A solution of a problem about Erdős space

Süleyman Önal ${ }^{(a)}$, Servet Soyarslan*

November 30, 2021
a. Middle East Technical University, Department of Mathematics, 06531 Ankara, Turkey.

Abstract

For Erdős space, \mathfrak{E}, let us define a topology, $\tau_{\text {clopen }}$, which is generated by clopen subsets of \mathfrak{E}. A. V. Arhangel'skii and J. Van Mill asked whether the topology $\tau_{\text {clopen }}$ is compatible with the group structure on \mathfrak{E}. In this paper, we give a negative answer for this question.

Keywords: Erdős space, topological groups, Sequence spaces.
MSC: 22A99, 22A45, 46A45

1 Introduction and Terminology

We let \mathbb{Q}, \mathbb{R} and \mathbb{R}^{+}denote the sets of rational numbers, real numbers and positive real numbers, respectively. \mathbb{N}^{+}denotes the set of positive natural numbers, i.e., $\mathbb{N}^{+}=\{1,2,3, \ldots\}$. Let us consider the Banach space $\ell_{2} \subseteq \mathbb{R}^{\mathbb{N}^{+}}$. This space consists of all sequences $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \mathbb{R}^{\mathbb{N}^{+}}$such that the series $\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}$ is convergent. The topology on ℓ_{2} is generated by the norm $\|x\|=\sqrt{\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}}$. The Erdős space \mathfrak{E} is a subspace of ℓ_{2} such that \mathfrak{E} consists of the all sequences, the all components of which are rational, i.e., $\mathfrak{E}=\mathbb{Q}^{\mathbb{N}^{+}} \cap \ell_{2}$. The topology τ on \mathfrak{E} is the subspace topology inherited from ℓ.

In this paper our main space is (\mathfrak{E}, τ). What we mean with an open ball $B(x, r)$ is the set $B(x, r)=\{y \in \mathfrak{E}:\|x-y\|<r\}$ where $r>0$. If we say " O is an open set", we mean that $O \subseteq \mathfrak{E}$ and $O \in \tau$. Let O be a subset of \mathfrak{E}. We denote the interior of O by $\operatorname{int}(O)$, i.e., $\operatorname{int}(O)=\left\{x \in O: \exists V_{x} \in \tau(x \in\right.$ $\left.\left.V_{x} \subseteq O\right)\right\}$.

We need the following basic facts. These can be found in any proper book.

[^0]Theorem 1.1. ([1] Theorem 1.3.12) Let G be a topological group and e the identity element of G. If U is an open subset of G and $e \in U$, there is an open subset V of G such that $e \in V$ and $V+V \subseteq U$.

Theorem 1.2. (娄 p. 17, 国 p. 220) The only bounded clopen subset of (\mathfrak{E}, τ) is the emptyset.

2 The solution of the problem

Let (\mathfrak{E}, τ) be the topological space as in the above. Let \mathcal{B} be the set of all clopen subsets of \mathfrak{E}, i.e., $\mathcal{B}=\{U \in \tau: \mathfrak{E}-U \in \tau\}$. Take \mathcal{B} as the base for a new topology $\tau_{\text {clopen }}$ on \mathfrak{E}. Is the topology $\tau_{\text {clopen }}$ compatible with the group structure on \mathfrak{E} ? In [2], Question 8.9, A. V. Arhangel'skii and J. Van Mill asked this question. The following theorem states that the answer of the question is negative.

Theorem 2.1. The topology $\tau_{\text {clopen }}$ is not compatible with the group structure on \mathfrak{E}.

Proof. (Outline of this proof: First we define a clopen subset $A_{\alpha, \beta}$ and using this set we define a clopen subset O of \mathfrak{E} with $0 \in O$. After that, we show that $V+V \nsubseteq O$ for any clopen subset V of \mathfrak{E} with $0 \in V$.)

Fix any $\alpha \in \mathbb{R}^{+}$and $\beta \in \mathbb{R}^{+}$with the condition that $\alpha^{2} \notin \mathbb{Q}$ and $\beta \notin \mathbb{Q}$.
Take any $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \mathfrak{E}$. If $\left\{m \in \mathbb{N}^{+}: \sqrt{\sum_{k=1}^{m}\left|x_{k}\right|^{2}}>\alpha\right\} \neq$ \emptyset, then let us say that $m_{x, \alpha}$ exists and define $m_{x, \alpha}=\min \left\{m \in \mathbb{N}^{+}\right.$: $\left.\sqrt{\sum_{k=1}^{m}\left|x_{k}\right|^{2}}>\alpha\right\}$. If $\left\{m \in \mathbb{N}^{+}: \sqrt{\sum_{k=1}^{m}\left|x_{k}\right|^{2}}>\alpha\right\}=\emptyset$, then let us say that $m_{x, \alpha}$ does not exist.

Now, define

$$
\mathfrak{E}_{\alpha}=\left\{x \in \mathfrak{E}: m_{x, \alpha} \text { does not exist }\right\}
$$

and define $A_{\alpha, \beta}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in \mathfrak{E}: m_{x, \alpha}\right.$ exists and $\left|x_{l}\right|<\beta$ for all $\left.l>m_{x, \alpha}\right\} \cup \mathfrak{E}_{\alpha}$.

Claim 1. The open ball $B(0, \alpha)$ is a subset of $A_{\alpha, \beta}$. (Here, $0=$ $(0,0,0, \ldots)$ is the identity element of the topological group $(\mathfrak{E}, \tau))$.

Proof of Claim 1. Take any $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in B(0, \alpha)$. Then, for all $m \in \mathbb{N}^{+}, \sqrt{\sum_{k=1}^{m}\left|x_{k}\right|^{2}} \leq\|x\|<\alpha$. Thus, $m_{x, \alpha}$ does not exist. So, $x \in \mathfrak{E}_{\alpha} \subseteq A_{\alpha, \beta}$.

Claim 2. $A_{\alpha, \beta}$ is a closed subset of \mathfrak{E}, i.e., $\mathfrak{E}-A_{\alpha, \beta} \in \tau$.
Proof of Claim 2.
To see $\mathfrak{E}-A_{\alpha, \beta}$ is open, take and fix any $z=\left(z_{1}, z_{2}, z_{3}, \ldots\right) \in \mathfrak{E}-O$. So, $m_{z, \alpha}$ exists, $\alpha<\sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|z_{k}\right|^{2}}$ and there exists an $l_{0}>m_{z, \alpha}$ with $\left|z_{l_{0}}\right| \geq \beta$
because $z \notin A_{\alpha, \beta}$. Then, $\left|z_{l_{0}}\right|>\beta$, because $z_{l_{0}} \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$. Thus, we can define $r_{0}=\min \left\{\left|z_{l_{0}}\right|-\beta, \sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|z_{k}\right|^{2}}-\alpha\right\}$ and take the open ball $B\left(z, r_{0}\right)$. Take any $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in B\left(z, r_{0}\right)$.
$\sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|z_{k}\right|^{2}}-\sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|y_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|z_{k}-y_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{\infty}\left|z_{k}-y_{k}\right|^{2}}=$ $\|z-y\|<r \leq \sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|z_{k}\right|^{2}}-\alpha$. So, $\sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|z_{k}\right|^{2}}-\sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|y_{k}\right|^{2}}<$ $\sqrt{\sum_{k=1}^{m_{z, \alpha}}\left|z_{k}\right|^{2}}-\alpha$. Thus, $\alpha<\sum_{k=1}^{m_{z, \alpha}}\left|y_{k}\right|^{2}$.

So, $m_{y, \alpha}$ exists and because of the definition of $m_{y, \alpha}, m_{y, \alpha} \leq m_{z, \alpha}$.
Thus, $l_{0} \geq m_{z, \alpha} \geq m_{y, \alpha}$ and $\left|z_{l_{0}}\right|-\left|y_{l_{0}}\right| \leq\left|z_{l_{0}}-y_{l_{0}}\right|=\sqrt{\left|z_{l_{0}}-y_{l_{0}}\right|^{2}} \leq$ $\sqrt{\sum_{k=1}^{\infty}\left|z_{k}-y_{k}\right|^{2}}=||z-y||<r \leq\left|z_{l_{0}}\right|-\beta$. So, $\left|z_{l_{0}}\right|-\left|y_{l_{0}}\right|<\left|z_{l_{0}}\right|-\beta$. Thus, $\beta<\left|y_{l_{0}}\right|$.

Because $m_{y, \alpha}$ exists and there exists $l_{0}>m_{y, \alpha}$ such that $\beta<\left|y_{l_{0}}\right|, y \notin$ $A_{\alpha, \beta}$. Therefore $z \in B\left(z, r_{0}\right) \subseteq \mathfrak{E}-A_{\alpha, \beta}$. Hence, $A_{\alpha, \beta}$ is a closed subset of E.

Claim 3. $A_{\alpha, \beta}$ is an open subset of \mathfrak{E}, i.e., $A_{\alpha, \beta} \in \tau$.
Proof of Claim 3. Take and fix any $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in A_{\alpha, \beta}$. There are two cases: $m_{x, \alpha}$ does not exist or $m_{x, \alpha}$ exists.

Case 1: $m_{x, \alpha}$ does not exist.
Then, $\left\{m \in \mathbb{N}^{+}: \sqrt{\sum_{k=1}^{m}\left|x_{k}\right|^{2}}>\alpha\right\}=\emptyset$. So, $\sqrt{\sum_{k=1}^{m}\left|x_{k}\right|^{2}} \leq \alpha$ for all $m \in \mathbb{N}^{+}$. For this case either $\|x\|=\sqrt{\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}}<\alpha$ or $\|x\|=\alpha$.

If $\|x\|<\alpha$, then from Claim $1, x \in B(0, \alpha) \subseteq A_{\alpha, \beta}$.
Now, suppose $\|x\|=\alpha$. Say $r_{1}=\sqrt{\alpha^{2}+\beta^{2}}-\alpha$. Then, to see the open ball $B\left(x, r_{1}\right)$ is a subset of $A_{\alpha, \beta}$, take any $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in B\left(x, r_{1}\right)$. If $m_{y, \alpha}$ does not exist, then $y \in \mathfrak{E}_{\alpha} \subseteq A_{\alpha, \beta}$. If $m_{y, \alpha}$ exists, then aiming for a contradiction, suppose there exists an $l>m_{y, \alpha}$ and $\left|y_{l}\right| \geq \beta$. Then, $\|y\| \leq\|y-x\|+\|x\|<r_{1}+\|x\|<\sqrt{\alpha^{2}+\beta^{2}}-\alpha+\alpha=\sqrt{\alpha^{2}+\beta^{2}}$. Therefore, $\|y\|<\sqrt{\alpha^{2}+\beta^{2}}$. So, $\alpha^{2}+\beta^{2}>\|y\|^{2}=\sum_{k=1}^{\infty}\left|y_{k}\right|^{2} \geq\left|y_{l}\right|^{2}+\sum_{k=1}^{m_{y, \alpha}}\left|y_{k}\right|^{2}>$ $\beta^{2}+\alpha^{2}$. Thus, we get the contradiction $\alpha^{2}+\beta^{2}>\beta^{2}+\alpha^{2}$. From the contradiction, we get $\left|y_{l}\right| \leq \beta$. Becuse $\left|y_{l}\right| \in \mathbb{Q}, \beta \notin \mathbb{Q}$ and $l>m_{y, \alpha}$ is arbitrary, $\left|y_{l}\right|<\beta$ for all $l>m_{y, \alpha}$. Hence, $y \in A_{\alpha, \beta}$. Thus, $x \in \operatorname{int}\left(A_{\alpha, \beta}\right)$.

Case 2: $m_{x, \alpha}$ exists.
Because $\|x\|=\sqrt{\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}}<\infty$, for $\varepsilon=\frac{\beta}{2}$ there exists an $l_{0} \in \mathbb{N}^{+}$such that $\sqrt{\sum_{k=l_{0}}^{\infty}\left|x_{k}\right|^{2}}<\varepsilon=\frac{\beta}{2}$. Thus,

$$
\begin{equation*}
\sqrt{\sum_{k=l_{0}}^{\infty}\left|x_{k}\right|^{2}}<\frac{\beta}{2} \tag{1}
\end{equation*}
$$

Subclaim 1. For any $y=\left(y_{1}, y_{2}, \ldots\right) \in \mathfrak{E}$ if $\| y-x| |<\frac{\beta}{2}$, then $\left|y_{l}\right|<\beta$ for all $l \geq l_{0}$.

Proof of Subclaim 1.
$-\sqrt{\sum_{k=l_{0}}^{\infty}\left|x_{k}\right|^{2}}+\sqrt{\sum_{k=l_{0}}^{\infty}\left|y_{k}\right|^{2}} \leq \sqrt{\sum_{k=l_{0}}^{\infty}\left|x_{k}-y_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}}$
$=\|x-y\|<\frac{\beta}{2}$. So, $-\sqrt{\sum_{k=l_{0}}^{\infty}\left|x_{k}\right|^{2}}+\sqrt{\sum_{k=l_{0}}^{\infty}\left|y_{k}\right|^{2}}<\frac{\beta}{2}$. Thus, from (1), $\sqrt{\sum_{k=l_{0}}^{\infty}\left|y_{k}\right|^{2}}<\frac{\beta}{2}+\sqrt{\sum_{k=l_{0}}^{\infty}\left|x_{k}\right|^{2}}=\beta$. Therefore, $\left|y_{l}\right| \leq \sqrt{\sum_{k=l_{0}}^{\infty}\left|y_{k}\right|^{2}}<\beta$ where $l \geq l_{0}$. So, $\left|y_{l}\right|<\beta$ for all $l \geq l_{0}$. The proof of Subclaim 1 is completed.

Now, say

$$
h_{x}=\min \left\{\left|\beta-\left|x_{i}\right|\right|: i \leq l_{0}\right\}
$$

and

$$
a_{x}= \begin{cases}\alpha-\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}} & : m_{x, \alpha}>1 \\ 1 & : m_{x, \alpha}=1\end{cases}
$$

(We don't need to case $a_{x}=1$. To get a well defined r, we write it. Note that if $m_{x, \alpha}>1$, then $\alpha-\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}}>0$, because $\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}} \leq \alpha$, so, $\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2} \leq \alpha^{2}$. Because $\alpha^{2} \notin \mathbb{Q}$ and $\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2} \notin \mathbb{Q}, \sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}<$ α^{2}. Thus, $\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}}<\alpha$.)

Now, define

$$
r=\min \left\{\sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|x_{k}\right|^{2}}-\alpha, \frac{\beta}{2}, h_{x}, a_{x}\right\} .
$$

To see the open ball $B(x, r)$ is a subset of $A_{\alpha, \beta}$, take any $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in$ $B(x, r)$.
$\sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|x_{k}\right|^{2}}-\sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|y_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|x_{k}-y_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}}$ $=\|x-y\|<r \leq \sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|x_{k}\right|^{2}}-\alpha$. Thus, $\sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|x_{k}\right|^{2}}-\sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|y_{k}\right|^{2}}<$ $\sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|x_{k}\right|^{2}}-\alpha$ and so, $\sqrt{\sum_{k=1}^{m_{x, \alpha}}\left|y_{k}\right|^{2}}>\alpha$. Therefore, $m_{y, \alpha}$ exists and $m_{y, \alpha} \leq m_{x, \alpha}$.

Now, we will see that $m_{y, \alpha}=m_{x, \alpha}$. If $m_{x, \alpha}=1$, then $m_{y, \alpha}=m_{x, \alpha}$ because $m_{y, \alpha} \leq m_{x, \alpha}$. If $m_{x, \alpha}>1$, take any $n<m_{x, \alpha}$. Then, $-\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}+$ $\sqrt{\sum_{k=1}^{n}\left|y_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}}=\|x-y\|<r \leq$ $a_{x} \leq \alpha-\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}}$.

So, $-\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}+\sqrt{\sum_{k=1}^{n}\left|y_{k}\right|^{2}}<\alpha-\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}}$. Therefore $\sqrt{\sum_{k=1}^{n}\left|y_{k}\right|^{2}}<\alpha+\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}-\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}}$. Because $n \leq m_{x, \alpha}-1$, $\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}-\sqrt{\sum_{k=1}^{m_{x, \alpha}-1}\left|x_{k}\right|^{2}} \leq 0$. Thus, $\sqrt{\sum_{k=1}^{n}\left|y_{k}\right|^{2}}<\alpha<\sqrt{\sum_{k=1}^{m_{y, \alpha}}\left|y_{k}\right|^{2}}$. So, $n<m_{y, \alpha}$. Hence, $n<m_{y, \alpha}$ for all $n<m_{x, \alpha}$. Therefore, $m_{y, \alpha} \geq m_{x, \alpha}$. So, $m_{y, \alpha}=m_{x, \alpha}$.

Fix any arbitrary $l>m_{y, \alpha}=m_{x, \alpha}$. We will see $\left|y_{l}\right|<\beta$. If $l \geq l_{0}$, then because $\|x-y\|<r \leq \frac{\beta}{2}$, from Subclaim 1, $\left|y_{l}\right|<\beta$. If $l_{0} \geq l>m_{y, \alpha}=m_{x, \alpha}$ where $l_{0}>m_{y, \alpha}$, then $-\left|x_{l}\right|+\left|y_{l}\right| \leq\left|x_{l}-y_{l}\right| \leq\|x-y\|<r \leq\left|\beta-\left|x_{l}\right|\right|$. On the other hand, $\left|x_{l}\right|<\beta$ because $x \in A_{\alpha, \beta}, m_{x, \alpha}$ exists and $l>m_{x, \alpha}$. Thus, $-\left|x_{l}\right|+\left|y_{l}\right|<\left|\beta-\left|x_{l}\right|\right|=\beta-\left|x_{l}\right|$. Hence, $\left|y_{l}\right|<\beta$.

For Case 2, because $m_{y, \alpha}$ exists and $\left|y_{l}\right|<\beta$ for all $l>m_{y, \alpha}, y \in A_{\alpha, \beta}$. Therefore, $B(x, r) \subseteq A_{\alpha, \beta}$ and so, $x \in \operatorname{int}\left(A_{\alpha, \beta}\right)$.

Therefore, $A_{\alpha, \beta}$ is an open subset of \mathfrak{E}.
Let $\left(\alpha_{n}\right)$ be a strictly increasing sequence of positive real numbers ($\alpha_{1}<$ $\alpha_{2}<\alpha_{3}<\ldots$) such that $\left(\alpha_{n}\right) \rightarrow \infty$ and $\alpha_{n}^{2} \notin \mathbb{Q}$ for all $n \in \mathbb{N}^{+}$. And let $\left(\beta_{n}\right)$ be a strictly decreasing sequence of positive real numbers such that $\left(\beta_{n}\right) \rightarrow 0$ and $\beta_{n} \notin \mathbb{Q}$ for all $n \in \mathbb{N}^{+}$. Then, we can give the following claim.

Claim 4. Let $O=\bigcap_{n \in \mathbb{N}^{+}} A_{\alpha_{n}, \beta_{n}}$. Then, the identity element $0 \in O$ and O is a clopen subset of \mathfrak{E}, i.e., $O \in \tau$ and $\mathfrak{E}-O \in \tau$.

Proof of Claim 4. From Claim $1,0 \in A_{\alpha_{n}, \beta_{n}}$ for all $n \in \mathbb{N}^{+}$. Thus, $0 \in O$.

From Claim 2, each $A_{\alpha_{n}, \beta_{n}}$ is closed. Thus, $O=\bigcap_{n \in \mathbb{N}^{+}} A_{\alpha_{n}, \beta_{n}}$ is a closed in (\mathfrak{E}, τ).

To see O is open in (\mathfrak{E}, τ), take and fix any $x \in O$. Because $\left(\alpha_{n}\right) \rightarrow \infty$, there is an $n_{0} \in \mathbb{N}^{+}$such that $\|x\|<\alpha_{n_{0}}$. Thus, $x \in B\left(0, \alpha_{n_{0}}\right)$. Define $W=\left(\bigcap_{n \leq n_{0}} A_{\alpha_{n}, \beta_{n}}\right) \cap\left(B\left(0, \alpha_{n_{0}}\right)\right)$. So, clearly W is open, and $x \in W$ because $x \in B\left(0, \alpha_{n_{0}}\right)$ and $x \in \bigcap_{n \in \mathbb{N}^{+}} A_{\alpha_{n}, \beta_{n}}$. Now, fix any $m \in \mathbb{N}^{+}$. We will see that $W \subseteq A_{\alpha_{m}, \beta_{m}}$. If $m \leq n_{0}$, then $W \subseteq \bigcap_{n \leq n_{0}} A_{\alpha_{n}, \beta_{n}} \subseteq A_{\alpha_{m}, \beta_{m}}$. Suppose $m \geq n_{0}$. Because $\left(\alpha_{n}\right)$ is strictly increasing sequence, $\alpha_{m} \geq \alpha_{n_{0}}$. Then, $W \subseteq B\left(0, \alpha_{n_{0}}\right) \subseteq B\left(0, \alpha_{m}\right)$. Thus, $W \subseteq B\left(0, \alpha_{m}\right) \subseteq A_{\alpha_{m}, \beta_{m}}$ because we know that $B\left(0, \alpha_{m}\right) \subseteq A_{\alpha_{m}, \beta_{m}}$ from Claim 1. Thus, $W \subseteq O=\bigcap_{n \in \mathbb{N}^{+}} A_{\alpha_{n}, \beta_{n}}$ because m is an arbitrary element of \mathbb{N}^{+}. Hence, $x \in W \subseteq O$ and W is open. Therefore, O is an open subset of \mathfrak{E}.

Claim 5. If V is any open unbounded subset of (\mathfrak{E}, τ) such that $0=$ $(0,0,0, \ldots) \in V$, then $V+V \nsubseteq O$.

Proof of Claim 5. Fix any open unbounded subset V of \mathfrak{E} such that the identity element $0 \in V$. Then, there exists an $r^{*}>0$ such that the open ball $B\left(0, r^{*}\right)$ is a subset of V. We can find an $n^{*} \in \mathbb{N}^{+}$such that $0<\frac{1}{n^{*}}<r^{*}$. Because $\left(\alpha_{n}\right) \rightarrow \infty$ and $\left(\beta_{n}\right) \rightarrow 0$, there exist $m_{1}, m_{2} \in \mathbb{N}^{+}$such that $0<\beta_{m_{1}}<\frac{1}{n^{*}}$ and $n^{*}<\alpha_{m_{2}}$. Say $m^{*}=\max \left\{m_{1}, m_{2}\right\}$. Then, $\beta_{m^{*}}<\frac{1}{n^{*}}$ and $n^{*}<\alpha_{m^{*}}$. Because V is unbounded, there exists an $x \in V$ such that $\alpha_{m^{*}}<\|x\|$. Thus, there exists an $m \in \mathbb{N}^{+}$such that $\alpha_{m^{*}}<\sqrt{\sum_{k=1}^{m}\left|x_{k}\right|^{2}}$. Therefore, $m_{x, \alpha_{m^{*}}}$ exists. Now, fix any $l^{*}>m_{x, \alpha_{m^{*}}}$ and a rational number q such that $\frac{1}{\beta_{m^{*}}}<q<r^{*}$. Let $e^{l^{*}}=\left(e_{1}, e_{2}, \ldots\right) \in \mathfrak{E}$ such that $e_{l^{*}}=1$ and $e_{k}=0$ where $k \neq l^{*}$.

Case 1: $x_{l^{*}} \geq 0$.

Say $y=q . e^{l^{*}}$. So, $y_{l^{*}}=q$ and $y_{k}=0$ for all $k \neq l^{*}$ where $y=$ $\left(y_{1}, y_{2}, y_{3}, \ldots\right)$. Then, $y \in B\left(0, r^{*}\right)$ because $\|y-0\|=\|y\|=q<r^{*}$. So, $y \in V$. Now, define $z=x+y$. Thus, $z \in V+V$. Also $\sqrt{\sum_{k=1}^{m_{x, \alpha_{m}}}\left|z_{k}\right|^{2}}=$ $\sqrt{\sum_{k=1}^{m_{x, \alpha_{m}}}\left|x_{k}\right|^{2}}>\alpha_{m^{*}}$. So, $m_{z, \alpha_{m^{*}}}$ exists and from definition of $m_{z, \alpha_{m^{*}}}$, $m_{z, \alpha_{m^{*}}} \leq m_{x, \alpha_{m^{*}}} \leq l^{*}$. Thus, $\left|z_{l^{*}}\right|=\left|x_{l^{*}}+q\right|=x_{l^{*}}+q>\frac{1}{\beta_{m^{*}}}$. So, $z \notin A_{\alpha_{m^{*}}, \beta_{m^{*}}}$. Therefore, $z \notin O$. Hence $z \in V+V$ and $z \notin O$.

Case 2: $x_{l^{*}}<0$.
Say $y=-q . e^{l^{*}}$. Define $z=x+y$, in a similar manner to Case $1, z \in V+V$ and $z \notin O$.

Therefore $V+V \nsubseteq O$.
From Claim 4 and Claim 5, there is a clopen subset O of (\mathfrak{E}, τ) with $0 \in O$ such that $V+V \nsubseteq O$ if V is any open unbounded subset of (\mathfrak{E}, τ) with $0 \in V$. From Theorem 1.2, if V is any clopen subset of (\mathfrak{E}, τ) with $0 \in V$, then V is unbounded. Therefore, $O \in \tau_{\text {clopen }}$ with $0 \in O$ such that $V+V \nsubseteq O$ for any $V \in \tau_{\text {clopen }}$ with $0 \in V$. Hence, from Theorem 1.1, the topology $\tau_{\text {clopen }}$ is not compatible with the group structure on \mathfrak{E}.

In Claim 5 which is in the proof above, for the clopen set O, actually we showed that if K is unbounded subset of \mathfrak{E}, then $K+B(0, \varepsilon) \nsubseteq O$ for any $\varepsilon>0$.

References

[1] Arhangel'skii, Alexander and Tkachenko, Mikhail, Topological Groups and Related Structures, Atlantis Press, World Scientific (2008).
[2] Arhangel'skii, A.V. and Van Mill, J, Some aspects of dimension theory for topological groups, Indagationes Mathematicae, 29,(1), 202-225, 2018, Elsevier.
[3] Ryszard Engelking, Dimension theory, North-Holland Publishing Company Amsterdam (1978).

[^0]: *Corresponding author.
 E-mail addresses: osul@metu.edu.tr (S. Önal), servet.soyarslan@gmail.com (S. Soyarslan).

