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Abstract. We study a class of non-linear Backward stochastic differential equations (BSDE) with
a superlinear driver process f adapted to a filtration F and over a random time interval [[0, S]] where
S is a stopping time of F. The terminal condition ξ is allowed to take the value +∞, i.e., singular.
We call a stopping time S solvable with respect to a given BSDE and filtration if the BSDE has
a minimal supersolution with terminal value ∞ at terminal time S. Our goal is to show existence
of solutions to the BSDE for a range of singular terminal values under the assumption that S is
solvable. We will do so by proving that the minimal supersolution to the BSDE is a solution, i.e., it
is continuous at time S and attains the terminal value with probability 1. We consider three types
of terminal values: 1) Markovian: i.e., ξ is of the form ξ = g(ΞS) where Ξ is a continuous Markovian
diffusion process, S is a hitting time of Ξ and g is a deterministic function 2) terminal conditions
of the form ξ1 =∞ · 1{τ≤S} and 3) ξ2 =∞ · 1{τ>S} where τ is another stopping time. For general
ξ we prove that minimal supersolution has a limit at time S provided that F is left continuous at
time S. Finally, we discuss the implications of our results about Markovian terminal conditions to
the solution of non-linear elliptic PDE with singular boundary conditions.

1. Introduction and definitions

A backward stochastic differential equation (BSDE) is a stochastic differential equation (SDE)
with a prescribed terminal condition. They have been intensively studied since the seminal pa-
pers Bismut (1973); Pardoux and Peng (1990); they arise naturally in stochastic optimal control
problems (see among others Yong and Zhou (1999)), they provide a probabilistic representation
of semi-linear partial differential equations (PDE) extending the Feynman-Kac formula (Pardoux
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and Răşcanu (2014)) and they have found numerous applications in finance and insurance (Delong
(2013); El Karoui et al. (1997)).

If the driver term of the BSDE has superlinear growth the solution of the BSDE can blow up
in finite time, this allows one to specify ∞ as a possible terminal value for such BSDE; when
the terminal value is allowed to take ∞ it is called “singular”1. In Ahmadi et al. (2021); Kruse and
Popier (2016b); Popier (2006); Sezer et al. (2019), we study non-linear BSDE with singular terminal
condition at a deterministic terminal time T . Such BSDE generalize parabolic diffusion-reaction
PDE with singular final trace (Graewe et al. (2018); Marcus and Véron (1999); Popier (2017)) and
they can be used to represent value functions of a class of stochastic optimal control problems with
terminal constraints (Ankirchner et al. (2014); Graewe et al. (2018); Kruse and Popier (2016b) and
the references therein).

In this paper, we focus on BSDE with singular terminal conditions over a random time horizon.
We adopt the general framework for BSDE with terminal singular values established in Kruse and
Popier (2016a,b, 2017) and consider BSDE of the following form

dYt = −f(t, Yt, Zt, Ut)dt+ ZtdWt +

∫
E
Ut(e)π̃(de, dt) + dMt, YS = ξ, (1.1)

where
• W is a d-dimensional Brownian motion;
• π is a Poisson random measure with intensity µ(de)dt on the space E ⊂ Rm \ {0}. The
measure µ is σ-finite on E such that∫

E
(1 ∧ |e|2)µ(de) < +∞.

The compensated Poisson random measure π̃ is defined by: π̃(de, dt) = π(de, dt)− µ(de)dt.
W and π̃ are supported by the same probability space (Ω,F ,P) with a filtration F = (Ft)t≥0.
Filtration F is supposed to be complete and right continuous. W and π̃ are martingales w.r.t. the
filtration F.

The unknown that is sought is the quadruple (Y, Z, U,M); the solution component M is required
to be a local martingale orthogonal to π̃. The function f : Ω × R × Rd × B2

µ → R is called the
generator (or driver) of the BSDE. Finally S is a stopping time of the filtration F and ξ is an FS
measurable random variable, which is singular, i.e., P({ξ = ∞}) > 0. Precise conditions on all of
these terms are spelled out in subsections 1.2 and 1.3 below. A quadruple (Y, Z, U,M) is said to be
a supersolution of (1.1) if it satisfies the first equation in (1.1) and

lim inf
t→+∞

Yt∧S ≥ ξ, almost surely, (1.2)

holds.
In what follows we will indicate the terminal condition ξ (and sometimes the terminal time S)

as a superscript of the (super)solution, e.g., Y S,k will denote the Y component of the solution with
terminal condition YS = k; we omit the terminal time from the superscript when an emphasis on
the terminal time is not necessary (see Section 8 for a list of the symbols and notation used in the
paper).

A supersolution (Y ξ, Zξ, U ξ,M ξ) is called minimal if Y ξ ≤ Y for any other supersolution
(Y,Z, U,M). We say (Y ξ, Zξ, U ξ,M ξ) solves the BSDE with singular terminal condition ξ if it
satisfies the first equation in (1.1) and

lim
t→+∞

Y ξ
t∧S = ξ; (1.3)

1Note that singular could also mean that the terminal value does not belong to any integrability space (see
Condition (1.6)).
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i.e., to go from a supersolution to a solution we need to replace the lim inf in (1.2) with lim and
≥ with =. In the rest of this paper whenever we refer to the “solution” of a BSDE with a singular
terminal value, it will be in the sense of (1.3). The condition (1.3) means that the process Y
is continuous at time S; for this reason we refer to the problem of establishing that a candidate
solution satisfies (1.3) as the “continuity problem.” The present paper is devoted to the study of this
problem for a range of terminal values; we introduce the terminal values we focus on in the next
subsection.

Just as BSDE over deterministic time intervals generalize parabolic PDE, BSDE over random
time intervals are generalizations of elliptic PDE; we provide further comments on this connection,
on the motivation for the study of BSDE over a random time horizon with singular terminal values
and on the implications of continuity results for BSDE theory and for constrained stochastic optimal
control at the end of the next subsection.

We call a terminal condition “Markovian” if it is of the form ξ = g(ΞS) where, g : Rd 7→ R∪{∞},
Ξ is a Markov diffusion process and S is the first time Ξ hits a smooth boundary ∂D of a domain
D ⊂ Rd. For such exit times, existence of minimal supersolutions for (1.1) is proved in Kruse and
Popier (2016b) for a general singular terminal condition (see subsection 1.3 below). The work Popier
(2007) proves that these minimal supersolutions are in fact solutions for the case F = FW and for
the specific generator f(y) = −y|y|q−1 and for Markovian terminal conditions. The works Kruse
and Popier (2016a, 2017) develop solutions to (1.1) when ξ belongs to some integrability space.
The goal of the present work is to prove that the minimal supersolution of (1.1) satisfies (1.3) (and
therefore is a solution) for several classes of singular terminal conditions and several assumptions
on S. We outline these classes and assumptions in the next subsection.

1.1. Outline of results. In two previous works Sezer et al. (2019) and Ahmadi et al. (2021) that prove
continuity results for deterministic terminal times, two of the main ingredients are the minimal
supersolution Y∞ with terminal condition ∞ at terminal time and the a priori upperbounds on
supersolutions; both of these, are readily available in the prior literature for deterministic terminal
times (for the one dimensional Brownian case treated in Sezer et al. (2019), Y∞ is deterministic and
has an explicit formula). For random terminal times the existence of Y∞ and a priori upperbounds
are known only for exit times of Markov diffusions from smooth domains. One of the main ideas
of the present work is to impose the existence of Y∞ as an assumption on the stopping time S
and base most of our arguments on this assumption. We call the terminal stopping time S solvable
with respect to the BSDE (1.1) if there exists a supersolution to the BSDE with terminal value
∞ at terminal time S (see Definition 1.8). Deterministic times and exit times of Markov diffusion
processes are solvable for a wide range of BSDE; times that have a strictly positive density around
0 are not solvable (Kruse and Popier (2016b)). Many of our arguments are based on this solvability
concept; some basic consequences of solvability are given in Section 2. In particular, if S is solvable,
the BSDE (1.1) has a minimal supersolution for any singular terminal condition ξ ≥ 0 (Lemma 2.1).
In addition to S being solvable, in many arguments we assume F to be left continuous at S for the
following reason. Because the filtration F is assumed to be general (a priori only completeness and
right-continuity is assumed) there is no way to control the jumps of the additional local martingale
component M of the solution at the terminal time. To avoid such jumps, we suppose that F is
left-continuous at time S.

We now indicate the main results of the present work. In Section 3 we assume S to be solvable
and consider the problem of proving the existence of limt→∞ Y

ξ
t for an arbitrary singular terminal

condition ξ ≥ 0. For S deterministic, the work Popier (2016) establishes the existence of this limit
under some additional conditions on the generator f . Here we show that these assumptions are also
sufficient for a random terminal time (Section 3) provided that it is solvable.

The next three sections focus on the continuity problem. Section 4 treats Markovian terminal
conditions. To the best of our knowledge, Popier (2007) is the only paper that proves continuity
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results for a singular terminal condition at a random time S; Popier (2007) assumes f(y) = −y|y|q−1,
ξ to be Markovian and F Brownian. The results in Section 4 generalize the results in Popier (2007)
to a general filtration F and driver f keeping the terminal condition Markovian. An important
step is a bound on the expected value of an integral over the solution processes and dist(Ξ), where
dist(x) = infy∈∂D |x− y| (see Lemma 4.3). One of the main ingredients in the proof is the a priori
upperbound on Y derived in Kruse and Popier (2016b). When F is Brownian and f is deterministic,
the solution of the BSDE with a Markovian terminal condition can be used to construct a viscosity
solution of an associated elliptic PDE. This is discussed in subsection 4.1.

Sections 5 and 6 focus on the continuity problem for non-Markovian terminal conditions2 of the
form ξ1 =∞· 1{τ≤S} (Section 5) and ξ2 =∞ · 1{τ>S} (Section 6) where τ is another stopping time
of F. The results in these sections generalize results from Sezer et al. (2019) (the one dimensional
Brownian case) and Ahmadi et al. (2021) (the general filtration, driver case) treating the same type
of terminal conditions where S is assumed to be deterministic. Events of the form {τ ≤ S} naturally
arise when one modifies constraints on stochastic optimal control problems based on the values the
state process of the problem takes. We refer to Sezer et al. (2019); Ahmadi et al. (2021) for more
comments on why we pay particular attention to these type of non-Markovian terminal conditions.
Solution of the continuity problem for general terminal conditions of the form ∞ · 1A for arbitrary
A ∈ FS is an open problem even for the one dimensional Brownian case and S deterministic.

Section 5 provides two arguments to prove

lim
t→+∞

Y ξ1
t∧S = ξ1. (1.4)

The first one is an adaptation of the argument given for the same type of terminal condition in
Ahmadi et al. (2021). It involves the construction of an auxiliary linear process that dominates Y ξ1

and that is known to have the desired limit property at the terminal time S. The main assumption
on τ for the construction of the upperbound in Ahmadi et al. (2021) is that τ has bounded density
at the terminal time; in the current setting this is replaced with the assumption that the random
variable 1{τ≤S}Y∞τ has a bounded %-moment for some % > 1 (see (5.2)). The other main ingredient
in the construction of the upperbound process in Ahmadi et al. (2021) is the a priori upperbounds
on the supersolution of BSDE; in the current context this is replaced by the solvability assumption
on S. Subsection 5.2 presents a new argument for the terminal value ξ1 that is completely based
on the original BSDE (i.e., it doesn’t involve the solution of an auxiliary linear BSDE). To simplify
arguments this subsection assumes F to be generated only by the Brownian motion W . The only
assumption on τ is that it be solvable. Let Y τ,∞ be the supersolution of the BSDE with terminal
condition∞ at terminal time τ . The main idea of this argument is the use of the process Y τ,∞ as an
upperbound to prove (1.4). Working directly with the original BSDE in constructing upperbounds
can lead to less stringent conditions on model parameters. As an example, we consider in subsection
5.3 the case S = T and τ = inf{t : |Wt| = L} which was originally studied in Sezer et al. (2019)
using essentially a special case of the argument based on the linear auxiliary process which requires
the q parameter in assumption (B1) to satisfy q > 2. The new proof given in subsection 5.3 based on
the new argument based on solvable stopping times establishes (1.4) for the minimal supersolution
assuming only q > 1.

The argument in Section 6 that proves that the minimal supersolution corresponding to ξ2 is in
fact a solution follows closely the argument given for the same type of terminal condition in Ahmadi
et al. (2021) for the case S = T deterministic. The assumptions in this section are: S is solvable and
P(S = τ) = 0; no solvability is required for τ . To simplify arguments F is assumed to be generated
by the Brownian motion only.

2We define ∞ · 0 = 0.
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Comments on implications for stochastic optimal control, PDE and BSDE theory. BSDE with
random terminal times are a generalization of elliptic semi-linear PDE (extension of the Feynman-
Kac formula, see Darling and Pardoux (1997); Pardoux (1999); Pardoux and Răşcanu (2014)). The
works Dynkin and Kuznetsov (1998); Le Gall (1997); Marcus and Véron (1998); Marcus and Veron
(1998) show that the solution of some of these PDE can exhibit a singularity of the following form
on the boundary of the domain D

lim
x→∂D

u(x) = +∞.

This boundary behavior generalizes to

lim
t→+∞

Yt∧S = +∞

for BSDE of the form (1.1) (the clearest connection between the last two condition arises when S
is a first hitting time of a Markov diffusion process, see subsection 4.1). Minimal supersolutions of
BSDE of the type (1.1) with ∞-valued terminal values at random terminal times can also be used
to express the value function of a class of stochastic optimal control problems over a random time
horizon [[0, S]] with terminal constraints of the form 1A · qS = 0, for some A ∈ FS , where q is the
controlled process (see Kruse and Popier (2016b)).

Strengthening (1.11) to (1.3) (i.e., going from a supersolution to a solution) has implications both
for BSDE theory and for stochastic optimal control applications. Consider two distinct terminal val-
ues ξ1 and ξ2; with (1.11) it is impossible to tell whether the corresponding minimal supersolutions
are distinct. Whereas (1.3) guarantees that distinct solutions Y 1 and Y 2 correspond to distinct
terminal values ξ1 and ξ2. In stochastic optimal control / finance applications a non-tight optimal
control (corresponding to strict inequality in (1.11)) can be interpreted as a strictly super-hedging
trading strategy. Continuity results overrule such strategies. For more comments on these points
we refer the reader to Ahmadi et al. (2021).

The next two subsections give the definitions, assumptions and results we employ from previous
works (subsection 1.2 concerns integrable terminal conditions and subsection 1.3 concerns singular
terminal values). The only novelty is Definition 1.8, the definition of a solvable stopping time. We
comment on possible future work in the Conclusion (Section 7).

1.2. Integrable data. Let us start with the definition of solution for BSDE (1.1).

Definition 1.1 (Classical solution). A process (Y,Z, U,M) = (Yt, Zt, Ut,Mt)t≥0, such that
• Y is progressively measurable and càdlàg ,
• Z is a predictable process with values in Rd,
• M is a local martingale orthogonal to W and π̃,
• U is also predictable and such that for any t ≥ 0∫ t

0

∫
E
(|Us(e)|2 ∧ |Us(e)|)µ(de) < +∞,

is a solution to the BSDE (1.1) with random terminal time S with data (ξ; f) if on the set {t ≥ S}
Yt = ξ and Zt = Ut = Mt = 0, P-a.s., t 7→ f(t, Yt, Zt, Ut)1t≤T belongs to L1

loc(0,∞) for any T ≥ 0,
the stochastic integrals with respect to W and π̃ are well-defined and, P-a.s., for all 0 ≤ t ≤ T ,

Yt∧S = YT∧S +

∫ T∧S

t∧S
f(u, Yu, Zu, Uu)du−

∫ T∧S

t∧S
ZudWu

−
∫ T∧S

t∧S

∫
E
Uu(e)π̃(de, du)−

∫ T∧S

t∧S
dMu. (1.5)

For precise definitions of the stochastic integral with respect to π̃ and orthogonality, we refer to
Jacod and Shiryaev (2003).
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Theorem 3 of Kruse and Popier (2016a, 2017), ensures the existence and uniqueness of a classical
solution, under some conditions on the terminal value ξ and on the generator f . Let us state these
conditions and following them the theorem (Theorem 1.4 below).

Firstly the following integrability condition is assumed: for some r > 1

E
[
erρS |ξ|r +

∫ S

0
erρt|f(t, 0, 0,0)|rdt

]
< +∞. (1.6)

The constant ρ depends on r and on the generator f (see Remark 1.3). We suppose that f :
Ω × [0, T ] × R × Rm × B2

µ → R is a random measurable function, such that for any (y, z, ψ) ∈
R × Rm ×B2

µ, the process f(t, y, z, ψ) is progressively measurable. For notational convenience we
write f0

t = f(t, 0, 0,0), where 0 denotes the function mapping E to 0 ∈ R. The space B2
µ is defined3

as follows:

B2
µ =

{
L2
µ if r ≥ 2,

L1
µ + L2

µ if r < 2,

where Lpµ = Lp(E , µ;R) is the set of measurable functions ψ : E → R such that

‖ψ‖pLpµ =

∫
E
|ψ(e)|pµ(de) < +∞.

The next conditions are adapted from Kruse and Popier (2016b):
(A1) The function y 7→ f(t, y, z, ψ) is continuous and monotone: there exists χ ∈ R such that a.s.

and for any t ≥ 0 and z ∈ Rm and ψ ∈ B2
µ

(f(t, y, z, ψ)− f(t, y′, z, ψ))(y − y′) ≤ χ(y − y′)2.

(A2) For every j > 0 and n ≥ 0, the process

Υt(j) = sup
|y|≤j
|f(t, y, 0,0)− f0

t |

is in L1((0, n)× Ω).
(A3) There exists a progressively measurable process κ : Ω × [0, T ] × E × R × Rm × (B2

µ)2 → R
such that for any (y, z, ψ, φ), with κ(·, ·, y, z, φ, ψ) = κy,z,ψ,φ· (·),

f(t, y, z, ψ)− f(t, y, z, φ) ≤
∫
E
(ψ(e)− φ(e))κy,z,ψ,φt (e)µ(de),

with P ⊗ Leb ⊗ µ-a.e. for any (y, z, ψ, φ), −1 ≤ κy,z,ψ,φt (e) and |κy,ψ,φt (e)| ≤ ϑ(e) where ϑ
belongs to the dual space of B2

µ, that is L2
µ or L∞µ ∩ L2

µ.
(A4) There exists a constant Lz such that a.s.

|f(t, y, z, ψ)− f(t, y, z′, ψ)| ≤ Lz|z − z′|
for any (t, y, z, z′, ψ).

Remark 1.2. We can replace (A3) by the Lipschitz condition: there exists a constant Lϑ such that

|f(t, y, z, ψ)− f(t, y, z, φ)| ≤ Lϑ‖ψ − φ‖B2
µ
.

As explained at the beginning of Kruse and Popier (2016a, Section 5), (A3) implies Lipschitz
regularity of f with respect to ψ, with Lϑ equal to the norm ‖ϑ‖(B2

µ)∗ of ϑ in the dual space of B2
µ.

However (A3) is sufficient to ensure comparison principle for the solution of BSDEs (see Pardoux
and Răşcanu (2014, Proposition 5.34), Delong (2013, Theorem 3.2.1) or Kruse and Popier (2016a,
Remark 4)).

3For the definition of the sum of two Banach spaces, see for example Krĕın et al. (1982). The introduction of B2
µ

is motivated in Kruse and Popier (2017).
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We denote

K2 =
1

2
(L2

z + L2
ϑ). (1.7)

Remark 1.3. Recall the constants r and ρ appearing in (1.6). The constant ρ satisfies

ρ > ν = ν(r) :=

{
χ+K2 if r ≥ 2,

χ+ K2

r−1 +
L2
ϑ

ε(Lϑ,r)
if r < 2

(1.8)

where the constant 0 < ε(Lϑ, r) < r − 1 depends only on Lϑ and r (see Kruse and Popier (2017),
Section 4). The additional term in ν disappears if the generator does not depend on the jump part
ψ (that is, if Lϑ = 0). We have the following bounds on ε = ε(Lϑ, r):

0 < ε ≤ (r − 1)
(
2(α(Lϑ, r) + 1)2 − 1

)− 2−r
2 ,

and α(Lϑ, r) has to be chosen such that for any x ≥ α(Lϑ, r),

1

2r/2
xr − 2r/2 − 1− r(2Lϑ + 1)x ≥ 0.

The right side is an increasing function with respect to r ∈ (1, 2) and decreasing with respect to
Lϑ ≥ 0. Hence when r is close to one and Lϑ is large, ε is very small and thus ρ becomes large.

In Kruse and Popier (2016a, 2017), a second integrability condition is supposed:

E
[∫ S

0
erρt|f(t, e−νtξt, e

−νtηt, e
−νtγt)|rdt

]
< +∞, (1.9)

where ξt = E(eνSξ|Ft) and (η, γ,N) are given by the martingale representation:

eνSξ = E(eνSξ) +

∫ ∞
0

ηsdWs +

∫ ∞
0

∫
E
γs(e)π̃(de, ds) +NS

with

E

[(∫ ∞
0
|ηs|2ds+

∫ ∞
0

∫
E
|γs(e)|2π(de, ds) + [N ]S

)r/2]
< +∞.

We now state Kruse and Popier (2016a, 2017, Theorem 3):

Theorem 1.4. If (A1) to (A4) hold and ξ and f0 satisfy assumptions (1.6) and (1.9), then the
BSDE (1.1) has a unique solution (Y,Z, U,M) in the sense of Definition 1.1 such that for any
0 ≤ t ≤ T

E

[
erρ(t∧S)|Yt∧S |r +

∫ T∧S

0

epρs|Ys|rds+

∫ T∧S

0

erρs|Ys|r−2|Zs|21Ys 6=0ds

]

+ E

[∫ T∧S

0

erρs|Ys−|r−21Ys− 6=0d[M ]cs

]

+ E

[∫ T∧S

t∧S

∫
E
erρs

(
|Ys−|2 ∨ |Ys− + Us(e)|2

)r/2−1
1|Ys−|∨|Ys−+Us(e)|6=0|Us(e)|2π(de, ds)

]

+ E

 ∑
0<s≤T∧S

erρs|∆Ms|2
(
|Ys−|2 ∨ |Ys− + ∆Ms|2

)r/2−1
1|Ys−|∨|Ys−+∆Ms|6=0

 < +∞.
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And

E

(∫ S

0

e2ρs|Zs|2ds

)r/2
+

(∫ S

0

e2ρs

∫
E
|Us(e)|2π(de, ds)

)r/2
+

(∫ S

0

e2ρsd[M ]s

)r/2
≤ CE

[
erρS |ξ|p +

∫ S

0

erρs|f(s, 0, 0,0)|rds

]
.

The constant C depends only on r, K and χ.

In general (1.9) is not easy to check. Nonetheless if ξ is bounded, we can take ν = 0 in (1.9) and
assume that:

E
[∫ S

0
erρt|f(t, ξt, ηt, γt)|rdt

]
< +∞,

where ξt = E(ξ|Ft) and

ξ = E(ξ) +

∫ ∞
0

ηsdWs +

∫ ∞
0

∫
E
γs(e)π̃(de, ds) +NS .

1.3. Supersolutions for singular terminal conditions. Theorem 1.4 gives sufficient conditions to en-
sure the existence and uniqueness of the classical solution (Y,Z, U,M). When the terminal condition
is singular, that is, if ξ does not belong to any Lp(Ω) for some p > 1, we adopt the following defi-
nition:

Definition 1.5 (Supersolution for singular terminal condition). We say that a quadruple of pro-
cesses (Y, Z, U,M) is a supersolution to the BSDE (1.1) with singular terminal condition YS = ξ ≥ 0
if it satisfies:

(1) There exists some ` > 1 and an increasing sequence of stopping times Sn converging to S
such that for all n > 0 and all t ≥ 0

E

[
sup
r∈[0,t]

|Yr∧Sn |` +

(∫ t∧Sn

0
|Zr|2dr

)`/2

+

(∫ t∧Sn

0

∫
E
|Ur(e)|2π(de, dr)

)`/2
+ [M ]

`/2
t∧Sn

]
< +∞;

(2) Y is non-negative;
(3) for all 0 ≤ t ≤ T and n > 0:

Yt∧Sn = YT∧Sn +

∫ T∧Sn

t∧Sn
f(u, Yu, Zu, Uu)du−

∫ T∧Sn

t∧Sε
ZudWu

−
∫ T∧Sn

t∧Sn

∫
E
Uu(e)π̃(de, du)−

∫ T∧Sn

t∧Sn
dMu. (1.10)

(4) On the set {t ≥ S}: Yt = ξ, Z = U = M = 0 a.s. and (1.11) holds:

lim inf
t→+∞

Yt∧S ≥ ξ, a.s. (1.11)

We say that (Y,Z, U,M) is a minimal supersolution to the BSDE (1.1) if for any other supersolution
(Y ′, Z ′, U ′,M ′) we have Yt ≤ Y ′t a.s. for any t > 0.

To lighten the presentation, in the present paper we assume ξ and f0 to be non-negative. Under
the conditions of Theorem 1.4 and this sign assumption on ξ and f0, the comparison principle
(Kruse and Popier (2016a, Proposition 4)) implies Yt ≥ 0 for t ≥ 0.
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Remark 1.6. The non-negativity condition can be replaced in general by: Y is bounded from below
by a process Ȳ such that E supt≥0 |Ȳt∧S |` < +∞ (see Kruse and Popier (2016b, Definition 1)).

The most basic and common way of constructing a candidate supersolution for a given singular
terminal condition YS = ξ ≥ 0 is by approximation from below. Let Y ξ∧k be the classical solution
of the BSDE for the bounded terminal condition YS = ξ ∧ k; then a candidate supersolution4 for
the terminal condition is Y ξ = limk↗∞ Y

ξ∧k (cf. (1.17)) where the existence of the limit follows
from the comparison principle; as noted in Popier (2006), this technique always gives a process that
satisfies (1.11):

Lemma 1.7. Let Y ξ∧k and Y ξ be as above. If the filtration F is left-continuous at time S, then Y ξ

satisfies (1.11). In particular,
lim
t→∞

Y ξ
t∧S = ξ

over the event {ξ =∞}.

Proof : The left-continuity of the filtration F at time S implies that the martingale part of the
BSDE, M and the stochastic integral w.r.t. π̃, has no jump at time S. Thus

lim inf
t→∞

Y ξ
t∧S ≥ lim inf

t→∞
Y ξ∧k
t∧S = ξ ∧ k (1.12)

for all k. Letting k ↗∞ implies
lim inf
t→∞

Y ξ
t∧S ≥ ξ. (1.13)

Over the event {ξ =∞} we have:

∞ ≥ lim sup
t→∞

Y ξ
t∧S ≥ lim inf

t→∞
Y ξ
t∧S ≥ ξ =∞

which gives (1.13). �

We next introduce a concept that we think provides a general and natural framework for the
study of BSDE (1.1) with singular terminal conditions when the terminal time is a stopping time.

Definition 1.8. A stopping time S will be called solvable with respect to the BSDE (1.1) if the
filtration F is left-continuous at time S and if the BSDE (1.1) has a supersolution on the time
interval [[0, S]] with terminal condition YS = ∞ that is defined as the limit of the solution of the
same BSDE with terminal condition equal to the constant k, as k tends to ∞.

Most of our arguments will be based on solvable stopping times. From Kruse and Popier (2016b),
we know that every deterministic time S is solvable provided Conditions (A) (given above), and
(B1), (B2) (given below) hold. Exit times of diffusions from smooth domains provide another
example of a solvable stopping time, see Theorem 1.10 below (a restatement of Kruse and Popier
(2016b, Theorem 2) in terms of solvable times). Kruse and Popier (2016b, Example 1) shows that
any stopping time that has a strictly positive density around 0 is non-solvable. Section 2 lists some
immediate consequences of the definition above that will be useful in the rest of this article.

1.3.1. Additional conditions on f . For a singular non-negative terminal value ξ, the conditions (1.6)
and (1.9) are false. Hence following Kruse and Popier (2016b), we add some hypotheses concerning
the generator f and the terminal random time S.
(B1) There exists a constant q > 1 and a positive and bounded process η such that for any y ≥ 0

f(t, y, z, ψ) ≤ − y
ηt
|y|q−1 + f(t, 0, z, ψ).

4More precisely, the Y component of a candidate supersolution; we will often refer to the Y component as a
solution/supersolution to keep the discussion shorter.
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(B2) The process f0 is non-negative and bounded5.
(B3) There exists δ > δ∗ such that E

[
eδS
]
< +∞. The threshold δ∗ only depends on χ, Lz and

Lϑ (see Remark 1.9 below).
(B4) There exists m > m∗ such that for any j

E
∫ S

0
|Υt(j)|mdt < +∞.

Process Υt(j) is defined in Assumption (A2). The value of m∗ depends on χ, Lz, Lϑ and
δ∗, as well as on the choice of δ in (B3) (see Remark 1.9 below).

We further suppose that the generator (t, y) 7→ −y|y|q−1/ηt satisfies the (A) and (B) assumptions,
which means that η satisfies:

E
∫ T

0

1

ηmt
dt < +∞. (1.14)

Remark 1.9. The values of δ∗ and m∗ are given in Kruse and Popier (2016b) in the case Lϑ = 0
and in Popier (2021, Section 9.1) for the general case. Since Conditions (B) have to hold also
for the generator defined by the upper bound in (B1), χ should be replaced by max(χ, 0) in the
formulas for δ∗ and m∗. In other words we provide formulas only for χ ≥ 0. When Lϑ is positive,
the thresholds are not explicit and have to be numerically computed. Some tables for these values
are given in Popier (2021). Nonetheless if f does not depend on U (as in Section 4.1), then

δ∗ =


2(χ+K2) if χ ≤ K2

χ

(
1 +

K
√
χ

)2

if χ > K2

and

m∗ =


2δ

δ − 2(K2 + χ) + (
√
δ − 2K)21δ>4K2

if χ ≤ K2,

δ√
δ +
√
χ−K

× 1√
δ −
√
δ∗

if χ > K2.

In particular if y 7→ f(t, y, z, ψ) is non-increasing, that is for χ = 0, then we have:

δ∗ = 2K2, m∗ =
2δ

δ − 2K2
.

Furthermore if f depends only on y, i.e. χ = K2 = 0, δ∗ = 0 and m∗ = 1.

1.3.2. Known results for exit times. Let (Y ξ∧k, Zξ∧k, U ξ∧k,M ξ∧k) be the unique solution6 of the
BSDE: for any t < T

Y ξ∧k
t∧S = Y ξ∧k

T∧S +

∫ T∧S

t∧S
f(u, Y ξ∧k

u , Zξ∧ku , U ξ∧ku )du

−
∫ T∧S

t∧S
Zξ∧ku dWu −

∫ T∧S

t∧S

∫
E
U ξ∧ku (e)π̃(de, du)−

∫ T∧S

t∧S
dM ξ∧k

u , (1.15)

with the truncated terminal condition:

P− a.s., on the set {t ≥ S}, Y ξ∧k
t = ξ ∧ k, Zξ∧kt = U ξ∧kt = M ξ∧k

t = 0. (1.16)

5In this paper ξ is non-negative; in general we should assume that ξ− and (f0)− are integrable (see Kruse and
Popier (2016b)).

6In this part, S and ξ are fixed; we remove the superscripts S and ξ in the notations of the solutions.
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From Kruse and Popier (2016b, Proposition 5), under (A), (B2), (B3) and (B4), there exists
a unique solution (Y ξ∧k, Zξ∧k, ψξ∧k,M ξ∧k) to the BSDE (1.15) and (1.16). By the comparison
principle for BSDEs, the sequence Y ξ∧k is non-decreasing and converges to some process

Y ξ .
= lim

k
Y ξ∧k (1.17)

As in the case of deterministic terminal times, the key step in Kruse and Popier (2016b) in estab-
lishing that Y ξ is a minimal supersolution to the BSDE (1.1) is to obtain an a priori estimate on
Y ξ∧k, independent of the constant k. In terms of the concept of solvable stopping times introduced
above in Definition 1.8, the role of the apriori estimate is to ensure that the stopping time S is
solvable. To have such an estimate, Kruse and Popier (2016b) restricts attention to the case where
S is the first hitting time of a diffusion, namely

S = SD = inf{t ≥ 0, Ξt /∈ D}, (1.18)

where the forward process Ξ in Rd is the strong solution to the stochastic differential equation

dΞt = b(Ξt)dt+ σ(Ξt)dWt (1.19)

with some initial value Ξ0 ∈ Rd. The functions b : Rd → Rd and σ : Rd → Rd×d satisfy a global
Lipschitz condition: there exists some C > 0 such that

∀x, y ∈ Rd ‖σ(x)− σ(y)‖+ ‖b(x)− b(y)‖ ≤ C‖x− y‖. (1.20)

The domain D is an open bounded subset of Rd, whose boundary is at least of class C2 (see for
example Gilbarg and Trudinger (2001, Section 6.2) for the definition of a regular boundary); Ξ0 is
assumed to be fixed and in D.

Note that the condition (B3) imposes some implicit hypotheses between the generator f , the
set D and the coefficients of the SDE (1.19). Kruse and Popier (2016b, Lemma 2) details some
sufficient conditions on the coefficients b and σ.

For B ⊂ Rd let distB denote the signed distance function to B:

distB(x) =

{
infy/∈B ‖x− y‖, x ∈ B
− infy∈B ‖x− y‖, x /∈ B.

(1.21)

For D = B we simply write dist. Kruse and Popier (2016b, Proposition 6) is a Keller-Osserman
type inequality (see Keller (1957); Osserman (1957)): there exists a constant C such that:

0 ≤ Y ξ∧k
t∧S ≤ Y

ξ
t∧S ≤

C

dist(Ξt∧S)2(p−1)
. (1.22)

Constant p > 1 is the Hölder conjugate of q.
For n ≥ 1 define

Sn = inf

{
t ≥ 0, dist(Ξt) ≤

1

n

}
, (1.23)

where dist(Ξt) denotes the distance between the position of Ξ at time t and the boundary of D. The
main result Kruse and Popier (2016b, Theorem 2) (expressed in terms of solvable stopping times)
is:

Theorem 1.10. If S is the exit time given by (1.18), and if F is left-continuous at time S, under
Assumptions (A) and (B), S is a solvable stopping time (Definition 1.8). Moreover there exists a
minimal supersolution (Y ξ, Zξ, U ξ,M ξ) to the BSDE (1.1) with singular terminal condition YS = ξ
(Definition 1.5).
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2. Solvable stopping times and minimal supersolutions

The next lemmas are useful consequences of the notion of solvable stopping times. First, note
that the left-continuity assumption of F at time S is true for example if S is predictable and if F is
a quasi-left continuous filtration (that is for any predictable stopping time τ , we have Fτ− = Fτ ).
This property of the filtration rules out the possibility that any of the involved processes has jumps
at predictable, and a fortiori deterministic times. An important example is the filtration generated
by the Brownian motion W and the orthogonal Poisson random measure π and S given by (1.18).

Lemma 2.1 (Minimality). Assume that S is solvable and suppose that the generator f satisfies
Conditions (A). Then the BSDE (1.1) has a minimal supersolution (Y∞, Z∞, U∞,M∞) on the
time interval [[0, S]] with terminal condition YS =∞.

Proof : The arguments of minimality can be found in Kruse and Popier (2016b, Propositions 4
and 7). The adaptation is straightforward in our setting since the arguments are not based on a
particular form of the stopping time S. Only left-continuity of the filtration is important. �

Note that we haven’t used Assumptions (B) in the above result, since solvability implies the
existence of a supersolution.

Lemma 2.2. Assume that S is solvable and suppose that generator f satisfies Conditions (A),
(B2), (B3) and (B4). Then the BSDE (1.1) with a singular terminal value ξ at time S, has a
minimal supersolution (Y ξ, Zξ, U ξ,M ξ) on the time interval [[0, S]] with terminal condition YS = ξ.

Proof : Let us denote by Y k the first component of the solution of the BSDE (1.1) with terminal
condition k. Since S is solvable, and with (A), Y k is an increasing sequence converging to Y∞.

Again from Kruse and Popier (2016b, Proposition 5), under (A), (B2), (B3) and (B4), there
exists a unique solution (Y ξ∧k, Zξ∧k, U ξ∧k,M ξ∧k) to the BSDE (1.15) and (1.16). By the comparison
principle, a.s for any t ≥ 0

Y ξ∧k
t ≤ Y k

t ≤ Y∞t .

Hence we obtain an upper estimate on Y ξ∧k, independent of k, which replaces the upper bound
(1.22). Arguing now as in Kruse and Popier (2016b), we obtain the desired minimal supersolution
(Y ξ, Zξ, U ξ,M ξ). �

This lemma allows us to give an alternative proof of Theorem 1.10. To wit, following the ar-
guments of Kruse and Popier (2016b), under Assumptions (A) and (B), first prove that the exit
time S defined by (1.18) is solvable. The arguments are simplified since we only have to work with
the deterministic terminal conditions k at time S. Then from the previous lemma, solvability of S
implies that for any terminal condition ξ, there exists a minimal supersolution (Y ξ, Zξ, U ξ,M ξ).

In Sections 5 and 6 it will be convenient to choose the stopping times Sn approximating S in
Definition 1.5 in such a way that the minimal supersolution Y ξ for a given singular terminal value
ξ ≥ 0 remains bounded up to time Sn. The next lemma asserts that Sn can always be chosen in
this way:

Lemma 2.3. Suppose a stopping time S is solvable. Let (Y ξ, Zξ, U ξ,M ξ) be the minimal superso-
lution of (1.1) with singular terminal condition YT = ξ constructed as the limit of solutions with
terminal condition ξ ∧ k. Then the sequence Sn in Definition 1.5 can be chosen so that

Yt ≤ n for t < Sn. (2.1)

Proof : Let Y∞ denote the first component of the (minimal) supersolution for terminal condition∞
at time S and let S∞n be the sequence of Sn in Definition 1.5 for the same terminal condition ∞. It
follows from (1.10) and (1.11) that Y∞ has càdlàg sample paths on [[0, S]] and limt→∞ Y

∞
t∧S = ∞.

This implies that the hitting times

σ∞n
.
= inf{t : Y∞t∧S ≥ n} (2.2)
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satisfy: σ∞n ≤ S and it is a non-decreasing sequence. From the first property of a supersolution,
this sequence converges almost surely to S. Now suppose that σ∞N = S for some N (and thus for
any n ≥ N). It would mean that Y∞ has a jump at time S. In other words, the martingale parts
have a jump at time S. But this is not possible since the filtration is assumed left continuous at S
(Definition 1.8). Thus

σ∞n ↗ S as n↗∞. (2.3)

Then if we replace the stopping times S∞n in Definition 1.5 with S∞n
.
= S∞n ∧σ∞n all of the conditions

of the definition remain valid; furthermore

Y∞t ≤ n for t < S∞n , (2.4)

holds. This proves the lemma for the terminal condition ∞.
Let Y k denote the solution of (1.1) with terminal condition YS = k. Then by definition Y k

t∧S ↗
Y∞t∧S . This and (2.4) imply

Y k
t ≤ Y∞t ≤ n for t < S∞n . (2.5)

Let Y ξ be the minimal supersolution of (1.1) with terminal condition YS = ξ and let Y ξ∧k be the
solution of (1.1) with terminal condition YS = ξ ∧ k. By the assumption of the lemma

Y ξ∧k
t∧S ↗ Y ξ

t∧S (2.6)

as k ↗ ∞. By comparison principle for the solution of BSDE we have Y ξ∧k
t∧S ≤ Y k

t∧S . This, (2.5),
(2.6), the definition (2.2) of σ∞n and letting k ↗∞ imply

Y ξ
t ≤ Y∞t ≤ n for t < S∞n . (2.7)

Let Sξn be the sequence of stopping time appearing in Definition 1.5 of the supersolution Y ξ. Define
τ ξn

.
= Sξn ∧ S∞n . From (2.1) and from the assumption that Sξn ↗ S we infer τ ξn ↗ S. This implies

that if we replace Sξn with τ ξn all of the conditions appearing in the definition of the supersolution
Y ξ continue to hold; by (2.7) this sequence of stopping times also satisfy

Y ξ
t ≤ Y∞t ≤ n for t < τ ξn. (2.8)

This proves the lemma for the terminal condition ξ. �

If we work with the filtration FW generated by the Brownian motionW , then BSDE (1.1) reduces
to the following:

dYt = −f(t, Yt, Zt)dt+ ZtdWt. (2.9)

Corollary 2.4. In the Brownian filtration FW , if S is solvable, then (2.1) becomes:

Yt ≤ n for t ≤ Sn. (2.10)

Proof : Since the trajectories of Y are now continuous, (2.1) can be strengthened to (2.10). �

Remark 2.5. The estimate (1.22) implies that Y ξ of (1.17) satisfies Y ξ
t ≤ Cn2(p−1) almost surely if

t ≤ Sn where Sn is as in (1.23). Therefore, the above lemma can be seen, up to a reparametrization
of the upper bound (the above lemma uses n as an upper bound on the minimal supersolution up
to time Sn, instead of Cn2(p−1)), as a generalization of the way Sn is chosen in (1.23).
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3. On the existence of a limit

We suppose that S is a solvable stopping time and that Conditions (A) and (B) hold. Hence,
from Lemma 2.2, for any ξ, we can consider the minimal supersolution (Y ξ, Zξ, U ξ,M ξ) of the
BSDE (1.1) with terminal condition ξ at time S, which is obtained as the increasing limit of the
solution with terminal condition ξ ∧ k. Definition 1.5 of a supersolution requires

lim inf
t→+∞

Y ξ
t∧S ≥ ξ almost surely

(see (1.11)). If the terminal condition ξ = +∞ almost surely then we immediately obtain that

lim inf
t→+∞

Y∞t∧S = lim
t→+∞

Y∞t∧S = +∞.

Therefore, for ξ =∞, Y∞ is continuous at time S and equals the terminal condition almost surely.
In this section, we focus on the existence of the limit for an arbitrary terminal singular condition ξ;
that is, we will study whether

lim inf
t→+∞

Y ξ
t∧S = lim

t→+∞
Y ξ
t∧S

holds almost surely for a singular terminal condition ξ ≥ 0. This question was answered in the
positive in Popier (2016) for deterministic terminal times; the goal of this section is to extend these
results to solvable terminal times.

Roughly speaking, the main idea in Popier (2016) is the following: the limit of Y ξ
·∧S exists provided

we know the precise behavior of the generator f with respect to y. The full argument can be found
in Popier (2016); in what follows we will provide an outline and emphasize the necessary changes
to treat the random terminal time S. We break the generator f into four parts:

f(s, y, z, ψ) = [f(s, y, z, ψ)− f(s, 0, z, ψ)] + [f(s, 0, z, ψ)− f(s, 0, 0, ψ)]

+ [f(s, 0, 0, ψ)− f(s, 0, 0,0)] + f0
s

= φ(s, y, z, u) +$(s, z, ψ) + θ(s, ψ) + f0
s . (3.1)

We adopt the following further assumptions on f from Popier (2016):
(C1) The generator f satisfies

1

ςt
f(y) ≤ f(t, y, z, ψ)− f(t, 0, z, ψ), ∀y ≥ 0, ∀(t, z, ψ),

where

• ς is positive and E
∫ S

0

1

ςs
ds < +∞;

• f is a negative, decreasing and of class C1 function and concave on R+ with f(0) < 0
and f′(0) < 0.

(C2) One of the next three cases holds:
• Case 1. f does not depend on ψ or θ(t, ψ) ≥ 0;
• Case 2. The value ϑ of (A3) belongs to L1

µ(E) and there exists a constant κ∗ > −1

such that κ0,0,ψ,0
s (e) ≥ κ∗ a.e. for any (s, ψ, e);

• Case 3. µ is a finite measure on E .

Since Conditions (B) should hold, in particular (B1), we deduce that
1

ςt
f(y) ≤ − 1

ηt
y|y|q−1 for any

t ≥ 0 and y. Thus w.l.o.g. f(y) ≤ −y|y|q and ςt ≤ −f(1)ηt = Cηt for some positive constant C. We
can always add to f a linear function like −y− 1 such that f(0) < 0 and f′(0) < 0. Let us define the
function Θ on (0,+∞) by

Θ(x) =

∫ +∞

x

−1

f(y)
dy. (3.2)
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Recall that f is continuous and negative on R+. Thus from the condition f(y) ≤ −y|y|q, the function
Θ : [0,+∞)→ (0,Θ(0)] is well defined, decreasing, of class C1, and bijective. Let Θ−1 : (0,Θ(0)]→
[0,+∞) be the inverse of Θ.

The next theorem shows that process Y ξ is càdlàg on R+ when filtration F is complete and
right-continuous. No additional assumption (left-continuity) on the filtration is needed here.

Theorem 3.1. Assumptions (A), (B) and (C) hold. Then the minimal supersolution Y ξ is equal
to: a.s. for any t ≥ 0

Y ξ
t∧S = Θ−1

(
E
[
Θ(ξ)− Φ+

t∧S + Φ−t∧S

∣∣∣∣Ft]) .
The processes Φ+ and Φ− are two non-negative càdlàg supermartingales with a.s. lim

t→+∞
Φ−t∧S = 0.

Now Φ+ being a non-negative càdlàg supermartingale, we can deduce the existence of the following
limit:

lim
t→+∞

Φ+
t∧S := Φ+

S−.

Therefore, the limit of Y ξ exists

lim
t→+∞

Y ξ
t∧S = Θ−1

(
Θ(ξ)− Φ+

S−
)
≥ ξ.

In other words, Y ξ is a càdlàg process.

Proof : We follow the arguments developed in the proof of Popier (2016, Lemma 2.3). We only
have to handle the stopping time S. Since Y ξ∧k

t is bounded from below by zero, we can apply Itô’s
formula: for 0 ≤ t ≤ T

Θ(Y ξ∧kt∧S ) = Θ(Y ξ∧kT∧S) +

∫ T∧S

t∧S
Θ′(Y ξ∧ks− )f(s, Y ξ∧ks , Zξ∧ks , Uξ∧ks )ds

−
∫ T∧S

t∧S
Θ′(Y ξ∧ks− )Zξ∧ks dWs −

∫ T∧S

t∧S
Θ′(Y ξ∧ks− )

∫
E
Uξ∧ks (e)π̃(de, ds)

−
∫ T∧S

t∧S
Θ′(Y ξ∧ks− )dMξ∧k

s − 1

2

∫ T∧S

t∧S
Θ′′(Y ξ∧ks− )|Zξ∧ks |2ds− 1

2

∫ T∧S

t∧S
Θ′′(Y ξ∧ks− )d[Mξ∧k]cs

−
∫ T∧S

t∧S

∫
E

[
Θ(Y ξ∧ks− + Uξ∧ks (e))−Θ(Y ξ∧ks− )−Θ′(Y ξ∧ks− )Uξ∧ks (e)

]
π(ds, de)

−
∑

t∧S<s≤T∧S

[
Θ(Y ξ∧ks− + ∆Mξ∧k

s )−Θ(Y ξ∧ks− )−Θ′(Y ξ∧ks− )∆Mξ∧k
s

]
= EFtΘ(Y ξ∧kT∧S)− Φξ∧kt∧S,T∧S (3.3)

where

Φξ∧k
t∧S,T∧S =

− EFt
∫ T∧S

t∧S
Θ′(Y ξ∧k

s− )f(s, Y ξ∧k
s , Zξ∧ks , U ξ∧ks )ds+

1

2
EFt

∫ T∧S

t∧S
Θ′′(Y ξ∧k

s− )|Zξ∧ks |2ds

+
1

2
EFt

∫ T∧S

t∧S
Θ′′(Y ξ∧k

s− )d[M ξ∧k]cs

+ EFt
∑

t∧S<s≤T∧S

[
Θ(Y ξ∧k

s− + ∆M ξ∧k
s )−Θ(Y ξ∧k

s− )−Θ′(Y ξ∧k
s− )∆M ξ∧k

s

]
+ EFt

∫ T∧S

t∧S

∫
E

[
Θ(Y ξ∧k

s− + U ξ∧ks (e))−Θ(Y ξ∧k
s− )−Θ′(Y ξ∧k

s− )U ξ∧ks (e)
]
π(ds, de).
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We use the decomposition (3.1) of the generator f . Since Θ is non-increasing and convex, the next
terms are non-negative:

EFt
∑

t∧S<s≤T∧S

[
Θ(Y ξ∧k

s− + ∆M ξ∧k
s )−Θ(Y ξ∧k

s− )−Θ′(Y ξ∧k
s− )∆M ξ∧k

s

]
+

1

2
EFt

∫ T∧S

t∧S
Θ′′(Y ξ∧k

s− )d[M ξ∧k]cs

− EFt
∫ T∧S

t∧S
Θ′(Y ξ∧k

s− )f0
s ds

and we can use monotone convergence theorem to pass to the limit as T tends to +∞.
Since $(s, z, ψ) ≥ −Lz|z| (see (3.1) and (A4)) and using the concavity of f, we obtain that

−Θ′(Y ξ∧k
s− )$(s, Zξ∧ks , U ξ∧ks ) +

1

2
Θ′′(Y ξ∧k

s− )|Zξ∧ks |2 ≥ L2
z

2f′(Y ξ∧k
s )

≥ L2
z

2f′(0)
.

And
−Θ′(Y ξ∧k

s− )φ(s, Y ξ∧k
s , Zξ∧ks , U ξ∧ks ) ≥ − 1

ςs
.

Since E
∫ S

0 (ςs)
−1ds < +∞ and from (B3), we deduce that the negative part of

−Θ′(Y ξ∧k
s− )

[
f(s, Y ξ∧k

s , Zξ∧ks , U ξ∧ks )− f(s, 0, 0, U ξ∧ks )
]

+
1

2
Θ′′(Y ξ∧k

s− )|Zξ∧ks |2

is bounded in L1, uniformly with respect to (T, k). The remaining term is

− EFt
∫ T∧S

t∧S
Θ′(Y ξ∧k

s− )
[
f(s, 0, 0, U ξ∧ks )− f0

s

]
ds

+ EFt
∫ T∧S

t∧S

∫
E

[
Θ(Y ξ∧k

s− + U ξ∧ks (e))−Θ(Y ξ∧k
s− )−Θ′(Y ξ∧k

s− )U ξ∧ks (e)
]
π(ds, de).

Assume that f does not depend on ψ or that θ(s, ψ) ≥ 0 (Case 1). Again from the convexity of
Θ, this last term is non-negative. Our previous arguments show that we can pass to the limit when
T goes to +∞ in (3.3):

Θ(Y ξ∧k
t∧S ) = EFtΘ(ξ ∧ k)− Φξ∧k

t∧S,S .

Then by the monotone convergence theorem, we obtain the convergence (in L1) of Φξ∧k
t∧S,S to some

process Φt and:
Θ(Yt∧S) = EFt [Θ(ξ)]− Φt∧S . (3.4)

We can decompose the process Φ:
Φt∧S = Φ+

t∧S − Φ−t∧S ,

such that Φ+ and Φ− are non-negative càdlàg supermartingales with:

Φ−t∧S ≤ EFt
∫ S

t∧S

(
1

ςs
− L2

z

2f′(0)

)
ds.

In particular a.s.
lim

t→+∞
Φ−t∧S = 0.

For the Case 2 and the Case 3, we can exactly use the same arguments as in Popier (2016). We
skip them here. This achieves the proof of the theorem. �

Remark 3.2. A careful reading shows that (B1) is not needed in the above argument; we only need
that the function Θ is well-defined.
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In this section, we gave sufficient conditions on the generator f to ensure that Y ξ is a càdlàg
process, that is (1.11) becomes: a.s.

lim
t→+∞

Y ξ
t∧S = lim inf

t→+∞
Y ξ
t∧S ≥ ξ.

In the next three sections we study whether this relation can be strengthened further to

lim
t→+∞

Y ξ
t∧S = ξ,

i.e., whether the minimal supersolution (Y ξ, Zξ, U ξ,M ξ) for the singular terminal condition ξ is in
fact a solution, for three classes of terminal conditions.

4. Markovian terminal conditions

The aim of this section is to prove that equality holds in (1.11) when ξ is a deterministic function
of the value at time S of a forward diffusion. We assume that Conditions (A) and (B) hold and
that S is given by (1.18); in particular, S is a solvable stopping time (Theorem 1.10). The process
Ξ is as in (1.19) with initial condition Ξ0 ∈ Do. We further suppose that
(D1) The terminal data ξ satisfies

ξ = g(ΞS),

where g : Rd → R+ is a function such that F∞ = {g = +∞} ∩ ∂D is a closed set.
(D2) On Rd \ F∞, g is locally bounded, that is, for all compact set K ⊂ Rd \ F∞,

g1K ∈ L∞(Rd).
(D3) The boundary ∂D belongs to C3.
To obtain the continuity, we start with a technical result. We already know that estimate (1.22)

holds:
0 ≤ Y ξ∧k

t∧S ≤ Y
ξ
t∧S ≤

C

dist(Ξt∧S)2(p−1)
.

The constant C depends on q, D and the bound on b and σ. Here we construct another estimate
which depends also on the function g.

Lemma 4.1. If O is an open set such that O∩F∞ = ∅ and O∩∂D 6= ∅, then there exists a constant
C = C(O, g, q, b, σ,D) and an open set DO such that O ∩D and D are included in DO and

P− a.s. ∀k ∈ N, ∀t ≥ 0, Y ξ∧k
t ≤ C

(distDO(Ξt∧S))2(p−1)
. (4.1)

Recall that S is always the first exit time from D.

The proof is a straightforward adaptation of Popier (2007, Proposition 7) and Kruse and Popier
(2016b, Proposition 6). The second technical result concerns (Zξ, U ξ), and it is the extension of
Popier (2007, Propositions 4 and 8) (a similar result was not proven in Kruse and Popier (2016b)).
Before the statement of our result, let us recall the following property of the distance:

Lemma 4.2. For any ε > 0, if Dε = {x ∈ Rd, |dist(x)| ≤ ε}, then there exists a positive constant
ε1 such that dist ∈ C2(Dε1).

Proof : See Gilbarg and Trudinger (2001, Lemma 14.16). �

Lemma 4.3. Under assumptions (A) and (B), for any α > 4(p− 1) + 1, there exists a constant C
such that

E
∫ S

0

(
‖Zξr‖2 +

∫
E

∣∣∣U ξr (e)
∣∣∣2 µ(de)

)
dist(Ξr)αdr ≤ C.

This inequality holds if we replace Zξ and U ξ by Zξ∧k and U ξ∧k. If Condition (D) holds, then we
can replace dist by distDO , with a modification of the value of the constant C.
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In the proof we will use the following definition:

Dλ = {x ∈ Rd, |dist(x)| ≤ λ} (4.2)

for λ > 0.

Proof : The beginning of the proof is similar to Kruse and Popier (2016b, Proposition 6). Since D
is bounded there exists a constant R > 0 such that 0 ≤ dist(x) ≤ R for all x ∈ D. Using Lemma
4.2, let ϕ ∈ C∞(Rd, [0, 1]) with ϕ = 1 on Rd \ Dε1 and ϕ = 0 on Dε1/2. We define a function
ζ ∈ C2(Rd,R+) such that ζ = (1− ϕ)dist +Rϕ on D. Since ζ ≥ dist ≥ 0 on D, x 7→ |ζ(x)|4(p−1)+ε

is not in C2(Rd), but this function belongs to C2(D \Dε1) and we can define this function on the
rest of (Rd \D) ∪Dε1 in order to have the required regularity. For n > 1/ε1, define

Sn = inf{t ≥ 0, Ξt ∈ D1/n}.

Take n sufficiently large such that Ξ0 ∈ D \D1/n. In the following, ∇ denotes the gradient and ∇2

the Hessiaen matrix. The Itô formula leads to:(
Y ξ∧k
t∧Sn

)2
ζ(Ξt∧Sn)α =

(
Y ξ∧k

0

)2
ζ(Ξ0)α +

∫ t∧Sn

0
‖Zξ∧kr ‖2ζ(Ξr)

αdr

+ 2

∫ t∧Sn

0
Y ξ∧k
r ζ(Ξr)

αdY ξ∧k
r +

∫ t∧Sn

0
ζ(Ξr)

α

∫
E

∣∣∣U ξ∧kr (e)
∣∣∣2 π(de, dr)

+

∫ t∧Sn

0
ζ(Ξr)

αd[M ξ∧k]cr +
∑

0<s≤t∧Sn

ζ(Ξr)
α(∆M ξ∧k

r )2

+ α

∫ t∧Sn

0
(Y ξ∧k
r )2ζ(Ξr)

α−1∇ζ(Ξr) (b(Ξr)dr + σ(Ξr)dWr)

+
α

2

∫ t∧Sn

0
(Y ξ∧k
r )2

[
(α− 1)ζ(Ξr)

α−2‖σ(Ξr)∇ζ(Ξr)‖2

+ζ(Ξr)
α−1tr

(
σσ∗(Ξr)∇2ζ(Ξr)

)]
dr

+ 2α

∫ t∧Sn

0
Y ξ∧k
r ζ(Ξr)

α−1Zξ∧kr ∇ζ(Ξr)σ(Ξr)dr. (4.3)

Taking the expectation removes all martingale terms. From (1.22), since α > 4(p − 1), we know
that there exists a constant such that for any k and all t ≥ 0,(

Y ξ∧k
t∧Sn

)2
ζ(Ξt∧Sn)α−1 ≤ C.

Thereby the terms

α

∫ t∧Sn

0
(Y ξ∧k
r )2ζ(Ξr)

α−1∇ζ(Ξr)b(Ξr)dr

+
α

2

∫ t∧Sn

0
(Y ξ∧k
r )2

[
(α− 1)ζ(Ξr)

α−2‖σ(Ξr)∇ζ(Ξr)‖2

+ζ(Ξr)
α−1tr

(
σσ∗(Ξr)∇2ζ(Ξr)

)]
dr

are bounded by

C

(
E
∫ S

0
ζα−4(p−1)−1(Ξr)dr + E

∫ S

0
ζα−4(p−1)−2(Ξr)dr

)
.
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Since α− 4(p− 1) > 1, the arguments developed in the proof of Popier (2007, Proposition 4) show
that these integrals are finite. The Cauchy–Schwarz inequality leads to∣∣∣∣E∫ t∧Sn

0
Y ξ∧k
r ζ(Ξr)

α−1Zξ∧kr ∇ζ(Ξr)σ(Ξr)dr

∣∣∣∣
≤
(
E
∫ t∧Sn

0
‖Zξ∧kr ‖2ζ(Ξr)

αdr

)1/2

×
(
E
∫ t∧Sn

0
(Y ξ∧k
r )2ζ(Ξr)

α−2‖∇ζ(Ξr)σ(Ξr)‖2dr
)1/2

.

But since ∇ζ and σ are bounded,

E
∫ t∧Sn

0
(Y ξ∧k
r )2ζ(Ξr)

α−2‖∇ζ(Ξr)σ(Ξr)‖2dr ≤ CE
∫ S

0
ζα−4(p−1)−2(Ξr)dr < +∞.

Compared to Popier (2007), the novelties are the generator f and the terms U ξ∧k and M ξ∧k. First
using (3.1):

− 2

∫ t∧Sn

0
Y ξ∧k
r f(r, Y ξ∧k

r , Zξ∧kr , U ξ∧kr )ζ(Ξr)
αdr

= −2

∫ t∧Sn

0
Y ξ∧k
r f0

r ζ(Ξr)
αdr − 2

∫ t∧Sn

0
Y ξ∧k
r θ(r, U ξ∧kr )ζ(Ξr)

αdr

− 2

∫ t∧Sn

0
Y ξ∧k
r $(r, Zξ∧kr , U ξ∧kr )ζ(Ξr)

αdr − 2

∫ t∧Sn

0
Y ξ∧k
r φ(r, Zξ∧kr , U ξ∧kr )ζ(Ξr)

αdr.

We know that |Y ξ∧k
r f0

r ζ(Ξr)
α| ≤ C. From (A4)

$(r, Zξ∧kr , U ξ∧kr ) = $ξ∧k
r Zξ∧kr

with |$ξ∧k
r | ≤ Lz. Again by the Cauchy-Schwarz inequality and the previous arguments:∣∣∣∣E∫ t∧Sn

0
Y ξ∧k
r $(r, Zξ∧kr , U ξ∧kr )ζ(Ξr)

αdr

∣∣∣∣
≤ C

(
E
∫ t∧Sn

0
‖Zξ∧kr ‖2ζ(Ξr)

αdr

)1/2

.

From (A3) and similar arguments, we also have:∣∣∣∣E∫ t∧Sn

0
Y ξ∧k
r θ(r, U ξ∧kr )ζ(Ξr)

αdr

∣∣∣∣
≤ C

(
E
∫ t∧Sn

0

∫
E
(U ξ∧kr (e))2µ(de)ζ(Ξr)

αdr

)1/2

.

Note that with (B1)

2E
∫ t∧Sn

0
Y ξ∧k
r φ(r, Y ξ∧k

r , Zξ∧kr , U ξ∧kr )dr ≤ −2E
∫ t∧Sn

0

1

ηr

∣∣∣Y ξ∧k
r

∣∣∣q dr ≤ 0.

Up to some localization procedure we have

E
∫ t∧Sn

0
ζ(Ξr)

α

∫
E

∣∣∣U ξ∧kr (e)
∣∣∣2 π(de, dr)

= E
∫ t∧Sn

0
ζ(Ξr)

α

∫
E

∣∣∣U ξ∧kr (e)
∣∣∣2 µ(de)dr.
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Coming back to (4.3) and taking the expectation, we obtain:

E
(
Y ξ∧k
t∧Sn

)2
ζ(Ξt∧Sn)α − E

(
Y ξ∧k

0

)2
ζ(Ξ0)α

− αE
∫ t∧Sn

0
(Y ξ∧k
r )2ζ(Ξr)

α−1∇ζ(Ξr)b(Ξr)dr

− α

2
E
∫ t∧Sn

0
(Y ξ∧k
r )2

[
(α− 1)ζ(Ξr)

α−2‖σ(Ξr)∇ζ(Ξr)‖2

+ζ(Ξr)
α−1tr

(
σσ∗(Ξr)∇2ζ(Ξr)

)]
dr

+ 2E
∫ t∧Sn

0
Y ξ∧k
r f0

r ζ(Ξr)
αdr

≥ E
∫ t∧Sn

0
‖Zξ∧kr ‖2ζ(Ξr)

αdr − C
(
E
∫ t∧Sn

0
‖Zξ∧kr ‖2ζ(Ξr)

αdr

)1/2

− C
(
E
∫ t∧Sn

0

∫
E
(U ξ∧kr (e))2µ(de)ζ(Ξr)

αdr

)1/2

+ E
∫ t∧Sn

0
ζ(Ξr)

α

∫
E

∣∣∣U ξ∧kr (e)
∣∣∣2 µ(de)dr.

The left-hand side of the inequality is bounded, uniformly with respect to k, t and n. Hence for all
k, t and n,

E
∫ t∧Sn

0

(
‖Zξ∧kr ‖2 +

∫
E

∣∣∣U ξ∧kr (e)
∣∣∣2 µ(de)

)
ζ(Ξr)

αdr ≤ C.

By Fatou’s lemma,

E
∫ S

0

(
‖Zξr‖2 +

∫
E

∣∣∣U ξr (e)
∣∣∣2 µ(de)

)
ζ(Ξr)

αdr ≤ C.

Since ζ ≥ dist on D, we obtain the announced result. If (D) holds, we modify the above arguments
so that (4.1) is used instead of (1.22). �

Theorem 4.4. Assume that (A), (B) and (D) hold. Then a.s.

lim inf
t→+∞

Y ξ
t∧S = ξ.

Proof : The proof is based on the arguments developed in Popier (2007, Theorem 2) and Popier
(2016, Theorem 3.5). Below we only provide an outline and emphasize the modifications needed to
handle the solvable time S.

Recall that F∞ = {g = +∞} ∩ ∂D is a closed set, that O is an bounded open set such that
O∩F∞ = ∅ and O∩∂D 6= ∅. Now we take a function ϕ : Rd → R+ of class C2 and with a compact
support included in O. For β > 0 we apply the Itô formula to the process e−βtY ξ∧k

t ϕ(Ξt):

E
[
e−βS(g ∧ k)(ΞS)ϕ(ΞS)

]
= E

[
e−β(t∧S)Y ξ∧k

t∧S ϕ(Ξt∧S)
]

− βE
∫ S

t∧S
e−βsY ξ∧k

s ϕ(Ξs)ds− E
∫ S

t∧S
e−βsϕ(Ξs)f(s, Y ξ∧k

s , Zξ∧ks , U ξ∧ks )ds

+ E
∫ S

t∧S
e−βsY ξ∧k

s Lϕ(Ξs)ds+ E
∫ S

t∧S
e−βs∇ϕ(Ξs)σ(Ξs)Z

ξ∧k
s ds. (4.4)
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β > 0 is here only to avoid time integrability trouble. Again we decompose f using (3.1).

E
∫ S

t∧S
e−βsϕ(Ξs)f(s, Y ξ∧k

s , Zξ∧ks , U ξ∧ks )ds

= E
∫ S

t∧S
e−βsϕ(Ξs)f

0
s ds

+ E
∫ S

t∧S
e−βsϕ(Ξs)

[
f(s, Y ξ∧k

s , Zξ∧ks , U ξ∧ks )− f(s, 0, Zξ∧ks , U ξ∧ks )
]
ds

+ E
∫ S

t∧S
e−βsϕ(Ξs)$

ξ∧k
s Zξ∧ks ds+ E

∫ S

t∧S
e−βsϕ(Ξs)θ(s, U

ξ∧k
s )ds.

Using the previous lemma and the Cauchy-Schwarz inequality, arguing as in Popier (2007), we
deduce the existence of some constant C, independent of k and t, such that

E
∫ S

t∧S
e−βs

∣∣∣ϕ(Ξs)
(
$ξ∧k
s Zξ∧ks + θ(s, U ξ∧ks )

)
+∇ϕ(Ξs)σ(Ξs)Z

ξ∧k
s

∣∣∣ ds ≤ C.
The key argument is the choice of DO such that on this set distDO remains bounded away from
zero by some positive constant. From Lemma 4.1,

E
∫ S

t∧S
e−βsY ξ∧k

s |ϕ(Ξs) + Lϕ(Ξs)| ds ≤ C.

Hence all terms in (4.4), except maybe

−E
∫ S

t∧S
e−βsϕ(Ξs)

[
f(s, Y ξ∧k

s , Zξ∧ks , U ξ∧ks )− f(s, 0, Zξ∧ks , U ξ∧ks )
]
ds,

are uniformly bounded. Thus this remaining term is also bounded and, thanks to (B1), is greater
than

E
∫ S

t∧S
e−βsϕ(Ξs)(Y

ξ∧k
s )qds.

The dominated convergence theorem and again Lemma 4.3 imply that, up to a suitable subsequence,
we can pass to the limit on k in (4.4) to obtain for any t ≥ 0:

E
[
e−βSg(ΞS)ϕ(ΞS)

]
= E

[
e−β(t∧S)Y ξ

t∧Sϕ(Ξt∧S)
]

− βE
∫ S

t∧S
e−βsY ξ

s ϕ(Ξs)ds− E
∫ S

t∧S
e−βsϕ(Ξs)f(s, Y ξ

s , Z
ξ
s , U

ξ
s )ds

+ E
∫ S

t∧S
e−βsY ξ

s Lϕ(Ξs)ds+ E
∫ S

t∧S
e−βs∇ϕ(Ξs)σ(Ξs)Z

ξ
sds.

Using Fatou’s lemma and letting t go to +∞, we deduce that

E
[
e−βSg(ΞS)ϕ(ΞS)

]
≥ E

[
e−βSϕ(ΞS) lim inf

t→+∞
Y ξ
t∧S

]
.

The conclusion follows since a.s.
lim inf
t→+∞

Y ξ
t∧S ≥ g(ΞS).

We emphasize again that the technical details are in Popier (2007, 2016) and are skipped above.
Since Ξ is continuous, several technical issues of Popier (2016) are avoided here. �

Combining the last result with Theorem 3.1 we get our continuity result for Markovian terminal
conditions:
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Corollary 4.5. Assume that (A), (B), (C), (D) hold. Then a.s.

lim
t→+∞

Y ξ
t∧S = ξ,

i.e., the minimal supersolution Y ξ of the BSDE (1.1) with terminal condition ξ = g(ΞS) is a
solution.

4.1. Related elliptic PDE. Since Darling and Pardoux (1997); Pardoux (1999), it is well known
that BSDEs with random terminal time and elliptic PDE are strongly related. Inspired by Le Gall
(1997); Marcus and Véron (1998); Marcus and Veron (1998), Popier (2007) extended such result to
singular boundary value for the elliptic PDE, when the generator f is of the form −y|y|q−1, q > 1.
Let us now assume that S is given by (1.18), that f is a deterministic function7, and that the
terminal condition is given by (D1), namely ξ = g(ΞS). In the rest of this section, to emphasize
the role of the initial position x, we indicate it as a subscript of the minimal supersolution Y ξ. We
consider the system: for any x ∈ D and t ≥ 0

Ξx,t = x+

∫ t

0
b(Ξx,r)dr +

∫ t

0
σ(Ξx,r)dWr, (4.5)

Y ξ
x,t = g(Ξx,S) +

∫ S

t
f(Ξx,r, Y

ξ
x,r, Z

ξ
x,r)dr −

∫ S

t
Zξx,rdWr. (4.6)

Of course, Equation (4.6) of this forward-backward SDE has to be understood in the sense of
Definition 1.5.

We consider the elliptic PDE{
−Lv − f(x, v,∇vσ∗) = 0 on D;

v = g on ∂D, (4.7)

where the operator L is the infinitesimal generator of Ξ.
The following definition can be found in Barles (1993), Barles (1994) (or Pardoux (1999), Crandall

et al. (1992) for v continuous). If v is a function defined on D, we denote by v∗ (respectively v∗)
the upper- (respectively lower-) semicontinuous envelope of v: for all x ∈ D

v∗(x) = lim sup
x′→x, x′∈D

v(x′) and v∗(x) = lim inf
x′→x, x′∈D

v(x′).

The next definition holds for bounded boundary condition g.

Definition 4.6 (Viscosity solution).
• v : D → R is called a viscosity subsolution of (4.7) if v∗ < +∞ on D and if for all
φ ∈ C2(Rd), whenever x ∈ D is a point of local maximum of v∗ − φ,

−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)) ≤ 0 if x ∈ D;

min (−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)), v∗(x)− g(x)) ≤ 0 if x ∈ ∂D.
• v : D → R is called a viscosity supersolution of (4.7) if v∗ > −∞ on D and if for all
φ ∈ C2(Rd), whenever x ∈ D is a point of local minimum of v∗ − φ,

−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)) ≥ 0 if x ∈ D;

max (−Lφ(x)− f(x, v∗(x),∇φ(x)σ∗(x)), v(x)− g(x)) ≥ 0 if x ∈ ∂D.
• v : D → R is called a viscosity solution of (4.7) if it is both a viscosity sub- and superso-
lution.

If the boundary condition is singular, we adapt the preceding definition.

7If the terminal time and the terminal values are deterministic functions of ΞS , then the solution of the BSDE
(1.1) satisfies U = M = 0. Hence we can assume w.l.o.g. that f does not depend on U here.
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Definition 4.7 (Unbounded viscosity solution). We say that v is a viscosity solution of the PDE
(4.7) with unbounded terminal data g if v is a viscosity solution on D in the sense of Definition 4.6
and if

g(x) ≤ lim
x′→x

x′∈D, x∈∂D

v∗(x
′) ≤ lim

x′→x
x′∈D, x∈∂D

v∗(x′) ≤ g(x).

Remark that this definition implies that v∗ < +∞ and v∗ > −∞ on D. Define

u(k)(x) = Y g∧k
x,0 .

Let us further assume:

• g : ∂D → R+ is continuous,
• f is continuous on D × R× Rd.

Then under Conditions (A), (B) and (D) Pardoux and Răşcanu (2014, Theorem 5.74), implies
that u(k) is continuous on D and is a viscosity solution of the elliptic PDE (4.7) with boundary data
g ∧ k. Recall that the sequence Y ξ∧k

x converges to Y ξ
x . If we define

u(x) = Y ξ
x,0,

then u is the supremum of the continuous functions u(k), is non-negative and lower-semicontinuous
on D and satisfies:

∀x ∈ D, u(x) ≤ C

dist2(p−1)(x)
.

Following the arguments of Popier (2007) with some modifications, we have:

Proposition 4.8. If Conditions (A), (B) and (D) hold, and if f and g are continuous functions,
then the function u defined by u(x) = Y ξ

x,0 is a viscosity solution of the elliptic PDE in the sense of
Definition 4.7.

Moreover suppose that the matrix σσ∗ is uniformly elliptic: there exists a constant α > 0 such
that

∀x ∈ Rd, σσ∗(x) ≥ αId. (4.8)

If the map (x, y, z) 7→ (b(x), σ(x), f(x, y, z)) is of class C1, then u belongs to C0(D, [0,+∞])) ∩
C2(D, [0,+∞)).

5. Terminal condition ξ1

In this section we study terminal conditions of the form

ξ1 =∞ · 1{τ≤S} (5.1)

where τ is another stopping time. We know from Ahmadi et al. (2021, Section 2) that when S = T
is deterministic and τ has a bounded density around the terminal time T , the minimal supersolution
Y ξ1 of the BSDE (1.1) with terminal condition ξ1 satisfies

lim
t→T

Y ξ1
T = ξ1.

Our goal is to prove similar continuity results when S is a stopping time. For this we will consider
two approaches: the first is an extension of the approach taken in Ahmadi et al. (2021, Section 2),
the first subsection focuses on this. We present a new approach in the second subsection.
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5.1. First approach. The approach of Ahmadi et al. (2021, Section 2), treating the case S = T ,
where T > 0 is a fixed deterministic time, can be summarized as follows:

(1) Assume that τ has a bounded density around the terminal time T .
(2) Let Y T,∞ be the minimal supersolution of (1.1) on the interval [0, T ] with terminal condition

YT =∞; define the auxiliary terminal condition

ξ
(τ)
1 = 1{τ≤T}Y

T,∞
τ .

(3) Use the bounded density assumption and a priori upperbounds on Y T,∞ to prove

E
[(
ξ

(τ)
1

)%]
<∞ (5.2)

for some % > 1; in particular, ξ(τ)
1 is not a singular terminal condition.

(4) Let Ŷ be the solution of a linear BSDE with terminal condition ξ(τ)
1 whose driver term is

chosen to guarantee Y ξ1 ≤ Ŷ .
(5) Derive the continuity of Y ξ1 at time T from that of Ŷ .

This argument requires a modification when the terminal time S is random because 1) a priori
upperbounds on supersolutions with explicit expressions are not in general available and 2) even if
such bounds were available, assumptions only on the distribution of τ (such as the bounded density
assumption in the first item of the list above) would not be sufficient because, when S is random, the
expectation in (5.2) depends on the joint distribution of τ and S. In the light of these observations,
we take (5.2) as our starting point for the next theorem. Proposition 5.2 gives an example of a case
where (5.2) is satisfied.

Note that (5.2) implies that P(τ = S) = 0. Indeed, if P(τ = S) > 0, then

E
[(
ξ

(τ)
1

)%]
≥ E

[
1{τ=S} (Y∞S )%

]
= +∞.

Theorem 5.1. Assume that the stopping time S is solvable and Conditions (A) and (B) hold. Let
τ be a stopping time such that there exists % > %∗ so that (5.2) holds (where the threshold %∗ depends
on δ and δ∗ in (B3) ). Then Y ξ1 satisfies

lim
t→+∞

Y ξ1
t∧S = ξ1, (5.3)

i.e., the minimal supersolution Y ξ1 is in fact a solution.

Proof : We adopt the argument in Ahmadi et al. (2021) given for deterministic terminal times (see
the list above) to solvable terminal times as follows. Since S is solvable, there exists a minimal
supersolution (Y∞, Z∞, U∞,M∞) to the BSDE (1.1) with terminal condition +∞ at time S.

Define the generator
g(t, y, z, ψ) = χy + f(t, 0, z, ψ);

g is linear in y and satisfies (A). We would like to solve the BSDE defined by g with terminal
condition YS = ξ

(τ)
1 = 1{τ≤S}Y

∞
τ ; ξ(τ)

1 is Fτ∧S-measurable and therefore FS-measurable. Let us
check that (1.6) holds, namely for some r > 1 and ρ > ν(r)

E
[
erρS |ξ(τ)

1 |
r +

∫ S

0
erρt|g(t, 0, 0,0)|rdt

]
< +∞.

Note that g(t, 0, 0,0) = f0
t and (B2) holds. From the proof of Kruse and Popier (2016b, Proposition

5), using (B3), there exists r > 1 and ρ > ν(r) such that rν(r) < δ. Hence we can find γ > 1 such
that E(erργS) < +∞. Hölder’s inequality gives:

E
[
erρS |ξ(τ)

1 |
r
]
≤
(
EerργS

)1/γ (E|ξ(τ)
1 |

rγ̂
)1/γ̂

.
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If % ≥ rγ̂ = %∗ > 1, then we deduce that E|ξ(τ)
1 |rγ̂ < +∞ and (1.6) is satisfied.

Then we have to verify that (1.9) holds for ξ(τ)
1 . This can be done by linearizing g and using the

same arguments as for (1.6). Applying Theorem 1.4 leads to the existence and the uniqueness of
the solution (Ŷ , Ẑ, Û , M̂).

We next prove that Ŷ does serve as an upper bound on Y ξ1∧k, the solution of the BSDE (1.1)
with terminal condition ξ1 ∧ k = k1{τ≤S} at time S: a.s. for any t ≥ 0

Y ξ1∧k
t∧τ∧S ≤ Ŷt∧τ∧S .

Indeed by the comparison principle, Y ξ1∧k ≤ Y∞. Hence a.s.

Y ξ1∧k
τ∧S = Y ξ1∧k

τ 1τ≤S ≤ Y∞τ 1τ≤S = ξ
(τ)
1 .

Since f(t, y, z, ψ) ≤ g(t, y, z, ψ) by Condition (A1), we deduce the desired result.
We conclude using a linearization procedure (see Ahmadi et al. (2021, Lemma 3)) that a.s. on

the FS-measurable set {τ > S}, that limt→+∞ Ŷt∧S = 0. Therefore, a.s. on the same set

0 ≤ lim
t→+∞

Y ξ1
t∧S ≤ lim

t→+∞
Ŷt∧S = 0 = ξ1. (5.4)

That (5.3) holds over the event {ξ1 =∞} = {τ ≤ S} follows from the fact that Y S,ξ1 is constructed
by approximation from below (see Lemma 1.7). This and (5.4) imply (5.3). �

Comments on the choice of %∗ appearing in the above theorem: if f depends only on y and is
non-increasing (χ = K2 = 0), we have δ∗ = 0 from Remark 1.9. Since δ can be chosen arbitrarily
small we can set %∗ = 1. Then it is sufficient to have q > 3 to satisfy the constraints on % in
Theorem 5.1 and in Proposition 5.2 below.

One of the key assumptions of the previous theorem is the bound (5.2); let us develop an example
for which this assumption holds. We assume that S is the first exit time of Ξ given by (1.18),
S = SD = inf{t ≥ 0, Ξt /∈ D}; we assume enough regularity on D so that (1.22) holds:

0 ≤ Y∞t∧S ≤
C

dist(Ξt∧S)2(p−1)
,

for some constant C > 0. We also suppose that σ is uniformly elliptic (Equation (4.8)), so that by
Friedman (1964), for Ξ0 = x ∈ D, Ξt has a density φ(t, x, ·). Under these assumptions, to prove
(5.2) it suffices to prove

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
<∞, (5.5)

for some % > 1. Theorem 5.1 above gives:

lim
t→∞

Y ξ1
t∧S = ξ1,

assuming (5.5).
The expectation in (5.5) depends on the joint distribution of (τ, S,ΞS). We are not aware of results

available in the current literature that would imply (5.5) under broad and general assumptions on
these variables. A basic case that can be treated with techniques that we know of is when τ is
independent of Ξ (and therefore of S). The next proposition proves (5.5) in this setting.

Proposition 5.2. Suppose that S is the first exit time of Ξ given by (1.18), that σ is uniformly
elliptic, and that τ is independent of Ξ. If q > 1 + 2%, then

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
<∞, (5.6)
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Proof : The equality 1/p+1/q = 1 and q > 1+2% imply 2(p−1)% < 1. Let us denote the distribution
of τ by Fτ . The expectation (5.5) can then be written as

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
=

∫ ∞
0

E
[
1{t≤S}

1

dist(Ξt)%2(p−1)

]
dFτ (t).

Since S is the exit time of Ξ from a smooth domain with uniformly elliptic diffusion matrix, we
have:

E
[
1{τ≤S}

1

dist(Ξτ )%2(p−1)

]
=

∫ ∞
0

E
[
1{t<S}

1

dist(Ξt)%2(p−1)

]
dFτ (t)

that {Ξt ∈ D} ⊃ {t < S} implies

≤
∫ ∞

0
E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
dFτ (t). (5.7)

We next bound

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
.

For Ξ0 = x ∈ D, let φ(t, x, ·) be the density of Ξt. The expectation above then can be written as

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
=

∫
D
φ(t, x, y)

1

dist(y)%2(p−1)
dy. (5.8)

Let Dε and ε1 be as in Lemma 4.2, where we choose ε1 small enough so that x /∈ Dε1 . The continuity
of dist implies that Dε is closed; Dε is therefore compact since Dε ⊂ D and D is bounded. This,
the continuity of dist and x /∈ Dε1 imply

C1
.
= inf

y∈Dε1
|x− y| > 0. (5.9)

Since b and σ are Lipschitz continuous and since σ is uniformly elliptic, from Friedman (1964,
page 16) we have the following Aronson’s estimate on φ(t, x, y) :

φ(t, x, y) ≤ C2

td/2
e−

λ0|y−x|
2

4t .

This and (5.9) imply

φ(t, x, y) ≤ C2

td/2
e−

λ0C
2
1

4t ,

for y ∈ Dε1 . The right side of this inequality is continuous and bounded for t ∈ [0,∞]. Therefore

C3
.
= sup

t∈[0,∞],y∈Dε1
φ(t, x, y) ≤ sup

t∈[0,∞],y∈Dε1

C2

td/2
e−

λ0C
2
1

4t <∞. (5.10)

We now decompose (5.8) into two integrals over Dε1 and D \Dε1 :

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
=

∫
D
φ(t, x, y)

1

dist(y)%2(p−1)
dy

=

∫
D\Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy.+

∫
Dε1

φ(t, x, y)
1

dist(y)ρ2(p−1)
dy

≤ 1

ε
2%(p−1)
1

+

∫
Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy. (5.11)

the last inequality coming from: dist(y) > ε1 for y ∈ D \Dε1 .
It remains to bound the last integral. For this, recall that dist is C2 over Dε1 (Lemma 4.2).

Furthermore, ∂D is the 0-level curve of dist, in particular, for y ∈ ∂D, the gradient ∇dist(y) is
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normal to ∂D. ∂D is a C1 surface, with non-vanishing normal at every point. It follows from these
and the definition of dist that ∇dist satisfies |∇dist(y)| = 1 for y ∈ ∂D. Now define

Eε = {y ∈ D : dist(y) > ε} = D \Dε.

That dist is C2(Dε1) implies that ∂Dε1 is a C2 bounded surface and that the function

A(ε) = Area(∂Eε)

is C1 over the interval [0, ε1]. In particular, it is continuous and satisfies

C4
.
= sup

ε∈[0,ε1]
A(ε) <∞. (5.12)

This and the definition of dist imply |∇dist(y)| = 1 for y ∈ ∂Dε for ε ≤ ε1. We are now in a setting
where we can apply the co-area formula Evans (2010, Theorem 5, page 713), which gives∫

Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy =

∫ ε1

0

(∫
∂Eε

φ(t, x, y)dS

)
1

ε%2(p−1)
dε

∂Eε ⊂ Dε1 and (5.10) imply

≤
∫ ε1

0

(∫
∂Eε

C3dS

)
1

ε%2(p−1)
dε

This and (5.12) give

≤ C3C4

∫ ε1

0

1

ε%2(p−1)
dε.

Recall that %2(p− 1) < 1. This and the last line imply∫
Dε1

φ(t, x, y)
1

dist(y)%2(p−1)
dy < C5, (5.13)

where
C5

.
= C3C4

∫ ε1

0

1

ε%2(p−1)
dε <∞.

The bound (5.13) we have just derived and (5.11) imply

E
[
1{Ξt∈D}

1

dist(Ξt)%2(p−1)

]
≤ 1

ε
%2(p−1)
1

+ C5.

This and (5.7) imply (5.6). �

5.2. A new argument for ξ1. In the rest of the paper, to clearly state the ideas and for a less
technical presentation, we will restrict our attention to the Brownian framework, i.e., we assume
that F = FW is the filtration generated by the d-dimensional Brownian motion W . Therefore (1.1)
reduces to (2.9), that is:

dYt = −f(t, Yt, Zt)dt+ ZtdWt. (5.14)
The continuity arguments in Section 5.1 above and in Ahmadi et al. (2021, Section 2) use the
solution of a linear auxiliary BSDE as an upper bound to the minimal supersolution. In this section
we would like to explore a new upper bound that is based directly on the original nonlinear BSDE.
As will be seen, whenever applicable, this is more natural and leads to less strict conditions on the
parameter q of Condition (B1). We assume τ and S to be solvable in the sense of Definition 1.8.
Let Y S,∞ and Y τ,∞ denote the ∞-supersolutions8 corresponding to τ and S. The main idea of

8When we refer to Y as the solution, we mean the first component Y of a solution (Y,Z).
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the present section as compared to that of Section 5.1 and Ahmadi et al. (2021, Section 2) is the
following: we replace the upper bound process Ŷ of the proof of Theorem 5.1 with Y τ,∞.

Theorem 5.3. Suppose τ and S are solvable in the sense of Definition 1.8. Then the minimal
supersolution Y S,ξ1 of (2.9) with terminal condition YS = ξ1 = +∞ · 1{τ≤S} satisfies

lim
t→∞

Y S,ξ1
t∧S = ξ1. (5.15)

Proof : As before, that (5.15) holds over the event {τ ≤ S} = {ξ1 = ∞} follows from the fact
that Y S,ξ1 is constructed by approximation from below (Lemma 1.7). Therefore, it suffices to prove
(5.15) over the event {S < τ}.

For L > 0, ξ1 ∧ L is a bounded random variable; let Y S,ξ1∧L be the continuous classical solution
of the BSDE (5.14) with terminal value YS = ξ1 ∧ L. By definition Y S,ξ1 = limL↗∞ Y

S,ξ1∧L. For
ease of notation set

ξ̂1 = Y S,ξ1∧L
τ∧S ,

which is a Fτ∧S measurable random variable. By the definition of Y S,ξ1∧L, we have Y S,ξ1∧L
S = ξ1∧L

and in particular Y S,ξ1∧L
S = 0 over the event {S < τ}. This implies

ξ̂1 = Y S,ξ1∧L
τ∧S = Y S,ξ1∧L

τ 1{τ≤S}. (5.16)

For L1 > 0, let Y τ,L1 be the classical solution of the BSDE (5.14) with terminal condition Yτ = L1.

Note that Y τ,L1

τ∧S = L11{τ≤S} + Y τ,L1

S 1{S<τ}. This, Y τ,L1 ≥ 0 and (5.16) imply

ξ̂1 ∧ L1 = Y S,ξ1∧L
τ∧S ∧ L1 ≤ Y τ,L1

τ∧S . (5.17)

Let Y τ∧S,ξ̂1∧L1 be the classical solution of the BSDE (5.14) with terminal condition Yτ∧S = ξ̂1∧L1.
Y τ,L1 is the classical solution of (5.14) with terminal condition Yτ = L1; therefore, its restriction to
the time interval [[0, τ ∧ S]] is again a classical solution of the same BSDE with terminal condition
Yτ∧S = Y τ,L1

τ∧S . The inequality (5.17) and the comparison principle (applied to Y τ∧S,ξ̂1∧L1 and the
restriction of Y τ,L1 to the time interval [[0, τ ∧ S]]) gives

Y τ∧S,ξ̂1∧L1
t ≤ Y τ,L1

t , t ≤ τ ∧ S. (5.18)

Y S,ξ1∧L is the classical solution of the BSDE (5.14) with terminal condition YS = ξ1∧L. Therefore, its
restriction to the time interval [[0, τ∧S]] is again a classical solution of the same BSDE with terminal
condition ξ̂1 = Y S,ξ1∧L

τ∧S . By the comparison principle and the continuity of classical solutions of
BSDE with respect to the terminal value (applied to the processes Y τ∧S,ξ̂1∧L1 and the restriction
of Y S,ξ1∧L to the interval [[0, τ ∧ S]]) we have:

lim
L1↗∞

Y τ∧S,ξ̂1∧L1
t = Y S,ξ1∧L

t , t ≤ τ ∧ S.

That τ is solvable means that Y τ,L1 ↗ Y τ,∞ as L1 ↗∞ where the last process is the Y component
of the minimal supersolution of (5.14) with terminal condition Yτ = ∞. This, (5.18) and the last
display imply

Y S,ξ1∧L
t ≤ Y τ,∞

t , t ≤ τ ∧ S.
Let τn ↗ τ be the sequence of increasing stopping times in Definition 1.5 associated with Y τ,∞. By
Corollary 2.4, Y τ,∞ is bounded by n in the interval [[0, τn]]. This and the last display imply

Y S,ξ1∧L
t ≤ n, t ≤ τn ∧ S.

Letting L↗∞ we get
Y S,ξ1
t ≤ n, t ≤ τn ∧ S,
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and in particular the restriction of Y S,ξ1 to the time interval [[0, τn ∧ S]] is the continuous classical
solution of the BSDE (5.14) with terminal value Y S,ξ1

τn∧S ≤ n; therefore

lim
t→∞

Y S,ξ1
t∧S = lim

t→∞
Y S,ξ1
t∧τn∧S = Y S,ξ1

τn∧S = lim
L↗∞

Y S,ξ1∧L
τn∧S = 0

over the event {S < τn}. τn ↗ τ and P(τ = S) = 0 imply {S < τ} = ∪∞n=1{S < τn} almost surely.
This and the last display imply (5.15) over the event {S < τ}. This completes the proof of this
theorem. �

5.3. An example in one space dimension. In this subsection we go back to the setup studied in Sezer
et al. (2019, Section 2): the driver is deterministic and only a function of y:

f(y) = −y|y|q−1,

the terminal time S is deterministic T and the terminal condition is

YT =∞ · 1{τ≤T} (5.19)

where τ is the first exit time of W from the interval (0, L). Since f is deterministic and the terminal
condition depends only on W , the solution (Y, Z, U,M) of the BSDE (1.1) reduces to (Y, Z,0, 0)
and the BSDE becomes:

Ys = Yt +

∫ t

s
f(Yu)du+

∫ t

s
ZudWu. (5.20)

Theorem 2.1 of Sezer et al. (2019) states that for q > 2 the minimal supersolution of the BSDE (5.20)
with terminal condition (5.19) is continuous at time T . Let yt denote the solution of dy

dt = −f(y)
on the interval [0, T ] with terminal value yT =∞, i.e.,

yt
.
= ((q − 1)(T − t))1−p, t < T, 1/p+ 1/q = 1. (5.21)

The proof of Sezer et al. (2019, Theorem 2.1) is based on the following integrability result:

E[yτ1{τ≤T}] = E[yτ1{τ<T}] <∞. (5.22)

As in the proof of Theorem 5.1, Sezer et al. (2019) constructs a linear process that is continuous at
time T to find a continuous upperbound on the minimal supersolution (which implies the continuity
of the minimal supersolution); the bound (5.22) ensures that the upper bound linear process is well
defined. The bound (5.22) requires q > 2 and that is the reason why this was assumed in Sezer et al.
(2019) in its treatment of the terminal condition (5.19). We will now derive the same continuity
result under the assumption q > 1 using Theorem 5.3 above.

To apply Theorem 5.3 to the present setup we need T and τ to be solvable. This essentially
means that the BSDE has supersolutions with terminal value ∞ at these terminal times. The
supersolution for terminal time T is the deterministic process t 7→ yt. That τ is solvable can be
derived from (1.22). Instead of invoking this general result, in the following lemma we will make
use of the simple nature of f and W to explicitly construct the supersolution Y τ,∞ with terminal
condition Yτ =∞. Following Polyanin and Zaitsev (2003, page 307) we will use

x(v, vl)
.
= v

1− q+1
2

l

(
q + 1

4

)1/2 ∫ v/vl

1

(
uq+1 − 1

)−1/2
du. (5.23)

to construct solutions to the ODE
1

2

d2V

dx2
− V q = 0. (5.24)

The function x is strictly increasing in v, furthermore, q > 1 implies x(∞, vl) <∞. Define

L(vl) = x(∞, vl).
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Let x−1(·, vl) denote the inverse of x(·, vl). Now define

v(x, vl)
.
= x−1(|x− L/2|, vl).

Lemma 5.4. On the interval [L/2 − L(vl), L/2 + L(vl)], v(·, vl) satisfies (5.24) with boundary
conditions ∞ on both sides.

Proof : Direct calculation using the definition (5.23) of x. �

To construct a supersolution of (5.20), we want to solve (5.24) in the interval [0, L] with ∞
boundary condition. Note that L(0) =∞ and L(∞) = 0 and L is a decreasing smooth function. It
follows that there is a unique v∗ such that L(v∗) = L/2. Then for vl = v∗, v(x, v∗) solves (5.24) in
the interval [0, L] with ∞ on the boundary. For our argument we also need solutions to (5.24) in
the time interval [0, L] with boundary condition n on both sides. For this purpose, the next lemma
constructs a sequence 0 < vn ↗ v∗ such that x(n, vn) = L/2.

Lemma 5.5. There exists a sequence 0 < vn ↗ v∗ such that x(n, vn) = L/2.

Proof : Recall that v∗ is the unique solution of x(∞, v∗) = L/2, i.e.,

(v∗)1− q+1
2

(
q + 1

4

)1/2 ∫ ∞
1

(
uq+1 − 1

)−1/2
du = L/2.

This implies in particular

x(1, v∗) = (v∗)1− q+1
2

(
q + 1

4

)1/2 ∫ 1/v∗

1

(
uq+1 − 1

)−1/2
du < L/2.

Furthermore, the function vl 7→ x(1, vl) is continuous on (0, v∗] and increases to ∞ as vl ↘ 0. This
implies that there exists v1 < v∗ satisfying x(1, v1) = L/2. Now note x(2, v1) > L/2 and x(2, v∗) <
L/2. Applying the same argument gives v2 ∈ (v1, v

∗) satisfying x(2, v2) = L/2. Repeating the same
argument inductively gives us an increasing sequence vn bounded by v∗ solving x(n, vn) = L/2. The
limit v∗∗ of this sequence satisfies x(∞, v∗∗) = L/2. Recall that v∗ is the unique solution of this
equation. This yields vn ↗ v∗. �

We can now state and prove the generalization of Sezer et al. (2019, Theorem 4) to q > 1:

Theorem 5.6. For q > 1 the minimal supersolution of (5.20) with terminal condition YT = ∞ ·
1{τ≤T} is continuous at time T .

Proof : By the previous lemma there exists vn ↗ v∗ that solves x(n, vn) = L/2. It follows from
this and Lemma 5.4 that v(·, vn) solves (5.24) on [0, L] with terminal condition n on both sides
and that v(·, vn) → v(·, v∗). The comparison principle for the equation (5.24) implies that in fact
v(·, vn)↗ v(·, v∗). Now define the processes

Y τ,n
t = v(Wt, vn), Y τ,∞

t = v(Wt, v
∗).

Itô’s formula implies that Y τ,n
t solves (5.20) with terminal condition Yτ = n. Define τn be the first

time W hits [1/n, L− 1/n]. Itô’s formula implies Y τ,∞ satisfies (1.10) (with βn = τn) and the defi-
nition of v(·, v∗) and the continuity of the sample paths of W imply (1.11) with ξ =∞. Therefore,
Y τ,∞ is a supersolution of (5.20) with terminal condition Yτ =∞. Furthermore, v(·, vn)↗ v(·, v∗)
implies Y τ,n

t ↗ Y τ,∞
t . These imply that τ satisfies all of the conditions of being solvable. T is

also solvable because it is deterministic. Theorem 5.3 now implies the statement of the present
theorem. �
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6. Terminal condition ξ2

Let’s assume S solvable and τ a stopping time for which P(S = τ) = 0. Define

ξ2 =∞ · 1{τ>S}. (6.1)

Our goal now is to prove that the minimal supersolution corresponding to this type of terminal
condition is in fact a solution, i.e., it satisfies limt→∞ Y

ξ2
S∧t = ξ2. Our proof involves pasting processes

at stopping times to obtain candidate solutions; to simplify arguments that this procedure results
in solutions we assume that F is generated only by W . Here is the main result of this section:

Theorem 6.1. Suppose S is solvable and τ is an arbitrary stopping time such that P(S = τ) = 0.
Then the BSDE (2.9) has a minimal supersolution Y S,ξ2 in the time interval [[0, S]] with terminal
condition YS = ξ2 =∞ · 1{τ>S}. Furthermore this supersolution is in fact a solution:

lim
t→∞

Y S,ξ2
S∧t = ξ2. (6.2)

This generalizes Ahmadi et al. (2021, Theorem 2) which treats deterministic terminal times, to
random terminal times. The main idea of the proof of Ahmadi et al. (2021, Theorem 2) generalized
to the current setup is as follows: we construct a sequence of supersolutions to (2.9) with terminal
conditions YS = ∞ · 1{τ>Sn} where Sn is the sequence of stopping times approximating S. Note
that these processes are all defined over the time interval [[0, S]]; Sn < S allows one to prove that
they are all continuous at time S. This, ∞ · 1{τ>Sn} ≥ ∞ · 1{τ>S} and the comparison principle
for BSDE allow one to argue that Y S,ξ2 converges to its terminal condition at time S, which is the
result we seek.

Let us define several processes that will be useful in the proof of Theorem 6.1; they are all defined
as solutions of the BSDE (2.9) over the time interval [[0, S]] with different terminal conditions at
time S:

• Y S,L corresponds to the terminal condition L,
• Y S,0 to the terminal condition 0,
• Y S,L·1{τ>Sn} to the terminal condition L · 1{τ>Sn}.

These terminal conditions are FS-measurable and bounded. Hence from Theorem 1.4 and the
conditions (B), the corresponding solutions are well defined and unique (in the sense of Definition
1.1).

Let Y Sn,ξ̂2 be the solution of (2.9) in the time interval [[0, Sn]] with terminal condition

YSn = ξ̂2 = Y S,L
Sn
· 1{τ>Sn} + Y S,0

Sn
· 1{τ≤Sn};

ξ̂2 depends on L and n. The estimates on Y S,L and Y S,0 in Theorem 1.4 imply the existence and
uniqueness of Y Sn,ξ̂2 . We begin our argument with the following lemma.

Lemma 6.2. The process Y S,L·1{τ>Sn} has the following structure:

Y S,L·1{τ>Sn} = Yt
.
= Y Sn,ξ̂2

t 1{t≤Sn} + Y S,0
t · 1{t>Sn} · 1{τ≤Sn} + Y S,L

t · 1{t>Sn} · 1{τ>Sn}. (6.3)

Proof : First, Sn < S implies that Y is an adapted and continuous process with bounded terminal
value L·1{τ>Sn}; in particular, Y satisfies the terminal condition YS = L·1{τ>Sn} that Y S,L·1{τ>Sn}

satisfies. Let us show that Y satisfies also (2.9). Parallel to the definition of Y, define

Zt = ZSn,ξ̂2t 1{t≤Sn} + ZS,0t · 1{t>Sn} · 1{τ≤Sn} + ZS,Lt · 1{t>Sn} · 1{τ>Sn}.
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For any 0 ≤ t ≤ T , there are three cases to consider.

Case 1: 0 ≤ t ≤ T ≤ Sn < S. Since Y Sn,ξ̂2 solves (2.9) on [[0, Sn]]:

Yt∧S = Y Sn,ξ̂2
t = Y Sn,ξ̂2

T +

∫ T

t
f(u, Y Sn,ξ̂2

u , ZSn,ξ̂2u )du−
∫ T

t
ZSn,ξ̂2u dWu

= YT∧S +

∫ T∧S

t∧S
f(u,Yu,Zu)du−

∫ T∧S

t∧S
ZudWu.

Case 2: Sn < t ≤ T :

Yt∧S = Y S,0
t∧S · 1τ≤Sn + Y S,L

t∧S · 1τ>Sn
= YT∧S

+

∫ T∧S

t∧S

[
f(u, Y S,0

u , ZS,0u ) · 1{τ≤Sn} + f(u, Y S,L
u , ZS,Lu ) · 1{τ>Sn}

]
du

−
∫ T∧S

t∧S

[
ZS,0u · 1{τ≤Sn} + ZS,Lu · 1{τ>Sn}

]
dWu

= YT∧S +

∫ T∧S

t∧S
f
(
u,Yu, ZS,0u · 1{τ≤Sn} + ZS,Lu · 1{τ>Sn}

)
du

−
∫ T∧S

t∧S

[
ZS,0u · 1{τ≤Sn} + ZS,Lu · 1{τ>Sn}

]
dWu

= YT∧S +

∫ T∧S

t∧S
f(u,Yu,Zu)du−

∫ T∧S

t∧S
ZudWu

since both sets {τ ≤ Sn} and {τ > Sn} are FSn-measurable.

Case 3: 0 ≤ t ≤ Sn < T :

Yt∧S = Y Sn,ξ̂2
t = YSn +

∫ Sn

t∧S
f(u,Yu, ZSn,ξ̂2u )du−

∫ Sn

t∧S
ZSn,ξ̂2u dWu

= Y S,0
Sn
· 1τ≤Sn + Y S,L

Sn
· 1τ>Sn

+

∫ Sn

t∧S
f(u,Yu, ZSn,ξ̂2u )du−

∫ Sn

t∧S
ZSn,ξ̂2u dWu

= YT∧S +

∫ T∧S

Sn

f(u,Yu, ZS,0u · 1τ≤Sn + ZS,Lu · 1τ>Sn)du

−
∫ T∧S

Sn

[
ZS,0u · 1τ≤Sn + ZS,Lu · 1τ>Sn

]
dWu

+

∫ Sn

t∧S
f(u,Yu, ZSn,ξ̂2u )du−

∫ Sn

t∧S
ZSn,ξ̂2u dWu

= YT∧S +

∫ T∧S

t∧S
f(u,Yu,Zu)du−

∫ T∧S

t∧S
ZudWu.

Hence we have verified that (Y,Z) solves the BSDE (2.9). The statement of the lemma follows from
the uniqueness of such a solution (Theorem 1.4). �

We now give

Proof of Theorem 6.1: Let Y S,ξ2∧L be the solution of (2.9) with bounded terminal condition YS =
ξ2∧L = L·1{τ>S}.As usual, we define Y S,ξ2 via approximation from below: Y S,ξ2 = limL↗∞ Y

S,ξ2∧L.
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That S is solvable and Lemma 2.2 imply that Y S,ξ2 is the minimal supersolution we seek. It remains
to prove (6.2), i.e., limt→∞ Y

S,ξ2
t∧S = ξ2. Once again, this holds over the event {τ > S} = {ξ2 = ∞}

by construction (approximation from below, Lemma 1.7). Therefore, we only focus on the proof of
(6.2) over the event {τ ≤ S}. Recall the process Y S,L·1{τ>Sn} of (6.3) that is the solution of (2.9)
over the interval [[0, S]] with terminal condition YS = L · 1{τ>Sn}. That Sn ≤ S implies

L · 1{τ>S} ≤ L · 1{τ>Sn}

This and the comparison principle imply

Y S,ξ2∧L
t ≤ Y S,L·1{τ>Sn}

t , for t ≤ S.

Lemma 6.2 implies

Y S,ξ2∧L
t ≤ Y S,0

t , for t ∈]]Sn, S]]

over the event {τ ≤ Sn}. Combining the last two displays we get

Y S,ξ2∧L
t ≤ Y S,0

t , for t ∈]]Sn, S]]

over the event {τ ≤ Sn}. The right side of the last inequality doesn’t depend on L. Letting L↗∞
on the left gives

Y S,ξ2
t ≤ Y S,0

t , for t ∈]]Sn, S]].

over the event {τ ≤ Sn}. The right side of the above inequality is a classical solution of the BSDE
(2.9) with 0 terminal condition. Therefore, taking limits of both sides above give

lim sup
t→∞

Y S,ξ2
t∧S ≤ lim

t→∞
Y S,0
t∧S = 0.

By its construction, Y S,ξ2 ≥ 0. This and the last display imply

lim
t→∞

Y S,ξ2
t∧S = 0.

over the event {τ ≤ Sn}. Finally, Sn ↗ S and P(τ = S) = 0 imply
⋃∞
n=1{τ ≤ Sn} = {τ ≤ S}. This

and the last display imply

lim
t→∞

Y S,ξ2
t∧S = 0 = ξ2

over the event {τ ≤ S}. This completes the proof of the theorem. �

7. Conclusion

The present work develops solutions to the BSDE (1.1) with random terminal time S for a range
of singular terminal values. We do this by proving that the minimal supersolution is continuous
at S and attains the terminal value by constructing upperbound processes that force the desired
continuity at S on the minimal supersolution. A key ingredient of our arguments is the concept of
a solvable stopping time with respect to the given BSDE and filtration, introduced in the present
work. Solvability means that the BSDE has a supersolution with value ∞ at the given stopping
time. In our arguments we assume the terminal time S to be solvable. We note that a stopping
time that has a positive density around 0 is not solvable. We also note that deterministic times as
well as exit times of continuous diffusion processes from smooth domains are solvable. A natural
direction for future work is to further understand the concept of solvability and identify other classes
of solvable/non-solvable stopping times.
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8. Symbols and notation

(1) (Ω,F ,P) is the probability space on which all of the random variables are defined; F is a
complete, right continuous filtration of F supporting a d-dimensional standard Brownian
motion W and a Poisson random measure π on E ⊂ Rm \ {0} with intensity µ (see 1.1).

(2) (Y, Z, U,M) are the components of a (super)solution to the BSDE (1.1), which is defined
by the driver f , the terminal condition ξ and terminal time S, a stopping time (Definitions
1.1 and 1.5).

(3) Constants and functions appearing in assumptions (A1)-(A4): χ, Υt, f0
t , κ, ϑ,Lz, Lϑ.

(4) Constants appearing in other assumptions of Theorem 1.4 (Kruse and Popier (2016a, 2017,
Theorem 3)) guaranteeing the existence of a unique classical solution to the BSDE (1.1):
r > 1, ρ, K (see (1.7)), ν (see (1.8)).

(5) Constants appearing in assumptions (B1)-(B4): q > 1, δ > δ∗, m > m∗.
(6) Constants appearing in Definition 1.5 of a supersolution: ` > 1.
(7) (Y∞, Z∞, U∞,M∞) is the minimal supersolution with terminal condition +∞ a.s. at the

solvable stopping time S.
(8) More generally, superscripts to (Y, Z, U,M) are used to denote terminal times and conditions

for (super)solutions; an example: Y τ∧S,ξ1∧k denotes the Y component of the solution of the
BSDE (1.1) with terminal condition Yτ∧S = ξ1 ∧ k. We omit the terminal time from the
superscript when an emphasis on the terminal time is not necessary.

(9) Itô’s diffusion Ξ, its drift b and diffusion coefficient σ (1.19).
(10) L: infitesimal generator of Ξ (4.7).
(11) D: open bounded subset of Rd with C2 boundary,
(12) For a set B ⊂ Rd, distB : Rd → R, distB(x) = infy/∈B ‖x − y‖ for y ∈ B, distB(x) =

− infy∈B ‖x− y‖, x /∈ B; if B = D we write dist.
(13) Dλ = {x ∈ Rd, |dist(x)| ≤ λ} (4.2).
(14) For a set U ⊂ Rd, U denotes its closure.
(15) Decomposition of f into four parts: f = φ+$ + θ + f0 (3.1).
(16) Constants and functions appearing in assumptions (C1)-(C2): ςt > 0, f, κ∗ > −1; Θ of

(3.2) is defined in terms of f.
(17) C, C1, C2, etc. are used throughout the text to denote a positive real constant that is

independent of (t, x, ω); the dependence of a constant on model parameters is indicated
wherever it is used.

(18) Constants and functions appearing in assumptions (D1)-(D3): g, F∞.
(19) ξ1 = 1{τ≤S}, τ is a stopping time of F, (5.1).
(20) ξ2 = 1{τ>S}, τ is a stopping time of F, (6.1).
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