A solution of a problem about Erdős space

Süleyman $Onal^{(a)}$, Servet Soyarslan^{*}

November 30, 2021

a. Middle East Technical University, Department of Mathematics, 06531 Ankara, Turkey.

Abstract

For Erdős space, \mathfrak{E} , let us define a topology, τ_{clopen} , which is generated by clopen subsets of \mathfrak{E} . A. V. Arhangel'skii and J. Van Mill asked whether the topology τ_{clopen} is compatible with the group structure on \mathfrak{E} . In this paper, we give a negative answer for this question.

Keywords: Erdős space, topological groups, Sequence spaces.MSC: 22A99, 22A45, 46A45

1 Introduction and Terminology

We let \mathbb{Q} , \mathbb{R} and \mathbb{R}^+ denote the sets of rational numbers, real numbers and positive real numbers, respectively. \mathbb{N}^+ denotes the set of positive natural numbers, i.e., $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$. Let us consider the Banach space $\ell_2 \subseteq \mathbb{R}^{\mathbb{N}^+}$. This space consists of all sequences $x = (x_1, x_2, x_3, \ldots) \in \mathbb{R}^{\mathbb{N}^+}$ such that the series $\sum_{k=1}^{\infty} |x_k|^2$ is convergent. The topology on ℓ_2 is generated by the norm $||x|| = \sqrt{\sum_{k=1}^{\infty} |x_k|^2}$. The Erdős space \mathfrak{E} is a subspace of ℓ_2 such that \mathfrak{E} consists of the all sequences, the all components of which are rational, i.e., $\mathfrak{E} = \mathbb{Q}^{\mathbb{N}^+} \cap \ell_2$. The topology τ on \mathfrak{E} is the subspace topology inherited from ℓ_2 .

In this paper our main space is (\mathfrak{E}, τ) . What we mean with an open ball B(x, r) is the set $B(x, r) = \{y \in \mathfrak{E} : ||x - y|| < r\}$ where r > 0. If we say "O is an open set", we mean that $O \subseteq \mathfrak{E}$ and $O \in \tau$. Let O be a subset of \mathfrak{E} . We denote the *interior* of O by int(O), i.e., $int(O) = \{x \in O : \exists V_x \in \tau (x \in V_x \subseteq O)\}$.

We need the following basic facts. These can be found in any proper book.

^{*}Corresponding author.

E-mail addresses: osul@metu.edu.tr (S. Önal), servet.soyarslan@gmail.com (S. Soyarslan).

Theorem 1.1. ([1] Theorem 1.3.12) Let G be a topological group and e the identity element of G. If U is an open subset of G and $e \in U$, there is an open subset V of G such that $e \in V$ and $V + V \subseteq U$.

Theorem 1.2. ([3] p. 17, [2] p. 220) The only bounded clopen subset of (\mathfrak{E}, τ) is the emptyset.

2 The solution of the problem

Let (\mathfrak{E}, τ) be the topological space as in the above. Let \mathcal{B} be the set of all clopen subsets of \mathfrak{E} , i.e., $\mathcal{B} = \{U \in \tau : \mathfrak{E} - U \in \tau\}$. Take \mathcal{B} as the base for a new topology τ_{clopen} on \mathfrak{E} . Is the topology τ_{clopen} compatible with the group structure on \mathfrak{E} ? In [2], Question 8.9, A. V. Arhangel'skii and J. Van Mill asked this question. The following theorem states that the answer of the question is negative.

Theorem 2.1. The topology τ_{clopen} is not compatible with the group structure on \mathfrak{E} .

Proof. (Outline of this proof: First we define a clopen subset $A_{\alpha,\beta}$ and using this set we define a clopen subset O of \mathfrak{E} with $0 \in O$. After that, we show that $V + V \not\subseteq O$ for any clopen subset V of \mathfrak{E} with $0 \in V$.)

Fix any $\alpha \in \mathbb{R}^+$ and $\beta \in \mathbb{R}^+$ with the condition that $\alpha^2 \notin \mathbb{Q}$ and $\beta \notin \mathbb{Q}$. Take any $x = (x_1, x_2, x_3, \ldots) \in \mathfrak{E}$. If $\{m \in \mathbb{N}^+ : \sqrt{\sum_{k=1}^m |x_k|^2} > \alpha\} \neq \emptyset$, then let us say that $m_{x,\alpha}$ exists and define $m_{x,\alpha} = \min\{m \in \mathbb{N}^+ : \sqrt{\sum_{k=1}^m |x_k|^2} > \alpha\}$. If $\{m \in \mathbb{N}^+ : \sqrt{\sum_{k=1}^m |x_k|^2} > \alpha\} = \emptyset$, then let us say that $m_{x,\alpha}$ does not exist.

Now, define

$$\mathfrak{E}_{\alpha} = \{ x \in \mathfrak{E} : m_{x,\alpha} \text{ does not exist} \}$$

and define

$$A_{\alpha,\beta} = \{x = (x_1, x_2, \ldots) \in \mathfrak{E} : m_{x,\alpha} \text{ exists and } |x_l| < \beta \text{ for all } l > m_{x,\alpha}\} \cup \mathfrak{E}_{\alpha}$$

Claim 1. The open ball $B(0,\alpha)$ is a subset of $A_{\alpha,\beta}$. (Here, $0 = (0,0,0,\ldots)$ is the identity element of the topological group (\mathfrak{E},τ)).

Proof of Claim 1. Take any $x = (x_1, x_2, x_3, \ldots) \in B(0, \alpha)$. Then, for all $m \in \mathbb{N}^+$, $\sqrt{\sum_{k=1}^m |x_k|^2} \leq ||x|| < \alpha$. Thus, $m_{x,\alpha}$ does not exist. So, $x \in \mathfrak{E}_{\alpha} \subseteq A_{\alpha,\beta}$. \Box

Claim 2. $A_{\alpha,\beta}$ is a closed subset of \mathfrak{E} , i.e., $\mathfrak{E} - A_{\alpha,\beta} \in \tau$. Proof of Claim 2.

To see $\mathfrak{E} - A_{\alpha,\beta}$ is open, take and fix any $z = (z_1, z_2, z_3, \ldots) \in \mathfrak{E} - O$. So, $m_{z,\alpha}$ exists, $\alpha < \sqrt{\sum_{k=1}^{m_{z,\alpha}} |z_k|^2}$ and there exists an $l_0 > m_{z,\alpha}$ with $|z_{l_0}| \ge \beta$ because $z \notin A_{\alpha,\beta}$. Then, $|z_{l_0}| > \beta$, because $z_{l_0} \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$. Thus, we can define $r_0 = \min\{|z_{l_0}| - \beta, \sqrt{\sum_{k=1}^{m_{z,\alpha}} |z_k|^2} - \alpha\}$ and take the open ball $B(z, r_0)$. Take any $y = (y_1, y_2, y_3, \ldots) \in B(z, r_0).$

$$\sqrt{\sum_{k=1}^{m_{z,\alpha}} |z_k|^2} - \sqrt{\sum_{k=1}^{m_{z,\alpha}} |y_k|^2} \le \sqrt{\sum_{k=1}^{m_{z,\alpha}} |z_k - y_k|^2} \le \sqrt{\sum_{k=1}^{\infty} |z_k - y_k|^2} =$$

$$||z - y|| < r \le \sqrt{\sum_{k=1}^{m_{z,\alpha}} |z_k|^2} - \alpha. \quad \text{So, } \sqrt{\sum_{k=1}^{m_{z,\alpha}} |z_k|^2} - \sqrt{\sum_{k=1}^{m_{z,\alpha}} |y_k|^2} <$$

$$\sqrt{\sum_{k=1}^{m_{z,\alpha}} |z_k|^2} - \alpha. \quad \text{Thus, } \alpha < \sum_{k=1}^{m_{z,\alpha}} |y_k|^2.$$

So, $m_{y,\alpha}$ exists and because of the definition of $m_{y,\alpha}$, $m_{y,\alpha} \leq m_{z,\alpha}$. Thus, $l_0 \ge m_{z,\alpha} \ge m_{y,\alpha}$ and $|z_{l_0}| - |y_{l_0}| \le |z_{l_0} - y_{l_0}| = \sqrt{|z_{l_0} - y_{l_0}|^2} \le 1$ $\sqrt{\sum_{k=1}^{\infty} |z_k - y_k|^2} = ||z - y|| < r \le |z_{l_0}| - \beta$. So, $|z_{l_0}| - |y_{l_0}| < |z_{l_0}| - \beta$. Thus, $\beta < |y_{l_0}|.$

Because $m_{y,\alpha}$ exists and there exists $l_0 > m_{y,\alpha}$ such that $\beta < |y_{l_0}|, y \notin$ $A_{\alpha,\beta}$. Therefore $z \in B(z,r_0) \subseteq \mathfrak{E} - A_{\alpha,\beta}$. Hence, $A_{\alpha,\beta}$ is a closed subset of €. □

Claim 3. $A_{\alpha,\beta}$ is an open subset of \mathfrak{E} , i.e., $A_{\alpha,\beta} \in \tau$.

Proof of Claim 3. Take and fix any $x = (x_1, x_2, x_3, \ldots) \in A_{\alpha,\beta}$. There are two cases: $m_{x,\alpha}$ does not exist or $m_{x,\alpha}$ exists.

Case 1: $m_{x,\alpha}$ does not exist. Then, $\{m \in \mathbb{N}^+ : \sqrt{\sum_{k=1}^m |x_k|^2} > \alpha\} = \emptyset$. So, $\sqrt{\sum_{k=1}^m |x_k|^2} \le \alpha$ for all $m \in \mathbb{N}^+$. For this case either $||x|| = \sqrt{\sum_{k=1}^\infty |x_k|^2} < \alpha$ or $||x|| = \alpha$.

If $||x|| < \alpha$, then from Claim 1, $x \in B(0, \alpha) \subseteq A_{\alpha,\beta}$.

Now, suppose $||x|| = \alpha$. Say $r_1 = \sqrt{\alpha^2 + \beta^2} - \alpha$. Then, to see the open ball $B(x, r_1)$ is a subset of $A_{\alpha,\beta}$, take any $y = (y_1, y_2, y_3, \ldots) \in B(x, r_1)$. If $m_{y,\alpha}$ does not exist, then $y \in \mathfrak{E}_{\alpha} \subseteq A_{\alpha,\beta}$. If $m_{y,\alpha}$ exists, then aiming for a contradiction, suppose there exists an $l > m_{y,\alpha}$ and $|y_l| \ge \beta$. Then, $||y|| \le ||y-x|| + ||x|| < r_1 + ||x|| < \sqrt{\alpha^2 + \beta^2} - \alpha + \alpha = \sqrt{\alpha^2 + \beta^2}.$ Therefore, $||y|| < \sqrt{\alpha^2 + \beta^2}$. So, $\alpha^2 + \beta^2 > ||y||^2 = \sum_{k=1}^{\infty} |y_k|^2 \ge |y_l|^2 + \sum_{k=1}^{m_{y,\alpha}} |y_k|^2 > \beta^2 + \alpha^2$. Thus, we get the contradiction $\alpha^2 + \beta^2 > \beta^2 + \alpha^2$. From the contradiction, we get $|y_l| \leq \beta$. Becuse $|y_l| \in \mathbb{Q}, \beta \notin \mathbb{Q}$ and $l > m_{y,\alpha}$ is arbitrary, $|y_l| < \beta$ for all $l > m_{y,\alpha}$. Hence, $y \in A_{\alpha,\beta}$. Thus, $x \in int(A_{\alpha,\beta})$.

Case 2: $m_{x,\alpha}$ exists. Because $||x|| = \sqrt{\sum_{k=1}^{\infty} |x_k|^2} < \infty$, for $\varepsilon = \frac{\beta}{2}$ there exists an $l_0 \in \mathbb{N}^+$ such that $\sqrt{\sum_{k=l_0}^{\infty} |x_k|^2} < \varepsilon = \frac{\beta}{2}$. Thus,

$$\sqrt{\sum_{k=l_0}^{\infty} |x_k|^2} < \frac{\beta}{2}.$$
(1)

Subclaim 1. For any $y = (y_1, y_2, \ldots) \in \mathfrak{E}$ if $||y - x|| < \frac{\beta}{2}$, then $|y_l| < \beta$ for all $l \geq l_0$.

 $\frac{\text{Proof of Subclaim 1.}}{-\sqrt{\sum_{k=l_0}^{\infty} |x_k|^2} + \sqrt{\sum_{k=l_0}^{\infty} |y_k|^2}} \le \sqrt{\sum_{k=l_0}^{\infty} |x_k - y_k|^2} \le \sqrt{\sum_{k=1}^{\infty} |x_k - y_k|^2}$ $= ||x - y|| < \frac{\beta}{2}. \text{ So, } -\sqrt{\sum_{k=l_0}^{\infty} |x_k|^2} + \sqrt{\sum_{k=l_0}^{\infty} |y_k|^2} < \frac{\beta}{2}. \text{ Thus, from (1),}$ $\sqrt{\sum_{k=l_0}^{\infty} |y_k|^2} < \frac{\beta}{2} + \sqrt{\sum_{k=l_0}^{\infty} |x_k|^2} = \beta. \text{ Therefore, } |y_l| \le \sqrt{\sum_{k=l_0}^{\infty} |y_k|^2} < \beta$ where $l \ge l_0$. So, $|y_l| < \beta$ for all $l \ge l_0$. The proof of Subclaim 1 is completed. Now, say

$$h_x = \min\{\left|\beta - |x_i|\right| : i \le$$

and

$$a_x = \begin{cases} \alpha - \sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2} & : m_{x,\alpha} > 1\\ 1 & : m_{x,\alpha} = 1 \end{cases}$$

 l_0

if $m_{x,\alpha} > 1$, then $\alpha - \sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2} > 0$, because $\sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2} \le \alpha$, so, $\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2 \le \alpha^2$. Because $\alpha^2 \notin \mathbb{Q}$ and $\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2 \notin \mathbb{Q}$, $\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2 < \alpha^2$. Thus, $\sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2} < \alpha$.) Now, define

$$r = \min\{\sqrt{\sum_{k=1}^{m_{x,\alpha}} |x_k|^2 - \alpha, \frac{\beta}{2}, h_x, a_x}\}$$

To see the open ball B(x,r) is a subset of $A_{\alpha,\beta}$, take any $y = (y_1, y_2, y_3, \ldots) \in$ $m_{y,\alpha} \le m_{x,\alpha}.$

Now, we will see that $m_{y,\alpha} = m_{x,\alpha}$. If $m_{x,\alpha} = 1$, then $m_{y,\alpha} = m_{x,\alpha}$ because $m_{y,\alpha} \leq m_{x,\alpha}$. If $m_{x,\alpha} > 1$, take any $n < m_{x,\alpha}$. Then, $-\sqrt{\sum_{k=1}^{n} |x_k|^2} + \sqrt{\sum_{k=1}^{n} |y_k|^2} \leq \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2} \leq \sqrt{\sum_{k=1}^{\infty} |x_k - y_k|^2} = ||x - y|| < r \leq a_x \leq \alpha - \sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2}.$ So, $-\sqrt{\sum_{k=1}^{n} |x_k|^2} + \sqrt{\sum_{k=1}^{n} |y_k|^2} < \alpha - \sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2}$. Therefore $\sqrt{\sum_{k=1}^{n} |y_k|^2} < \alpha + \sqrt{\sum_{k=1}^{n} |x_k|^2} - \sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2}$. Because $n \le m_{x,\alpha} - 1$, $\sqrt{\sum_{k=1}^{n} |x_k|^2} - \sqrt{\sum_{k=1}^{m_{x,\alpha}-1} |x_k|^2} \le 0.$ Thus, $\sqrt{\sum_{k=1}^{n} |y_k|^2} < \alpha < \sqrt{\sum_{k=1}^{m_{y,\alpha}} |y_k|^2}.$ So, $n < m_{y,\alpha}.$ Hence, $n < m_{y,\alpha}$ for all $n < m_{x,\alpha}.$ Therefore, $m_{y,\alpha} \ge m_{x,\alpha}.$ So, $m_{y,\alpha} = m_{x,\alpha}$.

Fix any arbitrary $l > m_{y,\alpha} = m_{x,\alpha}$. We will see $|y_l| < \beta$. If $l \ge l_0$, then because $||x-y|| < r \le \frac{\beta}{2}$, from Subclaim 1, $|y_l| < \beta$. If $l_0 \ge l > m_{y,\alpha} = m_{x,\alpha}$ where $l_0 > m_{y,\alpha}$, then $-|x_l| + |y_l| \le |x_l - y_l| \le ||x - y|| < r \le |\beta - |x_l||$. On the other hand, $|x_l| < \beta$ because $x \in A_{\alpha,\beta}$, $m_{x,\alpha}$ exists and $l > m_{x,\alpha}$. Thus, $-|x_l| + |y_l| < |\beta - |x_l|| = \beta - |x_l|$. Hence, $|y_l| < \beta$.

For Case 2, because $m_{y,\alpha}$ exists and $|y_l| < \beta$ for all $l > m_{y,\alpha}$, $y \in A_{\alpha,\beta}$. Therefore, $B(x,r) \subseteq A_{\alpha,\beta}$ and so, $x \in int(A_{\alpha,\beta})$.

Therefore, $A_{\alpha,\beta}$ is an open subset of \mathfrak{E} . \Box

Let (α_n) be a strictly increasing sequence of positive real numbers $(\alpha_1 < \alpha_2 < \alpha_3 < \ldots)$ such that $(\alpha_n) \to \infty$ and $\alpha_n^2 \notin \mathbb{Q}$ for all $n \in \mathbb{N}^+$. And let (β_n) be a strictly decreasing sequence of positive real numbers such that $(\beta_n) \to 0$ and $\beta_n \notin \mathbb{Q}$ for all $n \in \mathbb{N}^+$. Then, we can give the following claim.

Claim 4. Let $O = \bigcap_{n \in \mathbb{N}^+} A_{\alpha_n, \beta_n}$. Then, the identity element $0 \in O$ and O is a clopen subset of \mathfrak{E} , i.e., $O \in \tau$ and $\mathfrak{E} - O \in \tau$.

Proof of Claim 4. From Claim 1, $0 \in A_{\alpha_n,\beta_n}$ for all $n \in \mathbb{N}^+$. Thus, $0 \in O$.

From Claim 2, each A_{α_n,β_n} is closed. Thus, $O = \bigcap_{n \in \mathbb{N}^+} A_{\alpha_n,\beta_n}$ is a closed in (\mathfrak{E}, τ) .

To see O is open in (\mathfrak{E}, τ) , take and fix any $x \in O$. Because $(\alpha_n) \to \infty$, there is an $n_0 \in \mathbb{N}^+$ such that $||x|| < \alpha_{n_0}$. Thus, $x \in B(0, \alpha_{n_0})$. Define $W = (\bigcap_{n \leq n_0} A_{\alpha_n,\beta_n}) \cap (B(0, \alpha_{n_0}))$. So, clearly W is open, and $x \in W$ because $x \in B(0, \alpha_{n_0})$ and $x \in \bigcap_{n \in \mathbb{N}^+} A_{\alpha_n,\beta_n}$. Now, fix any $m \in \mathbb{N}^+$. We will see that $W \subseteq A_{\alpha_m,\beta_m}$. If $m \leq n_0$, then $W \subseteq \bigcap_{n \leq n_0} A_{\alpha_n,\beta_n} \subseteq A_{\alpha_m,\beta_m}$. Suppose $m \geq n_0$. Because (α_n) is strictly increasing sequence, $\alpha_m \geq \alpha_{n_0}$. Then, $W \subseteq B(0, \alpha_{n_0}) \subseteq B(0, \alpha_m)$. Thus, $W \subseteq B(0, \alpha_m) \subseteq A_{\alpha_m,\beta_m}$ because we know that $B(0, \alpha_m) \subseteq A_{\alpha_m,\beta_m}$ from Claim 1. Thus, $W \subseteq O = \bigcap_{n \in \mathbb{N}^+} A_{\alpha_n,\beta_n}$ because m is an arbitrary element of \mathbb{N}^+ . Hence, $x \in W \subseteq O$ and W is open. Therefore, O is an open subset of \mathfrak{E} . \Box

Claim 5. If V is any open unbounded subset of (\mathfrak{E}, τ) such that $0 = (0, 0, 0, \ldots) \in V$, then $V + V \nsubseteq O$.

Proof of Claim 5. Fix any open unbounded subset V of \mathfrak{E} such that the identity element $0 \in V$. Then, there exists an $r^* > 0$ such that the open ball $B(0,r^*)$ is a subset of V. We can find an $n^* \in \mathbb{N}^+$ such that $0 < \frac{1}{n^*} < r^*$. Because $(\alpha_n) \to \infty$ and $(\beta_n) \to 0$, there exist $m_1, m_2 \in \mathbb{N}^+$ such that $0 < \beta_{m_1} < \frac{1}{n^*}$ and $n^* < \alpha_{m_2}$. Say $m^* = \max\{m_1, m_2\}$. Then, $\beta_{m^*} < \frac{1}{n^*}$ and $n^* < \alpha_{m^*}$. Because V is unbounded, there exists an $x \in V$ such that $\alpha_{m^*} < ||x||$. Thus, there exists an $m \in \mathbb{N}^+$ such that $\alpha_{m^*} < \sqrt{\sum_{k=1}^m |x_k|^2}$. Therefore, $m_{x,\alpha_{m^*}}$ exists. Now, fix any $l^* > m_{x,\alpha_{m^*}}$ and a rational number q such that $\frac{1}{\beta_{m^*}} < q < r^*$. Let $e^{l^*} = (e_1, e_2, \ldots) \in \mathfrak{E}$ such that $e_{l^*} = 1$ and $e_k = 0$ where $k \neq l^*$.

Case 1: $x_{l^*} \ge 0$.

Say $y = q.e^{l^*}$. So, $y_{l^*} = q$ and $y_k = 0$ for all $k \neq l^*$ where $y = (y_1, y_2, y_3, \ldots)$. Then, $y \in B(0, r^*)$ because $||y - 0|| = ||y|| = q < r^*$. So, $y \in V$. Now, define z = x + y. Thus, $z \in V + V$. Also $\sqrt{\sum_{k=1}^{m_{x,\alpha_{m^*}}} |z_k|^2} = \sqrt{\sum_{k=1}^{m_{x,\alpha_{m^*}}} |x_k|^2} > \alpha_{m^*}$. So, $m_{z,\alpha_{m^*}}$ exists and from definition of $m_{z,\alpha_{m^*}}$, $m_{z,\alpha_{m^*}} \leq m_{x,\alpha_{m^*}} \leq l^*$. Thus, $|z_{l^*}| = |x_{l^*} + q| = x_{l^*} + q > \frac{1}{\beta_{m^*}}$. So, $z \notin A_{\alpha_{m^*},\beta_{m^*}}$. Therefore, $z \notin O$. Hence $z \in V + V$ and $z \notin O$. Say $y = -q.e^{l^*}$. Define z = x + y, in a similar manner to Case 1, $z \in V + V$

Say $y = -q.e^{t}$. Define z = x+y, in a similar manner to Case 1, $z \in V+V$ and $z \notin O$.

Therefore $V + V \not\subseteq O$. \Box

From Claim 4 and Claim 5, there is a clopen subset O of (\mathfrak{E}, τ) with $0 \in O$ such that $V + V \nsubseteq O$ if V is any open unbounded subset of (\mathfrak{E}, τ) with $0 \in V$. From Theorem 1.2, if V is any clopen subset of (\mathfrak{E}, τ) with $0 \in V$, then V is unbounded. Therefore, $O \in \tau_{clopen}$ with $0 \in O$ such that $V + V \nsubseteq O$ for any $V \in \tau_{clopen}$ with $0 \in V$. Hence, from Theorem 1.1, the topology τ_{clopen} is not compatible with the group structure on \mathfrak{E} .

In Claim 5 which is in the proof above, for the clopen set O, actually we showed that if K is unbounded subset of \mathfrak{E} , then $K + B(0, \varepsilon) \not\subseteq O$ for any $\varepsilon > 0$.

References

- [1] Arhangel'skii, Alexander and Tkachenko, Mikhail, *Topological Groups* and *Related Structures*, Atlantis Press, World Scientific (2008).
- [2] Arhangel'skii, A.V. and Van Mill, J, Some aspects of dimension theory for topological groups, Indagationes Mathematicae, 29,(1), 202-225, 2018, Elsevier.
- [3] Ryszard Engelking, *Dimension theory*, North-Holland Publishing Company Amsterdam (1978).