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ABSTRACT 

 

MODELLING OF AN ARTICULATED FLYING BODY AND CONTROL 

SYSTEM DESIGN 

 

 

 

Güzelcan, Burçin Tutku 

Master of Science, Mechanical Engineering 

Supervisor : Prof. Dr. Yiğit Yazıcıoğlu 

Co-Supervisor: Prof. Dr. M. Kemal Özgören 

 

 

December 2022, 99 pages 

 

 

This study presents the conceptual design of an articulated coaxial rotor Unmanned 

Air Vehicle (UAV) with three-dimensional dynamical models and a control strategy. 

Conventional rotary-wing aircrafts operate maneuvers via swashplates which is a 

complex mechanism adding bulky elements to the aircrafts. While designing light 

weight UAVs, there appears a need for less complex and compact mechanisms for 

maneuverability rather than swashplates. There are different methods and 

mechanisms to acquire maneuvering without swashplates. Three DoF Stewart 

Mechanism as means of articulation forms a base platform for the coaxial rotor in 

this design. The Steward Mechanism is designed to tilt the coaxial rotor shaft 

connected to its upper platform to perform maneuvers. The coaxial rotor tilted by the 

Steward Mechanism provides a beneficial design with reduced complexity, 

enhanced maneuverability and agility. 

 

Keywords: Unmanned Air Vehicle, Coaxial UAV, Tilted coaxial rotor, Articulated 

body, Three DoF Stewart Mechanism 
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ÖZ 

 

EKLEMLİ HAVA ARACI MODELLEME VE KONTROL SİSTEM 

TASARIMI 

 

 

 

Güzelcan, Burçin Tutku 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Yiğit Yazıcıoğlu 

Ortak Tez Yöneticisi: Prof. Dr. M. Kemal Özgören 

 

 

Aralık 2022, 99 sayfa 

 

Bu çalışma, üç boyutlu dinamik modeller ve kontrol stratejileri kullanarak eklemli 

bir insansız hava aracı (İHA) modellemesi ve kontrol sistemi tasarımı yapmayı öne 

sürmektedir. Halihazırdaki döner kanatlı hava araçlarında, manevra amacıyla 

karmaşık bir mekanizma olan eğik plaka kullanılarak hantal bir yapı 

oluşturulmaktadır. Hafif İHAlar tasarlarken manevra kabiliyeti için daha az 

karmaşık ve daha kompakt bir mekanizmaya ihtiyaç doğmuştur. Bu tasarımda, 

Swashplate mekanizması yerine, zıt yönde dönen eş eksenli iki pervanenin ortak 

milini taşımak ve yölendirmek üzere üç eksenli bir Stewart mekanizması 

kullanılmıştır. Stewart mekanizması, pervanelerin bağlı olduğu platformu kendisiyle 

beraber eğerek aracın manevra yapmasını sağlamaktadır. Stewart mekanizması ile 

yönlendirilen pervane mili, tasarımda karmaşıklığı azaltıp manevra kabiliyeti ve 

çevikliği artırarak tasarıma fayda sağlayacaktır. 

 

Anahtar Kelimeler: İHA, Eşeksenli İHA, Eğilmiş eşeksenli rotor, Eklemli cisim, 3 

Serbestlik dereceli Stewart Mekanizması  
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CHAPTER 1  

1 INTRODUCTION  

1.1 Literature Survey  

A UAV (Unmanned Aerial Vehicle) is an autonomous flying system which is 

operated without an on-board pilot. As a UAV consists of a control system with 

sensors, actuators and communication unit, it can be controlled remotely or 

autonomously. Americans Lawrance and Sperryen produced the first UAV named 

as Curtiss N-9 Aerial Torpedo during World War 1 in 1918. UAVs have started to 

be utilized for non-military objectives such as agriculture, meteorology, territory 

reconnaissance, surveillance, security and surveillance after 2004 [1]. 

Figure 1.1. Curtiss N-9 Aerial Torpedo [2]  

UAVs are classified as fixed-wing and rotary-wing aircrafts considering their wing 

types, seen in Figure 1.2. Rotary wing aircrafts have relatively more capabilities than 

fixed-wing aircrafts such as hovering, vertical take-off and landing, etc. That is why 



 

 

 

2 

they have been utilized extensively in numerous areas like urban mapping, search 

and rescue, disaster emergency and territory reconnaissance [3]. A helicopter with 

two rotors, a main rotor producing the thrust and a tail rotor generating anti-torque, 

is one of the common instances of rotary wing UAVs [4]. Helicopters also have 

swashplate mechanisms under the main rotor to realize maneuvering, which is seen 

in Figure 1.3. Frankly, it is a highly complex and bulky mechanism that is difficult 

to miniaturize for smaller UAVs. Consequently, among UAVs, quadrotors have 

turned out to be more common due to their simpler structure, easier control system 

and better load carrying capability [3].  

Figure 1.2. Classification of UAVs [4] 

The other reasons why quadrotors have become popular is their highly 

maneuverable, straightforwardly controllable and small-scale sizing nature. 

Quadrotors are actuated and maneuvered through adjustable rotational speed of four 

rotors which is simpler and applicable solution for small-sized UAVs compared to 

swashplates. They have also various applications benefiting from their miniature 

size; for example, military missions such as patrolling borders and surveilling a 

target [4].  

To continue with the control systems of quadrotors, various PID control algorithms 

have been utilized extensively in quadrotors due to the algorithm’s straightforward, 

reliable and very stable features. Nowadays, PID is still preferred extensively as a 

control algorithm in various applications. In time, there appeared different variations 

of PID, some of which are nonlinear PID controllers, fuzzy PID control and 

linearizing feedback control with PID [3]. Linearizing feedback control has other 
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names such as computed torque method and method of inverse dynamics control. It 

is also partially utilized technique along with PID in this study, because it has a 

relatively simpler procedure of linearization before applying PID control. 

Before proposing a coaxial UAV design without a swashplate in this study, it will be 

explained in detail, why swashplate mechanisms are necessary for helicopters but 

avoided while designing miniature UAVs. A swashplate mechanism appears as an 

articulated rotor hub. It enables pitch motion of the blade for collective and cyclic 

control inputs [5]. Collective control applies the same pitch angle to all blades for 

direct thrust control on the rotor. Cyclic control operates by tilting the swashplate 

creating a one-per-revolution sinusoidal variation in blade pitch. The rotor reacts to 

both collective and cyclic inputs by flapping in coning and tilting modes [6]. 

Flapping dynamics of the rotor affects the handling qualities of the aircraft. A 

swashplate design consists of three bearings (flap, lag and feather), lag dampers, 

rotating and non-rotating links as seen in Figure 1.3. It is mechanically complex and 

requires high level of maintenance, since the bearings operate in a highly stress 

environment [5]. In addition, it is not possible to minimize a bulky and complex 

mechanism such as swashplate while designing a mini-UAV, whose size is small 

compared to a helicopter. Therefore, there is a need to find a different method or to 

design a new mechanism suitable for mini-UAVs. 

Figure 1.3. Rotor Control Through a Swashplate [6] 
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Motion control for coaxial rotor helicopters and their advantages over other 

configurations are explained to understand the reason why coaxial rotor 

configuration is chosen for the UAV design of concern. There are various rotor types 

for helicopters. A single main rotor and tail rotor is the most common type. The tail 

rotor is counter-rotating to the main rotor for torque balance and yaw control. The 

tandem rotor and side by side configurations have two contra-rotating main rotors 

with longitudinal and lateral separations respectively. The coaxial rotor helicopter 

has two contra rotating main rotors with concentric shafts. Pitch and roll motion are 

acquired by cyclic control, and direct thrust vector control is achieved by collective 

control as in the single main rotor configuration. Yaw control is acquired by 

differential torque of the two rotors. This configuration has symmetrical control 

which is easier to control. Additionally, it is more compact because of the absence 

of tail rotor [5]. The advantages of coaxial rotor configuration in helicopters lead to 

the idea that, it is a suitable configuration for the UAV design of concern. 

Various UAV designs without swashplates utilize different mechanisms and control 

methods to perform maneuvers. Featured UAV designs without swashplates are 

covered here to show the current state of the art. One alternative for UAV designs 

without swashplates is a quadrotor having rpm-controlled rotors for maneuverability 

and reduced mechanical complexity [7].  

Figure 1.4. The X-4 Flyer [7] 
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There is another study which modifies a conventional quadrotor. Adjustable and 

fixed pitch propellers are utilized for a coaxial quadrotor to increase efficiency and 

flight performance in the existence of different flight conditions, such as turbulent 

wind [8]. 

Figure 1.5. A Coaxial Drone [8] 

There are even more compact designs decreasing the number of rotors. For example, 

a tri-rotor UAV design benefits from rpm variation in each rotor to maneuver. Two 

of the rotors rotate in the same direction while the third one contra-rotates. The rotors 

are tilt-free which reduce mechanical complexity even more [9].  

Figure 1.6. The UAV Tricopter [9]  

Similarly, contra-rotating rotors are added coaxially to a tri-rotor UAV in a different 

study. Three coaxial rotors are used in the UAV design for heavy lifting tasks. The 

rotors provide higher thrust-to-volume ratio while requiring more power due to the 

aerodynamic effects of the contra-rotating propellers on each other [10]. 
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Figure 1.7. A Tri-rotor Coaxial UAV [10] 

There are single coaxial rotor UAV designs without swashplates in the literature as 

well, which use various methods and mechanisms for maneuverability as required 

by different tasks. One of the initial studies propose an MAV (Micro Air Vehicle) 

design having a coaxial rotor with rpm control for yaw and vertical motion. The 

blades are rigidly attached to the hub which means the rotors are tilt-free. Thus, roll 

and pitch motions are achieved by controlling aerodynamic surfaces (flaps). The 

coaxial rotor is driven by two motors with a transmission system. The design is 

highly compact and foldable, since it is designed for the task of surveillance and 

monitoring in urban areas [11].  

Figure 1.8. A Coaxial MAV with flaps [11] 
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In one of the studies, a coaxial rotor UAV design is maneuvered via actuated flaps 

positioned below the coaxial rotors. The UAV is placed inside a spherical cage 

protecting the propellers, so that it is able to operate in complex environments [12]. 

The design has one contra-rotating motor to drive coaxial rotor, which seems like an 

improvement compared to the previous study mentioned. 

Figure 1.9. A Coaxial Rotor Spherical UAV [12] 

Another way of controlling roll and pitch motion of a MAV is studied recently. The 

MAV has coaxial rotor with two actuators only. There is no tilting mechanism or 

flaps. Instead, the MAV has special articulated blades and is electronically driven by 

modulated cyclic torque to perform maneuvers [13]. 

Figure 1.10. A Coaxial UAV with Cyclic Torque Actuation [13] 
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The last highlighted study is related to a NAV (Nano Air Vehicle) which has coaxial 

rotors with tilting mechanism, developed for indoor and outdoor military missions 

for delivering sensor packages. The NAV has a combination of rotor cyclic and rpm 

control for maneuvering and vertical motion. Rotor cyclic and rpm can be controlled 

independently. Rotor cyclic is achieved by placing two motors in the rotor hub and 

tilting the plane of motors like a swashplate [14].  

Figure 1.11. Motor-tilting Coaxial NAV [14] 

1.2 Research Objectives   

The main objective of this study is to design a UAV without a swashplate, because 

of the disadvantages of the swashplate mechanisms mentioned in the previous 

section. Another objective is to achieve the rolling and pitching motions of the UAV 

with a special parallel manipulator, which is a 3-DoF Stewart mechanism used for 

tilting the coaxial rotor. In addition, the yawing motion is achieved with the speed 

control of the coaxial propellers. Comparing this study with the other studies from 

the literature, some of which are covered in the previous section, the NAV in Figure 

1.11 is found to be the most similar one to the UAV of concern in this study. That is 

because it has similar maneuvering method, which is speed control with tilting 

mechanism without a swashplate. However, the UAV of this study has some 
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differences compared to the mentioned NAV, which lead to contributions to the 

literature. The scales of the two designs are the most obvious difference because 

there is no similar study in the regular-size UAV field. The overall structure of this 

study is also different in a way to improve the landing performance by placing both 

of the coaxial rotors at the top the UAV. Actually, this study finds its inspiration 

from some of the hobbyist prototypes using actuators for tilting the coaxial rotor hub 

without any linkage system [15], [16]. However, there are no mathematical models 

and control strategies developed for the above-mentioned prototypes in the literature 

so far. On the other hand, the 3-DoF Stewart mechanism of this study which is seen 

in Figure 1.12 benefits the UAV design in terms of agility, compactness and 

improved maneuverability compared to the hobbyist prototypes mentioned earlier. 

Figure 1.12. Conceptual Design of the Proposed UAV with 3-DoF Stewart 

Mechanism  
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1.3 Thesis Outline 

First of all, kinematic features of the UAV design are explained briefly. Afterwards, 

the simplifications and assumptions necessary for the mathematical model are stated. 

After that, kinematic analysis for the simplified model is performed. Once the 

angular and linear acceleration expressions are derived, dynamic analysis part comes 

next. After acquiring the necessary matrices in the dynamic analysis part, they are 

related to the control strategy. Computed torque method with PID as a means of 

controlling the UAV is explained in the control part. Then, transition from the 

simplified model to the actual system is shown analytically. Completing the 

analytical part of the study, MATLAB, Simulink and Simscape simulation results 

are illustrated and discussed for both open loop and closed loop actuation modes of 

the UAV. In the end, the agreement between the analytical and simulation results are 

shown, and the future studies are discussed in the conclusion part. 
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CHAPTER 2  

2 KINEMATICS 

2.1 Kinematic Features  

Proposed UAV design consists of two platforms connected to each other by a 3-DoF 

parallel manipulator as a mean of tilting mechanism and two propellers as a mean of 

actuation. The 3-DoF parallel manipulator is installed on the base platform 1L  and 

consists of 7 moving links  which are link pairs 2 2{ , }L L , 3 3{ , }L L , 4 4{ , }L L  and the 

upper platform 5L . Since the base platform is also moving, it is named as 1L rather 

than 0L . To express the DoF or mobility ( ) of the UAV, Kutzbach-Gruebler 

formula [17] is applied as seen below. 

 1 2 36 (5 4 3 )mn j j j = − + +  (2.1) 

The links are represented by different colors and the joints are represented by yellow 

color as seen in Figure 2.1. To continue with the joints, 3 universal joints ( 2j ) are 

installed on the base platform at the points 1D , 2D  and 3D . In addition, 3 spherical 

joints ( 3j ) are installed under the upper platform at the points 1E , 2E  and 3E . The 

3 legs of the parallel manipulator consist of 3 prismatic joints ( 1j ). 1 spherical joint 

( 3j ) connects base platform 1L  directly to the upper platform 5L  at the point Q . 

Moreover, 2 propellers are connected to the shaft of the upper platform with 2 

revolute joints ( 1j ) at the points 1P  and 2P . Thus, Eq. (2.1) become as seen below.  

 6 10 (5 5 4 3 3 4) 60 49 11 =  −  +  +  = − =  (2.2) 

Eq. (2.2) tells that the considered UAV has 11 DoF. 6 DoF belong to 1L  for 

describing its position (location and orientation) in the 3-D space, 3 DoF belong to 
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5L  for describing its orientation with respect to 1L , and 2 DoF belong to the 

propellers for describing their angular positions with respect to the propeller shaft 

(PS) attached rigidly to 5L .  

On the other hand, 3 prismatic joint variables ( 1s , 2s , and 3s ) and 2 revolute joint 

variables ( 3  and 4  ) are actuated, which are sufficient to orient 5L  and the 

propellers with respect to 1L . This actuation scheme leaves 1L  with 6 DoF in the 3-

D space. However, the mentioned 5 actuators lead to 4 effective control parameters 

for 1L , which are netF (net aerodynamic force along PS), net (net actuation torque 

about PS), 3  (azimuth angle of PS relative to 1L ), and 2  (pitch angle of PS relative 

to 1L ). The 5th parameter provided by the 5 actuators is ineffective because it 

indicates the insignificant spinning rotation of PS about itself. 

By means of the 4 effective control parameters, it becomes possible to make the 

UAV move with a desired translational acceleration vector  (
1Ca ) of 1C  (mass center 

of 1L ) and a desired yaw acceleration ( 3 ) of 1L . As for the pitch and roll 

accelerations ( 2  and 1 ) of 1L , they cannot be commanded as desired by the 

available actuators. However, the pitch and roll motions of 1L  can at least be 

stabilized owing to the gravitational force and the downwash air flow of the 

propellers.   
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Figure 2.1. Bodies and Joints Representation of the Model with Isometric View 

2.2 Simplifications and Assumptions 

Since, the 3 DoF parallel manipulator of the UAV has 3 kinematic loops which 

means 3 times more equations are required than a UAV with a serial manipulator. 

The model with the parallel manipulator explained previously in Section 2.1 is a 

complex system in terms of dynamical analysis. To overcome the complexity and to 

model the UAV more conveniently, the 3 kinematic loops are simplified to a single 

branch as seen in Figure 2.2 like in the serial manipulators. 

In the serial version of the UAV in Figure 2.2, the spherical joint at the point Q  is 

replaced with a universal joint. In this version, the universal joint variables (
2 and

3 ) are actuated instead of the 3 prismatic joint variables of the previous version. 

Thus, the tilting motion of the upper platform 5L  can be realised by actuating only 
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2 joint variables instead of 3. It means that one of the actuated prismatic joints in the 

parallel manipulator version of the UAV in Figure 2.1 is redundant as discussed 

before. As mentioned in previous Section 2.1, the parallel manipulator version of the 

UAV has 11 DoF, one of which is associated with the insignificant spinning rotation 

of the propeller shaft and it is redundant. On the other hand, the serial manipulator 

version has 10 DoF without any redundancy. Moreover, 7 links in the parallel 

manipulator version decreases to 4 links and they are called as bodies rather than 

links in the serial manipulator version. The equivalency between the parallel 

manipulator version  and the serial manipulator version of the UAV will be dealt 

with in detail later in Chapter 5. 

For the sake of simplicity, following reasonable assumptions are made in the 

mathematical model of the UAV.   

1) The masses of all the joints are neglected. 

2) Cross-link in the universal joint is assumed to be massless.  

3) Joints are frictionless.  

4) The distance QQ is assumed to be zero thus, point Q  is the joint origin.  

5) Center of masses of the propellers 
6L  and 

7L  are assumed to be at the joint 

origins 
1P  and 

2P . 

6) Masses of the stabilizing fins in the base platform 1L  are neglected.  

7) Aerodynamic interaction between the two propellers is neglected. 

8) Downwash effect on the upper platform 
5L is neglected. 

9) The overall angular velocities of the propellers 
6L  and 

7L  are assumed to be 

3  and 
4 in the calculations of lift forces and drag moments. Because they 

are much larger than the angular velocity components of the other bodies in 

the system. 
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2.3 Reference Frames and Transformation Matrices 

Figure 2.2. Bodies and Reference Frames Representation on the Simplified Model 

with Isometric View 

In Figure 2.2, the right-handed earth fixed reference frame 0 ( )F O  is oriented in the 

East-North-Up directions. There are 4 bodies shown in different colors. The 

reference frame of the base platform 1B  is ( )1F B . The reference frame of the upper 

platform 2B  is ( )2F Q . The joint center of the universal joint which connects 1B  to

2B  is also located at point Q. The reference frame of the lower propeller 3B  is 

( )3 1F P . 3B  is connected to 2B with the revolute joint centered at point 1P . At last, 

the reference frame of the upper propeller 4B  is ( )4 2F P . 4B  is connected to 2B with 

the revolute joint centered at point 2P . 
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Kinematic equations for all bodies will be expressed in their body frames because 

the inertia matrices are constant in the body frames. This is a convenient property for 

the calculations. Moreover, the common reference frame for the propellers (
3B  and 

4B ) is selected as the non-spinning reference frame attached to the propeller shaft, 

owing to the fact that propellers are inertially symmetric about the axis of rotation. 

These frames can be denoted as 
3 1( )nF P  and 

4 2( )nF P . Since frames 
3 1( )nF P  and 

4 2( )nF P  have same orientation as the frame ( )2F Q but have position offsets in the 

direction of the propeller shaft, the following equations can be written for them. 

 
( )

( )

3 1 2 1

4 2 2 2

( )

( )

n

n

F P F P

F P F P

=

=
 (2.3) 

To express the DoF of the simplified serial manipulator model, Eq. (2.1) is applied 

again. 

 6 4 (5 2 4 1) 24 14 10 =  −  +  = − =  (2.4) 

Since there are 10 DoF for the simplified model, there must be 10 generalized 

coordinates as indicated below. 

 

1

2

3

2

3

3

4

x

y

z

q















 
 
 
 
 
 

 
=  

 
 
 
 
 
 
  

 (2.5) 

The first 6 generalized coordinates ( 1q , 2q ,… 6q ) describe the motion of the body 1B  

relative to 0 ( )F O . The next two ( 7q  and 8q ) express the angles of the body 2B  
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relative to 1B . Finally, 9q  expresses the angle of the body 3B  relative to 2B  and 10q  

express angle of the body 4B  relative to 2B . 

Proceeding with the transformation matrices, they are applied to express the rotation 

of one body relative to another body via Rodrigues Equation [17] as seen below. 

 ( ) ( )2ˆ ˆ ˆ, sin 1 cosR R n I n n  = = + + −  (2.6) 

The term n  is the outcome of the skew symmetric matrix (ssm) operator which 

converts a column matrix to a skew symmetric matrix as seen below[17]. 

 
1 3 2

2 3 1

3 2 1

( )

0

0

0

ssm n n

n n n

ssm n n n

n n n

=

  −   
    

= −    
    −    

 (2.7) 

Eq. (2.6) expresses the rotation of angle   about the vector n . As such, R̂  is the 

rotation matrix and it can be represented in exponential form [17] as seen below. 

 ( )ˆ ˆ , nR R n e = =  (2.8) 

The transformation matrices for the rotation of the body frames are expressed 

conveniently as exponential rotation matrices. The rotation of 1B relative to 0 ( )F O  

is expressed below via the RFB-321 sequence of generalized coordinates 4q , 5q and 

6q , which are indicated in Eq. (2.5).  

 ( ) 3 3 2 2 1 1
0,1ˆ u u u

C e e e
    

=  (2.9) 

Here, RFB stands for “Rotating Frame Based”[17], which implies that each 

successive rotation is carried out about an axis of the preceding rotated frame. 

The rotation of 2B relative to 1B is expressed below via the RFB-32 sequence of 

generalized coordinates 7q and 8q which are indicated in Eq. (2.5). 

 ( ) 3 3 2 2
1,2ˆ u u

C e e
 

=  (2.10) 



 

 

 

18 

The rotation of 3B relative to 2B is expressed as shown below. 

 ( ) 3 3
2,3ˆ u

C e


=  (2.11) 

The rotation of 4B relative to 2B is expressed as shown below. 

 ( ) 3 4
2,4ˆ u

C e


=  (2.12) 

The overall rotations relative to 0 ( )F O  are expressed as seen below. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 3 3 32 2 1 1 2 2

3 3 3 3 3 32 2 1 1 2 2

3 3 3 3 3 42 2 1 1 2 2

0,2 0,1 1,2

0,3 0,2 2,3

0,4 0,2 2,4

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

u uu u u

u u uu u u

u u uu u u

C C C e e e e e

C C C e e e e e e

C C C e e e e e e

   

    

    

  

  

  

= =

= =

= =

 (2.13) 

2.4 Angular Velocity Expressions 

The expression below is applied to derive the angular velocity equations for the 

bodies of the system [17].  

 ( ) ( ) ( ) ( )0, 0,

/0 /0
ˆ ˆ           1,2,3,4.

k k k t k

k kcolm colm C C k    = = =
    

 (2.14) 

The column operation (colm) above creates a column matrix from a skew symmetric 

matrix which is the opposite of the ssm operation mentioned before in Eq. (2.7). 

Colm operation is expressed as shown below [17]. 

 
3 2 1

3 1 2

2 1 3

( )

0

0

0

colm n n

n n n

colm n n n

n n n

=

 −    
    

− =    
    −    

 (2.15) 

Continuing with the angular velocity of 
1B ,  

 
1 1/0 =  (2.16) 

Matrix equations in ( )1F B are shown below. 
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 ( ) ( ) ( ) ( )1 1 0,1 0,1

1 1
ˆ ˆt

colm colm C C    = =
    

 (2.17) 

Since, ( )0,1
Ĉ is a function of joint variables 

4q , 
5q  and 

6q  (
1 , 2  and 

3 ), 

expressions are seen as below.  

 

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

0,1 0,1 0,1 0,1

1 1 2 2 3 3

6
1 0,1 0,1

1

4

ˆ ˆ ˆ ˆ/ / /

ˆ ˆ /
k

t

k k

k

C C C C

colm C C q q

     


=

=

     =   +   +  

 
=   

 


 (2.18) 

 
( )

6
1

1 1 14 1 15 2 16 3

4

k

k k

k

q   
=

=

  =  =  + +  (2.19) 

In the above equation, 
1k is called the angular velocity influence coefficient of  

kq  

for 
1B . It is the effect of the term 

kq  on the angular velocity of 
1B . It is expressed 

as seen below. 

 
( ) ( )( )0,1 0,1

1
ˆ ˆ /           for 4,5,6.

t

k kcolm C C q k  =   =
 

 (2.20) 

Proceeding with the angular velocity of 
2B ,  

 
2 2/0 =  (2.21) 

Matrix equations in ( )2F Q are seen as below. 

 ( ) ( ) ( ) ( )2 2 0,2 0,2

2 2
ˆ ˆt

colm colm C C    = =
    

 (2.22) 

Since, ( )0,2
Ĉ is a function of joint variables 

4q , 
5q , 

6q , 
7q  and 

8q  (
1 , 2 , 3 , 2  

and 
3 ), expressions are seen as below.  
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( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( )

0,2 0,2 0,2 0,2

1 1 2 2 3 3

0,2 0,2

2 2 3 3

8
2 0,2 0,2

2

4

ˆ ˆ ˆ ˆ/ / /

ˆ ˆ/ /

ˆ ˆ /
k

t

k k

k

C C C C

C C

colm C C q q

     

   


=

=

     =   +   +  

+   +  

 
=   

 


 (2.23) 

 
( )

8
2

2 2 24 1 25 2 26 3 27 2 28 3

4

k

k k

k

q     
=

=

  =  =  + + + +  (2.24) 

In the above equation, 
2k is called the angular velocity influence coefficient of 

kq  

for 
2B . It is the effect of the term 

kq  on the angular velocity of 
2B . It is expressed 

as seen below. 

 
( ) ( )( )0,2 0,2

2
ˆ ˆ /           for 4,5,6,7,8.

t

k kcolm C C q k  =   =
 

 (2.25) 

Continuing with the angular velocity of 
3B ,  

 
3 3/0 =  (2.26) 

Matrix equation in ( )3 1F P is seen as below. 

 ( ) ( ) ( ) ( )3 3 0,3 0,3

3 3
ˆ ˆt

colm colm C C    = =
    

 (2.27) 

On the other hand, it is necessary to express 
( )3

3 in the nonrotating frame 
3 1( )nF P  

which is equivalent to the frame ( )2 1F P . Thus, matrix equations in ( )2 1F P are seen 

as below. 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2,3 3

3 3

2 2,3 3 2,3 0,3 0,3

3 3

ˆ

ˆ ˆ ˆ ˆt

C

C colm C colm C C

 

 

=

  = =
    

 (2.28) 

Since, ( )0,3
Ĉ is a function of joint variables 

4q , 
5q , 

6q , 
7q , 

8q  and 
9q  (

1 , 2 , 3 , 

2 , 
3  and 

3 ), expressions are seen as below.  
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( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

0,3 0,3 0,3 0,3

1 1 2 2 3 3

0,3 0,3 0,3

2 2 3 3 3 3

9
2 2,3 0,3 0,3

3

4

ˆ ˆ ˆ ˆ/ / /

ˆ ˆ ˆ/ / /

ˆ ˆ ˆ /
k

t

k k

k

C C C C

C C C

C colm C C q q

     

     


=

=

     =   +   +  

+   +   +  

 
=   

 


 (2.29) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
9

2 2 2 2 2 2 2 2

3 3 34 1 35 2 36 3 37 2 38 3 39 3

4

k

k k

k

q      
=

=

  =  =  + + + + +  (2.30) 

 
( )2

3 3k k =   (2.31) 

In the above equation, 
3k is called the angular velocity influence coefficient of 

kq  

for 
3B . It is the effect of the term 

kq  on the angular velocity of 
3B . It is expressed 

as seen below. 

 
( ) ( ) ( )( )2,3 0,3 0,3

3
ˆ ˆ ˆ /           for 4,5,6,...9.

t

k kC colm C C q k  =   =
 

 (2.32) 

Proceeding with the angular velocity of 
4B ,  

 
4 4/0 =  (2.33) 

Matrix equation in ( )4 2F P is seen as below. 

 ( ) ( ) ( ) ( )4 4 0,4 0,4

4 4
ˆ ˆt

colm colm C C    = =
    

 (2.34) 

However, it is necessary to express 
( )4

4 in the nonrotating frame 
4 2( )nF P  which is 

equivalent to the frame ( )2 2F P . Thus, matrix equations in ( )2 2F P are seen as below. 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2,4 4

4 4

2 2,4 4 2,4 0,4 0,4

4 4

ˆ

ˆ ˆ ˆ ˆt

C

C colm C colm C C

 

 

=

  = =
    

 (2.35) 

Since, ( )0,4
Ĉ is a function of joint variables 

4q , 
5q , 

6q , 
7q , 

8q  and 
10q  (

1 , 2 , 3

, 
2 , 

3  and 
4 ), expressions are seen as below.  
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( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

0,4 0,4 0,4 0,4

1 1 2 2 3 3

0,4 0,4 0,4

2 2 3 3 3 3

10
2 2,4 0,4 0,4

4

4

ˆ ˆ ˆ ˆ/ / /

ˆ ˆ ˆ/ / /

ˆ ˆ ˆ /
k

t

k k

k

C C C C

C C C

C colm C C q q

     

     


=

=

     =   +   +  

+   +   +  

 
=   

 


 (2.36) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
10

2 2 2 2 2 2 2 2

4 4 44 1 45 2 46 3 47 2 48 3 4,10 4

4

k

k k

k

q      
=

=

  =  =  + + + + +  (2.37) 

 
( )2

4 4k k =  (2.38) 

In the above equation, 
4k is called the angular velocity influence coefficient of 

kq  

for 
4B . It is the effect of the term 

kq  on the angular velocity of 
4B . It is expressed 

as seen below. Moreover, the term 
49  does not appear in the equation because it is 

zero as the rate of joint variable 
9q (

3 ) has no effect on the 
4B . 

 
( ) ( ) ( )( )2,4 0,4 0,4

4
ˆ ˆ ˆ /           for 4,5,6,7,8,10.

t

k kC colm C C q k  =   =
 

 (2.39) 

2.5 Angular Acceleration Expressions 

To start with the angular acceleration of the 
1B , the basic expressions are as seen 

below.  

 
1 1/0 0 1/0 1 1/0D D   = = =  (2.40) 

Here, ( / )k k
D d dt=  indicates the differentiation of a vector with respect to a 

reference frame kF , i.e., taking derivative as if kF  is fixed [17]. 

Matrix equations in ( )1F B  are seen as below.  

 
( ) ( ) ( )1 1 1

1 1 1 1D  = =  (2.41) 

( )1

1 is also expressed with the influence coefficients as seen below. 



 

 

 

23 

 ( )
66 6

1

1 1 1

4 4 4

jk k

k k kj k j

k k j

q q q
== =

= = =

  =  +        (2.42) 

In the above equation, the term 
1k is the acceleration-to-acceleration influence 

coefficient for 
1B  which is the same as the velocity-to-velocity influence coefficient 

for 
1B . The term 1kj  is the velocity-to-acceleration influence coefficient for 

1B  

which is expressed as shown below.  

 1 1 /           4,5,6 ;  4,5,6.kj k jq k j =   = =  (2.43) 

To continue with the angular acceleration of 
2B , expressions are as seen below.  

 
2 2/0 0 2/0 2 2/0D D   = = =  (2.44) 

Matrix equations in ( )2F Q  are seen as below.  

 
( ) ( ) ( )2 2 2

2 2 2 2D  = =  (2.45) 

( )2

2 is expressed with the influence coefficients as seen below. 

 ( )
88 8

2

2 2 2

4 4 4

jk k

k k kj k j

k k j

q q q
== =

= = =

  =  +        (2.46) 

In the above equation, the term 
2k is the acceleration-to-acceleration influence 

coefficient for 
2B which is the same as the velocity-to-velocity influence coefficient 

for 
2B . The term 2kj  is the velocity-to-acceleration influence coefficient for 

2B  

which is expressed as shown below.  

 2 2 /           4,5,...8 ;  4,5,...8.kj k jq k j =   = =  (2.47) 

Proceeding with the angular acceleration of 
3B , expressions are as seen below. 

 
3 3/0 0 3/0 3 3/0

3 3/0 2 3/0 2/3 3/0 2 3/0 3/2 3/0

D D

D D D

   

      

= = =

= +  = − 
 (2.48) 
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Above expression represents Coriolis Transport Theorem [17] which is applied to 

take derivative of an expression with respect to different frames.    

Matrix equations in ( )2 1F P  are seen as below.  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2(2)

3 0 3 2 3 3/2 3

2 2 2 2 2 2 2 2

2 3 2 3/0 2 3/2 2/0 2 3/2 2 2/0 3/2 2/0

2 2 2 2(2)

3 3/2 2/0 3/2 3

D D

D D D D D

    

       

    

= = −

= = + = + = +

= + −

 (2.49) 

( )2

3 is expressed with the influence coefficients as seen below. 

 

( )

( )

( )

99 9 9
2

3 3 3 3 3

4 4 9 4

9 99 9 9
2

3 3 3 3 3

4 4 4 9 4

9 8
2

3 3 3

4 4

jk k k

k k k k k j k j

k k k j

j jk k k

k k kj k j k j k j

k k j k j

k k

k k kj k j

k k

q q q q

q q q q q

q q q







== = =

= = = =

= == = =

= = = = =

= =

= =

    =  +  −      

   =  +  −       

  =  +    

   

    

  ( )
9 99

3 3 3

4 9 4

j jk

kj k j k j

j k j

q q
= ==

= = =

 +  − 
   

 (2.50) 

In the above equation, the term 
3k is the acceleration-to-acceleration influence 

coefficient for 
3B which is the same as the velocity-to-velocity influence coefficient 

for 
3B . The terms 2kj  and 

*

2kj are the velocity-to-acceleration influence coefficients 

for 
3B  which are expressed as below.  

 
3 3

*

3 3 3 3

/           4,5,...9 ;  4,5,...9.

          9 ;  4,5,...9

kj k j

kj kj k j

q k j

k j

 =   = =

 =  −  = =
 (2.51)  

Continuing with the angular acceleration of 
4B , expressions are as seen below. 

 
4 4/0 0 4/0 4 4/0

4 4/0 2 4/0 2/4 4/0 2 4/0 4/2 4/0

D D

D D D

   

      

= = =

= +  = − 
 (2.52) 

Above expression represents Coriolis Transport Theorem [17] which is applied to 

take derivative of an expression with respect to different frames.    
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Matrix equations in ( )2 2F P  are seen as below.  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2(2)

4 0 4 2 4 4/2 4

2 2 2 2 2 2 2 2

2 4 2 4/0 2 4/2 2/0 2 4/2 2 2/0 4/2 2/0

2 2 2 2(2)

4 4/2 2/0 4/2 4

D D

D D D D D

    

       

    

= = −

= = + = + = +

= + −

 (2.53) 

( )2

4 is expressed with the influence coefficients as seen below. 

 

( )

( )

( )

1010 10 10
2

4 4 4 4 4

4 4 10 4

10 1010 10 10
2

4 4 4 4 4

4 4 4 10 4

10 9
2

4 4 4

4 4

jk k k

k k k k k j k j

k k k j

j jk k k

k k kj k j k j k j

k k j k j

k k

k k

k k

q q q q

q q q q q

q







== = =

= = = =

= == = =

= = = = =

= =

= =

    =  +  −      

   =  +  −       

 =  +  

   

    

  ( )
10 1010

4 4 4

4 10 4

j jk

kj k j kj k j k j

j k j

q q q q
= ==

= = =

   +  −      

 (2.54) 

In the above equation, the term 
4k is the acceleration-to-acceleration influence 

coefficient for 
4B which is the same as velocity-to-velocity influence coefficient for

4B . The terms 4kj  and 
*

4kj are the velocity-to-acceleration influence coefficients 

for 
4B  which are expressed as shown below.  

 
4 4

*

4 4 4 4

/           4,5,...10 ;  4,5,...10.

          10 ;  4,5,...10.

kj k j

kj kj k j

q k j

k j

 =   = =

 =  −  = =
 (2.55) 

2.5.1 Closed Form Expressions for Angular Acceleration 

Angular acceleration equation for the bodies  ( 1,2,3,4.)kB k =  is seen as below. 

 
( ) ( ) ( ) ( ) ( )0ˆ, , , , , ,           1,2,3,4.
k k

k k k kq q q t q t q q q t k  = =  + =  (2.56) 

The terms 0  ( 1,2,3,4.)k k =  are called biased terms of the angular accelerations 

which are left in the closed form since they are computed simultaneously via a 

computer program. On the other hand, influence coefficients of acceleration-to-
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acceleration ˆ  ( 1,2,3,4.)k k =  are expressed in the open form. Scalar equations of 

the angular acceleration for 
1B  are seen as below. Abbreviation of s  and c  stands 

for sine and cosine functions.  

 

( )

( ) ( )

( ) ( )

0

11 1 3 2 11

0

12 2 1 3 2 1 12

0

13 2 1 3 1 2 13

s

c c s

s c c

    

      

      

  = − +

    = + +

    = − + +

 (2.57) 

Scalar equations of angular acceleration for 
2B  are seen as below. 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0

21 1 2 3 2 2 1 2 1 3 3 2,16 3 2 21

0

22 1 3 2 3 1 3 3 2 3 2 1 2 22

0

23 1 3 2 2 1 2 3 2 1 3 2,36 3 2 23

2,16 2 2

c c s s c c s s

s c c s s c c s

c s c s s c s c

c c

             

             

             

 

    = + + +  − +

      = − + + + + +

    = + − +  + +

 = 3 1 1 2 2 2 3 2

2,36 2 1 2 3 2 2 2 2 3 1

s s c c s c c s

c c c c s s c s s s

       

         

   − −

     = − +

 (2.58) 

The term ( ),  1,2,3,4;  1,2,3;  1,2...10.j kl j k l = = =  indicates lengthy expressions 

with trigonometric functions. It is used for ease of reading the equations.  

Scalar equations of angular acceleration for 
3B  are seen as below. 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0

31 1 2 3 2 2 1 2 1 3 3 3,16 3 2 31

0

32 1 3 2 3 1 3 3 2 3 2 1 2 32

0

33 1 3 2 2 1 2 3 2 1 3 3,36 3 2 3 33

3,16

c c s s c c s s

s c c s s c c s

c s c s s c s c

c

             

             

              



    = + + +  − +

      = − + + + + +

    = + − +  + + +

 = 2 2 3 1 1 2 2 2 3 2

3,36 2 1 2 3 2 2 2 2 3 1

c s s c c s c c s

c c c c s s c s s s

        

         

    − −

     = − +

 (2.59) 

Scalar equations of angular acceleration for 
4B  are seen as below. 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0

41 1 2 3 2 2 1 2 1 3 3 4,16 3 2 41

0

42 1 3 2 3 1 3 3 2 3 2 1 2 42

0

43 1 3 2 2 1 2 3 2 1 3 4,36 3 2 4 43

4,16

c c s s c c s s

s c c s s c c s

c s c s s c s c

c

             

             

              



    = + + +  − +

      = − + + + + +

    = + − +  + + +

 = 2 2 3 1 1 2 2 2 3 2

4,36 2 1 2 3 2 2 2 2 3 1

c s s c c s c c s

c c c c s s c s s s

        

         

    − −

     = − +

 (2.60) 

2.6 Position Expressions 

The points expressed below are seen in Figure 2.2. Offset vectors are indicated 

below. 

 

( ) ( ) ( )

( )

( )

( )

0 0 0

1 2 3

1

0 3

2

1 0 3

2

1 2 1 3

OB xu yu zu

BQ l u

QP h u

PP h u

= + +

=

=

=

  (2.61) 

Mass center ( 
kC ) position vectors (

kc ) which are shown below are constant within 

the body frames.  

 

( )

( )

( )

( )

1

1 1 1 3

2

2 2 2 3

3

3 1 3 3 3

4

4 2 4 4 3

c BC c u

c QC c u

c PC c u

c PC c u

= =

= =

= =

= =

 (2.62) 

Mass center position of 
1B  from the frame ( )0F O  are expressed below. 

 

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

1

1

1

0 0 0

1 2 3

1

1 1 3

0 0 0 1

1 1 2 3 1 3

OB BC

OB

BC

r r r

r xu yu zu

r c c u

r xu yu zu c u

= +

= + +

= =

= + + +

 (2.63) 

Matrix equations in frame ( )1F B  are expressed below. 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

1 1

1

1 0/1 1/1

1

0/1 1 1,0 0

0

1 2 3

1,0 0,1

1/1 1

1 3

1 0,1 0 1

1

ˆ

ˆ ˆ

ˆ

OB BC

OB OB OB

OB

t

BC BC

t

OB BC

r r r

r r C r

r xu yu zu

C C

r r c u

r C r r

= +

= =

= + +

=

= =

= +

 (2.64) 

Mass center position of 
2B  from the frame ( )0F O  are expressed below. 

 

( )

( )

( ) ( ) ( ) ( ) ( )

2

2

2

1

0 3

2

2 2 3

0 0 0 1 2

2 1 2 3 0 3 2 3

OB BQ QC

BQ

QC

r r r r

r l u

r c c u

r xu yu zu l u c u

= + +

=

= =

= + + + +

 (2.65) 

Matrix equations in frame ( )2F Q  are expressed below. 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

( ) ( )

2

2 0/2 1/2 2/2

2

0/2 2 2,0 0

2,0 0,2

1/2 2,1 1

1

0 3

2,1 1,2

ˆ

ˆ ˆ

ˆ

ˆ ˆ

OB BQ QC

OB OB OB

t

BQ BQ

BQ

t

r r r r

r r C r

C C

r C r

r l u

C C

= + +

= =

=

=

=

=

 (2.66) 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2

2/2 2

2 3

2 0,2 0 1,2 1 2

2
ˆ ˆ

QC QC

t t

OB BQ QC

r r c u

r C r C r r

= =

= + +
 (2.67) 

Mass center position of 
3B  from the frame ( )0F O  are expressed below. 
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( )

( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 3

1

1 3

3

2

0 3

3

3 3 3

0 0 0 1 2 3

3 1 2 3 0 3 0 3 3 3

OB BQ QP PC

QP

PC

r r r r r

r h u

r c c u

r xu yu zu l u h u c u

= + + +

=

= =

= + + + + +

 (2.68) 

Because of the assumption about the mass center of 
3B  stated before in Section 2.2, 

3c  is assumed to be zero. In addition to this assumption, the length 4c  must be also 

exactly zero, either by proper manufacturing or by balancing afterward. Otherwise, 

there will be severe vibrations caused by the propellers.  

Thus, the expression 
3r is modified as below. 

 
( ) ( ) ( ) ( ) ( )0 0 0 1 2

3 1 2 3 0 3 0 3r xu yu zu l u h u= + + + +  (2.69) 

Matrix equations in frame ( )2 1F P  are expressed below. 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1

2 0/2 1/2 2/2

3

2/2 2

0 3

2 0,2 0 1,2 1 2

3
ˆ ˆ

OB BQ QP

QP QP

t t

OB BQ QP

r r r r

r r h u

r C r C r r

= + +

= =

= + +

 (2.70) 

Mass center position of 
4B  from the frame ( )0F O  are expressed below. 

 

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 4

1 2

2 4

4

2

1 3

4

4 4 3

0 0 0 1 2

4 1 2 3 0 3 0 1 3

OB BQ QP P P P C

P P

P C

r r r r r r

r h u

r c c u

r xu yu zu l u h h u

= + + + +

=

= =

= + + + + +

 (2.71) 

Matrix equations in frame ( )2 2F P  are expressed below. 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2

1 2 1 2

1 1 2

2 0/2 1/2 2/2 2/2

4

2/2 2

1 3

2 0,2 0 1,2 1 2 2

4
ˆ ˆ

OB BQ QP PP

PP PP

t t

OB BQ QP PP

r r r r r

r r hu

r C r C r r r

= + + +

= =

= + + +

 (2.72) 
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2.7 Linear Velocity Expressions 

Mass center velocity of 
1B  is expressed below. 

 
1 0 1 1 1 1 1v D r D r r= = +   (2.73) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )1F B  is expressed below. 

 
( ) ( ) ( )1 1 1

1 1 1 1v r r= +  (2.74) 

Above expression is demonstrated with influence coefficients as seen below. 

 

( )( ) ( )( )

( )( )

( )( )

6 6
1 1

1 1 1 1

1 4

6 6
1

1 1 1 1

1 4

3 6
1

1 1 1 1 1

1 4

/
k k

k k k k

k k

k k

k k k k

k k

k k

k k k k k

k k

v r q q r q

v V q r q

v V q V r q

= =

= =

= =

= =

= =

= =

   =   + 
   

  = +    

  = + +   

 

 

 

 (2.75) 

The terms 
1kV  and *

1kV are velocity-to-velocity influence coefficients of 
kq for the 

1B  

which are expressed as seen below. 

 

( )

( )

1

1 1

1*

1 1 1 1

/           for 1,2,...6.

          for 4,5,6.

k k

k k k

V r q k

V V r k

=   =

= + =
 (2.76) 

Mass center velocity of 
2B  is expressed below. 

 
2 0 2 2 2 2 2v D r D r r= = +   (2.77) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )2F Q  is expressed below. 

 
( ) ( ) ( )2 2 2

2 2 2 2v r r= +  (2.78) 

Above expression is demonstrated with influence coefficients as seen below. 
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( )( ) ( )( )

( )( )

( )( )

8 8
2 2

2 2 2 2

1 4

8 8
2

2 2 2 2

1 4

3 8
2

2 2 2 2 2

1 4

/
k k

k k k k

k k

k k

k k k k

k k

k k

k k k k k

k k

v r q q r q

v V q r q

v V q V r q

= =

= =

= =

= =

= =

= =

   =   + 
   

  = +    

  = + +   

 

 

 

 (2.79) 

The terms 
2kV  and *

2kV are velocity-to-velocity influence coefficients of 
kq for the 

2B  which are expressed as seen below. 

 

( )

( )

2

2 2

2*

2 2 2 2

/           for 1,2,...8.

          for 4,5,...8.

k k

k k k

V r q k

V V r k

=   =

= + =
 (2.80) 

Mass center velocity of 
3B  is expressed below. 

 
3 0 3 2 3 2 3v D r D r r= = +   (2.81) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )2 1F P  is expressed below. 

 
( ) ( ) ( )2 2 2

3 3 2 3v r r= +  (2.82) 

Above expression is demonstrated with influence coefficients as seen below. 

 

( )( ) ( )( )

( )( )

( )( )

9 8
2 2

3 3 2 3

1 4

9 8
2

3 3 2 3

1 4

3 8 9
2

3 3 3 2 3 3

1 4 9

/
k k

k k k k

k k

k k

k k k k

k k

k k k

k k k k k k k

k k k

v r q q r q

v V q r q

v V q V r q V q

= =

= =

= =

= =

= = =

= = =

   =   + 
   

  = +    

    = + + +    

 

 

  

 (2.83) 

The terms 
3kV  and *

3kV are velocity-to-velocity influence coefficients of 
kq for the 

3B  

which are expressed as seen below. 

 

( )

( )

2

3 3

2*

3 3 2 3

/           for 1,2,...9.

          for 4,5,...8.

k k

k k k

V r q k

V V r k

=   =

= + =
 (2.84) 
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Mass center velocity of 
4B  is expressed below. 

 
4 0 4 2 4 2 4v D r D r r= = +   (2.85) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )2 2F P  is expressed below. 

 
( ) ( ) ( )2 2 2

4 4 2 4v r r= +  (2.86) 

Above expression is demonstrated with influence coefficients as seen below. 

 

( )( ) ( )( )

( )( )

( )( )

10 8
2 2

4 4 2 4

1 4

10 8
2

4 4 2 4

1 4

3 8 10
2

4 4 4 2 4 4

1 4 9

/
k k

k k k k

k k

k k

k k k k

k k

k k k

k k k k k k k

k k k

v r q q r q

v V q r q

v V q V r q V q

= =

= =

= =

= =

= = =

= = =

   =   + 
   

  = +    

    = + + +    

 

 

  

 (2.87) 

The terms 
4kV  and *

4kV are velocity-to-velocity influence coefficients of 
kq for the 

4B  which are expressed as seen below. 

 

( )

( )

2

4 4

2*

4 4 2 4

/          for 1,2,...10.

          for 4,5,...8.

k k

k k k

V r q k

V V r k

=   =

= + =
 (2.88) 

Since there are two different types of influence coefficients for each body, it is 

necessary to name the influence coefficients for each body as a new general term jkV 

( 1,2,3,4;  1,2,3,...10)j k= =  . The general term represents a new matrix containing 

two different types of influence coefficients for each body. The term jkV  will appear 

in the following Sections for the sake of writing simpler expressions. 

2.8 Linear Acceleration Expressions  

Mass center acceleration of 
1B  is expressed below. 
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1 0 1 1 1 1 1a D v D v v= = +   (2.89) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )1F B  is expressed below. 

 
( ) ( ) ( ) ( )1 1 1 1

1 1 1 1a v v= +  (2.90) 

Above expression is demonstrated with influence coefficients as seen below. 

 

( ) ( )

( ) ( )

66 6
1

1 1 1 1 1

1 4 1

66 6

1 1

1 1 1

6 66 6 6
1

1 1 1 1 1

1 1 1 4 1

1

jk k

k k k k k j k j

k k j

jk k

k k kj k j

k k j

j jk k k

k k kj k j k j k j

k k j k j

a V q V q V q q

V q A q q

a V q A q q V q q

a

== =

= = =

== =

= = =

= == = =

= = = = =

     = + + 
  

   =   

    = + +      

  

  

    

( ) ( )
6 66 3 6

1

1 1 1 1 1

1 1 1 4 1

j jk k k

k k kj k j kj k j k j

k k j k j

V q A q q A V q q
= == = =

= = = = =

    = + + +         

 (2.91) 

In the above equation, 
1kV   is the acceleration-to-acceleration influence coefficient 

for the 
1B , which is the same as the velocity-to-velocity influence coefficient for 

1.B

The terms 1kjA  and 
*

1kjA  are velocity-to-acceleration influence coefficients for 
1B

which are expressed as below. 

 
1 1

*

1 1 1 1

/           for 1,2,...6;  1,2,...6.

          for 4,5,6;  1,2,...6.

kj k j

kj kj k j

A V q k j

A A V k j

=   = =

= + = =
 (2.92) 

Mass center acceleration of 
2B  is expressed below. 

 
2 0 2 2 2 2 2a D v D v v= = +   (2.93) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )2F Q  is expressed below. 

 
( ) ( ) ( ) ( )2 2 2 2

2 2 2 2a v v= +  (2.94) 
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Above expression is demonstrated with influence coefficients as seen below. 

 

( ) ( )
88 8

2

2 2 2 2 2

1 4 1

88 8

2 2

1 1 1

jk k

k k k k k j k j

k k j

jk k

k k kj k j

k k j

a V q V q V q q

V q A q q

== =

= = =

== =

= = =

     = + + 
  

   =   

  

  

 (2.95) 

 

( ) ( )

( ) ( )

8 88 8 8
2

2 2 2 2 2

1 1 1 4 1

8 88 3 8
2

2 2 2 2 2 2

1 1 1 4 1

j jk k k

k k kj k j k j k j

k k j k j

j jk k k

k k kj k j kj k j k j

k k j k j

a V q A q q V q q

a V q A q q A V q q

= == = =

= = = = =

= == = =

= = = = =

    = + +      

    = + + +     

    

    

 (2.96) 

In the above equation, 
2kV   is the acceleration-to-acceleration influence coefficient 

for the 
2B , which is the same as the velocity-to-velocity influence coefficient for 

2.B The terms 2kjA  and 
*

2kjA  are velocity-to-acceleration influence coefficients for 

2B  which are expressed as below. 

 
2 2

*

2 2 2 2

/           for 1,2,...8;  1,2,...8.

          for 4,5,...8;  1,2,...8.

kj k j

kj kj k j

A V q k j

A A V k j

=   = =

= + = =
 (2.97) 

Mass center acceleration of 
3B  is expressed below. 

 
3 0 3 2 3 2 3a D v D v v= = +   (2.98) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )2 1F P  is expressed below. 

 
( ) ( ) ( ) ( )2 2 2 2

3 3 2 3a v v= +  (2.99) 

Above expression is demonstrated with influence coefficients as seen below. 
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( ) ( )

( ) ( )

99 8
2

3 3 3 2 3

1 4 1

99 9

3 3

1 1 1

9 99 9 8
2

3 3 3 2 3

1 1 1 4 1

3

jk k

k k k k k j k j

k k j

jk k

k k kj k j

k k j

j jk k k

k k kj k j k j k j

k k j k j

a V q V q V q q

V q A q q

a V q A q q V q q

a

== =

= = =

== =

= = =

= == = =

= = = = =

     = + + 
  

   =   

    = + +      

  

  

    

( ) ( )
9 99 3 8

2

2 3 3 2 3

1 1 1 4 1

99

3

9 1

j jk k k

k k kj k j kj k j k j

k k j k j

jk

kj k j

k j

V q A q q A V q q

A q q

= == = =

= = = = =

==

= =

    = + + +     

 +  

    

 

 (2.100) 

In the above equation, 
3kV   is the acceleration-to-acceleration influence coefficient 

for the 
3B , which is the same as the velocity-to-velocity influence coefficient for 

3.B

The terms 3kjA  and 
*

3kjA  are velocity-to-acceleration influence coefficients for 
3B  

which are expressed as below. 

 
3 3

*

3 3 2 3

/           for 1,2,...9;  1,2,...9.

          for 4,5,...8;  1,2,...9.

kj k j

kj kj k j

A V q k j

A A V k j

=   = =

= + = =
 (2.101) 

Mass center acceleration of 
4B  is expressed below. 

 
4 0 4 2 4 2 4a D v D v v= = +   (2.102) 

Coriolis Transport Theorem is applied in the above equation to take derivative in the 

body frame. Matrix equation in the frame ( )2 2F P  is expressed below. 

 
( ) ( ) ( ) ( )2 2 2 2

4 4 2 4a v v= +  (2.103) 

Above expression is demonstrated with influence coefficients as seen below. 



 

 

 

36 

 

( ) ( )

( ) ( )

1010 8
2

4 4 4 2 4

1 4 1

1010 10

4 4

1 1 1

1010 10 8
2

4 4 4 2 4

1 1 1 4

jk k

k k k k k j k j

k k j

jk k

k k kj k j

k k j

jk k k

k k kj k j k j k j

k k j k j

a V q V q V q q

V q A q q

a V q A q q V q q

== =

= = =

== =

= = =

== = =

= = = =

     = + + 
  

   =   

    = + +      

  

  

   

( ) ( )

10

1

10 1010 3 8
2

4 4 4 4 2 4

1 1 1 4 1

910

4

9 1

j

j jk k k

k k kj k j kj k j k j

k k j k j

jk

kj k j

k j

a V q A q q A V q q

A q q

=

=

= == = =

= = = = =

==

= =

    = + + +     

 +  



    

 

 (2.104) 

In the above equation, 
4kV   is the acceleration-to-acceleration influence coefficient 

for the 
4B , which is the same as the velocity-to-velocity influence coefficient for 

4.B The terms 4kjA  and 
*

4kjA  are velocity-to-acceleration influence coefficients for 

4B  which are expressed as below. 

 
4 4

*

4 4 2 4

/           for 1,2,...10;  1,2,...10.

          for 4,5,...8;  1,2,...10.

kj k j

kj kj k j

A V q k j

A A V k j

=   = =

= + = =
 (2.105) 

2.8.1 Closed Form Expressions for Linear Acceleration 

Linear acceleration equation for the bodies  ( 1,2,3,4.)kB k =  is seen as below. 

 
( ) ( ) ( ) ( ) ( )0ˆ, , , , , ,           1,2,3,4.
k k

k k k ka a q q q t V q t q a q q t k= = + =  (2.106) 

The terms 0  ( 1,2,3,4.)ka k =  are called biased terms of the linear accelerations which 

are left in the closed form since they are computed simultaneously via a computer 

program. On the other hand, influence coefficients of acceleration-to-acceleration 

ˆ  ( 1,2,3,4.)kV k =  are expressed in the open form via scalar equations since they are 

unknown. Scalar equations of the linear acceleration for 
1B  are seen as below. 

Abbreviation of s  and c  stands for sine and cosine functions.  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

0

11 2 3 2 3 2 2 1,15 3 1,16 11

12 3 1 2 1 3 1 3 1 2 3 2 1

0

1 1 2 1,25 3 1,26 12

13 1 3 1 3 2 1

a x c c y c s z s V V a

a x c s s c s y c c s s s z c s

c V V a

a x s s c c s y c s

      

           

  

     

      = + − + + +

           = − + + +

  − + + +

      = + + ( ) ( )

( )
2 3 3 1 1 2

0

3 1,36 13

s c s z c c

V a

     



    − +

+ +

 (2.107) 

 

( ) ( )

( ) ( )

1,15 1,15 1,15 1 1

1,15 1 1 3 3 1 2 1 1 3 1 3 2 3 2

1,15 1 1 3 1 2 3 1 3 1 1 2 3 2 3

1,16 1,16 1,16 2 1 1

x y

x

y

x y

V C x C y c c

C s c s c s s c s s c c s c s

C s c c s s s c c s c s s s s

V C x C y c s c



             

             

 

= + +

             = − − + + −


             = + − − −

 = + +

( ) ( )

( ) ( )

1,16 2 1 1 3 1 3 2 1 2 1 3 3 1 2

2 3

1,16 2 1 3 1 1 2 3 1 2 1 3 1 2 3

2 3

x

y

C c s s s c c s c c c s c s s

c s

C c s c s c s s c c c c s s s

c c

             

 

             

 

             = + + −


 −


             = − − − +
  +

 (2.108) 

 

( ) ( )( )

1,25 1,25 1,25

1,25 2 3 1 1 2 3

1,25 2 1 3 1 2 3

1,26 1,26 1,26 2 1

2

1,26 2 1 3 1 3 2 1 3 1 3 2

1,26 2 3 1 1

1

x y

x

y

x y

x

y

V C x C y

C c c s s c c

C c s s s c s

V C x C y s c

C s s s c c s s s c c c

C s c s c

     

     



          

   

= +

     = −


     = −

= + +

          = + + + +

   = − −( ) ( )( )2

2 3 3 1 1 3 2 1s s c s c s c      





      + + −


 (2.109) 

 ( ) ( )( )
( ) ( )( )

1,36 1,36 1,36

2

1,36 2 1 3 3 1 2 1 3 3 1 2

2

1,36 2 1 3 1 2 3 1 3 1 3 2

1

1

x y

x

y

V C x C y

C s c s c s s c s c s c

C s c c s s s c c s s c

          

          

= +

           = − − + −



          = − + − + −


 (2.110) 

The term ( ),  1,2,3,4;  1,2,3;  1,2...10.j klV j k l= = =  expresses more complicated 

trigonometric terms for ease of reading the equations. The terms 
,j klxC  and 

,j klyC  

( )1,2,3,4;  1,2,3;  1,2...10.j k l= = =  also express complicated trigonometric terms 
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in the expression of 
,j klV which represents coefficients of the terms x , y  and z . 

Scalar equations of the linear acceleration for 
2B  are seen as below. 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

21 2,11 2,12 2,13 1 3 2 0 2

0

2 3 1 2 0 2 3 2,16 2 2 21

22 2,21 2,22 2,23 1 3 0 2 2

0

2 2,25 3 2,26 3 2 2 22

23 2,31 2,32

a x V y V z V s c l c

c c c l c V c a

a x V y V z V c l c c

V V c s a

a x V y V z

  

     

  

   

= + + − +

  + + + + +

= + + − +

 + + + +

= + + ( ) ( )

( ) ( )

2,33 1 0 2 3

0

2 0 2 3 1 3 2,36 23

V l s s

l s c c V a

  

    

−

  + + +

 (2.111) 

 

( )

( )

( )

( )

( )

2,11 2 3 2 3 2 3 1 3 3 1 2

2 1 3 1 3 2

2,12 2 3 2 3 2 3 1 3 1 2 3

2 3 1 1 2 3

2,13 2 2 3 1 3 2 1 2 2

2,16 2 3

V c c c c c s c s c s s

s s s c c s

V c c c s c s c c s s s

s c s c s s

V c c s s c s c c s

V c s s

          

     

          

     

        

 

      = − −

    − +

      = + +

    + −

    = − −

= ( ) ( )2 3 2 1 0 2 3 2 3 2 1c c s l c s s c c s            + + +

 (2.112) 

 

( )

( )

( )

( )

2,21 3 1 3 3 1 2 3 2 3

2,22 3 1 3 1 2 3 3 2 3

2,23 3 2 3 2 1

2,25 0 1 3 2 2 1 2 3 1

2,26 0 3 2 2 3 1

2 2 3 2 1 2 2

V c c s c s s s c c

V c c c s s s s c s

V s s c c s

V l c s c s s c s c

V l c s c s s

c c c s c c s

        

        

    

      

    

     

      = − − −

      = + −

  = +

  = − − +

  = −

  + + −( )2 2 3 1c c s s    

 (2.113) 

 

( ) ( )

( ) ( )

2,31 2 1 3 1 3 2 2 3 1 3 3 1 2

2 3 2 3

2,32 2 3 1 1 2 3 2 3 1 3 1 2 3

2 3 2 3

2,33 2 1 2 2 3 2 2 3 2 1

2,36 0

V c s s c c s s s c s c s s

s c c c

V c c s c s s s s c c s s s

s c c s

V c c c s c s s s c s

V l s

            

   

            

   

         



         = + − −

 +

         = − − + +

 +

    = − +

= ( )( )2 3 2 3 2 1s s c c s      +

 (2.114) 

Scalar equations of the linear acceleration for 
3B  are seen as below. 
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( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

31 3,11 3,12 3,13 1 3 0 0 2

0

2 3 1 0 0 2 3 3,16 2 0 31

32 3,21 3,22 3,23 1 3 0 0 2

0

2 3,25 3 3,26 3 0 2 32

33 3,31 3,32

a x V y V z V s h l c

c c h l c V h a

a x V y V z V c l h c

V V h s a

a x V y V z

  

     

  

   

= + + − +

  + + + + +

= + + − +

 + + + +

= + + ( ) ( )

( ) ( )

3,33 1 0 2 3

0

2 0 2 3 1 3 3,36 33

V l s s

l s c c V a

  

    

−

  + + +

 (2.115) 

 

( )

( )

( )

( )

3,11 2 3 2 3 2 3 1 3 3 1 2

2 1 3 1 3 2

3,12 2 3 2 3 2 3 1 3 1 2 3

2 3 1 1 2 3

3,13 2 2 3 1 1 2 2 2 3 2

3,16 0 3

V c c c c c s c s c s s

s s s c c s

V c c c s c s c c s s s

s c s c s s

V c c s s c c s c c s

V h s

          

     

          

     

         



      = − −

    − +

      = + +

    + −

    = − −

= ( ) ( )( )2 3 2 1 0 2 3 2 3 2 1s c c s l c s s c c s              + + +

 (2.116) 

 

( )

( )

( )

3,21 3 1 3 3 1 2 2 3 3

3,22 3 1 3 1 2 3 2 3 3

3,23 3 2 3 2 1

3,25 0 1 3 0 2 1 2 1 3

3,26 0 3 2 2 3 1

0 2 3 2 1 2 2

V c c s c s s c c s

V c c c s s s c s s

V s s c c s

V l c s h s s c c s

V l c s c s s

h c c s c c s

        

        

    

      

    

     

      = − − −

      = + −

  = +

  = − − +

  = −

  + + −( )2 2 3 1c c s s    

 (2.117) 

 

( ) ( )

( ) ( )

3,31 2 1 3 1 3 2 2 3 1 3 3 1 2

2 3 2 3

3,32 2 3 1 3 1 2 3 2 3 1 1 2 3

2 3 2 3

3,33 2 1 2 2 3 2 2 3 2 1

3,36 0 2

V c s s c c s s s c s c s s

s c c c

V s s c c s s s c c s c s s

s c c s

V c c c s c s s s c s

V l s

            

   

            

   

         



         = + − −

 +

         = + − −

 +

    = − +

= ( )3 2 2 3 2 1s s s c c s       +

 (2.118) 

Scalar equations of the linear acceleration for 
4B  are seen as below. 
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( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )

41 4,11 4,12 4,13 1 3 0 1 0 2

0

2 3 1 0 1 0 2 3 4,16 2 0 1 41

42 4,21 4,22 4,23 1 3 0 0 1 2

0

2 4,25 3 4,26 3 2 0 1 42

43 4,

a x V y V z V s h h l c

c c h h l c V h h a

a x V y V z V c l h h c

V V s h h a

a x V

  

     

  

   

= + + − + +

  + + + + + + +

= + + − + +

 + + + + +

= ( ) ( ) ( ) ( )

( ) ( )

31 4,32 4,33 1 0 2 3

0

2 0 2 3 1 3 4,36 43

y V z V l s s

l s c c V a

  

    

+ + −

  + + +

 (2.119) 

 

( )

( )

( )

( )

4,11 2 3 2 3 2 3 1 3 3 1 2

2 1 3 1 3 2

4,12 2 3 2 3 2 3 1 3 1 2 3

2 3 1 1 2 3

4,13 2 2 3 1 1 2 2 2 3 2

4,16 0 2

V c c c c c s c s c s s

s s s c c s

V c c c s c s c c s s s

s c s c s s

V c c s s c c s c c s

V l c

          

     

          

     

         



      = − −

    − +

      = + +

    + −

    = − −

= ( )

( ) ( )

3 2 2 3 2 1

0 3 2 3 2 1 1 3 2 3 2 1

s s c c c s

h s s c c s h s s c c s

     

         

  +

     + + + +

 (2.120) 

 

( )

( )( )

( )

( )

4,21 3 1 3 3 1 2 2 3 3

4,22 3 1 3 1 2 3 2 3 3

4,23 3 2 3 2 1

4,25 0 1 3 0 1 2 1 2 1 3

4,26 0 3 2 2 3 1

0 1 2 3 2 2

V c c s c s s c c s

V c c c s s s c s s

V s s c c s

V l c s h h s s c c s

V l c s c s s

h h c c s s c

        

        

    

      

    

    

      = − − −

      = + −

  = +

  = − − + +

  = −

 + + +( )1 2 2 3 2 1c c s c s      −

 (2.121) 

 

( ) ( )

( ) ( )

4,31 2 1 3 1 3 2 2 3 1 3 3 1 2

2 3 2 3

4,32 2 3 1 3 1 2 3 2 3 1 1 2 3

2 3 2 3

4,33 2 1 2 2 3 2 2 3 2 1

4,36 0 2

V c s s c c s s s c s c s s

s c c c

V s s c c s s s c c s c s s

s c c s

V c c c s c s s s c s

V l s

            

   

            

   

         



         = + − −

 +

         = + − −

 +

    = − +

= ( )3 2 2 3 2 1s s s c c s       +

  (2.122) 
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CHAPTER 3  

3 DYNAMICS 

In this chapter, Newton-Euler Equations are applied for the 5 bodies of the serial 

manipulator model. In addition to the 4 bodies which are illustrated in Figure 2.2, 

the cross-link of the universal joint between the base platform 1B  and the upper 

platform 2B  is included as the body  .cB Since the cross-link cB  is assumed to be 

massles, it was excluded in Chapter 2 of kinematics. Newton-Euler Equations consist 

of 1 vectorial force and 1 vectorial moment equations written per body. Then 30 

scalar equations are generated by resolving the 6 vectorial force and moment 

equations per body either in their body frames or in their nonspinning body frames 

(if they are inertially symmetric). After that, the scalar equations are rearrenged into 

an augmented matrix equation that involves the array of the generalized acceleration 

( q ), the array of the generalized actuation forces (Q ), and the array of the structural 

interaction forces and moments ( R ) arising at the joints. For a consequent direct 

dynamics analysis, especially with control applications, R  is eliminated in order to 

set up the direct relationship between q  and Q . 

3.1 Vectorial Force and Moment Equation 

Masses of the bodies are denoted as ( ) 1, 2,3,4.km k =  and moment of inertia tensors 

of the bodies are denoted as ( ) 1, 2,3, 4.kJ k


= . Since the rotors have inertial 

symmetry about their spin axes, their inertia tensors can be expressed equally in the 

shaft of the upper body 2B  frame instead of the separate rotor frames. Moreover, the 

products of inertia are assumed to be zero owing to perfect manifacturing. Therefore, 

the inertia tensors for the bodies can be expressed as seen below. 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2

1 1 1 1 2 2 1 3 3

2 2 2 2 2 2

2 2 1 1 2 2 2 3 3

n s

n s

J J u u u u J u u

J J u u u u J u u





 = + +
 

 = + +
 

 (3.1) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2

3 3 1 1 2 2 3 3 3

2 2 2 2 2 2

4 4 1 1 2 2 4 3 3

n s

n s

J J u u u u J u u

J J u u u u J u u





 = + +
 

 = + +
 

 (3.2) 

Kinematic terms at the left hand side of the N-E equations are acquired before in the 

previous chapter. Interaction forces are shown as ( )1k k
F

+
. The sequence ( ), 1k k +   is 

taken as the positive direction. Thus, whenever the term ( )1k k
F

+
 appears, it is turned 

into ( )1
.

k k
F

+
−  

3.1.1 Vectorial Force Equations 

Vectorial force equation for 
1B  is expressed as seen below.  

 
( )

1 1 1 1

0

1 1 1 3 1

c dw

c dw

m a F m g F

m a F u m g F

= + +

= − − +
 (3.3) 

The force dwF is the downwash force exerted on 
1B . This term will be discussed later 

in the Section 3.3.  

Vectorial force equation for the cross-link 
cB  is written as follows. 

 
1 2

1 2

0

0

c c

c c

F F

F F

= +

= −
 (3.4) 

Vectorial force equation for 
2B  is written as follows. 

 
( )

2 2 2 32 42 2

0

2 2 2 23 24 3 2

c

c

m a F F F m g

m a F F F u m g

= + + +

= − − −
 (3.5) 
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Vectorial force equation for 
3B  and 4B  are written as follows. 

 
( )

3

3

3 3 23 3

0

3 3 23 3 3

L

L

m a F m g F

m a F u m g F

= + +

= − +
 (3.6)

 
( )

4

4

4 4 24 4

0

4 4 24 3 4

L

L

m a F m g F

m a F u m g F

= + +

= − +
 (3.7) 

The force terms ( ) 3,4
kLF k = are the lift forces exerted on 

3B  and 
4B  by the 

surrounding air. They will also be discussed later in Section 3.3.  

3.1.2 Vectorial Moment Equations 

The vectorial moment equation for 1B  is shown below. 

 
1

1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

c dw C Q c

c dw C Q c

J J M M r F

J J M M r F

  

  

 

 

 +   = + + 

 +   = − + − 

 (3.8) 

The distance 
1C Qr  is defined as seen below.  

 ( ) ( )
1

1

3 0 2C Qr u l c= −  (3.9) 

The term dwM is the moment generated by the downwash force dwF  which will be 

discussed later in the Section 3.3. 

The vectorial moment equation for the cross-link 
cB  is written as follows. 

 
1 2

1 2

0

0

c c

c c

M M

M M

= +

= −
 (3.10) 

The vectorial moment equation for 2B  is shown as follows. 
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2 2 1 2 2

2 2 1 2 2

2 2 2 2 2 2 32 42 2 32 42

2 2 2 2 2 2 23 24 2 23 24

c C Q c C P C P

c C Q c C P C P

J J M M M r F r F r F

J J M M M r F r F r F

  

  

 

 

 +   = + + +  +  + 

 +   = − − +  −  − 

 (3.11) 

The vectors 
2C Qr , 

2 1C Pr  and 
2 2C Pr  are expressed as seen below.  

 

( )

( ) ( )

( ) ( )

2

2 1

2 2

2

2 3

2

0 2 3

2

0 1 2 3

C Q

C P

C P

r c u

r h c u

r h h c u

= −

= −

= + −

 (3.12) 

The vectorial moment equation for 3B  is shown below. 

 
3 1 33 3 3 3 3 23 23C P DJ J M r F M  

 

 +   = +  +  (3.13) 

Since 
3 1

0C Pr = , the above equation reduces to   

 
33 3 3 3 3 23 DJ J M M  

 

 +   = +  (3.14) 

The vectorial moment equation for 4B  is shown below. 

 
4 2 44 4 4 4 4 24 24C P DJ J M r F M  

 

 +   = +  +  (3.15) 

Since 
4 2

0C Pr = , too, the above equation also reduces to 

 
44 4 4 4 4 24 DJ J M M  

 

 +   = +  (3.16) 

The moment terms ( ) 3,4
kDM k = are the drag moments exerted on 

3B  and 
4.B  by 

the surrounding air. They will be discussed later in the Section 3.3. 
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3.2 Resolution of the Interaction Forces and Moments 

The interaction force 
( )1k k

F
+

 and moment 
( )1k k

M
+

 are normally resolved in the 

reference frame of the ( )1k + th body, on which they are applied. In other words, 

they are represented by the column matrices ( ) ( )
( )1

1 1

k

k k k k
F F

+

+ +
=  and ( ) ( )

( )1

1 1

k

k k k k
M M

+

+ +
= . To 

resolve ( )1k k
F

+
 and ( )1k k

M
+

 in the reference frame of the ( )k th body, i.e., to obtain the 

column matrices ( )
( )

1

k

k k
F

+
 and ( )

( )
1

k

k k
M

+
, the transformation matrix ( ), 1ˆ k k

C
+

 is utilized. On 

the other hand, since nonrotating frames of the bodies 3B  and 4B  have the same 

orientation as 2B , the interaction forces and moments 
23F , 

23M , 
24F  and 

24M  are 

resolved in the 2nd body frame. The components of 
( )1k k

F
+

 and 
( )1k k

M
+

 are denoted as 

( )1k k j
F

+
 and ( )1k k j

M
+

 for 1,2,3.j =  

Before resolving interaction forces and moments, transformation matrices for the 

body frame ( )c cF Q  of the cross-link cB  are expressed as seen below. 

 

( )

( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

3 3 2 2 1 1

3 3

3 3

2 2

3 3 2 2

0,1

1,

1,

0, 0,1 1,

,2

1,2 1, ,2

ˆ

ˆ

ˆ

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

u u u

c u

c t u

c c

c u

c c u u

C e e e

C e

C e

C C C

C e

C C C e e

  







 

  

−

=

=

=

=

=

= =

 (3.17) 

The expression for ( )0,1
Ĉ  indicated in Eq. (2.9) is written above for convenience. 

Moreover, it is seen that the expression for ( )1,2
C  is same as the expression mentioned 

in Eq. (2.10) 

The vectorial expressions for the interaction force and moment between 1B  and cB  

are as seen below. 
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( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1 1 2 1 2 3 1 3

1 1 1

1 1 1 1 2 1 2 3 1 3

c c c c

c c c c

F u F u F u F

M u M u M u T

= + +

= + +
 (3.18) 

In the above equations, the component 1 3cT  represents the actuation torque applied 

for the universal joint variable 3 . The other force and moment components 

represent the structural interactions. 

Matrix equations in the frame ( )c cF Q  are expressed as seen below.  

 

( )

( )

1

1 1 1 1 2 1 2 3 1 3

1

1 1 1 1 2 1 2 3 1 3

c c c c

c c c c

F u F u F u F

M u M u M u T

= + +

= + +
 (3.19) 

Matrix equations in the frame ( )1F B  are expressed as seen below.  

 

( ) ( ) ( )

( ) ( ) ( )

1, 1

1 1

1, 1

1 1

ˆ

ˆ

c c t

c c

c c t

c c

F C F

M C M

=

=
 (3.20) 

The vectorial expressions for the interaction force and moment between the cB  and 

2B  are as seen below. 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 1 21 2 22 3 23

2 2 2

2 1 21 2 22 3 23

c c c c

c c c c

F u F u F u F

M u M u T u M

= + +

= + +
 (3.21) 

In the above equations, the component 22cT  represents the actuation torque applied 

for the universal joint variable 2 . The other force and moment components 

represent the structural interactions. 

Matrix equations in the frame ( )2F Q  are expressed as seen below.  

 

( )

( )

2

2 1 21 2 22 3 23

2

2 1 21 2 22 3 23

c c c c

c c c c

F u F u F u F

M u M u T u M

= + +

= + +
 (3.22) 



 

 

 

47 

Matrix equations in the frame ( )c cF Q  are expressed below by applying the similar 

steps as in Eq. (3.20).  

 

( ) ( ) ( )

( ) ( ) ( )

,2 2

2 2

,2 2

2 2

ˆ

ˆ

c c

c c

c c

c c

F C F

M C M

=

=
 (3.23) 

The vectoral expressions for the interaction force and moement between the 2B  and 

3B  are as seen below. 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

23 1 231 2 232 3 233

2 2 2

23 1 231 2 232 3 233

F u F u F u F

M u M u M u T

= + +

= + +
 (3.24) 

In the above equations, the component 233T  represents the actuation torque applied 

for the revolute joint variable 3 . The other force and moment components represent 

the structural interactions. 

Matrix equations in the frame ( )2 1F P  are expressed as seen below.  

 

( )

( )

2

23 1 231 2 232 3 233

2

23 1 231 2 232 3 233

F u F u F u F

M u M u M u T

= + +

= + +
 (3.25) 

The vectoral expressions for the interaction force and moment between the 2B  and 

4B  are as seen below. 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

24 1 241 2 242 3 243

2 2 2

24 1 241 2 242 3 243

F u F u F u F

M u M u M u T

= + +

= + +
 (3.26) 

In the above equations, the component 243T  represents the actuation torque applied 

for the revolute joint variable 4 . The other force and moment components represent 

the structural interactions. 

Matrix equations in the frame ( )2 2F P  are expressed as seen below.  
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( )

( )

2

24 1 241 2 242 3 243

2

24 1 241 2 242 3 243

F u F u F u F

M u M u M u T

= + +

= + +
 (3.27) 

3.3 Resolution of the Aerodynamic Forces and Moments  

As part of the aerodynamic forces and moments that appear in the N-E equations in 

the previous section, there are the downwash force dwF exerted on 1B , lift forces

( ) 3,4
kLF k =  and the drag moments ( ) 3,4

kDM k =  exerted on 3B  and 4B . They 

are explained in the subsections presented below. However, the aerodynamic 

interactions between the two propellers 3B  and 4B  are neglected.    

3.3.1 Downwash Force and Moment  

The reason why the downwash force is particularly taken into account (while the 

other aerodynamic effects such as the interactions between the propellers are 

neglected) is that it has a passive stabilizing effect on the UAV. To give further detail, 

the downwash force in the model results from the weathervane effect [18]. It is 

explained as a body changing its direction of motion in the direction of the wind like 

a weathervane. In the UAV model, the weathervane effect creates a stabilizing effect 

especially on the base platform 1B , because the propellers create a wind in the 

downward direction and this wind pushes the base platform 1B  trying to align it in 

the same direction as the upper platform 2B . To benefit from the weathervane effect 

more, 4 fins are mounted at the bottom of the base platform 1B . They are also 

convenient in terms of landing the UAV. The pushing effect on the fins can be seen 

in Figure 3.1.  

On the contrary to the base platform 1B , the downwash force on the upper platform 

2B is neglected, because the downwash force applied on the upper platform 2B  does 
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not create any stabilizing moment due to the fact that the orientation of the 

nonspinning frame of the propellers ( 3B  and 4B ) and the upper platform 2B  is the 

same.  

Figure 3.1. Downwash Effect on the Bodies  

To calculate the downwash force exerted on the base platform 1B , two elements are 

necessary. First one is the magnitude of the force and second one is the direction of 

the force. 

Continuing with the magnitude of the downwash force, the scalar value of the 

downwash force is calculated by the equation below. The expression is applicable 

when the air flow hits a surface perpendicularly [19]. That is why the projection of 

the downwash force on the normal of the fin surface is calculated as it indicates that 

decomposing the airflow vector in the fin frame and taking the component in the 

direction which is perpendicular to the fin surface. 
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 ( ) ( )21

2
dw air D exertf z C A v z= −  (3.28) 

In the above equation, air is the air density, DC is the drag coefficient and exertA is the 

fin surface which can be expressed as seen below. 

 
exert f fA l h=  (3.29) 

In the above equation, 
fh is the height of the fin and 

fl  is the length of the fin.  

Moreover, the function ( )v z  appearing in Eq. (3.28) defines the air flow velocity 

depending on the distance z  from the propeller and can be expressed as follows.  

 ( )
10 r

air

T
v z

z 
=  (3.30) 

In the above equation, rT  is the thrust force generated by the propeller. If the above 

expression is inserted into Eq. (3.28), the relevant equation is derived as seen below.  

 ( ) 2

50 D exert r
dw

C A T
f z

z
=  (3.31) 

The distance z  in the above expression is a variable. However, in the UAV model, 

it is assumed to have a constant value which is taken as the vertical distance from 

the middle of 1 2PP  to the point 
kf

B  which is the center of geometry for the surface 

of the stabilizing fins during hovering.  Thus, the variable z is turned into the 

parameter zh  which is expressed as seen below.  

 ( )1 0 0/ 2 / 2z p fh h h l t h= + + + +  (3.32) 

Some of the parameters above are defined in Eq. (2.61). The parameter 
pt  represents 

thickness of the circular plate of the base and upper platforms 1B  and 2B . 

 



 

 

 

51 

Moreover, Eq. (3.31) becomes as seen below.  

 
2

50 D exert r
dw

z

C A T
f

h
=  (3.33) 

In Eq. (3.33), the thrust force rT  becomes the only variable which is expressed as 

seen below. 

 ( ) ( ) ( )
3 43 4 3 4,r L LT F F   = +  (3.34) 

As there are two propellers, thrust force rT  consists of lift forces 
3LF and 

4LF

generated by the propellers 3B  and 4B . In addition, lift forces are depend on spinning 

velocities of the propellers (
3 and 

4 ), which will be discussed in detail in the next 

section. Therefore, thrust force rT  is a function of 
3 and 

4  as seen in Eq. (3.34). 

Moreover, drag coefficient of the stabilizing fins DC , is selected as 1.17 according 

to the conditions of a circular disc exposed by a perpendicular air flow for a low 

Reynolds number such as 
3Re 10  [20]. 

Since the magnitude of the downwash force is determined, directional effects are 

considered now as a second element. The placement of the fins and the values of the 

constant angles ( ) 1,2,3,4.
kf

k =  which are depicted in Figure 3.2 are seen as 

follows.  

 ( ) ( )1 / 2          1,2,3,4.
k kf fBB k k = = − =  (3.35) 
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Figure 3.2. Top View of the Base Platform  

The reference frames of the fins are denoted as ( ) ( ) 1,2,3,4.
k kf fF B k =  and the 

transformation matrices for the fins are expressed as seen below. 

 

( )

( )

( ) ( ) ( )

( ) ( ) ( )

3

3 3 2 2

1,

1,2

2, 1,2,1

2, 1,1,2

ˆ

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

fk k

k k

k k

uf

u u

f f

f ft

C e

C e e

C C C

C C C



 

=

=

=

=

 (3.36) 

The transformation matrix ( )1,2
Ĉ is expressed before in Eq. (2.10) of the Chapter 2.3 

but it is written again in the above equation for convenience. 

The unit vector of the downwash force is denoted as dwn  and basically in the reverse 

direction of the propeller shaft which is depicted in both Figure 3.1 and Figure 3.3. 

It is also expressed as seen below.  

 
( )2

3dwn u= −  (3.37) 
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The normal unit vectors of the fin surfaces ( ) 1, 2,3,4
kf

n k =  can be seen in Figure 

3.2, also 
1f

n  as an example is illustrated in Figure 3.3. The term 
kf

n  can be expressed 

as follows. 

 ( )
1

k

k

f

fn u=  (3.38) 

Projection of the downwash force on the normal unit vectors of the fin surfaces 
kf

n

is illustrated in Figure 3.3 and calculated as indicated below. 

 ( )
k k kf dw f fp n n n=   (3.39) 

Figure 3.3. Vectorial Representations of the Downwash Effect on the Base Platform 

If the scalar part of the vector 
kf

p , which is ( )
kdw fn n , is a positive value, it 

represents the downwash effect on the fins which are in the opposite direction of the 

tilting. However, downwash effects on those fins are negligible since the air flow is 

prevented by the base platform and does not reach to those fins as seen in Figure 3.1. 

Therefore, when the value of  ( )
kdw fn n  is negative, it is indicated that the projection 

kf
p  is in the direction of 

kf
n−  as seen in Figure 3.3. In this case, downwash forces 

on those fins are taken into account. 
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The calculations mentioned above appear as matrix equations in the frame ( )
k kf fF B  

below.  

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

/

1 1

2/ ,2 2,2/2

3 3 3
ˆ ˆ

k k k

k

k k k k

k k k k

k k k

f f f

f

f f f f t

dw

f f t f f

f dw f f

n u u

n u C u C u

p n n n

= =

= − = − = −

=

 (3.40) 

Matrix equation in the ( )1F B can be seen as follows. 

 ( ) ( ) ( )1,1 k k

k k

f f

f fp C p=  (3.41) 

Thus, downwash force can be expressed with the magnitude calculated before in Eq. 

(3.33) and the projection indicated above, as follows. 

 
( ) ( )

4
1 1

1
k

k

dw dw f

k

F f p
=

=

=  (3.42) 

The vector equation of the above expression is indicated as seen below. 

 
4

1
k

k

dw dw f

k

F f p
=

=

=  (3.43) 

Thus, the downwash moment dwM  which is depicted in Figure 3.3 can be expressed 

by the following equation.  

 
1

4

1
f kk

k

dw C B dw f

k

M r f p
=

=

 =     (3.44) 

The position vector 
1 fk

C Br seen in the above equation can be expressed as follows. 

 

( )

( ) ( )( ) ( )

( )( ) ( ) ( )

1 1

1

1

1

1 3

1

0 1 3

1

1 3 0 1

/ 2

/ 2

f fk k

k

fk

k

fk

C B C B BB

C B

f

BB p f

f

C B p f

r r r

r c u

r b u t h u

r c t h u b u

= +

= −

= − +

= − + + +

 (3.45) 
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The scalar term 0b  represents the radius of the circular base platform which can be 

seen in Figure 3.2. The other scalar term 
pt  represents thickness of the circular plate 

of the base and upper platforms. 

Matrix equations in ( )1F B  are indicated as follows. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

/1 1, /1 1/1 1/1

1 3 0 1 1 3 0 1

1,1

1 3 0 1

4
1 1 1

1

ˆ

ˆ

k k k k

fk

k

fk

f kk

f f f f

C B f f

f

C B f

k

dw C B dw f

k

r c h u b u c h u b C u

r c h u b C u

M r f p
=

=

= − + + = − + +

= − + +

 =
 

 (3.46) 

3.3.2 Lift Force 

Lift Forces 
3LF  and 

4LF  are generated due to the aerodynamic effects of spinning 

motion of the propellers ( 3B  and 4B ) and applied in the direction of the shaft of the 

upper body 2B  is illustrated in Figure 3.4. 
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Figure 3.4. Representation of Lift Forces and Drag Moments 

Magnitude of the lift forces 
3LF and 

4LF  are calculated through the test data of the 

selected propeller which will be mentioned in detail later in Chapter 6. The two 

propeller blades are symmetrical with respect to xy  plane. Thus, the test data is 

applicable to both propellers. The test data consisting of the rotational velocity of the 

propellers versus the lift forces are utilized for curve-fitting which can be seen in 

Figure 3.5.  

 



 

 

 

57 

Figure 3.5. Curve-fit of Lift Force vs Rotational Velocity Plot 

Then, the second order polynomials which are expressed as seen below are generated 

from the curve-fitted test data which is illustrated in Figure 3.5.  

 
3

4

2

,2 3 ,1 3

2

,2 4 ,1 4

L F F

L F F

F p p

F p p

 

 

= +

= +

 (3.47) 

Here, absolute values of the angular velocities are used in Eq. (3.47) because one of 

the two propellers is driven to spin in the reverse direction by applying negative 

torque to achieve torque cancellation in the UAV. Moreover, angular velocities of 

the propellers are assumed to be 
3  and 

4  in calculations of the lift force since rotor 

speeds are very much larger than the other angular velocity components. Thus, the 

terms other than 
3  and 

4 , are neglected in the expressions for angular velocities 

of the propellers. Coefficients in the above equation are indicated as seen below.  

 

10

,1

5

,2

1.346 10

1.027 10

F

F

p

p

−

−

= 

= 
 (3.48) 

To express the lift forces as vectors, the equations are written as seen below. 
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( )

( )

3 3

4 4

2

3

2

3

L L

L L

F F u

F F u

=

=
 (3.49) 

The lift forces can also be expressed in the following matrix forms in the frames 

( )2 1F P  and ( )2 2F P . 

 

( )

( )

3 3

4 4

2

3

2

3

L L

L L

F F u

F F u

=

=
 (3.50) 

3.3.3 Drag Moment 

The drag moment results from the spinning motion of the propellers ( 3B  and 4B ) 

due to the aerodynamic effects. It is applied in the opposite direction of the spinning 

motion of the propellers as seen in Figure 3.4. 

Magnitude of the drag moments 
3DM and 

4DM  are calculated through the test data 

of the selected propeller. The test data consisting of the rotational velocity of the 

propellers versus the drag moments are separated into two collections of data points 

for curve-fitting, since 2 different second order polynomials give better curve-fitting 

results. Thus, there are two curve-fitted plots, the first one for low rotational 

velocities and the second one for high rotational velocities which can be seen in 

Figure 3.6 and Figure 3.7. 

The second order polynomials which are expressed as seen below are generated from 

the curve-fitted test data for low rotational velocities which can be seen in Figure 

3.6. 

 
3

4

2

,2 3 ,1 3

2

,2 4 ,1 4

D M M

D M M

M p p

M p p

 

 

= +

= +

 (3.51) 
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Figure 3.6. Curve-fit of Drag Moment vs Low Rotational Velocity Plot 

 

Figure 3.7. Curve-fit of Drag Moment vs High Rotational Velocity Plot 

The curve-fitted test data for high rotational velocities which can be seen in Figure 

3.7 is utilized to generate another second order polynomial which can be seen as 

follows.  
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3

4

2

,2, 3 ,1, 3 ,0,

2

,2, 4 ,1, 4 ,0,

D M h M h M h

D M h M h M h

M p p p

M p p p

 

 

= + +

= + +

 (3.52) 

The coefficients seen in Eq. (3.51) and (3.52) are expressed as seen below.  

 

5

,1

6

,2

,0,

,1,

5

,2,

6.779 10

1.44 10

7.674

0.02154

1.508 10

M

M

M h

M h

M h

p

p

p

p

p

−

−

−

= 

= 

=

= −

= 

 (3.53) 

In Eqs. (3.51) and (3.52), the angular velocities of the propellers are assumed to be 

3  and 
4  in the calculations of the drag moment since the angular velocities of the 

propellers are greater than the angular velocities of the base and upper platforms. 

Thus, the terms other than 
3  and 

4 , are neglected in the expressions for the angular 

velocities of the propellers just as they are neglected before in the calculations of the 

lift force. 

To express the drag moments as vectors, equations can be written as follows. 

 
( ) ( )

( ) ( )

3 3

4 4

2

3 3

2

4 3

sgn

sgn

D D

D D

M M u

M M u





= −

= −
 (3.54) 

The drag moments can also be expressed in the following matrix forms in the frames 

( )2 1F P  and ( )2 2F P . 

 

( ) ( )
( ) ( )

3 3

4 4

2

3 3

2

4 3

sgn

sgn

D D

D D

M M u

M M u





= −

= −
 (3.55) 

The signum function (sgn) gives the sign of a variable. Here, the sgn function seen 

in Eqs. (3.54) and (3.55) expresses the direction of the spinning motion of the 

propellers ( 3B  and 4B ). Since there are minus signs in the expressions, it means that 
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drag moments are applied in the opposite direction of the spinning motion just as 

mentioned in the beginning of this section.    

3.4 Force and Moment Equations in Matrix Form  

In this section, the vectorial force and moment equations which are explained in 

Section 3.1 are written as matrix equations by resolving them in the appropriate body 

frames.  

3.4.1 Force Equations in Matrix Form  

The vectorial force equations for 1B , cB , 2B , 3B  and 4B  that are given in Eqs. (3.3) 

-(3.7) are written again as seen below for convenience. 

 
( )0

1 1 1 3 1c dwm a F u m g F= − − +  (3.56) 

 1 20 c cF F= −  (3.57) 

 
( )0

2 2 2 23 24 3 2cm a F F F u m g= − − −  (3.58) 

 ( )

3

0

3 3 23 3 3 Lm a F u m g F= − +  (3.59) 

 ( )

4

0

4 4 24 3 4 Lm a F u m g F= + +  (3.60) 

The resolution of Eq (3.56) is expressed in ( )1F B  as seen below. 

 
( ) ( ) ( ) ( )1 1 0,1 1

1 1 1 3 1
ˆ t

c dwm a F C u m g F= − − +  (3.61) 

The resolution of Eq (3.57) is expressed in ( )c cF Q  as seen below. 

 
( ) ( ) ( ) ( ) ( ),2 2

1 2 1 2
ˆ0   

c c c c

c c c cF F F C F= −  =  (3.62) 

The resolution of Eq (3.58) is expressed in ( )2F Q  as seen below. 
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( ) ( ) ( ) ( ) ( )2 2 2 2 0,2

2 2 2 23 24 3 2
ˆ t

cm a F F F C u m g= − − −  (3.63) 

The resolution of Eq (3.59) is expressed in ( )2 1F P  as seen below. 

 ( ) ( ) ( ) ( )

3

2 2 0,2 2

3 3 23 3 3
ˆ t

Lm a F C u m g F= − +  (3.64) 

The resolution of Eq (3.60) is expressed in ( )2 2F P  as seen below. 

 ( ) ( ) ( ) ( )

4

2 2 0,2 2

4 4 24 3 4
ˆ t

Lm a F C u m g F= − +  (3.65) 

3.4.2 Moment Equations in Matrix Form 

As the inertia matrices are constant in the body frames, they are expressed in the 

body frames, except those of the propellers 3B  and 4B . They are expressed in the 

body frame of 2B  which is a non-spinning frame for 3B  and 4B  due to the property 

of being symmetric along the spinning axis. 

The vectorial moment equations for 1B , cB , 2B , 3B , 4B  and the required position 

vectors that are given in Eqs. (3.8)-(3.16) are written again as seen below for 

convenience. 

 
11 1 1 1 1 1 1c dw C Q cJ J M M r F  

 

 +   = − + −   (3.66)

 ( ) ( )
1

1

3 0 2C Qr u l c= −   (3.67)

 1 20 c cM M= −  (3.68)

 

2 2 1 2 2

2 2 2 2 2 2 23 24

2 23 24

c

C Q c C P C P

J J M M M

r F r F r F

  
 

 +   = − −

+  −  − 
 (3.69)

 

( )

( ) ( )

( ) ( )

2

2 1

2 2

2

2 3

2

0 2 3

2

0 1 2 3

C Q

C P

C P

r c u

r h c u

r h h c u

= −

= −

= + −

 (3.70)
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33 3 3 3 3 23 DJ J M M  

 

 +   = +  (3.71)

 
44 4 4 4 4 24 DJ J M M  

 

 +   = +  (3.72) 

The resolution of Eqs. (3.66) and (3.67) in ( )1 1F C  are expressed as follows. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1 1 1 1 1

1 1 1 1 1 1 1
ˆ ˆ

c dw C Q cJ J M M r F  + = − + −  (3.73) 

 ( ) ( )
1

1

3 0 2C Qr u l c= −  (3.74) 

The resolution of Eq. (3.68) in ( )c cF Q  is expressed as seen below. 

 
( ) ( ) ( ) ( ) ( ),2 2

1 2 1 2
ˆ0   

c c c c

c c c cM M M C M= −  =  (3.75) 

The components of 
( )
1

c

cM  and 
( )2

2cM  are indicated in Eqs. (3.19) and (3.22) before and 

they are written again below for convenience. 

 
( )

( )

1 1 1 1 2 1 2 3 1 3

2

2 1 21 2 22 3 23

c

c c c c

c c c c

M u M u M u T

M u M u T u M

= + +

= + +
 (3.76) 

The resolution of Eqs. (3.69) and (3.70) in ( )2 2F C  are expressed as follows. 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1 2 2

2 2 2 2 2 2

2 2 2 2 2 2 23 24

2 2 2 2 2 2

2 23 24

ˆ ˆ
c

C Q c C P C P

J J M M M

r F r F r F

  + = − −

+ − −
 (3.77) 

The components of 
( )2

23M  and 
( )2

24M  are indicated in Eqs. (3.25) and (3.27)  before 

and they are written again below for convenience. 

 
( )

( )

2

23 1 231 2 232 3 233

2

24 1 241 2 242 3 243

M u M u M u T

M u M u M u T

= + +

= + +
 (3.78) 
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( )

( ) ( )
( ) ( )

2

2 1

2 2

2

2 3

2

0 2 3

2

0 1 2 3

C Q

C P

C P

r c u

r h c u

r h h c u

= −

= −

= + −

 (3.79) 

The resolution of Eq. (3.71) in ( )2 1F P  is expressed as seen below. 

 ( ) ( ) ( ) ( ) ( )

3

2 2 2 2 2

3 3 3 3 3 23
ˆ ˆ

DJ J M M  + = +  (3.80) 

The resolution of Eq. (3.72) in ( )2 2F P  is expressed as seen below. 

 ( ) ( ) ( ) ( ) ( )

4

2 2 2 2 2

4 4 4 4 4 24
ˆ ˆ

DJ J M M  + = +  (3.81) 

3.5 Direct Dynamic Analysis 

When the matrix equations indicated in the previous section are expressed as scalar 

equations, 30 scalar equations appear since there are 6 scalar equations for each 

body. Those 30 scalar equations can be collected into a single matrix equation as 

shown below[21]. 

 ( ) ( ) ( ) ( )ˆˆ ˆ, , , , ,N q t q A q t Q D q t R f q q t= + +  (3.82) 

In Eq. (3.82), q  is the acceleration array of the generalized coordinates. As for q , 

which is a 10 1  column matrix, it is the array of the generalized coordinates. Its 

elements are indicated below. 
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1

2

3

2

3

3

4

x

y

z

q















 
 
 
 
 
 

 
=  

 
 
 
 
 
 
  

 (3.83) 

In the right side of Eq. (3.82), Q  is a 4 1 column matrix which contains the 

actuating torques  and expressed as seen below. 

 

1 3

22

233

243

c

c

T

T
Q

T

T

 
 
 =
 
 
 

 (3.84) 

The components of Q  can be seen in Eqs. (3.19)- (3.27). They are also indicated in 

Eqs. (3.76) and (3.78) of the preceding section.  

In Eq. (3.82), R  is a 20 1  column matrix and contains structural interaction forces 

and moments which are explained before in Section 3.2.  The elements of  R  are 

listed below: 

1 1 1 2 1 3 21 22 23 231 232 233 241 242 243

1 1 1 2 21 23 231 232 241 242

, , , , , , , , , , , ,

, , , , , , , .

c c c c c c

c c c c

F F F F F F F F F F F F

M M M M M M M M
 

 In Eq. (3.82), f  is a 30 1  column matrix which contains all the other force and 

moment components. Moreover, N̂ , D̂  and Â  are coefficient matrices with sizes 

of 30 10 , 30 20  and 30 4  respectively.   
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To be able to solve the acceleration of the generalized coordinates, Eq. (3.82) is 

turned into the form expressed as seen below. 

 ( ) ( ) ( ) ( )ˆˆ ˆ, , , , ,
q

N q t D q t A q t Q f q q t
R

 
 − = +  

 
 (3.85) 

The form of Eq(3.85) is utilized to solve the direct dynamics problems required for  

motion simulations dealt with later in Chapter 6. Therefore, the following matrix 

inversion is achieved numerically in motion simulations.  

 ( ) ( ) ( ) ( )
1

ˆˆ ˆ, , , , ,
q

N q t D q t A q t Q f q q t
R

− 
  = − +     

 
 (3.86) 

To be able to invert the matrix ( ) ( )ˆ ˆ, ,N q t D q t −
   seen in Eq. (3.86), it must be a 

square matrix. Since N̂  is a 30 10  matrix and D̂  is a 30 20  matrix, the matrix  

( ) ( )ˆ ˆ, ,N q t D q t −
   has a size of 30 30 , which makes it a square matrix. 
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CHAPTER 4  

4 CONTROL SYSTEM DESIGN 

The UAV has 6 DoF described by the set of generalized coordinates 

 1 2 3, , ; , ,x y z      . As it is an underactuated system, 4 of the 6 generalized 

coordinates,  3, , ;x y z   are controlled indirectly by the 4 control torques by means 

of certain intermediate controlling variables while the other 2 generalized 

coordinates  1 2,   , roll and pitch angles, are left free. However, they are kept to 

have finite values because the UAV is passively stabilized due to the downwash 

effect of the propellers, the restoring effect of the gravity and damping effect of air. 

4.1 Active Control Strategy 

A. The Newton-Euler formulation leads to the following differential equations 

expressed in the generic formats indicated below. 

-Propeller Shaft Angles: 

 
3 11 1 3 12 22 13 233 14 243 1 3 2( , ,  ...)c cb T b T b T b T f  = + + + +  (4.1)

 
2 21 1 3 22 22 23 233 24 243 2 3 2( , ,  ...)c cb T b T b T b T f  = + + + +  (4.2) 

-Propeller Angles: 

 
3 3 233 3 3( )T f  = = −  (4.3)

 ( )4 4 243 4 4T f  = = −  (4.4) 

-Orientation Angles of the UAV: 
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 ( )3 51 1 3 52 22 53 233 54 243 5 3 2 3 4, , , ,  ...c cb T b T b T b T f     = + + + +  (4.5)

 ( )2 61 1 3 62 22 63 233 64 243 6 3 2 3 4, , , ,  ...c cb T b T b T b T f     = + + + +  (4.6)

 ( )1 71 1 3 72 22 73 233 74 243 7 3 2 3 4, , , ,  ...c cb T b T b T b T f     = + + + +  (4.7) 

-Mass Center Coordinates of the UAV: 

 ( )81 1 3 82 22 83 233 84 243 8 3 2 3 4, , , ,  ...c cx b T b T b T b T f    = + + + +  (4.8)

 ( )91 1 3 92 22 93 233 94 243 9 3 2 3 4, , , ,  ...c cy b T b T b T b T f    = + + + +  (4.9)

 ( )101 1 3 102 22 103 233 104 243 10 3 2 3 4, , , ,  ...c cz b T b T b T b T f    = + + + +  (4.10) 

B. The control of the above-mentioned variables (except '

1  and '

2 ) is established 

as follows. 

Eqs. (4.8), (4.9), (4.10), and (4.5) can be written together as the following matrix 

equation. 

 

81 82 83 84 1 3 8

91 92 93 94 22 9

101 102 103 104 233 10

3 51 52 53 54 243 5

( )

( )

( )

( )

c

c

x b b b b T f

y b b b b T f

z b b b b T f

b b b b T f

       
       
       = +
       
       
       

 (4.11) 

The same equation can be written compactly as follows. 

 B̂T f = +  (4.12) 

Here, T Q=  is the array of the actuating torques, which was defined earlier by Eq. 

(3.84). Let T be generated according to the following “computed torque method”. 

 ( )1ˆT B u f−= −  (4.13) 

Then, Eq. (4.12) becomes 

 u =  (4.14) 
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Here, u is the array of acceleration commands. It can be produced according to the 

following PID control law with acceleration feedforward. 

 ( ) ( ) ( )* * * *

0

t

d p iu K K K d       = + − + − + −  (4.15) 

Let 
*  = − be the error between the desired and actual values. Then Eq. (4.15) 

leads to the following error equation. 

 0d p iK K K   + + + =  (4.16) 

Eq. (4.16) implies that it is possible to have 0 →  as 0t →  by means of properly 

tuned PID gains. 

Once u  and T  are determined according to Eqs. (4.13) and (4.15), then the 

following operations lead to the propeller speeds and propeller shaft angles. 

1. Propeller speeds are determined by integrating the following first order 

differential equations. 

 ( )3 233 3 3T f = −  (4.17) 

 ( )4 243 4 4T f = −  (4.18) 

2. Propeller shaft angles are determined by integrating the following second 

order differential equations. 

 ( )3 11 1 3 12 22 13 233 14 243 1 3 2, ,...c cb T b T b T b T f  = + + + +  (4.19) 

 ( )2 21 1 3 22 22 23 233 24 243 2 3 2, ,...c cb T b T b T b T f  = + + + +  (4.20) 

As for the roll and pitch angles '

1  and '

2 , they are determined by integrating the 

following second order differential equations. 

 ( )1 71 1 3 72 22 73 243 7 3 2 3 4, , , ,...c cb T b T b T f     = + + +  (4.21) 
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 ( )2 61 1 3 62 22 63 233 64 243 6 3 2 3 4, , , ,...c cb T b T b T b T f     = + + + +  (4.22) 

Here, owing to the restoring and damping effects of the downwash flow of the 

propellers, which appear in the expressions of the functions 6f  and 7f , the angles

1  and 2  are expected to be stabilized passively.  

4.2 Passive Control Strategy 

As there are 2 uncontrolled generalized coordinates  1 2,   , roll and pitch angles, 

there arise a need to model passive stablizing effects to keep roll and pitch angles as 

finite values. The restoring effect of the gravity and downwash effect mentioned in 

Section 3.3.1 are two of the passive controls over the roll and pitch angles but they 

are not sufficient. Damping effects and drag forces in opposite direction of the 

longitudinal motion of the UAV is also modelled due to their passive stablizing 

effects. Damping effect on 1B  is simply added to the model as seen in Eq. (4.23)  

 ( ) ( ) ( ) ( )1 1

1 1 1 2 2d d dM u K u K  = − −  (4.23) 

dK  is called damping effect coefficient and determined as 0.7  based on trial and 

errors during simulations. Moreover, the drag force assumed to be applied at the 

mass center of the UAV is simply included in the model as seen in Eq. (4.24). 

 1 1D DF C x x= −  (4.24) 

Since, the flow is perpendicular to the stabilizing fins which condition is the same as 

the downwash effect, drag coefficient DC  is taken as 1.17  which is the same as the 

drag coefficient used to calculate downwash force in Eq. (3.33). 
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CHAPTER 5  

5 SERIAL TO PARALLEL MANIPULATOR CONVERSION 

Even though the serial manipulator version of the UAV is more convenient for 

modelling, there arises a need for the parallel manipulator version which is 

mentioned in Chapter 2 before. The parallel manipulator version enables the UAV 

to have some advantages such as roboustness and precision. Moreover, during a non-

operational period, the legs can carry the weight of the upper platform and the 

propellers to provide a stable pose. On the other hand, the serial manipulator version 

requires actuation to be able to stand stable in a non-operational period which is more 

power-consuming than the parallel manipulator version. The conversion is applied 

by showing the equivalence of the two actuation systems. The first one is  actuation 

by means of a universal joint which is a part of the serial manipulator version 

explained deeply in previous chapters. The second one is actuation by means of a 3-

DoF parallel manipulator which will be explained comprehensively in this chapter. 

Continuing with the assumptions, the equivalence of the two actuation system is 

shown here when relatively small masses and distances are neglected for the sake of 

simplicty. An e-mail (M. K. Ozgoren, personal communication, July 16, 2022) 

confirms that the equivalence equations are accurate. On the other hand, an additonal 

study proves that when the small masses and distances are not neglected, the 

equivalency can still be shown. 
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5.1 Actuation by Means of a Universal Joint 

Figure 5.1. Actuation by Means of a Universal Joint 

To explain the equivalence, focus is on the bodies 1B , cB  and 2B  of the serial 

manipulator version. That is why, only 1B , cB  and 2B  are shown in Figure 5.1. 

5.1.1 Kinematics for Actuation by a Universal Joint 

The orientation matrix of 2B  with respect to 1B  through cB  is expressed in Eq. (3.17) 

and written below again for convenience. 

 ( ) ( ) ( ) 3 3 2 2
1,2 1, ,2ˆ ˆ ˆc c u u

C C C e e
 

= =  (5.1) 
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5.1.2 Dynamics for Actuation by a Universal Joint 

The N-E equations for 2B  expressed in Eqs. (3.5) and (3.11) are written below again 

for convenience. 

 2 2 2 23 24 2cm a F F F m g= − − +  (5.2) 

 
2 2 1 2 22 2 2 2 2 2 23 24 2 23 24c C Q c C P C PJ J M M M r F r F r F  

 

 +   = − − +  −  −   (5.3) 

Point 2C  represents the center of mass for 2B . For the sake of simplicity, the mass 

and the inertia tensor of 2B  can be neglected ( 2 0m = , 
2 0J
 

= ). Thus, 2C  can be 

shifted to Q , then Eqs. (5.2) and (5.3) are simplified to the ones seen below. 

 2 23 24cF F F= +  (5.4)

 
1 22 23 24 23 24c QP QPM M M r F r F= + +  +   (5.5) 

In addition, the cross-link of the universal joint cB  between the base platform 1B  

and upper platform 2B  is assumed massless in Chapter 3. The same assumption is 

valid here too. Therefore, Eqs. (3.4) and (3.10) are written again as seen below for 

convenience. 

 1 2

1 2 23 24

0 c c

c c

F F

F F F F

= −

 = = +
 (5.6)

 
( ) ( )( )

1 2

2

1 2 23 24 3 0 23 0 1 24

0 c c

c c

M M

M M M M u h F h h F

= −

 = = + +  + +
 (5.7) 

The above force and moment vectors are resolved in the relevant frames in Eqs. 

(3.18) and (3.21) before and written again as follows. 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1 1 2 1 2 3 1 3

1 1 1

1 1 1 1 2 1 2 3 1 3

c c c c

c c c c

F u F u F u F

M u M u M u T

= + +

= + +
 (5.8) 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 1 21 2 22 3 23

2 2 2

2 1 231 241 2 232 242 3 233 243

c c c c

c

F u F u F u F

F u F F u F F u F F

= + +

= + + + + +
 (5.9)

 

( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )

2 2 2

2 1 21 2 22 3 23

2

2 1 231 241 0 232 0 1 242

2 2

2 232 242 0 231 0 1 241 3 233 243

c c c c

c

M u M u T u M

M u M M h F h h F

u M M h F h h F u T T

= + +

= + − − +

+ + + + + + +

 (5.10) 

Here, 1 3cT  and 22cT  are the actuation torques applied on cB  and 2B . As for 233T  and 

243T , they are the actuation torques applied on the propellers. The other components 

are associated with the structural interaction forces and moments.  

The preceding vector equations imply the following scalar equations. 

 21 231 241cF F F= +  (5.11)

 22 232 242cF F F= +  (5.12)

 23 233 243cF F F= +  (5.13)

 1 1 11 21 12 22 13 23c c c cF c F c F c F= + +  (5.14)

 1 2 21 21 22 22 23 23c c c cF c F c F c F= + +  (5.15)

 1 3 31 21 32 22 33 23c c c cF c F c F c F= + +  (5.16)

 ( )21 231 241 0 232 0 1 242cM M M h F h h F= + − − +  (5.17)

 ( )22 22 232 242 0 231 0 1 241c cM T M M h F h h F= = + + + +  (5.18)

 23 233 243cM T T= +  (5.19)

 ( )1 1 11 21 12 22 13 23 11 21 12 1 3 13 233 243c c c c c cM c M c M c M c M c T c T T= + + = + + +  (5.20)

 ( )1 2 21 21 22 22 23 23 21 21 22 1 3 23 233 243c c c c c cM c M c M c M c M c T c T T= + + = + + +  (5.21)

 1 3 1 3 31 21 32 22 33 23c c c c cM T c M c M c M= = + +  (5.22)

 ( )1 3 1 3 31 21 32 22 33 233 243c c c cM T c M c M c T T= = + + +  (5.23) 

In the above equations, for all 1,2,3i =  and 1,2,3j = ; 
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 ( ) ( ) 3 3 2 2
1 2 u ut

ij i j i jc u u u e e u
 

=  =  (5.24) 

Eq. (5.24) implies that 

 

3 3 2 2

3 3 2 2

3 3 2 2

11 1 1 3 2

12 1 2 3

13 1 3 3 2

u ut

u ut

u ut

c u e e u c c

c u e e u s

c u e e u c s

 

 

 

 



 

= =

= = −

= =

 (5.25)

 

3 3 2 2

3 3 2 2

3 3 2 2

21 2 1 3 2

22 2 2 3

23 2 3 3 2

u ut

u ut

u ut

c u e e u s c

c u e e u c

c u e e u s s

 

 

 

 



 

= =

= =

= =

 (5.26)

 

3 3 2 2

3 3 2 2

3 3 2 2

31 3 1 2

32 3 2

33 3 3 2

0

u ut

u ut

u ut

c u e e u s

c u e e u

c u e e u c

 

 

 





= = −

= =

= =

 (5.27) 

On the other hand, according to Eq. (5.23), if 2 0s  , 

 ( )21 233 243 2 1 3 2/c cM T T c T s = + −    (5.28) 

Hence, the components of 1cM  in the frame ( )1F B  become completely determined 

in terms of the actuation torques. That is, 

 ( )1 1 233 243 3 1 3 3 2 22 3 2 2/c c cM T T c T c c T s s s     = + − −    (5.29)

 ( )1 2 233 243 3 1 3 3 2 22 3 2 2/c c cM T T s T s c T c s s     = + − −    (5.30)

 1 3 1 3c cM T=  (5.31) 
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5.2 Actuation by Means of a 3-DoF Parallel Manipulator 

Figure 5.2. Actuation by Means of a 3-DoF Parallel Manipulator 

Since the focus is on the links 1L ,  2 2,L L ,  3 3,L L ,  4 4,L L  and 5L  to explain the 

equivalence, the propellers are not shown in Figure 5.2. 

5.2.1 Kinematics for Actuation by a 3-DoF Parallel Manipulator  

As seen in in Figure 5.2, the 3-DoF parallel manipulator, which is installed on 1L , 

consists of 7n =  moving links, which are 5L  (upper platform) and the link pairs 

 2 2,L L ,  3 3,L L  and  4 4,L L  that form the three legs. It contains 2 3j =  universal 

joints at the points 1D , 2D , 3D ; 3 4j = spherical joints at the points Q , 1E , 2E , 3E

; and 1 3j =  prismatic joints between the upper and lower links of the legs. Thus, its 

DoF ( ) with respect to 1L  is verified as follows by the Kutzbach-Grübler formula. 
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( )

1 2 36 (5 4 3 )

6 7 5 3 4 3 3 4 42 39 3

mn j j j = − + +

  −  +  +  = − =
 (5.32) 

It is required to operate the manipulator so that 5L  has the same orientation with 

respect to 1L  as in the case described in Chapter 5.1. In other words, it is required to 

have  

 ( ) 3 3 2 2
1,2ˆ u u

C e e
 

=  (5.33) 

This requirement can be achieved by determining the leg lengths 1s , 2s  and 3s so as 

to satisfy the following three independent loop closure equations. 

 

( )

( )

( )

1

1 1 1 1 0 3 0 1 0 1 1 1

1

2 2 2 2 0 3 0 2 0 2 1 2

1

3 3 3 3 0 3 0 3 0 3 1 3

  

  

  

BQ QE BD D E l u d n b m s

BQ QE BD D E l u d n b m s

BQ QE BD D E l u d n b m s







+ = +  + = +

+ = +  + = +

+ = +  + = +

 (5.34) 

The number of independent loops is given by the following formula [17] 

 ( )1 2 3 10 7 3IL tot m mn j n j j j n= − = + + − = − =  (5.35) 

The corresponding matrix equations are written as follows. 

 

( ) ( ) ( ) ( ) ( )

( )( )

( ) ( )

3 3 3 32 2

3 3 3 32 2

1/1 1,2 2 1 1

0 3 0 1 0 1 1 1

0 3 0 1 0 1 1 1

1 1 1 1 1 3 2 0 3 0 0 1

ˆ

ˆ ; ,

u uu

u uu

l u d C n b m s

l u d e e e u b u s

s l u d e e e b I u

 

 





     





+ = +

 + = +

 = = = + −

 (5.36)

 

( ) ( ) ( ) ( ) ( )

( )( )

( ) ( )

3 3 3 3 3 32 2

3 3 3 3 32 2

1/1 1,2 2 1 1

0 3 0 2 0 2 2 2

0 3 0 1 0 1 2 2

2 2 2 2 2 3 2 0 3 0 0 1

ˆ

ˆ ; ,

u u u uu

u u uu

l u d C n b m s

l u d e e e e u b e u s

s l u d e e e b I e u

   

  





     





+ = +

 + = +

 = = = + −

 (5.37)

 

( ) ( ) ( ) ( ) ( )

( )( )

( ) ( )

3 3 3 3 3 32 2

3 3 3 3 32 2

1/1 1,2 2 1 1

0 3 0 3 0 3 3 3

0 3 0 1 0 1 3 3

3 3 3 3 3 3 2 0 3 0 0 1

ˆ

ˆ ; ,

u u u uu

u u uu

l u d C n b m s

l u d e e e e u b e u s

s l u d e e e b I e u

   

  





     

 − −

 −

+ = +

 + = +

 = = = + −

 (5.38) 
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In the above equations, the angle   locates the second and third legs with respect to 

the first one. For equally separated legs, it happens that 2 / 3 =  rad ( )i.e., 120 . 

As for 3 , it is the angular offset of the upper platform 5L  with respect to the base 

platform 1L . It may be taken to be zero, but its nonzero presence facilitates the yaw 

motion of the upper platform especially when the manipulator is in the zero pose 

with 2 3 0 = = . 

Noting that 1 , 2  and 3  represent the unit vectors along the legs, Eqs. (5.36)-

(5.38) provide the leg lengths as follows. 

  ; 1,2,3.t

k k ks k = =  (5.39) 

Hence, the unit vectors of the legs are also obtained so that 

  
( )1

/  ; 1,2,3.k k k ks k  = = =  (5.40) 

5.2.2 Dynamics for Actuation by a 3-DoF Parallel Manipulator 

Similarly as in Chapter 5.1, the N-E equations for the upper platform ( 5L ) can be 

written as follows. 

 
1 2 3 42 2 2 2 2 2 23 24 2l l l lm a F F F F F F m g= + + + − − +  (5.41)

 1 2 3 4 2 1 2 2

2 1 2 1 2 2 2 3 2 3 4

2 2 2 2 2 2 23 24 23 24

2 2 2 2

l l l l C P C P

C Q l C E l C E l C E l

J M M M M M M r F r F

r F r F r F r F




 = + + + − − −  − 

+  +  +  + 

 (5.42) 

Here, 
2kl

F  and 
2kl

M are the force and moment applied by the kth leg on the upper 

platform ( 5L ). Note that the pole BQ  is also treated as a leg, i.e., leg 1l . 

Also as done in Section 5.1, it is reasonable to assume that the masses of the legs ( 1l

, 2l  3l , 4l ) and the upper platform ( 5L ) are negligible. Then, noting that the actuated 



 

 

 

79 

three legs can be treated as two-force members, 2C  may be shifted to Q  and the 

joints at 1E , 2E , 3E  and Q  are all spherical (without any moment resistance), Eqs. 

(5.41) and (5.42) can be written again as follows. 

 1 1 2 2 3 3 12 23 24f f f F F F  + + + = +  (5.43)

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( )

( )

2 1 2 2 2 3 2 3 4

2 1 2 2

2 2 2

23 24 23 24

0 1 1 1 0 2 2 2 0 3 3 3

2

23 24 3 0 23 0 1 24

0 1 1 1 0 2 2 2 0 3 3 3

2

23 24 3 0 23

C E l C E l C E l

C P C P

r F r F r F

M M r F r F

d n f d n f d n f

M M u h F h h F

d f n d f n d f n

M M u h F h

  

  

 +  + 

= + +  +  

 +  + 

= + +  + +

  +  + 

= + +  + ( )( )0 1 24h F+

 (5.44) 

When Eqs. (5.43) and (5.44) are compared to Eqs. (5.4) and (5.5), it is seen that 

 ( )12 2 1 1 2 2 3 3cF F f f f  = − + +  (5.45)

 ( ) ( ) ( )0 1 1 1 0 2 2 2 0 3 3 3 2 1c cd f n d f n d f n M M   +  +  = =  (5.46) 

As noticed above, Eq. (5.46) gives the actuation forces 1f , 2f  and 3f . Afterwards, 

Eq. (5.45) gives the force 12F  supported by the pole BQ . 

The actuation forces can be extracted from Eq. (5.46) by first writing it as the 

following matrix equation. 

 
( ) ( ) ( )1 1 1 2 2 2 3 3 3 1 0

1 1 2 2 3 3 1 0

/

/

c

c

n f n f n f M d

f f f M d

  

  

+ + =

 + + =
 (5.47) 

Referring to Eqs. (5.36)-(5.38), note that 

 3 3 3 3 3 3 3 32 2 2 2

1 1 1 1 1

u u u uu u
n e e e u e e e

      
 − −−

= =  (5.48)

 3 3 3 3 3 3 3 3 3 32 2 2 2

2 2 2 1 2

u u u u u uu u
n e e e e u e e e e

        
 − − −−

= =  (5.49)

 3 3 3 3 3 3 3 3 3 32 2 2 2

3 3 3 1 3

u u u u u uu u
n e e e e u e e e e

        
 − − −−

= =  (5.50) 
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Eq. (5.47) can also written as the following more compact matrix equation. 

  
1

1 2 3 2 1 0

3

ˆ /c

f

f Hf M d

f

  

 
 

= =
 
  

 (5.51) 

Hence, f  is found as follows depending on the components of 
1cM  expressed in 

Chapter 5.1. 

 
1

1 0
ˆ /cf H M d−=  (5.52) 
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CHAPTER 6  

6 SIMULATION RESULTS 

Kinematic, dynamic analysises and control algoritms discussed previously, are 

coded and simulated via MATLAB, Simulink and Simscape Multibody. In the 

simulations, negative torque values are applied on the lower propeller while positive 

torque values are applied on the upper propeller to cancel net torque applied on the 

lower and upper platforms when yaw motion is not intended. 3-D animations of 

MATLAB Mechanics Explorer is used to realize the motion of the UAV as seen in 

Figure 6.1. 

Figure 6.1. Screen Shot Taken from MATLAB Mechanics Explorer Animation 

6.1 Simulation Parameters 

Propeller sizing with the overall scaling of the UAV is inspired from a coaxial drone 

study [23]. However, exact dimensions of the propeller are decided according to the 

experimental performance data published from a supplier [24]. Therefore, APC 9x6 
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propeller [25] is selected from the catalog. The selected parameters for simulations 

of the UAV are shown in Table 6.1. 

Table 6.1 Numerical Parameters of the UAV 

Parameters Values Parameters Values 

1m  kg  0.5243 0b  m  0.1100 

2m  kg  0.2567 0l  m  0.1200 

3m ,
4m  kg  0.0221 0d  m  0.0750 

11J , 
12J

2kg m    0.0016 0h , 
1h  m  0.1100 

13J
2kg m    0.0031 hubh  m  0.0120 

21J , 
22J

2kg m    6.1739e-4 shaftr  m  0.0030  

23J
2kg m    6.7377e-4 pt  m  0.0050 

31J , 
32J , 

41J , 
42J

2kg m    7.2749e-7 fh  m  0.0200 

33J , 
43J

2kg m    3.4093e-5 fl  m  0.0569 

1c  m  0.0010 DC  1.17 

2c  m  0.0076 g 2/m s    9.8100 

 

6.2 Open Loop Simulations 

Firstly, the torques and angular velocities of the propellers required for hovering are 

calculated as seen in Eqs (6.1) and (6.2).  
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233,

243,

0.6101 

0.6101 

h

h

T N m

T N m

= − 

= 
 (6.1)

 
 

 
3,

4,

627.8005 /

627.8005 /

h

h

rad s

rad s





= −

=
 (6.2) 

OL (open-loop) simulations are started in hovering state. Newton – Euler equations 

derived in Chapter 3 are simulated by 2 different scenarios. In the first scenario, the 

universal joint actuator inputs 
1 3cT and 

22cT  are increased to observe the 10 states of 

the UAV. The inputs for the first scenario are shown in  

 Figure 6.2. The position states  1 2 3 2 3, , , , , , ,x y z         are both measured by the 

sensor blocks of the Simscape and calculated by the derived Newton-Euler 

equations. The two results are shown in the same plots to show the consistency. 

Those plots can be seen in Figure 6.3 and Figure 6.4. Similarly, plots for the velocity 

states are illustrated in Figure 6.5, Figure 6.6 and Figure 6.7.   

 Figure 6.2. Input Torques for the OL Simulation 
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Figure 6.3. First Set of Position States for the OL Simulation 
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Figure 6.4. Second Set of Position States for the OL Simulation 

Figure 6.5. First Set of Velocity States for the OL Simulation 
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Figure 6.6. Second Set of Velocity States for the OL Simulation 

Figure 6.7. Third Set of Velocity States for the OL Simulation 

6.3 Closed Loop Simulations 

The computed torque control method explained in Chapter 4 is utilized in the 

simulations. The desired trajectory is tracked by the frame of the base platform and 

the results are shown in following sections.  
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6.3.1 Altitude Control 

A polynomial trajectory block from Simulink is utilized for trajectory planning of 

the altitude. Reference altitude position, velocity and acceleration values are 

generated by this block. To acquire altitude control, gains for PID control law are 

selected as seen below according to the pole placement of the characteristic equation 

for the error function which is the third order polynomial for PID control law.  

 

,

,

,

3178.4268

33457.1247

98.4643

p z

i z

d z

K

K

K

=

=

=

 (6.3) 

Altitude data from a Simscape sensor block and desired positional trajectory is 

shown in the same plot to evaluate the reference position tracking. This plot is 

illustrated in Figure 6.8. 

 

Figure 6.8. Reference Altitude Position Tracking of the UAV  
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Moreover, velocity data in z direction is taken from another Simscape sensor block 

and plotted with the desired velocity in z direction which is shown in Figure 6.9 to 

evaluate the reference velocity tracking. 

Figure 6.9. Reference Velocity Tracking of the UAV in Z Direction 

6.3.2 Yaw Motion Control 

A rotation trajectory block from Simulink is used for angular trajectory planning of 

the yaw motion. Reference yaw angle, angular velocity and acceleration values are 

generated by this block. During designing yaw motion control, gains for PD control 

law are selected as seen below according to the pole placement of the characteristic 

equation for the error function which is the second order polynomial for PD control 

law.  

 
,

,

34.6021

11.7647

p yaw

d yaw

K

K

=

=
 (6.4) 
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Yaw angle data from a Simscape sensor block and desired angular trajectory is 

shown in the same plot to evaluate the reference angle tracking. This plot is 

illustrated in Figure 6.10 

Figure 6.10. Reference Yaw Angle Tracking of the UAV 

In addition, yaw angular velocity data is taken from another Simscape sensor block 

and plotted with the desired yaw angular velocity which is shown in Figure 6.11 to 

evaluate the tracking of the reference yaw angular velocity. 
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Figure 6.11. Reference Yaw Angular Velocity Tracking of the UAV 

6.3.3 Motion Control in X-Y Plane 

PID control is applied to x velocity feedback then output becomes reference angle 

*

2  and is fed to the PD controller. Reference angular velocity *

2  is taken as 0. Thus, 

final output is required torque 22cT to tilt the upper platform. The gains can be seen 

in Eq. (6.5). Here, 1 3cT  is taken as zero for simplicity. 
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x position data from a Simscape sensor block and desired x  trajectory is shown in 

the same plot to evaluate the reference position tracking. This plot is illustrated in 
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Figure 6.12. Moreover, x data from Simscape sensor block and desired x  reference 

velocity is plotted in Figure 6.13 to show the reference velocity tracking in x

direction. 

Figure 6.12. Reference X Position Tracking of the UAV 

Figure 6.13. Reference X Velocity Tracking of the UAV 
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CHAPTER 7  

7 CONCLUSION AND FUTURE WORKS 

7.1 Conclusion 

The UAV design consists of 3 actuated prismatic joints and 4 spherical joints as 

connecting base platform to upper platform along with 2 coaxial propellers on the 

shaft of the upper body. Since there is a parallel manipulator configuration, it creates 

a complexity while modelling the UAV, some simplifications are done such as 

eliminating the 3 legs and leaving only one leg. Moreover, to eliminate redundancy, 

the spherical joint at the center is replaced by a universal joint. After processing the 

simplifications, kinematic analysis is conveyed for the serial manipulator 

configuration. In the kinematic analysis part, as a result, linear and angular 

acceleration equations are obtained and expressed in closed form. 

Then, in the Dynamic Analysis part, Newton-Euler equations are derived. The 

interaction forces along with the downwash and other aerodynamic forces and 

moments are expressed in the N-E model. After that, Direct Dynamic Analysis 

method is utilized to solve the N-E equations in a matrix form. Structural forces and 

moments are eliminated from the resulting matrix to proceed with solution for 

generalized coordinates and velocities only. 

Afterwards, the computed torque method is proposed in order to guide the UAV so 

that it tracks specified variations of the mass center coordinates and yaw angle. 

Meanwhile, the equivalency is verified between the actual UAV design involving a 

3-DoF parallel manipulator and a simplified design involving a serial configuration. 

In the Simulation studies, open-loop and closed-loop simulations are done to realize 

the motion of the UAV in MATLAB, Simulink and Simscape environment. For the 

sake of simplicity, the closed-loop simulations are done within two distinct case 

studies. In the first case study, only the controls of the altitude and yaw motions are 
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simulated. In the second case study, only controls of the x and y motions are 

simulated. The results of the Simulations are listed as below.  

• Kinematic expressions are compatible with the results obtained from the 

MATLAB symbolic toolbox. 

• N-E equations are compared with the Simscape model and results are 

consistent with each other in terms of position and velocity generalized 

coordinates. 

• After validating Simscape model with N-E equations, PID with PD 

controller is applied to the model to control the UAV in x direction by tilting 

the upper platform. Reference input tracking is shown and the results are 

satisfactory in terms of position and velocity generalized coordinates.  

• Proposed Computed Control Algorithm is applied for yaw and altitude 

motion of the UAV in Simscape and Simulink environment. Reference 

input tracking is shown and the results are satisfactory in terms of position 

and velocity generalized coordinates. 

• The overall motion of the UAV is simulated by yaw motion control to 

change the heading angle then motion control in x-direction of the UAV to 

track reference position and velocity inputs in x-y plane while controlling 

the altitude motion simultaneously throughout the task. 

• Since the UAV is underactuated, roll and pitch angles of the UAV is 

uncontrolled actively but to keep them in finite values, passive stabilizing 

effects are necessary in the model. The restoring effect of the gravity and 

downwash effect are modelled initially as passive stabilizing effects but 

simulation results show that, damping effect of the air on the roll and pitch 

angles of the UAV is crucial for passive stabilization. Moreover, drag force 

in the opposite direction of the longitudinal motion is also included in the 

model later to have more satisfactory results in terms of motion in x-y plane. 
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7.2 Future Works 

• The aerodynamic forces and moments modelled in N-E equations can be 

validated by CFD analysis. Especially the stabilizing coefficient to model 

damping effect of the air is based on engineering judgement and trial and 

error thus, this coefficient can be found more precisely via CFD analysis. 

• A prototype can be manufactured along with the test bench to validate the 

simulations by experiments. 
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