weighting the ASM, which improves its
smoothing properties, introduces a slight asymme-

ASM default

OO0GS+FP32
Projection
ChebJAC default
FP32

00GSs
0OO0GS+FP32
Projection
ChebASM default
FP32

00GS
OOGS+FP32
Projection

Figure 4: Successive gains in pressure-solve perfor-
mance for ASM, CHEBY-JAC, and CHEBY-ASM
p-multigrid smoothers as a function of implementation
options for the 1568-pebble case (E = 524K, N =7,
characteristics) on 22 nodes of Summit (n/P = 1.36M,
P =132 V100s).

try in the preconditioner.

On GPUs, the situation is somewhat different.
First, the arithmetic for the matvecs and local
solves is very fast. Because of other strong-scaling
limitations, there are enough elements per rank
(typically, E/P ~ 4000-8000 on the NVIDIA V100
and AMD Instinct™ MI100) to effectively overlap
communication with computation on the fine-grid
matvecs. Moreover, dot products are not fast on
GPUs. A better smoother than straight ASM
is consequently more effective. We consider two
strategies. The first smoother uses two Chebyshev-
accelerated Jacobi (CHEBY-JAC) sweeps, with
pre- and postsmoothing at the top two levels.
Hypre or parAlmond [35, 36] is used for the O(FE)
coarse-grid problem. (AMG cannot be applied
directly to the dense Au = b systems. It can, how-
ever, be applied to FEM-based surrogates for A
to develop an alternative preconditioning strategy
[23, 37, 38].) The second (CHEBY-ASM) applies
Chebyshev acceleration to the FDM-based ASM
smoother, with the coarse-grid solver unchanged.

The effectiveness of CHEBY-JAC is illustrated
in Fig. 4, which contrasts with the baseline ASM
results under a succession of algorithmic refine-
ments, including switching to FP32* for certain
parts of the preconditioner and/or using an adap-
tive gather-scatter that chooses between different
(device/host) buffer packing and pairwise exchange
strategies, and incorporating projection-based ini-
tial guesses [39]. The test problem is turbulent flow
through a cylinder with 1,568 spherical pebbles at
Rep = 5000, run on 22 nodes of Summit. The dis-
cretization consists of £ = 524K elements of order
N =7 (n=180M), with n/P = 1.36M, (i.e., be-
yond the 80% strong-scale limit). Timestepping is
based on two-stage 2nd-order characteristics with

4FP32 is used only for the smoothing steps. Indirect-
addressing overheads result in minimal gains if FP32 is
used for the unstructured coarse-grid solve.

NekRS Preconditioning Development, n = 2,569,495, 663
Timestepper | Smoother GPU E N | n/GPU At CFL | v; Di tstep ()
RAS 54 524386 | 7 3.33M 1.0e-03 | 4.05 | 4 | 112 | 1.64e+00
ASM 54 524386 | 7 3.33M 1.0e-03 | 4.05 | 4 93 1.44e+00
CHAR-BDF2 | CHEBY-JAC 54 524386 | 7 3.33M 1.0e-03 | 4.05 | 4 32 1.04e+00
CHEBY-RAS 54 524386 7 3.33M 1.0e-03 4.05 4 26 6.56e-01
CHEBY-ASM 54 524386 | 7 3.33M 1.0e-03 | 4.05 | 4 16 5.03e-01
RAS 54 524386 | 7 3.33M 2.5e-04 | 1.06 2 51 7.54e-01
ASM 54 524386 7 3.33M 2.5e-04 1.06 2 39 6.38e-01
BDF3-EXT3 | CHEBY-JAC 54 524386 | 7 3.33M 2.5e-04 | 1.06 2 15 4.96e-01
CHEBY-RAS 54 524386 | 7 3.33M 2.5e-04 | 1.06 2 13 3.43e-01
CHEBY-ASM 54 524386 | 7 3.33M 2.5e-04 | 1.06 2 8 2.59e-01
Table 1: NekRS preconditioner performance comparison on 54 GPUs of Summit for the case of Fig. 4. A restart file at

convective time =20 is used to provide a turbulent initial condition. Here, the Courant number (CFL), time per step in
seconds (¢step), velocity iteration count (v;), and pressure iteration count (p;) are all averaged over 100 steps.

Advection (70% SMEM)
other

teriorPreco (80% GMEM)

other streaming Pressure (90% GMEM)

dotp (95% GMEM)

FDM (80% SMEM)
scatterPreco

InteriorMany(80% GMEM)
memCpy DtoH
‘memCpy HtoD

gatherPreco
AxVelocity (92% GMEM)
subCycleUpdate (93% GMEM)

Figure 5: Timing breakdown for the case of Fig. 4.

CFL=4.

Figure 4 shows that the straight CHEBY-JAC
strategy (vellow) is 30% faster than baseline ASM
(blue). With the enhancements, CHEBY-JAC
yields a 2.5x gain over the baseline. The CHEBY-
ASM case (green) shows similar improvements
(1.85x) in the default configuration but yields an
overall 4.85% speedup in the pressure solve when
using the adaptive gather-scatter, FP32-based
smoothing, and projection-based initial guesses.

In addition to ASM, we explored the potential
of restricted additive Schwarz (RAS) [40], in which
each subdomain (spectral element) retains its own
data after the FDM solve, rather than exchanging
and adding (with counting weight w [33]). These
results, along with the others, are presented for
the 1,568-pebble case on 9 nodes of Summit in
Table 1. With n/P > 3.3M, this case is well above
80% parallel efficiency, but the overall relative per-
formance is similar to the 22-node case of Fig. 4.
This table also shows the advantage of the charac-
teristics timestepping, which allows a 4x gain in
stepsize with only a 2x increase in time per step.

Fig. 5 shows a performance breakdown of the
key kernels for the CHEBY-ASM results of Fig. 4.
Even with the 4.85-fold reduction in the pressure
solve time, about 25% of the wall-clock time is
still directly attributable to the pressure step, as
indicated by the Preco, FDM, and AxPressure ker-
nels. The interior-element gather-scatter kernels

(10% of wall time) are limited by and sustain 80%
of global memory bandwidth (GMEM). The Ax-
Pressure kernel (6.4%) sustains 90% GMEM, and
the FDM is limited by and sustains 80% of shared-
memory bandwidth (SMEM). For this particular
case, the characteristics (8) accounts for about
18% of wall time and sustains 70% of SMEM.

4. Application Performance

In this section, we explore scalability and per-
formance comparisons of NekRS for several appli-
cations on a variety of platforms.

4.1. Comparison of Summit and Mira

We begin with comparisons of NekRS on Sum-
mit and Nek5000 on Mira for the two configu-
rations depicted in Fig. 6. The first is a 3.2M
element LES of a spacer-grid configuration at
Rep = 14,000, as considered in [41]. The second is
an 8.4M element DNS in a 5x5 rod bundle config-
uration at Rep = 19,000 [42]. Both were run with
approximation order N = 7 on 8,192 nodes of the
IBM BG/Q, Mira, in -¢32 mode (P = 262144 MPI
ranks). For the NekRS runs, we used tolerances,
timestep sizes, and other run parameters that were
equivalent to the Mira-based Nek5000 simulations.
All cases use dealiasing with N, = 12. The only
significant algorithmic difference is in the use of
CHEBY-ASM for NekRS versus the default ASM
pressure smoother used in Nek5000. The NekRS
runs used restart files from the Nek5000 cases, and
timings were compared over the same simulation
steps. Table 2 summarizes the comparative data.

For the spacer-grid case, the number of points
per rank on Mira n/P = 4116, which corresponds
to a parallel efficiency of ~ 80% (cf. Fig. 1 in [5]).
The corresponding time per step of ¢4, = 0.68s is
thus at a minimum for this efficiency. The average
number of ASM-based pressure iterations per step

(b)

(a)

Figure 6: Turbulent velocity snapshots: (a) spacer-grid
and (b) DNS 5x5.

is 8.7, which constitutes about 27% of the wall-
clock time. This case used characteristics-based
timestepping with a single RK4 substep. On 98
nodes of Summit we have ts., = 0.14s—4.8 x
faster than Mira at comparable parallel efficiency.
The breakdown of the Summit GPU wall-clock
time in this case is roughly 22% for the advection
term (8), 24% for the velocity (viscous) solve, and
52% for the pressure solve. (The coarse-grid solve
time was 8% of tgiep.)

For the DNS case, the number of points per
rank on Mira n/P = 10973, and we can assume
that 80% strong-scale limit timings would be real-
ized at P ~ 5,242,88 ranks with tgs., ~ 0.35s.
In this case, the Summit scaling is not ideal—
the best times are at n/P = 3.9M, which is sig-
nificantly larger than what we typically see on
Summit. Whether this anomolous behavior is at-
tributable to system noise or to something peculiar
about the partitioning is as yet unclear. Nonethe-
less, tstep = .183s is about 2x faster than the
strong-scale limit times on Mira.

4.2. Summit Scaling Performance

Here we consider simulations scaling out to all
of Summit for the rod-bundle configurations of
Fig. 7. Target geometries for small modular re-
actors consist of hundreds of 17x17 rod bundles,
which total to tens of thousands of long commu-
nicating flow channels. For scalability tests, we
consider two geometries: a long single 17x17 bun-
dle and a “full-core” collection comprising 37 such
bundles that are shorter in length. These cases use
inflow-outflow boundary conditions with synthetic
vortical flows as initial conditions. The pressure
iterations are likely to be a bit higher under fully
turbulent conditions, but the overall scaling re-
sults for production runs will be similar to what
is presented here.

We measured the average wall time per step
in seconds, tstep, using 101-200 steps for simula-
tions with Rep = 5000. The approximation order

10

Figure 7: Full-core and 17x17 rod-bundle configurations.

is N = 7, and dealiasing is used with N, = 9.
We use projection in time, CHEBY+ASM, and
flexible PCG for the pressure solves with toler-
ance 1.e-04. The velocity solves use Jacobi-PCG
with tolerance 1.e-06. BDF3+EXTS3 is used for
timestepping with At= 3.0e-04, corresponding to
CFL=0.66 for the full-core case and CFL=0.54
for 17x17 case. We also show the average velocity
(v;) and pressure (p;) iteration counts over the
same simulation interval. The geometries for the
weak-scaling studies were generated by extruding
layers of 2D elements in the axial flow direction.
For strong scaling, we used E =175M, totaling
n =60 billion grid points.

The scaling results are presented in Table 3.
The pressure iteration counts, p; ~ 2, are lower
for these cases than for the pebble cases, which
have p; ~ 8 for the same timestepper and pre-
conditioner. The geometric complexity of the rod
bundles is relatively mild compared to the pebble
beds. Moreover, the synthetic initial condition
does not quickly transition to full turbulence. We
expect more pressure iterations in the rod case
(e.g., p; ~ 4-8) once turbulent flow is established.

We observe that these cases exhibit excellent
strong scaling to all of Summit, pointing to n/P =
2.5M as the 80% efficiency level for the V100s.
Note that, save for the anomolous DNS 5x5 case,
this value of n/P is consistent with our previous
results. As discussed in [12, 5], the leading indi-
cator of parallel scalability for a given algorithm-
architecture coupling is n/ P, rather than the num-
ber of processing units, P.

The weak-scaling results are less straightfor-
ward to interpret. First, we note that they are
conducted at n/P =2.1M, which is beyond the
strong-scale limit. The data is thus heavily influ-
enced by communication overhead. Nonetheless,
the Rod-1717 case exhibits reasonable weak scal-
ing, with only an 18% drop in efficiency over a
53-fold increase in processor count. Weak scal-
ing for the full-core case, however, drops to 54%
with only a 17-fold increase in processor count.
Part of the performance degradation stems from
the very low time exhibited by the full core for

[Spacer-Grid, Performance on Mira vs. Summit, £ = 3235953, N =7, n = 1.10B

[System [Code [Device [Node [Rank [R/N [E/R [n/Rank [tstep(s) [R | Ry [eff % [R*
[Mira | Neks000 | CPU | 8192 | 262144 | 32 | 12 | 4116 | 6.90e-01 | 1.00 | 1.00 | 100 | 1.00
38 1596 42 2027 695446 1.68e+01 | 1.00 1 100 0.06
Summit | Nek5000 CPU 76 3192 42 1013 347723 0.50e+01 | 2.12 2 106 0.13
152 6384 42 506 173861 0.23e+01 | 4.56 4 114 0.29
304 12768 42 253 86930 0.11e+01 | 9.64 8 120 0.62
38 1596 42 2027 695446 0.78e+01 | 1.00 1 100 0.08
Summit NekRS CPU 76 3192 42 1013 347723 0.38e+01 | 2.01 2 100 0.17
152 6384 42 506 173861 0.20e+01 | 3.81 4 95 0.33
304 12768 42 253 86930 0.11e+01 | 6.72 8 84 0.59
38 228 6 14193 4.8M 2.75e-01 1.00 | 1.00 100 2.46
Summit NekRS GPU 60 360 6 8988 3.0M 1.92e-01 1.42 | 1.57 90 3.52
76 456 6 7096 2.4M 1.64e-01 1.67 | 2.00 84 4.14
98 588 6 5503 1.8M 1.39e-01 1.97 | 2.57 77 4.87
[DNS 5 x 5, Performance on Mira vs. Summit, £ = 8387008, N =7, n = 2.87B l
[System [Code [Device [Node [Rank | R/N [E/R [n/Rank [tsep(s) [R | Ry [ef % [R |
[Mira [Nek5000 [CPU [8192 [262144 | 32 [32 [10973 [7.00e-01 [1.00 [1.00 | 100 [1.00 |
175 7350 42 1141 391393 3.97e+00 | 1.00 1.00 100 0.17
Summit | Nek5000 CPU 1152 48384 42 173 59456 9.51e-01 4.17 6.58 63 0.73
2304 96768 42 87 29728 7.30e-01 5.43 | 13.16 41 0.95
87 522 6 16067 5.5M 2.30e-01 1.00 1.00 100 3.04
Summit NekRS GPU 120 720 6 11648 3.9M 1.83e-01 1.25 1.37 91 3.80
160 960 6 8736 2.9M 1.49e-01 1.53 1.83 84 4.68
220 1320 6 6353 2.1M 1.27e-01 1.80 2.52 71 5.48

Table 2: Performance on Mira (Nek5000) vs. Summit CPU (Nek5000) and GPU (NekRS). Timings are in seconds for
the wall time per step, tstep. R**, the ratio of tstep of 8192 nodes on Mira to all others on Summit CPU and GPUs.
(top) Spacer-Grid: 400 timesteps over simulation time interval [138.0431, 138.0671] with At= 6.00e-05 (CFL=1.74) at
Rep = 14000. CHAR=T (1 substep). (bottom) DNS 5 x 5: 400 timesteps over simulation time interval [59.71, 59.78] with

At= 1.9e-04 (CFL=0.32) at Rep = 19000. BDF2+EXT?2.

P = 1626 V100s, which at .066 s is substantially
below the best time of .086 s for the Rod-1717
case. By contrast, the weak-scale time for Full-
Core is 20% higher than Rod-1717 for P = 27648.
Here, the discrepency is closely correlated with the
maximum number of neighbors that any processor
(GPU) is connected to in the QQT graph, which
is indicated by ngh in the last column of Table 3.
The full-core geometry is a relatively flat graph,
and it appears that the partitioning for P = 271
resulted in a 2D decomposition, with a maximum
of 9 neighbors. When this mesh is partitioned
further by RSB, it results in neighbor counts that
are twice those of the Rod-1717 case. These re-
sults, coupled with the high latency of GPUs (as
indicated by the large ng g values), suggests that
partitioning with the aim of minimizing the num-
ber of neighbors, rather than the data volume,
might be beneficial in this context.

4.8. Performance on Other GPU Architetures

Here we constrast our baseline Summit perfor-
mance with recently deployed NVIDIA A100 and
AMD MI100 node architectures.

The first case is the NekRS turbulent pipe
flow example with a synthetic initial condition,

11

Rep = DU/v = 19,000, E = 6840, N = 7, and
n =n/P = 2,346,120 (which is near the strong-
scale performance limit). We use characteristics
with two RK4 substeps, dealiasing with N, = 10,
and timestep size At = .006D/U, where U is
the mean velocity and D is the diameter. The
pressure solve uses projection in time, CHEBY-
ASM smoothing for flexible CG, and a tolerance
of 1.e-04. The Jacobi-PCG tolerance for velocity
is 1.e-06. Timings are in seconds for the averaged-
walltime per step, tsiep, using steps 101-200.

Table 4 provides preliminary single-GPU results
for AMD GPUs against the Summit baseline. The
AMD MI60 and MI100 results were obtained on
the HPE Tulip platform while the NVIDIA A100
runs were done on ALCF’s Theta-GPU. Perfor-
mance on a single CPU core and multiple cores on
Summit IBM Power9 is also presented. The AMD
interface is provided by OCCA’s HIP backend.
To produce optimized code, hand-tuning is still
required for good performance each of the devices.

In Table 4 we see that Summit is slightly faster
than the Tulip V100, which might be expected
given that Summit uses NVLink vs. the PCI-E
interconnect on Tulip. The NVIDIA A100 clearly
is outperforming the V100 by 1.5, which is in line

NekRS Strong Scaling on Full Summit, N =7, n = 59B (full-core) and n = 60B (rod-1717)

Case [Node [GPU [E [E/GPU [n/GPU [v; [pi | tstep(s) | R | Rideal | Per | ngh
1810 10860 | 174233000 16044 5.5M 3 2 2.17e-01 1.00 1.00 100 41

2715 16290 | 174233000 10696 3.6M 3 2 1.39e-01 1.55 1.50 103 26

Full-Core | 3620 | 21720 | 174233000 8021 2.7"M 3 2 1.18e-01 1.84 2.00 92 32
4525 27150 | 174233000 6417 2.2M 3 2 1.22e-01 1.76 2.50 70 47

4608 | 27648 | 174233000 6301 2.1M 3 2 1.21e-01 1.79 2.54 70 40

1810 10860 | 175618000 16171 5.5M 3 2 1.855e-01 | 1.00 1.00 100 25

2536 15216 | 175618000 11542 3.9M 3 2 1.517e-01 | 1.22 1.40 87 25

Rod1717 3620 | 21720 | 175618000 8085 2.7M 3 2 1.120e-01 | 1.65 2.00 82 26
4180 | 25080 | 175618000 7002 2.4M 3 2 1.128e-01 | 1.64 2.30 71 28

4608 | 27648 | 175618000 6351 2.1M 3 2 1.038e-01 | 1.78 2.54 70 29

NekRS Weak Scaling on Full Summit, N =7

Case [Node [GPU [E [E/GPU [n/GPU | v; [pi | tstep(s) [R [Rideal | Peg | ngh
271 1626 10249000 6303 2.1M 3 2 6.58e-02 | 1.00 1.00 100 9

813 4878 30747000 6303 2.1M 3 2 9.68e-02 | 0.67 1.00 67.9 12

Full-Core 1626 9756 61494000 6303 2.1M 3 2 1.05e-01 | 0.62 1.00 62.5 44
3253 19518 | 122988000 6301 2.1M 3 2 1.18e-01 | 0.55 1.00 55.8 56

4608 | 27648 | 174233000 6301 2.1M 3 2 1.21e-01 | 0.54 1.00 54.0 40

87 522 3324000 6367 2.1M 3 2 8.57e-02 | 1.00 1.00 100 25

320 1920 12188000 6347 2.1M 3 2 8.67e-02 | 0.98 1.00 98.7 25

Rod-1717 800 4800 30470000 6347 2.1M 3 2 9.11e-02 | 0.94 1.00 94.0 25
1600 9600 60940000 6347 2.1M 3 2 9.33e-02 | 0.91 1.00 91.8 27

3200 19200 | 121880000 6347 2.1M 3 2 9.71e-02 | 0.88 1.00 88.2 25

4608 | 27648 | 175618000 6351 2.1M 3 2 1.03e-01 | 0.82 1.00 82.5 29

Table 3: Summit strong and weak scalings for full-core

with the improved memory bandwidth of the A100.
The (early) MI100 and MI60 GPUs are delivering
85 and 60% of Summit’s V100, respectively. We
also observe that Summit’s single V100 is compa-
rable to 336 CPU cores on 8 nodes, while it is only
248x faster than a single CPU. The implication is
that the parallel efficiency for NekRS on Summit’s
Power9 CPUs is 74% with n/P = 6615.

In our second comparative study we consider
multi-GPU, single-node performance for the Sum-
mit V100 vs. ThetaGPU A100s for the atmo-
spheric boundary layer (ABL) example of Fig. 8
(left). The domain is doubly-periodic (400m X
400m x 400m) with E = 32768 spectral elements
of order N = 7 (i.e,, n=11.2M). A geostrophic
wind speed of 8 m/s and reference potential tem-
perature of 263.5K are prescribed with a no-slip
condition at the lower wall. A restart file at con-
vective time t=1710 is used to provide a turbulent
initial condition, corresponding to the physical con-
vective time of 6 hours. Single-node scaling shows
the 80% strong-scale limit to be 1.8M points/GPU
for both the V100 and A100, with the A100 run-
ning at .055 s/step and 1.55 times faster than the
V100. We remark that the low strong-scale limit
of n/P = 1.8M for these single-node studies is
more likely due to the low number of neighbors (at
most 6 or 8 for the V100 or A100, respectively),
rather than a high internode communication cost
in the multinode cases.

12

and 17x17 rod bundle geometries.

Figure 8: Turbulence in stratified ABL and 44257-pebble
configurations.

We close with a final example illustrating the
potential of GPU-based simulations of turbulence
in HPC settings. The example, shown on the right
in Fig. 8, is a 44,257-pebble configuration, which
is a prototype for pebble-bed reactors that will
ultimately hold hundreds of thousands of spherical
pebbles. This example has 13M elements of order
N =7 (n = 4.5B). The all-hex mesh was devel-
oped from an initial Voronoi tessellation of the
sphere centers, with each Voronoi facet tessellated
into quadrilaterals that are then projected onto the
sphere surfaces in order to sweep out a hexadral
volume. Edge collapse, mesh refinement, and mesh
smoothing tools ensure a high-quality mesh for the
fluid flow in the void space. Timestepping is based
on 2nd-order characteristics with a single RK4
subcycle, N, = 11, and At =3.e-4 (CFL=4). The
average number of velocity iterations (tol=1.e-6)

is 3, and the average number of pressure iterations
is 18 (tol=1.e-4). On 1,788 V100s (n/P = 2.5M),
tstep=-54 s. The timing breakdown is 10% for
advection (8), 6% for the velocity solve (10), and
84% for the pressure solve. The pressure solve is
broken down into percentage of total simulation
time: 16% for the coarse-grid solve and 56% for
the remainder of the preconditioner. While the
time per step is higher than for the other cases,
these simulations strong-scale well; and the tar-
get configuration of 300,000 pebbles, which will
require about 30B grid points, is well within the
current performance envelope on Summit.

5. Conclusions

We developed an C++/OCCA-based open-
source Navier—Stokes solver for GPUs that lever-
ages prior scaling development in Nek5000 and
high-performance kernels developed in libParanu-
mal. We discuss its performance and scalability
on leadership computing platforms. The solver
is based on 2nd- or 3rd-order timesplitting of the
incompressible Navier—Stokes equations with an
exponentially convergent spectral-element-based
discretization in space. We demonstrate weak-
and strong-scaling up to 27,648 V100 GPUs on
OLCF’s Summit system for reactor geometries
with problem sizes of more than 175M spectral el-
ements (n = 60B gridpoints). Performance results
show that NekRS sustains 80-90% of the realizable
(bandwidth-limited) peak and that 80% parallel
efficiency on Summit is realized for local problem
sizes of n/P =~ 2.5M, where P is the number of
GPUs employed for the simulation. Preliminary
timing data for NVIDIA A100s and AMD MI100s
are also presented.

Acknowledgments

This material is based upon work supported by
the U.S. Department of Energy, Office of Science,
under contract DE-AC02-06CH11357.

This research is supported by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative ef-
fort of two U.S. Department of Energy organiza-
tions (Office of Science and the National Nuclear
Security Administration) responsible for the plan-
ning and preparation of a capable exascale ecosys-
tem, including software, applications, hardware,
advanced system engineering and early testbed
platforms, in support of the nation’s exascale com-
puting imperative.

The research used resources of the Argonne
Leadership Computing Facility, which is supported
by the U.S. Department of Energy, Office of Sci-
ence, under Contract DE-AC02-06CH11357. This

13

research also used resources of the Oak Ridge Lead-
ership Computing Facility at Oak Ridge National
Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under
Contract DE-ACO05-000R22725. Support was also
given by the Frontier Center of Excellence.

References

[1] Nek: Open source, highly scalable and portable spectral
element code, http://nek5000.mcs.anl.gov(2020).

[2] P. Fischer, E. Rgnquist, D. Dewey, A. Patera, Spectral
element methods: Algorithms and architectures, in:
Proc. of the First Int. Conf. on Domain Decomposition
Methods for Partial Differential Equations, STAM, 1988,
pp. 173-197.

[3] H. Tufo, P. Fischer, Terascale spectral element al-
gorithms and implementations, in: Proc. of the
ACM/IEEE SC99 Conf. on High Performance Network-
ing and Computing, Gordon Bell Prize, IEEE Computer
Soc., CDROM, 1999.

[4] P. Fischer, J. Lottes, W. Pointer, A. Siegel, Petascale
algorithms for reactor hydrodynamics, J. Phys. Conf.
Series 125 (2008) 012076.

[5] P. Fischer, K. Heisey, M. Min, Scaling limits for PDE-
based simulation (invited), in: 22nd AIAA Compu-
tational Fluid Dynamics Conference, ATAA Aviation,
ATAA 2015-3049, 2015.

[6] S.Markidis, J. Gong, M. Schliephake, E. Laure, A. Hart,
D. Henty, K. Heisey, P. Fischer, Openacc acceleration
of the nek5000 spectral element code, Int. J. of High
Perf. Comp. Appl. 1094342015576846.

[7] M. Otten, J. Gong, A. Mametjanov, A. Vose,
J. Levesque, P. Fischer, M. Min, An MPI/OpenACC
implementation of a high order electromagnetics solver
with GPUDirect communication, Int. J. High Perf.
Comput. Appl.

[8] K. Swirydowicz, N. Chalmers, A. Karakus, T. War-
burton, Acceleration of tensor-product operations for
high-order finite element methods, Int. J. of High Per-
formance Comput. App. 33 (4) (2019) 735-757.

[9] A. Karakus, N. Chalmers, K. Swirydowicz, T. War-
burton, A gpu accelerated discontinuous galerkin in-
compressible flow solver, J. Comp. Phys. 390 (2019)
380-404.

[10] D. Medina, Okl: a unified language for parallel archi-
tectures, Ph.D. thesis, Rice University (2015).

[11] D. S. Medina, A. St-Cyr, T. Warburton, OCCA: A
unified approach to multi-threading languages, preprint
arXiv:1403.0968.

[12] P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev,
V. Dobrev, J.-S. Camier, M. Kronbichler, T. Warbur-
ton, K. Swirydowicz, J. Brown, Scalability of high-
performance PDE solvers, IJHPCA 34, 5 (2020) 562—
586.

[13] gslib: Gather-scatter library (2020).
http://github.com/Nek5000/gslib

[14] H. Kreiss, J. Oliger, Comparison of accurate methods
for the integration of hyperbolic problems, Tellus 24
(1972) 199-215.

[15] Y. Maday, A. Patera, E. Rgnquist, An operator-
integration-factor splitting method for time-dependent
problems: Application to incompressible fluid flow, J.
Sci. Comput. 5 (1990) 263-292.

[16] S. Patel, P. Fischer, M. Min, A. Tomboulides,
A characteristic-based, spectral element method for
moving-domain problems, Under Review.

[17] J. Malm, P. Schlatter, P. Fischer, D. Henningson, Sta-
bilization of the spectral-element method in convection

http://nek5000.mcs.anl.gov
http://github.com/Nek5000/gslib

NekRS single GPU performance for turbulent pipe flow simulation, n = 2,222,640

system device API rank | node E N | n/rank tstep(s) R

OLCF Summit NVIDIA V100 | CUDA 1 1 | 6480 7 2.22M 8.51e-02 1.00e+-00
ALCF Theta-GPU | NVIDIA A100 | CUDA 1 1 | 6480 7 2.22M 5.59e-02 1.52e+400
HPE Tulip NVIDIA V100 CUDA 1 1 6480 7 2.22M 8.85e-02 9.61e-01
HPE Tulip AMD MI100 HIP 1 1 6480 7 2.22M 9.96e-02 8.54e-01
HPE Tulip AMD MI60 HIP 1 1 | 6480 7 2.22M 1.41e-01 6.03e-01
OLCF Summit IBM Power9 C 1 1 | 6480 7 2.22M 1.99e+01 4.27e-03
OLCF Summit IBM Power9 C 336 8 | 6480 7 6615 8.02e-02 1.06e+00

Table 4: NekRS baseline performance on a single GPU of HPE Tulip AMD Instinct™ MI100, AMD Radeon Instinct TM
MI60, and Nvidia V100 PCle and ALCF/Theta-GPU Nvidia A100 SXM2, compared to OLCF/Summit Nvidia V100 SXM2,
for turbulent pipe flow simulation with Re = 19,000, F = 6840, and N = 7.

NekRS on a Singe Node for Atmospheric Boundary Layer Model, E = 32768, N =7, n = 11,239,424
gpu E/gpu n/gpu V100 R Pcff(%) A100 R Pcff(%) Rideal 1%V A

2 16384 5.6M 2.050e-01 | 1.00 100 1.341e-01 | 1.00 100 1.00 1.52

3 10923 3.7TM 1.464e-01 | 1.40 93.3 9.544e-02 | 1.40 93.7 1.50 1.53

4 8192 2.8M 1.171e-01 | 1.75 87.5 7.485e-02 | 1.79 89.6 2.00 1.56

5 6553 2.2M 9.898e-02 | 2.07 82.8 6.371e-02 | 2.10 84.2 2.50 1.55

6 5461 1.8M 8.575e-02 | 2.39 79.7 5.519e-02 | 2.43 81.0 3.00 1.55

7 4681 1.6M - - - 5.080e-02 | 2.64 75.4 3.50 -

8 4096 1.4M - - - 4.545e-02 | 2.95 73.8 4.00 -

Table 5: Atmospheric boundary layer baseline performance on Summit V100 SXM2 and ThetaGPU A100 SXM4.

dominated flows by recovery of skew symmetry, J. Sci.
Comp. 57 (2013) 254-277.

[18] S. Orszag, M. Israeli, M. Deville, Boundary conditions
for incompressible flows., J. Sci. Comp. 1 (1986) 75-111.

[19] A. Tomboulides, M. Israeli, G. Karniadakis, Efficient
removal of boundary-divergence errors in time-splitting
methods, J. Sci. Comput. 4 (1989) 291-308.

[20] A. Tomboulides, J. Lee, S. Orszag, Numerical sim-
ulation of low Mach number reactive flows, J. of Sci.
Comp. 12 (June 1997) 139-167.

[21] J. Guermond, P. Minev, J. Shen, An overview of
projection methods for incompressible flows, Comput.
Methods Appl. Mech. Engrg. 195 (2006) 6011-6045.

[22] A. Patera, A spectral element method for fluid dynam-
ics : laminar flow in a channel expansion, J. Comput.
Phys. 54 (1984) 468-488.

[23] S. Orszag, Spectral methods for problems in complex
geometry, J. Comput. Phys. 37 (1980) 70-92.

[24] M. Deville, P. Fischer, E. Mund, High-order methods
for incompressible fluid flow, Cambridge University
Press, Cambridge, 2002 (500 pages).

[25] E. Rgnquist, A. Patera, A Legendre spectral element
method for the Stefan problem, Int. J. Numer. Meth.
Eng. 24 (1987) 2273-2299.

[26] N. Chalmers, A. Karakus, A. P. Austin, K. Swirydow-
icz, T. Warburton, libParanumal (2020).
http://github.com/paranumal/libparanumal

[27] N. Chalmers, T. Warburton, streamParanumal.
http://github.com/paranumal/streamparanumal

[28] OCCA: Lightweight performance portability library,
http://libocca.org (2020).

[29] A. Pothen, H. Simon, K. Liou, Partitioning sparse
matrices with eigenvectors of graphs, STAM J. Matrix
Anal. Appl. 11 (1990) 430-452.

[30] O. E. Livne, A. Brandt, Lean algebraic multigrid
(lamg): Fast graph Laplacian linear solver (2012). http:
//arxiv.org/abs/1108.1310 arXiv:1108.1310.

[31] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W.
Otto, J. K. Salmon, D. W. Walker, Solving Problems
on Concurrent Processors, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

14

[32] P. Fischer, J. Lottes, Hybrid Schwarz-multigrid meth-
ods for the spectral element method: Extensions to
Navier-Stokes, in: R. Kornhuber, R. Hoppe, J. Périaux,
O. Pironneau, O. Widlund, J. Xu (Eds.), Domain De-
composition Methods in Science and Engineering Series,
Springer, Berlin, 2004.

[33] J. W. Lottes, P. F. Fischer, Hybrid multigrid/Schwarz
algorithms for the spectral element method, J. Sci.
Comput. 24 (2005) 45-78.

[34] H. Tufo, P. Fischer, Fast parallel direct solvers for
coarse-grid problems, J. Parallel Distrib. Comput. 61
(2001) 151-177.

[35] R. Gandham, K. Esler, YongpengZhang, A gpu accel-
erated aggregation algebraic multigrid method, Comp.
& Math. with App. 68 (2014) 1151-1160.

[36] J. F. Remacle, R. Gandham, T. Warburton, Gpu
accelerated spectral finite elements on all-hex meshes
324 (2016) 246—257.

[37] C. Canuto, P. Gervasio, A. Quarteroni, Finite-element
preconditioning of G-NI spectral methods, STAM J. Sci.
Comput. 31 (2010) 4422-44251.

[38] P. Bello-Maldonado, P. Fischer, Scalable low-order
finite element preconditioners for high-order spectral el-
ement Poisson solvers, SIAM J. Sci. Comput. 41 (2019)
S2-S18.

[39] P. Fischer, Projection techniques for iterative solution
of Az = b with successive right-hand sides, Comput.
Methods Appl. Mech. Engrg. 163 (1998) 193-204.

[40] X. chuan Cai, M. Sarkis, A restricted additive Schwarz
preconditioner for general sparse linear systems, SIAM
J. Sci. Comput 21 (1999) 792-797.

[41] G. Busco, E. Merzari, Y. A. Hassan, Invariant analysis
of the Reynolds stress tensor for a nuclear fuel assembly
with spacer grid and split type vanes., Int. J. of Heat
and Fluid Flow 77 (2019) 144-156.

[42] A. Kraus, E. Merzari, T. Norddine, O. Marin, S. Ben-
hamadouche, Direct numerical simulation of fluid flow
in a 5x5 square rod bundle using Nek5000, arXiv
preprint arXiv:2007.00630.

http://github.com/paranumal/libparanumal
http://github.com/paranumal/streamparanumal
http://libocca.org
http://arxiv.org/abs/1108.1310
http://arxiv.org/abs/1108.1310

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment. The Department of Energy will provide
public access to these results of federally spon-
sored research in accordance with the DOE Public
Access Plan. http://energy.gov/downloads/doe-
public-access-plan.

ECP Disclaimer: This research is supported by
the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of
Energy organizations (Office of Science and the
National Nuclear Security Administration) respon-
sible for the planning and preparation of a capable
exascale ecosystem, including software, applica-
tions, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s
exascale computing imperative.

15

	1 Introduction
	2 Formulations
	2.1 BDF Time Discretization
	2.2 Implicit Stokes Solve
	2.3 Spectral Element Discretization

	3 Parallel GPU Development
	3.1 Domain Partitioning
	3.2 Parallel Communication
	3.3 High-Order Kernels
	3.4 Poisson Solve Preconditioning

	4 Application Performance
	4.1 Comparison of Summit and Mira
	4.2 Summit Scaling Performance
	4.3 Performance on Other GPU Architetures

	5 Conclusions

