
EXPLOITING CLUSTER-SKIPPING INVERTED INDEX STRUCTURE FOR
SEMANTIC PLACE RETRIEVAL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ENES RECEP ÇINAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

NOVEMBER 2022

Approval of the thesis:

EXPLOITING CLUSTER-SKIPPING INVERTED INDEX STRUCTURE
FOR SEMANTIC PLACE RETRIEVAL

submitted by ENES RECEP ÇINAR in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Computer Engineering, METU

Assist. Prof. Dr. Engin Demir
Computer Engineering, Hacettepe University

Date:30.11.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Enes Recep Çınar

Signature :

iv

ABSTRACT

EXPLOITING CLUSTER-SKIPPING INVERTED INDEX STRUCTURE
FOR SEMANTIC PLACE RETRIEVAL

Çınar, Enes Recep

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. İsmail Sengör Altıngövde

November 2022, 53 pages

Semantic place retrieval is a popular research problem that aims to search over knowl-

edge graphs using both text and location information. While handling such queries,

it is crucial to appropriately balance the relevance and spatial distance of places to

the user’s query, to satisfy the user’s information needs. Furthermore, given modern

users’ expectations, it is also critical to return results in a short time, which implies

the necessity of using advanced index structures in the underlying retrieval system.

In this work, our contribution toward improving the efficiency of semantic place re-

trieval is two-fold. First, we show that by applying some ad hoc yet intuitive re-

strictions on the depth of search on the knowledge graph, it is possible to adopt sev-

eral well-known index structures, so-called geo-textual indices that are introduced for

processing the spatial keyword queries, for the semantic place retrieval scenario. Sec-

ondly, as a novel solution to the semantic place retrieval problem, we adapt the idea

of cluster-skipping inverted index (CS-IIS), which has been originally proposed for

retrieval over topically clustered document collections. In our adaptation, we also use

an early-stopping technique based on the textual and spatial scores of the spatial grids

that are being processed.

v

Our exhaustive experiments lead to several interesting findings. We show that while

some of the earlier geo-textual indices in the literature yield high efficiency in terms

of in memory processing time, they may cause a large number of direct disk accesses.

In contrast, our approach based on CS-IIS requires a few direct disk accesses (which

is equal to the number of terms in the query) and hence, performs considerably better

than the baseline approaches in terms of the total query processing time.

Keywords: Semantic place retrieval, indexing, query processing

vi

ÖZ

ANLAMSAL MEKAN GETİRİMİ İÇİN KÜME ATLAMALI TERS DİZİN
YAPISINDAN YARARLANMA

Çınar, Enes Recep

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İsmail Sengör Altıngövde

Kasım 2022 , 53 sayfa

Anlamsal mekan getirimi, hem metin hem de konum bilgisini kullanarak bilgi grafları

üzerinde arama yapmayı amaçlayan popüler bir araştırma problemidir. Bu tür sorgu-

ları ele alırken, kullanıcının bilgi gereksinimini karşılamak için, mekanların alakalılık

düzeyini ve mekansal uzaklığını kullanıcının sorgusuna uygun şekilde dengelemek

çok önemlidir. Ayrıca, modern kullanıcıların beklentileri göz önüne alındığında, so-

nuçların kısa sürede sağlanması ise kritiktir, bu da altta çalışan bilgi getirimi sistem-

lerinde gelişmiş indeks yapılarının kullanılması gerekliliğini beraberinde getirir.

Bu çalışmada, anlamsal mekan getiriminin verimliliğini artırmaya yönelik iki yönlü

katkımız bulunmaktadır. İlk olarak, bilgi grafında arama derinliğine bazı sezgisel kı-

sıtlamalar uygulayarak, mekansal kelime sorgularını işlemek için önerilen ve coğrafi

metin indeksleri olarak adlandırılan birkaç iyi bilinen indeks yapısını elimizdeki prob-

lem için kullanmanın mümkün olduğunu gösteriyoruz. İkinci olarak, anlamsal mekan

edinimi sorununa özgün bir çözüm olarak, aslında konuya göre kümelenmiş metinler

üzerinde bilgi getirme için önerilmiş bir yapı olan küme atlamalı ters çevrilmiş indeks

(CS-IIS) fikrini uyarlıyoruz. Uyarlamamızda, işlenmekte olan mekansal bölgelerin

vii

metinsel ve mekansal skorlarına dayalı bir erken durdurma tekniği de kullanıyoruz.

Kapsamlı deneylerimiz bir çok ilginç bulguya yol açıyor. Literatürdeki bilinen bazı

mekansal metin indekslerinin bellek içi işlem süresi açısından yüksek verimlilik sağ-

larken, çok sayıda doğrudan disk erişimine neden olabileceğini gösteriyoruz. Buna

karşılık, CS-IIS’ye dayalı yaklaşımımız, az sayıda doğrudan disk erişimi gerektirir

(bu da sorgudaki terimlerin sayısına eşittir) ve bu nedenle, toplam sorgu işleme sü-

resi açısından bahsedilen temel yaklaşımlardan önemli ölçüde daha iyi performans

göstermektedir.

Anahtar Kelimeler: Anlamsal mekan getirimi, indeksleme, sorgu işleme

viii

To my dear wife and family...

ix

ACKNOWLEDGMENTS

I’d love to thank my supervisor, Assoc. Prof. Dr. İsmail Sengör Altıngövde for his

guidance and help throughout the whole MSc period.

Also, I’d like to thank my Examining Committee Members Prof. Dr. Pınar Karagöz

and Assist. Prof. Dr. Engin Demir for their feedback.

Finally, I’d like to thank my wife for her full support, patience, and all of her feedback.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Contributions and Novelties . 3

1.3 The Outline of the Thesis . 4

2 RELATED WORK . 5

2.1 Inverted Files . 6

2.2 R-Tree Based Indexes . 6

2.2.1 R-Tree . 6

2.2.2 S2I . 7

2.3 Grid and Cluster Based Indexes . 8

xi

2.3.1 TS . 8

2.3.2 SKIF . 10

3 METHODOLOGY . 11

3.1 Graph Traversal Baseline Approaches 11

3.1.1 BSP . 13

3.1.2 SPP . 15

3.1.3 Limiting Traversal Depth . 17

3.2 Full Index . 18

3.3 IR-Tree . 21

3.3.1 How does an IR-Tree Work? 22

3.4 DIR Tree . 25

3.5 CS-IIS . 26

4 EXPERIMENTAL SETUP . 31

4.1 Dataset . 31

4.2 Query Sets . 32

4.3 Meta Information For the Index Files 32

4.4 Parameters and Platform . 32

4.5 Evaluation Metrics . 34

5 EXPERIMENTAL RESULTS . 37

5.1 Time Efficiency Comparison . 37

5.1.1 In Memory Processing Time 37

5.1.2 Total Query Processing Time 40

5.2 Direct Disk Access Count . 41

xii

5.3 Other Metrics . 42

5.3.1 Disk Page Count . 42

5.3.2 Total Byte Size . 43

5.3.3 Number of Processed Document Postings 45

5.3.4 Number of Processed Grid Postings 47

5.4 Summary of Experimental Findings 48

6 CONCLUSIONS . 49

REFERENCES . 51

xiii

LIST OF TABLES

TABLES

Table 2.1 Example postings lists in an inverted file for place retrieval 6

Table 2.2 Posting list example for TS (adopted from [1]) 10

Table 2.3 TS example (adopted from [1]) . 10

Table 3.1 Example RDF triples . 11

Table 3.2 Typical postings lists for a toy scenario 22

Table 3.3 Postings lists for the IR-Tree nodes (R1 to R5) 24

Table 3.4 CS-IIS: Example postings for the grid-level 27

Table 3.5 CS-IIS: Example postings for the place-level 27

Table 4.1 Number of queries for each query length value 32

Table 4.2 Index sizes . 33

Table 4.3 Parameters . 33

Table 4.4 Disk parameters for simulated total query processing time 34

Table 5.1 In memory processing time (ms) for top-10 results (speed-up is re-

ported wrt. IR-Tree baseline for the average case) 38

Table 5.2 In memory processing time (ms) for top-10 results using SPP method [2] 39

xiv

Table 5.3 In memory processing time (ms) for top-20 results (speed-up is re-

ported wrt. IR-Tree baseline for the average case) 39

Table 5.4 Total processing time (ms) for top-10 results (speed-up is reported

wrt. IR-Tree baseline for the average case) 40

Table 5.5 Simulated total processing time (ms) for top-10 results (speed-up is

reported wrt. IR-Tree baseline for the average case) 42

Table 5.6 Direct disk access count comparison for top-10 results 42

Table 5.7 Direct disk access count comparison for top-20 results 43

Table 5.8 Total disk page count comparison for top-10 results 44

Table 5.9 Total disk page count comparison for top-20 results 44

Table 5.10 Total byte size (MB) comparison for top-10 results 45

Table 5.11 Total byte size (MB) comparison for top-20 results 46

Table 5.12 Number of processed document postings for top-10 results 46

Table 5.13 Number of processed grid postings for CS-IIS for top-10 results . . 47

Table 5.14 Ratio of the processed grid postings for CS-IIS for top-10 results . . 48

xv

LIST OF FIGURES

FIGURES

Figure 1.1 Example knowledge graph for place retrieval scenario 2

Figure 2.1 R-Tree example . 7

Figure 2.2 Example place MBRs to be used in an R-Tree 8

Figure 2.3 Example geo-tagged documents and overlapping grids for TS

index (adopted from [1]) . 9

Figure 3.1 Example knowledge graph (nodes for place entities and other

entity types are shown as squares and circles, respectively) 12

Figure 3.2 DAAT processing over full index for a toy scenario 20

Figure 3.3 Places and MBRs to be used in our toy R-Tree 23

Figure 3.4 IR-Tree structure showing the inverted files for each node 23

Figure 3.5 Places and respective grids for CS-IIS 27

Figure 3.6 Query processing illustrated for CS-IIS 28

xvi

LIST OF ABBREVIATIONS

CS-IIS Cluster-Skipping Inverted Index Structure

RDF Resource Description Framework

kNN k Nearest Neighbor

MBR Minimum Bounding Rectangle

S2I Spatial Inverted Index

TS Text primary Spatio-Textual Index

SKIF Spatial Keyword Inverted File

TQSP Top-k Tightest Qualified Semantic Places

BSP Basic Semantic Place

SPP Semantic Place Search with Pruning

BFS Breadth First Search

YAGO Yet Another Great Ontology

DIR-Tree Document Similarity Enhanced Inverted File R-tree

IR-Tree Inverted File R-Tree

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Due to the wide usage of smartphones in our daily lives, location-based keyword

search is becoming increasingly popular among users, who may like to search for

nearby cafes selling Colombian coffee during a work-break, or museums including

Renaissance paintings during a touristic trip. In [3], the authors show that 18.6%

of the queries have geographical entries. This percentage is even higher for mobile

devices, which is around 53% [4].

Location-based queries are at the core of several applications, such as Google Maps,

Foursquare, and Booking.com. Furthermore, as several web documents are also be-

ing geo-tagged [5] in these days, such queries are also submitted to general search

engines. Traditional search systems based on plain inverted indexing cannot produce

an answer for these types of queries. Therefore, addressing location-based keyword

queries is an attractive research direction.

Recent works [2] [6] [7] define a particular type of this problem, so-called semantic

place retrieval, where place search is conducted over knowledge graphs that store

various facts about places. In such a graph, places and other (non-place) entities are

represented as nodes, and relationships between pairs of nodes are represented as

edges, as illustrated in Figure 1.1. In the figure, each node is associated with terms

extracted from the textual description of the entity. In contrast, relationship types

between nodes, which are rather obvious, are not shown for brevity. Note that, in

Figure 1.1, as our primary goal is retrieving places, such nodes are distinguished and

shown as squares, while other nodes are shown as circles.

1

Figure 1.1: Example knowledge graph for place retrieval scenario

Assume a user at the given location, issues the query Renaissance Paintings on the

graph shown in Figure 1.1. Our goal is to score and rank the places so that the user can

get a relevant and spatially close list of places as the result set. Thus, while comput-

ing such scores, we focus on both relevances to the query (i.e., textual score) and the

spatial distance of the places to the user (i.e., spatial score). To this end, we employ

the scoring function presented in [2]. In particular, while computing relevance, we

make use of the number of nodes that should be traversed to reach the query keywords

from a given place. Applying "Ranked AND" query processing logic, a place is con-

sidered as a result candidate only if all query keywords are reachable from this place.

For our example query, node P1 (Notre-Dame Cathedral) is a candidate place as the

keywords Renaissance and Paintings are reachable from this place by following paths

of length 2 and 3, respectively. Obviously, a place should have a higher textual score

if the paths from this place to query keywords are shorter. Then, the spatial distance

score is simply computed as the Euclidean distance between the coordinates of the

query point and candidate place. The final score of a place is a linear combination of

the textual and spatial scores.

To address the semantic place retrieval problem described above, in [2], the authors

2

propose to dynamically traverse the knowledge graph to compute the aforementioned

textual score for each place, in the ascending order of spatial distance of the places

to the query. While the closest places to the query can be easily obtained using an R-

tree, the graph traversal is an expensive step, and indeed, our experiments reveal that

even with some optimizations proposed in the latter work, it is prohibitively costly to

be applied on-the-fly.

In this thesis, we address the semantic place retrieval problem from an alternative

perspective. We hypothesize that while computing the textual score, it would not be

helpful to consider nodes that are more than a few edges away from the place being

considered. Thus, we propose to limit the depth of graph traversal to a predefined

value. This intuitive choice allows us to avoid conducting an online graph traversal

and instead, use pre-built index files while computing the textual score.

1.2 Contributions and Novelties

In this work, we have a number of contributions listed as follows:

• We apply two well-known geo-indexing techniques (namely, IR-Tree and DIR-

Tree [5]) to the semantic place retrieval problem. To this end, we extended

the implementation of these approaches provided in a public code base 1 of an

earlier work [8] to support Ranked AND query processing logic.

• We adapt cluster-skipping inverted index structure (CS-IIS) [9] [10] [11], nor-

mally used for query document matching in cluster-based search, to improve

the efficiency of semantic place retrieval over knowledge graphs. Our query

processing strategy over CS-IIS involves an early-stopping strategy (similar to

that in [12]) based on both textual and spatial scores of spatial grids.

• Our CS-IIS based solution is also implemented within the aforementioned code

base to be shared with the research community.

1 https://web.archive.org/web/20220227042457/http://lisi.io/spatial-keyword%20code.zip

3

1.3 The Outline of the Thesis

In Chapter 2, we review the existing methods in the literature. In particular, we dis-

cuss the grid-based and R-Tree based methods and explain how they differ from our

work. In Chapter 3, we first show how some of the existing indexing structures can be

used for the problem of semantic place retrieval on the knowledge graphs, and then

present our approach using CS-IIS [9] with an early-stopping strategy. Chapters 4

and 5 provide the experimental setup and the results of our evaluations, respectively.

Finally, in Chapter 6, we conclude and point to future work directions.

4

CHAPTER 2

RELATED WORK

In this thesis, we focus on the problem of place search on knowledge graphs, which

is closely related to the location-based keyword search. In[8], the authors state that

there are three widely employed types of such queries, which can be expressed in our

context as follows:

1. Boolean kNN Query aims to retrieve a set of objects that are nearest to the

query location such that every object contains all of the query keywords.

2. Ranked AND Query aims to retrieve a set of objects that are sorted by the

score, which is a combination of spatial distance to the query point and textual

score. The latter is based on the path distance of each query keyword to the

place on the knowledge graph and due to the conjunctive processing logic, all

keywords should be reachable from the place. In the ranking queries, docu-

ments are assigned a matching score according to their similarity to the query,

using the vector space model [13].

3. Range Query aims to retrieve a set of places with maximum selected distance

to the query location and as before, all of the query keywords should be reach-

able from the places.

In this thesis, we focus on Ranked AND queries and discuss earlier works on re-

lated indexing schemes in this chapter. For computing the textual score of a place

with respect to a keyword query, earlier studies typically employ an inverted index,

which is reviewed in Section 2.1. For computing the spatial scores, various indexing

schemes have been proposed in the literature, which broadly fall into categories of

5

R-Tree based indexes (e.g., [14] [5]) or grid-based indexes (e.g., [15] [1] [9]), which

are reviewed in Sections 2.2 and 2.3, respectively.

2.1 Inverted Files

Inverted indexes [16] are widely accepted and used in the literature. An inverted index

contains a posting list that contains the document id and the frequency information

for each term in the vocabulary of the document collection (e.g., see Table 2.1).

In Ranked AND processing using an inverted index, for a query with, say, three key-

words, we find the intersection of the corresponding three postings lists and score the

documents that are in the intersection. Then, we rank these documents based on their

textual scores.

To address the semantic place retrieval problem, a straightforward approach is using

an inverted index and computing the spatial score for each place in the intersection, as

will be discussed in Section 3.2. However, there are several other indexing schemes

in the literature that make use of an inverted index to compute both spatial and textual

scores, as we review in the rest of this chapter.

Table 2.1: Example postings lists in an inverted file for place retrieval

Term Lists

renaissance <P1,2> <P2,3> <P3,4> <P5,3>

davinci <P1,3> <P2,2> <P5,2>

paintings <P1,2> <P2,3> <P3,4> <P5,3>

2.2 R-Tree Based Indexes

2.2.1 R-Tree

R-Tree [17] is a kind of tree index structure that is used to store and access spatial

information such as coordinates and other polygons. R-tree is a balanced search tree,

6

Figure 2.1: R-Tree example

which means all of the leaf nodes are either at the same level or they have one level

difference at most, as shown in Figure 2.1.

The main concept behind R-tree is to group related objects and represent them in

the next higher level of the tree with their minimum bounding rectangles (e.g., Fig-

ure 2.2). So, if a query term does not intersect with an MBR it means that it won’t

intersect with the contained objects.

2.2.2 S2I

One of the R-Tree-based works, S2I [14] employs two different indexing strategies

for frequent and infrequent terms. Since, according to Zipf’s Law [18], a large

number of terms are used infrequently, their posting list is expected to be relatively

small in terms of document size. So, the authors used inverted files for these types of

terms. On the other hand, the posting list size of the frequent terms is larger. To search

and reach the documents more efficiently, authors used an R-Tree variant, aggregated

R-Tree. This indexing structure is similar to the IR-Tree [5] like every frequent term

has its own IR-Tree structure. In the aggregated R-Tree, every leaf node contains

the index entries. Non-leaf nodes contain non-spatial information (in our case it is a

textual score), which is maximum in its child nodes.

7

Figure 2.2: Example place MBRs to be used in an R-Tree

2.3 Grid and Cluster Based Indexes

Cluster-Based Retrieval systems aim to categorize documents in a collection based

on, say, their topical similarity or spatial locations. In the first round of the two-stage

retrieval process, the clusters should be examined for each query to find which ones

are worth checking. The selected ones should be examined in the second round to

construct the resulting set of documents (e.g., [12] [10] [9]).

Using clusters for query processing improves the efficiency and effectiveness of the

document retrieval system according to the work in [19]. It is also emphasized that

cluster-based retrieval in query processing improves the query processing time [10].

In this section, we focus on spatial location-based clustering systems, namely grid-

based indexing structures. These so-called grid-based retrieval systems aim to group

documents with their spatial information.

2.3.1 TS

In [1], the authors focus on the problem of searching geo-tagged documents and dis-

cuss several indexing schemes for the efficient processing of such queries. One par-

8

ticular indexing scheme they use is the so-called TS, which is similar to ours in that

the documents in the posting lists are clustered spatially based on the grid cells to

which they belong. As shown in Figure 2.3 (adopted from [1]), they assume that each

document is associated with geographical regions that overlap with one or more grids.

Then, an inverted index is created where posting lists group documents with respect

to corresponding grids (e.g., see Table 2.2). However, our CS-IIS based approach dif-

fers from the latter work in several ways. First, their work only addresses the queries

with explicit grid-based geographic constraints, so the index is used to identify grids

that are exactly matching to the query. In contrast, in our approach, a keyword query

has a given coordinate and we do employ a two-stage query processing where we first

score grids with respect to spatial distance and textual similarity simultaneously, and

then score the places in these grids, in the order of their ranking. Furthermore, we

employ an early-stopping strategy that allows us to terminate query processing when

a grid, which can not include any places to appear in top-k results, is encountered.

Figure 2.3: Example geo-tagged documents and overlapping grids for TS index

(adopted from [1])

9

Table 2.2: Posting list example for TS (adopted from [1])

painting R1(D1, D12);R2(D10);R3(D5, D14);R4(D4)

2.3.2 SKIF

Another work that exploits grids in the indexing structure [15] employs two different

inverted index files for the grids and textual part, respectively. In Table 2.3 illustrat-

ing their index, the type column shows whether the index entry belongs to a grid or

textual part. In the grid index entries, each grid id is mapped to a list of documents in

this grid, while in textual entries, as usual, a term is mapped to a list of documents.

During query processing, first, the grid cells that overlap with the query location are

determined. Then posting lists corresponding to overlapping grid cells and query key-

words are processed altogether to obtain document scores. Clearly, as in the previous

case of TS [1], this indexing scheme also assumes that queries explicitly specify the

grids to be searched. In contrast, the problem we address in this thesis requires com-

puting the spatial distance between the query and documents (or places) for the final

ranking.

Table 2.3: TS example (adopted from [1])

term t ft type Spatial-Keyword Inverted List for t

soccer 5 1 <1, 1.00><2, 1.00><3, 1.00><4, 1.00><5, 1.00>

league 5 1 <1, 0.80><3, 1.00><4, 1.00><5, 1.00><6, 1.00>

c1 1 0 <1, 1.00>

c2 2 0 <1, 0.55><2, 1.00>

c4 1 0 <4, 0.25>

c5 3 0 <3, 1.00><4, 0.06><5, 1.00>

10

CHAPTER 3

METHODOLOGY

In this chapter, we first review the baseline approaches proposed for semantic place

retrieval over a knowledge graph. In Section 3.1, we summarize the approaches pro-

posed in [2] that require on-the-fly graph traversal and argue that the latter require-

ment can be relaxed if the search is limited to a fixed depth on the graph. Based on

the latter assumption, we describe how some well-known index schemes from the

literature namely, an inverted index and IR/DIR-Trees [5], can be employed in this

scenario, respectively, in Sections 3.2 and 3.3. Finally, in Section 3.4, we propose

adapting CS-IIS [9] [10] with an early-stopping strategy to handle this problem.

3.1 Graph Traversal Baseline Approaches

In this thesis, we focus on the semantic place retrieval over knowledge graphs, which

are typically represented using Resource Description Framework (RDF) [20]. In a

nutshell, RDF is a data model representing the data in three parts: the subject node,

the object node, and a directed edge between these nodes. In case of a knowledge

graph, nodes represent entities while edges represent relationships between them.

Figure 3.1 shows an example knowledge graph including places, other related entities

and relationships. In Table 3.1, we provide some triples illustrating how the latter

knowledge graph would be expressed in RDF.

Table 3.1: Example RDF triples

<Renaissance> <has> <Oil Paintings>

<The Last Supper> <owner> <Leonardo Da Vinci>

11

Typically, RDF data is processed with complex query languages, such as SPARQL [21].

But these languages are hard to understand for end users. So, in a recent work [2],

the authors focus on searching over RDF data with simple keywords rather than

SPARQL. In their approach, RDF data is converted to a graph data structure, and

the aim is to find a minimum sub-graph containing all the query keywords.

In [2], for the semantic place retrieval scenario, kSP queries are introduced to locate

closest place entities to the query location so that RDF sub-graphs rooted at these

place entities contain all the query keywords. Specifically, a kSP query has three

parameters: query location, query keywords, and k, the number of elements of the

result set. In this setup, a qualified semantic place is defined as the root of a tree

covering all the query keywords, and a kSP returns top-k tightest qualified semantic

places (TQSP). The places are scored using a function that computes the spatial score

based on the distance between a place and query location, and the textual score based

on the coverage of query keywords in the tree rooted at this place.

Figure 3.1: Example knowledge graph (nodes for place entities and other entity types

are shown as squares and circles, respectively)

To compute the textual score, the previous work [2] introduces the notion of loose-

ness. Looseness is based on the length of the shortest paths between the place entity

12

(i.e., root of the tree) and the nodes including query keywords. This notion is in-

tended to capture how relevant a node (and hence, the keyword) is to the place. For

example, the looseness score between P2 Louvre Museum and V8 Leonardo Da Vinci

is 2. Note that, since the graph traversal proceeds in the Breadth First Search manner;

even if the same node can be reached multiple times, only its first occurrence is con-

sidered. Thus, for the query Renaissance Paintings, the tree rooted at the place entity

P1 will have the looseness score (and hence, textual score) of 5, as the shortest path

to keyword "Renaissance" is 2 (at node V2) while the keyword "paintings" is at a path

length of 3 (at node V4).

3.1.1 BSP

To address the top-k semantic place retrieval problem, the first approach proposed

in [2] is called the basic semantic place retrieval algorithm (BSP). The authors claim

that the TSQP computation is far more expensive than spatial distance calculation;

hence, the BSP doesn’t follow a text-first search approach. Instead, it prioritizes

spatial search using an R-Tree [17].

The BSP method (shown in Algorithm 1) works as follows: Place entities are ex-

tracted from the R-Tree [17], R, one by one, in the ascending order of the place’s

distance to the query location (line 7 in Algorithm 1). For every place entity p, the

total looseness score, L(Tp), of the tree Tp rooted at p is calculated by calling the

GetSemanticP lace procedure (line 12). If all of the query keywords q.ψ are found

in the nodes that are reachable from the place entity, the latter algorithm returns the

L(Tp) value (and otherwise, L(Tp) is set to infinity). Then, the overall score f of p is

computed as a linear combination of the spatial score, S(q, p), and the textual (loose-

ness) score, L(Tp). The places are added to a min-heap Hk of size k, only when the

computed score is lower than the k-th element’s score θ (after the heap is populated

with the first k places). Note that, the condition in lines 8–10 simply discards the

places with a spatial score greater than θ without computing their textual score.

The GetSemanticPlace procedure (shown in Algorithm 2) works as follows: Starting

from a place p, the graph G is traversed in the BFS manner, and for each visited node

v, we check whether it contains any of the query keywords. Note that, during the

13

Algorithm 1 BSP Algorithm (adopted from [2])

1: MinHeap Hk = ∅, ordered by f(L(Tp), S(q, p))

2: for keyword wi ∈ q.ψ do

3: Load posting list of wi from I

4: end for

5: Construct Mq.ψ

6: θ ←∞
7: while e = GetNext(R, q) do

8: if S(q, e) ≥ θ then

9: break

10: end if

11: if e refers to a place p then

12: L(Tp) = GetSemanticP lace(q.ψ, p,G,Mq.ψ)

13: if L(Tp) =∞ then

14: continue

15: end if

16: Compute score f using L(Tp) and S(q, p)

17: if f < θ then

18: Hk.add(p, f)

19: Update θ

20: end if

21: end if

22: end while

23: return Hk

14

Algorithm 2 GetSemanticPlace (adopted from [2])

1: Tp = ∅
2: L(Tp) = 1

3: B ← q.ψ

4: while v = BFS(G, p) and B ̸= ∅ do

5: Add v to Tp

6: v.ψq ←Mq.ψ.get(v)

7: if B ∩ v.ψq ̸= ∅ then

8: L(Tp) += |B ∩ v.ψq| × d(p, v)
9: B ← B\v.ψq

10: end if

11: end while

12: if B ̸= ∅ then

13: L(Tp) = +∞ and Tp = NULL

14: end if

15: return L(Tp) and Tp

latter check, for efficiency purposes, the authors of [2] first read postings lists of each

query term in the memory and then converts them into a map Mq.ψ, which basically

maps a node v to the contained query terms, v.ψq. If a node v includes one (or, more)

query keyword, path length d(p, v) is added to L(Tp), and the found keywords are

removed from the current list of searched keywords, denoted as B (lines 8 and 9). At

the end of BFS, if the current query keywords set B is not empty, it means that some

of the query keywords are not reachable from the place p. Then, since our querying

logic is conjunctive (i.e., Ranked AND), we return the looseness as∞.

3.1.2 SPP

SPP [2] is an improved version of the aforementioned BSP algorithm. Specifically,

while computing the textual score, a pruning strategy, called dynamic bound based

pruning, is applied. Thus, SPP approach employs an optimized version of GetSeman-

ticPlace procedure, shown in Algorithm 3.

15

As described in the previous section, while traversing the knowledge graph, the loose-

ness L(Tp) is updated each time a new query keyword is encountered. Since the BFS

starts searching from the closest nodes, it is guaranteed that there is no better loose-

ness for the already found keywords in the remaining (unvisited) nodes in the graph.

The looseness threshold can be calculated as Lw(Tp) = θ − S(q, p), where θ is the

worst score of the MinHeap Hk. So, if the current looseness LB(Tp) is larger than

the threshold Lw(Tp) we can say that no better score will be calculated for the cor-

responding place p. So, when we encounter such a place, we apply dynamic bound-

based pruning and stop traversing the rest of the graph for that place.

Algorithm 3 GetSemanticPlace for SPP (adopted from [2])

1: Tp = ∅
2: LB(Tp) = 1

3: B ← q.ψ

4: Compute the looseness threshold Lw(Tp)

5: while v = BFS(G, p) and B ̸= ∅ do

6: Add v to Tp

7: Compute the dynamic bound LB(Tp)

8: if LB(Tp) ≥ Lw(Tp) then ▷ Pruning Rule

9: return∞ and Tp ← null

10: end if

11: v.ψq ←Mq.ψ.get(v)

12: if B ∩ v.ψ ̸= ∅ then

13: L(Tp) += |B ∩ v.ψ| × d(p, v)
14: B ← B\v.ψ
15: end if

16: end while

17: if B ̸= ∅ then

18: L(Tp) = +∞ and Tp = NULL

19: end if

20: return LB(Tp) and Tp

16

3.1.3 Limiting Traversal Depth

In our preliminary experiments, we observed that the aforementioned approach BSP

and its variant SPP suffer from the extensive cost of on-the-fly BFS traversal of the

knowledge graph. Indeed, due to a similar observation, the authors of [2] have also

proposed another variant (so-called SP algorithm) involving an offline pre-processing

stage that determines the terms appearing in the nodes within an α-Radius neighbor-

hood of each place, to prune the graph traversal. While this optimization may allow

early elimination of some places, for others, an on-the-fly graph traversal, which is

the most expensive component of the algorithm, is still required.

In this thesis, we take a further step to eliminate the need for online graph traversal

completely. Our approach is based on the intuition that a place’s relevance to a key-

word would considerably drop if this keyword is associated with a node that is several

vertices far away from this place (i.e., implying a high looseness). Thus, rather than

conducting an online BFS, we suggest setting a heuristic depth limit, DL, for BFS

and traversing the graph offline to determine all the terms that are reachable from

each place within a search depth of DL. In other words, we represent each place

with a vector of terms that are reachable in length-DL paths (see the example in the

next section). This assumption allows us to directly employ or adapt various index-

ing schemes for the semantic place retrieval problem, as discussed in the following

sections.

An astute reader would question whether imposing such a depth limit considerably

affects the result quality, or not. In a preliminary experiment, we observed that top-

10 query result lists with and without a depth limit for BFS are sufficiently similar,

yielding a Jaccard similarity score of 72% (see Chapter 4 for the details of the experi-

mental setup) when DL is set to 4. Further note that, here we set the depth limit value

as 4 in an ad hoc manner, and higher values would yield even higher overlap with

the results obtained by BFS without any limit. Therefore, in the rest of this thesis,

we essentially focus on how setting such a limit makes it possible to adapt various

indexing schemes to our problem and how their efficiency compare to each other.

17

3.2 Full Index

Pre-processing the knowledge graph as suggested in Section 3.1.3 would allow rep-

resenting each place with a term vector including the keywords on the nodes within a

path distance of DL. That is, each place node p is represented with a vector of <t,l>

pairs where the t is the term, and the l is the looseness of the closest node that includes

the term t, where l ≤ DL.

For instance, assuming depth limit DL is set to 2, the term vector for the place P2

(Louvre Museum) in Figure 3.1 is as follows:

P2→<mona, 1><lisa, 1><pablo, 1><picasso, 1><leonardo, 2><davinci, 2>

Given such term vectors per place, a straightforward strategy is constructing a typical

inverted index (referred to as Full Index here) that maps each term t to a list of <p,l>

pairs. For instance, assuming depth limit DL is set to 4, the posting list for the term

"renaissance" is as follows:

renaissance→<P1, 2><P2, 3><P3, 4><P5, 3>

Note that, in this index, each posting may also include the coordinates of the place to

ease the spatial distance computation.

This index allows us to apply document-at-a-time (DaaT) query processing strat-

egy [22]. To generate the Ranked AND result set, we find the intersection of each

query keyword. For each intersecting place, we calculate a score using the textual

score and the spatial score as in Equation 3.1.

Score = α× L(Tp) + (1− α)× S(q, p) (3.1)

As before, L(Tp) denotes the textual score, i.e., the looseness of the tree rooted at the

place p, and S(q, p) denotes the spatial distance between the place and query.

DAAT query processing over the Full Index proceeds as follows (Algorithm 4): Post-

ings lists for each query keyword w ∈ q.ψ are read. Every pointer shows the ini-

tial position of the corresponding query keyword’s (wi) list. The place ids that each

pointer shows are checked. If all of them point to the same place id p, the looseness l

18

Algorithm 4 DAAT Query Processing using Full Index
1: keywords← q.ψ

2: pointers← 0

3: MinHeap Hk = ∅, ordered by f(L(Tp), S(q, p))

4: θ ← 0

5: for keyword wi in q.ψ do

6: wi.PL← readPostingsList(wi)

7: end for

8: while no posting list is finished do

9: if all pointers point to the same place id p then

10: for keyword wi in q.ψ do

11: L(Tp) += wi.l

12: end for

13: Compute score f using L(Tp) and S(q, p)

14: if Hk.size < k then

15: Hk.add(p)

16: θ ← Hk.peek()

17: else if Hk.size() == k AND θ >= f then

18: Hk.add(p)

19: Hk.pop()

20: θ ← Hk.peek()

21: end if

22: for pointer in pointers do pointer += 1 end for

23: else

24: for pointer in pointers do pointer ← max(pointers) end for

25: end if

26: end while

27: return Hk

for each keyword is added to the total looseness score L(Tp). Then the total score f

is calculated using looseness score L(Tp) and the spatial score S(q, p). If the number

of places in the MinHeap, Hk, is less than the target result set size, k, the place node

p is added to the Hk, and the θ is updated with the worst score in Hk. Otherwise, if

19

Figure 3.2: DAAT processing over full index for a toy scenario

the number of places in the MinHeap is equal to k, then the place p is added to the

Hk only if its score f is less than θ, and in this case the node with the worst score is

popped from the Hk and θ is again updated. The algorithm continues until one of the

posting lists are consumed.

For example, in Figure 3.2 a query is processed with 3 query terms such as renais-

sance, da vinci, and paintings. As the first column of dark arrows shows, all the

pointers point to the initial position and point to the same place id, P1 . Since we

apply document-at-a-time processing, a score is calculated for the place P1. This

score is the combination of the spatial and the textual score. First, the spatial score is

computed as the distance between the query point and the P1, which is, say, 3 km (for

the sake of simplicity, the coordinates are not shown explicitly). The spatial score is

normalized with 1000 km, following the practice in [2]. The textual score is calcu-

lated as the sum of the looseness values in the postings of these three terms, i.e., 2,

3, and 2, respectively. Total looseness 7 is normalized with a maximum looseness

value, which is set to 50, again as in [2]. The final score for P1 is calculated as

(0.14 + 0.003)/2 = 0.0715. The same calculations are done with the other places in

the intersection, namely, P2 and P5, as shown with the darker arrows. The final result

is shown in Figure 3.2.

20

Algorithm 5 Application of AND logic

1: results← ∅
2: for keyword in query keywords do

3: for place in keyword.postingList do result.get(place) + = 1

4: end for

5: end for

6: return results(f→ f.value == len(queryKeywords)) ▷ Checks if all the

keywords are found for a place

3.3 IR-Tree

The approach using a Full Index presented in the previous section prioritizes text

search, as it first intersects postings lists and then computes the spatial score for

each place in the intersection. In the literature, there are alternative hybrid indexing

schemes that guide the search by prioritizing the spatial and textual scores simulta-

neously, such as the IR-Tree and its variant DIR-Tree [5]. Earlier works have shown

that both indexing schemes are feasible approaches for spatial keyword search (e.g.,

see [8]). Of course, these approaches have their own disadvantages, too. For in-

stance, IR-Tree is shown to be more efficient when the number of query keywords

is small [23]. Furthermore, the inverted files can be easily distributed across several

machines, while this may not be easily possible for the R-trees [24].

In this thesis, we adapt IR- and DIR-tree geo-indexing schemes for the problem of

semantic place retrieval. To this end, we modified a public code repository1 for an

earlier work [8] in the following ways:

• Query evaluation logic: In this thesis, following the application scenario in [2],

we employ Ranked AND query evaluation logic, while the codebase had the

implemention for the Ranked OR logic. Therefore, we modified the codebase

to enforce the existence of all query keywords in every scored (and visited)

node of the IR-Tree.

Algorithm 5 shows the application of the Ranked AND logic during the IR-Tree

traversal. For the sake of simplicity, other scoring details are not included.
1 http://web.archive.org/web/20220227042457/http://lisi.io/spatial-keyword%20code.zip

21

• Scoring functions: We updated the scoring function of the codebase as in

Equation 3.1. We also reflected the aforementioned normalization of the scores,

which normalizes the spatial distance with 1000 km and total looseness with 50

as in the previous work [2].

• Index content: The original codebase creates postings lists that include term

frequencies in the postings, while in our case, the postings should include the

looseness values (as described in the previous section). Note that using loose-

ness values required us to modify the score comparisons at various places in the

code, as lower looseness and lower overall scores indicate better query results

in our case.

3.3.1 How does an IR-Tree Work?

In this section, we illustrate how an IR-Tree would operate in our setup. As described

in [5], an IR-tree is based on an R-tree but extends the latter so that every tree node has

its own inverted index. Every IR-Tree node is represented with <w.pl, n.p> where

w.pl shows the posting list of the query terms and the n.p shows the node’s location.

Posting list elements are in the form of <p.id, l> where p.id is the place id, and the l

is the looseness. For the leaf nodes, the posting lists store the actual looseness values

of the places. The non-leaf nodes store the minimum looseness value for each child

(sub-tree) and each query term, allowing to compute the best-possible (upper bound)

score for its children.

Table 3.2: Typical postings lists for a toy scenario

Word/Looseness P1 P2 P3 P4 P5

renaissance 2 3 4 - 3

painting 2 3 - - 3

davinci 3 2 - - 2

Let’s consider a toy scenario with a query including three keywords, renaissance,

painting, daVinci. In Table 3.2, we show the postings lists in a typical inverted index

(as described in Section 3.2, for each term, we store the place and looseness (assuming

22

Figure 3.3: Places and MBRs to be used in our toy R-Tree

Figure 3.4: IR-Tree structure showing the inverted files for each node

a depth limit of 4) for the knowledge graph in Figure 3.1). Further assume that the

places in this scenario are associated with the R-tree MBRs shown in Figure 3.3. Then

the resulting IR-tree is shown in Figure 3.4.

As depicted in Figure 3.4, every node in the IR-tree stores an inverted file. The

postings lists of these indexes at each node (R1 to R5) are shown in Table 3.3. For the

leaf nodes R1, R2, and R3, the postings lists store the actual (place, looseness) pairs.

23

For the non-leaf nodes, the minimum (best) looseness is stored for each sub-tree. For

instance, R4 points to nodes R2 and R3, so for the term renaissance, R4 has postings

for R2 and R3. Furthermore, the minimum looseness for the term renaissance in

the R3 is 2 (corresponding to place P2), and hence, the R4 has the posting with the

looseness value 2 for R3.

Table 3.3: Postings lists for the IR-Tree nodes (R1 to R5)

Term/IR-TreeNode R1 R2 R3 R4 R5

renaissance <P5,3> <P2,3> <P1,2><P3,4> <R2,3><R3,2> <R1,3><R4,2>

davinci <P5,2> <P2,2> <P1,3> <R2,2><R3,3> <R1,2><R4,2>

painting <P5,3> <P2,3> <P1,2> <R2,3><R3,2> <R1,3><R4,2>

The query processing using an IR-tree (as shown in Algorithm 6) works as follows:

the root of the tree is loaded into the memory. The root is added into a MinHeap Hk

which is sorted by the score f(D(q, pL), L(q, pL)). The algorithm continues until the

Hk becomes ∅ or k places are extracted.

The first element e of the Hk is popped. If the e is a leaf entry, then the distance

D(q, pL) between the place of this leaf entry and the query point is calculated. Then a

score f(D(q, pL), L(q, pL)) is calculated by using distanceD(q, pL) and the looseness

L(q, pL). Given this score, the place is added to the result queue rK . If the result

queue rK reaches the size of k, the result queue rK is returned, and the algorithm is

finished.

But if the e is a non-leaf node, the posting lists pL of the query keywords are fetched

to memory. The total looseness L(q, pL) of these posting lists for each child of the

node is calculated. Then for each child, a pseudo score S ′(D(q, pL), L(q, pL)) by

node distance D′(q, pL) to the query point and looseness L(q, pL)) of the child is

calculated. The children are added to the MinHeap Hk.

24

Algorithm 6 Query Processing using IR-Tree (adopted from [5])

1: MinHeap Hk = ∅, ordered by f(L(q, p), D(q, p))

2: rK ← ∅
3: Put root of the tree to Hk

4: while Hk.size() != 0 do

5: e← pop(Hk)

6: if e.isLeafEntry() then

7: if k > rK .size() then

8: rK .add(< e.id, f(D(q, pL), L(q, pL)) >)

9: if rK .size() == k then

10: break

11: end if

12: end if

13: else

14: node←readNode(e.id)

15: pL ←readPostingListsForEachKeyword()

16: if pL = ∅ then

17: continue

18: end if

19: for child in node.children do

20: if L(q, pL) = null then

21: continue

22: end if

23: child.score← S ′(D(q, pL), L(q, pL))

24: Hk.add(child)

25: end for

26: end if

27: end while

3.4 DIR Tree

DIR-tree [5] is a variant of the IR-tree indexing scheme. IR-tree only takes into

account spatial information of the documents while computing minimum bounding

25

rectangles (MBRs). In contrast, DIR-Tree also considers document similarity in addi-

tion to spatial information. In other words, DIR-tree creates MBRs of the IR-Tree by

optimizing the objectives of minimizing the MBR area and maximizing text similar-

ities. In our case, this corresponds to minimizing looseness, which means increasing

the text relevancy.

3.5 CS-IIS

Cluster-Skipping Inverted Index (CS-IIS) is a cluster-based indexing scheme [9] [10]

with a two-level architecture, which we adapt here for the place retrieval scenario. In

our adaptation, the first level maps each term to the grids including places with that

term. Furthermore, we store the minimum looseness value of the places in the grid for

the given term. Thus, postings in this level are in the form of <Grid Id, Looseness>.

We emphasize that a grid G’s postings appear in a term’s postings list if and only if

a place inside the grid G contains this term. The second level of the index typically

stores the actual places and the looseness value of the place for each term.

As before, assume a toy scenario with places and respective grids shown in Figure

3.5. Then, example postings lists for grids and places are shown in Tables 3.4 and 3.5,

respectively (recall that place and hence associated grid descriptions include all the

terms on the nodes that are within a length-DL path, where DL is 4.). Also note that,

we show the postings lists separately in the latter tables only for the sake of clarity; in

the actual CS-IIS organization, the postings for the grids and places are intermixed,

so that places are associated with the corresponding grids can be directly accessed, as

illustrated in Figure 3.6.

Even if the additional grid posting lists increase the index size slightly, in our eval-

uations we show that it dramatically improves the performance due to the capability

of pruning many grids without processing the places inside them. Also, if memory

is limited and index files need to be kept on disk, the CS-IIS allows the queries to be

processed by only one direct disk access per query term [9], as will be shown in the

experimental evaluation section.

Note that, we also tailor an early-stopping approach that terminates the query pro-

26

Figure 3.5: Places and respective grids for CS-IIS

Table 3.4: CS-IIS: Example postings for the grid-level

Place Keywords

renaissance <G1,2> <G2,3> <G4,3>

davinci <G1,3> <G2,2> <G4,2>

paintings <G1,2> <G2,3> <G4,3>

Table 3.5: CS-IIS: Example postings for the place-level

Place Keywords

renaissance <P1,2> <P2,3> <P3,4> <P5,3>

davinci <P1,3> <P2,2> <P5,2>

paintings <P1,2> <P2,3> <P3,4> <P5,3>

cessing when the upperbound score of a grid is worse than the worst score of the

current top-k places, which is described in detail later. While our approach is similar

to that in [12], their work is focused on Ranked OR processing of queries over typical

document collections and they aim to obtain the best results within a given time bud-

get. In contrary, our scoring function involves both textual and spatial components

27

and we focus on a Ranked AND query processing logic, for which the performance

of early-stopping on CS-IIS has not been explored before.

Figure 3.6: Query processing illustrated for CS-IIS

Our query processing algorithm with early-stopping using the CS-IIS operates as fol-

lows (Algorithm 7): First, a result queue of places, rK , and a heap of grids, Hk, are

created and set to ∅. θ stores the worst score of the rK . Inıtially, all the postings lists

for the query keywords q.ψ are fetched into the memory.

In the first round of the algorithm, grids in the intersection are determined and scored.

The process begins with the first grid of each query keyword in q.ψ. If all the pointers

ptr point to the same grid id G (see step 1 in Figure 3.6, dotted numbers show the

step numbers), the grid is added to the grid heap Hk. Then every pointer ptr is moved

to the right by one (see step 2 in Figure 3.6). If the pointers point to different grid

ids, then the grid with the maximum id number is found with binary search and every

pointer ptr is moved to that position. In our example, the ids are again the same, i.e.,

G2, which is also scored. This process continues until one of the pointers reaches

the end of the grid list. After the creation of the Hk, the first round finishes and the

second round of the algorithm begins.

28

During the second round, for each grid in the Hk, an early-stopping opportunity is

checked. If the worst score θ of the MinHeap (rK) is smaller than the grid upper

bound score f ′ then the algorithm is stopped and the result queue rK is returned. If

the θ is not smaller than the grid’s upper bound score, a similar scoring process with

Ranked AND logic is applied, but this time, over the places in the current grid that is

being processed, as illustrated is steps 4 and 5 in Figure 3.6. As before, this process

continues until one of the pointers reaches the end of the place postings list.

29

Algorithm 7 Query Processing with Early-Stopping using CS-IIS

1: MinHeap Hk = ∅, ordered by f(L(GE), S(q,GE))

2: θ ←∞
3: MinHeap rK ← ∅, ordered by f(L(Tp), S(q, p))

4: for q.ψ do readIndexEntry() end for

5: while no grid-level posting list is finished do

6: if Each ptr points to the same GE.id then

7: L(GE)← 0

8: for each GE do L(GE) += GE.l end for

9: Compute grid score f ′ using L(GE) and S(q,GE)

10: HK .add(GE)

11: for ptr in pointers do p += 1 end for

12: else

13: for ptr in pointers do p← max(pointers) end for

14: end if

15: end while

16: while Hk ̸= ∅ do

17: GE ← HK .pop()

18: if f ′ ≥ θ return rK ▷ Early-stopping

19: p← 0 , Lr ← 0

20: if Each ptr points to the same p.id then

21: for p in places do L(Tp) += p.l end for

22: Compute score f using L(Tp) and S(q, p)

23: if rK .size() < k then

24: rK .add(p)

25: else if rK .size() ≥ k and θ ≥ f then

26: rK .add(p)

27: rK .pop()

28: end if

29: θ ← rK .peek()

30: else

31: p← max(p.id)

32: end if

33: end while
30

CHAPTER 4

EXPERIMENTAL SETUP

4.1 Dataset

We created a dataset based on YAGO 3 (Yet Another Great Ontology) RDF knowl-

edge base [25] for our semantic place retrieval scenario. This knowledge base is

built upon various resources, such as Wikipedia, Wordnet, etc. The YAGO version

employed here has more than 17 million triplets, and 357,603 place nodes [26].

As discussed before, RDF models the data as triples: A subject node, an object node,

and a directed edge to show the relationship between the subject and the object. An

object can be another node or a literal value, such as the birth date of a person. Fol-

lowing the procedure in [2], we created our dataset as follows. We preprocessed the

dataset by removing the punctuation so that National Library and National_Library

or Polatlı_(Ankara) and Polatlı Ankara become identical. Since we only consider

looseness as the relevancy metric we removed the edges that show the relationship

between nodes. Also, we have marked the nodes with the geo-location information

as places.

As discussed in Chapter 3, for index-based approaches, we first traversed the graph

until the depth of 4 starting from each place node to determine the textual representa-

tion of each place and then created the required inverted index files in which postings

list for each term including pairs of <placeId, looseness> (and some other informa-

tion, based on the index type).

31

4.2 Query Sets

Since using randomly generated keywords and locations reduce the finding of any

meaningful results for a Ranked AND query, we followed the practice in an earlier

work [2]. To generate a query, we chose a random place p from the place nodes in

our dataset. Then, from the term vector of p (as described in Section 3.2) we picked

n query keywords to obtain q.ψ, where 1 ≤ n ≤ 8. In the end, we ended up with a

query set including 1112 queries (see Table 4.1 for the details of our query set).

Table 4.1: Number of queries for each query length value

Number of query keywords Number of queries

1 207

2 133

3 143

4 142

5 133

6 145

7 112

8 97

4.3 Meta Information For the Index Files

We created six different index files corresponding to the methods described in Chapter

3. We provide their size (on disk) in Table 4.2.

4.4 Parameters and Platform

We have experimented with a range of parameters to expand our experiments, as

summarized in Table 4.3. For the query result set, we have defined k as either 10 or

20.

32

Table 4.2: Index sizes

Index Size (GB)

CS-IIS 180 30

CS-IIS 36 28

CS-IIS 300 32

DIR-Tree 25

IR-Tree 26

Full Index 28

The number of query keywords q.ψ per query is between 1 and 8.

To set the balance between the score of spatial distance and looseness, we used α. We

set α to 0.5, meaning that spatial distance and looseness are equally important.

Another important parameter is the number of grids that are used while creating the

CS-IIS index (as described in Section 3.5). In our experiments, we experiment with

three different values, namely, 36, 180, and 360, implying that we have 36 × 36,

180× 180 and 300× 300 grids, respectively.

All our experiments are conducted on a computer with two Intel Intel Xeon E5-2630

CPUs, 256 GB of RAM, and 4 TB HDD, running Ubuntu Linux v14.04 and Java 13.

Table 4.3: Parameters

Parameter Values

Result set size (k) {10, 20}

|q.ψ| {1, 2, 3, 4, 5, 6, 7, 8}
α 0.5

Disk page size 64000

IR-tree fanout 1024

Number of grids (for CS-IIS) {36× 36, 180× 180, 300× 300}

33

4.5 Evaluation Metrics

We employ and report the following evaluation metrics:

• In Memory Processing Time: This captures the entire processing time (elapsed

time) in the memory. It starts from the beginning of the query processing and

then lasts until the top-k query result is computed, but excludes the disk access

time .

• Total Query Processing Time: Total time means the duration between the

beginning and end of the query processing, which includes all the time spent in

memory and disk access.

• Simulated Total Query Processing Time: Simulated time is calculated using

the in memory time, accessed page count, direct IO count, disk seek time and

disk transfer time, which can be seen in the Equation 4.2. The disk parameters

employed in Equation 4.1 are shown in Table 4.4.

ReadT ime = 1/(TransferSpeed(Bytes/Sec)/PageSize) (4.1)

SimulatedT ime =MemoryT ime+(SeekT ime∗IOCount)+(ReadT ime∗PageCount)
(4.2)

Table 4.4: Disk parameters for simulated total query processing time

Parameter Values

Transfer Speed(Mb/Sec) 190

Page Size 64000

Seek Time(ms) 10

• Direct Disk Access Count: IO Count which indicates the number of direct

disk access during the query processing.

• Document Posting Count & Grid Posting Count: For IR-Tree, DIR-Tree,

and Full index, Document Posting Count is the number of processed document

34

postings for each query. For CS-IIS, Grid Posting Count indicates the number

of processed grid postings for each query.

While measuring the time-related metrics, we re-started the server after experiment-

ing with each different method, to avoid any caching effects between experiments.

35

36

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Time Efficiency Comparison

5.1.1 In Memory Processing Time

This metric captures the elapsed time for all in memory calculations. So, memory

time excludes the time spent reading from disk, loading index to memory, etc. In

particular, memory time measurement starts after reading index entries to the memory

for the Full and CS-IIS indexes. These index structures access all the posting lists for

the query terms at the beginning of the query processing. For IR-Tree and DIR-Tree

indexes, memory time measurement starts after loading the root node to the memory

and continues until the end of the query processing but excludes the time for fetching

the other tree nodes from the disk.

Table 5.1 presents the in memory processing times for the baseline and proposed

indexing schemes for k = 10. We report the findings for each query length and their

average in detail. Our findings reveal that among the baseline indexing schemes, both

geo-indexing approaches (IR-Tree and DIR-Tree) outperform the typical Full Index,

and the IR-tree is the best-performing baseline for all query lengths. Among the CS-

IIS variants, we see that CS-IIS 180, which employs 180 × 180 grids is better than

the other two variants involving 300× 300 and 36× 36 grids, implying that having a

larger or smaller number of grids would deteriorate the performance for this dataset.

When we compare IR-Tree and CS-IIS 180, we see that the latter provides a speed-up

of 1.10x over the former indexing scheme. In particular, Table 5.1 shows that the

average processing time using IR-Tree is 36.99 ms, while it takes 33.71 ms using

37

Table 5.1: In memory processing time (ms) for top-10 results (speed-up is reported

wrt. IR-Tree baseline for the average case)

No of Query Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 134.42 22.50 23.52 13.98 13.74 15.91

2 286.80 33.23 35.32 20.10 27.44 27.20

3 201.59 33.65 38.31 24.56 31.54 32.26

4 382.11 36.68 40.54 34.94 38.99 40.35

5 224.49 43.25 46.18 40.23 42.34 49.08

6 246.85 43.26 44.81 45.00 52.26 50.91

7 278.83 45.81 48.32 50.86 50.71 57.62

8 451.60 50.26 52.94 60.57 75.35 68.64

Average 260.56 36.99 39.56 33.71 38.43 39.82

Speed-up 0.14 1.00 0.94 1.10 0.96 0.93

CS-IIS 180, indicating a relative efficiency improvement of around 9%. Furthermore,

when we focus on shorter queries with 1, 2 or 3 keywords, the relative gains are

more emphasized, reaching up to 38%, 40%, and 27%, respectively. Given that users

typically tend to issue shorter queries (e.g., average query length is around 2-3 terms

for web search engines [27], [28])), the gains provided by the CS-IIS based approach

seem remarkable.

At this point, an astute reader may question the appropriateness of the parameters for

the IR-Tree. In our dataset, we have 357,603 places, which are indexed using an IR-

Tree with a fanout of 1024 and a page size of 64000 bytes. These parameters imply

that the resulting IR-Tree has only one level, i.e., it can quickly access the leaf level

without the requirement of traversing some interior nodes and fetching them from the

disk. Thus, we think that our efficiency comparison of IR-tree and CS-IIS presented

in this section is fair.

Finally, in Table 5.2, we report the performance of SPP [2], the baseline approach

that employs on-the-fly graph traversal, as described in Section 3.1.2. Our prelimi-

nary experiments showed that the SPP algorithm, without any depth limit for BFS,

runs for several minutes for certain queries and is inferior to all the aforementioned

approaches. Hence, in Table 5.2, we report the run time figures for SPP when the

38

Table 5.2: In memory processing time (ms) for top-10 results using SPP method [2]

No of Keywords 1 2 3 4 5 6 7 8 Average

In memory time(ms) 55,377.85 44,071.32 47,783.69 47,021.73 43,468.37 34,701.26 49,291.54 24,689.04 44,571.33

Table 5.3: In memory processing time (ms) for top-20 results (speed-up is reported

wrt. IR-Tree baseline for the average case)

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 135.17 23.01 24.45 14.36 14.70 16.71

2 284.42 32.78 33.88 20.36 28.13 27.21

3 195.53 37.38 41.42 26.63 33.34 34.42

4 384.26 38.58 42.86 35.06 37.88 41.19

5 225.98 42.37 46.11 40.89 43.95 49.73

6 258.80 43.53 46.05 45.28 50.92 50.66

7 286.12 45.16 48.58 49.34 50.04 60.35

8 456.10 49.40 51.93 61.97 74.01 72.10

Average 262.77 37.54 40.34 34.18 38.62 40.97

Speed-up 0.14 1.00 0.93 1.10 0.97 0.92

BFS depth limit DL is set to 4. Note that, with such a limitation, the performance

of SPP is expected to be closer to that of SP, the more advanced version of SPP pro-

posed in [2]. Furthermore, we think that the SP algorithm of [2] is similar1 to using

an IR-Tree when the α−radius parameter for the former method is also set to 4, i.e.,

the depth limit DL used while constructing the IR-tree. Because of these reasons, we

only consider SPP as a baseline here, but not SP. Our findings in Table 5.2 justifies our

motivation in this thesis: even with a depth limit for BFS, the SPP method is several

order of magnitudes slower than the index-based approaches. Hence, in the rest of

this chapter, we only focus on the performance of the index-based approaches.

In Table 5.3, we present the efficiency figures when the result set size, k, is set as 20.

The trends are similar to those in Table 5.1, as the CS-IIS (with 180 × 180 grids) is

again the best-performing approach.

1 Indeed, SP algorithm employs an IR-Tree like structure for pruning, but still attempts to traverse the graph
on-the-fly without any depth limit, and hence, it is likely to be inferior to IR-Tree in terms of run-time efficiency.

39

Table 5.4: Total processing time (ms) for top-10 results (speed-up is reported wrt.

IR-Tree baseline for the average case)

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 319.99 1,069.08 1,150.57 213.54 195.74 218.07

2 648.36 1,312.68 1,391.29 408.76 372.52 411.81

3 674.00 1,278.27 1,478.15 534.89 484.76 539.76

4 950.03 1,359.04 1,439.51 649.27 567.31 646.65

5 924.89 1,461.06 1,607.87 803.99 697.05 795.93

6 1,007.08 1,317.12 1,461.44 875.49 769.32 864.02

7 1,159.47 1,436.78 1,482.36 1,025.84 874.98 993.54

8 1,427.99 1,437.78 1,613.75 1,154.02 990.32 1,105.14

Average 828.39 1,310.57 1,427.44 654.64 573.98 646.17

Speed-up 1.58 1.00 0.92 2.00 2.28 2.03

5.1.2 Total Query Processing Time

In this section, we compare the total query processing time for the indexing schemes

in two ways: by reporting the actual measurements and simulated results.

For the actual Total Query Processing Time, we measure the total time from the be-

ginning of the query processing to the end of it. To make our measurements more

reliable, we restarted our server before running each experiment (for a given index-

ing scheme and parameter combination). By doing so, we aim to reduce the caching

effects (of disk pages) among different experiments.

While the aforementioned approach may reduce the caching effect across experi-

ments, it is still vulnerable to inter-query caching, e.g., when the same keyword ap-

pears in more than one query. As a remedy, we calculate the Simulated Total Query

Processing time, which essentially computes the disk access times using disk param-

eters and disk access statistics that are logged during the processing of each query, as

in Formula 5.2.

ReadT ime = 1/(TransferSpeed(Bytes/Sec)/PageSize) (5.1)

40

SimulatedT ime =MemoryT ime+(SeekT ime∗IOCount)+(ReadT ime∗PageCount)
(5.2)

As can be seen in Tables 5.4 and 5.5, CS-IIS indexes clearly outperform IR-Tree

and DIR-Tree in terms of both measured and simulated total query processing time.

Interestingly, even the Full Index is better than the IR-Tree and DIR-Tree indexing

schemes. The reason for the inferior performance of the latter approaches is their

large number of direct disk I/Os (as will be discussed in the next section). For a

query of n keywords, both Full Index and CS-IIS variants make only n direct I/Os,

while tree-based indexes may need to access several leaf nodes until the top-k result

is constructed.

We also see the parallelism between Total Query Processing Time and Simulated

Query Processing Time results reported in the respective Tables 5.4 and 5.5. While

the presented values differ (as the actual disk access times may differ from the an-

alytical results due to disk workload during the experiments), the trends are similar.

Overall, our findings regarding memory and total query processing times reveal that

our approach using the CS-IIS scheme is more efficient than all its competitors in

addressing the semantic place retrieval problem.

5.2 Direct Disk Access Count

Direct Disk Access count is the number of direct I/O operations, i.e., the number

of times a disk seek is required to access a position on the disk. This is another

measure that the CS-IIS is an obvious winner. The Full Index and CS-IIS make a

disk access per query term to get its posting list, while IR-Tree and DIR-Tree need

to access several tree nodes. Tables 5.6 and 5.7 show that the difference in access

patterns is remarkable, as Full Index and CS-IIS makes an order of magnitude smaller

number of accesses. Furthermore, the tree-based indexes need to make an even larger

number of I/Os, as shown in the case of retrieving top-20 results, while the number of

I/O operations for Full Index and CS-IIS is fixed, i.e., equal to the number of query

keywords.

41

Table 5.5: Simulated total processing time (ms) for top-10 results (speed-up is re-

ported wrt. IR-Tree baseline for the average case)

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 166.10 218.97 203.17 47.15 45.52 50.41

2 361.80 349.63 314.66 98.83 102.60 109.31

3 316.16 453.23 393.92 144.88 146.36 157.82

4 530.13 571.22 522.94 190.35 187.29 202.40

5 415.31 760.12 670.45 240.75 233.52 258.45

6 465.37 769.38 705.45 274.20 271.15 289.92

7 538.21 937.29 852.09 323.05 310.36 341.55

8 745.77 1,076.29 975.78 369.37 369.88 390.80

Average 412.16 593.33 536.01 192.84 190.29 205.81

Speed-up 1.44 1.00 1.11 3.08 3.12 2.88

Table 5.6: Direct disk access count comparison for top-10 results

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS

1 1.00 17.48 18.91 1.00

2 2.00 27.23 30.41 2.00

3 3.00 34.85 40.14 3.00

4 4.00 47.04 51.34 4.00

5 5.00 60.68 69.07 5.00

6 6.00 64.06 70.10 6.00

7 7.00 78.00 86.00 7.00

8 8.00 89.54 99.00 8.00

Average 4.11 48.28 53.57 4.11

5.3 Other Metrics

5.3.1 Disk Page Count

Disk Page Count shows how many pages are read from the disk during the execution

of query processing. This metric differs from the Direct Disk Access Count since

during an I/O operation many disk pages (say, corresponding to a long posting list)

42

Table 5.7: Direct disk access count comparison for top-20 results

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS

1 1.00 19.75 21.03 1.00

2 2.00 29.10 32.28 2.00

3 3.00 40.70 46.97 3.00

4 4.00 50.28 54.79 4.00

5 5.00 64.02 74.39 5.00

6 6.00 71.45 77.68 6.00

7 7.00 80.36 88.14 7.00

8 8.00 100.39 108.09 8.00

Average 4.11 52.63 58.14 4.11

can be read. Therefore, we separately report the disk page count for our experiments.

Tables 5.8 and 5.9 show that the baseline approaches IR-Tree and DIR-Tree have

fewer Disk Page Counts on average, which is only 48.28 for the IR-Tree. CS-IIS has

a Direct Disk Access Count the same as the number of query terms, but on the other

hand, CS-IIS reads the postings list of a query term as a whole, making the disk page

count 350.55 on average for the CS-IIS 180 index. IR-Tree and DIR-Tree reach the

disk for every node they encounter, which typically takes a single page. This increases

their Direct Disk Access Count but reduces the Total Disk Page Count they read.

Disk Page Count is insufficient to make IR-Tree and DIR-Tree successful in terms of

the disk operation metrics. Even if they have a fewer Disk Page Count, for modern

disks the transfer speed is considerably faster than the seek time, making the Direct

Disk Access Count a more important metric. In particular, for the disk in our exper-

imental setup, the transfer speed is measured as 190 Mb/sec, implying a latency 0.3

ms for reading a page with 64000 bytes. In contrary, average seek time is 10 ms,

which is an order of magnitude slower.

5.3.2 Total Byte Size

Total Byte size measures how many bytes are read from the disk during the algorithm

evaluation. Obviously, this is correlated with the previous metric, number of disk

43

Table 5.8: Total disk page count comparison for top-10 results

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 64.38 17.48 18.91 68.80 64.65 72.75

2 163.30 27.23 30.41 174.38 163.74 184.39

3 251.06 34.85 40.14 268.13 251.81 283.71

4 320.68 47.04 51.34 342.62 321.54 362.32

5 418.07 60.68 69.07 446.87 419.13 473.11

6 470.60 64.06 70.10 502.30 471.69 531.43

7 562.23 78.00 86.00 600.27 563.04 635.12

8 636.12 89.54 99.00 679.25 636.89 718.93

Average 328.23 48.28 53.57 350.55 328.96 370.91

Table 5.9: Total disk page count comparison for top-20 results

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 64.38 19.75 21.03 68.80 64.65 72.75

2 163.30 29.10 32.28 174.38 163.74 184.39

3 251.06 40.70 46.97 268.13 251.81 283.71

4 320.68 50.28 54.79 342.62 321.54 362.32

5 418.07 64.02 74.39 446.87 419.13 473.11

6 470.60 71.45 77.68 502.30 471.69 531.43

7 562.23 80.36 88.14 600.27 563.04 635.12

8 636.12 100.39 108.09 679.25 636.89 718.93

Average 328.23 52.63 58.14 350.55 328.96 370.91

44

Table 5.10: Total byte size (MB) comparison for top-10 results

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 4.08 0.30 0.33 4.36 4.10 4.62

2 10.39 0.43 0.48 11.09 10.42 11.74

3 15.98 0.52 0.61 17.06 16.02 18.06

4 20.40 0.61 0.68 21.79 20.44 23.07

5 26.60 0.79 0.94 28.43 26.66 30.14

6 29.93 0.79 0.88 31.95 29.99 33.83

7 35.77 0.93 1.05 38.18 35.80 40.45

8 40.47 1.04 1.21 43.20 40.50 45.77

Average 20.88 0.64 0.72 22.30 20.92 23.61

pages read. Hence, IR-Tree and DIR-Tree are again better than the CS-IIS and Full

indexes for similar reasons explained in Section 5.3.1. The IR-Tree and DIR-Tree

have read fewer bytes since their query processing algorithm reads posting lists cor-

responding per node, as described in Section 3.3. Naturally, the posting lists per node

are shorter compared to the full postings lists of terms that are fetched by CS-IIS. As

shown in Tables 5.10 and 5.11, IR-Tree reads 0.64 MB on the average. This value

is 22.30 MB for the CS-IIS 180. Even if the total byte size is significantly larger, the

total query processing time, including the disk reading time, is smaller for the CS-IIS.

This difference has a good reason. While CS-IIS reads the posting lists as a whole,

the IR-Tree divides them into smaller chunks for each node, increasing the number of

direct disk accesses, each of which involves an expensive disk seek.

5.3.3 Number of Processed Document Postings

As implied by its name, this measure captures the number of document postings

that are processed during query evaluation. In other words, the total number of

< place, looseness > pairs processed for each query is logged, and we report the

average value over all the queries. For IR-Tree and DIR-Tree, whenever a new node

is accessed during processing, the size of each posting list of each query keyword is

added to this count. As shown in Table 5.12, the counts for other indexes are sig-

45

Table 5.11: Total byte size (MB) comparison for top-20 results

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 4.08 0.34 0.36 4.36 4.10 4.62

2 10.39 0.46 0.51 11.09 10.42 11.74

3 15.98 0.60 0.71 17.06 16.02 18.06

4 20.40 0.65 0.72 21.79 20.44 23.07

5 26.60 0.83 1.00 28.43 26.66 30.14

6 29.93 0.87 0.97 31.95 29.99 33.83

7 35.77 0.95 1.08 38.18 35.80 40.45

8 40.47 1.14 1.28 43.20 40.50 45.77

Average 20.87 0.68 0.77 22.29 20.91 23.61

nificantly smaller than that for the Full Index. We explain this as follows. IR-Tree

and DIR-Tree stop execution when they reach the top-k results. CS-IIS also employs

an early-stopping technique. But Full Index doesn’t apply such a methodology, and

hence, should process all the document postings. In particular, the IR-Tree has pro-

cessed 15,979.92, and the CS-IIS 180 processed 18,618.87 postings on the average,

as shown in Table 5.12. In contrast, the Full Index processed 570,108.36 postings on

the average.

Table 5.12: Number of processed document postings for top-10 results

Number of Keywords
Baseline Proposed

Full Index IR-Tree DIR-Tree CS-IIS 180 CS-IIS 36 CS-IIS 300

1 111,727.15 2,339.20 2,814.54 2,601.88 5,783.40 2,396.07

2 283,963.91 7,366.18 8,638.73 4,113.61 18,154.51 3,081.14

3 436,647.61 11,623.57 14,171.77 6,992.34 27,197.15 5,748.10

4 557,293.48 14,917.60 17,017.41 15,001.85 35,904.11 12,146.91

5 726,474.56 21,823.23 26,558.64 24,441.05 64,548.53 20,853.19

6 817,373.36 22,771.50 26,025.19 31,706.26 70,956.28 26,870.41

7 975,775.44 28,042.07 32,417.37 33,828.61 64,555.07 29,355.53

8 1,103,735.94 32,785.70 38,919.05 50,014.96 100,475.18 45,152.69

Average 570,108.36 15,979.92 18,782.77 18,618.87 43,569.39 15,998.14

46

Table 5.13: Number of processed grid postings for CS-IIS for top-10 results

Number of Keywords CS-IIS 180 CS-IIS 36 CS-IIS 300

1 69.26 14.90 122.37

2 8.66 3.82 13.47

3 10.42 3.90 18.38

4 19.31 5.32 33.18

5 35.57 9.08 62.37

6 23.64 5.70 42.23

7 25.36 4.83 51.61

8 29.61 6.19 57.82

Average 30.21 7.27 54.20

5.3.4 Number of Processed Grid Postings

Processed grid count is the number of grids processed by our approach on CS-IIS

until the early termination. This is an important metric that clearly shows the benefit

of employing grid structure in the indexing scheme. As explained in Chapter 2.3, the

main advantage of the grid-based indexing schemes is eliminating some grids even

before processing.

As shown in Table 5.13, CS-IIS variants for the different numbers of grids (i.e.,

ranging from 36 × 36 to 300 × 300) process significantly smaller numbers of grid

postings, i.e., between 7.27 and 54.20, on the average. We think that this finding is

essentially due to the Ranked AND query processing applied in our setting.

In addition to the number of processed grid postings, we also report its ratio to the

total number of grid postings that appear in the grid-intersection set of a query’s

postings lists, to emphasize the impact of our early-stopping. Table 5.14 reveals that

on average, the ratio is 18% for both CS-IIS 180 and CS-IIS 36, and 19% for CS-IIS

300. These figures imply that the early-stopping approach applied during the query

processing with CS-IIS is quite effective.

47

Table 5.14: Ratio of the processed grid postings for CS-IIS for top-10 results

Number of Keywords CS-IIS 180 CS-IIS 36 CS-IIS 300

1 0.32 0.32 0.32

2 0.10 0.12 0.10

3 0.10 0.11 0.11

4 0.14 0.14 0.14

5 0.15 0.15 0.16

6 0.22 0.19 0.23

7 0.16 0.13 0.18

8 0.21 0.17 0.23

Average 0.18 0.18 0.19

5.4 Summary of Experimental Findings

Our extensive experiments presented in this chapter demonstrate that our adaptation

of CS-IIS with early-stopping is the best-performing approach for the semantic place

retrieval problem. Specifically, our approach significantly outperforms the most ef-

ficient baseline using an IR-Tree in terms of the total query processing time (using

either measured or simulated time figures). This is due to the small number of di-

rect disk accesses required by the CS-IIS, while the number of accesses made by the

IR-Tree is an order of magnitude larger. Since disk seeks are more costly than data

reading, CS-IIS keeps its advantage although it fetches a larger number of disk pages

in total.

Note that, even if the disk access cost is totally neglected (i.e., assuming all indexes

are kept in memory), our approach can still outperform its competitor, as CS-IIS (us-

ing 180× 180 grids) provides a speed-up of 1.10x over the IR-tree based approach in

terms of the in memory query processing time. Our gains are even more emphasized

for queries with a small number of keywords, which is more likely in practical search

applications. Experiments also show that the early-stopping strategy significantly re-

duces the number of grids considered during the query processing, which contributes

to the superior in memory processing efficiency of our approach with CS-IIS.

48

CHAPTER 6

CONCLUSIONS

In this work, we present an alternative approach to address the problem of semantic

place retrieval, which aims to retrieve top-k places on a knowledge graph using both

textual and spatial scores.

Our work makes several important contributions to scientific literature. First, we

implemented and analyzed a baseline approach that conducts an on-the-fly traversal

of the knowledge graph to answer the semantic place queries. We observed that such a

traversal is prohibitively costly in terms of in memory time and total query processing

time measurements. As a remedy, we hypothesized that query keywords that are

located at very distant nodes from the place may not be helpful, and hence, enforced

a pre-defined limit for the depth of graph search, i.e., we did not follow the paths

beyond this depth limit.

Setting a limit on search depth allowed us to determine all the terms related to a

place during an offline pre-processing stage. Thus, as our second contribution, we

applied two well-known geo-indexing approaches, IR-Tree and DIR-Tree [5], to this

problem. To this end, we extended a public codebase from an earlier work [8]. Our

extensive experiments showed that these approaches yield high efficiency in terms

of in memory query processing time, but they cause a large number of direct disk

accesses, making them inferior to even using a simple Full Index in terms of total

query processing time.

As a third contribution, we adapted the cluster-skipping inverted index structure (CS-

IIS) [9] that has been proposed for search over clustered text document collections.

In the postings lists of CS-IIS, instead of topical clusters, we grouped postings for

49

places according to the geographical grids they appear in. We also tailored an early-

stopping technique that terminates query processing when it is guaranteed that unpro-

cessed grids cannot include a place that can get into the top-k results. Our experiments

demonstrated that CS-IIS needs just a few direct disk accesses (i..e, equal to the num-

ber of query keywords) and hence, it performs better than all the baseline approaches.

In particular, CS-IIS (with 180×180 grids) is 9% better than IR-Tree for the in mem-

ory execution time. When the simulated total query processing time is considered,

CS-IIS is 64% better than IR-Tree.

There are several exciting future work directions. It seems promising to create a

hybrid of the CS-IIS and IR-tree, to have the best of both approaches. We also plan

to extend our research by comparing CS-IIS with other indexing approaches from the

literature. Finally, we plan to investigate the performance of other query types, such

as Ranked OR queries and range queries.

50

REFERENCES

[1] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson, “Spatio-textual indexing for

geographical search on the web,” in International Symposium on Spatial and

Temporal Databases, pp. 218–235, Springer, 2005.

[2] D. Wu, H. Zhou, J. Shi, and N. Mamoulis, “Top-k relevant semantic place re-

trieval on spatiotemporal rdf data,” The VLDB Journal, vol. 29, no. 4, pp. 893–

917, 2020.

[3] M. Sanderson and J. Kohler, “Analyzing geographic queries,” in SIGIR Work-

shop on Geographic Information Retrieval, vol. 2, pp. 8–10, 2004.

[4] “Microsoft: 53 percent of mobile searches have local intent.”

https://searchengineland.com/microsoft-53-percent-

of-mobile-searches-have-local-intent-55556, 2010. Ac-

cessed: 2022-12-21.

[5] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most rele-

vant spatial web objects,” Proceedings of the VLDB Endowment, vol. 2, no. 1,

pp. 337–348, 2009.

[6] Z. Cai, G. Kalamatianos, G. J. Fakas, N. Mamoulis, and D. Papadias, “Diversi-

fied spatial keyword search on RDF data,” VLDB J., vol. 29, no. 5, pp. 1171–

1189, 2020.

[7] J. Shi, D. Wu, and N. Mamoulis, “Top-k relevant semantic place retrieval on

spatial rdf data,” in Proceedings of the 2016 International Conference on Man-

agement of Data, pp. 1977–1990, 2016.

[8] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query process-

ing: An experimental evaluation,” Proceedings of the VLDB Endowment, vol. 6,

no. 3, pp. 217–228, 2013.

51

https://searchengineland.com/microsoft-53-percent-of-mobile-searches-have-local-intent-55556
https://searchengineland.com/microsoft-53-percent-of-mobile-searches-have-local-intent-55556

[9] I. S. Altingovde, E. Demir, F. Can, and O. Ulusoy, “Incremental cluster-based re-

trieval using compressed cluster-skipping inverted files,” ACM Trans. Inf. Syst.,

vol. 26, jun 2008.

[10] F. Can, I. S. Altingövde, and E. Demir, “Efficiency and effectiveness of query

processing in cluster-based retrieval,” Information Systems, vol. 29, no. 8,

pp. 697–717, 2004.

[11] I. S. Altingövde, E. Demir, F. Can, and Ö. Ulusoy, “Site-based dynamic pruning

for query processing in search engines,” in Proceedings of the 31st Annual Inter-

national ACM SIGIR Conference on Research and Development in Information

Retrieval, pp. 861–862, 2008.

[12] J. Mackenzie, M. Petri, and A. Moffat, “Anytime ranking on document-ordered

indexes,” ACM Transactions on Information Systems (TOIS), vol. 40, no. 1,

pp. 1–32, 2021.

[13] G. Salton and M. J. McGill, Introduction to modern information retrieval.

mcgraw-hill, 1983.

[14] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg, “Efficient pro-

cessing of top-k spatial keyword queries,” in International Symposium on Spa-

tial and Temporal Databases, pp. 205–222, Springer, 2011.

[15] A. Khodaei, C. Shahabi, and C. Li, “Hybrid indexing and seamless ranking of

spatial and textual features of web documents,” in International Conference on

Database and Expert Systems Applications, pp. 450–466, Springer, 2010.

[16] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM Computing

Surveys (CSUR), vol. 38, no. 2, pp. 6–es, 2006.

[17] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Pro-

ceedings of the 1984 ACM SIGMOD International Conference on Management

of Data, pp. 47–57, 1984.

[18] G. K. Zipf, Human behavior and the principle of least effort: An introduction to

human ecology. Ravenio Books, 2016.

52

[19] N. Jardine and C. J. van Rijsbergen, “The use of hierarchic clustering in infor-

mation retrieval,” Information Storage and Retrieval, vol. 7, no. 5, pp. 217–240,

1971.

[20] “Rdf.” https://www.w3.org/RDF/, 2014. Accessed: 2022-12-17.

[21] “Sparql 1.1 protocol.” https://www.w3.org/TR/sparql11-

protocol/, 2013. Accessed: 2022-12-17.

[22] B. Croft, D. Metzler, and T. Strohman, Search engines: Information retrieval in

practice. Pearson Education, 2011.

[23] J. Mackenzie, F. M. Choudhury, and J. S. Culpepper, “Efficient location-aware

web search,” in Proceedings of the 20th Australasian Document Computing

Symposium, pp. 1–8, 2015.

[24] B. Schnitzer and S. T. Leutenegger, “Master-client r-trees: a new parallel r-tree

architecture,” in Proceedings. Eleventh International Conference on Scientific

and Statistical Database Management, pp. 68–77, IEEE, 1999.

[25] “YAGO 3.” https://yago-knowledge.org/downloads/yago-3,

2022. Accessed: 2022-08-14.

[26] F. Mahdisoltani, J. Biega, and F. Suchanek, “Yago3: A knowledge base from

multilingual wikipedias,” in 7th Biennial Conference on Innovative Data Sys-

tems Research, CIDR Conference, 2014.

[27] “Google keyword study.” https://backlinko.com/google-

keyword-study, 2020. Accessed: 2022-11-29.

[28] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,” in Proceedings

of the 1st International Conference on Scalable Information Systems (InfoS-

cale), 2006.

53

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-protocol/
https://yago-knowledge.org/downloads/yago-3
https://backlinko.com/google-keyword-study
https://backlinko.com/google-keyword-study

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Contributions and Novelties
	The Outline of the Thesis

	Related Work
	Inverted Files
	R-Tree Based Indexes
	R-Tree
	S2I

	Grid and Cluster Based Indexes
	TS
	SKIF

	METHODOLOGY
	Graph Traversal Baseline Approaches
	BSP
	SPP
	Limiting Traversal Depth

	Full Index
	IR-Tree
	How does an IR-Tree Work?

	DIR Tree
	CS-IIS

	EXPERIMENTAL SETUP
	Dataset
	Query Sets
	Meta Information For the Index Files
	Parameters and Platform
	Evaluation Metrics

	EXPERIMENTAL RESULTS
	Time Efficiency Comparison
	In Memory Processing Time
	Total Query Processing Time

	Direct Disk Access Count
	Other Metrics
	Disk Page Count
	Total Byte Size
	Number of Processed Document Postings
	Number of Processed Grid Postings

	Summary of Experimental Findings

	Conclusions
	REFERENCES

