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Abstract

For Erdős space, E, let us define a topology, τclopen, which is gener-

ated by clopen subsets of E. A. V. Arhangel’skii and J. Van Mill asked

whether the topology τclopen is compatible with the group structure on

E. In this paper, we give a negative answer for this question.
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1 Introduction and Terminology

We let Q, R and R+ denote the sets of rational numbers, real numbers and
positive real numbers, respectively. N+ denotes the set of positive natural
numbers, i.e., N+ = {1, 2, 3, . . .}. Let us consider the Banach space ℓ2 ⊆ RN+

.
This space consists of all sequences x = (x1, x2, x3, . . .) ∈ RN+

such that the
series

∑∞

k=1
|xk|

2 is convergent. The topology on ℓ2 is generated by the norm

||x|| =
√

∑∞

k=1
|xk|2. The Erdős space E is a subspace of ℓ2 such that E

consists of the all sequences, the all components of which are rational, i.e.,
E = QN+

∩ ℓ2. The topology τ on E is the subspace topology inherited from
ℓ2.

In this paper our main space is (E, τ). What we mean with an open ball
B(x, r) is the set B(x, r) = {y ∈ E : ||x− y|| < r} where r > 0. If we say "O
is an open set", we mean that O ⊆ E and O ∈ τ . Let O be a subset of E.
We denote the interior of O by int(O), i.e., int(O) = {x ∈ O : ∃Vx ∈ τ(x ∈
Vx ⊆ O)}.

We need the following basic facts. These can be found in any proper
book.
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Theorem 1.1. ([1] Theorem 1.3.12) Let G be a topological group and e the
identity element of G. If U is an open subset of G and e ∈ U , there is an
open subset V of G such that e ∈ V and V + V ⊆ U .

Theorem 1.2. ([3] p. 17, [2] p. 220) The only bounded clopen subset of
(E, τ) is the emptyset.

2 The solution of the problem

Let (E, τ) be the topological space as in the above. Let B be the set of all
clopen subsets of E, i.e., B = {U ∈ τ : E − U ∈ τ}. Take B as the base
for a new topology τclopen on E. Is the topology τclopen compatible with the
group structure on E ? In [2], Question 8.9, A. V. Arhangel’skii and J. Van
Mill asked this question. The following theorem states that the answer of
the question is negative.

Theorem 2.1. The topology τclopen is not compatible with the group structure
on E.

Proof. (Outline of this proof: First we define a clopen subset Aα,β and using
this set we define a clopen subset O of E with 0 ∈ O. After that, we show
that V + V * O for any clopen subset V of E with 0 ∈ V .)

Fix any α ∈ R+ and β ∈ R+ with the condition that α2 /∈ Q and β /∈ Q.
Take any x = (x1, x2, x3, . . .) ∈ E. If {m ∈ N+ :

√
∑m

k=1
|xk|2 > α} 6=

∅, then let us say that mx,α exists and define mx,α = min{m ∈ N+ :
√

∑m

k=1
|xk|2 > α}. If {m ∈ N+ :

√
∑m

k=1
|xk|2 > α} = ∅, then let us

say that mx,α does not exist.
Now, define

Eα = {x ∈ E : mx,α does not exist}

and define

Aα,β = {x = (x1, x2, . . .) ∈ E : mx,α exists and |xl| < β for all l > mx,α}∪Eα.

Claim 1. The open ball B(0, α) is a subset of Aα,β. (Here, 0 =
(0, 0, 0, . . .) is the identity element of the topological group (E, τ)).

Proof of Claim 1. Take any x = (x1, x2, x3, . . .) ∈ B(0, α). Then,
for all m ∈ N+,

√

∑m

k=1
|xk|2 ≤ ||x|| < α. Thus, mx,α does not exist. So,

x ∈ Eα ⊆ Aα,β. �

Claim 2. Aα,β is a closed subset of E, i.e., E−Aα,β ∈ τ .
Proof of Claim 2.

To see E−Aα,β is open, take and fix any z = (z1, z2, z3, . . .) ∈ E−O. So,

mz,α exists, α <
√

∑mz,α

k=1
|zk|2 and there exists an l0 > mz,α with |zl0 | ≥ β

2



because z /∈ Aα,β. Then, |zl0 | > β, because zl0 ∈ Q and β /∈ Q. Thus, we can

define r0 = min{|zl0 | −β,
√

∑mz,α

k=1
|zk|2−α} and take the open ball B(z, r0).

Take any y = (y1, y2, y3, . . .) ∈ B(z, r0).
√

∑mz,α

k=1
|zk|2−

√

∑mz,α

k=1
|yk|2 ≤

√

∑mz,α

k=1
|zk − yk|2 ≤

√

∑∞

k=1
|zk − yk|2 =

||z − y|| < r ≤
√

∑mz,α

k=1
|zk|2 − α. So,

√

∑mz,α

k=1
|zk|2 −

√

∑mz,α

k=1
|yk|2 <

√

∑mz,α

k=1
|zk|2 − α. Thus, α <

∑mz,α

k=1
|yk|

2.
So, my,α exists and because of the definition of my,α, my,α ≤ mz,α.

Thus, l0 ≥ mz,α ≥ my,α and |zl0 | − |yl0| ≤ |zl0 − yl0| =
√

|zl0 − yl0|
2 ≤

√

∑∞

k=1
|zk − yk|2 = ||z−y|| < r ≤ |zl0 |−β. So, |zl0 |−|yl0 | < |zl0 |−β. Thus,

β < |yl0|.
Because my,α exists and there exists l0 > my,α such that β < |yl0|, y /∈

Aα,β . Therefore z ∈ B(z, r0) ⊆ E − Aα,β. Hence, Aα,β is a closed subset of
E. �

Claim 3. Aα,β is an open subset of E, i.e., Aα,β ∈ τ .
Proof of Claim 3. Take and fix any x = (x1, x2, x3, . . .) ∈ Aα,β. There

are two cases: mx,α does not exist or mx,α exists.
Case 1: mx,α does not exist.
Then, {m ∈ N+ :

√
∑m

k=1
|xk|2 > α} = ∅. So,

√
∑m

k=1
|xk|2 ≤ α for all

m ∈ N+. For this case either ||x|| =
√

∑∞

k=1
|xk|2 < α or ||x|| = α.

If ||x|| < α, then from Claim 1, x ∈ B(0, α) ⊆ Aα,β.

Now, suppose ||x|| = α. Say r1 =
√

α2 + β2 − α. Then, to see the open
ball B(x, r1) is a subset of Aα,β, take any y = (y1, y2, y3, . . .) ∈ B(x, r1).
If my,α does not exist, then y ∈ Eα ⊆ Aα,β. If my,α exists, then aiming
for a contradiction, suppose there exists an l > my,α and |yl| ≥ β. Then,

||y|| ≤ ||y−x||+||x|| < r1+||x|| <
√

α2 + β2−α+α =
√

α2 + β2. Therefore,

||y|| <
√

α2 + β2. So, α2 + β2 > ||y||2 =
∑∞

k=1
|yk|

2 ≥ |yl|
2 +

∑my,α

k=1
|yk|

2 >
β2 + α2. Thus, we get the contradiction α2 + β2 > β2 + α2. From the
contradiction, we get |yl| ≤ β. Becuse |yl| ∈ Q, β /∈ Q and l > my,α is
arbitrary, |yl| < β for all l > my,α. Hence, y ∈ Aα,β. Thus, x ∈ int(Aα,β).

Case 2: mx,α exists.
Because ||x|| =

√
∑∞

k=1
|xk|2 < ∞, for ε = β

2
there exists an l0 ∈ N+ such

that
√

∑∞

k=l0
|xk|2 < ε = β

2
. Thus,

√

√

√

√

∞
∑

k=l0

|xk|2 <
β

2
. (1)

Subclaim 1. For any y = (y1, y2, . . .) ∈ E if ||y − x|| < β

2
, then |yl| < β

for all l ≥ l0.
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Proof of Subclaim 1.

−
√

∑∞

k=l0
|xk|2+

√

∑∞

k=l0
|yk|2 ≤

√

∑∞

k=l0
|xk − yk|2 ≤

√

∑∞

k=1
|xk − yk|2

= ||x − y|| < β

2
. So, −

√

∑∞

k=l0
|xk|2 +

√

∑∞

k=l0
|yk|2 < β

2
. Thus, from (1),

√

∑∞

k=l0
|yk|2 < β

2
+

√

∑∞

k=l0
|xk|2 = β. Therefore, |yl| ≤

√

∑∞

k=l0
|yk|2 < β

where l ≥ l0. So, |yl| < β for all l ≥ l0. The proof of Subclaim 1 is completed.
Now, say

hx = min{
∣

∣β − |xi|
∣

∣ : i ≤ l0}

and

ax =

{

α−
√

∑mx,α−1

k=1
|xk|2 : mx,α > 1

1 : mx,α = 1

(We don’t need to case ax = 1. To get a well defined r, we write it. Note that

if mx,α > 1, then α−
√

∑mx,α−1

k=1
|xk|2 > 0, because

√

∑mx,α−1

k=1
|xk|2 ≤ α, so,

∑mx,α−1

k=1
|xk|

2 ≤ α2. Because α2 /∈ Q and
∑mx,α−1

k=1
|xk|

2 /∈ Q,
∑mx,α−1

k=1
|xk|

2 <

α2. Thus,
√

∑mx,α−1

k=1
|xk|2 < α.)

Now, define

r = min{

√

√

√

√

mx,α
∑

k=1

|xk|2 − α,
β

2
, hx, ax}.

To see the open ball B(x, r) is a subset of Aα,β, take any y = (y1, y2, y3, . . .) ∈
B(x, r).

√

∑mx,α

k=1
|xk|2 −

√

∑mx,α

k=1
|yk|2 ≤

√

∑mx,α

k=1
|xk − yk|2 ≤

√

∑∞

k=1
|xk − yk|2

= ||x− y|| < r ≤
√

∑mx,α

k=1
|xk|2 − α. Thus,

√

∑mx,α

k=1
|xk|2 −

√

∑mx,α

k=1
|yk|2 <

√

∑mx,α

k=1
|xk|2 − α and so,

√

∑mx,α

k=1
|yk|2 > α. Therefore, my,α exists and

my,α ≤ mx,α.
Now, we will see that my,α = mx,α. If mx,α = 1, then my,α = mx,α because

my,α ≤ mx,α. If mx,α > 1, take any n < mx,α. Then, −
√

∑n

k=1
|xk|2 +

√
∑n

k=1
|yk|2 ≤

√
∑n

k=1
|xk − yk|2 ≤

√
∑∞

k=1
|xk − yk|2 = ||x − y|| < r ≤

ax ≤ α−
√

∑mx,α−1

k=1
|xk|2.

So, −
√

∑n

k=1
|xk|2 +

√
∑n

k=1
|yk|2 < α −

√

∑mx,α−1

k=1
|xk|2. Therefore

√

∑n

k=1
|yk|2 < α +

√

∑n

k=1
|xk|2 −

√

∑mx,α−1

k=1
|xk|2. Because n ≤ mx,α − 1,

√
∑n

k=1
|xk|2−

√

∑mx,α−1

k=1
|xk|2 ≤ 0. Thus,

√
∑n

k=1
|yk|2 < α <

√

∑my,α

k=1
|yk|2.

So, n < my,α. Hence, n < my,α for all n < mx,α. Therefore, my,α ≥ mx,α.
So, my,α = mx,α.

4



Fix any arbitrary l > my,α = mx,α. We will see |yl| < β. If l ≥ l0, then
because ||x− y|| < r ≤ β

2
, from Subclaim 1, |yl| < β. If l0 ≥ l > my,α = mx,α

where l0 > my,α, then −|xl|+ |yl| ≤ |xl − yl| ≤ ||x− y|| < r ≤
∣

∣β − |xl|
∣

∣. On
the other hand, |xl| < β because x ∈ Aα,β, mx,α exists and l > mx,α. Thus,
−|xl|+ |yl| <

∣

∣β − |xl|
∣

∣ = β − |xl|. Hence, |yl| < β.
For Case 2, because my,α exists and |yl| < β for all l > my,α, y ∈ Aα,β.

Therefore, B(x, r) ⊆ Aα,β and so, x ∈ int(Aα,β).
Therefore, Aα,β is an open subset of E. �

Let (αn) be a strictly increasing sequence of positive real numbers (α1 <
α2 < α3 < . . .) such that (αn) → ∞ and α2

n /∈ Q for all n ∈ N+. And let (βn)
be a strictly decreasing sequence of positive real numbers such that (βn) → 0
and βn /∈ Q for all n ∈ N+. Then, we can give the following claim.

Claim 4. Let O =
⋂

n∈N+ Aαn,βn
. Then, the identity element 0 ∈ O and

O is a clopen subset of E, i.e., O ∈ τ and E− O ∈ τ .
Proof of Claim 4. From Claim 1, 0 ∈ Aαn,βn

for all n ∈ N+. Thus,
0 ∈ O.

From Claim 2, each Aαn,βn
is closed. Thus, O =

⋂

n∈N+ Aαn,βn
is a closed

in (E, τ).
To see O is open in (E, τ), take and fix any x ∈ O. Because (αn) → ∞,

there is an n0 ∈ N+ such that ||x|| < αn0
. Thus, x ∈ B(0, αn0

). Define
W = (

⋂

n≤n0
Aαn,βn

)∩(B(0, αn0
)). So, clearly W is open, and x ∈ W because

x ∈ B(0, αn0
) and x ∈

⋂

n∈N+ Aαn,βn
. Now, fix any m ∈ N+. We will see

that W ⊆ Aαm,βm
. If m ≤ n0, then W ⊆

⋂

n≤n0
Aαn,βn

⊆ Aαm,βm
. Suppose

m ≥ n0. Because (αn) is strictly increasing sequence, αm ≥ αn0
. Then,

W ⊆ B(0, αn0
) ⊆ B(0, αm). Thus, W ⊆ B(0, αm) ⊆ Aαm,βm

because we
know that B(0, αm) ⊆ Aαm,βm

from Claim 1. Thus, W ⊆ O =
⋂

n∈N+ Aαn,βn

because m is an arbitrary element of N+. Hence, x ∈ W ⊆ O and W is open.
Therefore, O is an open subset of E. �

Claim 5. If V is any open unbounded subset of (E, τ) such that 0 =
(0, 0, 0, . . .) ∈ V , then V + V * O.

Proof of Claim 5. Fix any open unbounded subset V of E such that
the identity element 0 ∈ V . Then, there exists an r∗ > 0 such that the
open ball B(0, r∗) is a subset of V . We can find an n∗ ∈ N+ such that
0 < 1

n∗
< r∗. Because (αn) → ∞ and (βn) → 0, there exist m1, m2 ∈ N+ such

that 0 < βm1
< 1

n∗
and n∗ < αm2

. Say m∗ = max{m1, m2}. Then, βm∗ < 1

n∗

and n∗ < αm∗ . Because V is unbounded, there exists an x ∈ V such that
αm∗ < ||x||. Thus, there exists an m ∈ N+ such that αm∗ <

√

∑m

k=1
|xk|2.

Therefore, mx,αm∗
exists. Now, fix any l∗ > mx,αm∗

and a rational number
q such that 1

βm∗

< q < r∗. Let el
∗

= (e1, e2, . . .) ∈ E such that el∗ = 1 and
ek = 0 where k 6= l∗.

Case 1: xl∗ ≥ 0.
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Say y = q.el
∗

. So, yl∗ = q and yk = 0 for all k 6= l∗ where y =
(y1, y2, y3, . . .). Then, y ∈ B(0, r∗) because ||y − 0|| = ||y|| = q < r∗. So,

y ∈ V . Now, define z = x + y. Thus, z ∈ V + V . Also
√

∑mx,α
m∗

k=1
|zk|2 =

√

∑mx,α
m∗

k=1
|xk|2 > αm∗ . So, mz,αm∗

exists and from definition of mz,αm∗
,

mz,αm∗
≤ mx,αm∗

≤ l∗. Thus, |zl∗| = |xl∗ + q| = xl∗ + q > 1

βm∗

. So,

z /∈ Aαm∗ ,βm∗
. Therefore, z /∈ O. Hence z ∈ V + V and z /∈ O.

Case 2: xl∗ < 0.
Say y = −q.el

∗

. Define z = x+y, in a similar manner to Case 1, z ∈ V +V
and z /∈ O.

Therefore V + V * O. �
From Claim 4 and Claim 5, there is a clopen subset O of (E, τ) with 0 ∈ O

such that V +V * O if V is any open unbounded subset of (E, τ) with 0 ∈ V .
From Theorem 1.2, if V is any clopen subset of (E, τ) with 0 ∈ V , then V is
unbounded. Therefore, O ∈ τclopen with 0 ∈ O such that V + V * O for any
V ∈ τclopen with 0 ∈ V . Hence, from Theorem 1.1, the topology τclopen is not
compatible with the group structure on E.

In Claim 5 which is in the proof above, for the clopen set O, actually we
showed that if K is unbounded subset of E, then K + B(0, ε) * O for any
ε > 0.
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