
International Journal of Information Security
https://doi.org/10.1007/s10207-022-00626-2

REGULAR CONTRIBUT ION

Malicious code detection in android: the role of sequence
characteristics and disassembling methods

Pinar G. Balikcioglu1 ·Melih Sirlanci1,2 ·Ozge A. Kucuk1 · Bulut Ulukapi1 · Ramazan K. Turkmen1 ·
Cengiz Acarturk1,3

© The Author(s) 2022

Abstract
The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and
malware authors, which resulted in a significant number of benign and malicious applications available on various online
markets. Since the signature-based methods fall short for detecting malicious software effectively considering the vast number
of applications, machine learning techniques in this field have also become widespread. In this context, stating the acquired
accuracy values in the contingency tables in malware detection studies has become a popular and efficient method and
enabled researchers to evaluate their methodologies comparatively. In this study, we wanted to investigate and emphasize
the factors that may affect the accuracy values of the models managed by researchers, particularly the disassembly method
and the input data characteristics. Firstly, we developed a model that tackles the malware detection problem from a Natural
Language Processing (NLP) perspective using Long Short-Term Memory (LSTM). Then, we experimented with different
base units (instruction, basic block, method, and class) and representations of source code obtained from three commonly
used disassembling tools (JEB, IDA, and Apktool) and examined the results. Our findings exhibit that the disassembly method
and different input representations affect the model results. More specifically, the datasets collected by the Apktool achieved
better results compared to the other two disassemblers.

Keywords Malware detection · LSTM · Natural language processing

Abbreviations
LSTM Short-term long memory
NLP Natural language processing
RNN Recurrent neural network
DT Decision trees
SVM Support vector machines
NB Naïve Bayes
LR Logistic regression
EL Ensemble learning
OL Online learning
KNN K-nearest neighbor
CNN Convolutional neural network

B Cengiz Acarturk
cengiz.acarturk@uj.edu.pl

1 Cyber Security Department, Middle East Technical
University, Ankara, Turkey

2 Computer Science and Engineering Department, Ohio State
University, Columbus, OH, USA

3 Cognitive Science Department, Jagiellonian University,
Krakow, Poland

MLP Multilayer perceptron
ISM Instruction as a sequence model
BSM Blocks as sequences model
MSM Methods as sequences model
CSM Classes as sequences model

Introduction

Android mobile operating system has a market share of
73% for smartphones, and 43% for tablets [1]. Thanks
to its open-source feature, the Android operating system
offers an affordable and convenient interface for end-users.
It also provides a well-established development environment
and infrastructure for mobile software developers. Hence,
an inevitable consequence is the close attention of mal-
ware authors, who target the Android platform by mostly
embedding their malicious code into benign applications.
Nowadays, malicious code detection, as implemented by
antivirus software or anti-malware tools, is a native part

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00626-2&domain=pdf
http://orcid.org/0000-0002-5443-6868

G. Balikcioglu et al.

of many desktop operating systems. Nevertheless, mobile
operating systems are most vulnerable to malware. In 2020,
Kaspersky Mobile products and technologies detected a
62.2% annual increase in the installation of malicious pack-
ages on Android environment [2]. This growing threat points
out the urgent need for anti-malware tools running with high
detection accuracies.

In general, malware analysis methods can be grouped
under three different categories: static, dynamic, and hybrid
analysis methods. The static analysis relies on examining
the source code of a program and accompanying metadata
without running the binary itself. The dynamic analysis aims
to investigate the behavior of the executable by running it.
Lastly, the hybrid analysis leverages the combinations of
the other two analysis methods. Early anti-malware soft-
ware employed signature-based protection mechanisms that
created traces of known malware from existing malware
recorded in constantly updated databases. In these sys-
tems, signatures, and traces are devised by utilizing the
previously mentioned malware analysis techniques. The
aforementioned paradigm suffered from the limitations of
the size of the databases, the temporal gap between the detec-
tion of malware and the implementation of the signature in
the database (cf. zero-day vulnerabilities), and the ease of
obfuscation techniques creating versions of the same mal-
ware with different signatures. Therefore, malware detection
methods that offer adaptive solutions, including machine
learning techniques, have replaced signature-based method-
ologies. Unlike signature-based methods, the methods with
machine learning (ML) techniques utilize malware analysis
methodologies to perform feature extraction from Android
application (apk) files [21], [39]–[42].

A common practice in evaluating ML-based malware
detection methods and models, specifically the classifica-
tion accuracy of binaries as benign or malware, is to conduct
bench-marking by reporting accuracy values in contingency
tables. This common practice has proved to be an efficient
evaluation method, allowing researchers to perform compar-
ative analyses of their methodologies. Nevertheless, besides
themulti-parameter nature of learningmachines such as deep
learning methods, the other factors, like the input unit(as
formed by the code structures), the input representation spec-
ified by the disassembling tool, and the length of sequences
used in language modeling may also have a high impact on
the results. However, due to the complex nature of malware
detection, those factors and the parameter values relevant to
them are usually conceived as operational assumptions rather
than being treated as determining factors with a high impact
on the results.

The goal of the present study is twofold: We present a
methodology for Android malware detection using Long
Short-Term Memory (LSTM) by following our previous
research [37]. Then, we have a closer look at the factors that

have an impact upon the model outcomes. In particular, we
focus on the role of the disassembler software since it iden-
tifies the representation of the input. Our findings show that
the disassembling method influences the processing, thus the
model outcomes. Another factor is the form of the input data
as specified by the researcher. In particular, a researcher may
prefer to use a set of instructions, basic blocks, methods,
or classes as the unit of input representation. Our findings
reveal how different types of input representation influence
the model outcomes.

For model development, we employed a specialized type
of Recurrent Neural Network (RNN), namely the LSTM
[3]. We handle malware detection from a Natural Language
Processing (NLP) perspective. For this purpose, we develop
and test the results in various basic units (instruction, basic
block, method, and class) generated by the JEB Decom-
piler [4], the IDA Pro Disassembler [5], and the Apktool [6],
which are widely used tools in reverse engineering apk files.
More specifically, we reverse-engineered the apk files by the
JEB Decompiler, the IDA Pro Disassembler, and the Apk-
tool. First, the benign and malicious apk files were decoded,
then the resulting codes were divided into instructions, basic
blocks, methods, and classes. Finally, LSTM models were
trained on those units with the Dalvik assembly code of mali-
cious and benign apk files.

The following section describes the relevant studies about
malware detection on Android by employing machine learn-
ing and deep learning techniques. Afterward, we present our
proposedmethodology, including the approach, the details on
datasets, and the LSTM pipeline. We then report the results
and present a discussion of the findings within the framework
of the literature.

Relevant work

The popularity of Android is of interest to malware devel-
opers as well as researchers who develop anti-malware solu-
tions. Thus, in the past two decades, detecting and analyzing
Android malware has become an active area of research in
cyber security. An indispensable part of the research effort
has been integrating machine learning techniques, more
recently the adaption of deep learning methodologies for
higher accuracy in detection rates, besides the opportunity
to detect novel malware types. In this section, we present the
relevant work on Android malware detection methods.

In a survey study, Sharma and Rattan conducted a review
on Android malware detection [7]. They categorized mal-
ware analysis techniques into three groups, namely static,
dynamic, and hybrid analysis. The static analysis refers to
reviewing an apk file without executing the application,
mainly focusing on the manifest and the source code file.
In some instances, malware authors obfuscate the apk files

123

The role of sequence characteristics and disassembling methods

to reduce the efficiency of malware detection by increas-
ing the analysis time. Nevertheless, static analysis is a fast
and popular technique for malware detection. An alterna-
tive to static malware analysis is dynamic analysis. With
dynamic analysis, the application is executed, and its behav-
ior is observed. In dynamic analysis, a separate, isolated
environment is needed to run the application. Dynamic anal-
ysis is a more complex process that may become a resource-
and time-consuming. However, it is a widely used and reli-
able technique. Lastly, hybrid strategies use the combination
of static and dynamic analysis to inspect the application by
utilizing the two analysis methods together. A significant
advantage of static analysis is its lightweight infrastructure
and low-cost efficiency. Therefore, in the present study, we
used static analysis. We used smali files disassembled by
alternative disassembly tools as inputs to the model.

A review of the relevant work shows that various machine
learning models and model features have been employed
in the static analysis of malicious code. The most com-
mon models and learning algorithms include Decision Trees
(DT), Support Vector Machines (SVM), Naïve Bayes (NB),
Logistic Regression (LR), Ensemble Learning (EL), Online
Learning (OL), K-Nearest Neighbor (KNN), and neural net-
works (e.g., RNN, CNN, MLP, LSTM). In addition, various
features have been selected for the models of Android mal-
ware detection, including application permissions, API calls,
intents, opcode sequences, program graphs (e.g., function
call graphs, control flow graphs), and hardware features
obtained from Android apk files [8]–[19]. In our present
study, we utilized a deep learning model, LSTM, and trained
the model with the instruction sequences extracted from dis-
assembled smali files of applications. In otherwords,we used
opcode sequences as the features and LSTM as the learning
model.

Numerous studies have employed Natural Language Pro-
cessing (NLP) Deep Learning models to develop malware
detection methods. For instance, Karbab et al. utilized NLP
models and proposed a framework that relied on API method
call sequences to detect and classify Android malware [24].
They obtained dex files from apk files for the API call
extraction by using Python’s zip library. The Dalvik assem-
bly code was obtained from dex files with dexdump. The
API call sequences were then extracted by utilizing regular
expressions. Those sequenceswere used to generate semantic
vectors with word2vec and then fed to a CNN (Convolutional
Neural Network) model to perform detection and classifica-
tion. The suggested framework achieved a detection accuracy
of 96–99%. In a similar study [26], Ma et al. proposed a
method called Droidetec, which represented applications in
terms of natural language sequences by utilizing the API
calls. They used the Androguard [43] tool to retrieve dex
files from apk files. After extracting API sequences with
some pre-processing, one-hot vector embedding and Skip-

Grammodel were used to set up the input vector of sequence.
The detection was performed by forwarding this input to the
LSTM-based detection model. Aside from malware detec-
tion, Droidetec adopted an attention mechanism that utilized
weight distributions of APIs to localize the potentially mali-
cious code and output a report providing specific information
on malicious code segments. Droidetec reached over 97%
accuracy for detection and a 91% hit rate for detecting
malicious code. Wu et al. [25] employed a similar seman-
tic view for malware detection. Instead of the API calls,
the researchers used requested permissions extracted from
the Android manifest file AndroidManifest.xml. After the
extraction, a threshold mechanismwas employed to filter out
standard permissions. Then by word2vec, permissions were
represented as a one-hot vector fed into the LSTM model
for malware detection. A different approach was proposed
by Xie et al., which offered an LSTM-based method that
applied dynamic analysis [27]. They used system calls as the
model features, and they represented the program’s behav-
ior with system-call sequences (viz. the behavioral language
in their terminology). The model was tested with both host-
based and Android-based datasets and achieved 99% and
95%accuracy, respectively. In another study, the authors used
both static and dynamic analysis techniques giving an exam-
ple of a hybrid method for malware analysis [33]. For the
static analysis, they extracted permissions of applications
from Android manifest files using the Apktool. The bat-
tery, binder, memory, and permissions were collected using
emulators and feature collection platforms, then used as the
features in the dynamic analysis. The researchers used vari-
ous combinations of the features on RNN (Recurrent Neural
Network) and LSTMmodels for comparative analysis. Their
results showed that the LSTM outperformed RNN, achiev-
ing a detection rate of 97% for static analysis and 93%
for dynamic analysis. More recently, a malware classifica-
tion framework, namely ROCKY, performed malicious code
detection by extracting API calls, permission, keywords, and
tokens from decompiled source code instead of Dalvik byte-
code or smali code [28]. It applied lexical analysis of the
source code by utilizing sequences of N-tokens that include
stop-tokens, feature-tokens, and long-tail tokens. The devel-
opers compared ROCKY with other neural network models
reported in the previous work. Their findings revealed that
ROCKY outperformed other models and features, achieving
an accuracy of 97.5%. In contrast to the studies that applied
semantic-based techniques using features like API calls and
permissions, our models use the smali code of android appli-
cations to take advantage of the LSTMmodel in learning the
behavior of the applications.

A further reviewof the application of the learningmethods
for malicious code detection reveals that opcode sequences
have often been used in malware detection. For instance,
McLaughlin et al. proposed a CNN-based malware detection

123

G. Balikcioglu et al.

approach [20]. They used the Baksmali [44] tool to extract
opcode sequences and proposed a Hierarchical Denoising
Network model to deal with the Gradient vanishing problem
of LSTM by using encoders. So, the basic idea was to dis-
assemble each apk file into smali files by using Baksmali,
and then remove the operands to obtain opcode sequences
from each method in all the smali files. Gathering the opcode
sequences into a single opcode sequence makes it possible
to represent the whole application. Text representations of
applications were then fed to the CNN model to perform the
detection. The main advantage of the study was that it did
not require complex, manual preprocessing for data prepara-
tion. Parker et al. conducted a similar study using the same
data preparation and disassembler tools [21]. However, they
used two different classification methods, namely weighted
sequence and Modified Multi-Layer Vector Space models.
Their methods did not explicitly target Android malware
detection. Their results achieved 79% accuracy. In another
study, Li et al. adopted the same data preprocessing approach
using a different disassembler, namely Apktool, to collect
the smali files [22]. They used k-max pooling models and
compared their model with a set of classical machine learn-
ing models, such as RF, DT, SVM, Naïve Bayes, and MLP.
Their model reached 99% of accuracy and outperformed the
others.

Numerous studies have employed features, such as opcode
sequences or source code inLSTMmodels, alongside the pre-
viously mentioned research focusing on opcode sequences.
For example, Deeprefiner was proposed as a semantic-based,
two-layered method for malware detection [29]. Deepre-
finer’s first layer performs an initial detection by inputting
vector representations of Androidmanifest files and the other
XML files under the resources directory to an MLP model.
Then, the unclassified applications are forwarded to the sec-
ond detection layer for a more thorough inspection. In the
second layer, dex bytecode, extracted by the Apktool, is rep-
resented as vectors using Skip-Gram modeling, then fed into
theLSTMmodel. The preprocessing of the bytecode involves
reducing all dex instructions to fifteen instruction categories
without removing information like class names, fields, and
methods.

Other studies that used opcode sequences with LSTM
models include [31], in which the Apktool was used to
obtain opcode sequences. The opcodes were then converted
to 16-bit code representations. The model also utilized an
opcode sequence encoder to reduce feature dimensions. In
[34], Amin et al. adopted a similar approach using opcode
sequences and LSTM for malware detection and family
attribution. The authors conducted experiments with other
neural network architectures. They stated that BiLSTM
outperformed other models without the burden of manual
preprocessing for the features. A similar study used opcode
sequences retrieved from instruction call graphs [23]. The

Table 1 The type and the
number of malware samples
used in Dataset 2

Type Number

Adware 500

Banking malware 500

SMS malware 500

Mobile riskware 500

Androguard tool was used for decompiling the applications
to obtain all the execution paths. The embedded opcode
sequenceswere then fed into the LSTMmodel, and the detec-
tion was performed by evaluating the features of the graph
representation alongside the LSTM. In [32], the researchers
reported experiments with CNN and LSTM models applied
on two datasets. For the LSTM model, the authors extracted
Android bytecode using the Apktool. The bytes were then
represented as vectors by one-hot encoding and then fed into
the LSTMmodel. The proposedLSTMarchitecture achieved
70% accuracy for small datasets and 95.3% accuracy for
large datasets. In our study, we used the instructions obtained
from smali files without any manual preprocessing. We also
included operands besides the opcodes in the instructions to
avoidmaking simplification assumptions. A unique aspect of
our study is the investigation of the role of the disassembler
tool. We used Apktool, JEB, and IDA Pro to disassemble apk
files to obtain smali files and reported the differences. The
following section presents the methodology of the study.

Methodology

The dataset

We used two different datasets for the study, Dataset 1
and Dataset 2. Dataset 1 consisted of 600 benign and 787
malicious Android applications. We obtained the benign
applications from the 2017 pack of the AndMal2017 dataset
[35] and themalicious applications from theVirusShareweb-
site [36]. Since there was no information about the types of
malware we collected from the Virusshare, we cannot state
the types of malware we used in Dataset 1. On the other
hand, Dataset 2 consisted of 700 benign and 2000 malicious
Android applications. Both benign and malicious applica-
tions in Dataset 2 were collected from the AndMal2020
dataset [45]. The types and numbers of malware samples we
used in Dataset 2 are shown in Table 1. Then, collected apk
files were disassembled by JEB and IDA Pro, commercial
tools, and the Apktool, an open-source software tool. Below,
we describe the specific data extraction methods for the apk
files in the datasets.

We used the JEB software tool demo version 3.17.1 [4] to
obtain the static assembly output of the Android applications

123

The role of sequence characteristics and disassembling methods

Fig. 1 The modeling pipeline

in the apk dataset. We made two modifications to the default
JEB options: we removed the address information on each
line and the annotations at the beginning of a disassembled
output. The JEB command prompt is limited by the JEB
disassembler running with a given Android application. So,
we ran the JEB disassembler through the command prompt
by loading the apk files. Then, we saved the assembly output
of the corresponding apk files by selecting the Active View
option in the Export menu through the user interface of the
JEB disassembler.

IDA was the other software tool that we used to generate
disassembly files [5]. Initially, we checked the decompilation
output of IDA and noticed that the output includes additional
unrelated information, which leads us to use IDAPython plu-
gin provided by IDA.Basically, a python script traverses each
function and saves the assembly instructions.We further used
the command line features of IDA to automatically open each
apk file, run the python script on the target apk, collect the
instructions, and save them to a text file.

Our third disassembler Apktool, also used for generat-
ing the smali files [6]. The processing pipeline started with
decoding theAndroid application by the tool. Then, the smali
directory was recursively traversed. Finally, the decompiled
application classes were collected into a single text file for
each apk stored in separate smali files. Consequently,we gen-
erated a text file for eachAndroid application,which included
the disassembly output of the corresponding application.

Tables 2 and 3 present the number of sequences (assembly
instructions) obtained through JEB, Apktool, and IDA and
the number of files used to obtain the sequences for Dataset
1 and Dataset 2, respectively. The tables also present infor-
mation about the number of sequences obtained in Basic
Block, Method, and Class format and the number of files
used, respectively.

Although we disassembled most Android applications
using the three disassembler tools, the tools could not out-
put the Dalvik assembly codes for a few applications. For
example, out of 600 benign and 787maliciousAndroid appli-
cations in the Dataset 1, we obtained assembly outputs of
600 benign and 785 malicious applications on JEB, 600
benign and 787 malicious applications on Apktool, and 600
benign and 786 malicious applications on IDA Pro. Another
challenge was that each disassembler generated the assem-
bly code in a different size. We used similar number of
sequences from the outputs of each disassembler to allow
a comparative analysis by specifying a maximum value for
the number of sequences used in training and testing. For
instance, we limited our first model, namely the Instruction
as a Sequence Model (ISM), to 200 million sequences (i.e.,
assembly instructions). Consequently, we obtained three
sub-datasets in eachDataset (Dataset 1 andDataset 2) by gen-
erating assembly output of the Android applications through
three different tools. In the following section, we present the
code structures of the Dalvik assembly code and the methods
of implementation.

Themodeling pipeline

Android applications include several components (units)
from a developer’s perspective, such as instructions, basic
blocks, methods, and classes. Those units provide the back-
bone of generating a language model by using Android
application codes. In the present study, we focus on the units
in the Dalvik assembly code obtained from Android appli-
cations, including instructions, basic blocks, methods, and
classes. The overview of the modeling pipeline is presented
in Fig. 1.

The instructions consist of opcode and operands, being
the essential components of the assembly language. They

123

G. Balikcioglu et al.

Ta
bl
e
2

T
he

pr
op
er
tie
s
of

th
e
da
ta
se
t1

M
al
ic
io
us

B
en
ig
n

N
um

be
r
of

fil
es

N
um

be
r
of

se
qu
en
ce
s
(m

ill
io
n)

N
um

be
r
of

fil
es

N
um

be
r
of

Se
qu
en
ce
s
(m

ill
io
n)

JE
B

A
pk

to
ol

ID
A
pr
o

JE
B

A
pk

to
ol

ID
A
pr
o

JE
B

A
pk

to
ol

ID
A
pr
o

JE
B

A
pk

to
ol

ID
A
pr
o

In
st
ru
ct
io
n

73
8

58
5

70
6

20
0

20
0

20
0

59
8

40
9

60
0

20
0

20
0

20
0

B
as
ic
bl
oc
k

78
5

78
7

78
6

85
78

88
59
9

60
0

60
0

90
86

89

M
et
ho
d

78
5

78
7

78
6

12
10

12
.5

60
0

58
8

60
0

12
.5

13
12
.5

C
la
ss

78
5

78
7

78
6

1.
75

1.
50

1.
92

60
0

57
9

60
0

1.
90

2
1.
92

Ta
bl
e
3

T
he

pr
op
er
tie
s
of

th
e
da
ta
se
t2

M
al
ic
io
us

B
en
ig
n

N
um

be
r
of

fil
es

N
um

be
r
of

se
qu
en
ce
s
(m

ill
io
n)

N
um

be
r
of

fil
es

N
um

be
r
of

se
qu
en
ce
s
(m

ill
io
n)

JE
B

A
pk

to
ol

ID
A
pr
o

JE
B

A
pk

to
ol

ID
A
pr
o

JE
B

A
pk

to
ol

ID
A
pr
o

JE
B

A
pk

to
ol

ID
A
pr
o

In
st
ru
ct
io
n

18
84

17
60

19
59

20
0

20
0

20
0

64
4

63
4

64
9

20
0

20
0

20
0

B
as
ic
bl
oc
k

19
85

20
00

19
95

80
78

78
61
7

66
8

68
4

90
90

90

M
et
ho
d

19
85

20
00

19
95

11
.2

10
.7

11
.2

66
7

66
5

66
8

13
13

13

C
la
ss

19
85

20
00

19
95

1.
6

1.
6

1.
6

65
4

65
0

65
7

2
2

2

123

The role of sequence characteristics and disassembling methods

have functionality and meaning interpretable by a machine,
similar to a natural language sentence stating a proposition.
The basic blocks are larger assembly language components
that consist of a group of instructions that come up sequen-
tially. So, basic blocks contain more complex functionality
and meaning compared to instructions. Methods and classes
are also two primary components of the Dalvik assembly
code. A method includes at least one basic block, or usu-
ally more than a single basic block. So, methods are more
complex than instructions and basic blocks. Classes include
methods used to perform similar tasks, including more func-
tionality andmeaning than the constituents. Thus, classes are
the largest semantic component of the assembly language.

Upon building the dataset using JEB, IDA, and Apktool,
we obtained text files, including thewhole decompiled output
of the corresponding apk files. By removing specific content,
such as the comment lines beginning with “#”, we obtained
the dataset of instructions as sequences. Then, we put the
sequential instructions together to create the second dataset
of basic blocks as sequences by separating them from spe-
cific opcodes, such as “jump” and “call,” since they create
branches in the code. To create the third dataset, we sepa-
rated the sequential instructions from the locations where the
methods start and end. The third dataset included sequences
consisting of methods in the assembly language, viz. meth-
ods as sequences. Lastly, we put the sequential instructions
together for the fourth dataset by separating them from the
locations where classes start. The fourth dataset included
sequences consisting of classes in the assembly language,
thus a dataset of classes as sequences

In the present study, we adapted the language modeling
pipeline described in our previous study [37]. In the relevant
work part, we mentioned that researchers use various ML
models and algorithms. Most ML models require feature
extraction and laborious manual preprocessing, which can
be challenging. To avoid these difficulties and save up from
time-consuming preprocessing, we focused on RNNmodels.
RNN and its specialized architectures are the best options
for problems, including sequential data in language model-
ing. Compared to other RNN architectures, the LSTM solves
vanishing and exploding gradient issues better and achieves
better results. Also, in our previous work [37], we worked
with LSTM and achieved outstanding results. Therefore, the
pipeline in this study was also built on the LSTM architec-
ture. The architecture we proposed and used in the present
study consisted of six sequential layers, namely Embedding,
LSTM, Pooling, Dropout, and two Dense Layers at the end.
Also, for each model, we used the same parameter values
with [37]: the dropout rate = 0.2; the number of output nodes
in LSTM layer = 64; the batch size = 128; learning rate =
0.0010000000474974513; the optimizer is Adam [also see
38 for selecting the parameter values]. A major difference
from [37]was thatwe trained themodels for five epochs in the

present study since we observed that our models continued
to learn for a few more epochs. Also, in addition to the ISM
(Instruction as Sequences Model) and the BSM (Blocks as
Sequences Model), we specified new sequence length values
for our new models, namely MSM (Methods as Sequences
Model) and CSM (Classes as Sequences Model). The values
of the sequence length parameter were 15, 40, 500, and 2500
for ISM, BSM, MSM, and CMS, respectively.

In summary, in this section, we reported the code struc-
tures of the Dalvik assembly code, including instructions,
basic blocks, methods, and classes. Next, we presented how
we obtained those structures from the Dalvik assembly code
outputs. Then, we introduced a summary of the language
modeling pipeline used in the present study. We obtained 12
datasets based on three disassembly methods (JEB, IDA, and
Apktool) and four models (ISM, BSM, MSM, and CSM).

Results

In this section, we present the results of the LSTM models
trained on the datasets. We used three datasets (JEB, IDA,
Apktool) for Dataset 1 and Dataset 2 in our ISM experiments
by simply removing the lines irrelevant to the program func-
tionality in the assembly output, such as comment lines and
the lines with blanks.We call this first set of datasets the base
datasets since we did not change the data format. In the Basic
Blocks SequencesModel (BSM) datasets, we performed pre-
processing on the base datasets to change the data format. In
preprocessing, we put the sequential instructions together
by separating them from the basic block endpoints. So, we
obtained the datasets that included the same data but in a
different format. In the second set of datasets, each sequence
consisted of a basic block. In the third set of datasets, we
used the base datasets obtained from the three disassemblers
and performed preprocessing to change the data format as
intended. In the preprocessing phase, we put the instructions
in the same methods together by separating them from the
method’s beginning and endpoints. Thus, we obtained a new
set of datasets that included the same data with the ISM and
BSM but in different formats. Those new datasets included
sequences consisting of methods called MSM. In the last set
of datasets, we worked on the base datasets by performing
preprocessing to change the data format. In the preprocess-
ing, we performed similar operations as in ISM and BSM
by putting the sequential instructions in the same classes
together by separating them from the class beginning points.
In those datasets, each sequence consisted of a class and they
are called CSM. We trained each model on JEB, IDA, and
Apktool datasets using the aforementioned parameter values.
Tables 4 and 5 present the results of the model evaluation for
Dataset 1 and Dataset 2, respectively.

123

G. Balikcioglu et al.

Table 4 Evaluation results of
the models for dataset 1 (TPR:
True Positive rate, FPR: False
Positive Rate, ACC: Accuracy)

TPR (%) FPR (%) ACC (%)
JEB Apk tool IDA Pro JEB Apk tool IDA Pro JEB Apk tool IDA Pro

ISM 67.0 74.7 69.4 32.2 42.1 33.3 67.8 66.8 68.5

BSM 62.2 71.5 66.3 18.7 18.2 20.8 72.0 76.7 72.8

MSM 70.6 80.6 69.7 15.0 6.10 12.4 77.9 87.4 78.7

CSM 72.1 81.6 75.2 11.0 4.90 10.8 81.0 88.7 82.2

Table 5 Evaluation results of
the models for dataset 2 (TPR:
True Positive rate, FPR: False
Positive Rate, ACC: Accuracy)

TPR (%) FPR (%) ACC (%)
JEB Apk tool IDA Pro JEB Apk tool IDA Pro JEB Apk tool IDA Pro

ISM 71.3 70.1 72.1 33.6 32.5 33.2 68.5 68.7 69.1

BSM 78.2 81.9 79.9 28.6 26.1 26.4 73.9 76.4 75.7

MSM 85.0 88.8 85.0 22.7 19.2 22.2 80.4 83.8 80.9

CSM 86.8 91.4 89.7 18.6 16.4 18.5 84.2 86.7 86.1

Evaluation results for dataset 1

While using Dataset 1, we reached the highest True Positive
rate (TPR) of 74,7% for the ISM model when we trained the
model with the code disassembled by Apktool. The outputs
of JEB and IDA Pro achieved TPR of 67.0% and 69.4%,
respectively, in the ISMmodel. After switching the model to
the BSM, TPR for all the tools decreased by around 3-4%.
Nonetheless, Apktool achieved the highest TPR of 71.5%
also in the BSM model. When the MSM model is used, the
TPR of Apktool and JEB increased to 80.6% and 70.6%,
respectively. The TPR of IDA Pro also increased by around
3%, which was a smaller increase compared to the other
two disassemblers. Lastly, we observed the highest TPR
for all disassemblers while using the CSM model. In the
CSM model, Apktool, JEB, and IDA Pro reached the TPR
of 81.6%, 72.1%, and 75.2%, respectively.

On the other hand, when JEB outputs are used, the ISM
model has the minimum False Positive rate (FPR) of 32,2%.
In the ISMmodel, the FPRofApktool and IDAPro are 42.1%
and 33.3%, respectively. When we move to the BSM model,
the FPR rates of all disassemblers drop significantly. Apk-
tool achieved the lowest FPR of 18.2% in the BSM model.
The other two disassemblers, JEB and IDA Pro, reached the
FPR of 18.7% and 20.8% in the BSMmodel. We observed a
continuous reduction in the FPR as we went up to the CSM
from the ISM. The lowest FPRwe observed in theMSMwas
Apktool with 6.1%. Apktool also achieved the lowest FPR of
4.9% in the CSM model. As we observed in the TPR rates,
FPR rates were minimum when we used the CSMmodel for
all three disassemblers.

We observed similar patterns and results for the ACC
values using Dataset 1. In the ISM model, ACC values of
disassemblers were close to each other, while the highest
of the three was IDA Pro with 68.5%. The ACC values of

JEB and IDA Pro increased by around 4-5% whenever we
switched the model from the ISM to the CSM. However,
Apktool achieved the highest ACC values of 76.7%, 87.4%,
and 88.7%, respectively, in the BSM, theMSM, and the CSM
models.

Evaluation results for dataset 2

When we switched to Dataset 2, we observed some improve-
ments and reductions in the TPR, the FPR, and the ACC
values. In the ISMmodel, the TPR values do not change dras-
tically among the disassemblers. IDAPro reached the highest
TPR of 72.1% in the ISM model. We observed continuous
improvements in the TPR values as we went up through the
CSM model. All TPR values increased by around 10-15%
compared to Dataset 1. Apktool reached the highest TPR
values in the BSM, the MSM, and the CSM models with
81.9%, 88.8%, and 91.4%. Also, JEB and IDA Pro achieved
a TPR of 86.8% and 89.7% in the CSM model.

Whenwe look into theFPRvalues,we also sawan increase
in around 8-10% for all the values. In the ISM, FPRvalues are
close, the lowest beingApktoolwith anFPRof 32.5%.Again,
we observed a similar pattern and decrease in the FPR values
as we went up through the CSM model. The FPR values do
not change drastically among disassemblers in all models.
However, Apktool also reached the lowest FPR values in the
BSM, the MSM, and the CSM models. The best FPR value
is 16.4% and achieved with Apktool using the CSM model.

We also observed similar patterns and trends for the ACC
values using Dataset 2. In the ISM model, ACC values of
disassemblers were close, while the highest of the three was
IDA Pro with 69.1%. In all the other models (the BSM, the
MSM, and the CSM), Apktool reached the highest ACC val-
ues of 76.4%, 83.8%, and 86.7%, respectively. However, we
observed a decrease in Apktool’s ACC values compared to

123

The role of sequence characteristics and disassembling methods

Dataset 1. On the other hand, ACC values of JEB and IDA
Pro slightly increased when we switched to Dataset 2. They
achieved their highest values in the CSMmodel. JEB reached
an 84.2% accuracy, whereas IDA Pro achieved 86.1%, which
is significantly close to the ACC value of Apktool.

Discussion

In the present study, we investigated two factors that impact
the ML-based model outputs in classifying benign and mali-
cious code pieces. The first one is the method of parsing the
data into sequences, which shapes the sequence characteris-
tics in the train set and the test set. The second is the methods
of disassembling the code pieces, which eventually gener-
ate data with variation in input representation. This section
presents a discussion of thefindings on those twodimensions.

Sequence characteristics

A significant requirement for using language modeling tech-
niques is the assembly data as input sequences. Since the
disassembly instructions already form sequences, the model
design is straightforward. The assembly instructions are cen-
tral to an Android application that can be reached easily
through decompilation or decoding processes if the source
code is not accessible. Assembly instructions reflect the
functionality of an Android application, including the gram-
matical components that show that the assembly instructions
include meaningful information and patterns. Nevertheless,
the characteristics of the underlying infrastructure of the
input representation have an impact on the performance. A
significant dimension of input characteristics is the unit of
the data. Besides the instructions, assembly code includes
structures essential from a developer’s perspective, such as
basic block, method, and class. A basic block is the small-
est unit that consists of more than one assembly instruction
that is functionally related. A method includes more than
one basic block, so the method contains more assembly
instructions that are functionally related to performing amore
extensive function than a basic block. On the other hand, a
class includes several methods together for a bigger purpose.
Tables 6 and 7 show the average number of tokens in our
models and the accuracy values reported in Tables 4 and 5,
repeated for comparison.

The findings reveal that the accuracy increases aswemove
from the instruction unit to the class unit. There can be two
possible explanations for that, related to each other. As we
go from instruction to class, we take assembly instructions
in semantic relationships. The semantic relations lead the
data to have patterns that allow generating language mod-
els. The other explanation is the increase in sequence length
while moving from instruction unit to class unit. As shown

Table 6 Average number of tokens and accuracy values for the models
using Dataset 1

Average token ACC (%)
JEB Apktool IDA pro JEB Apktool IDA pro

ISM 5.44 5.52 5.97 67.8 66.8 68.5

BSM 12.2 19 14.9 72.0 76.7 72.8

MSM 71.1 117 81.2 77.9 87.4 78.7

CSM 450 676 505 81.0 88.7 82.2

Table 7 Average number of tokens and accuracy values for the models
using dataset 2

Average token ACC (%)
JEB Apktool IDA pro JEB Apktool IDA pro

ISM 5.49 7.23 6.50 68.5 68.7 69.1

BSM 12.32 17.92 14.95 73.9 76.4 75.7

MSM 72.81 103.33 82.52 80.4 83.8 80.9

CSM 457.95 624.74 515.88 84.2 86.7 86.1

in Tables 6 and 7, the average number of tokens in the units
increases from ISM to CSM, in line with increased accuracy.
So, the model accuracy increases in line with the increase in
sequence length. It is feasible since the increase in sequence
length helps the model cover more tokens in one sequence,
leading to better learning from the data.

Themethods of disassembling

We built the datasets using three disassemblers, namely
JEB, IDA, and Apktool, to disassemble the same apk files.
The tools generated data with syntactic differences due to
their different method of disassembling. Those differences
in input representations resulted in different accuracy values,
as reported in Tables 4 and 5. The results obtained through
testing the models and some statistical information about the
datasets used in the training and testing process are shown in
Tables 6 and 7.

The results revealed a minor difference between JEB and
IDA in the accuracy values. The output of IDA included a
slightly larger number of tokens in sequences, leading to
slightly better accuracy than JEB. As discussed in the pre-
vious section, longer sequences cover more data, leading to
better learning. So, the number of tokens might have caused
the slight accuracy difference between IDA and JEB. On the
other hand, the data collected from the Apktool revealed sig-
nificant differences in accuracy compared to the others. The
output of the Apktool includes the path of the corresponding
method besides the method’s name. Table 8 presents sample
instructions from each data source. The table consists of two
lines of codes (instructions) from each of the disassembling
tools.We present an example of the “invoke” command since

123

G. Balikcioglu et al.

Table 8 Sample instructions
from each data source JEB invoke-static AppEntry->access$100()AppEntry

JEB invoke-static InstallOfferPingUtils->PingAndExit(Activity, String, Z, Z, Z)V, v0,

v1, v3, v3, v2

IDA Pro invoke-static {}, <ref AppEntry.access100()AppEntryaccess100@L>

IDA Pro invoke-static {v0, v1, v3, v3, v2}, <void InstallOfferPingUtils.PingAndExit(ref, ref,
boolean, boolean, boolean) InstallOfferPingUtils_PingAndExit@VLLZZZ>

Apktool invoke-static {}, Lair/com/adobe/connectpro/AppEntry;

->access$100()Lair/com/adobe/connectpro/AppEntry;

Apktool invoke-static {v0, v1, v3, v3, v2}, Lcom/adobe/air/InstallOfferPingUtils;

->PingAndExit(Landroid/app/Activity;Ljava/lang/String;ZZZ)V

the difference among the disassemblers is mainly observed
in that command.

The presence of the path information likely facilitated the
classification of the data as malicious and benign. Moreover,
the Apktool data consists of longer sequences due to the path
information included in the Dalvik assembly code output.
Those characteristics of theApktoolmight have impacted the
accuracy rates positively. Accordingly, the path information
might be an indispensable factor that helps to represent the
characteristics of an assembly code coming from one of the
classes, malicious or benign.

Although a complete comparison to the available work in
the literature is not possible due to differences among tech-
nical infrastructures, below, we present a partial comparison
of the findings in the literature. Most of the studies which
employed language modeling for malware detection used
the Dalvik assembly code from Android applications. For
example, in [29], [31], and [32], Apktool was used to collect
the assembly data. In [30], Baksmali was used, whereas in
[33], Androguard was used. In the present study, we pro-
posed that the input data characteristics are an important
factor that might affect the model accuracy. Our findings
revealed that the choice of the disassembler requires more
careful attention in malicious code detection. Most previous
studies present one side of the coin by making operational
assumptions in parameter values and preprocessing the input
data, thus presenting a partial view of a larger picture. For
instance, in [30], [31], and [33], researchers investigated the
effect of the sequence length parameter on the success of
the LSTM language models. While [30] and [31] focused on
the data consisting of opcode sequences, and [33] worked
on the data, including system call sequences. The accuracy
rates improved by increasing the value of the sequence length
parameter up to a certain point, suggesting that the sequence
length may be influenced by other factors, such as the struc-
ture of the input units in assembly code.

Conclusion

In the past decade, malware detection has gained signif-
icant importance due to the rapid growth of information
and communication technologies (ICT). The development
of polymorphic and metamorphic malware has brought the
need for developing novel antimalware methods since tradi-
tional detection methods have lost their effectiveness against
continuously changing features of the malicious content and
zero-day attacks. Deep neural networks have been proposed
as a good candidate for malware detection since they provide
adaptability through learning.

We investigated Android assembly code obtained through
three disassembler tools in the present study: JEB, IDA,
and Apktool. The assembly data obtained from those tools
showed differences in their representation as input data, and
those differences led to minor differences in model accu-
racy between JEB and IDA data. We also investigated the
sequence unit in the input data (viz. instruction, basic block,
method, and class). Overall, the datasets obtained by the
Apktool revealed better results compared to the other two dis-
assemblers. This performance improvement in the Apktool
dataset may be explained by the presence of the path infor-
mation of each function and class in the Apktool. Another
likely reason is that the sequences in the Apktool dataset
are considerably longer than the sequences in the other two
datasets; this gave Apktool an advantage in accuracy over
JEB and IDA. Future research should clarify the source of
the higher accuracy in the Apktool over the others since, in
their recent form, our datasets and the models do not present
a clear distinction among the dataset characteristics. Also, an
investigation of the overall size of the datasets on the accuracy
values, besides the characteristics of the input data should be
carried out. Moreover, for the RNN model implementation
we employedLSTM.There is also another architecture called
Gated Recurrent Unit cell (GRU). Even GRU is said to have

123

The role of sequence characteristics and disassembling methods

less expressibility than LSTM in some cases, it may have
some advantages such as faster training. As a future work, a
comparison study between LSTM and GRU should also be
carried out to see the effects on accuracy values.

Acknowledgements Not applicable.

Funding Not applicable.

Availability of data and materials We used open datasets such as the
2017 pack of the AndMal2017 dataset [35], AndMal2020 dataset [45],
and the VirusShare website [36] in our study. Additionally, we utilized
android apk decompiler tools such as JEB and IDA Pro, commercial
tools, and the Apktool, an open-source software tool.

Declarations

Conflict of interest The authors declare that they have no competing
interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. StatcounterGlobalStats. [Online].Available: https://gs.statcounter.
com/os-market-share/mobile/worldwide/2020, Accessed on: Aug
(2021)

2. SecureList. [Online]. Available: https://securelist.com/mobile-
malware-evolution-2020/101029/, Accessed on: Aug (2021)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neu-
ralComput.9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.
1997.9.8.1735

4. PNF Software. [Online]. Available: https://www.pnfsoftware.com/
jeb/, Accessed on: Aug (2021)

5. Hex-Rays (IDA Pro). [Online]. Available: https://hex-rays.com/
ida-pro/, Accessed on: Aug (2021)

6. Apktool. [Online]. Available: https://ibotpeaches.github.io/
Apktool/, Accessed on: Aug (2021)

7. Sharma, T., Rattan, D.:Malicious application detection in android–
a systematic literature review. Comput. Sci. Rev. (2021). https://
doi.org/10.1016/j.cosrev.2021.100373

8. Pan, Y., Ge, X., Fang, C., Fan, Y.: A systematic literature review of
android malware detection using static analysis. IEEE Access 8,
116363–116379 (2020). https://doi.org/10.1109/ACCESS.2020.
3002842

9. Zhang, P., Cheng, S., Lou, S., Jiang, F.: A novel Android malware
detection approach using operand sequences. In: Proceedings of
3rd international conference security smart cities, industrial control

system communication (SSIC), Oct. (2018), pp. 1–5, https://doi.
org/10.1109/SSIC.2018.8556755

10. Li, Y., Ma, Y., Chen, M., Dai, Z.: A detecting method for
malicious mobile application based on incremental SVM. In:
Proceedings 3rd IEEE international conference computer commu-
nication (ICCC), Dec. (2017), pp. 1246–1250. https://doi.org/10.
1109/CompComm.2017.8322742

11. Chen, T., Mao, Q., Yang, Y., Lv, M., Zhu, J.: TinyDroid: a
lightweight and efficient model for Android malware detection
and classification. Mob. Inf. Syst. (2018). https://doi.org/10.1155/
2018/4157156

12. Wang, Li, G., Chi, Y., Zhang, J., Yang, T., Liu,Q.: Androidmalware
detection based on convolutional neural networks. In: Proceedings
3rd international conference computer science applied engineering.
(CSAE), 2019, https://doi.org/10.1145/3331453.3361306

13. Zhu, H.-J., Jiang, T.-H., Ma, B., You, Z.-H., Shi, W.-L., Cheng, L.:
HEMD: a highly efficient random forest-based malware detection
framework for Android. Neural Comput. Appl. 30(11), 3353–3361
(2018). https://doi.org/10.1007/s00521-017-2914-y

14. Xiao, Wang, Z., Li, Q., Xia, S., Jiang, Y.: Back-propagation neu-
ral network on Markov chains from system call sequences: a
new approach for detecting Android malware with system call
sequences. In: IET Inf Secur, vol. 11, no. 1, pp. 8-15, Jan. (2017).
https://doi.org/10.1049/iet-ifs.2015.0211

15. Cai, H., Meng, N., Ryder, B., Yao, D.: DroidCat: effective Android
malware detection and categorization via app-level profiling. IEEE
Trans. Inf. Forensics Secur. 14(6), 1455–1470 (2019). https://doi.
org/10.1109/TIFS.2018.2879302

16. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: Context-
aware, adaptive, and scalable Android malware detection through
online learning. IEEE Trans. Emerg. Top. Comput. Intell. 1(3),
157–175 (2017). https://doi.org/10.1109/TETCI.2017.2699220

17. Sikder, K., Aksu, H., Uluagac, A. S.: 6thSense: a context-aware
sensor-based attack detector for smart devices. In: 26th USENIX
Secur. Symp., Vancouver, BC, Canada, Aug. (2017), isbn:978-1-
931971-40-9

18. Lou, S., Cheng, S., Huang, J., Jiang, F.: TFDroid: android mal-
ware detection by topics and sensitive data flows using machine
learning techniques. In: Proceedings IEEE 2nd international con-
ference information computer technology (ICICT), Kahului, HI,
USA, Mar. (2019), pp. 30-36, https://doi.org/10.1109/INFOCT.
2019.8711179

19. Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E.,
Ross, G., Stringhini, G.: MaMaDroid: detecting android malware
by building Markov chains of behavioral models. In: Proc. Netw.
Distrib. Syst. Secur.Symp., (2017), pp. 1-34, https://doi.org/10.
1145/3313391

20. McLaughlin, N., Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer,
S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., Joon Ahn, G.: Deep
android malware detection. In: Proceedings of the Seventh ACM
on conference on data and application security and privacy, (pp.
301-308), (2017), Association for Computing Machinery, https://
doi.org/10.1145/3029806.3029823

21. Parker, C., McDonald, J., Johnsten, T., Benton, R.: Android mal-
ware detection using step-size based multi-layered vector space
models. In: 2018 13th international conference on malicious and
unwanted software (MALWARE), (pp. 1-10), (2018), https://doi.
org/10.1109/MALWARE.2018.8659372

22. Li, D., Zhao, L., Cheng, Q., Lu, N., Shi, W.: Opcode sequence
analysis of Android malware by a convolutional neural network.
Concurr. Comput. Practice Exp. (2019). https://doi.org/10.1002/
cpe.5308

23. Ravi, V., Kp, S., Poornachandran, P., Kumar S, S.: Detecting
android malware using Long Short-term memory (LSTM). J Intell
Fuzzy Syst (2018), 34: 1277-1288. https://doi.org/10.3233/JIFS-
169424

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://gs.statcounter.com/os-market-share/mobile/worldwide/2020
https://gs.statcounter.com/os-market-share/mobile/worldwide/2020
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.pnfsoftware.com/jeb/
https://www.pnfsoftware.com/jeb/
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1016/j.cosrev.2021.100373
https://doi.org/10.1016/j.cosrev.2021.100373
https://doi.org/10.1109/ACCESS.2020.3002842
https://doi.org/10.1109/ACCESS.2020.3002842
https://doi.org/10.1109/SSIC.2018.8556755
https://doi.org/10.1109/SSIC.2018.8556755
https://doi.org/10.1109/CompComm.2017.8322742
https://doi.org/10.1109/CompComm.2017.8322742
https://doi.org/10.1155/2018/4157156
https://doi.org/10.1155/2018/4157156
https://doi.org/10.1145/3331453.3361306
https://doi.org/10.1007/s00521-017-2914-y
https://doi.org/10.1049/iet-ifs.2015.0211
https://doi.org/10.1109/TIFS.2018.2879302
https://doi.org/10.1109/TIFS.2018.2879302
https://doi.org/10.1109/TETCI.2017.2699220
https://doi.org/10.1109/INFOCT.2019.8711179
https://doi.org/10.1109/INFOCT.2019.8711179
https://doi.org/10.1145/3313391
https://doi.org/10.1145/3313391
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1109/MALWARE.2018.8659372
https://doi.org/10.1109/MALWARE.2018.8659372
https://doi.org/10.1002/cpe.5308
https://doi.org/10.1002/cpe.5308
https://doi.org/10.3233/JIFS-169424
https://doi.org/10.3233/JIFS-169424

G. Balikcioglu et al.

24. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer:
automatic framework for android malware detection using deep
learning. Digit Investig, (2018), 24: S48-S59. https://doi.org/10.
1016/j.diin.2018.01.007

25. Wu, Z., Chen, X., Lee, S.U.J.: Identifying latent android malware
from application’s description using LSTM. In: Proceedings of
international conference on information, system and convergence
applications (2019) (pp. 40-42)

26. Ma, Z., Ge, H., Wang, Z., Liu, Y., Liu, X: Droidetec: android
malware detection and malicious code localization through deep
learning. In arXiv:2002.03594 (2020). Corpus ID: 211069601

27. Xie, W., Xu, S., Zou, S., Xi, J.: A system-call behavior language
system for malware detection using a sensitivity-based LSTM
model. In: Proceedings of the 2020 3rd international conference on
computer science and software engineering (pp. 112-118). Associ-
ation for Computing Machinery, (2020), https://doi.org/10.1145/
3403746.3403914

28. Mateless, Roni, Rejabek, Daniel, Margalit, Oded, Moskovitch,
Robert: Decompiled APK based malicious code classification.
Future Gener. Comput. Syst. 110, 135–147 (2020). https://doi.org/
10.1016/j.future.2020.03.052

29. Xu, K., Li, Y., Deng, R., Chen, K.: DeepRefiner: multi-layer
android malware detection system applying deep neural networks.
In: IEEE European symposium on security and privacy (EuroS
P) (pp. 473-487), (2018), https://doi.org/10.1109/EuroSP.2018.
00040

30. Yan, J., Qi, Y., Rao, Q.: LSTM-based hierarchical denoising
network for android malware detection. Secur. Commun. Netw.
(2018). https://doi.org/10.1155/2018/5249190

31. Chen, Y., Hsu, C., Kuo Chung, K.: A novel preprocessing method
for solving long sequence problem in android malware detec-
tion. In: Twelfth international conference on Ubi-media computing
(Ubi-Media), (pp. 12-17), (2019)

32. Hota, A., Irolla, P.: Deep neural networks for android malware
detection. In Proceedings of the 5th international conference on
information systems security and privacy, ICISSP 2019, Prague,
CzechRepublic, February 23-25, (2019) (pp. 657-663). SciTePress

33. Pektaş, Abdurrahman, Acarman, Tankut: Learning to detect
Android malware via opcode sequences. Neurocomputing 396,
599–608 (2020). https://doi.org/10.1016/j.neucom.2018.09.102

34. Amin, M., Tanveer, T., Tehseen, M., Khan, M., Khan, F., Anwar,
S.: Static malware detection and attribution in android bytecode
through an end-to-end deep system. Future Gener. Comput. Syst.
(2019), https://doi.org/10.1016/j.future.2019.07.070

35. UNB University of New Brunswich. [Online]. Available: https://
www.unb.ca/cic/datasets/andmal2017.html, Accessed on: Aug
(2021)

36. VirusShare. [Online]. Available: https://virusshare.com, Accessed
on: Aug (2021)

37. Acarturk, C., Sirlanci, M., Balikcioglu, P.G., Demirci, D., Sahin,
N., Kucuk, O.A.: Malicious code detection: run trace output anal-
ysis by LSTM. IEEE Access 9, 9625–9635 (2021). https://doi.org/
10.1109/ACCESS.2021.3049200

38. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization.
arXiv:1412.6980, [Online]. Available: https://arxiv.org/abs/1412.
6980, (2014)

39. Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu,
H.: SAMADroid: a novel 3-level hybrid malware detection model
for android operating system. IEEE Access, 6 (2018) 4321-4339,
https://doi.org/10.1109/ACCESS.2018.2792941

40. Fan, M., Liu, J., Luo, X., Chen, K., Tian, Z., Zheng, Q., Liu, T.:
Android malware familial classification and representative sample
selection via frequent subgraph analysis. IEEETrans. Inf. Forensics
Secur. 13(8), 1890–1905 (2018). https://doi.org/10.1109/TIFS.
2018.2806891

41. Zhang, L., Thing, V.L.L., Cheng, Y.: A scalable and extensible
framework for android malware detection and family attribu-
tion. Comput. Secur. 80, 120–133 (2019). https://doi.org/10.1016/
j.cose.2018.10.001

42. Mantoo, B.A., Khurana, S.S.: Static, Dynamic and intrinsic fea-
tures based android malware detection using machine learning. In:
Proceedings of ICRIC, 2019, Springer, (2020), pp. 31-45, https://
doi.org/10.1007/978-3-030-29407-6_4

43. AndroGuard. [Online]. Available: https://github.com/androguard/
androguard, Accessed on: Aug (2021)

44. Smali. [Online]. Available: https://github.com/JesusFreke/smali,
Accessed on: Aug (2021)

45. UNB University of New Brunswich. [Online]. Available: https://
www.unb.ca/cic/datasets/andmal2020.html, Accessed on: June
(2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.diin.2018.01.007
https://doi.org/10.1016/j.diin.2018.01.007
http://arxiv.org/abs/2002.03594
https://doi.org/10.1145/3403746.3403914
https://doi.org/10.1145/3403746.3403914
https://doi.org/10.1016/j.future.2020.03.052
https://doi.org/10.1016/j.future.2020.03.052
https://doi.org/10.1109/EuroSP.2018.00040
https://doi.org/10.1109/EuroSP.2018.00040
https://doi.org/10.1155/2018/5249190
https://doi.org/10.1016/j.neucom.2018.09.102
https://doi.org/10.1016/j.future.2019.07.070
https://www.unb.ca/cic/datasets/andmal2017.html
https://www.unb.ca/cic/datasets/andmal2017.html
https://virusshare.com
https://doi.org/10.1109/ACCESS.2021.3049200
https://doi.org/10.1109/ACCESS.2021.3049200
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ACCESS.2018.2792941
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1016/j.cose.2018.10.001
https://doi.org/10.1016/j.cose.2018.10.001
https://doi.org/10.1007/978-3-030-29407-6_4
https://doi.org/10.1007/978-3-030-29407-6_4
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://github.com/JesusFreke/smali
https://www.unb.ca/cic/datasets/andmal2020.html
https://www.unb.ca/cic/datasets/andmal2020.html

	Malicious code detection in android: the role of sequence characteristics and disassembling methods
	Abstract
	Introduction
	Relevant work
	Methodology
	The dataset
	The modeling pipeline

	Results
	Evaluation results for dataset 1
	Evaluation results for dataset 2

	Discussion
	Sequence characteristics
	The methods of disassembling

	Conclusion
	Acknowledgements
	References

