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The semileptonic Ω0
c → Ω−lν and nonleptonic Ω0

c → Ω−πþ, Ω0
c → Ω−ρþ decays of the charmed Ωc

baryon are studied within the light cone sum rules. The form factors responsible for Ωc → Ω transitions are
calculated using the distribution amplitudes of theΩc baryon. With the obtained form factors, the branching
ratios ofΩ0

c → Ω−lþνl,Ω0
c → Ω−πþ, andΩ0

c → Ω−ρþ decays are estimated. The results are compared with
Belle data as well as the findings of other approaches.
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I. INTRODUCTION

The semileptonic weak decays of hadrons represent a
very promising class of decays. The study of semileptonic
decays can provide us with useful information about the
elements of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. The investigation of these decays can play a crucial
role in studying strong interactions, i.e., the form of the
effective Hamiltonian. The decay amplitudes of semilep-
tonic decays can be represented as a product of a well-
understood leptonic current and a complicated hadronic
current for describing the quark transitions. The hadronic
part of the weak decays is usually parametrized in terms of
form factors. The form factors belong to the nonperturba-
tive region of QCD; hence, some nonperturbative methods
are needed to calculate them. Among these methods, the
QCD sum rules approach [1] occupies a particular place.
The advantage of this method is that it is based on the
fundamental QCD Lagrangian.
The lowest-lying Ωc baryon predominantly decays

weakly [2]. Up to now, several Ω0
c decays—such as Ω0

c →
Ξ0K̄ð�Þ0, Ω−ρþ, and Ω−lþνe—have been observed [3].
The first observation of semileptonic decaysΩc → Ω−eþνe
was achieved by the CLEO Collaboration [3] with

R ¼ BðΩ0
c→Ω−eþνeÞ

BðΩ0
c→Ω−πþÞ ¼ 2.4� 1.2. This decay has been care-

fully investigated within different approaches such as the
light-front quark model [4,5], the heavy quark expansion
model [6], and the quark model [7]. However, the pre-
dictions of the branching ratios of Ω0

c → Ω−lþνe vary
between 0.005 and 0.127, and this large variation deserves
much more attention.
Recently, the Belle Collaboration announced the first

observation of Ω0
c → Ω−μþνμ decay [8]. In this study,

measurements of the branching ratios of Ω0
c → Ω−lþνl

ðl ¼ e or μÞ decays are compared to the reference mode

Ω0
c → Ω−πþ; namely, the branching ratios BðΩ0

c→Ω−eþνeÞ
BðΩ0

c→Ω−πþÞ
and BðΩ0

c→Ω−μþνμÞ
BðΩ0

c→Ω−πþÞ are 1.98� 0.13ðstatÞ � 0.08ðsystÞ and

1.94� 0.18ðstatÞ � 0; 10ðsystÞ, respectively.
The new measurement and the variation in the predic-

tions of the branching fractions among different models
need further attention. In the present work, we study
the Ω0

c → Ω−lþνe decay within the light cone sum rules
(LCSR) method (for more information about the LCSR
method, see [9]).
The paper is organized as follows. In Sec. II, the LCSR

for the relevant form factors responsible for Ω0
c → Ω−

transitions are derived. A numerical analysis, including the
results for the form factors and decay widths, is presented
in Sec. III. The last section contains our conclusion.

II. FORM FACTORS FOR Ωc → Ω TRANSITION
IN LCSR

To calculate the form factors for the Ω0
c → Ω− transition,

we consider the following correlation function:
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Πμν ¼ i
Z

d4xeip
0xh0jTfJΩμ ðxÞJV−Aν ð0ÞgjΩci: ð1Þ

Here, the current JΩμ ¼ ϵjklsj
T
Cγμsksl is the interpolating

current of the Ω baryon, JV−Aν ð0Þ ¼ s̄γνð1 − γ5Þc is the
current describing the c → s transition, and j, k, and l are
the color indices.
In LCSR, the correlation function is calculated both at

hadronic and QCD level at the deep Euclidean region, i.e.,
p2 ≪ m2

c, q2 ≪ m2
c. Then, the results of the calculations

for the two representations of the correlation function are
matched by using the quark-hadron duality ansatz. As a
result, the sum rules for the relevant form factors are derived.
Let us first calculate the correlation function from the

hadronic side. Inserting the complete set of baryon states
carrying the quantum numbers of theΩ baryon and isolating
the ground state for the correlation function, we obtain

Πμν ¼
λh0jJΩμ jΩðp0ÞihΩðp0Þjs̄γνð1 − γ5ÞcjΩcðpÞi

m2
Ω − p02 : ð2Þ

The first term of this matrix is defined as

h0jJΩμ jΩðp0Þi ¼ λuμðp0Þ; ð3Þ

where λ is the decay constant and uμðp0Þ is the Rarita-
Schwinger spinor for the spin-3=2 Ω baryon.
The second matrix element is parametrized in terms of

eight transition form factors,

hΩðp0Þjs̄γμð1− γ5ÞcjΩcðpÞi

¼ ūαðp0Þ
��

pα

mΩc

�
γνF1 þ

pν

mΩc

F2 þ
p0
ν

mΩ
F3

�
þF4gνα

�
γ5

−
�
pα

mΩc

�
γνG1 þ

pν

mΩc

G2 þ
p0
ν

mΩ

�
þG4gμα

��
uðpÞ:

ð4Þ

The summation over spins of theΩ baryon is performed via
the formula

X
s

uαðp0Þūβðp0Þ ¼ −ð=p0 þmΩc
Þ
�
gαβ −

1

3
γαγβ −

2

3

p0
αp0

β

m2
Ω

þ 1

3

p0
αγβ − p0

βγα
mΩ

�
: ð5Þ

Before delving into the analysis, we make the following
two remarks.

(i) The current JΩμ also couples with spin-1=2 negative
parity baryons, i.e.,

h0jJΩμ jB−ðp0Þi ∼
�
γμ −

4

m
p0
μ

�
uðp0; sÞ; ð6Þ

where B denotes the negative parity baryon. There-
fore, the structures with p0

μ and γμ terms also contain
the contributions of the spin-1=2 baryon. Using this
fact, from Eq. (5) we find that only the structure with
the gαβ term is free of spin-1=2 baryon contributions.
In other words, the structure with the gαβ term
contains contributions coming only from spin-3=2
baryons.

(ii) Note that not all the Lorentz structures are indepen-
dent, and to overcome this problem, a specific order
of Dirac matrices is chosen. In this work, we choose
the structure γμ=qγν=pðγμ=qγν=pγ5Þ.

Taking these remarks into account, we obtain the
correlation function from the hadronic part,

Πμν ¼
1

m2
Ω − p02

�
pμ

mΩc

�
F1ð2pνγ5 þ ðmΩc

þmΩÞγνγ5 − =qγνγ5Þ þ F2

pν

mΩc

ððmΩ −mΩc
Þγ5 − =qγ5Þ

þ 1

mΩ
F3ðp − qÞνððmΩ −mΩc

Þγ5 − =qγ5Þ
�
þ F4gμνððmΩ −mΩc

Þγ5 − =qγ5Þ

−
pμ

mΩc

�
G1ð2pν þ ðmΩ −mΩc

Þγν − =qγνÞ þ
G2pν

mΩc

ððmΩ þmΩc
Þ − =qÞ

þ G3

ðp − qÞν
mΩ

ððmΩ þmΩc
Þ − =qÞ

�
þ G4gμνðmΩ þmΩc

Þ − =q

�
þ � � � ; ð7Þ

where dots stand for the contributions of higher states and continuum, denoting the contributions arising from quarks
starting from some threshold sth value. In the following discussions, we denote the momentum of the Ωc baryon as
pμ → mΩc

vμ, where vμ is its velocity.
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At this point, a few words are in order. The number of
independent form factors is considerably reduced if the
heavy quark limit is applied. In this limit, the ΩQ and Ω�

Q

are controlled with the same dynamics but described by
different spinors. For this reason, the weak decays,
ΩQ → Ω and Ω�

Q → Ω, can be studied together.
Now let us turn our attention to the calculation of the

correlation function from the QCD side with the help of the
operator product expansion (OPE). Using the Wick theo-
rem from Eq. (1) we get the correlation function

Πμν¼ i
Z

d4xeip
0xh0jϵjklðCγμÞαβðT νÞα1β1

×fScj1γα1ðxÞsjαðxÞskβðxÞcj1β1ð0Þ−Skj1βα1
ðxÞsjαðxÞslγðxÞcj1β1ð0Þ

þSjj1αα1ðxÞskβðxÞslγðxÞcj1β1ð0ÞgjΩci; ð8Þ

where SðxÞ is the s-quark propagator, and T ν ¼ γνð1 − γ5Þ.
From Eq. (8), it follows that, to calculate the correlation
function from the QCD side, we need the matrix element
ϵjklh0js̄jαðxÞskβðxÞclγð0ÞjΩci. This matrix element can be
parametrized in terms of the heavy baryon distribution
amplitudes (DAs). The DAs of the sextet baryons with
quantum numbers JP ¼ 1

2
þ in the heavy quark mass limit

are obtained in [10]. In this work, the DAs are classified by
the total spin of two light quarks. If the polarization vector
is parallel to the light cone plane, the matrix element
ϵjklh0jqj1αðt1Þqk2βðt2ÞQl

γð0ÞjΩQðpÞi can be expressed in
terms of the four DAs in the following way:

ϵjklh0jsjαðt1Þskβðt2Þclγð0ÞjΩcðvÞi ¼ ΣAiðΓiC−1Þαβðγ5=̄vuΩc
Þγ
ð9Þ

where

A1 ¼
1

8
vþfð1Þψ2; Γ1 ¼ =̄n;

A2 ¼ fð2Þψ ðσÞ
3 ; Γ2 ¼

1

8
iσαβn̄αnβ;

A3 ¼
1

4
ψ ðsÞ
3 fð2Þ; Γ3 ¼ 1;

A4 ¼ −
1

8vþ
ψ4fð1Þ; Γ4 ¼ =n: ð10Þ

Here, nμ ¼ xμ
vx, n̄μ ¼ 2vμ − 1

vx xμ, v̄μ ¼
xμ
vx − vμ, and fðiÞ are

the decay constants of the Ωc baryon, and ψ ðiÞ are the
distribution amplitudes. The Fourier transformations of the
DAs are Ψðx1; x2Þ ¼

R∞
0 dω1dω2e−iω1t1e−iω2t2ψðω1ω2Þ,

where ω1 and ω2 are the momentum of two light quarks
along the light cone direction, and their total momentum is
ω ¼ ω1 þ ω2 with t1 ¼ x1n and t2 ¼ x2n. The DAs can be
written as

ψðt1;t2Þ¼
Z

∞

0

dωω
Z

due−iωvx1e−iωūðx2−x1Þψðω;uÞ: ð11Þ

In our case, since x1 ¼ x2, we get

ψðt; t2Þ ¼
Z

∞

0

dωω
Z

due−iωvxψðω; uÞ: ð12Þ

Based on heavy-quark symmetry, we can use the same DAs
for the baryon containing the charm quark and the b quark.
In [10], the DAs for the Ωb baryon were obtained, and we
used the same DAs for Ωc in this work:

ψ2ðω; uÞ ¼ ω2uð1 − uÞ
X2
n¼0

an
ϵn

4

C3=2
n ð2u − 1Þ
jC3=2

n j2
e−ω=ϵn ;

ψ4ðω; uÞ ¼
X2
n¼0

an
ϵn

2

C1=2
n ð2u − 1Þ
jC1=2

n j2
e−ω=ϵn ;

ψ3ðω; uÞ ¼
ω

2

X2
n¼0

an
ϵn

3

C1=2
n ð2u − 1Þ
jC1=2

n j2
e−ω=ϵn ; ð13Þ

where

jCλ
nj2 ¼

Z
1

0

du½Cλ
nð2u − 1Þ�2; ð14Þ

with jC1=2
0 j2 ¼ jC3=2

0 j2 ¼ 1, jC1=2
1 j2 ¼ 1=3, jC3=2

1 j2 ¼ 3,

jC1=2
2 j2 ¼ 1=5, and jC3=2

2 j2 ¼ 6. The parameters entering
Eqs. (13) are obtained in [10], and we present their
expressions in Table I for completeness. For the numerical
calculations we take A ¼ 1=2. Note that the variation of
leading twist-2 distribution amplitudes with respect to the
free parameter A is studied in [10]. When A varies in [0.3,
0.7], the DAs change by about 10%. Since we have taken
A ¼ 0.5, the results are expected to vary in the same order.
From Eq. (8), we obtain the following form using

Eq. (9):

Πμν ¼ i
Z

d4x
Z

∞

0

dωω

×
Z

1

0

dueiðp0−ωvÞx
��X

AiðTrΓiγμÞST νγ5=̄v

− 2
X

AiCΓT
i C

−1γμSγ5T ν=̄v

��
uΩc

: ð15Þ

TABLE I. Values of the parameters appearing in DAs of the Ωc
baryon [see Eq. (13)].

Twist a0 a1 a2 ϵ0 ϵ1 ϵ2

2 1 ... 8Aþ1
Aþ1

1.3Aþ1.3
Aþ6.9

... 0.41Aþ0.06
Aþ0.11

3σ 1 ... 0.17A−0.16
A−2

0.56A−1.1
A−3.22 ... 0.44A−0.43

Aþ0.27
3s ... 1 ... ... 0.45A−0.63

A−1.4 ...
4 1 ... −0.10A−0.01

Aþ1
0.62Aþ0.62
Aþ1.62

... 0.87Aþ0.07
Aþ2.53

CHARMED BARYON Ω0
c → Ω−lþνl… PHYS. REV. D 106, 074022 (2022)

074022-3



After integrating over x, one can obtain the explicit
expressions of the correlation function at QCD level.
Separating the coefficients of the Lorentz structures
[vμ=qγνγ5, =qγ5vμqν, =qγ5vμvν, =qγ5gμν (=qγνvμ, =qvμqν,
=qvμvν, =qgμν)] from both representations of the correlation

function, we get the desired sum rules for the transition
form factors F1ðq2Þ, F3ðq2Þ, F2ðq2Þ þ F3ðq2Þ, and
F4ðq2Þ [ðG1ðq2Þ; G3ðq2Þ; G2ðq2Þ þG3ðq2ÞÞ and G4ðq2Þ],
respectively:

λΩ
ðp − qÞ2 −m2

Ω
F1ðq2Þ ¼ Π1; −

λΩ
m2

Ω − ðp − qÞ2 G1ðq2Þ ¼ Π5;

−
1

mΩ

λΩ
m2

Ω − ðp − qÞ2 F3ðq2Þ ¼ Π2;
1

mΩ

λΩ
m2

Ω − ðp − qÞ2 G3ðq2Þ ¼ Π6;

λΩ
m2

Ω − ðp − qÞ2
�
F2ðq2Þ þ

mΩc

mΩ
F3ðq2Þ

�
¼ Π3; −

λΩ
m2

Ω − ðp − qÞ2
�
G2ðq2Þ þ

mΩc

mΩ
G3ðq2Þ

�
¼ Π7;

λΩ
m2

Ω − ðp − qÞ2 F4ðq2Þ ¼ Π4; −
λΩ

m2
Ω − ðp − qÞ2 G4ðq2Þ ¼ Π8: ð16Þ

Here, Πi are the invariant functions for the Lorentz structures mentioned above. In general, the invariant functions can be
written in the following form,

Πi ¼
Z

1

0

du
Z

dσσ

�
ρð1Þi

Δ
þ ρð2Þi

Δ2
þ ρð3Þi

Δ3

�
; ð17Þ

where Δ ¼ p02 − sðσÞ, σ ¼ ω
mΩc

, and i runs from 1 to 8 (each value of i describes the corresponding structure). Since the

explicit expressions of ρð1Þi , ρð2Þi , and ρð3Þi are lengthy, we do not present them here. Applying Borel transformation with
respect to the variable −ðp − qÞ2, we get the sum rules for the form factors:

F1 ¼
em

2
Ω=M

2

λΩ
ΠB

1 ; G1 ¼ −
em

2
Ω=M

2

λΩ
ΠB

5 ;

F2 þ
mΩc

mΩ
F3 ¼

em
2
Ω=M

2

λΩ
ΠB

3 ; G2 þ
mΩc

mΩ
G3 ¼ −

em
2
Ω=M

2

λΩ
ΠB

7 ;

F3 ¼ −
mΩ

λΩ
em

2
Ω=M

2ΠB
2 ; G3 ¼

mΩ

λΩ
e−m

2
Ω=M

2ΠB
6 ;

F4 ¼
em

2
Ω=M

2

λΩ
ΠB

4 ; G4 ¼ −
em

2
Ω=M

2

λΩ
ΠB

8 : ð18Þ

Borel transformation and continuum subtraction are performed with the help of the formula

Z
∞

0

dσ
ρðσÞ

½ðp − qÞ2 − sðuÞ�n ⇒
Z

σ0

0

dσ

�
ð−1Þn e−sðσÞInðu; σÞ

ðn − 1Þ!ðM2Þn−1
�
−
ð−1Þne−sðσÞ=M2

ðn − 1Þ!
Xn−1
j¼1

1

ðM2Þn−j−1
1

s0

�
d
dσ

1

s0

�
j−1

In

����
σ¼σ0

;

ð19Þ

where

σ0 ¼
ðsth þm2

Ωc
− q2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsth þm2

Ωc
− qÞ2 − 4m2

Ωc
ðsth −m2

sÞ
q

2m2
Ωc

; ð20Þ

and
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In ¼
ρnðσÞ
σ̄n

: ð21Þ

Numerical analysis of the obtained sum rules for the form
factors is carried out in the next section.
Having determined the form factors for the Ω0

c → Ω−

transition, it is straightforward to calculate the width
of the semileptonic Ω0

c → Ω−lþνl and nonleptonic Ω0
c →

Ω−πþðρþÞ decays.
First, we present the amplitudes ofΩ0

c → Ω−h (h ¼ π, ρ)
and Ω0

c → Ω−lþνl in the helicity basis of HλΩλhðlÞ [4,11,12].
While λΩ ¼ �3=2;�1=2 corresponds to the helicity states

of the Ω baryon, λhðlÞ corresponds to the helicity states of
the πðρÞ and lþνl pair, respectively. The helicity amplitudes
are defined as

HVðAÞ
λΩ;λW

¼ hΩðλΩÞjs̄γμðγ5ÞcjΩcðλÞiϵ�μW ðλWÞ; ð22Þ

where λ ¼ λW − λΩ and ϵ�μW is the four-vector of the
virtual W boson. Using these definitions of the helicity
amplitude(s) and the matrix element hΩjs̄γμðγ5ÞcjΩci in
terms of the form factors, we get the following relations [4]:

HVðAÞ
3=2;1 ¼∓

ffiffiffiffiffiffiffi
Q2∓

q
F4ðG4Þ;

HVðAÞ
1=2;1 ¼ −

ffiffiffiffiffiffiffi
Q2∓
3

s �
F1ðG1Þ

Q2
�

m1m2

− F4ðG4Þ
�
;

HVðAÞ
1=2;0 ¼

ffiffiffiffiffiffiffiffiffiffi
2Q2∓
3q2

s �
F1ðG1Þ

Q2
�m∓

2m1m2

∓
�
F2ðG2Þ þ F3ðG3Þ

m1

m2

� jp⃗Ωj2
m2

∓ F4ðG4Þm̃
�
;

H̃VðAÞ
1=2;t ¼

ffiffiffiffiffiffiffiffiffi
2Q2

�
3q2

s
Q2∓

2m1m2

F1ðG1Þm� ∓ ðF2ðG2Þm̃þ ∓ F3ðG3Þm̃− ∓ F4ðG4Þm1Þ: ð23Þ

In these expressions, m� ¼ m1 �m2, Q2
� ¼ m2

� − q2,
m̃� ¼ ðmþm− � q2Þ=2m1ðm2Þ. Here, m1 and m2 are the
mass of the Ωc and Ω baryons, respectively. The remaining
helicity amplitudes can be obtained by the symmetry
relation

HVðAÞ
−λ;−λW ¼∓HVðAÞ

λ;λW
: ð24Þ

From these helicity amplitudes, the decay widths of the
semileptonic and nonleptonic decays are calculated as

ΓðΩc → ΩlνÞ

¼ G2
FjVcsj2

192π3m2
Ωc

Z ðmΩc−mΩÞ2

m2
l

dq2
jp⃗Ωjðq2 −m2

l Þ2
q2

H2
l ð25Þ

and

ΓðΩc → ΩhÞ ¼ G2
Fjp⃗Ωj

32πm2
Ωc

jVcsV�
udj2a21m2

hf
2
hH

2
h; ð26Þ

H2
l ¼

�
1þ m2

l

2q2

�
H2

ρ þ
3m2

l

2q2
H2

π; ð27Þ

where

H2
ρ ¼ jH3=2;1j2 þ jH1=2;1j2 þ jH1=2;0j2

þ jH−1=2;0j2 þ jH−1=2;−1j2 þ jH−3=2;−1j2; ð28Þ

H2
π ¼ jH1=2;tj2 þ jH−1=2;tj2: ð29Þ

Here, GF is the Fermi coupling constant, and Vij are the
elements of the CKM. The factor a1 ¼ C1 þ C2=Nc comes
from the factorization [13], where Nc is the color factor and
C1 ¼ −0.25 and C2 ¼ 1.1 are the Wilson coefficients [11].

III. NUMERICAL ANALYSIS

In this section, we perform numerical analysis for the
transition form factors obtained in the previous section.
For this goal, first we present the input parameters in our
numerical analysis:

mcð1GeVÞ¼1.35�0.10GeV ½2�;
msð1GeVÞ¼0.12�0.02GeV ½2�;

mπ¼0.140GeV ½2�; mρ¼0.77GeV ½2�;
mΩc

¼2.695GeV ½2�; mΩ¼1.672GeV ½2�;
fπ¼132MeV ½2�; fρ¼216MeV ½2�;

fð1Þ ¼0.093�0.01 ½14�; fð2Þ ¼0.093�0.01 ½14�;
ð30Þ
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Vcs ¼ 0.97320� 0.00011 ½2�;
Vud ¼ 0.97401� 0.00011 ½2�: ð31Þ

For the quark masses, MS scheme values are used. Besides
these input parameters, LCSR involve two auxiliary
parameters: the continuum threshold sth and the Borel
mass parameter M2. The working region of M2 is deter-
mined in such a way that the power corrections as well as
the continuum contributions are suppressed. The working
region of sth is determined from the condition that the mass
sum rules reproduce the mass with, say, 10% accuracy.
Following these criteria, we obtain the working regions
of sth and M2:

4.0GeV2 ≤ sth ≤ 4.5 GeV2;

3.0 GeV2 ≤ M2 ≤ 4.0 GeV2: ð32Þ

In these working regions of sth andM2, both the conditions
of the smallness of the subleading twist-3 and twist-4
contributions and the suppression of the higher states, as
well as continuum contributions, are satisfied.
Having determined the working intervals of the threshold

and Borel mass parameters, the next task is to find the best-
fitting form factors. The LCSR predictions for the form
factors are not applicable for the whole physical region,
m2

l ≤ q2 ≤ ðm2
Ωc

−mΩÞ2, but give reliable results for up to
the q2 ≤ 0.5 GeV2 region. Hence, we first obtain the form
factors within QCD sum rules up to q2 ≃ 0. Then, we
extrapolate from the domain where LCSR predictions are
reliable to the full physical region by applying the follow-
ing z-expansion fit function [15,16]:

Fiðq2Þ ¼
1

1 − q2

m2
R;i

ðai0 þ ai1ðzðq2Þ − zð0ÞÞ

þ ai2ðzðq2Þ − zð0ÞÞ2Þ; ð33Þ

where

zðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ð34Þ

and t� ¼ ðmΩc
�mΩÞ2, t0 ¼ tþð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − t−

tþ

q
Þ.

Here, mR;i are the corresponding masses of the reso-
nances for the c → s transition in the spectrum, i.e.,
mDs

¼ 1.97 GeV.
The obtained parametrization that best reproduces

the form factors predicted by the LCSR in the region

q2 ≤ 1.1 GeV2 is given in Table II. Note that a0 corre-
sponds to the form factor at q2 ¼ 0, i.e., a0 ¼ Fiðq2 ¼ 0Þ.
To verify that the results of the form factors depend weakly
on the chosen M2 and sth auxiliary parameters, we plot
the variation of the form factors at q2 ¼ 0, on M2 and
sth ¼ 4 GeV2, in Fig. 1. The figure shows good stability of
the form factors on M2 and sth.
Using the obtained results for the form factors respon-

sible for the Ω0
c → Ω− transition, we calculate the branch-

ing ratio for Ω0
c → Ω−lþνl and Ω0

c → Ω−hþ (h ¼ π, ρ)
decays by using Eqs. (34) and (33). The lifetime of the Ωc

baryon is taken as τ ¼ ð268� 24� 10Þ × 10−15 s [2].
The Belle II Collaboration recently reported a lifetime of
the Ωc baryon, τ ¼ 243� 48� 11, which agrees with the
previous measurements [17]. Using the values of the
input parameters together with the decay width expres-
sions, we obtain the branching ratios that are presented
in Table III.
The Ω0

c → Ω− transition has been studied in several
models [4,7,11,18,19]. The obtained results are pre-
sented in Table III. Our results are close to the pre-
dictions of the light-front quark model [4] for the
semileptonic part. However, there is a large discrepancy
with other studies for these decays. In addition, our
theoretical predictions do not match with the recent
Belle II measurement [8], especially for the semileptonic
Ω0

c → Ω−lþνl decay. A similar situation was also
obtained in [4]. This discrepancy might be due to large
1
mc

corrections or the existence of new physics. This point
needs further detailed analysis.
On the other hand, an upper bound for Rρ=π > 1.3 is

set by the experiment. This bound does not contradict
theoretical results; however, there is a considerable
discrepancy among the predictions of different
theoretical approaches. Hopefully, more experimental
and theoretical efforts on this transition will lessen the
discrepancy.

TABLE II. Values of the form factors at q2 ¼ 0 and the fit
parameters of ai.

a0 a1 a2

F1 −0.55� 0.05 6.391 −191.2
F2 −0.68� 0.07 30.94 −1053
F3 1.0� 0.2 −35.60 1117
F4 0.16� 0.02 −7.24 239.9
G1 −0.48� 0.02 3.513 −100.9
G2 0.68� 0.07 −30.1 1053
G3 −1.0� 0.2 35.60 −1117
G4 −0.16� 0.02 7.24 −239.9
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FIG. 1. Working regions of M2 and s0 as well as the value of residues for the considered states.
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IV. CONCLUSION

In this work, the semileptonic and nonleptonic decays of
Ω0

c, namely, Ω0
c → Ω−lþνl, Ω0

c → Ω−πþ, and Ω0
c → Ω−ρþ,

are studied within the framework of the light-cone sum rules
by using the distribution amplitudes of theΩc baryon. In this
study, DAs for Ωb baryons are used for their c-quark
counterpart depending on the heavy-quark symmetry. We
first calculated the transition form factors for the Ω0

c → Ω−

decay in the LCSR method. Then, using the obtained results
for the transition form factors, we predicted the branching
ratios of the semileptonic Ω0

c → Ω−lþνl (where l ¼ e, μ)
and nonleptonic Ω0

c → Ω−πþðρþÞ decays. Finally, we com-
pared our predictions with other approaches as well as recent
Belle II results. We found that our results, especially on the
branching ratio for the semileptonic Ω0

c → Ω−lþνl decay
normalized to Ω0

c → Ω−πþ, are considerably smaller than

existing experimental data. A similar discrepancy was also
obtained in the light-front approach.
We found that there is a large deviation between the

theoretical predictions and experimental results on the
branching ratios of the semileptonic decays. Our results
on the branching ratios for the semileptonic decay (nor-
malized to Ω → π) are compatible with the light-front
quark model. However, other approaches’ results drasti-
cally differ from ours. Similar circumstances take place for
the nonleptonic decays as well. Although there is only a
lower bound for the ratio, Rρ=π , theoretical predictions
differ among themselves. At this stage, it is hard to identify
the reason for the discrepancies for both semileptonic and
nonleptonic decays of the Ωc baryon. These points need
further studies from both experimental and theoretical
sides, and new physics implications may even be implied.
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