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Charmed baryon Q! — Q~I*y, and Q! — Q- z* (p*) decays
in light cone sum rules
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The semileptonic Q¥ — Q~ /v and nonleptonic Q0 — Q 7", Q¥ — Q~p* decays of the charmed Q,
baryon are studied within the light cone sum rules. The form factors responsible for Q. — Q transitions are
calculated using the distribution amplitudes of the Q. baryon. With the obtained form factors, the branching
ratios of Q2 — Q7 Iy,, Q¥ = Q 7", and Q0 — Q~pT decays are estimated. The results are compared with
Belle data as well as the findings of other approaches.
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I. INTRODUCTION

The semileptonic weak decays of hadrons represent a
very promising class of decays. The study of semileptonic
decays can provide us with useful information about the
elements of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. The investigation of these decays can play a crucial
role in studying strong interactions, i.e., the form of the
effective Hamiltonian. The decay amplitudes of semilep-
tonic decays can be represented as a product of a well-
understood leptonic current and a complicated hadronic
current for describing the quark transitions. The hadronic
part of the weak decays is usually parametrized in terms of
form factors. The form factors belong to the nonperturba-
tive region of QCD; hence, some nonperturbative methods
are needed to calculate them. Among these methods, the
QCD sum rules approach [1] occupies a particular place.
The advantage of this method is that it is based on the
fundamental QCD Lagrangian.

The lowest-lying Q. baryon predominantly decays
weakly [2]. Up to now, several Q¥ decays—such as QY —
20RO Q-pt, and Q- Itv,—have been observed [3].
The first observation of semileptonic decays Q. — Q~e™v,
was achieved by the CLEO Collaboration [3] with
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R = % = 2.4+ 1.2. This decay has been care-

fully investigated within different approaches such as the
light-front quark model [4,5], the heavy quark expansion
model [6], and the quark model [7]. However, the pre-
dictions of the branching ratios of Q0 — Q~I*y, vary
between 0.005 and 0.127, and this large variation deserves
much more attention.

Recently, the Belle Collaboration announced the first
observation of Q0 — Q uty, decay [8]. In this study,
measurements of the branching ratios of Q) — Q [ty
(I = eory) decays are compared to the reference mode
QY — Q 7*; namely, the branching ratios B@—Q e've)

B(QV—Q~7t)
00wty
and S are 1.98 4 0.13(stat) + 0.08(syst) and

1.94 + 0.18(stat) £ 0, 10(syst), respectively.

The new measurement and the variation in the predic-
tions of the branching fractions among different models
need further attention. In the present work, we study
the Q¥ — Q~I*v, decay within the light cone sum rules
(LCSR) method (for more information about the LCSR
method, see [9]).

The paper is organized as follows. In Sec. II, the LCSR
for the relevant form factors responsible for QY — Q-
transitions are derived. A numerical analysis, including the
results for the form factors and decay widths, is presented
in Sec. III. The last section contains our conclusion.

II. FORM FACTORS FOR Q. — Q TRANSITION
IN LCSR

To calculate the form factors for the Q2 — Q™ transition,
we consider the following correlation function:

Published by the American Physical Society
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Here, the current J = ¢/¥s/" Cy,s*s! is the interpolating
current of the Q baryon, JY™(0) = 5y,(1 —ys)c is the
current describing the ¢ — s transition, and j, k, and [ are
the color indices.

In LCSR, the correlation function is calculated both at
hadronic and QCD level at the deep Euclidean region, i.e.,
p* < m2, ¢> < m?. Then, the results of the calculations
for the two representations of the correlation function are
matched by using the quark-hadron duality ansatz. As a
result, the sum rules for the relevant form factors are derived.

Let us first calculate the correlation function from the
hadronic side. Inserting the complete set of baryon states
carrying the quantum numbers of the € baryon and isolating
the ground state for the correlation function, we obtain

1 MOIQMPN (P57, (1 = 75)el(p))
v mé — 7 :

(2)
The first term of this matrix is defined as

(Ol7R1Q(p")) = Au,(p"), (3)

where 4 is the decay constant and u,(p’) is the Rarita-
Schwinger spinor for the spin-3/2 Q baryon.

The second matrix element is parametrized in terms of
eight transition form factors,

(Q(p")I57,(1 =75)c|Qc:(p))

/!

The summation over spins of the  baryon is performed via
the formula

i 1 2 Pul)
> ua(p)itg(p') = =(# + mq,) {gaﬁ ~3Valp— §m—2ﬂ
Q

1 Pa¥p = PgYa
L S A 5
R T— (5)

Before delving into the analysis, we make the following
two remarks.
(1) The current Jf} also couples with spin-1/2 negative
parity baryons, i.e.,

OB~ ~ [~ 2 ). )

where B denotes the negative parity baryon. There-
fore, the structures with p), and y,, terms also contain
the contributions of the spin-1/2 baryon. Using this
fact, from Eq. (5) we find that only the structure with
the g, term is free of spin-1/2 baryon contributions.
In other words, the structure with the g,; term
contains contributions coming only from spin-3/2
baryons.

= ity p/){ [ Pa (n F,+ Py Fy+ Py F3> + F49m} ¥s (i1)) Note that not all the Lore.zntz structures are .indepen—
me, me, e dent, and to overcome this problem, a specific order
Pu P, p of Dirac matrices is chosen. In this work, we choose
g \ 7O Ot ) T Gl ulp). the structure 7, ¢y, #(r, 47, #7s).
¢ ‘ Taking these remarks into account, we obtain the
correlation function from the hadronic part,
|
1 Py Py
M, =—5—759—— |Fi1(2p,rs + (mq, +mq)y,rs — dr.,ys) + Fo——((mq — mg_)ys — drs)
mg — p= mg, mgq,

+ mLQF3(P - q),((mg —mg_)ys — d}’s)] + Fagu((mg —mg_)ys — drs)

Pu
mq,

<pn:QQ)u (

+ G3

Gypy
- |:G1 (2pu + (mQ - mQC)yu - %yy) + I’l’f

(mg +mg_ ) — ﬂ)] + Gag (mg + mgq) — %} +--,

((mg +mq,) —4)

c

(7)

where dots stand for the contributions of higher states and continuum, denoting the contributions arising from quarks
starting from some threshold sy, value. In the following discussions, we denote the momentum of the €. baryon as

pu — mq v,, Where v, is its velocity.

u"
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At this point, a few words are in order. The number of
independent form factors is considerably reduced if the
heavy quark limit is applied. In this limit, the Q4 and €,
are controlled with the same dynamics but described by
different spinors. For this reason, the weak decays,
Qp — Q and Q*Q — €, can be studied together.

Now let us turn our attention to the calculation of the
correlation function from the QCD side with the help of the
operator product expansion (OPE). Using the Wick theo-
rem from Eq. (1) we get the correlation function

M, =i / e 0 (Cr)p (T g

X {S5h ()5 (x)sh ()}t (0) = S§1 ()5 (x)sh (x)c} (0)
+ St (x) s (x)sy (%) (0 )}|gz> (8)

where S(x) is the s-quark propagator, and 7, = y,(1 — y5).
From Eq. (8), it follows that, to calculate the correlation
function from the QCD side, we need the matrix element

e {05 (x)sf (x)
parametrized in terms of the heavy baryon distribution
amplitudes (DAs). The DAs of the sextet baryons with
quantum numbers J© = %* in the heavy quark mass limit
are obtained in [10]. In this work, the DAs are classified by
the total spin of two light quarks. If the polarization vector

is parallel to the light cone plane, the matrix element

€ur{0la1,(11)455(22) 25(0)|Q0(p)) can be expressed in
terms of the four DAs in the following way:

c}(0)|9.). This matrix element can be

€jkl<0|sé(t1)S]ﬁc'(t2)c;l/(0)|9c(v)> = ZA,(I,C7) 5 (rsPug,),

)
where
= _U+f(1)l//2, I = ?_i,
- 1
A2 = f(Z)ll/g )7 F2 glaajflanﬁ,
Lo
Ay=pifD =1
1
Ag=—g— Ty = . 10
4 80, yaf 4= (10)
Here, n, =%, i, = 20, = :%,, T, =% — v,, and ) are

the decay constants of the Q. baryon, and y') are the
distribution amplitudes. The Fourier transformations of the
DAs are ¥(x;.xy) = [° dwdwye™ e 2y (wm,),
where w; and w, are the momentum of two light quarks
along the light cone direction, and their total momentum is
@ = w1 + @, with t; = x;n and t, = x,n. The DAs can be
written as

1//([1,[2)—/Oodwa)/due"“””‘e‘iwﬁ(xZ‘x')l//(a),u). (11)
0

In our case, since x; = x,, we get

Wit 1) = A ® dow / due- (o, 1).  (12)

Based on heavy-quark symmetry, we can use the same DAs
for the baryon containing the charm quark and the b quark.
In [10], the DAs for the €, baryon were obtained, and we
used the same DAs for Q. in this work:

2 3/2
a, C/"Qu—-1) _ .
WZ(“)’”)_“)QMO_”)Z—A& e
n=0 €n |C” |
2 172
a, C,/"(2u—1)
wa(w,u) = 5 —o/e,
Z; G2
2 1/2
w a, C/"(2u—1)
— _}’l _Z —a)/s,,
w3(o,u) = ) ;ens |C,11/2|2 © ’ (13)
where
1
ciP = [ aulciu- ), (14)
0
with |7 P> =[CP P =1, |6/ P =1/3, |¢)*> =3,

|CY?12 = 1/5, and |Cg/2\2 = 6. The parameters entering
Egs. (13) are obtained in [10], and we present their
expressions in Table I for completeness. For the numerical
calculations we take A = 1/2. Note that the variation of
leading twist-2 distribution amplitudes with respect to the
free parameter A is studied in [10]. When A varies in [0.3,
0.7], the DAs change by about 10%. Since we have taken
A = 0.5, the results are expected to vary in the same order.

From Eq. (8), we obtain the following form using
Eq. 9):

- /d4 / dow
/ due''P i(p'—wv )C{ |:ZA Trl—',yﬂ)ST,,}’sﬁ
0
- ZZA,»CFZTC_I}/”S}/STJ} }ugc. (15)

TABLE I Values of the parameters appearing in DAs of the Q.
baryon [see Eq. (13)].

Twist ay a a, €9 € €
2 1 8A+1 1.3A+1.3 0.41A+0.06
A+1 A+6.9 A+0.11
35 1 0.174-0.16  0.56A—1.1 0.44A-0.43
: A2 A-322 - A+027
0.454-0.63
3s w1 . ]
4 1 —0.10A-0.01  0.62A+0.62 0.87A+0.07
A+1 A+1.62 A+2353

074022-3



T.M. ALIEV, M. SAVCI, and S. BILMIS PHYS. REV. D 106, 074022 (2022)

After integrating over x, one can obtain the explicit  function, we get the desired sum rules for the transition
expressions of the correlation function at QCD level.  form factors F(¢?), F3(q*), Fa(q*)+ F3(¢?), and
Separating the coefficients of the Lorentz structures Fi(q%) [(Gi(q?), G3(g%), G2 (q%) + G3(g%)) and G4(g?)],
[%4%71/759 dJ/SUﬂQw ¢757juvw dyigﬂu (%71/”/4’ dvﬂqw reSpeCtiVely:

4v,v,, 49,,)] from both representations of the correlation

4o

mﬂ((]z):nl, _mG1(612)=H5,
_migm&(qz) = I, n;mglg—iq)Gﬂqz) = I,
m <F2(612) + n’:;; F3(q2)> = IIs, —m (Gz(q2) + 7:;: G3(q2)> — 11,
/(12 Y Fy(q*) =11, —%quz) = Il,. (16)

Here, I1; are the invariant functions for the Lorentz structures mentioned above. In general, the invariant functions can be

written in the following form,
(1) RN E)
! Pi Pi Pi
Hl:A du/do'a{ A + AT [ (17)

where A = p"? — 5(6), 6 = %, and i runs from 1 to 8 (each value of i describes the corresponding structure). Since the

explicit expressions of pgl), pl(-z), and pl@ are lengthy, we do not present them here. Applying Borel transformation with

respect to the variable —(p — ¢)?, we get the sum rules for the form factors:

emé/Mz 5 emé/Mz
F e H s G - - 5
1 /19 1 1 AQ 5
2 g2 2 a2
me, eMo/M meo eo/M
F < F3 = HB, G —< Gy = — s
2t mg 3 P 2+ mg 3 Ao 7
m 2 m
Fy = __;?emé/M“Hg G; = —;;e_mé/MzHg,
emé/Mz emé/Mz
F4 — /19 Hf, G4 - - /19 Hg (18)

Borel transformation and continuum subtraction are performed with the help of the formula

/ e ("_s(u = / do{ n_s<l17))1(1<\;2;)1} (—12;{716))!/1‘422(M2)1n_j_1 ! < ¢ s1,>j_11,,

=0y
(19)
where
(5w + m, = %)+ /(s + my, —q)? = dm}, (s, = m?)
- : (20)
0 2m?
Qc
and
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I, = . (21)

Numerical analysis of the obtained sum rules for the form
factors is carried out in the next section.

Having determined the form factors for the Q0 — Q-
transition, it is straightforward to calculate the width
of the semileptonic Q2 — Q~[*y,; and nonleptonic QY —
Q 7t (p™) decays.

First, we present the amplitudes of Q0 — Q~h (h = =, p)
and Q% — Q~ [Ty, in the helicity basis of Hﬁgﬁhw [4,11,12].
While A = +3/2,+1/2 corresponds to the helicity states
|

V(A
H3/<2‘>1 =+ Q%:F4(G4)7

of the Q baryon, 4, corresponds to the helicity states of

the z(p) and ["v, pair, respectively. The helicity amplitudes
are defined as

HY) = (Q00)[57,(rs)c|Qc ()€l (). (22)

where 1= Ay —1q and € is the four-vector of the
virtual W boson. Using these definitions of the helicity
amplitude(s) and the matrix element (€[3y,(ys)c|Q.) in
terms of the form factors, we get the following relations [4]:

A |03 02
HY/<2.,)1 == %{Fl(Gl)mIZZ —F4(G4)},

202 0im my\ |Bal? _
HY/(%: ﬁ[Fl(Gl) =F Fz(G2>+F3(G3)m—1 %;&(G@m,

2m1m2

2 2

» 2Q2 Q2
gYW = X 2F g Fo(Gy)iit, F F3(Gs)i. F Fu(G . 23
1/2.1 382 2mym, 1(G)my F (F2(Gy)iny F F3(Gy)in_ F Fy(Gy)my) (23)

In these expressions, m. =m; £m,, Q2 =m3 — ¢,

iy = (m .m_ = q*)/2m,(m,). Here, m, and m, are the
mass of the Q. and Q baryons, respectively. The remaining
helicity amplitudes can be obtained by the symmetry
relation

'Y, =FH Y. (24)

From these helicity amplitudes, the decay widths of the
semileptonic and nonleptonic decays are calculated as

Q. - Q)
_ G%|Vcs|2 (mg~mq)? 2 |ﬁ9|(‘12 - m12)2 2
T1925m2, /e dg? = —LHY(25)
Tmy Jw? q
and
Gr|Pal .
F(QC - Qh) = 321;1-méL |VCSVud|2a%m%f%,H2, (26)
2 2
n 3m1
where

H3 = |Hyp >+ |Hy o |* + |Hy ol
+ [H_1pp0l* + [Ho1 o1 |* + [Hoz 01

2, (28)
Hi = |Hy ), [* + |H 0, ]* (29)

Here, G is the Fermi coupling constant, and V;; are the
elements of the CKM. The factor a; = C; + C,/N, comes
from the factorization [13], where N.. is the color factor and
C, = -0.25 and C, = 1.1 are the Wilson coefficients [11].

III. NUMERICAL ANALYSIS

In this section, we perform numerical analysis for the
transition form factors obtained in the previous section.
For this goal, first we present the input parameters in our
numerical analysis:

m(1GeV)=1.35+0.10GeV 2],
m(1GeV)=0.124+0.02 GeV [2],
m,=0.140GeV[2], m,=0.77GeV 2],
mg, =2.695GeV 2], mg=1.672GeV 2],
fx=132MeV[2], f,=216MeV|[2],
f1=0.0934+0.01[14], f® =0.093+0.01[14],
(30)

074022-5
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V., = 0.97320 = 0.00011 [2],
V. = 0.97401 + 0.00011 [2]. (31)

For the quark masses, MS scheme values are used. Besides
these input parameters, LCSR involve two auxiliary
parameters: the continuum threshold s; and the Borel
mass parameter M>. The working region of M? is deter-
mined in such a way that the power corrections as well as
the continuum contributions are suppressed. The working
region of sy, is determined from the condition that the mass
sum rules reproduce the mass with, say, 10% accuracy.
Following these criteria, we obtain the working regions
of sy and M?:

40GeV? < sy <45 GeV2,
3.0 GeV2 < M2 < 4.0 GeV2. (32)

In these working regions of sy, and M?, both the conditions
of the smallness of the subleading twist-3 and twist-4
contributions and the suppression of the higher states, as
well as continuum contributions, are satisfied.

Having determined the working intervals of the threshold
and Borel mass parameters, the next task is to find the best-
fitting form factors. The LCSR predictions for the form
factors are not applicable for the whole physical region,
mj < q* < (mg_—mgq)?, but give reliable results for up to
the ¢*> < 0.5 GeV? region. Hence, we first obtain the form
factors within QCD sum rules up to g*> ~0. Then, we
extrapolate from the domain where LCSR predictions are
reliable to the full physical region by applying the follow-
ing z-expansion fit function [15,16]:

Fa?) = — = (d + i} e(a?) - 2(0)
T di(z(q?) - 2(0)). (33)
where
Z(f) _ \/t+_t_\/t+ — I (34)

IRV EAN

and 15 = (mgq, = mgq)?, 1o =1, (1 - V1- ;_;)

Here, mp; are the corresponding masses of the reso-
nances for the ¢ — s transition in the spectrum, i.e.,
mp, = 1.97 GeV.

The obtained parametrization that best reproduces
the form factors predicted by the LCSR in the region

TABLE II.  Values of the form factors at ¢g°> = 0 and the fit
parameters of a;.
ao aj as

F, —0.55 £ 0.05 6.391 —191.2
F, —0.68 £ 0.07 30.94 —1053
Fy 1.0+0.2 —35.60 1117
Fy 0.16 £0.02 —7.24 239.9
G, —-0.48 £0.02 3.513 —100.9
G, 0.68 +0.07 -30.1 1053
G; -1.0£0.2 35.60 —1117
G, —0.16 £0.02 7.24 —239.9

g* < 1.1 GeV? is given in Table II. Note that a, corre-
sponds to the form factor at ¢> = 0, i.e., ay = F;(¢> = 0).
To verify that the results of the form factors depend weakly
on the chosen M? and s,, auxiliary parameters, we plot
the variation of the form factors at g> =0, on M? and
swm = 4 GeV?, in Fig. 1. The figure shows good stability of
the form factors on M? and sy,.

Using the obtained results for the form factors respon-
sible for the Q0 — Q- transition, we calculate the branch-
ing ratio for Q¥ —» Q I*y; and Q2 —» Q~h* (h =7, p)
decays by using Eqs. (34) and (33). The lifetime of the Q.
baryon is taken as 7 = (268 =24 +10) x 10715 s [2].
The Belle II Collaboration recently reported a lifetime of
the Q. baryon, r = 243 £ 48 4 11, which agrees with the
previous measurements [17]. Using the values of the
input parameters together with the decay width expres-
sions, we obtain the branching ratios that are presented
in Table III.

The Q¥ — Q™ transition has been studied in several
models [4,7,11,18,19]. The obtained results are pre-
sented in Table III. Our results are close to the pre-
dictions of the light-front quark model [4] for the
semileptonic part. However, there is a large discrepancy
with other studies for these decays. In addition, our
theoretical predictions do not match with the recent
Belle II measurement [8], especially for the semileptonic
QY - Q7 I*y, decay. A similar situation was also
obtained in [4]. This discrepancy might be due to large
i corrections or the existence of new physics. This point
needs further detailed analysis.

On the other hand, an upper bound for R/, > 1.3 is
set by the experiment. This bound does not contradict
theoretical results; however, there is a considerable
discrepancy among the predictions of different
theoretical approaches. Hopefully, more experimental
and theoretical efforts on this transition will lessen the
discrepancy.
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TABLE III.
corresponds to the branching ratio of the considered decays.

Branching fractions of the Q¥ decays obtained via different models as well as experimental results. Note that R

States  Our result Experiment [2,8] Reference [4] Reference [18] Reference [19] Reference [11] Reference [7]
B, 29 x 1073 (6+£0.8)x10%  66.5% 107 423 x 1073

B, 63 x 1073 (17+0.5) x 1073 361.1 x 1073 149 x 1073

B, 20.6 x 1073 (5.440.2)x 1073 127 x 1073
B, 19.6 x 1073 (5.0+£0.2) x 1073

Rz 2.18 >1.3 2.8+04) 5.4 35 9.5

Re/x 0.71 1.98 £0.13 + 0.08 (0.9+0.1)

Ryu/x 0.68 1.94 £0.18 £0.10 0.9+0.1)

IV. CONCLUSION

In this work, the semileptonic and nonleptonic decays of
Q0, namely, Q¥ — Q- I*y;, Q) — Q 7, and Q¥ - Q p+,
are studied within the framework of the light-cone sum rules
by using the distribution amplitudes of the . baryon. In this
study, DAs for €, baryons are used for their c-quark
counterpart depending on the heavy-quark symmetry. We
first calculated the transition form factors for the Q0 — Q-
decay in the LCSR method. Then, using the obtained results
for the transition form factors, we predicted the branching
ratios of the semileptonic Q¥ — Q~[*y, (where [ = e, p)
and nonleptonic QY — Q~z"(p") decays. Finally, we com-
pared our predictions with other approaches as well as recent
Belle II results. We found that our results, especially on the
branching ratio for the semileptonic Q% — Q~I*y, decay
normalized to Q2 — Q~z7", are considerably smaller than

existing experimental data. A similar discrepancy was also
obtained in the light-front approach.

We found that there is a large deviation between the
theoretical predictions and experimental results on the
branching ratios of the semileptonic decays. Our results
on the branching ratios for the semileptonic decay (nor-
malized to Q — z) are compatible with the light-front
quark model. However, other approaches’ results drasti-
cally differ from ours. Similar circumstances take place for
the nonleptonic decays as well. Although there is only a
lower bound for the ratio, R,/,, theoretical predictions
differ among themselves. At this stage, it is hard to identify
the reason for the discrepancies for both semileptonic and
nonleptonic decays of the €. baryon. These points need
further studies from both experimental and theoretical
sides, and new physics implications may even be implied.
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