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Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Halit Oğuztüzün
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Computer Engineering, İzmir Institute of Technology

Assoc. Prof. Dr. Hande Alemdar
Computer Engineering, METU

Assist. Prof. Dr. Muhammed Çağrı Kaya
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ABSTRACT

ENHANCING UML PORTS AND CONNECTORS TO INCREASE THE
REUSABILITY AND PERFORMANCE OF AVIONICS SOFTWARE

Kocataş, Alper Tolga

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Ali H. Doğru

January 2023, 92 pages

Model-driven software development (MDSD) techniques have evolved vastly over

the recent decades. MDSD aims to raise the abstraction level, allowing developers to

produce accurate designs which are also easier to verify. The focus of this research is

on developing methods in MDSD that can be utilized in software development. In the

scope of this research, we first present a method for enriching the UML connectors

with behavioral specifications for the exogenous coordination of the components. The

aim is to free the components from the coordination responsibility, increasing their

reusability. Second, we present an efficient, lightweight approach for the realization

of the UML ports in object-oriented programming languages. The approach results

in improved runtime performance and a significant decrease in code size. The first

approach is validated using example connectors and cases from real-life large-scale

avionics software. The second approach has been field-tested in actual flying avionics

software for the last six years and has been proven to be successful.

Keywords: ALF, behavior, connector, fUML, model transformation, port, QVT, UML
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ÖZ

AVİYONİK YAZILIM PERFORMANSINI VE TEKRAR
KULLANILABİLİRLİĞİNİ ARTIRMAK İÇİN UML KAPI VE

BAĞLAYICILARINI İYİLEŞTİRME YÖNTEMLERİ

Kocataş, Alper Tolga

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali H. Doğru

Ocak 2023 , 92 sayfa

Model-güdümlü geliştirme (MGG) teknikleri son yıllarda oldukça ilerlemiştir. MGG

soyutlama seviyesini yükselterek geliştiricilerin daha doğru ve doğrulaması daha ko-

lay olan tasarımlar üretmesini sağlamaktadır. Bu araştırmanın odağı, yazılım geliş-

tirme alanında kullanılabilecek olan MGG yaklaşımları geliştirmektir. Bu araştırma

kapsamında, öncelikle UML bağlayıcılarını davranışsal betimlemelerle zenginleşti-

rerek yazılım bileşenlerinin dışarıdan koordinasyonunu sağlayan bir yöntem sunul-

maktadır. Bu yöntemle bileşenlerin koordinasyon sorumluluklarını azaltarak, tekrar

kullanılabilirliklerini artırmak hedeflenmektedir. İkinci olarak, UML kapılarının nes-

neye yönelik programlama dillerinde etkin gerçeklenmesine yönelik bir yöntem su-

nulmaktadır. Sunulan bu yöntem yazılımın kod satır sayısının azalmasını sağlamakta

ve çalışma performansını artırmaktadır.

Anahtar Kelimeler: ALF, davranış, bağlayıcı, fUML, model dönüşümü, kapı, UML
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CHAPTER 1

INTRODUCTION

A model is a description of a system, where "system" is meant in the broadest sense

and may include not only software and hardware but organizations and processes. It

describes the system from a certain viewpoint for a certain category of stakeholders

and at a certain level of abstraction [1]. Although models can be used as sketches that

informally describe the design of the software and discuss it with stakeholders, the use

of models can be taken beyond by application of the modern model-driven software

development (MDSD) methods. In MDSD, models act not only as documentation,

but the software implementation is also automatically generated from the models.

Among the many advantages of MDSD, the first one is that the design of the software

is easier to understand and maintain due to the use of visual modeling notations.

Second, the design documents are automatically updated, decreasing the software

architecture erosion [2]. Furthermore, the well-formedness rules defined in the model

can increase the quality of the software and support verification.

Among some disadvantages of MDSD, the most important ones are the cost of the

initial effort to set up the modeling environment and the special training required

to use the modeling languages and tools. Additionally, software systems whose re-

quirements change rapidly during the development process are challenging to MDSD

because changing software requirements cause continuous modifications to models.

On the other hand, developing safety-critical real-time software systems encompasses

challenges like rigorous verification and certification processes. In these systems, re-

quirements tend to stay relatively stationary; hence MDSD can be more beneficial.

The Unified Modeling Language (UML) is the predominant modeling language mostly

1



used for software design. UML allows modeling both structural and behavioral as-

pects of software systems. It has incorporated the most widely used features from

existing modeling languages and Architecture Description Languages (ADLs). Ports

and connectors introduced later to UML enabled the structural definition of software

components independent from their environments. Since the 2.0 revision, UML also

allows using ports and connectors in the definition of encapsulated classifiers, allow-

ing the ports to be used in lower-level software design.

UML ports and connectors are suitable for developing avionics software. The term

avionics is a blend of the words "aviation" and "electronics," and it means "avia-

tion electronics." Examples of avionics devices in an aircraft are the radios used for

communication, navigation devices, central control computers, and multi-function

displays. Avionics software is the software running on these devices. According to

the functions assigned to the device, the size of avionics software can range from hun-

dreds of lines of code up to several millions of lines of code. The system functions

allocated to the avionics software are categorized according to their safety-criticality

level. The highest level of criticality implies that erroneous behavior of the software

can lead to the loss of the aircraft.

Due to the safety-criticality aspect of the software, avionics software typically runs in

a real-time environment. The hard real-time requirements require the software to run

on real-time operating systems. Alternatively, the software can run on a deterministic

scheduler designed using interrupts with no operating system.

Avionics software requires a precise definition of the software design, followed by

rigorous and costly verification activities. Due to its ability to precisely define the

structure of software, using UML ports and connectors fits well for the software ar-

chitecture specification. Additionally, ports and connectors can be used to define the

lower-level design elements of the avionics software.

This thesis aims to provide improved methods for using ports and connectors in the

development of software. We focus on increasing the reusability of the software com-

ponents and eliminating ambiguities with the help of behavior specifications associ-

ated with UML connectors. Additionally, we provide methods for the lightweight,

efficient realization of UML ports in object-oriented programming languages to min-
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imize the performance and verification overhead of using ports. We use large-scale

avionics software projects for our case studies.

The rest of this chapter explains our research problems. Then, we explain the contri-

butions of the thesis. We finally conclude the chapter with the outline of the thesis.

1.1 Motivation and Problem Definition

We utilized UML ports and connectors to develop large-scale avionics software in

Aselsan using the IBM Rational Rhapsody Developer modeling tool [3]. The syntax

of the UML covered by the tool allowed us to define and maintain projects with

millions of source lines of code. Additionally, we developed various domain-specific

languages and model transformations (e.g., [4], [5]) to raise the abstraction level to

the extent that enabled seamless integration of the software components. We also

employed rigorous model-checking rules that increase quality. This research was

motivated by the problems and limitations of using UML ports and connectors we

have encountered throughout the development of such large-scale avionics software

projects.

UML ports can be used in the definition of the components, but they can also be

used in the definition of lower-level classes. This enables modeling the structural

definition of the software architecture, along with the detailed design. However, ex-

tensive usage of UML ports increases the code size significantly and causes additional

runtime overhead. Therefore, we need an approach for realizing UML ports in pro-

gramming languages with minimal runtime overhead and decreased code size. The

increased runtime efficiency is beneficial in real-time software to fit in tight execution

time resources. On the other hand, the majority of the cost in the development of

avionics software comes from the activities related to verification. The reduced code

size means less effort for the manual code reviews and the structural test coverage

analyses required by the DO-178C [6] certification.

Solving the problem of efficient realization for UML ports is beneficial in the imple-

mentation domain. However, there is still room for improvement at the design level.

UML specification supports n-ary connectors that can connect more than two ports.
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However, using n-ary connectors can lead to ambiguities, which cannot be resolved

using the modeling mechanisms provided by UML. Additionally, the connectors in

UML are only intended to specify links, which connect ports and other connectable

elements. This means that the required coordination logic must reside within the

components. However, implementing the coordination within the components com-

plicates their designs and reduces their reusability. Therefore, we need an approach to

define the coordination behaviors outside the software components. We aim to solve

the issues related to ambiguity and the problem of externally coordinating software

components by associating behaviors with connectors.

1.2 Contributions and Novelties

The main contribution of this dissertation is related to improving the usability of

UML ports and connectors. Specifically, this includes associating behaviors with

UML connectors to fill the gaps in UML regarding ambiguous cases that n-ary con-

nectors may cause. Associated behaviors also enrich the UML connectors with the

capability to perform exogenous coordination of the components. The exogenous co-

ordination capability of the connectors frees the components from their coordination

responsibilities, helping their designs become more cohesive and reusable.

We first presented the concept of enhancing UML connectors with behavioral specifi-

cations in a conference publication [7]. The publication introduced the motivation for

the enhanced connectors and proposed a conceptual solution without presenting an

implementation. Later, we completed the work by providing a solution implemented

with model transformations. We also presented the results from our research on the

applicability of the concept in real-life large-scale avionics software projects. We

published the studies completing the conference paper in [8].

Finally, we published the lightweight realization method for UML ports in [9]. While

the studies in [7] and [8] focused on improving design capabilities using UML, the

lightweight UML port realization study focused on improving methods for transform-

ing UML designs with ports and connectors into the implementation domain.

In summary, we produced three publications as side-products of this dissertation
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work. The contributions of this thesis research can be summarized as follows:

• We propose a novel method that associates behaviors with UML connectors for

the exogenous coordination of software components.

• Based on the proposed method, we present example connectors specified as a

proof-of-concept.

• We present cases from real-life large-scale avionics software projects where

connectors with associated behaviors can simplify the design and increase the

reusability of the components.

• We propose a novel method for efficiently realizing UML ports in object-oriented

programming languages,

• We show that the proposed realization approach for the UML ports results in

reduced code size and increased runtime performance in real-life large-scale

avionics software projects.

1.3 The Outline of the Thesis

This thesis is organized into two main topics. Chapters dedicated to the main topics

include their own introduction, motivation, related work, discussion, and conclusion

sections. The two chapters are followed by a conclusion chapter that presents our

final remarks, the relations between the two main topics, and the impact of the study.

The rest of this thesis is organized as follows:

• Chapter 2 explains the method for enhancing UML connectors with behavioral

specifications for the exogenous coordination of software components. The

approach is validated using example connector specifications and cases from

real-life avionics software projects.

• Chapter 3 presents the method for the lightweight realization of UML ports

in object-oriented programming languages for improved runtime performance

and reduced code size.

• Chapter 4 concludes the thesis with our remarks and possible future work.
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CHAPTER 2

ENHANCING UML CONNECTORS WITH BEHAVIORAL ALF

SPECIFICATIONS FOR EXOGENOUS COORDINATION OF SOFTWARE

COMPONENTS

Connectors are powerful architectural elements that allow the specification of inter-

actions between software components. Since the connectors do not include behavior

in UML, the components include the behavior for coordinating the components, com-

plicating the designs of components and decreasing their reusability. In this chapter,

we propose the enrichment of UML connectors with behavioral specifications. The

goal is to provide separation of concerns for the components so that they are freed

from coordination duties. The reusability of the components may increase as a re-

sult of such exogenous coordination. Additionally, using the associated behaviors,

we aim to resolve the ambiguities that arise when n-ary connectors are used. We use

a series of QVTo transformations to transform UML models that include connector

behaviors in ALF specifications into UML models which include fUML activities as

connector behavior specifications. We present a set of example connectors specified

using the proposed method. We execute the QVTo transformations on the example

connectors to produce models that represent platform-independent definitions of the

coordination behaviors. We also present and discuss cases from real-life large-scale

avionics software projects in which using the proposed approach results in simpler

and more flexible designs and can increase component reusability.1

1 The study described in this chapter was published in Applied Sciences Journal in 2023 [8].
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2.1 Introduction

Using models in software development to cope with complexity and increase quality

is a proven approach employed by model-driven software development (MDSD). In

MDSD, models do not only constitute documentation but they are also considered

equal to code, as their implementation is automated [10]. MDSD saves time by in-

creasing productivity and reducing implementation errors. The approach has become

more popular since the introduction of the Unified Modeling Language (UML) [1].

Due to its ability to precisely define the structural and behavioral aspects of the soft-

ware systems, UML is widely used in safety-critical real-time embedded software

development. UML specification has matured over the years. Extensions for real-

time software development and systems engineering are introduced. Open-source

and commercial tool support for UML also increased significantly.

Although there are languages for software architecture description, the current ver-

sion of UML covers the core concepts, such as components, ports, and connectors.

UML provides various diagrams for modeling the structural and behavioral aspects

of software systems. Component diagrams describe the structures of the components

and the communication among them using ports and interfaces. The ports define in-

terfaces of software components and their interactions with the environment using

required and provided interfaces. Starting with UML 2.0, ports can also be included

in the designs of encapsulated classifiers.

Among various advantages of using ports, the most important one is to decouple com-

ponents and encapsulated classifiers from their environments. Second, ports provide

an additional encapsulation for the interfaces of components and structured classifiers

by providing or requiring specific interfaces and inhibiting access to others. Finally,

since the ports provide unique interaction points, the same interface provided by dif-

ferent ports can semantically correspond to distinct capabilities. This makes it pos-

sible for an encapsulated classifier to provide an interface more than once as part of

port contracts for distinct purposes.

Connectors are used to connect ports inside the definition of components and the en-

capsulated classifiers. Connectors are powerful architectural elements that allow the
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specification of interactions between encapsulated software components. While the

components and ports provide context-independent encapsulated behaviors, connec-

tors provide context-setting interaction patterns [11]. UML enables this distinction

between the context of use and the use-independent context by providing encapsu-

lated classifiers and connectors as separate entities.

Besides binary connectors that connect two ports, UML also supports n-ary connec-

tors that can connect with more than two ports. UML states that the semantics is the

same when a port is connected to multiple ports using an n-ary connector or using

multiple binary connectors representing the same n-ary connector. However, the se-

mantics is left unspecified for either case. Furthermore, connectors are used only to

specify links that connect connectable elements in UML. Therefore, the connected

components must include the coordination behavior for routing requests to specific

destinations. However, this entangling of coordination logic inside the components

adds unnecessary complexity to their designs and decreases their reusability.

This chapter presents an approach to specify coordination logic outside the connected

components by associating additional behavior specifications with UML connectors.

We use the term enhanced connectors for the connectors with associated behaviors.

Behaviors associated with the connectors enable them to perform exogenous coordi-

nation for the connected elements by relying exclusively on externally specified be-

haviors. Furthermore, the approach also provides a method for resolving ambiguities

when n-ary connectors are used to coordinate more than two connectable elements.

We use Action Language for Foundational UML (ALF) [12] for specifying connector

behaviors. ALF can be used to declare the structural and behavioral parts of Founda-

tional UML (fUML) [13] models using textual notation. The textual notation simpli-

fies the definition and maintenance of the models that become too complex using the

graphical notation.

Using a series of QVT Operational Mappings Language (QVTo) [14] model trans-

formations, we transform models with enhanced connectors into models that contain

classes, objects, and fUML activities that implement connector behaviors. The result-

ing models include platform-independent definitions of the structural and behavioral

specifications required for coordination. They can be used to generate code, or they
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can be transformed into other design models.

We illustrate the connector behavior specification method and the model transforma-

tions using a set of example connectors. We then present cases from real-life avionics

software projects where we can use the method to simplify design, increase reusabil-

ity, and resolve ambiguities. Furthermore, we evaluate the method’s applicability for

asynchronous coordination and its relation with the ProtocolStateMachines2 in UML.

We first presented the enhanced connector concept in our previous study [7]. In the

previous study, we presented the motivation for the enhanced connectors and pro-

posed a conceptual solution without presenting an implementation. This chapter com-

pletes the previous study by providing a working solution implemented with model

transformations. Additionally, we present results from our research on the applicabil-

ity of enhanced connectors in real-life large-scale avionics software projects.

The rest of this chapter is organized as follows: Section 2.2 presents the related re-

search. Section 2.3 describes the problem in detail and provides the motivation for

the solution of the problem. Section 2.4 presents the approach for the specification

of connector behaviors using ALF. Section 2.5 describes the model transformations.

Section 2.6 presents the set of example connectors developed using the proposed ap-

proach. Section 2.7 lists the cases from real-life avionics software projects where we

apply enhanced connector concepts. Section 2.8 presents an analysis of how the ap-

proach can be applied to asynchronous coordination. Section 2.9 includes an analysis

of how enhanced connectors are related to ProtocolStateMachines in UML. Section

2.10 presents our discussions and future work. Finally, section 2.11 wraps up our

conclusions.

2.2 Related Work

Connectors were studied before UML was introduced. One of the earlier studies de-

fines architectural connectors as explicit semantic entities [11]. The study specifies

the connectors as a collection of protocols that characterize the role of each partici-

2 This chapter follows UML’s general convention, which capitalizes the first letter of classifier names such as
Behavior, OpaqueBehavior, Property, ProtocolStateMachine, etc.
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pant in an interaction and how these roles interact. They illustrate how this scheme

can be used to define a variety of architectural connectors, and they provide a formal

semantics for connectors based on the Communicating Sequential Processes (CSP)

[15]. Using the formal semantics definition, they describe a system in which archi-

tectural compatibility can be checked analogously to type-checking in programming

languages. They use an architectural language (Wright)[16], augmented with a formal

notation (CSP), which clears out ambiguities and allows more precise architectural

definitions. The study also supports complex interaction patterns using the first-in,

first-out (FIFO) ordering of messages.

The study in [17] evaluates the capabilities of UML 2.0 for documenting component

and connector views. The study mentions that the lack of connectors and structured

classifiers in prior UML versions weakened the language significantly. Therefore, the

introduction of the connector concept in UML 2.0 added considerable strength to the

language. They mentioned that a connector in UML is just a link between two or

more connectable elements which cannot be associated with a behavioral description

or attributes that characterize the connection. To compensate for the lack of behavior

association, they considered using associations or association classes to represent the

connectors in component and connector views.

UML-RT [18] brings some of the concepts in Real-time Object-Oriented Modeling

(ROOM) [19] into UML. In UML-RT, connectors correspond to ROOM bindings,

which are abstract views of signal-based communication channels interconnecting

two or more ports. UML-RT protocols represent the behavioral aspects of connec-

tors. The protocol concept was imported into later versions of UML from UML-RT

as ProtocolStateMachines. ProtocolStateMachines are state machines that specify

valid communication sequences. They can be associated with ports, interfaces, and

classifiers.

MARTE [20] defines a real-time connector concept that inherits UML connectors and

adds attributes specific to the real-time domain. While MARTE does not limit itself to

binary connectors, it also does not add additional power to UML for the specification

of connector behavior.

SysML [21], the modeling language created for systems engineering, is an exten-
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sion of UML 2.5. SysML introduces new concepts, such as multi-level nesting of

connector ends and connector properties. On the contrary, to keep the language

simple, some of the complex features related to ports and connectors, such as Pro-

tocolStateMachine, ProtocolConformance, Collaboration, and CollaborationUse, are

excluded. However, the exclusion of notational and metamodel support for n-ary con-

nectors is the most crucial concern for our study. Lacking n-ary connectors in SysML

implies that the connectors for coordinating more than two connectable elements are

only possible if an equivalent structure is formed using multiple binary connectors.

Outside of UML, Reo coordination language [22] is one of the mechanisms for coor-

dination. By defining what is called an interaction machine, Reo frames the motiva-

tion for coordination [23]. An interaction machine is different from a Turing machine

because while its next decision depends on its state and the current input in the in-

put tape, it also depends on the inputs it obtains from its environment. The study

argues that although the coordination protocols are crucial and error-prone parts of

software, they are often embedded implicitly in the behavior of the software. This

makes maintenance and modification of the coordination software difficult, and its

reuse becomes almost impossible. As a result, the study argues that the coordination

of the components should be handled separately and should be implemented outside

of the components. The formal semantics of Reo has been presented in [24] using

timed data streams.

The study presented in [25] also draws attention to exogenous communication. They

argue against components calling methods from each other. The study argues that the

components can be fully decoupled from each other only if connectors possess the

whole control flow in the system. Therefore, they indicate that objects are not good

candidates for components because they call methods from each other. Their work

excludes n-ary connectors.

The work presented in [26] proposes an architectural definition based on components,

ports, and connectors; however, they deliberately exclude n-ary relations. They intro-

duce FIFO queues on component ports to aid asynchronous communications.

The study in [27] presents a formal framework to support the rigorous design of soft-

ware architectures focusing on the communication aspects. They use UML class dia-
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grams to describe the high-level architecture model, where classes represent the soft-

ware components, and associations represent the relationships between them. They

propose using Alloy [28] to formalize the communication styles and to verify the

conformance of the communication styles at the model level. As a reusable library of

connectors, they provide four basic connector behaviors: message passing, message

passing with FIFO ordering, remote procedure call, and distributed shared memory.

The proposed approach supports the validation of communication behavior at the

software architecture design level of a distributed system.

The study presented in [29] uses the π-ADL [30] to provide a formal semantics for

the SysADL [31] models. The study maps SysADL architecture descriptions to π-

ADL using model transformations defined in the ATLAS Transformation Language

(ATL) [32]. The behaviors of connectors in SysADL are described as compositions

of ports on either side of the binary connectors. SysADL also enables using ALF

statements to define details of component behaviors and to instantiate elements in

the model. However, since SysADL is an architecture description language based on

SysML modeling language, it inherits the same omissions from UML regarding the

n-ary connectors.

The problem of making the connectors first-class citizens by giving them roles in

component coordination and responsibility for the coordination logic was studied pre-

viously in the field of component-oriented software engineering (COSE) [33]. The

study in [34] introduces a set of connectors to a component-based development envi-

ronment where a variability model drives the configuration mechanisms in the flow

of the application, components, and connectors. The study in [35] introduces an

approach for managing hyper-connectivity in the IoT through connectors equipped

with variability capability. The study only allows binary connectors to adapt different

protocols. The study in [36] extends the XCOSEML [37] language with connector

variability support to make it able to define configurable interaction options among

the components. The studies in [38],[39],[40] enhance the component-oriented de-

velopment approach with the capability to represent the dynamic behavior of the final

system through a process model. Suggested architecture connects components to a

central process so that if an interaction is required between two components, that is

also managed through the process model.
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2.3 Motivation and Problem Statement

In this section, we first present the motivation for our research. We then describe the

problem in detail using examples. Finally, we illustrate the specific problems that

should be addressed by the connector behavior specification method.

2.3.1 Motivation

In its current form, a connector in UML connects two compatible connector ends, but

it does not play an active role in coordinating the connected entities. Consequently,

the coordination problem is addressed inside the connected components. This solu-

tion, called endogenous coordination, makes the design of the connected elements

unnecessarily complex because their design must also include coordination logic. It

also reduces reusability since we cannot use the components in a scenario that in-

volves different coordination requirements.

Alternatively, we can implement the coordination logic within the connectors to achieve

exogenous coordination. This type of coordination can increase the reusability of the

connected components and can simplify their design since the connectors take on

the coordination responsibility. It can also allow the reuse of the connector behavior

specifications in similar coordination scenarios.

a:A

b:B

c:C

d:D

Figure 2.1: Single requester connected to multiple providers.

Our motivation is to achieve exogenous coordination by associating behaviors with

the connectors. Besides increasing reusability, associated behaviors can help resolve

ambiguities when we use n-ary connectors. In UML, we can connect a port that re-

quires an interface to multiple ports providing the same interface. Figure 2.1 presents
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an example of this scenario. We can construct the scenario using three binary con-

nectors or using a single quaternary connector that has four connector ends.

2.3.2 Problem Statement

The previous versions of UML leave the case shown in Figure 2.1 as a semantic

variation point and do not define which providers will receive the request. The current

version of UML [1] mentions that semantics is the same when we use three binary

connectors or a single quaternary connector. It also indicates that the instance that

will handle the request is determined at execution time. As a result, UML still does

not provide a method to define the routing of requests for this case.

Connector

Behavior
+connector

+contract*

*

Figure 2.2: Abstract syntax in UML showing the contract role.

Figure 2.2 shows a part of the abstract syntax for the connectors defined in the UML.

According to the definition, the Behavior classifier is associated with the Connector

classifier using the contract role3. As an explanation for the contract role, UML indi-

cates that behaviors may be associated with connectors as contracts to specify valid

interaction points across the connector. However, the kind of behaviors that can be

associated with connectors is not defined. Conversely, for other types of behaviors,

such as ProtocolStateMachines, the exact purpose is documented, constraints are de-

termined, and the application of the concept is demonstrated with concrete examples

[1].

We propose using the behaviors indicated by the contract role to define the coordi-

nation behavior. As a result, the complex coordination logic implemented inside the

connected elements can be taken outside and implemented as behaviors of connec-

tors. Separating the coordination concern from other responsibilities of the elements

can increase their reusability. Behaviors associated with connectors also help resolve

the ambiguities which may arise when we use n-ary connectors to connect more than
3 Note that the contract role of a connector is distinct from the contract of a port specified by the required

and provided interfaces of the port.
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two connectable elements. Finally, we can reuse the connector behavior specifications

across scenarios that involve similar coordination requirements.

2.3.3 Merging Replies and Requests

Before going into details of connector behavior specification, we describe the specific

issues the connector behavior specification method should cover. In the example

scenario in Figure 2.1, let us assume that the connector behavior is designed so that

when object a makes a request, the request is sent to all connected providers. Let us

also assume that the interface used to specify the contract of the ports is XIfc. Finally,

let us assume that the interface declares an operation xOp, which returns an integer.

When object a makes a request, the request will be sent to all three providers b, c, and

d. Providers will handle the request and reply with an integer value. There will be

three different replies from the providers, but the original requester object a expects

only one reply. We can modify the design of object a, as shown in Figure 2.3, so it

expects three distinct replies from three separate ports, but doing so will reduce its

reusability. The reduction in reusability is caused by having to modify the design of

object a if we add another provider.

req

rb

b

c

Requester

Providers

d

rc

rd

Request

Replies from 

Providers

Return value

aa

b

c

d

Figure 2.3: Modifying object a in Figure 2.1 to receive replies from multiple ports.
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Without modifying the requester, the connector behavior can perform one of the op-

erations described in Figure 2.4, 2.5, and 2.6 to solve the problem caused by multiple

replies. In the first strategy shown in Figure 2.4, the connector behavior discards

replies from all providers and sends a default reply to the requester. In the second

strategy shown in Figure 2.5, the connector behavior chooses the reply from one of

the providers. In the third strategy shown in Figure 2.6, the connector behavior uses

the replies from all providers to calculate a merged reply and sends this merged reply

to the requester.

reqa

b

c

Requester

Providers

d

r

rb

rc

rd

Request

Replies from 

Providers

Return value

Default 

Reply

b

c

d

Figure 2.4: Reply merge strategy for the example case presented in Figure 2.1:

Replies from providers are discarded, and a default reply is returned.

req

rb

a

b

c

Requester

Providers

d

rc

rd

rb

Request

Replies from 

Providers

Return value

b

c

d

Figure 2.5: Reply merge strategy for the example case presented in Figure 2.1: One

of the replies is chosen.
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req

rb

a

b

c

Requester

Merged 

Reply

Providers

rc

rd

rm

Request

Replies from 

Providers

Return value

d

b

c

d

Figure 2.6: Reply merge strategy for the example case presented in Figure 2.1:

Replies of providers are merged into a single reply.

A similar problem can exist for merging requests when there are multiple requesters,

as shown in Figure 2.7. For this scenario, requests received from objects a, b, and c

can be merged into a single request and sent to the provider object d. Alternatively,

the connector can choose one of the requests and forward it to the provider, discarding

other requests.

a:A

b:B

c:C

d:D

Figure 2.7: Multiple requesters connected to a single provider.

As a result, the two examples demonstrate the need for merging replies for cases

involving multiple providers and the need for merging requests for cases involving

multiple requesters. In the next section, we describe how to specify connector behav-

iors that also include the merge functionality.
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2.4 Connector Behavior Specification

Behaviors associated with connectors should address the following concerns:

1. They should allow specifying the routing of requests. Routing of requests in-

cludes deciding the destinations for forwarding the requests and the conditions

for forwarding the requests.

2. They should provide mechanisms for designing behaviors for merging the re-

quests or replies when required.

3. They should enable the reuse of specified connector behaviors.

4. They should be platform-independent to allow transformation into platform-

specific models.

In this section, we describe the connector behavior specification method which satis-

fies the above objectives.

2.4.1 Using Buffers for Replies and Requests

We use request and reply buffers for the specification of merge behaviors. We model

the reply merge operation required in the "single requester-multiple providers" sce-

nario (see Figure 2.1) using buffers dedicated to providers. We store the replies from

providers in the reply buffers. Then, we operate a merge strategy over the elements in

the reply buffers to combine the replies into a merged reply.

Similarly, we model the request merge operation required in the "multiple requesters-

single provider" scenario (see Figure 2.7) using buffers dedicated to requesters. In this

case, we store the requests from multiple requesters in the request buffers. Then, we

operate a merge strategy over the elements stored in the request buffers to combine

the requests into a merged request. We define two types of buffers for requests or

replies:

• Single-copy buffers are for storing a snapshot copy of requests or replies in

which subsequent requests or replies overwrite the previous ones.
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• FIFO buffers are for storing subsequent requests or replies using first-in, first-

out ordering.

For example, in the case presented in Figure 2.6, we store the three replies returned

from the providers in three separate single-copy buffers. Then we iterate over each

buffer and combine the returned replies into a merged reply.

ra

rb

rc

rm

a

b

c

Requesters

Buffered 

requests

Providers

Merged 

Request

d

e

f

r2a

b

c

Requester

Buffered 

requests

rm

Providers

d

Merged 

Request

r1 r3

(a)

(b)

Figure 2.8: Merging requests using buffers: (a) Storing requests from multiple re-

questers in single-copy request buffers. (b) Storing subsequent requests from a re-

quester in a FIFO request buffer.

Figure 2.8.a shows requests received from multiple requesters. In this example, we

store the requests in single-copy request buffers. After receiving requests from all

requesters, we combine the requests stored in buffers as a merged request and forward

the merged request to the providers. Figure 2.8.b shows another example that involves

a single requester with a single FIFO buffer. In this example, we store the subsequent

requests received from the requester in the FIFO request buffer. When the FIFO buffer
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gets full, we combine the requests stored in the buffer as a merged request and then

send that request to the connected providers.

Examples in Figure 2.4 and Figure 2.5 do not require buffers since the former con-

nector discards all replies, and the latter chooses one of the replies and sends it back

to the requester. Consequently, connector behaviors for these cases will not include

the behavior for merging the replies.

2.4.2 Using ALF to Specify Connector Behavior

In UML, Behavior is an abstract classifier, and its specializations are StateMachine,

Interaction, Activity, and OpaqueBehavior. Therefore, these are the types of behav-

iors that can be associated with the connectors using the contract role. We propose

using activities specified in ALF for connector behavior specification. ALF is a sur-

face notation for fUML. It can be used to declare a model’s structural and behavioral

parts using textual notation. fUML is a subset of UML, which only includes a specific

set of UML concepts to allow executable models.

Because ALF is a surface notation for fUML, complete models specified using ALF

are also limited to the subset of UML covered by fUML. However, there are other

intended uses for ALF. While ALF maps to the fUML subset to provide its execution

semantics, in case the execution semantics is not required, ALF is also usable in the

context of models not restricted to the fUML subset [12], [41]. By using ALF only to

specify the coordination behaviors of the enhanced connectors, we allow other parts

of the model to use the UML concepts outside of the fUML context. ALF provides

significant advantages for the specification of activities. When we use graphical no-

tation, the specification of even simple behaviors can become quite complex, hard to

understand, and maintain. We can denote the same behaviors using ALF in a more

readable and maintainable format. Figure 2.9, an example included in the ALF spec-

ification [12], shows the distinction between the two formats. The figure shows the

implementation of the same quick sort algorithm using both ALF notation and activity

diagram notation.
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Figure 2.9: The Quicksort algorithm using ALF and graphical notation.

In our previous study [7], we proposed using Interactions specified by sequence di-

agrams for connector behavior specification. Since using imperative logic for the

merge behaviors was not feasible with sequence diagrams, we have proposed using

the target programming language to specify the behaviors for merging requests and

replies. In this chapter, we address this problem by using ALF. The connector behav-

iors specified using ALF also include the behaviors for merging replies and requests,

along with behaviors for routing requests. To define the connector behaviors, we use

an OpaqueBehavior element for which we provide the specification using ALF in

combination with specific Properties to denote the reply and the request buffers. The

OpaqueBehavior allows the connector activity to have additional Properties, making

room for stateful connector behaviors.
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Figure 2.10 shows an example UML model where we define an enhanced UML con-

nector. Listing 2.1 shows the body of the OpaqueBehavior developed using ALF

for the connector behavior specification. The connector behavior sends incoming re-

quests to all connected providers and then stores the replies from the providers in

the single-copy reply buffers (line 3). OutPort denotes the array of providers (e.g.,

objects b and c in the figure). The term arg used in the ifc.xOp(arg) operation call

represents the argument of the request.

Figure 2.10: UML diagram and the UML model for the enhanced connector that

sends requests to each provider: (a) Composite structure diagram showing the re-

quester, providers, and the enhanced connector. (b) UML model showing the connec-

tor behavior.
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Listing 2.1: Connector behavior specification using ALF for the model in Figure 2.10.

1 I n t e g e r i = 1 ;

2 f o r ( i f c i n t h i s . O u t P o r t ) {

3 t h i s . R e p l y B u f f e r [ i ] = i f c . xOp ( a r g ) ;

4 i ++;

5 }

6

7 / / Rep ly merge s t r a t e g y :

8 i = 1 ;

9 I n t e g e r sum = 0 ;

10 whi le ( i <= PRV_CNT) {

11 I n t e g e r i n t v a l = t h i s . R e p l y B u f f e r [ i ] ;

12

13 i f ( i n t v a l != n u l l ) {

14 sum = sum + i n t v a l ;

15 / / I n v a l i d a t e v a l u e s t o r e d i n t h e b u f f e r

16 t h i s . R e p l y B u f f e r [ i ] = n u l l ;

17 }

18 i ++;

19 }

20 re turn sum ;

After sending requests to all providers, we execute a reply merge strategy (lines 7-19),

in which we merge replies from each provider using integer addition. The PRV_CNT

term used in line 10 is a placeholder evaluated as the actual number of providers by

the model transformations explained in the upcoming sections.

Table 2.1 shows the terms that can be used in connector behavior specifications.

OutPort is used to route requests to a specific provider by indexing it with an in-

teger. ReplyBuffer[i] is used to access the reply from a specific provider and In-

Port[i].RequestBuffer is used to access a request from a specific requester. Besides

these terms, any legitimate ALF syntax can be used within the connector behavior

specifications.
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Table 2.1: Special terms used in connector behavior specifications.

Term Description

OutPort[1..*] Ordered array of references to the providers. An operation de-

clared in the port contract can be called using this reference.

ReplyBuffer[1..*] Reply buffer for storing replies from the providers.

InPort[1..*].RequestBuffer Ordered array of references to the request buffers for each re-

quester.

PRV_CNT Placeholder for the number of providers.

REQ_CNT Placeholder for the number of requesters.

arg Name of the argument of the operation which is declared by

the interface provided/requested by the port.

2.4.3 Enhanced Connector Profile

Using a profile is one of the methods for extending UML. Figure 2.11 shows the

UML profile developed for representing the enhanced connector concepts. Defining

stereotypes for enhanced connectors enables the model transformations to differenti-

ate between the standard UML model elements and the model elements used for the

enhanced connectors.

Figure 2.11: Enhanced connector profile.
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We apply the ConnectorBehavior stereotype to OpaqueBehaviors that we use to spec-

ify connector behaviors. In UML, since Behaviors are Classifiers, they are allowed

to have Properties. We denote the reply and request buffers using specific properties

of OpaqueBehaviors. ReplyBuffer and RequestBuffer stereotypes generalize the ab-

stract Buffer stereotype, which extends the metaclass Property. The stereotype Buffer

has a type property, whose type is BufferType enumeration. BufferType defines two

enumeration literals that denote FIFO and single-copy buffers.

We distinguish the enhanced UML connectors from the standard UML connectors by

setting their contract role to an OpaqueBehavior. We also apply the EnhancedCon-

nector stereotype to enhanced connectors to avoid ambiguity in case the contract role

is used for another purpose.

Most of the current UML tools do not support creating n-ary connectors. Therefore,

we represent n-ary enhanced connectors using an n-1 number of binary connectors.

We designate one of the binary connectors as the primary enhanced connector by

setting its contract role to an OpaqueBehavior. Then, we designate the remaining

n-2 binary connectors that are part of the n-ary enhanced connector as the secondary

enhanced connectors. We create dependencies from the primary enhanced connector

to the secondary enhanced connectors to form a group of connectors that constitute

the n-ary connector. Figure 2.10.a shows one such dependency among the connectors

using a dashed line. The contract role of the secondary enhanced connectors is empty.

2.5 Model Transformations

We use the stereotypes in the enhanced connector profile to develop the UML model

that includes the enhanced connectors. We apply a series of model transformations

that use this model as input. The model transformations convert the input model into

a model which contains fUML activities that represent connector behaviors. Figure

2.12 shows the overall workflow for executing the model transformations.
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Figure 2.12: Enhanced connector transformation process.

The model that is the input of the transformation engine is called the E1 model. We

transform the E1 model into the E2 model, and then we eventually transform the E2

model into the E3 model4.

The E2 model is the platform-independent model that includes a class generated for

the connector. This class implements the connector behavior, and an object of this

class acts as the enhanced connector. Any specific attribute of the connector behavior

in the E1 model, along with the properties denoting the reply and request buffers,

becomes Properties of the class generated for the connector in the E2 model.

In the E2 model, in addition to the operation describing the connector behavior, we

create operations for initializing buffers and setting up relations. We use ALF to pro-

vide the specifications of the connector behavior and the behavior of the created op-

erations. We transform the ALF specifications into fUML activities in the E3 model.

4 The terms E1, E2, and E3 are not part of any standard convention. They were introduced in the thesis to
differentiate between multiple levels of models, which are inputs and outputs of the model transformations. The
letter “E” stands for “enhanced connector’.’
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The E3 model does not include any concepts specific to the enhanced connectors and

thus can be transformed into a platform-independent or a platform-specific model.

Alternatively, using a model-to-text transformation, the E3 model can be transformed

into a programming language such as Java or C++.

We implemented the model transformations using QVTo [14]. We used Papyrus [42]

to develop the UML models and the QVTo plugin of Eclipse [43] to develop and test

model transformations. In the following sections, we describe the model transforma-

tions in detail.

Figure 2.13: E2 model for the example shown in Figure 2.10: (a) Composite structure

diagram that contains the requester, providers, and the object of the connector class.

(b) Composite structure diagram for the connector class. (c) UML model showing

the connector behavior and other behaviors generated by the model transformation.

2.5.1 Transformation from the E1 Model into the E2 Model

We construct the E2 model from the E1 model using a model transformation. Fig-

ure 2.13 shows the E2 model that results from the E1 model shown in Figure 2.10.

The transformation from the E1 model into the E2 model involves performing the

following steps for each enhanced connector found in the E1 model:

28



• Let us call the class which contains the enhanced connector the container class

(e.g., the class ECls shown in Figure 2.10 and Figure 2.13). A class with the

name ConnectorCls_<ConnectorName> is created as a nested class of the con-

tainer class. We call this class the connector class.

• An object of the connector class is created under the container class.

• Let XIfc be the interface required or provided by the ports connected by the

enhanced connector. Two ports are added to the connector class with the names

reqPort and prvPort, which require and provide the interface XIfc, respectively.

• Connectors that connect the requesters to the prvPort of the connector class are

created.

• Connectors that connect the providers to the reqPort of the connector class are

created.

• A class with the name RequestPortCls is created as a nested class of the con-

nector class. An object of this class with the name InPort is also created as a

Property of the connector class.

• A port with the name prvPort is created in RequestPortCls, which provides the

interface XIfc.

• Properties of the OpaqueBehavior that represent the enhanced connector be-

havior, except the properties denoting the request buffers, are moved under the

connector class. Properties that denote the request buffers are moved under

RequestPortCls.

• A property named ownerConnector is created in RequestPortCls. The type of

ownerConnector is set to the connector class.

• A constructor with a single argument is created for RequestPortCls. The type

of the argument is the connector class. Implementation for the constructor is

added as an OpaqueBehavior using ALF. The implementation sets the owner-

Connector property to the argument of the constructor. This way, RequestPort-

Cls knows the connector class, which owns itself.
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• An operation that implements the operation declared by the interface XIfc is

created under RequestPortCls. An OpaqueBehavior that acts as the method

of this operation is also added. Implementation of the operation performs the

following actions:

– If a request buffer is defined, it stores the incoming request in the buffer

allocated for the requester.

– It forwards the request to the connector class using the ownerPort prop-

erty. The connector then executes the actual coordination behavior.

• A constructor is created under the connector class, and an OpaqueBehavior

using ALF is added as its method. The behavior of this constructor instantiates

the InPort property of the connector class.

• Multiplicities of the port prvPort and the property InPort inside the connector

class are set to the number of requesters.

• Multiplicities of the port reqPort and the property OutPort inside the connector

class are set to the number of providers.

Behavior specifications of the created constructors and operations are specified us-

ing ALF. The E2 model contains all the structural and behavioral artifacts required

to define the coordination behavior for the enhanced connector. In the next trans-

formations, we transform the OpaqueBehaviors specified using ALF into behaviors

specified using fUML activities.

2.5.2 Transformation from the E2 Model into the E3 Model

The transformation from the E2 model to the E3 model involves transforming Opaque-

Behavior elements specified using ALF into fUML activities. Generated fUML ac-

tivities are used as methods of operations, replacing OpaqueBehaviors.

We use the ALF reference implementation [44] to compile ALF specifications into

fUML activities. ALF reference implementation can directly execute ALF models.

Alternatively, it can transform ALF models into fUML models. However, since our
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E2 model has elements outside of the fUML scope, we cannot use it directly. To use

the ALF reference implementation, we generate an ALF module, which only includes

the elements from the E2 model required for the enhanced connector behavior spec-

ification. The transformation responsible for generating this ALF module is called

E2toAlf.

Listing 2.2 shows the ALF unit generated from the E2 model shown in Figure 2.13

using E2toAlf. We then use the ALF reference implementation to compile this model

into an fUML model.

Listing 2.2: ALF unit generated from the E2 model shown in Figure 2.13.

1 package M u l t i D e s t R e q u e s t e r _ E 1 {

2

3 / / The i n t e r f a c e i n t h e p o r t c o n t r a c t

4 p u b l i c a b s t r a c t c l a s s XIfc {

5 p u b l i c a b s t r a c t xOp ( i n a r g : I n t e g e r ) : I n t e g e r ;

6 }

7

8 / / The c o n n e c t o r c l a s s

9 p u b l i c c l a s s C o n n e c t o r 1 _ C o n n e c t o r C l s {

10 I n P o r t : R e q u e s t P o r t C l s [ 1 . . 1 ] o r d e r e d nonun ique ;

11 O u t P o r t : XI fc [ 2 . . 2 ] o r d e r e d nonun ique ;

12 R e p l y B u f f e r : I n t e g e r [ 2 . . 2 ] o r d e r e d nonun ique ;

13

14 / / O p e r a t i o n f o r r o u t i n g r e q u e s t s merging r e p l i e s from p r o v i d e r s

15 p u b l i c xOp ( i n a r g : I n t e g e r ) : I n t e g e r {

16 I n t e g e r i = 1 ;

17 f o r ( i f c i n t h i s . O u t P o r t ) {

18 t h i s . R e p l y B u f f e r [ i ] = i f c . xOp ( a r g ) ;

19 i ++;

20 }

21

22 / / Rep ly merge s t r a t e g y :

23 i = 1 ;

24 I n t e g e r sum = 0 ;

25 whi le ( i <= 2) {

26 I n t e g e r i n t v a l = t h i s . R e p l y B u f f e r [ i ] ;

31



27

28 i f ( i n t v a l != n u l l ) {

29 sum = sum + i n t v a l ;

30 / / I n v a l i d a t e v a l u e s t o r e d i n t h e s i n g l e copy b u f f e r

31 t h i s . R e p l y B u f f e r [ i ] = n u l l ;

32 }

33 i ++;

34 }

35 re turn sum ;

36 }

37

38 @Create p u b l i c C o n n e c t o r 1 _ C o n n e c t o r C l s ( ) {

39 I n t e g e r i = 1 ;

40 whi le ( i <= 2) {

41 t h i s . I n P o r t [ i ] =

42 new R e q u e s t P o r t C l s ( t h i s ) ;

43 i = i + 1 ;

44 }

45 }

46

47 / / The c l a s s f o r r e c e i v i n g and s t o r i n g t h e r e q u e s t s

48 p u b l i c c l a s s R e q u e s t P o r t C l s {

49 p u b l i c ownerConnec to r : C o n n e c t o r 1 _ C o n n e c t o r C l s [ 1 . . 1 ] ;

50

51 @Create

52 p u b l i c R e q u e s t P o r t C l s ( i n c : C o n n e c t o r 1 _ C o n n e c t o r C l s ) {

53 t h i s . ownerConnec tor = c ;

54 }

55

56 p u b l i c xOp ( i n a r g : I n t e g e r ) : I n t e g e r {

57 / / Forward t h e r e q u e s t t o t h e c o n n e c t o r o b j e c t

58 re turn t h i s . ownerConnec tor . xOp ( a r g ) ;

59 }

60 }

61 }

62 } / / end package
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After we obtain the fUML model for the generated ALF unit, we import the fUML

activities for the constructors and the operations which describe the connector behav-

ior into the E2 model. The model transformation responsible for importing fUML

activities into the E2 model is called E2toE3. It takes two inputs: the fUML model

generated by ALF reference implementation and the E2 model. The fUML activities

replace the OpaqueBehaviors that act as methods in the E2 model.

Imported fUML activities still contain references to some of the model elements

which reside in the fUML model. For example, they reference the connector class,

RequestPortCls, and specific Properties inside the fUML model. The referenced

model elements also have their original copies in the E2 model. Therefore, the trans-

formation updates the references to point to the corresponding model elements that

reside in the E2 model. The resulting model after importing in the fUML activities

and updating references is the E3 model.

2.5.3 Execution and Implementation of the Model Transformations

We developed the Java program EcTransformer to execute the transformations in the

required order as shown in Figure 2.12. We have also experimented with ATL [32] to

implement model transformations before choosing QVTo. Even though ATL could

meet our requirements, we preferred QVTo because it was standardized by Object

Management Group (OMG), like UML and ALF. However, we had to develop an

equivalent method in QVTo for a practical feature of ATL called the refining mode.

In the refining mode, an ATL model transformation only changes specific elements

in the input model, leaving everything else the same. The refining mode of ATL is

distinct from the in-place model transformations of QVTo because it saves the output

as a different model and does not modify the input model. It is suitable for our

needs because we only transform the parts of the input model regarding enhanced

connectors.

QVTo does not have the refining mode, but it supports in-place transformations. How-

ever, when we use this option, QVTo modifies the input model. We solve this problem

by using the Java API of QVTo. We define the transformations as in-place transfor-
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mations. Therefore, the model transformations modify the input models when we run

them manually from inside Eclipse, using QVTo run configurations. However, when

the Java program EcTransformer runs them, it takes the in-memory representation of

the output models and saves them as different models. Using this method, we can

obtain functionality in QVTo equivalent to the refining mode of ATL.

2.6 Example Connector Behaviors

In this section, we present example connectors developed using the proposed method.

Besides clarifying the application of the method in different cases, the examples also

demonstrate the expressive power of the connector behavior specification method.

2.6.1 The Round-Robin Requester

The round-robin requester connector coordinates a single requester and multiple providers.

It sends each request made by the requester to the providers in a round-robin order and

sends the received reply to the requester. Figure 2.10.a shows the composite structure

diagram for the E1 model. Listing 2.3 shows the connector behavior specification.

Listing 2.3: Connector behavior specification for the round-robin requester.

1 I n t e g e r r e s u l t = t h i s . O u t P o r t [ t h i s . I ndex ] . xOp ( a r g ) ;

2 t h i s . I ndex = t h i s . I ndex + 1 ;

3 t h i s . I ndex = t h i s . I ndex % PRV_CNT ;

4 re turn r e s u l t ;

The behavior uses the integer Index property of the OpaqueBehavior that represents

the connector behavior in the E1 model. We initialize the Index property in the E1

model by providing a default value of IntegerLiteral 1. When a request arrives, the

connector behavior sends the request to the provider indicated by the Index property,

storing the reply in a local variable result. Then, it increments the Index property and

applies a modulo operation to prevent the value of Index from overflowing past the

number of providers. Finally, the connector behavior returns the value stored in the

result as a reply to the requester.
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Buffering mechanism is not required for this connector since it does not send requests

to multiple providers simultaneously. The connector can also coordinate multiple

requesters by sending the request it receives from any requester to the providers in a

round-robin order. Additionally, based on this specification, we can define a random

destination sender connector, which forwards incoming requests to a random provider

using a similar behavior specification. We can achieve this by modifying the ALF

code in line 2 to use a call to a random number generator.

2.6.2 The Multiple Destination Sender

In this type of coordination, there are multiple providers. There can be a single re-

quester or multiple requesters. When a requester makes a request, the connector sends

the request to all providers. Then, the connector merges the replies from the providers

into a single reply and sends it back to the original requester. The requester does not

know that the requests are sent to more than one provider. Therefore, the coordination

happens in an exogenous style.

Listing 2.1 shows the connector behavior in ALF. The behavior forwards the request

to each connected provider by iterating over the OutPort property of the connector

(lines 1-5). It stores replies from the providers in the single-copy buffers. After

each provider returns with a reply, the behavior executes a reply merge strategy by

summing up the returned values (lines 8-19). Note that ALF mandates the null check

in line 13. If we do not use the null check, ALF does not allow the summation of

intval and sum since intval can be null, and multiplicities of the operands will not

match in that case. The connector behavior invalidates the value stored in the single-

copy buffer by setting it to null after using it (line 16). Finally, it returns the sum

variable to the requester.

2.6.3 The Less Frequent Sender

The less frequent requester connector coordinates a single requester and a single

provider. It can be used in cases where the requester makes frequent requests, but

the provider expects them less frequently.
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Listing 2.4 shows the connector behavior specification in ALF. The connector has a

FIFO buffer which can store a limited number of requests. The connector achieves

the coordination by collecting requests in the request buffer until the request buffer

reaches a predefined size, indicated by the MaxRequestCount property of the Opaque-

Behavior representing the connector behavior. When enough requests are collected,

the connector behavior merges them as a single request by summing up the request

values. Finally, the connector behavior sends the merged request to the provider.

Listing 2.4: Connector behavior specification for the less frequent sender.

1 I n t e g e r r e t u r n V a l u e = t h i s . D e f a u l t R e p l y ;

2 i f ( t h i s . I n P o r t [ 1 ] . R e q u e s t B u f f e r . s i z e ( ) == t h i s . MaxRequestCount ) {

3 / / Merge r e q u e s t s :

4 I n t e g e r sum = 0 ;

5 whi le ( t h i s . I n P o r t [ 1 ] . R e q u e s t B u f f e r . s i z e ( ) != 0 ) {

6 I n t e g e r r e q u e s t = t h i s . I n P o r t [ 1 ] . R e q u e s t B u f f e r . r e m o v e F i r s t ( ) ;

7 i f ( r e q u e s t != n u l l ) {

8 sum = sum + r e q u e s t ;

9 }

10 }

11 r e t u r n V a l u e = sum ;

12 }

13 re turn r e t u r n V a l u e ;

The requests are dequeued from the FIFO request buffer until the buffer is empty. Fig-

ure 2.8.b presents an illustration in which subsequent requests are stored in the FIFO

buffer and merged into a single request. For the requests that do not cause sending

an actual request to the provider (i.e., when the number of requests in the buffer has

not reached the MaxRequestCount limit), the connector replies to the requester with

a default reply. The default reply value is stored in the DefaultReply property of the

connector behavior, which is initialized to IntegerLiteral 0 by providing its default

value in the E1 model.
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ECls

 + a: ACls [1]
 + pA: RequesterPortType [1]

 + d: DCls [1]

 + pD: ProviderPortType [1]

 + b: BCls [1]
 + pB: RequesterPortType [1]

 + c: CCls [1]
 + pC: RequesterPortType [1]

Figure 2.14: E1 level UML model composite structure diagram for the request

barrier connector.

2.6.4 The Request Barrier

The request barrier connector coordinates multiple requesters and a single provider.

Figure 2.14 shows its structural configuration in the E1 model. The main functionality

of the connector is to act as a barrier until all requesters make a request. It collects

incoming requests in the single-copy request buffers. After the connector receives

requests from each requester, it merges the requests stored in the request buffers into

a single request and then forwards it to the provider. Listing 2.5 shows the connector

behavior specification.

Listing 2.5: Connector behavior specification for the request barrier.

1 I n t e g e r i = 1 ;

2 t h i s . B a r r i e r O n = f a l s e ;

3 whi le ( i <= REQ_CNT) {

4 I n t e g e r r e q u e s t = t h i s . I n P o r t [ i ] . R e q u e s t B u f f e r ;

5 i f ( r e q u e s t == n u l l ) {

6 t h i s . B a r r i e r O n = t rue ;

7 }

8 i ++;

9 }

10
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11 I n t e g e r r e t u r n V a l u e = t h i s . D e f a u l t R e p l y ;

12 i f ( t h i s . B a r r i e r O n == f a l s e ) {

13 / / Merge r e q u e s t s

14 I n t e g e r mergedReques t = 0 ;

15 i = 1 ;

16 whi le ( i <= REQ_CNT) {

17 r e q u e s t = t h i s . I n P o r t [ i ] . R e q u e s t B u f f e r ;

18 i f ( r e q u e s t != n u l l ) {

19 mergedReques t += r e q u e s t ;

20 / / I n v a l i d a t e t h e consumed r e q u e s t

21 t h i s . I n P o r t [ i ] . R e q u e s t B u f f e r = n u l l ;

22 }

23 i ++;

24 }

25 r e t u r n V a l u e = t h i s . O u t P o r t [ 1 ] . xOp ( mergedReques t ) ;

26 t h i s . B a r r i e r O n = t rue ;

27 }

28 re turn r e t u r n V a l u e ;

The connector specification uses a boolean property BarrierOn to keep track of the

connector state. When a request is received, the connector behavior checks if the

request buffer of each requester is empty. It sets the BarrierOn flag to true if one of

the requesters has an empty request buffer, indicating that the corresponding requester

did not make any request yet (lines 1-9). Setting the BarrierOn flag to true means the

barrier is closed, and the requests cannot pass through. In this case, the connector

does not forward requests to the provider. Instead, it replies to the requester with a

default reply (lines 11, 12, and 28).

The connector sets the BarrierOn flag to false if all requesters have non-empty re-

quest buffers, indicating that each requester made at least one request. Setting the

BarrierOn flag to false means the barrier is open, and requests can pass through. In

this case, the connector merges multiple requests into a single request and sends the

merged request to the provider (lines 13-28).
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Figure 2.15: E2 level composite structure diagrams and UML models for the request

barrier connector: (a) Composite structure diagram for the request barrier connector.

(b) Composite structure diagram for the connector class. (c) E2 level UML model.

Figure 2.15.a shows the composite structure diagram, and Figure 2.15.c shows the

UML representation for the E2 model. The E1toE2 model transformation replaces the

enhanced connector in the E1 model with an object of the connector class denoting

the connector. The model transformation sets the multiplicity of the port prvPort of

the connector class to the number of requesters, which is 3. Figure 2.15.b shows the

internal structure of the connector class, which contains the InPort property.

The InPort property is an instance of the RequestPortCls class. The transformation

also sets the multiplicity of the InPort property to the number of requesters. One of

the responsibilities of the InPort property is to differentiate between requests received

from different requesters. The operations defined in the connector class can access

the request received from a specific requester by indexing the InPort property with

the requester index. If we do not use the InPort property, we should directly imple-
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Figure 2.16: (a) E3 UML model for the request barrier connector class. (b) E3 UML

model for the request barrier connector fUML activity. (c) Inner elements of the E3

model request barrier connector fUML activity.

ment the operations declared in the coordinated interface inside the connector class.

However, this implementation will cause subsequent requests to overwrite each other.

Figure 2.16.a shows the UML model for the connector class in the E3 model for

the request barrier connector. The figure shows the fUML activities that replace the

OpaqueBehaviors (e.g., xOp$method$1 and Connector1_ConnectorCls$method$1).

For example, xOp$method$1 is the fUML activity implementing the connector behav-

ior for routing and merging requests. Figure 2.16.b shows the inner model elements

for this activity, and Figure 2.16.c shows the internal model elements of the structured

activity node inside this activity.
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2.7 Application of Enhanced Connectors in Avionics Software Projects

This section presents the applications of enhanced connectors in real-life projects. We

show examples from real-life projects in which using enhanced connectors simpli-

fies the design and increases reusability. We examined six large-scale safety-critical

avionics software projects. We developed a tool that searches the project model files

to find cases where the application of the enhanced connectors is appropriate. We

searched the model files for two cases. For the first case, we searched for classes hav-

ing more than one port requiring the same interface. For the second case, we searched

for classes that provide and require the same interface at multiple ports. Figure 2.17

illustrates the cases searched. We studied the results for both cases to determine if we

can use enhanced connectors instead of existing connectors.

XIfc

XIfc

XIfcXIfc

(a) (b)

Figure 2.17: Cases searched in real-life projects: (a) Case 1: a class having more

than one port that requires the same interface. (b) Case 2: a class that provides and

requires the same interface at multiple ports.

In the following sections, first, we present background information regarding the de-

velopment environment and the requirements for the projects we have studied. After

that, we introduce the cases where using enhanced connectors is beneficial.

2.7.1 Background

The studied projects conform to DO-178C, Software Considerations in Airborne Sys-

tems and Equipment Certification [6]. DO-178C is the primary document by which

the certification authorities such as Federal Aviation Administration, European Union

Aviation Safety Agency, and Transport Canada approve all commercial software-

based aerospace systems. Because of the inability to accurately apply reliability
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models to software, the concept of development assurance is applied by most safety-

focused industries, including the aviation industry [45].

Table 2.2: DO-178C development assurance levels.

Level Failure condition Objectives With independence

A Catastrophic 71 30

B Hazardous 69 18

C Major 62 5

D Minor 26 2

E No Safety Effect 0 0

Table 2.2 shows the development assurance levels defined in DO-178C according to

the safety impact of functionalities implemented in software. Level-A is the high-

est assurance level. Errors in level-A software can have catastrophic consequences

leading to the loss of the aircraft, flight crew, or attendants. Level-D defines the de-

velopment assurance level with the lowest safety impact. Level-E corresponds to no

safety impact. DO-178C defines 71 objectives, all of which must be satisfied for

level-A software. Besides, 30 of the objectives require independence for level-A soft-

ware. For example, independence for software requirement reviews means that the

engineers who develop the requirements cannot be the reviewer of the requirements,

or they cannot develop the test cases for these requirements.

In addition to DO-178C, the avionics software projects we examined conform to

ARINC-653 [46]. ARINC-653 is a software specification for space and time par-

titioning in safety-critical avionics real-time operating systems. Implementation of

the standard allows hosting multiple applications of different software development

assurance levels on the same hardware in the context of integrated modular avionics

(IMA) [47] architecture.

ARINC-653 decouples running applications from the real-time operating system us-

ing the application programming interface called the application executive (APEX).

Each application software is called a partition. Space partitioning indicates that each

application has its own memory space, and time partitioning indicates that each appli-

cation has its dedicated time slot allocated. Inside each partition, multiple processes
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can run, and multitasking between the processes using preemptive scheduling is al-

lowed. In ARINC-653, a process is similar to a thread in the UNIX operating system.

It shares the same address space with other processes and operates on the same global

data. On the other hand, a partition in ARINC-653 corresponds to a process in the

UNIX operating system, which assigns dedicated and protected virtual address spaces

to the processes.

2.7.2 Case I: Multicasting Periodic Data

The first case for which the application of enhanced connectors is beneficial involves

the communication between software components running inside the same ARINC-

653 partition. In an ARINC-653 system, communication among the partitions is per-

formed using sampling ports and queuing ports. A sampling port is used to send

periodic data. The port retains a single copy of the data, and the recently arriving data

overwrites the previous copy.

ARINC-653 allows connecting a source sampling port to multiple destination ports

for sending data to more than one partition. If another partition needs the same data

in the future, we only add a port to the list of destination sampling ports. We do not

need to change the design of the source partition by adding another source port.

Although ARINC-653 solves the problem of multicasting data to partitions, we also

have a similar problem inside the partitions. We can have multiple software compo-

nents running inside a partition. The communication among these software compo-

nents is modeled using UML ports, and the data should also be multicast among these

components when required.

Figure 2.18 shows an example scenario where a software component in partition A

produces data. The software component sends the data to ports that belong to two

other software components in the same partition. Additionally, it sends the data to a

source sampling port defined on partition A. The data is then sent from this port to

two additional destination ports, which reside on partitions B and C.

As a result, the data produced by the source software component is sent to four desti-

nations: Cmp1, Cmp2, partition A, and partition B. The ARINC-653 implementation
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Cmp1 Cmp2

Cmp3
Partition C

Partition A Partition B

Figure 2.18: Sampling data produced by a software component sent to multiple des-

tinations. An enhanced connector is used inside Partition A to multicast data.

handles the multicasting of sampling port data to partition A and B in this scenario.

However, we need to implement a solution for multicasting the data to Cmp1, Cmp2,

and the source sampling port of partition A.

Without using enhanced connectors, we have to manually multicast the data by cre-

ating three separate ports on the source software component or by inserting an addi-

tional object which replicates the data to multiple destinations using multiple source

ports. Creating three ports on the source decreases reusability by coupling the design

of the source component to the number of destinations. On the other hand, inserting

an additional object to replicate the data requires manually designing intermediary

classes and objects to perform the multicasting. We can solve this problem using

the enhanced connector presented in Section 2.6.2: the multiple destination sender.

By using the enhanced connector, we can decouple the source component from the

multicasting concern.

In addition to multicasting periodic data among the top-level software components

inside the partitions, we observed that lower-level objects inside the top-level software

components also used distinct ports to send the same data to multiple objects. The

multiple destination sender enhanced connector is also applicable for these cases.

2.7.3 Case II: Handling Different Configurations

Avionics software projects we studied include requirements for supporting different

configurations of devices. An example is using separate communication devices in
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two different configurations. Version A of the aircraft uses the communication device

Com1, and version B uses Com2. In this case, the software components which control

Com1 and Com2 are designed to use the same interfaces to communicate with other

software components. Depending on the project configuration, an intermediate class

routes the requests to the active communication device.

Figure 2.19.a shows the Selector object in the existing design, which forwards the

incoming requests to Com1 or Com2 device accordingly. Figure 2.19.b shows the

new design, where we use an enhanced connector that reads the project configuration

and forwards the requests to either device. The selector class is replaced with an en-

hanced connector. If a third device is used in the future, we can modify the connector

behavior to handle the change.

Com1

Com2

Container

Selector

Com1

Com2

Container

(a) (b)

Figure 2.19: Selector pattern, which forwards requests to different communication

devices depending on the project configuration: (a) Existing design that uses a dedi-

cated object. (b) Updated design that uses an enhanced connector.

We encountered the conditional forwarding of requests in another case where two

ports with identical required interfaces were connected to two ports of different ob-

jects. One of the two objects was for testing purposes, and the other was the live

object. The application forwarded the requests to the test object when running in test

mode and to the live object when not running in test mode. An enhanced connector

can also handle this kind of conditional message routing.
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2.7.4 Case III: Handling Redundant Devices on the Platform

In the projects we examined, some of the cases where multiple ports of the same

class required the same interface were designed to handle the redundant devices in the

platform. In avionics systems, there are often two devices of the same functionality

to minimize the risk of losing critical functions. Having two devices also helps detect

sensor errors by comparing readings from both devices. This system design method,

known as dual redundancy, is used for the devices responsible for critical system

functions.

(a)

(b)
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Component1

Device

Mgr
Dev2
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Dest

Component2
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Dest

Component2
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Component1

Device

Mgr
Dev2 

Dest

Figure 2.20: Handling Redundant Devices on the Platform: (a) Existing design: Ded-

icated communication channel for each device. (b) Updated design: Single communi-

cation channel for multiple devices using an enhanced connector inside Component2.

Figure 2.20.a shows a typical dual redundant device management scenario in the

projects we examined. In the existing design, Component1 is responsible for the

device functionalities specific to the avionics software application. Responsibilities

of this component can change depending on the avionics software application. On the

other hand, Component2 is responsible for the device functionalities only in the scope

of the device’s capabilities. Responsibilities of Component2 do not change depending
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on the application, so it can be reused in avionics software applications that require a

dual redundant setup of the same device.

Component1 includes a device manager software component (DeviceMgr) which man-

ages a dual redundant device configuration. Additionally, there are two separate ob-

jects in Component1 which perform application-specific device management and data

transformation tasks for the individual devices (Dev1Src and Dev2Src). The data from

the devices also follows two separate communication channels towards other soft-

ware components and partitions. Data sent by Dev1Src and Dev2Src arrive at device

controllers Dev1Dest and Dev2Dest inside Component2.

The existing design is easy to understand and implement, but if we need to add a third

copy of the device to the system in the future, we should establish a third commu-

nication channel. However, adding a third channel will change the design of all the

software component classes on the communication path.

Figure 2.20.b shows the updated design. Using the Dev1/Dev2Src object, we can

get requests for both devices and forward them into a single port by adding the de-

vice identification information to the requests. Then, the enhanced connector inside

Component2 can multiplex the requests to the correct device by reading the device

identification information. Compared to the original design, the updated design is

more resilient against adding or removing devices. If we need to add a third device,

we will not have to change the ports of the classes in the communication path (e.g.,

Component1, Component2).

2.7.5 Case IV: Blocking Requests Depending on the Condition

In this case, an intermediate object between two ports is used to allow or block re-

quests. Figure 2.21.a shows the existing design. During runtime, when objects of

these classes receive a request through the port that provides the interface, they check

a particular condition. They forward the incoming request only if the checked condi-

tion holds. Otherwise, they block and drop the request.
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Component

Requester Provider

Component

Requester Provider

Figure 2.21: Blocking or forwarding requests depending on the runtime condition: (a)

Existing design: Using an intermediate object for conditionally blocking the request.

(b) Updated design: Using an enhanced connector that can conditionally block the

request.

Figure 2.21.b shows the updated design using an enhanced connector. We implement

the required coordination behavior by checking the particular condition inside the

connector behavior. We observed that the conditional forwarding and blocking of the

requests is used in several places in the projects, and they are implemented as separate

classes and objects. Enhanced connectors can replace these objects, simplifying the

design.

2.7.6 Case V: Choosing a Single Reply Among Many Providers

In this scenario, multiple identical devices can respond to a request. A software com-

ponent that acts like the multiple destination sender connector sends the same request

to all devices. When all the providers reply, the response from one of the providers is

used according to a selection algorithm.

Figure 2.22.a shows existing design, where the requester object is responsible for its

own functionality, in addition to the responsibility of multicasting requests to four

devices and choosing a reply. Figure 2.22.b shows the updated design using an en-

hanced connector. The enhanced connector can perform multicasting of the request to

each provider and then selection of the reply of a specific provider. We can decouple
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the requesting side from the selection algorithm and increase its reusability by using

the enhanced connector.

(a) (b)
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Figure 2.22: Choosing a single reply among the replies from many providers: (a)

Existing design: The requester contains the behavior for multicasting the requests and

evaluating the replies. (b) Updated design: Using an enhanced connector to multicast

requests and evaluate the replies.

(a) (b)

Component

Checker2

Checker1

Checker3

Checker4

Provider

Component

Provider

Figure 2.23: Discriminating between requesters to selectively accept requests from

specific sources: (a) Existing design: Using dedicated objects to set the source field

of incoming requests. (b) Updated design: Using an enhanced connector to set the

source field of incoming requests.

2.7.7 Case VI: Discriminating Between Multiple Requesters

Figure 2.23.a shows the existing design for this case. In this case, a software compo-

nent receives requests of the same type from multiple relay ports. There are checker
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objects behind each relay port to which incoming requests are forwarded. The checker

objects set the source field of the requests depending on the relay port the message is

received (e.g., Checker1 sets the source field to 1). Then, the provider object can drop

or accept requests from specific requesters based on the source information.

Figure 2.23.b shows the structure diagram for the updated design using an enhanced

connector. The enhanced connector can discriminate between requests received from

different ports using the InPort property. The InPort property is an ordered collection.

Thus, the request stored in a particular index of the InPort property corresponds to a

requester at that index. The connector behavior sets the source field of the request

according to the requester who sent the request. The connector then forwards the

request to the provider.

2.7.8 Case VII: Sending Requests in Round-robin Order

In the projects we have examined, we found multiple objects providing the same

interface signaled in round-robin order. Since connecting a single requester to more

than one port providing the same interface causes ambiguity when using standard

UML ports, individual request ports were used in the design for each provider. Figure

2.24.a shows the existing design. The algorithm for round-robin sending of requests

was implemented inside the requesting component, along with other responsibilities.

(a) (b)
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Figure 2.24: Sending requests to providers in a round-robin order: (a) Existing de-

sign: Requester component sends requests in round-robin order using multiple ports.

(b) Updated design: Using an enhanced connector to send requests in round-robin

order.
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Figure 2.24.b shows the updated design using an enhanced connector. In the up-

dated design, we can avoid duplicating the ports for each provider. Furthermore, we

take the implementation for round-robin sending of requests outside of the requesting

component. As a result, we free the requesting component from this coordination

responsibility.

2.8 Handling Asynchronous Coordination

This study presented enhanced connector behavior specifications using synchronous

coordination. In this section, we generalize the approach also for asynchronous co-

ordination. When using synchronous coordination, the provider blocks the requester

until it completes execution and returns with a reply. When using asynchronous coor-

dination, the requester can continue execution while the provider handles the request.

UML implements synchronous coordination using synchronous operation calls and

asynchronous coordination using signals or asynchronous operation calls. Besides the

method of operation call and usage of signals, the distinction between synchronous

and asynchronous coordination also depends on objects being active or passive. In

UML, a passive object does not have its own thread of control. It only exhibits its

behavior when one of its operations is called from the environment. In contrast, an

active object has its own thread of control.

Figure 2.25 shows the sequence diagrams for synchronous and asynchronous mes-

saging between a requester and a provider when enhanced connectors are not used.

In the synchronous case shown in Figure 2.25.a, the requester waits for the reply from

the provider before it can send another request. In the asynchronous case shown in

Figure 2.25.b, the requester is not blocked, so it can send a second request before it

receives the reply to its first request. In this case, the provider must be an active object

since passive objects cannot handle requests asynchronously.
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Figure 2.25: Synchronous and asynchronous handling of requests without using en-

hanced connectors: (a) Synchronous handling of requests. (b) Asynchronous han-

dling of requests.

Figure 2.26 shows the sequence diagrams for synchronous and asynchronous mes-

saging between a requester and a provider when an enhanced connector is involved.

In the synchronous case shown in Figure 2.26.a, the connector acts as another passive

object in between, preserving the overall synchronous behavior the requester observes

when an enhanced connector is involved or not.

Figure 2.26: Synchronous and asynchronous handling of requests using enhanced

connectors: (a) Synchronous handling of requests using enhanced connectors. (b)

Asynchronous handling of requests using enhanced connectors.
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In the asynchronous case shown in Figure 2.26.b5, we design the connector as an

active object which acts asynchronously. When it receives an asynchronous message,

the connector does not block the requester. When the connector decides on the routing

of the message, it also forwards the request to the provider asynchronously. Thus, the

connector is not blocked while waiting for a reply from the provider.

As a result of describing the order of messaging in both synchronous and asyn-

chronous cases, we showed that using a passive object as a connector in the syn-

chronous case and using an active object as a connector in the asynchronous case

allows preserving the semantics of coordination in both cases.

2.9 Relation with Protocol State Machines

UML defines the concept of ProtocolStateMachines, similar to the protocol concept

in UML-RT [48] and ROOM [19]. ProtocolStateMachines allow the definition of pro-

tocols that should be followed when interaction occurs using ports. In this section,

we show how enhanced connectors can be used in the presence of ProtocolStateMa-

chines.

Closed Open

initialize()/

finalize()/

read()/

Figure 2.27: Protocol state machine example.

Figure 2.27 shows an example ProtocolStateMachine. This ProtocolStateMachine

defines the order of operation calls and state changes for reading a file from the disk.

The protocol enforces calling the initialize operation first, then calling a series of read

operations, and then ending the communication with a finalize operation. When the

operations initialize, read and finalize are declared in an interface that defines the

contract of a port, this ProtocolStateMachine can enforce sending the requests in the

specified order.

5 In UML, filled arrows indicate synchronous messages, and unfilled arrows indicate asynchronous messages.
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Let us assume that the ProtocolStateMachine shown in Figure 2.27 is used for reading

data from a single disk. Let us also assume that we have three disks in the system,

and we want to read the same data simultaneously to increase reliability. We can

use an enhanced connector between the requester and three disk managers. The en-

hanced connector can replicate the read requests to three disks and then compare the

data, eventually returning with success to the original requester only if all three read

requests return the same data. This example shows how enhanced connectors and

ProtocolStateMachines can be used together and indicates that the two concepts are

orthogonal concepts that complement each other.

However, enhanced connectors and ProtocolStateMachines are not totally indepen-

dent concepts. In the same scenario using three disks, if the requests are routed in

a round-robin style by the enhanced connector, this may cause inconsistencies. We

should send the initialize request to all disks before we can route the subsequent read

requests to the three disks in round-robin order. Otherwise, we will send read requests

to some disks that are not initialized. Likewise, we should replicate the finalize re-

quest to all three disks.

The above observation indicates that when enhanced connectors are used in the pres-

ence of ProtocolStateMachines, the connector behavior specification should satisfy

the constraints of the ProtocolStateMachine that bounds the coordination among the

connected ports. In this example, we can design the connector to execute different

behaviors for the initialize, read, and finalize requests. Specifically, the connector can

use the multiple destination sender behavior for the initialize and finalize requests

and the round-robin requester behavior for the read requests. As a result, using a

combination of two different connector behaviors, the constraints of the Protocol-

StateMachine can be satisfied.

2.10 Discussion

This study aimed to develop an approach for the specification of connector behaviors

in UML and test it by using example connectors and cases from real-life avionics

software projects. Our results indicate that UML can benefit significantly from the
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enhanced connectors. By demonstrating the proposed approach using example con-

nectors and the cases from real-life projects, we showed that the contract role in UML

can be utilized to enable exogenous coordination, increasing the power of UML.

Previous studies [22], [17], [25] also emphasized the importance of exogenous coor-

dination in different contexts and using different approaches. Since earlier versions

of the UML did not have ports and connectors, the study in [17] proposed using asso-

ciation classes to define connector behaviors. We preferred using connectors because

connectors can relate specific instances of classes. On the other hand, association

relations apply to all instances of classes. The study in [25] proposes that connectors

possess the whole control flow in the system to decouple components from each other.

Consequently, their setup requires each component to act as passive objects defined

in UML. In contrast, our findings indicate that objects should possess the control flow

in the synchronous coordination case. However, in the asynchronous case, connectors

should have their own control flow besides other active objects in the system.

Although we demonstrated the proposed approach using synchronous coordination

problems, we also showed how the concept could be applied to asynchronous co-

ordination. Additionally, we included an analysis that evaluates the relation of the

approach with the ProtocolStateMachines in UML. ProtocolStateMachines were im-

ported to UML-RT [18] from ROOM [19]. UML further inherited the concept from

UML-RT. UML-RT defines the protocols independent from any specific context;

therefore, they are reusable [49]. The connector behaviors we propose are also loosely

coupled with the coordinated components since they are specified using the interfaces.

Therefore, they are also reusable.

ProtocolStateMachines do not affect behavior; however, they impose constraints on

the legal state transitions for associated classifiers [1]. On the contrary, enhanced con-

nectors affect the behavior, but as a result of our analysis, we conclude that the coor-

dination behavior specified by enhanced connectors should conform to the protocols.

Unlike enhanced connectors, ProtocolStateMachines are limited to the definition of

behavior for binary interaction patterns because higher-order protocols have not been

addressed in UML, ROOM, or UML-RT. As a result of analyzing the relation of Pro-

tocolStateMachines with the enhanced connectors, we conclude that the two concepts
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complement each other rather than rendering each other obsolete.

Using ALF to specify connector behaviors proved to be much more potent than using

sequence diagrams proposed in our previous study [7]. Besides routing the requests,

ALF is also suitable for defining merge behaviors. ALF was introduced as a sur-

face notation for fUML. However, existing research [41], and the ALF specification

[12] encourage its usage outside the fUML scope when execution semantics is not

required. Our findings, which demonstrate using ALF to specify connector behaviors

in UML models, support this use case.

Our use of reply and request buffers agrees with the existing research. The work

in [26] proposes FIFO queues on component ports for aiding asynchronous com-

munications, similar to the FIFO request queues we use in behavior specifications.

FIFO ordering of messages was also practiced in [15]. Our experience in using FIFO

buffers and single-copy buffers for both asynchronous and synchronous coordination

supports the finding that the buffers add significant power to the method for defin-

ing the connector behaviors. The buffers enable ALF specifications to operate on the

entire set of requests or replies for creating merged replies and requests.

As a result of implementing multiple complex model transformations, we conclude

that QVTo [14] is suitable and mature enough for developing model transformations.

Although QVTo does not support the refining mode of ATL [32] that enables making a

few changes on input models, we could eliminate the limitation by programmatically

capturing the results of the in-place QVTo model transformations.

Our findings indicate that UML and existing tools need to put more emphasis on n-

ary connectors. Although UML includes support for n-ary connectors, most of the

tools, such as MagicDraw [50], IBM Rhapsody [3], Papyrus [42], StarUML [51], and

IBM Rational Rose [52], do not support them. Some of the tools only have support

for n-ary associations. SysML [21] also excludes the support for n-ary connectors.

Although most of the tools exclude them, we observed that n-ary connectors were

mentioned as examples in previous studies [53], [54], [55], [56], [57] and used with-

out indication of any specific problems. Therefore, after surveying existing work, we

conclude that there are not enough reasons for excluding support for n-ary connectors
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from the tools. Nevertheless, there are some challenges regarding n-ary associations,

especially concerning the meaning of multiplicities. The work in [58] showed that

the lower multiplicities are problematic. Therefore, they propose introducing inner

and outer multiplicities in UML. Their proposal still needs to be incorporated into the

current version of UML.

The studies in [58], [59], and [60] suggest representing n-ary relations by introducing

an additional class and n binary relations. The fact that an n-ary connector can be rep-

resented by an object and n binary connectors might be the cause of why the tools do

not support the n-ary connectors. We also use an object and n binary connectors in the

E2 model to represent an n-ary connector. In the E1 model, we use n-1 binary connec-

tors without an object to represent an n-ary connector. Since developers will not work

directly in the E2 model, it is reasonable to represent an enhanced connector in the E2

model using multiple binary connectors and an object. However, representing an n-

ary connector with multiple binary connectors in the E1 model means that the behav-

ior specification for the n-ary connector scatters into several connectors. Our solution

for this problem was to specify connector behavior only for the primary enhanced

connector and then establish dependencies from the primary enhanced connector to

the other binary connectors, which we call the secondary enhanced connectors. Al-

though this solution is sufficient for demonstrating the enhanced connector concepts,

we conclude that lacking n-ary connector support in the tools complicates modeling

efforts significantly and introduces unnecessary complexity into the models.

The motivation of our study is in parallel with Reo [22] since we specify connec-

tors to coordinate components that are unaware of the coordination. Unlike UML

connectors, Reo channels do not support message passing between components us-

ing method calls. Additionally, Reo relies on channel composition for expressing

different connector behaviors. In UML, we cannot attach a connector to another con-

nector. Therefore, true composition support for the connectors in UML is not possible

without modifying the UML metamodel. Consequently, our study relies on behavior

specifications to specify complex coordination logic rather than composition.

By the term “true composition support for the connectors,” we mean the ability to

connect the connectors to each other for building higher-level connectors. Figure
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2.28.a shows an example of this kind of composition, where we use a ternary round-

robin requester connector, a ternary multiple destination sender, and a binary less-

frequent sender connector to build a quaternary connector.

Round-robin 

connector

Less-frequent 

sender

Multiple destination 

sender

Bridge

Bridge

Round-robin 

connector

Less-frequent 

sender

Multiple destination 

sender

(a) (b)

Figure 2.28: Composition of connectors for building higher-level connectors: (a)

Composition of connectors by connecting the connectors to each other (not supported

by UML). (b) Possible composition of connectors in UML by using bridge objects in

between connectors.

Since a ConnectorEnd in UML is not a ConnectableElement, we cannot achieve the

composition of connectors as shown in Figure 2.28.a. However, as shown in Figure

2.28.b, one can use objects acting as bridges that do nothing but forward the incoming

requests to the other connector. A stereotype can be defined in the enhanced connector

profile, which can be applied to such kinds of bridge objects. These objects can be

implemented in the E2 and E3 models to trivially forward incoming requests. We

leave this as a possible future extension of our study.

Our method for specifying connector behaviors with ALF covers some capabilities of

Wright connectors but not all. Wright [16] connectors are capable of expressing the

notion of “providing” and “using” a set of services. Additionally, Wright describes

a sequence of events that should occur in the coordination. These are called the

glue protocols, and using the protocols formally defined in CSP [15], Wright allows

checking of the software architecture analogous to the type checking in programming

languages. Using UML ports for providing and requiring a set of services and then

using ProtocolStateMachines with state machine formalisms to enforce an ordering of

requests can somewhat cover these capabilities of Wright. However, the focus of our

approach is not checking the consistency of the architecture but providing means to
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specify exogenous coordination. Thus, enhanced connectors currently do not provide

the required formalisms to perform such checks.

Wright also supports glue specifications which are trace specifications in CSP. A trace

specification is a predicate that must hold for every trace of the glue. Since Wright

borrows its semantics from CSP, it can use the parallel composition operator of CSP

to argue that traces of a parallel composition must satisfy the specifications of its sub-

parts. Wright allows reasoning about the behaviors of sub-parts separately. Then it

allows proving that the system composed of these parts will continue to respect the

properties established about the parts. This level of composability is distinct from

composition support for the connectors we mentioned above. It requires a formal

notation for the connector and component behaviors, which the use of UML and ALF

in our approach does not currently address.

On the other hand, the glue specifications of Wright cannot handle system properties

such as the timing behavior of interactions because the semantic model of CSP is not

sufficient for these properties. Our method shares the same limitation because we also

lack the mechanisms to define and reason about the timing properties of a real-time

system. Capabilities of UML-RT [18] can be incorporated to achieve such abilities.

The cases we demonstrated from the real-life projects showed that the enhanced con-

nector concept is applicable. In [9], we addressed the problem of efficient code gen-

eration methods for UML ports that results in minimal runtime overhead and compact

code size. We can use the same code generation methods to realize the UML ports

included in the E3 UML models.

The future research directions for this chapter are as follows: First, introducing com-

position support for the UML connectors is a valuable future research direction. The

composition support can enable the building of higher-level enhanced connectors by

using existing connectors. Second, we are motivated to implement the proposed ap-

proach in the "IBM Rhapsody Developer UML modeling tool" as a plugin for uti-

lizing the approach in large-scale avionics software projects. However, we still need

research on the efficient and safe realization of the fUML activities in object-oriented

programming languages to use the approach in real-life DO-178C certifiable projects.

Third, in the case given in Figure 2.8.b, to increase the runtime efficiency, we can per-
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form the merge operations while caching subsequent requests. In such cases, we can

design the connector behavior to employ multiple threads to perform the merge opera-

tions in parallel to caching of the requests. Future research is required to achieve this

parallelization using multiple active objects that constitute the connector behavior.

Finally, future work is required to define well-formedness rules for the E1 model us-

ing Object Constraint Language (OCL) [61] statements to develop a fully functional

production-ready system.

2.11 Conclusions

This chapter presented a method for specifying behaviors of UML connectors for

coordinating the components exogenously. We have demonstrated the effectiveness

of enhancing connectors with behavioral representations as articulated further in this

section.

We proposed a solution that uses ALF to specify connector behaviors. We used the

contract role of the UML connectors for associating behaviors specified in ALF. We

then used QVTo transformations to generate UML models in which fUML activities

represent the connector behaviors. The resulting models also include binary connec-

tors and classes representing the connectors. They can be transformed further into

code, other platform-independent models, or platform-specific models.

We demonstrated the connector specification method and the transformations by pre-

senting example connectors. Additionally, we presented cases from real-life large-

scale avionics projects where using enhanced connectors can simplify the design,

increase the reusability of the components, and help resolve ambiguities. We showed

that the approach applies when using synchronous and asynchronous coordination.

We also showed that the enhanced connector concept is consistent with the Protocol-

StateMachine concept in UML.6

6 UML models for the example connectors presented in the chapter, QVTo model transformations, the
Enhanced Connector Profile, the Java application EcTransformer, and a copy of the ALF reference im-
plementation can be accessed from the GitHub repository https://github.com/alperkocatas/
enhanced-uml-connectors/tree/v1.0.1. Additionally, the Code Ocean capsule at https://
codeocean.com/capsule/6929314/tree/v2 allows a reproducible run and analysis of the results using
a web browser.
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CHAPTER 3

LIGHTWEIGHT REALIZATION OF UML PORTS FOR

SAFETY-CRITICAL REAL-TIME EMBEDDED SOFTWARE

UML ports are widely used in the modeling of real-time software due to their advan-

tages in flexibility and expressiveness. When realizing UML ports in object-oriented

languages, using objects for each port is one option. However, this approach causes

runtime overhead and renders significant amount of additionally generated code. To

meet the performance constraints of safety-critical real-time embedded software and

to decrease the costs of code reviews throughout the development, more efficient

approaches are required. In this chapter, we propose an approach that introduces rel-

atively less runtime overhead and results in more compact source code. We transform

a structural model defined with UML ports into a model that uses associations in-

stead of objects to implement the UML port semantics with fewer lines of code. We

demonstrate the improvements and the validation of the proposed approach with a

case study using the design of an existing avionics software project.1

3.1 Introduction

Defining interactions of classes using association relations that expose the entire pub-

lic interface of the classes to their clients makes it hard to observe the data flow in

the model. Since ports function as an opening in the encapsulation of classes through

which messages are sent either into or out of the class [62], a model designed using

ports is easier to understand, more flexible, easier to maintain, and more suitable for

communication of design decisions. In UML, a port is a point defined by a classifier

1 The study described in this chapter was published in Modelsward Conference in 2016 [9].
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for conducting interactions between the internals of the classifier and its environment.

The contract-based interaction provided by ports allows the classifiers to be defined

independently from other classifiers [63].

Software for safety-critical real-time embedded systems is becoming more and more

complex [64]. These systems typically require certification. Therefore the runtime

overhead caused by any design decision should be justified because of the limited

resources. The source code size should also be compact for less costly code reviews.

For instance, DO-178C [6] defines several requirements for the certification of air-

borne systems. In DO-178C, if a development tool (i.e., a code generator) is not

qualified, its outputs must be manually reviewed for correctness. Since the develop-

ment tool qualification is the most rigorous type in the scope of DO-178C, often, in-

stead of qualifying the tools, their outputs are manually reviewed. As a result, source

code, which is more compact and less complex, is preferred because it is expected to

reduce the effort required for manual code reviews.

Ports and connectors do not have direct correspondents in object-oriented program-

ming languages [65], and yet, UML does not put constraints on how ports are realized

[66]. The UML standard mentions ports as interaction points that provide unique ref-

erences [1]. According to this definition, the realization of ports using objects seems

adequate. However, this approach causes a certain amount of runtime overhead for

the final executable [67]. Ideally, ports should have zero overhead for transmitting

messages for complex real-time systems [18]. Another problem with this approach is

that the source code grows significantly because of the added objects and classes to

realize the ports.

In this chapter, we propose an efficient approach for mapping ports to object-oriented

languages. The proposed approach enables the generation of relatively compact

source code and introduces relatively less runtime overhead. We transform a source

model defined using ports and connectors into a target model. We then generate code

from the target model. The target model includes association relations and initializa-

tion operations, which implement the ports and connectors in the source model. We

evaluate the approach using the design model for an avionics software project.
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Figure 3.1: UML composite structures and port notation.

3.2 Overview of UML Ports

The abstract syntax and the concrete syntax for composite structures and ports are

given in the “Structured Classifiers” and “Encapsulated Classifiers” sections of UML

2.5.1 [1]. Figure 3.1 presents an example composite structure diagram using ports.

In the figure, a connector connects the ports ep1 and tp1. The connector semantically

indicates that a message sent from the tp1 port of the Throttle object should be sent to

the Ecu object via its ep1 port. When sending the message, the source class (Throt-

tle) specifies the port name, operation name, and operation arguments. An example

expression is presented in statement (3.1) using C++:

GetPort(tp1).msg(args); (3.1)

GetPort is used to obtain a reference to the destination of the message, and it should

be translated to an appropriate statement by the port realization approach. In this

chapter, connectors are categorized as cross connectors and relay connectors for bet-

ter communication of ideas. Cross connectors connect ports of the two objects (i.e.,

the connector between ports ep1 and tp1 in Figure 3.1). In contrast, relay connectors

connect a port of an internal part with a port of the owner class (i.e., the connector

between ports tp2 and ep in Figure 3.1).
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Figure 3.2: Example source model.

3.3 Approaches for the realization of ports

We use the model shown in Figure 3.2 to demonstrate the different realization ap-

proaches for ports. In the model, a message is transferred from object b to c via the

path, which is formed by ports pB, pA and pC. The UML model for Figure 3.1 and

the source code generated using the presented approaches are available in a public

repository2. The C++ language is chosen as the target language, but the approaches

are also applicable to other object-oriented languages.

3.3.1 Heavyweight Approach

The specific realization of ports presented in this section is implemented by one of

the existing modeling tools [3]. According to this approach, each port is transformed

into a class and its corresponding object. Furthermore, to differentiate messages from

both directions, provided and required parts of port contracts are realized using in

and out objects, which are instances of additionally generated classes. Using this

approach, the example model provided in Figure 3.2 is transformed into the model

shown in Figure 3.3. PA, PB, and PC are the classes generated for ports. Classes

Out and In are generated for the outbound and inbound direction of ports. After the

transformation, the constructor for class C includes:

2 https://github.com/alperkocatas/UmlPortStudy
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Figure 3.3: Realization of ports with heavyweight approach.

pC.getIn().setItsX(this); (3.2)

Statement (3.2) is required to connect port pC of class C to object c. Furthermore, the

constructor of class A is generated as:

b.getPB().getOut().setX(getPA().getOut()); (3.3)

The method setX is a trivial accessor function for the generated association itsX. State-

ment (3.3) is required to connect the relay port pA of class A to the port pB of object

b. Finally, constructor for class D is generated as:
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a.getPA().getOut().setX(c.getPC().getIn()); (3.4)

Statement (3.4) initializes the itsX association of out object of port pA with the refer-

ence of the in object of object c so that messages sent from port pA will be handled

by the in object of port pC of object c. GetPort(PortName) in statement (3.1) is

translated as getPortName()->getOut(), which returns a reference to the out

object of the port. This reference is used to send messages from the port.

3.4 Lightweight approach

In the lightweight realization, no objects are generated for ports. Instead, only asso-

ciations with required interfaces and the operations to initialize them are generated.

Relay connectors are particularly transformed into smart getter and setter methods.

The smart getters and setters are used to connect the ports, which are at the ends of

a chain of relay connectors. At runtime, after the initialization code generated for

cross connectors runs, each object enters a state in which the final destinations of the

messages that will be sent from its ports are determined. As a result, when sending

messages, relay port chains spanning multiple ports are resolved in one step. Using

this approach, the example model in Figure 3.2 is transformed into the model shown

in Figure 3.4.

Figure 3.4: Lightweight realization of ports.

In the transformed model, associations pA_X and pB_X are used by objects a and b to
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send messages through their ports pA and pB. Since none of its ports requires inter-

faces, class C does not have such an association. Constructor of class D is generated

as:

a.setPA_X(c.getPCX()); (3.5)

Statement (3.5) is generated for the cross-connector in the source model. It initializes

the pA_X association of object a with the value obtained from the getPC_X() opera-

tion of object c. Since pC is a behavioral port, generated operation getPC_X() returns

this pointer of object c. The body of operation setPA_X(X& val), which is a smart

setter, is generated as:

pA_X = val; (3.6)

b.setPB_X(val); (3.7)

Port pA is a relay port that forwards messages from pB to pC. Statement (3.6) first sets

the pA_X association of object a to val, so that object a can also send messages using

the port pA. Statement (3.7) then forwards the parameter val to object b, which will set

association pB_X of object b to val. Since the value of val is passed as the this pointer

of object c, statements (3.6) and (3.7) effectively connect the port pB of object b with

object c. As a result, after the expression in statement (3.5) is executed, the destination

of messages going out from port pB, which is the object c, is determined. In the

lightweight approach, the expression GetPort(PortName) in statement (3.1) is

translated as PortName_InterfaceName, which is the name of the association

created for the port and required interface pair. To resolve the interface appended

to the port name, an interface that implements the called operation is searched in the

required interfaces of the port. This search is performed at the time of port realization.

3.5 Disconnected Ports and Interfaces

If the source model contains disconnected ports, problems may occur at runtime. The

following two cases correspond to disconnected ports: First, if a port is not connected
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to any other port via a connector, the port is considered as disconnected. Second,

when there is a connector that connects two ports, if the ports at both ends of the con-

nector do not have matching contracts, ports are considered as partially disconnected.

In this chapter, the second case is denoted with the term disconnected interfaces.

When operations declared by the unmatched interfaces are called, messages cannot

be forwarded because there is no provided interface at the opposite side of the connec-

tor. Figure 3.5 depicts an example of disconnected interfaces. The port pA requires

interfaces X and Y, while the port pB provides interfaces Y and Z. Even if the ports

are connected with a connector, object a cannot send messages declared by interface

X to object b since the port pB does not provide interface X in its contract.

Figure 3.5: An example for disconnected ports/interfaces.

In the lightweight approach, if the source model has disconnected ports or discon-

nected interfaces, messages which are being sent from the generated associations

may cause null pointer exceptions. One of the following strategies can be employed

for handling disconnected ports and interfaces:

1. The lightweight approach can be used, and disconnected ports and interfaces

can be allowed in the model. Then, if there is a call from disconnected ports

or interfaces, the software may crash at runtime because of a null pointer ex-

ception. Alternatively, the model can be checked before the realization of ports

to ensure that no messages will be sent using disconnected ports or interfaces

during execution.

2. The lightweight approach can be used, but disconnected ports and interfaces

are not allowed in the source model. The model can be checked before the

realization of ports to ensure that there are no disconnected ports or interfaces.

3. The lightweight approach can be modified so that messages sent through dis-

68



connected ports and interfaces are checked at runtime. The messages can be

ignored, or an exception can be thrown.

When the first option is used without checking the model for disconnected ports, there

is a possibility of software crashing at runtime due to a null pointer exception. How-

ever, if statement coverage for all of the operation calls from ports is achieved while

testing, it can be guaranteed that no such crash will occur. For example, DO-178C [6]

requires full statement coverage by test cases beyond a certain safety-criticality level.

Therefore, the effort required to achieve full statement coverage is already included

in the development costs. Alternatively, instead of achieving the statement coverage,

the model checking mentioned in the first option can be attempted to be incorporated.

However, such model checking is not trivial since predicting the dynamic runtime

behavior of software may not be feasible.

The second option is possible to implement. However, it can be argued that discon-

nected ports and interfaces are part of the flexibility offered by ports. For example,

in Figure 3.5, although object a cannot send messages declared by interface X, it can

be allowed to send messages declared by interface Y. Thus, if the operations declared

by the interface X are not crucial for the expected behavior of object a, the model in

Figure 3.5, which is invalid according to the second option, can be assumed as a valid

one.

The third option can retain the flexibility of ports while providing graceful runtime er-

ror handling. Indeed, this option is supported by the presented heavyweight approach.

Since a separate object is employed for each port in the heavyweight approach, the

objects can check whether the destination of a message is null at runtime. As a result,

one of the three options can be used. Because it allows more flexibility during model-

ing, the third option was selected for implementation. The next section presents how

to apply the third option to extend the lightweight approach.

3.6 Extending the Lightweight Approach for Disconnected Ports

In this approach, a port with a required interface is implemented using a separate

object, which can check if its generated association is null at runtime. Ports only
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having provided interfaces in their contracts are still implemented as they would be

in the lightweight approach, without using objects. The generation of smart getters

and setters for the relay connectors is also the same as in the lightweight approach.

Using the approach, the example model presented in Figure 3.2 is transformed into

the model shown in Figure 3.6.

Figure 3.6: Lightweight realization of ports with checks for disconnected ports.

Associations pA_X and pB_X in the lightweight approach are generated as objects.

The objects have associations with interface X, called itsX. The port connection ini-

tialization statements generated in the constructors are identical to the previous ap-

proach. However, now the msg() operation, which is implemented in the classes PA_X

and PA_B objects, checks if the itsX association is null at runtime. In this extended

version of the lightweight approach, the expression GetPort(PortName) in state-

ment (3.1) is translated as getPortName_InterfaceName()->getOut().

3.7 Evaluation

3.7.1 Performance Analysis

One of the critical performance drawbacks of ports originates from messages redi-

rected through multiple ports along a chain of relay ports. The lightweight approach

ensures that at runtime, the objects hold a reference to the final destinations of the
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messages. This approach routes the messages to their final destinations in one step.

In the heavyweight approach, messages cannot reach their destinations in one step,

but they are redirected multiple times between ports along the chain of relay ports.

With the extension of the lightweight approach for checking disconnected ports, we

still expect the performance to be better than the heavyweight approach because we

only add one level of redirection.

Avoiding unnecessary message redirections may also yield faster performance due to

the decrease in the number of instruction pipeline operations. Smaller code size is

also expected to improve cache utilization, thus improving the runtime performance.

Furthermore, the computation required to create objects during initialization is an-

other potential drawback for the heavyweight approach. We expect the lightweight

approach and its extension to perform better since the number of created objects is

zero or, at least, fewer.

3.7.2 Code Size Analysis

We expect the lightweight approach to deliver the most compact code among the pre-

sented approaches because we do not create any objects and classes for ports. When

we add the checks for disconnected ports and interfaces, the code size should still

grow less than it would in the heavyweight approach. This is because we only gener-

ate objects for the outbound directions of the ports. In the heavyweight approach, the

resulting code size is considerably larger due to implementing the operations declared

by the provided and required interfaces in every class generated for ports.

3.7.3 Case Study Design

In order to compare the results from both approaches, we used a previously released

version of an avionics software project. The software was developed by a team of

fifty software engineers within a five-year schedule and is still in progress. The soft-

ware coordinates over thirty avionics devices and provides the pilot with crucial flight

information. IBM Rhapsody [3] is used as the development tool. The project requires

DO-178C [6] compliance. Because the code generator of IBM Rhapsody is not a
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qualified development tool in the scope of DO-178C, generated code is reviewed

manually.

Software components in the case study run on an ARINC 653 [46] compliant real-

time operating system. Software processes run in time and space-isolated partitions.

Partitions are scheduled on a fixed, cyclic basis. Partitions perform their initialization

tasks and then start executing a periodic running task. When the allocated execu-

tion duration finishes for the scheduled partition, the scheduler switches to the next

partition in the schedule.

For comparison purposes, we generated the code using different approaches. We col-

lected several metrics during code generation and runtime. AVGRT metric indicates

the average time, in milliseconds, required for a partition to finish its periodic execu-

tion. The LSLOC metric indicates the logical source lines of code measured using

the Unified Code Count tool [68]. LSLOC is not affected by style and formatting

decisions. We define the OVRHD metric as the difference between LSLOC mea-

surements for the source code with and without port realization. Thus, the OVRHD

metric indicates the increased LSLOC caused by port realization. The TGEN metric

indicates the time, in seconds, required to generate code from the model. SBIN metric

indicates the size of the final executable binaries in megabytes.

3.7.4 Results and Discussion

Figure 3.7 shows charts corresponding to the measurements for given metrics ac-

cording to different approaches. The lightweight approach dramatically reduced the

LSLOC from 316,195 to 181,390. The 42% decrease in source code size may provide

significant cost savings during code reviews.

Similarly, the OVRHD metric is the lowest for the lightweight approach. When the

checking for disconnected ports is incorporated, OVRHD is still significantly less

than the OVRHD measured for the heavyweight approach.

According to the TGEN measurements, the fastest code generation was achieved with

the lightweight approach, followed by the lightweight approach with checks. SBIN

metric measurements showed that the resulting binaries were most compact with the
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Figure 3.7: LSLOC, OVRHD, TGEN, SBIN and AVGRT metrics - Approaches: (a)

Heavyweight approach, (b) Lightweight approach with checks for disconnected ports,

(c) Lightweight approach, (d) None (ports are not realized). AVGTR metric - Left bar:

Lightweight approach., Middle bar: Lightweight approach with checks., Right bar:

Heavyweight approach.

lightweight approach.

After generating and compiling the source code, we executed the resulting binaries.

The software ran successfully. We demonstrated the verification of the build by run-

ning a subset of the test cases used in the formal software release. We did not ob-

serve any null pointer exceptions during runtime due to disconnected ports, even with

the lightweight approach. This was not surprising since the previous release of this

software was already tested, and complete statement coverage was achieved for state-

ments used to send messages from ports.

While collecting the AVGRT metrics, we activated an identical set of functions to

generate an identical load on the system. According to the results, we observed up

to 32% improvement for the AVGRT metrics. When we averaged the runtime im-

provements for each partition, we observed 15.7% overall performance improvement

with the lightweight approach compared to the heavyweight approach. A similar cal-
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culation revealed an average of 10.9% performance improvement by the lightweight

approach with disconnected port checking compared to the heavyweight approach.

The variation in improvement percentages for each partition is due to the different

levels of port usage and composite structure hierarchies. The results showed that us-

ing the lightweight approach and its extension yields more compact code and better

performance than the heavyweight approach.

3.8 Related Work

The concept of ports is also available in other modeling languages. UML-RT [18]

and MARTE [69] are the UML extensions for modeling safety-critical embedded

real-time software. In UML-RT, a protocol defines which kind of messages can

be received and sent from a port. In UML, the provided and required properties

of ports capture the information captured by the protocol concept. On the other hand,

MARTE categorizes ports as client/server ports and flow ports. Client/server ports

are syntactic sugar over UML ports, enabling a more convenient way to define the

port contracts. The flow ports are used to model the data flow between structured

components. Flow properties and flow specifications are used to define the messages

that can flow through the ports. If flow specifications and properties are mapped to

interfaces, flow ports can be realized using the approaches presented in this chapter.

Otherwise, they may need different realization approaches. Based on the purpose of

port representation and realization, such alternative languages do not offer additional

advantages. Consequently, we have exploited UML due to its wider usage and access

to vast project material.

UML ports and composite structures are mentioned in previous studies that use ports

to model embedded systems. The ports are mapped to target languages such as Sys-

temC [70], [71], VHDL [72] and Simulink [73]. In these studies, one-to-one map-

pings between UML ports and the target languages could be performed since the

target languages provided the constructs that correspond to UML ports.

For mapping ports into object-oriented programming languages, some studies sug-

gest mapping ports using objects [74]. The heavyweight approach presented in this
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chapter is employed by IBM Rhapsody [3]. To cope with the performance degra-

dation, IBM Rhapsody offers an optimization performed at runtime to find the final

destinations of ports [67]. The optimization runs during the initialization of software

and uses algorithms to traverse the relay connector chains to find the ultimate targets

of the messages. However, the additional computation during initialization is costly,

and using particular data structures makes the code even more complex and harder to

review.

The possibility of lightweight realization for ports was mentioned previously in [75].

The study argues that we can realize the ports in a lightweight fashion, with no port

objects created at runtime. However, the study did not present a specific method for

the mentioned lightweight realization of ports.

Another approach for the realization of ports [65] is very similar to the lightweight

approach presented in this chapter. However, the approach creates the getter methods

using only the name of the ports without utilizing the interface names. This naming

scheme cannot cope with cases where a source port requires more than one interface

in its contract, and the port is connected to more than one destination port, each

providing one of the different interfaces required by the source port. Moreover, the

validity of the approach was not demonstrated by a case study or by using any other

means.

3.9 Conclusions

This chapter proposed a lightweight approach for mapping UML ports to object-

oriented programming language constructs. We first presented a widely used method

for realizing UML ports that is prone to performance and code size problems. Af-

terward, we presented the lightweight approach that enables the use of ports without

sacrificing runtime performance and source code size. Additionally, we discussed the

problems which disconnected ports in the source model may cause. We then intro-

duced an extension to the lightweight approach for handling disconnected ports.

We compared the presented approaches using metrics collected from a real-life case

study. Metrics used for comparison are logical source lines of code, average runtime
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performance, model transformation duration, and binary size. The case study showed

that the proposed lightweight approach results in more efficient and compact code.

Additionally, the time required for code generation and the size of executable binaries

produced after compilation were lower when using the proposed approaches. Better

performance yields more headroom for meeting hard real-time requirements, while

smaller and less complex code enables relatively more effortless and more accurate

code reviews, potentially improving safety.
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CHAPTER 4

CONCLUSIONS

This thesis presented our research and studies on improving the usage of UML ports

and connectors. We used safety-critical real-time avionics software projects for our

case studies. However, the thesis findings also apply to similar domains where it is

required to precisely specify the software design to aid automatic code generation

and verification. This chapter includes short summaries of each chapter, remarks, and

possible future work.

4.1 Summary

In Chapter 2, we introduced the concept of enhanced UML connectors, which are

connectors with associated behaviors. We used ALF for the specification of the con-

nector behaviors. Then we used QVTo to transform the UML models that include the

connector behaviors into platform-independent UML models, which include fUML

activities representing the connector behaviors. The resulting models can be trans-

formed into other models or code.

We used four example connectors to demonstrate the connector specification method:

The round-robin requester connector, the multiple destination sender, the less-frequent

sender, and the request barrier. We tested the QVTo transformations on the four ex-

ample connectors to generate the platform-independent models of connector behav-

iors describing the required coordination logic. Additionally, we searched existing

real-life large-scale avionics software projects to find the cases where the enhanced

connector concept can be applied. Our findings show that the concept is applicable

and can improve the design significantly. We also showed how to use the approach
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in synchronous and asynchronous coordination. Finally, we clarified the relation of

enhanced connectors with the existing concept of ProtocolStateMachines in UML.

In Chapter 3, we presented a lightweight approach for realizing UML ports in object-

oriented programming languages. We first showed the heavyweight approach that

existing tools have utilized for realizing UML ports. The heavyweight approach im-

plements the ports with individual classes and their objects. We then introduced the

lightweight approach that uses associations instead of dedicated objects for the ports.

We finally presented a variation of the lightweight approach that can gracefully handle

disconnected ports.

We compared the three approaches for their runtime performance, code size, code

generation time, and compiled binary size. The results showed that the lightweight

approach and its extension that handles disconnected ports excelled at generating

code that runs significantly faster than the code generated by the heavyweight ap-

proach. The size of the generated code and the resulting binaries was also consider-

ably smaller. The time required for code generation was also lower than the heavy-

weight approach.

4.2 Remarks

The purpose for associating behaviors with the connectors is three-fold. First, ambi-

guities that may arise when n-ary connectors are used in UML can be resolved using

the associated connector behaviors that specify the routing of the requests between

multiple requesters and providers. Second, since the connectors take on the coordina-

tion responsibility, the functions assigned to the connected components are reduced,

and therefore, their reusability can increase. Finally, the connector behaviors can be

reused in scenarios with similar coordination requirements.

Our findings show that we can successfully resolve the ambiguities in UML that the

usage of n-ary connectors can cause. When an n-ary connector connects a single

requester to multiple providers, it is unclear in UML which providers receive the re-

quests and in which order. Using ALF, we could specify connector behaviors that

precisely describe the destination of the requests in such cases. Aside from the defini-
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tion of the providers which will receive the requests, we also defined rules for merging

the replies from multiple providers and replying to the requester with a single reply.

The ability to route the requests from a single requester to multiple providers and then

merge the replies from multiple providers enabled exogenous coordination of the re-

quester and multiple providers. The exogenous coordination is provided in the sense

that the requester is unaware of the fact that its requests are being routed to more than

one destination. Moreover, since the connector also merges multiple replies received

as one reply, the requester does not know that it is receiving replies from multiple

providers. This decouples the requester from the number of providers, the algorithm

that routes the requests to multiple destinations, and the algorithm to evaluate multiple

replies.

Additionally, in cases where an n-ary connector connects multiple requesters, we

could design connector behaviors in ALF that can collect requests from each re-

quester, merge them and send them to the requesters. Collection of the requests from

multiple requesters and sending them as a single request to the provider also provided

exogenous coordination in such cases.

We validated the enhanced connector approach with the help of example connectors

developed using the proposed method. The four example connectors developed using

the proposed approach demonstrated the expressive power of ALF and the buffers

used in the definition of connector behaviors. Using QVTo transformations, we trans-

formed the E1 level models that include the connector behavior specifications into the

E3 level models, which include fUML activities as connector behaviors.

Since ALF borrows its semantics from fUML, elements outside of the fUML scope,

such as ports and connectors, are not allowed. By using ALF only to precisely define

the behaviors of the connectors, our study demonstrated using ALF in the context of

UML models not limited to the fUML subset. We achieved this with the help of a

model transformation that extracts the ALF specifications from the E2 level model.

We then compiled the extracted ALF specifications using the ALF reference imple-

mentation. Then we merged the fUML models output by the ALF compiler back to

the E2 level model to get the final E3 level model.

As a second level of validation, we identified real-life examples from large-scale
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avionics projects where enhanced connectors can simplify design and increase reusabil-

ity. Our search inside the projects using a custom-developed tool revealed numer-

ous cases in which we can apply the enhanced connector concept. In the mentioned

cases, the designs of the components ended up being simpler when we incorporated

enhanced connectors for the coordination tasks. Since their responsibilities decrease,

we also expect their reusability to increase. In other cases, using enhanced connectors

eliminated existing intermediate objects designed to perform exogenous coordination.

In such cases, using enhanced connectors simplified the overall design.

The example connectors and the cases from real-life projects supported the valida-

tion for the enhanced connectors. However, to fully validate the approach, we should

establish efficient realization approaches for the fUML activities representing the con-

nector behaviors. Then, we can generate executable code from the models built using

UML ports, regular connectors, and enhanced connectors with behavior specifica-

tions. This can enable field testing of the approach, followed by further improvement

due to user feedback.

Using ALF to specify connector behaviors proved to be much more beneficial than

using sequence diagrams proposed in our previous study [7]. Using sequence dia-

grams was adequate for routing the requests. However, the behaviors for merging

requests and replies were not possibly expressed using sequence diagrams. There-

fore, in our previous study, we used the target programming language (e.g., C++) to

define such merge behaviors. That, unfortunately, weakened the approach because the

resulting specifications were not platform-independent. Using ALF both for the rout-

ing of the requests and the specifications of merge behaviors improved the approach

significantly, allowing platform-independent specifications.

As a result of our research on n-ary connectors, we concluded that most modeling

tools do not support them, but there need to be more reasons to exclude the support.

We completed our study by representing n-ary connectors with n-1 binary connec-

tors. However, our findings indicate that the lack of support for n-ary connectors

complicates the modeling efforts, making the design models unnecessarily complex.

When UML’s support for the n-ary connectors is implemented in the tools, the "pri-

mary enhanced connector" and the "secondary enhanced connector" concepts that we
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introduced in Chapter 2 will not be required since the behavior specifications can be

associated with a single n-ary connector in that case. The example connectors and

the cases from real-life projects support the finding that having the n-ary connector

support in the tools and the ability to define behaviors for the connectors in ALF will

significantly increase the power of UML. Using a code generation scheme for fUML

activities that describe the behaviors of the connectors, the approach can be employed

in the design of software systems, not limited to the avionics software.

Our study regarding the lightweight realization of UML ports augments the enhanced

UML connectors by providing efficient methods for transforming models that con-

tain connectors and ports into object-oriented programming languages. While the

enhanced connector concept is just taking off and lacks a code generation scheme

for the connector behaviors at the current time, we have used the lightweight realiza-

tion of UML ports to generate code for the last six years in most large-scale avionics

software projects in Aselsan.

Although it is impossible to figure an exact number, the code generated by the lightweight

realization for UML ports has been flying hundreds if not thousands of flight hours

in fixed and rotary-wing aircraft. Thanks to the more straightforward and smaller

code, it saved tons of effort in manual code reviews. Additionally, the simpler code

structure saved a significant amount of effort while performing the structural coverage

analyses of the software as a part of verification. Finally, the approach has enabled

better utilization of hardware resources since it improved the runtime performance.

Consequently, using the lightweight realization approach has significantly reduced

the overhead of extensive use of UML ports and connectors.

4.3 Future Work

The future work for the enhanced connector study includes the development of a

production-ready environment that we can use in avionics software development. We

plan to implement the approach as a plugin for the "IBM Rhapsody Developer UML

modeling tool" [3]. However, we need further research for the efficient realization of

the fUML activities representing the connector behaviors in object-oriented languages
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to develop such a system. We also need to establish well-formedness rules using

the Object Constraint Language (OCL) [61]. The rules can detect invalid connector

configurations and erroneous behavior descriptions.

We implemented the lightweight realization for the UML ports as a plugin for the

"IBM Rhapsody Developer UML modeling tool" in Java programing language. As a

future work, we can use a standard model transformation language such as QVT[14]

to develop the model-to-model transformations, which transform the models that in-

clude UML ports and connectors, into models that include associations and links.

Doing so will enable the approach to be used in other platforms supporting standard

model transformations.
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