
PRIVACY-PRESERVING HORIZONTAL FEDERATED LEARNING
METHODOLOGY THROUGH A NOVEL BOOSTING-BASED FEDERATED

RANDOM FOREST ALGORITHM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERT GENÇTÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JANUARY 2023





Approval of the thesis:

PRIVACY-PRESERVING HORIZONTAL FEDERATED LEARNING
METHODOLOGY THROUGH A NOVEL BOOSTING-BASED

FEDERATED RANDOM FOREST ALGORITHM

submitted by MERT GENÇTÜRK in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Nihan Kesim Çiçekli
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Özgür Ulusoy
Computer Engineering, Bilkent University

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering, METU

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Prof. Dr. Ferda Nur Alpaslan
Computer Engineering, METU

Assist. Prof. Dr. Engin Demir
Computer Engineering, Hacettepe University

Date: 04.01.2023



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Mert Gençtürk

Signature :

iv



ABSTRACT

PRIVACY-PRESERVING HORIZONTAL FEDERATED LEARNING
METHODOLOGY THROUGH A NOVEL BOOSTING-BASED

FEDERATED RANDOM FOREST ALGORITHM

Gençtürk, Mert

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Nihan Kesim Çiçekli

January 2023, 136 pages

In this thesis, a novel federated ensemble classification algorithm for horizontally

partitioned data called Boosting-based Federated Random Forest (BOFRF) is pro-

posed, which not only increases the predictive power of all participating sites, but

also provides significantly high improvement on the predictive power of sites having

unsuccessful local models. In this regard, a federated version of random forest, which

is a well-known bagging algorithm, is implemented by adapting the idea of boosting

to it. In the integration step, a novel aggregation and weight calculation methodology

is introduced that assigns weights to local classifiers based on their classification per-

formance at each site instead of proportioning them with the sample size or site index

without increasing the communication or computation cost. To increase the predictive

power of the federated models built through the proposed algorithm, a personalized

implementation is presented where each participant fine-tunes the hyperparameters of

BOFRF locally and come up with a better-performing federated model on their own

datasets. In addition, a clustered extension is proposed where participants are clus-

tered according to their data distribution similarities or differences prior to running

the algorithm. Finally, to prevent security breaches from happening and increase the

v



level of privacy, two different implementations are proposed for BOFRF, which are

centralized implementation with a trusted third party and decentralized implementa-

tion using secure sum protocol. The performance of the proposed solution was eval-

uated in different federated environments that were set up by using four healthcare

datasets. The empirical results show that the BOFRF algorithm and its extensions

improve the predictive power of local random forest models in all cases. The advan-

tage of the proposed methodology is that the level of improvement it provides for

sites having unsuccessful local models is significantly high unlike existing solutions.

Keywords: Federated learning, Ensemble learning, Machine learning, Random Forest

classification, Privacy-preservation

vi



ÖZ

YENİ BİR GÜÇLENDİRMEYE DAYALI BİRLEŞİK RASTGELE ORMAN
ALGORİTMASIYLA GİZLİLİĞİ KORUYAN YATAY BİRLEŞİK ÖĞRENİM

YÖNTEMİ

Gençtürk, Mert

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli

Ocak 2023 , 136 sayfa

Bu çalışmada, yatay olarak bölümlenmiş veriler için Güçlendirmeye Dayalı Birle-

şik Rastgele Orman (BOFRF) adı verilen, yalnızca tüm katılımcıların tahminleme

gücünü artırmakla kalmayıp aynı zamanda başarısız yerel modellere sahip katılımcı-

ların tahmin gücü üzerinde önemli ölçüde yüksek iyileştirme sağlayan yeni bir bir-

leşik topluluk sınıflandırma algoritması önerilmiştir. Algoritma, iyi bilinen bir tor-

balama algoritması olan rastgele ormana artırma fikri uyarlanarak, onun bir birleşik

öğrenme versiyonu olarak geliştirilmiştir. Entegrasyon adımında, iletişim ve hesap-

lama maliyetini artırmayan, yerel sınıflandırıcıların her bir katılımcının verisi üze-

rindeki sınıflandırma performansına dayalı yeni bir ağırlık hesaplama ve birleştirme

metodolojisi sunulmuştur. Çalışmada ayrıca, önerilen algoritma aracılığıyla oluşturu-

lan birleşik modellerin tahmin gücünü artırmak için, her bir katılımcının BOFRF’in

hiper parametrelerine yerel olarak ince ayar yaptığı ve kendi veri kümesinde daha iyi

performans gösteren bir birleşik model oluşturduğu kişiselleştirilmiş bir BOFRF al-

goritması sunulmuştur. Ek olarak, katılımcıların algoritmayı çalıştırmadan önce veri

vii



dağılımı benzerliklerine veya farklılıklarına göre kümelenmesini sağlayan bir uzantı

da önerilmiştir. Son olarak, güvenlik ihlallerinin oluşmasını önlemek ve mahremiyet

seviyesini artırmak için BOFRF için güvenilir bir üçüncü taraf ile merkezileştirilmiş

uygulama ve güvenli toplam protokolü kullanılarak merkezi olmayan uygulama ol-

mak üzere iki farklı uygulama önerilmiştir. BOFRF’in performansı, sağlık sektörün-

den dört ayrı veri seti kullanılarak kurulan farklı federe ortamlarda değerlendirilmiştir.

Sonuçlar, BOFRF algoritmasının ve uzantılarının, her durumda yerel rastgele orman

modellerinin tahmin gücünü geliştirdiğini göstermiştir. Önerilen metodolojinin avan-

tajı, başarısız yerel modellere sahip katılımcılar için sağladığı iyileştirme seviyesinin

mevcut çözümlere kıyasla önemli ölçüde yüksek olmasıdır.

Anahtar Kelimeler: Birleşik öğrenme, Topluluk öğrenimi, Makine öğrenimi, Rastgele

Orman sınıflandırması, Gizliliğin korunması

viii



To my dear wife, Ceyda

ix



ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to my supervisor Prof.

Dr. Nihan Kesim Çiçekli for her guidance, encouragement and continuous support

throughout this study. I would like to extend my gratitude to Prof. Dr. Pınar Karagöz

and Assist. Prof. Dr. Engin Demir for providing me with crucial insights and com-

ments throughout the study.

I am deeply grateful to my colleague Ali Anıl Sınacı, who always helped me with his

support and stimulating suggestions during the research and writing of this thesis. I

am also highly thankful to Gökçe Banu Laleci Ertürkmen and all my other colleagues

at SRDC Corp. for their invaluable support.

My biggest gratitude goes to my dear wife Ceyda for her friendship, encouragement,

patience and always being there for me. None of this would have been possible

without her endless support and belief in me. I would also like to thank my sweet

nephews Toprak and Taylan Dündar for always bringing joy to my life.

Finally, I would like to express my special thanks to my dear parents, my brother

Semih Gençtürk, and my friends Ahmet Sami Küçük and Aydan Kaya Küçük for

their help, support and cheerful presence through the course of this study.

The research leading to the results presented in this thesis was supported by the

FAIR4Health project (Improving Health Research in EU through FAIR Data), which

has received funding from the European Union’s Horizon 2020 Research and Innova-

tion Programme under Grant Agreement Number 824666.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Problem Definition . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Methods and Models . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . 9

2.1 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Central Data Management . . . . . . . . . . . . . . . . . . . 9

2.1.2 Distributed Data Management . . . . . . . . . . . . . . . . . 10

2.2 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xi



2.2.1 Combination Strategies . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3.1 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Horizontal Federated Learning . . . . . . . . . . . . . . . . . 21

2.3.1.1 MultBoost . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1.2 AdaboostPL . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1.3 BOPPID . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Vertical Federated Learning . . . . . . . . . . . . . . . . . . . 27

2.3.3 Applications of Federated Learning . . . . . . . . . . . . . . . 28

2.4 Personalized Federated Learning . . . . . . . . . . . . . . . . . . . . 29

2.5 Clustered Federated Learning . . . . . . . . . . . . . . . . . . . . . 30

3 BOOSTING-BASED FEDERATED RANDOM FOREST (BOFRF) AL-
GORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 The Base Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Complexity Analysis of BOFRF . . . . . . . . . . . . . . . . . . . . 44

3.3 Personalized BOFRF . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Complexity Analysis of Personalized BOFRF . . . . . . . . . . . . . 48

3.5 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . 49

4 PRIVACY-PRESERVING IMPLEMENTATIONS OF BOFRF . . . . . . . 51

4.1 Privacy Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



4.2 Centralized Implementation with a Trusted Third Party . . . . . . . . 51

4.3 Decentralized Implementation Using Secure Sum Protocol . . . . . . 55

4.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 CLUSTERED BOFRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Clustering Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Clustered BOFRF Algorithm . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Complexity Analysis of Clustered BOFRF . . . . . . . . . . . . . . 68

6 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 The Pima Indians Diabetes dataset . . . . . . . . . . . . . . . 71

6.1.2 The Diabetic Retinopathy dataset . . . . . . . . . . . . . . . . 73

6.1.3 The South African Heart Disease dataset . . . . . . . . . . . . 75

6.1.4 The SHELTER dataset . . . . . . . . . . . . . . . . . . . . . 77

6.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Results of Observational Experiments . . . . . . . . . . . . . . . . . 85

7.1.1 Comparison of BOFRF with Local Random Forest . . . . . . 85

7.1.2 Comparison of BOFRF with BOPPID . . . . . . . . . . . . . 90

7.1.3 BOFRF vs Personalized BOFRF . . . . . . . . . . . . . . . . 92

7.2 Results of Statistical Experiments . . . . . . . . . . . . . . . . . . . 96

7.3 Results of the Experiments for Clustered BOFRF . . . . . . . . . . . 102

7.3.1 Experiment with 2 clusters and Manhattan distance . . . . . . 103

xiii



7.3.2 Experiment with 2 clusters and Eucledian distance . . . . . . . 104

7.3.3 Experiment with 3 clusters and Eucledian distance . . . . . . . 105

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

APPENDICES

A HYPERPARAMETER VALUES IN THE OBSERVATIONAL EXPERI-
MENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B Z SCORES OF THE SITES IN THE SHELTER DATASET . . . . . . . . . 127

C CHARACTERISTIC VECTORS IN THE SHELTER DATASET . . . . . . 129

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xiv



LIST OF TABLES

TABLES

Table 3.1 Notations used in the thesis while explaining the details of algorithm. 31

Table 5.1 Additional notations used in clustered BOFRF. . . . . . . . . . . . . 62

Table 6.1 Number of sites, total number of records, and the number of positive

and negative labelled instances in the federated environments built with

the Pima Indians Diabetes dataset in the experiments. . . . . . . . . . . . 80

Table 6.2 Number of sites, total number of records, and the number of positive

and negative labelled instances in the federated environments built with

the Diabetic Retinopathy dataset in the experiments. . . . . . . . . . . . . 81

Table 6.3 Number of sites, total number of records, and the number of positive

and negative labelled instances in the federated environments built with

the South African Heart Disease dataset in the experiments. . . . . . . . . 81

Table 6.4 Total number of records and the number of positive and negative

labelled instances in each site of the SHELTER dataset. . . . . . . . . . . 82

Table 7.1 Comparison of algorithms based on the AUC values in federated

environments built on the Pima Indian Diabetes dataset. . . . . . . . . . . 86

Table 7.2 Comparison of algorithms based on the AUC values in federated

environments built on the Diabetic Retinopathy dataset. . . . . . . . . . . 88

Table 7.3 Comparison of algorithms based on the AUC values in federated

environments built on the South African Heart Disease dataset. . . . . . . 90

xv



Table 7.4 AUC comparison of base BOFRF and personalized BOFRF in fed-

erated environments built on the Pima Indian Diabetes dataset. . . . . . . 94

Table 7.5 AUC comparison of base BOFRF and personalized BOFRF in fed-

erated environments built on the Diabetic Retinopathy dataset. . . . . . . . 95

Table 7.6 AUC comparison of base BOFRF and personalized BOFRF in fed-

erated environments built on the South African Heart Disease dataset. . . . 95

Table 7.7 Achieved AUC values of countries along with their standard devia-

tions in real federated environments built on the SHELTER dataset. . . . . 96

Table 7.8 Achieved accuracy values of countries along with their standard

deviations in real federated environments built on the SHELTER dataset. . 97

Table 7.9 Manhattan Distance matrix on the SHELTER dataset. . . . . . . . . 102

Table 7.10 Eucledian Distance matrix on the SHELTER dataset. . . . . . . . . 103

Table 7.11 Achieved AUC values of countries with 2 clusters formed with Man-

hattan distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 7.12 Achieved AUC values of countries with 2 clusters formed with Eu-

cledian distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 7.13 Achieved AUC values of countries with 3 clusters formed with Eu-

cledian distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table A.1 Hyperparameter values giving the best result in the observational

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table B.1 Z-scores of countries for AUC and accuracy in federated environ-

ments built on the SHELTER dataset. . . . . . . . . . . . . . . . . . . . . 127

Table C.1 Characteristic vector of the countries in the SHELTER dataset. . . . 129

xvi



LIST OF FIGURES

FIGURES

Figure 2.1 Horizontally partitioned data. . . . . . . . . . . . . . . . . . . . 10

Figure 2.2 Vertically partitioned data. . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.3 Overview of bagging technique. . . . . . . . . . . . . . . . . . . 14

Figure 2.4 Comparison of data resampling in Bagging and Boosting. . . . . 17

Figure 2.5 Comparison of model generation in Bagging and Boosting. . . . 17

Figure 2.6 An example federated learning architecture with a third-party

coordinator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.7 An example federated learning architecture in peer-to-peer manner. 20

Figure 3.1 The first step of BOFRF in an example federated setup in which

3 sites participated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.2 The second step of BOFRF in an example federated setup in

which 3 sites participated. . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.3 The third step of BOFRF in an example federated setup in which

3 sites participated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.4 The first three steps of BOFRF in an example federated setup in

which 3 sites participated. . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.5 The fourth step of BOFRF in an example federated setup in

which 3 sites participated. . . . . . . . . . . . . . . . . . . . . . . . . 39

xvii



Figure 3.6 The weight calculation and aggregation steps of BOFRF in an

example federated setup in which 3 sites participated. . . . . . . . . . . 40

Figure 4.1 Trusted Third Parties in distributed data mining. . . . . . . . . . 52

Figure 4.2 The first step of the centralized implementation of BOFRF with

a trusted third party. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.3 The second step of the centralized implementation of BOFRF

with a trusted third party. . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.4 The third step of the centralized implementation of BOFRF with

a trusted third party. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.5 The aggregation procedure in the centralized implementation of

BOFRF with a trusted third party. . . . . . . . . . . . . . . . . . . . . 55

Figure 4.6 Example of a Secure Sum protocol with three participants. . . . 56

Figure 4.7 The first and second steps of the decentralized implementation

of BOFRF using secure sum protocol. . . . . . . . . . . . . . . . . . . 57

Figure 4.8 The third and forth steps of the decentralized implementation of

BOFRF using secure sum protocol. . . . . . . . . . . . . . . . . . . . 58

Figure 4.9 The fifth and sixth steps of the decentralized implementation of

BOFRF using secure sum protocol. . . . . . . . . . . . . . . . . . . . 58

Figure 4.10 The final steps of the decentralized implementation of BOFRF

using secure sum protocol. . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.1 An example of how K-means work. . . . . . . . . . . . . . . . 63

Figure 5.2 Tabular representation of dataset Dn . . . . . . . . . . . . . . . 65

Figure 5.3 An example of a characteristic vector for a simple dataset with

5 features and 6 instances. . . . . . . . . . . . . . . . . . . . . . . . . 66

xviii



Figure 6.1 Distribution of dependent variable in the Pima Indian Diabetes

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 6.2 Correlation of features in the Pima Indian Diabetes dataset. . . . 73

Figure 6.3 Distribution of dependent variable in the Diabetic Retinopathy

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 6.4 Correlation of features in the Diabetic Retinopathy dataset. . . . 74

Figure 6.5 Distribution of dependent variable in the South African Heart

Disease dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 6.6 Correlation of features in the South African Heart Disease dataset.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 6.7 Distribution of dependent variable in the SHELTER dataset. . . 77

Figure 6.8 Correlation of features in the SHELTER dataset. . . . . . . . . 78

Figure 6.9 The setup and evaluation procedure of the experiments. . . . . . 79

Figure 7.1 Comparison of the local RF with BOFRF in the Pima Indian

Diabetes dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 7.2 Comparison of the local RF and BOFRF in the Diabetic Retinopa-

thy dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 7.3 Comparison of the local RF and BOFRF in the South African

Heart Disease dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 7.4 Comparison of the percentage of improvement provided by BOP-

PID and BOFRF on their baseline local models in observational exper-

iments conducted on the Pima Indian Diabetes dataset. . . . . . . . . . 91

Figure 7.5 Comparison of the percentage of improvement provided by BOP-

PID and BOFRF on their baseline local models in observational exper-

iments conducted on the Diabetic Retinopathy dataset. . . . . . . . . . 91

xix



Figure 7.6 Comparison of the percentage of improvement provided by BOP-

PID and BOFRF on their baseline local models in observational exper-

iments conducted on the South African Heart Disease dataset. . . . . . 92

Figure 7.7 Overall AUC comparison of BOFRF with the baseline local RF

model and BOPPID. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 7.8 Overall accuracy comparison of BOFRF with the baseline local

RF model and BOPPID. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xx



LIST OF ABBREVIATIONS

AdaBoost Adaptive Boosting

ADL Activities of Daily Living

AUC Area Under Curve

BMI Body Mass Index

BOFRF Boosting-Based Federated Random Forest

BOPPID Boosting-Based Privacy-Preserving Integration of Distributed

Data

CA Certificate Authority

CFL Clustered Federated Learning

CGI Cognitive Impairment

CM Confusion Matrix

DT Decision Tree

EDC Euclidean Distance of Decomposed Cosine Similarity

FedAvg Federated Averaging

FedMA Federated Matched Averaging

FL Federated Learning

FTL Federated Transfer Learning

GBT Gradient-Boosted Trees

GI Gini Index

HFL Horizontal Federated learning

IFCA Iterative Federated Clustering Algorithm

IG Information Gain

IID Independent Identical Distributions

IoT Internet of Things

xxi



MERF Mixed-Effects Random Forest

MultBoost Multiparty Boosting

Non-IID Non-Independent Identical Distributions

MAML Model-Agnostic Meta-Learning

ML Machine Learning

NH Nursing Home

Per-FedAvg Personalized Federated Averaging

PFL Personalized Federated learning

RF Random Forest

SHELTER Services and Health for Elderly in Long TERm care

SGD Stochastic Gradient Descent

TTP Trusted Third Party

UCI University of California, Irvine

VFL Vertical Federated learning

xxii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In today’s technology age, information systems are incessantly collecting massive

amount of data in their repositories. The analysis of such data and extracting knowl-

edge from them has become an important concept for many different domains such

as security, finance, healthcare, and transportation where data are clustered in a num-

ber of different systems and organizations. As the size of data is huge, traditional

statistical analysis methodologies cannot be used [1]. Instead, enhanced algorithms

are needed to process vast amount of data. Machine learning algorithms can be used

to interpret information by building mathematical models on existing data to make

predictions or decisions without human intervention [2].

An example domain where machine learning is applied on large datasets is healthcare.

Clinical data have various secondary uses for a significant number of diverse sectors

of both public and private interest, as they are rich sources of longed-for intelligence,

especially if they are combined at large scale. This also creates unprecedented oppor-

tunities for a wide range of applications including chronic disease management, clin-

ical decision support services, advanced analytics systems and many more. However,

sharing sensitive health data is strictly controlled by laws and regulations in all around

the world such as the Health Insurance Portability and Accountability Act (HIPAA)

[3] enacted by the United States Congress in 1996, and the General Data Protec-

tion Regulation (GDPR) [4] enforced by the European Union in 2018 to preserve the

privacy of patient information. Due to the sensitive nature of these data, since they

contain personal information of patients such as demographics, conditions, medica-

1



tions, and other health-related information, they typically remain in heterogeneous

and isolated data silos, hampering the extraction of their inherent actionable insights

and intelligence [5]. Consequently, data providers are reluctant to allow clinical data

to leave their premises, hence patient data cannot be shared between clinical sites or

collected by a third-party. This situation prevents the groundbreaking achievements

of machine learning to advance the predictive capabilities of clinical data beyond a

laboratory setting.

Privacy has become an important issue in many machine-learning applications as in

all other fields that deal with sensitive data. In order to prevent the reveal of sensitive

data to the outside world, several privacy preservation methods have been developed,

such as k-anonymity and l-diversity [6]. Such techniques mainly achieve privacy

preservation by modifying or removing some parts of the original data. Although

the transformation of data may provide privacy, it may reduce the quality of the data,

which is formally known as utility, causing defective results in machine learning. In

addition, these methods are open to adversarial attacks that are used to reveal hidden

sensitive information, especially when the attacker has some background knowledge

of the data or when combined with some publicly available data [7]. Therefore, new

algorithms are needed to enable data owners whose data are in different data silos to

perform machine learning operations collaboratively without sharing their sensitive

data in neither raw nor encrypted format.

A way of dealing with these challenges is to apply the concept of federated learn-

ing. The aim of federated learning is to build a joint machine learning model based

on the data residing at multiple sites by exchanging only information about locally

trained models, not actual data [8]. Federated learning has been proven to be a pow-

erful mechanism as it enables multiple parties to build a better global model than

the individual local models in a privacy-preserving setting. It can be applied to both

horizontally partitioned data, where the datasets at different sites share the same set

of features for different ID spaces, and vertically partitioned data, where the datasets

contain different sets of features for the same ID space [9]. Although federated learn-

ing is a new concept proposed by Google in 2016 [10], in the literature, there have

been many implementations of it using different techniques and focusing on differ-

ent aspects, such as providing more security [11, 12], decreasing communication cost

2



[13, 14], reducing computation cost [15], and increasing model performance.

The application of federated learning on ensemble methods is a common practice with

the goal of increasing the power of the predictive model. The idea of ensemble learn-

ing is to combine the predictions of multiple classifiers to produce a single classifier

which is more accurate than any of the individual classifiers constituting the ensemble

[16]. Bagging and Boosting are the two most popular techniques among the many en-

semble methods developed by researchers. Most state-of-the-art horizontal federated

learning approaches utilizing ensemble methods are built on boosting techniques, es-

pecially AdaBoost, which is a well-known and extensively studied algorithm in the

literature [17, 18]. In these approaches, the sites first execute the AdaBoost algorithm

locally on their training data, and then the local models are transferred to a third-

party coordinator or shared between sites to build an integrated model. Various algo-

rithms handle this integration process differently. For instance, AdaBoost.PL aims to

combine like-minded classifiers, hence sorts the weak classifiers in the local models

with respect to their weights and merges the classifiers with similar correctness at the

same sorted level [17]. BOPPID focuses on the data distribution differences between

the sites during the integration and assigns weights to the local models according to

the sampling size of the sites and by giving more importance to the site’s own local

model [18]. However, the weakness of existing federated solutions utilizing ensemble

methods is that although they can successfully improve the prediction power of local

models when the datasets of sites are balanced and of good quality (i.e., the local

models are already above a certain accuracy threshold), they usually fail to provide

the same level of improvement to the models of sites that have an unsuccessful clas-

sifier because of their bad quality or imbalanced data. For example, BOPPID, which

is one of the most successful federated implementations of AdaBoost [18], always

assigns more weight to the site’s own local model compared to any other local model

with the same sample size, because it assumes that other sites might have a different

data distribution; hence, they should not be given more importance. This prevents a

site having an unsuccessful classifier from taking advantage of successful classifiers

of other sites to improve its local model, which results in the site not achieving an

accuracy as good as the others.

3



1.2 Proposed Methods and Models

In this study, first, a novel and practical federated ensemble classification algorithm

for horizontally partitioned data called Boosting-based Federated Random Forest

(BOFRF) is proposed, which not only increases the predictive power of all participat-

ing sites, but also provides significantly high improvements on the predictive power

of sites having unsuccessful local models. In this regard, a federated version of ran-

dom forest, which is a well-known bagging algorithm, is implemented by adapting

the idea of boosting to it. In the integration step, a novel aggregation and weight

calculation methodology is introduced that assigns weights to local classifiers based

on their classification performance at each site instead of proportioning them with the

sample size or site index without increasing the communication or computation cost.

The algorithm operates in six steps: First, random forest models consisting of a num-

ber of decision trees are built at each site. Second, these local models are shared with

every other site and the performance statistics (true/false positive/negative values) of

all decision trees are calculated at each site. Then, global statistics are computed by

aggregating local performance statistics, the weight for each decision tree is calcu-

lated by utilizing the Matthews correlation coefficient (MCC), and finally the final

federated ensemble classifier is generated.

In the integration step, weak classifiers having an MCC value below a certain thresh-

old value are removed to improve the prediction performance of the final federated

ensemble classifier. In the experiments, it was discovered that instead of producing

a single global federated model with a fixed threshold value, different participants

could have federated models that produce better results by personalizing the global

model using different threshold values. In this regard, second in this study, a per-

sonalized BOFRF implementation is presented where each participant fine-tunes the

hyperparameters of BOFRF, including the threshold, locally to come up with a better-

performing federated model on their own datasets.

The proposed BOFRF algorithm provides an adequate level of privacy in its base and

personalized forms as the actual data is not shared among the participants. However,

sharing evaluation metrics in the presence of a sneaky site in the federated environ-

ment may still result in a privacy breach. To prevent privacy violations from hap-

4



pening and increase the level of privacy, two different implementations are proposed

for BOFRF: centralized implementation with a trusted third party and decentralized

implementation using secure sum protocol. In centralized implementation with a

trusted third party, participating sites send their decision trees and confusion matrices

to an orchestrator who is responsible for sending the decision trees to the other sites,

retrieving output confusion matrices, and calculating the final confusion matrix for

each decision tree without knowing anything about the information provided by the

sites. In decentralized implementation, instead of communicating with a third party,

participating sites communicate with each other in a circular way. This approach uses

the secure sum protocol, which allows participating sites to calculate the sum of their

individual data without exposing their data to other sites.

In federated environments, some participants may produce well-performing local

models, so in the federated model, they may not need weak classifiers from par-

ticipants whose data distribution is quite different than their own. On the other hand,

some other participants may generate poorly performing local models, so they may

need weak classifiers from participants whose data distribution is different than their

own. Consequently, fourth and lastly in this study, a clustered BOFRF implementa-

tion is proposed, where participants are grouped into clusters according to their data

distribution differences. To achieve this, a characterization vector definition is intro-

duced and data distribution difference between different sites is calculated. Then, the

participants form a cluster by choosing among other participants according to their

needs and develop their federated model.

1.3 Contributions and Novelties

The primary contributions of this work can be listed as follows:

• A novel Boosting-based Federated Random Forest (BOFRF) algorithm is pro-

posed that combines both bagging and boosting ensemble techniques and adapts

them to horizontal federated learning to enable different sites to perform joint

machine learning operations without sharing any real data between them or

with a third party, hence preserving privacy. Specifically, the decision trees

5



in each local random forest model are considered as weak classifiers and their

weights are calculated in a federated manner.

• A novel aggregation and weight calculation methodology is introduced that

enables participating sites to generate a global federated model that can improve

prediction capability of all sites, regardless of whether they had a successful or

unsuccessful local model.

• A personalized version of BOFRF is proposed to further increase the predictive

power of participating sites.

• Two privacy-preserving implementations of the proposed algorithm are pro-

vided to prevent a sneaky site in the federated environment from identifying

any individual in the participants’ datasets and thus violating privacy.

• An extension of BOFRF, namely clustered BOFRF, is proposed to cluster the

participating sites in the federated environment according to their data distribu-

tion similarities or differences prior to running the BOFRF algorithm.

• The performance of the proposed algorithm is evaluated in several federated

environments that are set up by using four healthcare datasets.

• The experiments show that the proposed algorithm improves the prediction

power of the baseline local random forest model in all cases and produces better

results than similar approaches. In particular, the percentage of improvement

is significantly high for sites having unsuccessful local models because of their

poor quality or imbalanced data.

1.4 The Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents the general concepts

and the related work in the field of data management, ensemble learning, federated

learning, application of ensemble strategies in federated settings, real-world federated

learning applications in different domains, followed by personalized and clustered

federated learning. The proposed Boosting-based Federated Random Forest algo-

rithm, its personalized implementation, and the hyperparameters that can be tuned in

6



it are explained in Chapter 3. In this chapter, complexity anaysis of BOFRF is stud-

ied as well. In Chapter 4, the details of the privacy-preserving implementations of

BOFRF, i.e., centralized implementation with a trusted third party and decentralized

implementation with secure-sum protocol are presented, while the clustered exten-

sion of BOFRF is explained in Chapter 5. The experimental studies and the results

obtained from observational and statistical experiments are presented in Chapter 6

and 7, respectively. Finally, the limitations and potential future improvements to the

proposed approach are discussed and the thesis is concluded in Chapter 8.

7



8



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, general concepts and related work performed in the field of ensemble

learning, federated learning, and federated learning utilizing ensemble techniques are

presented.

2.1 Data Management

In information systems, data is managed either centrally or in distributed manner.

Machine learning techniques differ based on this management style of data. Collect-

ing data residing at dispersed silos through proprietary or well-established standard

interfaces into a central database is a way to manage data centrally. On the other

hand, data continues to live in silos and performing any kind of machine learning

tasks by connecting to these disparate data sources is the key concept of distributed

data management within machine learning.

2.1.1 Central Data Management

Managing data centrally is the easiest approach for nearly any kind of data process-

ing task. However, keeping all data in a central database or collecting the distributed

data in a central database for processing can create major problems. Among them,

the most concerned issue is privacy. Keeping data at one place can be an effective

approach for machine learning operations and preserving privacy, as all tasks can be

computed in an isolated environment where no data goes out. However, when the se-

curity of this environment is compromised, sensitive data can be leaked to the outside

9



world, resulting in a significant privacy breach. Therefore, distributed applications

have become increasingly popular for protecting sensitive data. However, these ap-

plications, face another privacy issue, where data owners do not want to share their

sensitive data for joint machine learning operations due to technical and ethico-legal

challenges. For this reason, researchers have recently focused on federated learn-

ing techniques that leave data in silos and thus do not present any privacy violation

concerns.

2.1.2 Distributed Data Management

Distributed data is managed either horizontally or vertically. Horizontally partitioned

data is managed by different data owners through the same set of features. Health-

care information systems are a good example of horizontal data management, where

different hospitals maintain the same set of features for patients such as demographic

information like name, surname, gender, age, address etc., and diagnostic data in-

cluding laboratory results and prescriptions. Fig. 2.1 illustrates an example of a

horizontally partitioned data.

Figure 2.1: Horizontally partitioned data.

In contrast, in vertically partitioned data, one set of features is managed by one data

owner, while another set of features is managed by another data owner. Healthcare

data can also be a good example of vertically partitioned data. For example, a patient’s

10



demographic information and examination data including diagnosis may be held by

Hospital A, while laboratory test results and/or radiology images may be held by

Hospital B as illustrated in Fig. 2.2. This means the patient summary is split vertically

between different databases.

Figure 2.2: Vertically partitioned data.

Although horizontal and vertical partitioning has pros and cons in different settings,

distributed data management alone has major advantages over central data manage-

ment for increasing performance and preserving privacy, but for this to happen, it

requires several security measures to be taken. In the literature, while researchers

focus on privacy, they mostly offer solutions on either horizontally or vertically par-

titioned data. However, many real-life requirements indicate that a data set can be

managed both horizontally and vertically in disparate data silos.

2.2 Ensemble Learning

The idea of ensemble learning is to combine the predictions of multiple classifiers

(weak classifiers) to produce a single classifier (strong classifier) that is more accurate

than any of the individual classifiers constituting the ensemble [19]. The concept of

ensemble systems was first introduced by Dasarathy and Sheela in 1979 [20]. Hansen

and Salamon implemented one of the earliest ensemble solutions to improve the clas-

sification performance of neural networks in 1990 [21]. In a nutshell, an ensemble

classifier can be built in three steps [22]. First, data sampling/selection is performed

in a way that prevents weak classifiers from producing the same output, thus provid-

ing diversity. In the second step, weak classifiers are trained on these data. In the final

step, weak classifiers are combined with a strategy such as majority voting to form

11



the final ensemble classifier.

It has been shown that the probability of an ensemble classifier making an incorrect

prediction is usually lower than that of a single classifier. For instance, suppose there

are 25 classifiers in the ensemble model, each with an error rate of 0.35 (ε = 0.35).

The ensemble classifier makes a wrong prediction if the majority of the classifiers

makes a wrong prediction. The probability of 13 or more classifiers making a wrong

prediction is approximately 0.06 as calculated in Eq. 2.1, which is much less than

0.35.

25∑
i=13

(
25

i

)
εi(1− ε)25−i ≈ 0.06 (2.1)

For this reason, ensemble techniques have attracted the attention of many researchers.

As a result, several ensemble methodologies have been developed, including bagging,

boosting, arching, and stacking [23]. These methods have been applied in a variety of

research fields, such as time-series forecasting, image segmentation, and classifica-

tion [24, 25, 26, 27]. The remainder of this section presents the combination strategies

used in ensemble algorithms first, followed by the details of bagging and boosting,

which are the two most commonly used ensemble techniques in the literature.

2.2.1 Combination Strategies

The final step of any ensemble algorithm consists of a strategy for combining the

weak classifiers. Various strategies are available in the literature for different type of

problems. Among them, Averaging is the simplest yet the most popular combination

strategy used in regression problems in which a numerical value is predicted. Given

an ensemble classifier C with n weak classifiers such as {c1, c2, ..., cn}, the final pre-

diction H(x) is calculated as in Eq. 2.2, where hi(x) is the prediction of ci on dataset

x.

H(x) =
1

n
×

n∑
i=1

hi(x). (2.2)

12



Weighted Averaging or Weighted Sums is another important strategy that has been

widely used since its first usage in ensemble learning [28]. In this strategy, each weak

classifier ci is given a weight of wi such that wi ≥ 0 and
∑n

i=1wi = 1. Then, the final

prediction H(x) becomes as in Eq. 2.3.

H(x) =
n∑

i=1

(wi × hi(x)). (2.3)

Majority Voting is the most commonly used combination strategy in classification

problems where the prediction is class labels rather than continuous values. As its

name suggests, in majority voting, the class label that is predicted by the majority of

weak classifiers becomes the final prediction. More formally, in classification prob-

lems, a weak classifier ci predicts a class label from a set of m labels {l1, l2, ..., lm}.
Let dji (x) denote the decision of weak classifier ci for class label lj on sample x such

that if the prediction of ci on sample x is class label lj , set dji (x) = 1, otherwise

dji (x) = 0. Let L be an m-dimensional array {D1(x), D2(x), ..., Dm(x)}, where

Dj(x) denotes how many times lj was predicted on sample x by the weak classifiers.

Then, Dj(x) and the final prediction H(x) can be formulated as in Eq. 2.4 and 2.5,

respectively.

Dj(x) =
n∑

i=1

dji (x) (2.4)

H(x) = max{D1(x), D2(x), ..., Dm(x)} (2.5)

2.2.2 Bagging

Bagging is an abbreviated term that stands for Bootstrap Aggregating. Bootstrap-

ping, or in other words bootstrap resampling, is a methodology of re-sampling from

the original dataset many times to create multiple random datasets. Bagging is a boot-

strap resampling based ensemble algorithm that takes a number of sub-samples (with

or without replacement) from the initial dataset, trains individual predictive models

on those sub-samples and obtains the final classifier by averaging the bootstrapped

13



models, calculating weighted sums or using majority voting [29]. The general idea of

Bagging is illustrated in Fig. 2.3.

Figure 2.3: Overview of bagging technique.

In Bagging, when taking sub-samples with replacement, a sample is randomly se-

lected from the original dataset and copied to the newly created dataset, but it is kept

in the original dataset so that it can still be selected in the next rounds. The models

are then trained on these randomly generated datasets and the final result is obtained

using one of the combination strategies explained in Section 2.2.1. In this way, bag-

ging helps to reduce variance. Therefore, it is an effective technique especially when

there is not enough data in the original dataset.

2.2.2.1 Random Forest

Random Forest (RF) [30] is the best-known bagging algorithm that generates a num-

ber of decision trees by not only taking the random subset of data, but also using a

random subset of features rather than all, to prevent strong predictors in the dataset

from generating highly correlated models. RF can be used for both classification and

regression problems.

Given a dataset D containing N data points and M features, the standard Random

Forest algorithm executes the following three steps while building each decision tree:

14



1. A subset of N data points is randomly selected with replacement from the train-

ing data,

2. At each node of the decision tree, a random subset of M features is selected,

3. The feature that provides the best splitting among the others is used to split the

node.

While aggregating the results of individual decision trees, it uses majority voting

approach in classification problems and averaging approach in regression problems.

The pseudocode of Random Forest is presented in Alg. 1.

Algorithm 1 Random Forest
Input: Training data D = {(X1, y1), (X2, y2), . . . , (XN , yN)},

Feature set F{f1, f2, ..., fM},
Number of decision trees T ,

Procedure:

1: R← {} ▷ Initialize random forest empty

2: for i← 1 to T do

3: Di ← BUILD_DT (Di, F ) ▷ Build a decision tree

4: R← R ∪ ti ▷ Add the decision tree to the forest

5: end for

Output: R

Function: BUILD_DT (D,F )

1: At each node:

2: F ∗ ← random subset of F ▷ Select a random subset of M features in F

3: Split on best feature in F ∗

4: return The decision tree

Despite being a simple and easy to implement algorithm, Random Forest is one of the

best performing machine learning algorithms as it produces highly accurate results.

Unlike the standard Decision Tree algorithm, it decreases variance by using different

sub-samples from the original dataset and random subset of features for training, thus

reducing the risk of overfitting. It is also not affected by data skewness, hence per-

forms well with imbalanced datasets as well. For these reasons, Random Forest has

15



been a topic that researchers have studied for many years. In the literature, there are

many extensions of Random Forest with different bootstrapping approaches focus-

ing on aspects such as clustered or unbalanced data. Hornung et al. [31] developed

BlockForest algorithm by modifying the split point selection of decision trees in ran-

dom forest, which normally uses Information Gain or Gini Index. Hajjem et al. [32]

proposed Mixed-Effects Random Forest (MERF) algorithm as an extension to Ran-

dom Forst for clustered data. Field et al. [33] analyzed the effects of using different

bootstrapping methodologies on clustered data, while Samanta et al. [34] performed

a similar work for highly imbalanced clustered data.

2.2.3 Boosting

Boosting [35] is another popular ensemble method that is widely used in machine

learning applications. In Boosting, the aim is to create a strong classifier from a num-

ber of weak classifiers that are trained sequentially by using the information coming

from the preceding ones [36]. In both Bagging and Boosting, datasets are gener-

ated by taking a number of sub-samples with replacement from the initial dataset.

In the case of Bagging, the probability of any data point to appear in a dataset is

the same. However, in Boosting, weights are assigned to data points in a way the

subsequent model can focus more on the instances that the previous classifier mis-

classified; therefore, some data points may appear more in datasets, while others may

appear less. The comparison of these two approaches in terms of data resampling and

model generation is illustrated in Fig. 2.4 and 2.5, respectively. The figure contents

were retrieved from [37].

2.2.3.1 AdaBoost

AdaBoost, which is a short for Adaptive Boosting, is one of the most popular boosting

algorithms owing to its high-performance and effective prediction capability [38, 39].

In AdaBoost, the weak classifiers are decision trees with only one node and two

leaves, which is called a stump. In each iteration, a stump is generated, and weights

are assigned to both the data points (instances) and weak classifiers based on the

16



Figure 2.4: Comparison of data resampling in Bagging and Boosting.

Figure 2.5: Comparison of model generation in Bagging and Boosting.

correctness of the predictions. Having trained a weak classifier, AdaBoost increases

the weight of the misclassified instances and decreases the weight of the correctly

classified instances so that subsequent classifiers can focus more on the samples on

which the previous classifier made an error. The weights are calculated based on the

error rate of the preceding weak classifiers.

The pseudocode of the AdaBoost algorithm is presented in Alg. 2. The algorithm

starts by initializing the weights. Initially, to all instances are given equal weights

(lines 1 & 2). Then, a classifier cj is fitted by using the current weights Wj on dataset

D (line 5). The error εj of cj is computed as a weighted sum of misclassified in-

stances, where Ii represent the classification performance of cj on instance xi, such

that Ii is set 1 if the classification is incorrect, and 0 if the classification is correct as

17



shown in line 6. The expression indicating the sum of weights in the denominator is

for normalization, which ensures that the sum of the weights in each step is always

equal to 1. The classifier weight αj is then estimated via the formula presented on

line 7, which lets αjcj minimize the exponential loss function [40]. In the next step,

the instance weights are updated (lines 8 & 9). If cj classifies instance xi correctly,

its weight is decreased by multiplying the current weight by exp(−αj), which always

returns a number less than 1. On the other hand, if the classification is incorrect, the

weight is increased by multiplication with exp(αj) which is always greater than 1.

This procedure is repeated M times, which is the pre-defined number of classifiers in

the ensemble, and consequently, the weighted sum of the weak classifiers constitutes

the final ensemble classifier.

Algorithm 2 AdaBoost
Input: Dataset D = {(X1, y1), (X2, y2), . . . , (Xn, yn)},

Weights W = {w1, w2, ..., wn},
Number of classifiers in the ensemble M

Training function β,

Procedure:

1: for i← 1 to n do ▷ Initialize weights

2: wi ← 1/n ▷ Give equal weights to all instances at the beginning

3: end for

4: for j ← 1 to M do

5: cj ← β(D,Wj) ▷ Fit a classifier using the current weights

6: εj ←
∑

wiIi∑
wi

where Ii =

1, if yi ̸= cj(xi)

0, if yi = cj(xi)
▷ Estimate the error of cj

7: αj ← 0.5 ln(
1− εj

εj
) ▷ Calculate the weight of cj

8: for i← 1 to n do ▷ Update the weights of all instances

9: wi ← wi×

exp(αj), if yi ̸= cj(xi)

exp(−αj), if yi = cj(xi)

10: end for

Output: C(x∗) = sign(
∑M

j=1 αjcj(x
∗)) ▷ Classify new data

18



Gradient-boosted trees (GBT) [41], XGBoost [42], LightGBM [43] and CatBoost

[44] are examples of other widely used boosting techniques. GBT follows the same

path as AdaBoost in building the ensemble model, but instead of creating a prede-

fined number of weak classifiers (stumps) and using thier weighted sums as output in

the final step, it combines the results along the way and repeats the model building

process until the result of the error function remains unchanged in the additive model

(i.e., until the differentiable loss function converges). It also uses short decision trees

instead of stumps. XGBoost is an advanced implementation of GBT through system

optimizations and algorithm improvements. It is much faster than GBT as it par-

allelizes the tree building process, which is sequential in both AdaBoost and GBT.

It uses regularization to help reduce overfitting and has built-in cross-validation and

missing value handling capability. LightGBM is an extension of GBT that uses "bins"

instead of single data points when finding splitting thresholds. It performs faster than

others for extremely large datasets.

2.3 Federated Learning

Federated learning (FL) enables multiple sites to build a joint machine learning model

by exchanging only information about locally trained models, rather than actual data

[8]. In FL, each site first builds a local model using their respective training data. The

local models are then either transferred to a third-party coordinator, who is respon-

sible for aggregating local models to build a global model, or exchanged between

the sites in a peer-to-peer manner without the involvement of a third-party coordina-

tor. The resulting federated model is expected to perform as well as the ideal model

generated by collecting all the data in one place.

An example federated learning architecture with a third-party coordinator is illus-

trated in Fig. 2.6. In this architecture, the third-party coordinator acts as a global-level

aggregator, in other words central aggregation server, that sends the initial model pa-

rameters to participating sites (or clients) to start the federated learning process. Each

site then trains a local model using its own dataset, and sends model updates to the

aggregator. The aggregator combines these values, and sends the aggregated model

updates back to the participating sites. This loop is repeated until the model converges

19



or the maximum number of iterations is reached.

Figure 2.6: An example federated learning architecture with a third-party coordinator.

Federated learning architectures can also be built in peer-to-peer manner without the

involvement of a third-party coordinator. An example of such an architecture is shown

in Fig. 2.7. In this architecture, the participating sites communicate directly with

each other instead of a third-party to exchange model updates, and aggregation is

performed locally at each site. Since no third-party is involved at the global level,

participants must agree in advance the order in which they send and receive the model

updates.

Figure 2.7: An example federated learning architecture in peer-to-peer manner.

Federated learning methodologies can be divided into three categories as Horizontal

20



Federated Learning (HFL), Vertical Federated Learning (VFL) and Federated Trans-

fer Learning (FTL) based on the type of data partitioning among participants in terms

of feature and sample space. HFL refers to the cases where participants share the

same set of features, but different sample space; whereas in VFL, participants share

the different set of features for the same sample space. In other words, in HFL,

datasets are similar to the horizontally partitioned data, while they are similar to ver-

tically partitioned data in VFL, as presented in Section 2.1.2. In FTL, on the other

hand, participants share neither the same set of features not the same sample space.

The remainder of this section presents existing studies on HFL and VFL, and appli-

cations of FL in various fields. FTL is not presented as it is not in the scope of this

study.

2.3.1 Horizontal Federated Learning

In 2016, McMahan et al. [10] developed the first federated learning algorithm,

namely federated averaging (FedAvg) to address the challenge of performing machine

learning tasks with datasets having an unbalanced and non-independent identical dis-

tributions (non-IID) among huge number of participants with limited and unreliable

communication bandtwidth. They proposed an HFL-based framework with a third-

party coordinator [45] where Android smartphones are the clients that update model

parameters locally and send them to the cloud for aggregation, thus enabling these

smartphones to build a joint machine learning model without sharing any data. Fe-

dAvg is an umbrella term for both gradient averaging and model averaging. When

sending model updates, the participants can send either gradients or local model

weights to the aggregator at global-level. In the former, the aggregator performs

gradient averaging for combining the gradients retrieved from participants, whereas

it performs model averaging in the latter.

HFL solutions can be implemented either with a third-party coordinator or in peer-to-

peer manner. In HFL with a third-party coordinator, the participants are considered

honest, i.e., trusted, while the aggregator is considered honest-but-curious [46], i.e.,

semi-trusted. Therefore, many studies on this topic have focused on preventing pri-

vacy leaks by encrypting model updates before sending to the aggregator [47], adding

21



noise with differential privacy [11, 12], or with secret sharing [48]. In the peer-to-

peer architecture, since a third-party coordinator is not involved, privacy leaks are

prevented through secure multi-party computation [49] or additively homomorphic

encryption [47].

In addition to the studies focusing on privacy issues in federated learning, researchers

have also made significant efforts to advance existing studies on reducing commu-

nication cost, decreasing computation cost, and increasing model performance, in

various fields of machine learning such as classification, regression, association rule

learning, and deep learning [50, 51, 52]. Nishio and Yonetani [53] designed a pro-

tocol referred to as FedCS, which gives participants a limited time to update model

parameters and integrates only the updates of participants who could achieve to do

so, thereby reducing the overall training time. Wang et al. [14] proposed the Feder-

ated matched averaging (FedMA) algorithm, which reduces the communication cost

in federated neural network architectures by matching and averaging elements in hid-

den layers with similar feature extraction signatures. Liu et al. [54] accelerated the

convergence speed via momentum gradient descent as opposed to FL solutions utiliz-

ing first-order gradient descent.

This thesis focuses on the application of ensemble strategies in horizontal federated

learning to improve the classification performance. In the literature, studies on the

application of federated learning for horizontally partitioned data mainly utilize the

boosting technique, particularly AdaBoost. MultBoost, Adaboost.PL and BOPPID

are three well-known federated implementations of AdaBoost, which are explained

in detail below.

2.3.1.1 MultBoost

Gambs et al. [55] proposed MultBoost (Multiparty Boosting) algorithm as a dis-

tributed implementation of AdaBoost, where the dataset is split between two or more

participants, and the model is built in a privacy-preserving manner. The idea of Mult-

Boost is to merge weak classifiers trained by participants in each iteration and com-

pute the weights based on data instances misclassified by the merged weak classifier.

In each iteration of MultBoost, the participants first agree on a subset of weak clas-

22



sifiers that they will use to return their weak classifiers separately by minimizing the

weighted error over their respective datasets. The weak classifiers are then merged

into a classifier using the majority voting approach at the global level. After ob-

taining the merged classifier, participants test it on their own datasets and computes

the weighted error rates. The error rates are then also combined at the global level

and the weight of the merged classifier is calculated. Finally, the global error rate is

returned to all participants, and their instance weights are updated accordingly. Al-

though the authors showed that MultBoost can produce a result as good as AdaBoost

run on combined datasets, one of the biggest shortcomings of this algorithm is that

it requires intense communication between the participants and a central coordinator,

which creates a crucial performance issue in a federated environment.

2.3.1.2 AdaboostPL

To reduce the communication cost and make computations in participants indepen-

dent of each other, Palit et al. [17] introduced the AdaBoost.PL algorithm. The

pseudocode of Adaboost.PL is presented in Alg. 3. In AdaBoost.PL, participants (or

workers as the authors named) first train a local AdaBoost classifier Hp on their own

datasets by completing all the iterations of the standard AdaBoost algorithm. Hp is

formulated in Eq. 2.6, where hp(i) is the weak classifier (stump) trained at ith step

and αp(i) is the respective weight of it.

Hp = {(hp(1), αp(1)), ..., (hp(T ), αp(T ))} (2.6)

The workers then sort the weak classifiers in the local AdaBoost classifier in increas-

ing order with respect to their weights and obtain Hp∗ as shown in Eq. 2.7, where

(hp∗(1), αp∗(1)) is the weak classifier with the smallest weight, whereas (hp∗(T ), αp∗(T ))

is the weak classifier with the largest weight.

Hp = {(hp∗(1), αp∗(1)), ..., (hp∗(T ), αp∗(T ))} (2.7)

In the next step, the algorithm merges the weak classifiers located at the same index of

23



each participant’s sorted AdaBoost classifiers (line 6) by taking their majority votes.

The merged classifier h(t) at tth index can be formulated as in Eq. 2.8.

h(t)(x) =

1, if
∑M

p=1 h
p∗(t)(x) ̸= 0

0, otherwise
(2.8)

Its weight αt is calculated as the average of the weights of the respective weak clas-

sifiers as shown in line 7. Finally, the weighted sum of merged classifiers constitute

the final classifier.

Algorithm 3 AdaBoost.PL
Input: The training set of M workers, (D1

n1 , ..., DM
nM ),

Number of iterations in AdaBoost T ,

Procedure:

1: for p← 1 to M do

2: Hp ← ADABOOST (Dp
np , T ) ▷ Train a local AdaBoost classifier

3: Hp∗ ← SORT (Hp) ▷ Sort the weak classifiers w.r.t their weights

4: end for

5: for t← 1 to T do

6: h(t) ←MERGE(h1∗(t), ..., hM∗(t)) ▷ Merge the sorted weak classifiers

7: αt ← 1
M

∑M
p=1 α

p∗(t) ▷ Calculate the weight of merged classifier

8: end for

Output: H =
∑T

t=1 α
th(t)

2.3.1.3 BOPPID

Li et al. [18] implemented the BOPPID (Boosting-based privacy-preserving integra-

tion of distributed data) algorithm by following a different methodology while com-

bining the ensemble classifiers generated by the workers. In BOPPID, local classifiers

are shared between participants in peer-to-peer manner, instead of being transferred to

a central coordinator. Unlike AdaBoost.PL, which merges the weak classifiers of lo-

cal ensemble classifiers, BOPPID updates their weights based on the following three

criteria.

24



1. The local model of the participant performing the combination process is al-

ways assigned more weight compared to other local models with the same

sample size.

2. The weights of participants’ local model are proportional to their sample size

such that the more data the participant has, the more weight its local model is

assigned.

3. The weight of the local model of a participant performing the combining pro-

cess has an upper bound; otherwise, the other models become insignificant.

The pseudocode of BOPPID is outlined in Alg. 4. Let (D1
n1 , ..., DM

nM ) denote the

datasets of M workers, where Dp
np is the dataset of pth participant as in Eq. 2.9.

Dp
np = {(Xp

1 , y
p
1), (X

p
2 , y

p
2), ..., (X

p
np , y

p
np)} (2.9)

The BOPPID algorithm starts with training an AdaBoost classifier Hp that contains

T weak classifiers in each participant as formulated in Eq. 2.10, where hp(i) is the

weak classifier trained at ith iteration and αp(i) is the respective weight of it (line 2).

Hp = {(hp(1), αp(1)), (hp(2), αp(2)), ..., (hp(T ), αp(T ))} (2.10)

The training error rate εp of Hp is computed in line 3, where I(A) is the indicator

function that return 0 if A is false and 1 otherwise. Each participant then shares its lo-

cal AdaBoost classifier and sample size with all other participants, so each participant

retrieves M − 1 models from the others.

After each participant receives M − 1 models from the other participants, they run

these models on their own datasets and compute the respective error rates (line 9).

Here εqp represents the error rate when qth participant’s model runs on the pth partici-

pant dataset. If the difference between εp and εqp is less than a pre-defined τ threshold

value, then the model retrieved from the qth participant is included in the ensemble

model created in the pth participant (lines 10 & 11) assuming that these two partici-

pants have a similar data distribution.

25



Algorithm 4 BOPPID (Boosting-based privacy-preserving integration of distributed

data)
Input: The training set of M workers, (D1

n1 , ..., DM
nM ),

Number of iterations in AdaBoost T ,

Threshold value τ ,

Procedure:

1: for p← 1 to M do in parallel

2: Hp ← ADABOOST (Dp
np , T ) ▷ Train a local AdaBoost classifier

3: εp ← 1
np

∑np

i=1 I(H
p(Xp

i ) ̸= ypi ) ▷ Compute the training error rate

4: Share Hp with all other participants

5: end for

6: for p← 1 to M do in parallel ▷ At each participant

7: S ← {p} ▷ Initialize the index set of selected participants

8: for q ← 1 to M − 1 do ▷ For each model received

9: εqp ← 1
np

∑np

i=1 I(H
q(Xp

i ) ̸= ypi ) ▷ Compute the error rate of qth model

10: if (εp − εqp) ≤ τ then ▷ Select models to be included in the ensemble

11: S ← S ∪ q

12: end if

13: end for

14: λ← {λq :
nq∑
sϵS n

s
|qϵS} ▷ Instance proportion of the selected participants

15: λmin ← min(λ) ▷ Minimum instance proportion value

16: λmax ← max(λ) ▷ Maximum instance proportion value

17: for each q ∈ S do ▷ Compute σp
q

18: if p = q then

19: σp
q ←

λq

λ2
max

× ⌈
λ2
max

λmin

⌉
20: else

21: σp
q ← 1

22: end if

23: end for

24: end for

Output: H(x) =
∑

qϵS

∑T
t=1 h

q(t)(x)αq(t)σp
qλq

26



In the next step, the algorithm updates the weights of weak classifiers in the selected

models, namely the local AdaBoost classifiers, by taking into account the three cri-

teria listed above. In this regard, it calculates the instance proportion λ of each par-

ticipant whose local model will be included in the integrated model, and find the

minimum and maximum values (lines 14-16). Then, a value of σp
q is computed using

the formula presented in lines 17 to 23 (mathematical basis and proofs of this formula

can be found in [18]). The weights of each weak classifier are then multiplied with σp
q

and λq, and consequently the federated ensemble classifier is formed as the weighted

sum of the weak classifiers.

In this work, a different ensemble strategy than BOPPID is followed where the weak

classifiers were the decision trees in the local random forest models generated at each

site. Moreover, a different weight calculation methodology is used when merging

the weak classifiers. In the experiments, the results of the proposed algorithm are

compared with only BOPPID, as Li et al. [18] showed that BOPPID performs better

than its competitors, namely MultBoost and AdaBoost.PL.

2.3.2 Vertical Federated Learning

Existing work on VFL in the literature is quite limited when compared to studies on

HFL. After Vaidya et al. [56] implemented privacy-preserving decision trees over

vertical data and Gascón et al. [57] performed linear regression on vertically parti-

tioned data, the first VFL solution was developed by Hardy et al. [58] utilizing homo-

morphic encryption to preserve the privacy of data. In recent years, researchers have

performed several studies on implementing tree-based algorithms in VFL settings.

Cheng et al. [59] proposed SecureBoost, a lossless privacy-preserving tree-boosting

system for vertically partitioned data. Liu et al. [60] implemented a federated forest

algorithm in which participants calculate the impurity improvement values for each

feature locally, and the central coordinator selects the feature that gives the best split

so that a joint random forest can be built. Ge et al. [61] improved the solution pro-

posed by Liu et al. by optimizing the feature selection and pruning steps to create

models with more accurate results.

27



2.3.3 Applications of Federated Learning

Compared to the traditional centralized machine learning approaches, federated learn-

ing provides significant advantages such as protecting data privacy, providing more

diverse data, requiring less hardware and saving time. For these reasons, many indus-

tries and sectors have incorporated federated learning into their business cycles and

developed their FL-based solutions.

Healthcare is one of the largest industries in which FL has received a great deal of

attention. The survey studies conducted by Li et al. [62], Aledhari et al. [63] and Xu

et al. [64] provide a comprehensive summary of real-life applications of FL in health-

care. Wang and Zhou [65] implemented a federated learning framework, named Fed-

SPL, for early diagnosis of diseases. Choudhury et al. [66] predicted adverse drug

reactions using real-world health data of 1 million patients in a federated learning

framework. Dou et al. [67] utilized federated learning for detecting COVID-19 re-

lated lung abnormalities. Abdul et al. [68] studied detecting COVID-19 on chest

x-ray images and showed that federated model gave better prediction accuracy than

the local models. Vaid et al. [69] predicted mortality in COVID-19 patients within

seven days after hospitalization.

In the scope of the FAIR4Health project [70], Alvarez-Romero et al. [71] predicted

readmission risk of patients with chronic obstructive pulmonary disease 30-days after

discharge. Carmona-Pírez et al. [72] applied federated association rule algorithm for

identifying the most frequent chronic disease combinations and their association with

mortality risk.

Federated learning is also being widely explored in the Internet of Things (IoT) field

as it helps reduce communication delays and saves network resources [73]. Traffic

flow estimation [74], path control for unmanned air vehicles (UAVs) [75], energy

prediction in smart cities [76], industry 4.0 WiFi networks [77] and mobile edge net-

works [78] are some examples among the numerous federated learning studies in the

IoT field.

28



2.4 Personalized Federated Learning

In federated learning, the main aim is to build a common global model that produces

better results than each participant’s own local models. However, when the hetero-

geneity of the data distribution (e.g., non-IID) among the participants increases, the

global model might not generalize well on the datasets of all participants, hence might

not yield the expected good results when run on the local dataset of some participants

[79]. To overcome this problem, various studies have been made by researchers to

personalize the global model for each participant and as a result, the concept of Per-

sonalized Federated Learning (PFL) has emerged.

Based on the approach they use to improve the performance of the global model in

each participant, existing PFL solutions in the literature can be grouped into several

categories, including but not limited to local fine-tuning, multi-task learning, model-

mixing and regularization [80, 81].

Among them, local fine-tuning is the most common approach, where each participant

tunes the parameters of the global model locally on their respective datasets. Fallah

et al. [82] studied the convergence of Model-Agnostic Meta-Learning (MAML) [83]

methods for the federated learning systems and implemented the personalized variant

of the FedAvg algorithm, named Per-FedAvg, with convergence guarantees. Wang

et al. [84] and Arivazhagan et al. [85] worked on personalized training of federated

neural networks and proposed solutions where only the parameters in the last layer

are updated through stochastic gradient descent (SGD) for each participant. Although

local fine-tuning can be an effective approach to address the heterogeneity problem

among participants in FL, it is very prone to overfit.

Smith et al. [86] developed a federated multi-task learning framework, named MOCHA,

considering optimization of each participant as a separate task. Hanzely et al. [87]

and Deng et al. [81] proposed solutions mixing participant’s local model with the

global model. Dinh et al. [88] and Huang et al. [89] accomplished personalization

using regularization between the global and local models. Regularization methods are

generally easier to implement as they only require modifying the FedAvg algorithm

slightly [90].

29



2.5 Clustered Federated Learning

Clustered Federated Learning (CFL) is a fairly new concept that has emerged to ad-

dress the challenges that arise when the heterogeneity of data distribution (e.g., non-

IID) among the participants increases. In CFL, the aim is to group multiple partic-

ipants in a way that they build federated models that are more specialized than the

global model but provide better accuracy for the participants in that group.

The first CFL solution was proposed by Sattler et al. [91], in which they clustered

participants by using the cosine similarity between their weight updates. Inspired by

their work, Duan et al. [92] proposed another method, called the euclidean distance

of Decomposed Cosine similarity (EDC), for clustering the participants. Briggs et

al. [93] introduced hierarchical clustering, in which participants are clustered based

on the similarity of gradient updates in their local models. Yu et al. [94] clustered

participants based on their data distribution and built federated model for each cluster

separately.

In these approaches, a central coordinator is present to identify cluster identities of

all the participants, which brings additional computational cost. To reduce this cost,

Ghosh et al. [95] implemented the Iterative Federated Clustering Algorithm (IFCA),

aiming to minimize the participants’ loss values while estimating their cluster identi-

ties without a central machine.

30



CHAPTER 3

BOOSTING-BASED FEDERATED RANDOM FOREST (BOFRF)

ALGORITHM

In this chapter, first, the base Boosting-based Federated Random Forest (BOFRF)

algorithm is described and its mathematical formulation is given. Second, the com-

putational complexity of BOFRF is analyzed. Third, the personalized implementa-

tion of BOFRF is described, and then its complexity analysis is presented. Lastly,

the hyperparameters and how hyperparameter tuning can be performed on BOFRF

are explained. Description of the notations used in this chapter while explaining the

details of algorithm is shown in Table 3.1. The details of the base BOFRF algorithm

and its mathematical formulation have also been published in [96].

Table 3.1: Notations used in the thesis while explaining the details of algorithm.

N Number of sites

Dn Dataset of the nth site

mn Number of instances at the nth site

X Vector of feature values

y Label values ∈ {+1,−1}

Sn Training set of the nth site

Tn Test set of the nth site

Rn The random forest classifier trained at the nth site

kn Number of decision trees at the nth site

Notation Description

Continued on next page

31



Table 3.1: Notations used in the thesis while explaining the details of algorithm. (Con-

tinued)

dni The decision tree at the ith index of the nth site

αn
i The weight of decision tree at the ith index of the nth site

cni (q) The confusion matrix calculated by the qth site for decision tree at the

ith index of the nth site

Cn
i The final confusion matrix for decision tree at the ith index of the nth

site

tp True positive, i.e., the number of positive examples predicted positive

tn True negative, i.e., the number of negative examples predicted negative

fp False positive, i.e., the number of negative examples predicted positive

fn False negative, i.e., the number of positive examples predicted negative

M(Cn
i ) The Matthews correlation coefficient value of confusion matrix Cn

i

τ The threshold value

Fn The local ensemble classifier at the nth site

F The final global ensemble classifier

αn∗
i The "initial" weight of decision tree at the ith index of the nth site

F ∗
n The "initial" local ensemble classifier at the nth site

F ∗ The "initial" global ensemble classifier

Z Number of threshold values

αn
i (τz) The weight of decision tree at the ith index of the nth site based on the

threshold value τz

Fn(τz) The local ensemble classifier at the nth site based on the threshold value

τz

F (τz) The final personalized global ensemble classifier based on the threshold

value τz

Notation Description

32



3.1 The Base Algorithm

The federated environment consists of several sites, each of which contains datasets

with both common and local features. Given N sites, the dataset of the nth site

containing mn instances can be represented as

Dn = {(X1, y1), (X2, y2), . . . , (Xmn , ymn)} (3.1)

where Xi is the vector of the feature values and yi ∈ {+1,−1} is the label used for

binary classification. The datasets at each site are split into two sets: training set Sn

and test set Tn, where Sn ∪ Tn = Dn.

In the base BOFRF algorithm, first, a random forest model is trained on the training

set, S, of each site. A random forest model comprises several decision trees, each of

which is built by using a random subset of features at each split within the tree algo-

rithm as explained in Sec. 2.2.2.1. The random forest classifier having kn decision

trees trained at the nth site is represented as

Rn = {dn1 , dn2 , . . . , dnkn} (3.2)

where dni is the ith decision tree generated in the random forest. In the standard ran-

dom forest algorithm, after the model is built, each decision tree makes a prediction

on the test set T , and the label predicted by the majority of decision trees consti-

tutes the final prediction. In BOFRF, however, a boosting methodology is applied in

a federated manner to calculate the weight αn
i for each decision tree1 so that their

combination will constitute the final ensemble classifier. For this purpose, first, each

decision tree dni of classifier Rn is run on the training set Sn. Then, for each dni the

confusion matrix cni is calculated which is a two-dimensional array of the number of

true positive, true negative, false positive and false negative predictions, such that

cni (n) = (tp, tn, fp, fn). (3.3)

1 In the proposed solution, decision trees are the weak classifiers of the final ensemble classifier. In this thesis,
both terms are used interchangeably; however, they always refer to the same thing.

33



Figure 3.1: The first step of BOFRF in an example federated setup in which 3 sites

participated.

Fig. 3.1 illustrates the first step of the algorithm in an example federated setup in

which three sites participated. In the figure, each ellipse within a site corresponds to

a decision tree, whereas the rounded rectangle next to it represents the corresponding

confusion matrix. The order of the steps is shown by circles with numbers in this

figure and in the figures shown hereinafter.

In the second step, all sites share their own decision trees, in other words weak clas-

sifiers, with every other site, hence the qth site retrieves ((
∑N

i=1 ki) − kq) number

of decision trees as shown in Fig. 3.2. Each decision tree is then run on the site’s

training set Sq, and the corresponding confusion matrix is calculated. The confusion

matrix calculated by the qth site for the decision tree dni retrieved from the nth site

can be represented as

cni (q) = (tp, tn, fp, fn). (3.4)

34



Figure 3.2: The second step of BOFRF in an example federated setup in which 3 sites

participated.

Figure 3.3: The third step of BOFRF in an example federated setup in which 3 sites

participated.

35



In the third step, each site sends the confusion matrices generated in the second step

to the sites from which the corresponding decision tree was received. The final con-

fusion matrix for a decision tree dni is generated by adding up true positives with true

positives, true negatives with true negatives, and so on, as in

Cn
i =

N∑
j=1

cni (j). (3.5)

Fig. 3.3 illustrates the third step of the algorithm, while Fig. 3.4 shows the first

three steps of the algorithm together in an example federated setup in which three

sites participated. In the figures, the arrows indicate the communication between

sites, where straight lines show decision trees sent and dashed lines show confusion

matrices retrieved as a response. Note that although all straight lines are part of step

2 and all dashed lines are part of step 3, these are shown in only one place for visual

convenience in Fig. 3.4.

Figure 3.4: The first three steps of BOFRF in an example federated setup in which 3

sites participated.

Once the final confusion matrices are calculated, the next step is to assign weights to

each decision tree. Most ensemble methods utilize the accuracy or error rate, ratio of

36



misclassified instances, and total number of instances to calculate weights for weak

classifiers. However, this is not always the best solution, especially when one of

the sites has imbalanced data. Assume that a site contains 98% of the data labeled

as positive and 2% of the data labeled as negative. If a learning model that always

classifies all instances as positive is generated, then an accuracy of 98% is obtained.

This model appears to be one of the best models that can be generated; however, it

is useless. This problem is known as the “accuracy paradox” in the literature [97].

Instead, other performance metrics can be utilized such as area under curve (AUC),

precision, recall, and F-score, depending on the type of problem being solved. Among

them, the AUC is the most widely used performance metric, which can produce good

results for both balanced and imbalanced datasets. However, the success of the AUC

decreases with an increase in the imbalance or skewness in the dataset. In such cases,

precision and recall would evaluate the model’s performance better [98]. Precision is

a useful metric for cases in which the number of false positives should be minimized,

whereas recall, which is the accuracy on positive label, aims to minimize the number

of false negatives. In order to benefit from both precision and recall at the same time,

the F1-score was introduced as the harmonic mean of the two metrics. Although it

is an effective metric for imbalanced datasets, it cannot be used as a generic weight

calculation metric in a federated environment either, because it does not consider true

negative predictions; hence, it is not able to detect true negative rates. In this work,

first, accuracy and F1-score were used to calculate the weights of each decision tree,

but it was observed that neither the federated model generated with accuracy nor the

one generated with the F1-score always outperformed the local models. Looking

deeper into the results, it was noticed that when a decision tree that predicts negative

values well is combined with a decision tree that predicts positive values well, one

degrades the performance of the other because of the aforementioned reasons.

The Matthews correlation coefficient (MCC), or phi coefficient, is a statistical mea-

sure used to discover the association between two binary variables [99]. It was

adapted to the machine learning domain by Baldi et al. [100] in 2000 as a perfor-

mance metric to show the correlation between predictions and real values. MCC

considers all values in the confusion matrix; hence, it is not affected by imbalanced

or skewed datasets [101]. It has been shown that it is more robust and reliable than

37



the aforecited performance metrics when evaluating the classifier performance in both

balanced and imbalanced cases [102]. Therefore, in the proposed methodology, the

MCC is utilized to calculate the classifier weights. The MCC is calculated as

MCC =
(tp×tn)− (fp×fn)√

(tp+ fp)×(tp+ fn)×(tn+ fp)×(tn+ fn)
. (3.6)

The values of MCC range between [-1, +1], where +1 indicates perfect classifier, 0

indicates random guessing classifier, while -1 indicates completely opposite classi-

fier which predicts everything wrongly. Therefore, the proposed algortihm is only

interested in classifiers having positive MCC value. If all instances in the dataset

belongs to only one label, either positive or negative, or if the classifier predicts ev-

erything as positive or negative, both the nominator and denominator in MCC become

zero, which is undefined. In such cases, the MCC can be set directly to zero and the

classifier is ignored. Because the randomness of the classifier increases as the MCC

converges to zero, it was observed that removing weak classifiers having an MCC

value below a certain threshold τ increases the performance of the final ensemble

classifier. In the experiments, the optimal result was initially obtained with threshold

τ = 0.2, but it was then discovered that tuning the threshold parameter could produce

better results for each site. Details of this are explained in Sec. 3.3. Based on these,

the weight αn
i of decision tree dni having a final confusion matrix Cn

i is calculated as

αn
i =

M(Cn
i ) if M(Cn

i ) > τ

0 otherwise
(3.7)

where M(Cn
i ) is the MCC value calculated from confusion matrix Cn

i . Illustration of

the weight calculation, which is the fourth step of the algorithm, is presented in Fig.

3.5.

38



Figure 3.5: The fourth step of BOFRF in an example federated setup in which 3 sites

participated.

After the weights of decision trees are calculated, the local ensemble classifier Fn at

the nth site is generated as

Fn = (αn
1×dn1 ) + (αn

2×dn2 ) + ...+ (αn
kn×d

n
kn). (3.8)

Finally, the linear combination of local ensemble classifiers, that is, all decision trees

with their corresponding weights, constitutes the final global ensemble classifier F =

F1 + F2 + ...+ Fn, which can also be represented as

F = (α1
1×d11) + ...+ (α1

k1
×d1k1) + (α2

1×d21) + ...+

(α2
k2
×d2k2) + (αn

1×dn1 ) + ...+ (αn
kn×d

n
kn). (3.9)

The final steps of the algorithm are illustrated in Fig. 3.6. In the figure, the rect-

angle on top represents the federated model generated as a combination of weighted

decision trees coming from local RF models. In general, F can be formulated as

F =
N∑

n=1

kn∑
i=1

αn
i ×dni . (3.10)

39



Figure 3.6: The weight calculation and aggregation steps of BOFRF in an example

federated setup in which 3 sites participated.

The pseudocode for the proposed Boosting-based Federated Random Forest (BOFRF)

algorithm is shown in Alg. 5. For the sake of simplicity, the first and second steps of

the algorithm are provided as separate functions in Alg. 6 and Alg. 7, respectively. In

the algorithm, first, each site trains a standard random forest model on its training set

and calculates the values of the confusion matrix (line 2). The output random forest

models, which contain a number of decision trees, are then sent to every other site

(line 4). In lines 6-10, each site calculates the statistics for all decision trees of other

sites on its own training data and sends back the results. The confusion matrices are

then merged in line 13, and the corresponding weight is calculated in lines 14-19. In

line 23, the weighted decision trees are combined, and the final ensemble classifier is

built.

40



Algorithm 5 The Base Boosting-based Federated Random Forest (BOFRF)
Input: Dataset of N sites {D1, D2, . . . , DN} where

Di = {(X1, y1), (X2, y2), . . . , (Xmi
, ymi

)},
Output: The final global ensemble classifier F

Procedure:

1: for n← 1 to N do in parallel

2: Rn, C
n(n)← TRAIN_LOCAL_RF (Dn,mn, kn) ▷ Step 1, see Alg. 6

3: end for

4: Send Rn to every other site ▷ Step 2

5: end for

6: for q ← 1 to N do in parallel

7: R
′
= {{R1, R2, ..., RN} − {Rq}}

8: {C1(q), C2(q), ..., Cn(q)} ← RUN_DTS(Dq, R
′
) ▷ Step 2, see Alg. 7

9: Send all cni (q) ∈ Cn(q) for dni to the nth site which is the owner ▷ Step 3

10: end for

11: for n← 1 to N do in parallel

12: for i← 1 to kn do ▷ Step 4: Merge CMs and calculate weight

13: Cn
i ←

∑N
j=1 c

n
i (j) ▷ Eq. 3.5

14: w ←M(Cn
i ) ▷ Eq. 3.6

15: if (w > τ ) then ▷ Eq. 3.7

16: αn
i ← w

17: else

18: αn
i ← 0

19: end if

20: end for

21: Fn ←
∑kn

i=1 α
n
i ×dni ▷ Step 5: Build the local ensemble model (Eq. 3.8)

22: end for

23: return F =
∑N

n=1

∑kn
i=1 α

n
i ×dni ▷ Step 6: Build the global model (Eq. 3.9)

41



Algorithm 6 Training local Random Forest model and calculating confusion matrices

at the nth site (Step 1 of BOFRF)
Input: Dataset Dn = {(X1, y1), (X2, y2), . . . , (Xmn , ymn)},

Number of instances mn,

Number of decision trees kn,

Function: TRAIN_LOCAL_RF (Dn,mn, kn)

1: Sn ← Training set after Dn is split

2: Tn ← Test set after Dn is split

3: Rn ← RANDOM_FOREST (Sn, kn) ▷ Alg. 1

4: Cn(n)← {} ▷ Initialize confusion matrix list empty

5: for i← 1 to kn do

6: ypred ← PREDICT (di, Sn)

7: cni (n)← CONFUSION_MATRIX(ypred, Sn) ▷ Eq. 3.3

8: Cn(n)← Cn(n) ∪ cni (n) ▷ Add the confusion matrix to the list

9: end for

10: return Rn = {d1, d2, ..., dkn} and Cn = {cn1 (n), cn2 (n), ..., cnkn(n)}

42



Algorithm 7 Running each decision tree retrieved from other sites at the qth site (Step

2 of BOFRF)
Input: Dataset Dq = {(X1, y1), (X2, y2), . . . , (Xmq , ymq)},

Random forests of other sites R′
= {{R1, R2, ..., RN} − {Rq}},

Function: RUN_DTS(Dq, R
′
)

1: Sq ← Training set after Dq is split

2: Tq ← Test set after Dq is split

3: C
′
(q)← {} ▷ Confusion matrices of every other site

4: for Rn in R
′ do

5: Cn(q)← {} ▷ Confusion matrices for the nth site

6: for i← 1 to kn do

7: ypred ← PREDICT (dni , Sq) ▷ dni ∈ Rn

8: cni (q)← CONFUSION_MATRIX(ypred, Sq) ▷ Eq. 3.4

9: Cn(q)← Cn(q) ∪ cni (q) ▷ Add the confusion matrix to the list

10: end for

11: C
′
(q)← C

′
(q) ∪ Cn(q)

12: end for

13: return C
′
(q) = {C1(q), C2(q), ..., Cn(q)} where n ̸= q

As a result, using a federated ensemble classifier F , the ensemble prediction be-

comes the sign of F for a given vector of the feature values X . An important point

that should be highlighted here is that unlike traditional weak classifiers, which return

either +1 or -1, the weak classifiers in BOFRF might also return 0 as a way of “ab-

staining” from answering [103]. In BOFRF, a weak classifier (decision tree) predicts

0 if any of its nodes contains a feature which does not appear in the feature space

of the site where the prediction was made (line 6 in Alg. 6 and line 7 in Alg. 7).

In such cases, related sites do not contribute to updating the confusion matrix of the

corresponding weak classifier.

Last, but not least, after the federated ensemble classifier F is generated, each site

makes predictions on its test set Tn by using both F and Fn, and compares the results

to check which one is better. If F is better than Fn, the nth site uses F for future

predictions; otherwise, it uses Fn as formulated in Eq. 3.11. Thus, it is always

43



ensured that the final model performs at least as well as the local model for each

site.

F if AUC(F ) > AUC(Fn)

Fn otherwise
(3.11)

3.2 Complexity Analysis of BOFRF

In this section, the computational complexity of BOFRF is analyzed by going through

each step of the algorithm. The first step of BOFRF is to build a standard random

forest model containing kn decision trees. The cost of building a decision tree at

the nth site is O(fnmn log(mn)), where fn is the number of features in the dataset

(i.e., the length of Xn), mn is the number of instances, and log(mn) is the depth

of the tree in the worst-case scenario. Thus, the complexity of Random Forest be-

comes O(knfnmn log(mn)). It requires one pass through the training set for each

decision tree to make a prediction and generate the confusion matrix; hence, the cost

is O(knmn). As a result, the computational complexity of the first step (lines 1-5 in

Alg. 5) is O(knfnmn log(mn) + knmn), which can be asymptotically rewritten as

O(knfnmn log(mn)).

In the second step (lines 6-10 in Alg. 5), decision trees are shared between sites

and confusion matrices are generated. From a complexity point of view, the only

difference between steps 1 and 2 is the increase in the number of decision trees;

hence, the cost is O(Kmn), where K is the number of trees retrieved from other

sites.

In the last step (lines 11-22 in Alg. 5), for each decision tree, the algorithm iter-

ates through the N number of confusion matrices to calculate weight. Hence, the

computational complexity is O(knN).

Since all the three steps are performed in parallel at different sites, the complexity

depends on the maximum number of decision trees, features, and instances among all

the participating sites. Consequently, the computational complexity of BOFRF be-

44



comes O(k′f ′m′ log(m′) +K ′m′ + k′N), where k′,f ′,m′,and K ′ represent the max-

imum values. Since K ′ ≤ k′ ∗ N , because k′ ∗ N also represents the total num-

ber of decision trees at all sites, the computational complexity of BOFRF becomes

O(k′f ′m′ log(m′) + k′m′N), which can be simplified to O(k′m′(f ′ log(m′) +N)).

3.3 Personalized BOFRF

In the base BOFRF algorithm, weak classifiers having an MCC value below a fixed

threshold value are removed in the integration step to improve the prediction perfor-

mance of the global federated ensemble classifier. That is, a single global federated

ensemble classifier is built by using a single threshold value for each participant. In

the experiments that were carried out within the scope of this study, however, it was

discovered that instead of producing a single global federated model with a single

fixed threshold value, different participants could have federated models that produce

better results than the global model by personalizing the global model using differ-

ent threshold values. On the other hand, it was also observed that in some cases the

global ensemble classifier could not outperform the local ensemble classifier in some

participants although different threshold values were tried while building federated

models of respective participants. As a result of these two observations, the base

BOFRF algorithm was improved with a personalized implementation using the lo-

cal fine-tuning approach, which is the most commonly used personalized federated

learning approach as explained in Sec. 2.4.

In personalized BOFRF, each participant locally fine-tunes two hyper-parameters,

which are named threshold and ensemble strategy, to come up with a better-performing

federated model on their own datasets. Unlike the existing personalized FL solutions

which tune model parameters at each communication round of federated model gen-

eration, in personalized BOFRF, fine-tuning is performed only in the integration step.

Therefore, the first four steps of the base BOFRF algorithm, which can be regarded

as the "FL training" step altogether, remain unchanged (lines 1-13 in Alg. 5). After

calculating an MCC value based on the final confusion matrix for each decision tree,

the value is set directly as the "initial" weight of the respective decision tree rather

than using the conditional expression shown in Eq. 3.7, where the result is compared

45



to the threshold. In personalized BOFRF, the "initial" weight αn∗
i of decision tree dni

having a final confusion matrix Cn
i is calculated as

αn∗

i = M(Cn
i ) (3.12)

where M(Cn
i ) is the MCC value calculated from confusion matrix Cn

i . Then, the

"initial" local ensemble classifier F ∗
n at the nth site is generated as

F ∗
n = (αn∗

1 ×dn1 ) + (αn∗

2 ×dn2 ) + ...+ (αn∗

kn×d
n
kn). (3.13)

In the base BOFRF algorithm, after the local ensemble classifiers are built at each

site, the linear combination of them constitutes the final global ensemble classifier

F = F1 + F2 + ... + Fn. In personalized BOFRF, however, first, an "initial" global

ensemble classifier is built as F ∗ = F ∗
1 + F ∗

2 + ...+ F ∗
n and shared with all the sites,

and then the "local adaptation" step begins. In this step, given a set of threshold val-

ues {τ1, τ2, ..., τz}, where Z is the number of different threshold values provided for

hyper-parameter tuning, each site builds local and federated ensemble classifiers for

each τz by keeping only the decision trees whose initial weight is above the threshold

value τz and updating the others to zero, such that

αn
i (τz) =

αn∗
i if αn∗

i > τz

0 otherwise
(3.14)

Then, the local ensemble classifier Fn(τz) and the federated ensemble classifier F (τz)

that are built with the threshold value τz can be formulated as Eq. 3.15 and Eq. 3.16,

respectively.

Fn(τz) = (αn
1 (τz)×dn1 ) + (αn

2 (τz)×dn2 ) + ...+ (αn
kn(τz)×d

n
kn). (3.15)

F (τz) =
N∑

n=1

kn∑
i=1

αn
i (τz)×dni . (3.16)

In the last step, out of the Z number of federated ensemble classifiers, the one that

outperforms the others becomes the final federated ensemble classifier for that site.

46



Similarly, the local ensemble classifier that produce better results than the other Z −
1 local ensemble classifiers becomes the final local ensemble classifier. Eq. 3.17

and Eq. 3.18 formulates the last step of personalized BOFRF. The pseudocode of

personalized BOFRF algorithm is presented in Alg. 8.

Fn = argmax{Fn(τ1), Fn(τ2), ..., Fn(τz)}. (3.17)

F = argmax{F (τ1), F (τ2), ..., F (τz)}. (3.18)

Algorithm 8 Personalized Boosting-based Federated Random Forest (BOFRF)
Input: Dataset of N sites {D1, D2, . . . , DN} where

Di = {(X1, y1), (X2, y2), . . . , (Xmi
, ymi

)},
Set of threshold values τ ′

= {τ1, τ2, ..., τz}.
Output: The final global ensemble classifier F

Procedure:

1: for n← 1 to N do in parallel

2: Rn, C
n(n)← TRAIN_LOCAL_RF (Dn,mn, kn) ▷ Step 1, see Alg. 6

3: end for

4: Send Rn to every other site ▷ Step 2

5: end for

6: for q ← 1 to N do in parallel

7: R
′
= {{R1, R2, ..., RN} − {Rq}}

8: {C1(q), C2(q), ..., Cn(q)} ← RUN_DTS(Dq, R
′
) ▷ Step 2, see Alg. 7

9: Send all cni (q) ∈ Cn(q) for dni to the nth site which is the owner ▷ Step 3

10: end for

11: for n← 1 to N do in parallel

12: for i← 1 to kn do ▷ Step 4

13: Cn
i ←

∑N
j=1 c

n
i (j) ▷ Merge CMs (Eq. 3.5)

14: αn∗
i ←M(Cn

i ) ▷ Calculate the initial weight (Eq. 3.6, 3.12)

15: end for

16: F ∗
n ←

∑kn
i=1 α

n∗
i ×dni ▷ Step 5: Build the initial local model (Eq. 3.13)

17: end for

47



18: F ∗ =
∑N

n=1

∑kn
i=1 α

n∗
i ×dni ▷ Step 6: Build the initial global model

19: for n← 1 to N do in parallel

20: F
′
n ← {} ▷ List of local ensemble classifiers for the nth site

21: F
′ ← {} ▷ List of federated ensemble classifiers for the nth site

22: for z ← 1 to Z do ▷ Step 7: Try different threshold values

23: for j ← 1 to N do

24: for i← 1 to kj do

25: if (αj∗

i > τz) then ▷ Eq. 3.14

26: αj
i (τz)← αj∗

i

27: else

28: αj
i (τz)← 0

29: end if

30: end for

31: end for

32: Fn(τz)←
∑kn

i=1 α
n
i (τz)×dni ▷ Eq. 3.15

33: F (τz) =
∑N

j=1

∑kn
i=1 α

j
i (τz)×d

j
i ▷ Eq. 3.16

34: end for

35: F
′
n ← F

′
n ∪ Fn(τz) ▷ Add local ensemble classifier to the list

36: F
′ ← F

′ ∪ F (τz) ▷ Add federated ensemble classifier to the list

37: end for

38: end for

39: Fn = argmax{Fn(τ1), Fn(τ2), ..., Fn(τz)} ▷ Eq. 3.17

40: F = argmax{F (τ1), F (τ2), ..., F (τz)} ▷ Eq. 3.18

3.4 Complexity Analysis of Personalized BOFRF

In this section, the computational complexity of personalized BOFRF is analyzed.

Since the first four steps of the base BOFRF algorithm are the same in personalized

BOFRF, the complexity remains the same, thus calculation can be directly copied

from Sec. 3.2, which is O(knfnmn log(mn)) +O(Kmn) (lines 1-10).

In the next step (lines 11-27 in Alg. 8), for each decision tree, the algorithm iter-

48



ates through the N number of confusion matrices to calculate "initial" weights. The

computational complexity of this step is O(knN).

In the last step (lines 19-37), for each threshold value τz in {τ1, τ2, ..., τz}, the al-

gorithm iterates through Nkn number of weighted decision trees to compare their

initial weights to the threshold value τz. Then, it iterates through Z number of lo-

cal ensemble classifier and Z number of federated ensemble classifier to find the

best-performing models. Therefore, the computational complexity of the last step

becomes O(ZNkn) +O(Z) +O(Z).

Since all the steps of personalized BOFRF are performed in parallel at different sites

as in the base BOFRF, the complexity depends on the maximum number of decision

trees, features, and instances among all the participating sites as well. Consequently,

the computational complexity of BOFRF becomes O(k′f ′m′ log(m′)+K ′m′+k′N+

ZNk′ + Z + Z), where k′,f ′,m′,and K ′ represent the maximum values. Since K ′ ≤
k′ ∗ N , because k′ ∗ N also represents the total number of decision trees at all sites,

the computational complexity of personalized BOFRF becomes O(k′f ′m′ log(m′) +

k′m′N + k′ZN), which can be simplified to O(k′(m′(f ′ log(m′) +N) + ZN).

3.5 Hyperparameter Tuning

In BOFRF, hyperparameter tuning can also be performed in the first step of the al-

gorithm, where local Random Forest models consisting of a number of decision trees

are built at each participating site. The Random Forest hyperparameters that can be

tuned in BOFRF are as follows.

• criterion: The measure that is used to find the best splitting feature at each node

of the decision tree like Gini Index (Impurity) and Information Gain.

– Gini Index (Impurity) is a criterion to minimize the probability of misclas-

sification. If a dataset D contains a set of instances from N classes, the

Gini index G is calculated as G(D) = 1−
∑N

i=1 pi, where pi is the relative

frequency (probability) of class i in D. For each feature, Gsplit(D) is cal-

culated as in Eq. 3.19, where D1 and D2 are two subsets with sizes N1 and

49



N2 after D is split with the related feature. Then, the feature providing the

smallest Gsplit(D) is chosen to split the node.

Gsplit(D) =
N1

N
G(D1) +

N2

N
G(D2) (3.19)

– Information Gain is a commonly used splitting criterion which is based

on a purity measure called "Entropy". Entropy is a probabilistic measure

that tells how random a dataset is. For each feature, information gain I is

calculated as the decrease in entropy after node is split. Then, the node is

split on the feature that provides the largest I .

Entropy = −
N∑
i=1

pi log2(pi) (3.20)

I = Entropybefore split − Entropyafter split (3.21)

• min_samples_split: Minimum number of instances that must be in an internal

node to be able to split it.

• max_features: Maximum number of features in a node when looking for the

best split. sqrt and log2 are the most common values for this parameter, which

gives the square root or log of the number of features in the datasets. A specific

number can also be provided.

• max_depth: Maximum allowed depth for a decision tree in the forest.

• min_samples_leaf : Minimum number of instances that must be in a leaf node

after splitting a node.

• n_estimators: The number of decision trees in the forest.

50



CHAPTER 4

PRIVACY-PRESERVING IMPLEMENTATIONS OF BOFRF

4.1 Privacy Issues

The proposed BOFRF algorithm provides an adequate level of privacy in its current

form as the actual data is not shared among the participants. However, sharing eval-

uation metrics in the presence of a sneaky site in the federated environment may still

result in a privacy breach. For instance, if the sneaky site knows the characteristics of

a particular patient, it can generate two models, one of which labels the individual as

Class 0, and the other as Class 1. Then, by comparing the confusion matrices from

other sites to find exactly 1 difference, the sneaky site can find out which site the pa-

tient belongs to. To prevent this from happening and increase the level of privacy, in

this chapter, two different implementations of BOFRF are presented, which are cen-

tralized implementation with a trusted third party and decentralized implementation

using secure sum protocol.

4.2 Centralized Implementation with a Trusted Third Party

A trusted third party (TTP) is an entity in a distributed/federated architecture that all

parties trust to perform a particular service [104]. The concept of TTP has been uti-

lized in many domains such as cryptography and distributed data mining. Certificate

Authority (CA) is a good example of a TTP in cryptography that issues and signs

digital certificates and is trusted both by the certificate owner and the party using the

certificate [105]. Gurevich et al. [106] explains the idea of TTP in distributed data

mining with a simple example illustrated in Fig. 4.1. The architecture in the example

51



scenario consists of a set of databases, a miner, and a calculator. The role of the miner

is to decide which computation to be done, while the calculator’s role is to make the

calculation without knowing anything about the given or published information. The

result of the computation is known only to the miner and participant databases. In

this scenario, the miner and calculator are the trusted third parties.

Figure 4.1: Trusted Third Parties in distributed data mining.

In the centralized implementation of BOFRF, an Orchestrator is introduced as the

trusted third party, who is responsible for sending the decision trees to the other sites,

retrieving output confusion matrices, and calculating the final confusion matrix for

each decision tree without knowing anything about the information provided by the

sites. It acts like an Aggregator at global level as previously explained in Fig. 2.6

in Sec. 2.3. In the first step of the algorithm in this implementation, after a random

forest model consisting of a number of decision trees is trained and the confusion

matrices are calculated for each decision tree at each site, the decision trees and the

corresponding confusion matrices are sent to the Orchestrator as illustrated in Fig.

4.2. Then, in the second step, the Orchestrator sends to each site the decision trees

retrieved from other sites as shown in Fig. 4.3. In the third step, each site runs the

decision trees retrieved from the Orchestrator on their respective datasets and sends

the confusion matrices back to the Orchestrator (Fig. 4.4).

52



Figure 4.2: The first step of the centralized implementation of BOFRF with a trusted

third party.

Figure 4.3: The second step of the centralized implementation of BOFRF with a

trusted third party.

53



Figure 4.4: The third step of the centralized implementation of BOFRF with a trusted

third party.

Once the confusion matrices are received from all sites, the Orchestrator starts the

aggregation process as depicted in Fig. 4.5. In this process, it first combines all

the confusion matrices generated by the participating sites for a decision tree and

calculates its final confusion matrix. Then, based on the final confusion matrices, it

computes a weight for each decision tree as shown by the red circles numbered 4 in

in Fig. 4.5. In the fifth and sixth steps, final local ensemble classifiers are created

as a weighted sum of decision trees and their linear combination constitutes the final

federated ensemble classifier.

The centralized implementation with a trusted third party can also be applied for

personalized BOFRF. In this case, instead of computing the weights of each decision

tree and constructing a global federated ensemble classifier, the Orchestrator simply

calculates the final confusion matrices for each decision tree and sends the decision

trees and their confusion matrices to each participating site. The sites then perform the

rest of the steps locally with hyperparameter tuning. In either case, participating sites

never see the confusion matrices of other sites; hence, privacy is protected against

54



certain types of attacks like patient-site assignment attack.

Figure 4.5: The aggregation procedure in the centralized implementation of BOFRF

with a trusted third party.

4.3 Decentralized Implementation Using Secure Sum Protocol

In decentralized implementation, instead of communicating with a third party, partic-

ipating sites communicate with each other in a circular way. This approach uses the

secure sum protocol, which allows participating sites to calculate the sum of their in-

dividual data without exposing their data to other sites [107]. Secure sum is a simple

and efficient protocol which can compute the sum in a secure way for three or more

participants in the following way. In the first step of the protocol, one of the sites acts

as the initiator. It adds a random noise to its own data and sends it to the next site.

The receiving site adds the incoming noisy data to its own data and sends it to the

55



next site. This process is repeated until the circle is complete and the site that started

the protocol retrieves the sum. The site then subtracts the noise that is known only to

itself from the sum and finds out the actual sum.

More formally, secure sum can be formulated as follows. Let {P1, P2, . . . , Pn} denote

the set of participants, vi denote the value that ith participant holds as its local output,

and P1 be the initiator of the protocol. P1 generates a random value R existing in

the range [0..r], computes R1 = R + v1 (mod r) and sends R1 to P2. When P2

receives this value, it cannot learn anything about the value of v1, because R1 is some

uniformly distributed number in the range [0..r]. P2 and all other participants continue

the protocol by calculating their outputs with the formula Ri = Ri−1 + vi (mod r).

When the last participant Pn computes its sum, it sends the output Rn to the first

participant P1. What P1 receives is

Rn = R +
n∑

i=1

vi (mod r). (4.1)

In the final step of the protocol, since P1 knows the value of R, it can subtract R from

Rn and obtain the final result. Fig. 4.6 depicts how secure sum protocol works for

three participants.

Figure 4.6: Example of a Secure Sum protocol with three participants.

56



In the decentralized implementation of BOFRF, each site executes the secure sum

protocol separately for each confusion matrix. Therefore, they all act as an initiator

of the protocol for their own decision trees. In the first step of this implementation,

all the sites add a random noise to their local confusion matrices and send them to the

next site along with their local decision trees as depicted in Fig. 4.7. The noise added

to the confusion matrices by the ith site is represented as Pi. The noisy confusion

matrix U j
i of the jth decision tree at the ith site is calculated as

U j
i = ((tp(cji ) + Pi), (tn(c

j
i ) + Pi), (fp(c

j
i ) + Pi), (fn(c

j
i ) + Pi)). (4.2)

Figure 4.7: The first and second steps of the decentralized implementation of BOFRF

using secure sum protocol.

In the third step, the recipient sites run the retrieved decision trees on its own data,

calculates the respective confusion matrices, and adds these values to the retrieved

confusion matrices. Afterwards, they send the decision trees and confusion matri-

ces to the next site. The process continues until the circular cycle is completed as

illustrated in Fig. 4.8 and Fig. 4.9.

57



Figure 4.8: The third and forth steps of the decentralized implementation of BOFRF

using secure sum protocol.

Figure 4.9: The fifth and sixth steps of the decentralized implementation of BOFRF

using secure sum protocol.

After each site gets back the decision trees they initially created and their confusion

matrices updated by the other sites, they subtract the noise they added to confusion

matrices at the first step and obtain the final confusion matrices. The final confusion

matrix Cj
i of the jth decision tree at the ith site is calculated as

58



Cj
i = ((tp(U j

i )− Pi), (tn(U
j
i )− Pi), (fp(U

j
i )− Pi), (fn(U

j
i )− Pi)). (4.3)

In this implementation, the participating sites see some values in confusion matrices,

but they never know the actual values; hence, privacy is preserved. The algorithm

then continues with the usual weight calculation and final model generation steps.

The final steps of the decentralized implementation of BOFRF is depicted in Fig.

4.10.

Figure 4.10: The final steps of the decentralized implementation of BOFRF using

secure sum protocol.

4.4 Remarks

Although both implementations increase the level of privacy, it should be noted that

there is a trade-off between the level of privacy and complexity. Centralized im-

plementation increases the communication cost as all information exchange is done

through a trusted third party, whereas decentralized implementation increases the time

cost as execution is done sequentially rather than parallel.

59



60



CHAPTER 5

CLUSTERED BOFRF

The main purpose of federated learning is to enable different participants to come to-

gether and create a common strong model without sharing their private data with each

other. However, when local models of some participants are poor or due to their bad

quality or imbalanced data, it can be difficult to produce successful federated mod-

els. The BOFRF algorithm described in this work has been proposed to address this

problem. BOFRF not only increases the predictive power of all participating sites,

but also provides significantly high improvements on the predictive power of sites

having unsuccessful local models. However, the effectiveness of the federated model

produced with BOFRF depends on the data distribution of the sites participating in

the federated environment. This can be considered from two perspectives. First, the

increase in data distribution difference among participants means that weak classi-

fiers having different characteristics are combined to create a federated model. In this

case, if a participant is already satisfied with the predictive performance of its local

model at a certain level and the goal is only to slightly improve it, then the federated

BOFRF model built with weak classifiers of different characteristics may not provide

the desired improvement. On the other hand, this kind of a federated model could

be perfect for a participant whose local model is already poor. From the second per-

spective, when there is a correlated data distribution among participants, a participant

who already has a well-performing local model and seeks only a minor improvement

in that model may not achieve the desired improvement as the federated model will

consist of weak classifiers with similar characteristics. Likewise, if a participant with

a poor local model builds a federated model with participants having a data distribu-

tion similar to its own, the federated model may not provide an improvement at all.

Furthermore, when the number of sites participating in the federated setting increases,

61



it will take longer to build a federated model with BOFRF, especially in decentralized

architecture, and bring more computational costs.

To address these problems, in this chapter, a clustering-based extension to the BOFRF

algorithm is proposed. A pre-step to the original BOFRF is introduced, where the

participating sites form clusters based on their data distribution prior to running the

BOFRF algorithm. The federated model is then created only with sites within that

cluster. The remainder of this chapter is organized as follows. First, Sec. 5.1 explains

the idea of clustering and how the most popular clustering algorithm, K-means, works.

Then, the definition of the characteristic vector is given and the complete clustered

BOFRF algorithm is presented in Sec. 5.2. Finally, the computational complexity of

the clustering procedure is analyzed in Sec. 5.3. Description of the notations used in

this chapter in addition to those given in 3.1 is shown in Table 5.1.

Table 5.1: Additional notations used in clustered BOFRF.

K Number of clusters & centroids

ci ith centroid

C List of centroids such that C = {c1, c2, ..., cK}

Uj jth cluster

R Number of features

fr rth feature of the dataset

Vn Characteristic vector of the nth site

S(fr) The function for calculating data distribution statistics for the fr column

norm(fr) The normalization function that normalizes the data in the fr column to

0-1 range

γ(fr, Xi) The function returning the value in rth column and ith row in the dataset

d(p, q) Distance function for calculating the distance between two points p and

q

En nth site

Notation Description

62



5.1 Clustering Approach

Clustering is an unsupervised learning technique for identifying some segments or

clusters in a dataset without requiring any target variables. K-means is the most pop-

ular clustering algorithm aiming to group n observations into K clusters. Given a

dataset D = {x1, x2, ..., xn}, and the number of clusters K, the algorithm works in

four steps:

1. Randomly pick at K points as the initial centroids, such that C = {c1, c2, ..., cK}.

2. For each data point xi, find out the nearest centroid using a distance metric like

Eucledian distance, which is the default distance metric of K-means. So, for

each xi, calculate the distance between xi and cj and assign xi to the centroid

that has the smallest distance to xi. This form the K clusters.

3. For each cluster, calculate the mean of data points assigned to it and set this

value as the new centroid of that cluster, such that

cj =
1

||Uj||
∑
xi∈Uj

xi. (5.1)

4. Reassign each data point xi to the new nearest centroid by repeating steps 2 and

3 until the centroids in the clusters no longer change.

An example visualization of the K-means, which is retrieved from [108], is presented

in Fig. 5.1. The figure shows the initial dataset before clustering is shown on the left,

and the 3 clusters generated by the K-means algorithm are shown on the right. The

black dots in each cluster represent the centroid of that cluster.

Figure 5.1: An example of how K-means work.

63



The successful clustering of K-means depends on how the centroids were initialized

in the first step. If they are chosen very close to each other, the points are likely to

find a cluster in their local area and form meaningless clusters [109]. As the centroids

are randomly initialized in K-means, the probability of this happening is high. To

tackle this problem, Arthur and Vassilvitskii [110] proposed the K-means++ algo-

rithm, which simply works as follows.

1. Randomly pick a centroid c1.

2. Calculate the distance between c1 and every other data point xi in the dataset.

3. Find the farthest data point xj from c1 and make it the second centroid, such

that c2 = xj and C = {c1, c2}.

4. Form clusters around these centroids by assigning each data point to the nearest

centroid.

5. Find the data point having the farthest distance from its centroid and make it

the third centroid c3, such that C = {c1, c2, c3}.

6. Repeat steps 4 and 5 until the K number of centroids (C = {c1, c2, ..., cK}) are

found and K number of clusters are formed.

5.2 Clustered BOFRF Algorithm

Both K-means and K-means++ have been designed to cluster single data points. In

clustered BOFRF, however, the aim is to cluster sites that contain a number of data

points based on their data distribution. Therefore, first, a solution was needed to

formulate the data distribution of sites mathematically. In clustered BOFRF, this is

handled through the "characteristic vector". Recall from Chapter 3 that the federated

environment consists of N sites, where the dataset of the nth site containing mn

instances can be represented as

Dn = {(X1, y1), (X2, y2), . . . , (Xmn , ymn)}. (5.2)

In Dn, Xi represents the vector of the feature values at the ith row and yi ∈ {+1,−1}
is the label used for binary classification. Let R be the total number of features in

64



the dataset, and fr denote the rth feature. Then, the dataset can be represented in a

tabular form as shown in Fig. 5.2

f1 f2 ... fr yi

X1

X2

...

Xmn

Figure 5.2: Tabular representation of dataset Dn

The characteristic vector is thereafter defined as a vector containing the basic data

distribution statistics for each column. In a dataset, a column can hold either contin-

uous or categorical data. In the former, the data distribution statistics are calculated

as the mean of values in that column, while in the latter, they are calculated as the

percentage of values in each category. If one-hot encoding, which divides the cate-

gories into separate columns holding values 0 or 1, has already been performed on

the categorical variables in the dataset, then either the mean or the percentage can be

used to calculate statistics as they both give the same result. Consequently, the char-

acteristic vector Vn of the nth site in the federated environment can be formulated as

a one-dimensional vector of size R as shown in Eq. 5.3.

Vn = (S(f1), S(f2), ..., S(fR)) (5.3)

where S(fr) is the function for calculating data distribution statistics, such that

S(fr) =


1

mn

mn∑
i=1

γ(norm(fr), Xi) if Xi is continuous

1

mn

mn∑
i=1

γ(fr, Xi) if Xi is categorical

(5.4)

In Eq. 5.4, γ(fr, Xi) represents the function that returns the value of feature fr at the

ith index (in other words, rth column and ith row) of the dataset, and norm(fr) is the

normalization function which normalizes the data in the fr column to 0-1 range. An

65



example of a characteristic vector for a simple dataset with 5 features and 6 instances

is depicted in Fig. 5.3.

Figure 5.3: An example of a characteristic vector for a simple dataset with 5 features

and 6 instances.

In the federated environment, there were originally n sites, each of which containing

mn instances. Currently, there are n sites, each with a characteristics vector Vn. Since

the aim is to create clusters by apply a clustering algorithm on the participating sites,

the question becomes how to calculate the distance between these sites, which is the

crucial point in clustering algorithms for identifying similarities. In clustered BOFRF,

the distance between sites is calculated as the distance between characteristic vectors.

In machine learning, Eucledian Distance, Manhattan Distance, Minkowski Distance

and Hamming Distance are the most commonly used distance metrics [111]. Among

them, Eucledian, Manhattan and Minkowski distance metrics are used for calculat-

ing the distance between two real-valued vectors, while Hamming Distance is used

for calculating the distance between two binary vectors. Eucledian distance calcu-

lates the distance between two data points by drawing a straight line between them

as formulated in Eq. 5.5. It is usually preferred when there are data points with nu-

merical values such as floating point or integer. If the vectors contain data at different

scales, columns with large values dominate the Eucledian distance. Therefore, to pre-

vent this from happening, the columns holding continuous data are normalized in the

S(fr) function shown in Eq. 5.4.

66



d(p, q) =

√√√√ R∑
i=1

(qi − pi)2 (5.5)

Manhattan distance calculates the distance between two data points by following a

grid-like path. Its formula is given in Eq. 5.6. It is generally preferred to the Euclidean

distance as the dimension of the data increases [112].

d(p, q) =
R∑
i=1

|qi − pi| (5.6)

Minkowski distance is a generalization of Eucledian and Manhattan metrics, which

is calculated as

d(p, q) = (
R∑
i=1

|qi − pi|t)1/t. (5.7)

The formula is the same as the Manhattan distance when t = 1, and the Eucledian

distance when t = 2.

After the distance calculation metrics between the characteristics vectors are defined,

the clustering step begins. In clustered BOFRF, K-means++ is utilized as the cluster-

ing algorithm, because it is not only effective and fast, but also very suitable for use in

federated environments where BOFRF is concerned as it makes real data points cen-

troids instead of defining arbitrary centroids through Eq. 5.1. Consequently, given

n sites {E1, E2, ...En} in a federated environment, the clustered BOFRF algorithm

works as follows.

1. Calculate a characteristic vector Vn at each site, such that V = {V1, V2, ..., Vn}.

2. Randomly pick a site Ei as the first centroid c1.

3. Calculate the distance between c1 and every other site in the federated environ-

ment by calculating the Eucledian or Manhattan distance between their charac-

teristic vectors.

67



4. Find the site Ej whose distance is farthest from c1 and make it the second

centroid, such that c2 = Ej , C = {c1, c2}.

5. For each site Ek ∈ {{E1, E2, ...En} − C}, find out the nearest centroid using

the selected distance metric, and assign Ek to the cluster of that centroid.

6. Find the site having the farthest distance from its centroid and make it the new

centroid c′, such that C = C ∪ c′.

7. Repeat steps 5 and 6 until the K number of centroids (C = {c1, c2, ..., cK}) are

found and K number of clusters are formed.

8. Execute BOFRF or personalized BOFRF in each cluster separately, either in a

centralized or decentralized architecture.

The pseudocode of the Clustered Boosting-based Federated Random Forest algorithm

is provided in Alg. 9.

5.3 Complexity Analysis of Clustered BOFRF

In this section, the computational complexity of clustered BOFRF is analyzed by

going through each step of the algorithm. The first step of clustered BOFRF is to

create a characteristic vector at each site by going over the entire dataset once. The

cost of creating a characteristic vector at the nth site is O(Rmn), where R is the

number of features in the dataset and mn is the number of instances (lines 1-9). In

the second step, a random site is selected as centroid, the cost of which is O(1) (lines

11-12). In the third step, the algorithm iterates through the n number of sites, hence

the cost of this step is O(n) (lines 13-15). The cost of fourth step (lines 16-17) is also

O(1), as the algorithm already knows the farthest point while calculating distances in

the previous step.

In steps 5 to 7 (lines 18-26), the algorithm loops K − 2 times to find other centroids

and form the final clusters. For each cluster (or centroid), it requires one pass through

the each site and one pass through the centroids to calculate the new distances and

make new assignments, if needed. Then, the site having the farthest distance from its

68



centroid becomes the new centroid. Therefore, the cost is O(KnC). In the worst case

scenario, each site forms a cluster by its own, which would make C = n. As a result,

the cost of steps 5 to 7 becomes O(Kn2).

When the costs of all these steps are combined, the computational complexity of

clustering in the clustered BOFRF algorithm becomes O(Rmn) + O(1) + O(n) +

O(1)+O(Kn2), which can be simplified to O(Rm′+Kn2), where m′ is the maximum

number of instances among all the participating sites.

Consequently, the total computational complexity of clustered BOFRF algorithm be-

comes O(Rm′ +Kn2 + k′m′(f ′ log(m′) +N)).

69



Algorithm 9 Clustered Boosting-based Federated Random Forest (BOFRF)
Input: Given n sites {E1, E2, . . . , En}, each having R features {f1, f2, ..., fR} and

mn instances

Output: The clusters U

Procedure:

1: for n← 1 to N do in parallel ▷ Step 1

2: for r ← 1 to R

3: if fr is continuous then ▷ Eq. 5.4

4: sfr ← 1
mn

∑mn

i=1 γ(norm(fr), Xi) ▷ Mean of normalized values

5: else

6: sfr ← 1
mn

∑mn

i=1 γ(fr, Xi) ▷ Percentage of values

7: end if

8: end for

9: Vn ← (sf1 , sf2 , ..., sfr) ▷ Eq. 5.3

10: end for

11: c1 ← RANDOM({E1, E2, . . . , En}) ▷ Step 2

12: C ← {c1}, U1 ← {c1}
13: for n← 1 to N ▷ Step 3

14: di ← DISTANCE(Vc1 , VEn) ▷ Eq. 5.5 or Eq. 5.6

15: end for

16: c2 ← argmin{d1, d2, . . . , dn} ▷ Step 4

17: C ← C ∪ {c2}, U2 ← {c2}
18: for k ← 3 to K

19: for n← 1 to N

20: for i← 1 to LENGTH(C)

21: di ← DISTANCE(ci, En)

22: end for

23: Uj ← Uj ∪ argmin{d1, d2, . . . , dn} ▷ Step 5

24: end for

25: C ← C ∪ argmax{∀u ∈ U : distance between any two site } ▷ Step 6

26: end for

27: return U = {U1, U2, ..., UK}

70



CHAPTER 6

EXPERIMENTS

In this chapter, first, the datasets that were considered in the experiments are explained

in detail. Second, the environments that were set up in the experiments to evaluate the

effectiveness of the proposed BOFRF algorithm is presented. Lastly, the evaluation

procedure that were followed in the experiments is explained. The results of the

experiments are provided in Chapter 7.

6.1 Datasets

In the experiments that were conducted in this study, four healthcare datasets were

used, namely the Pima Indians Diabetes dataset, the Diabetic Retinopathy dataset,

the South African Heart Disease dataset, and the SHELTER dataset. In this section,

details of these datasets are explained. For each dataset, a bar chart showing the distri-

bution of dependent variable and a correlation plot depicting the correlation between

all possible pairs of features are presented. In the latter, the Pearson Correlation coef-

ficient was utilized, which is a measure of discovering linear association between two

variables where +1 indicates strong positive correlation, -1 indicates strong negative

correlation, and 0 indicates no correlation.

6.1.1 The Pima Indians Diabetes dataset

The Pima Indians Diabetes dataset is originally created by the National Institute of

Diabetes and Digestive and Kidney Diseases in Phoenix, Arizona, the United States.

It was retrieved from Kaggle [113, 114], which is an online platform for sharing and

71



accessing public datasets for performing machine learning tasks. In the experiments,

the dataset was used to predict whether a patient in the dataset had diabetes or not

based on the measurements provided in it.

The dataset contains the data of 768 female patients who were at least 21 years old

and of Pima Indian heritage. It has 8 independent features: age, body mass index

(BMI), number of pregnancies, plasma glucose concentration, diastolic blood pres-

sure, triceps skin fold thickness, insulin, diabetes pedigree function; and 1 dependent

feature in which 1 is interpreted as “diabetes positive” and 0 as "diabetes negative".

In the dataset, 34.9% of the patients had diabetes, while 65.1% did not as illustrated

in Fig. 6.1. No significant correlation was observed between the features as depicted

in Fig. 6.2, hence all the features were kept in the final dataset.

Figure 6.1: Distribution of dependent variable in the Pima Indian Diabetes dataset.

72



Figure 6.2: Correlation of features in the Pima Indian Diabetes dataset.

6.1.2 The Diabetic Retinopathy dataset

The Diabetic Retinopathy dataset from the University of California, Irvine (UCI) Ma-

chine Learning Repository [115, 116] contains data extracted from 1151 eye fundus

images to predict whether an image contains the sign of diabetic retinopathy, which

is a visual impairment caused by diabetes mellitus. It consists of 19 independent

features related to a lesion in the eye, anatomical information, or an image-level de-

scriptor; and one dependent feature, where 1 indicates a sign of diabetic retinopathy.

The Diabetic Retinopathy dataset is uniformly distributed on the dependent variable,

where 53.1% of the images contained the sign of diabetic retinopathy, while 46.9%

did not as shown in Fig. 6.3.

73



Figure 6.3: Distribution of dependent variable in the Diabetic Retinopathy dataset.

Figure 6.4: Correlation of features in the Diabetic Retinopathy dataset.

74



The correlation plot presented in Fig. 6.4 shows that there are strong correlations

between all the nma_* features and between the nex_* features. nma_* stands

for the number of microaneurisms found at the confidence levels alpha = 0.5 (a),

0.6 (b), ..., 1 (f), respectively. nex_* contains the same information as nma_* for

exudates. In supervised machine learning, having correlated features in the dataset

may not always worsen the model, but it may not improve the model either. On

the other hand, they bring additional computation cost, thus decreasing efficiency.

However, if speed and time are not an issue and correlation is not with the target

variable, these variables can be retained in the dataset. In the Diabetic Retinopathy

dataset, it was first considered to remove some of the nma_* features as they show

the highest correlation between each other. However, Taveria-Gomes [117] showed

in his study that a non-negligible number of points appear to be linearly inseparable

in the paired projections of these features. Consequently, none of the features in the

original datasets were removed in the final dataset.

6.1.3 The South African Heart Disease dataset

The South African Heart Disease dataset contains data of 462 men living in the heart-

disease high-risk region of Western Cape, South Africa. Researchers took a subset of

it consisting of 9 features, which are systolic blood pressure, LDL cholesterol, family

history of heart disease, adiposity, obesity, type-A behavior, tobacco and alcohol us-

age, and age, for predicting whether a patient will suffer from coronary heart disease

or not. In this study, the dataset published by Bartley in Harvard Dataverse was used

[118].

In the dataset, the percentage of the patients who suffer from coronary heart disease

was 34.6%, whereas the percentage of the patients who did not have this condition

was 65.4% as illustrated in Fig. 6.5. None of the features showed a significant positive

or negative correlation between each other as depicted in Fig. 6.6.

75



Figure 6.5: Distribution of dependent variable in the South African Heart Disease

dataset.

Figure 6.6: Correlation of features in the South African Heart Disease dataset.

76



6.1.4 The SHELTER dataset

The SHELTER (Services and Health for Elderly in Long TERm care) was an inter-

national project funded by the European Union’s 7th Framework Programme under

grant agreement number 223115 [119]. In this study, a research was conducted be-

tween 2009 and 2011 to assess the care needs and provision of care to nursing home

(NH) residents in Europe and collected the data of 4156 NH residents in eight coun-

tries: 500 from Czechia, 507 from England, 484 from Finland, 493 from France,

496 from Germany, 580 from Israel, 548 from Italy, and 548 from the Netherlands

[120]. Onder et al. [121] analyzed the determinants of excessive polypharmacy (us-

age of more than 10 drugs) in the SHELTER dataset and identified the factors that are

associated with excessive polypharmacy.

Utilizing this information, in this study, 14 features were extracted from the SHEL-

TER dataset, which are gender, assistance required in activities of daily living (ADL),

dependent in ADL, mild/moderate cognitive impairment (CGI), severe CGI, depres-

sion, pain, dyspnea, dizziness, coronary heart disease, heart failure, Parkinson’s dis-

ease, stroke, diabetes, cancer. This dataset then was used to predict excessive polyphar-

macy risk of NH residents.

Figure 6.7: Distribution of dependent variable in the SHELTER dataset.

77



Figure 6.8: Correlation of features in the SHELTER dataset.

In the final dataset, 34.3% of the patients were using more than 10 drugs, thus in

excessive polypharmacy status, while 65.7% were in polypharmacy (5 to 9 drugs)

or non-polypharmacy (<5 drugs) status as shown in Fig. 6.7. The features were not

correlated with each other as depicted in Fig. 6.8.

6.2 Experiment Setup

In this study, two types of experiments were conducted. In the first type, which is

called observational experiments, the Pima Indians Diabetes, Diabetic Retinopathy,

and South African Heart Disease datasets were used to set up different federated

environments to prove the effectiveness of BOFRF in challenging scenarios of feder-

78



ated learning. In this regard, federated environments consisting of different numbers

of sites (i.e., 2, 3, or 4) were set up by splitting the datasets into several datasets

with different characteristics, i.e., datasets producing well-performing local models

or datasets producing unsuccessful local models. The setup and evaluation proce-

dures of these experiments are illustrated in Fig. 6.9. In the setup, the dataset is split

into n sites constituting the federated environment. In the evaluation, data at each site

are split as training and test, and local Random Forest models are generated. After

federated BOFRF model is built on top of the local models, it is evaluated on test data

of each site.

Figure 6.9: The setup and evaluation procedure of the experiments.

In the second type of experiments, which were conducted on the SHELTER dataset,

the same setup procedure was not followed because the dataset was already split ac-

cording to origin countries. Instead, a total of 247 federated environments consisting

of two, three, four, five, six, seven, and eight sites were built with all possible combi-

nations of the eight countries involved in the dataset. In these experiments, statistical

testing of BOFRF was performed to observe how well BOFRF performs in real fed-

erated environments that were not emulated, as well as how effective it is on larger

datasets and increasing number of participants. Tables 6.1, 6.2, 6.3 and 6.4 show the

79



details of the environments, including the total number of records at each site and the

number of positive and negative labelled instances.

Table 6.1: Number of sites, total number of records, and the number of positive and

negative labelled instances in the federated environments built with the Pima Indians

Diabetes dataset in the experiments.

Env. # Dataset Site Records
Positive

labels

Negative

labels

Env. 1 Diabetes
Site 1 400 152 248

Site 2 368 116 252

Env. 2 Diabetes

Site 1 300 114 186

Site 2 200 68 132

Site 3 268 86 182

Env. 3 Diabetes

Site 1 300 107 193

Site 2 200 73 127

Site 3 268 88 180

Env. 4 Diabetes

Site 1 100 33 67

Site 2 250 94 156

Site 3 280 57 223

Site 4 138 84 54

Env. 5 Diabetes

Site 1 200 64 136

Site 2 200 74 126

Site 3 200 68 132

Site 4 168 62 106

Env. 6 Diabetes

Site 1 100 37 63

Site 2 250 97 153

Site 3 300 89 211

Site 4 118 45 73

80



Table 6.2: Number of sites, total number of records, and the number of positive

and negative labelled instances in the federated environments built with the Diabetic

Retinopathy dataset in the experiments.

Env. # Dataset Site Records
Positive

labels

Negative

labels

Env. 7
Diabetic

Retinopathy

Site 1 651 340 311

Site 2 500 271 229

Env. 8
Diabetic

Retinopathy

Site 1 400 218 182

Site 2 300 158 142

Site 3 451 235 216

Env. 9
Diabetic

Retinopathy

Site 1 651 340 311

Site 2 300 157 143

Site 3 200 114 86

Table 6.3: Number of sites, total number of records, and the number of positive and

negative labelled instances in the federated environments built with the South African

Heart Disease dataset in the experiments.

Env. # Dataset Site Records
Positive

labels

Negative

labels

Env. 10
Heart

Disease

Site 1 90 36 54

Site 2 372 124 248

Env. 11
Heart

Disease

Site 1 200 80 120

Site 2 150 55 95

Site 3 112 25 87

Env. 12
Heart

Disease

Site 1 150 57 93

Site 2 150 53 97

Site 3 162 50 112

81



Table 6.4: Total number of records and the number of positive and negative labelled

instances in each site of the SHELTER dataset.

Env. # Dataset Site Records
Positive

labels

Negative

labels

Environments on

SHELTER

Czechia 500 170 330

Germany 490 173 317

England 507 179 328

Finland 448 299 149

France 490 209 281

Israel 579 131 448

Italy 540 89 451

Netherlands 548 157 391

6.3 Evaluation Procedure

In each experiment, first, the results of the proposed BOFRF algorithm were com-

pared with the baseline, which is the local random forest algorithm of each partici-

pating site, to show how BOFRF can improve the predictive power of the baseline

local model. While building the local random forest models, 10-fold cross-validation

was applied and the grid search method was used to avoid overfitting and determine

the best model with the best hyperparameter combination. To ensure privacy of sen-

sitive data and enable the calculation of the AUC, some restrictions were put on the

hyperparameter values that are explored by the search grid, such as the minimum

leaf size. For instance, a suspicious site may attempt to identify a subject through a

decision tree that has a leaf node with only one subject. Therefore, a value of 1 for

the minimum leaf size was not allowed so that none of the sites could generate such

decision trees. This also makes the calculation of prediction probabilities possible for

each decision tree since no leaf node contains a single class estimate. The prediction

probabilities of decision trees are required to calculate the AUC values of the random

forest models and the BOFRF model. Then, to evaluate the success of the proposed

algorithm against existing solutions, the results of BOFRF were compared with those

82



of the federated model generated by one of the most successful existing solutions in

the field, namely BOPPID. For a fair comparison, the BOPPID algorithm proposed

by Li et al. in their paper [18] was implemented in Python and both BOPPID and

local AdaBoost, which is the baseline of BOPPID, were ran in each experiment.

83



84



CHAPTER 7

RESULTS

This chapter presents the results of the observational and statistical experiments that

were conducted on the datasets and environments explained in Chapter 6. In both

types of experiments, first, the base BOFRF algorithm is compared with local RF and

BOPPID. Then, for each scenario, the improvement that personalized BOFRF pro-

vided over the base BOFRF is presented. Finally, the experimental results obtained

for the clustered BOFRF are shown.

7.1 Results of Observational Experiments

7.1.1 Comparison of BOFRF with Local Random Forest

The Pima Indian Diabetes dataset was utilized to set up six different environments

with two different characteristics: (i) all sites had quite good models with relatively

close AUC values (Environments 1 and 3), and (ii) one site had a very good model

with a high AUC value, and at least one site had a poor model with a low AUC value

(Environments 2, 4, 5 and 6). The results are presented in Table 7.1. In this table

and the tables shown hereinafter in this section, for better visualization, environments

are abbreviated as E1, E2, etc., whereas sites are abbreviated as S1, S2, etc. The (*)

near the values in the "Change" columns highlights the improvements that BOFRF

provided significantly high.

85



Table 7.1: Comparison of algorithms based on the AUC values in federated environ-

ments built on the Pima Indian Diabetes dataset.

Env.

#

Site

#

Local

Ada

BOPPID Change

(%)

Local

RF

BOFRF Change (%)

E1
S1 0.792 0.811 + 2.45 0.763 0.841 +10.29 (*)

S2 0.805 0.816 + 1.41 0.828 0.843 + 1.76

E2

S1 0.776 0.809 + 4.37 0.738 0.802 + 8.59

S2 0.772 0.823 + 6.52 0.752 0.856 +13.86 (*)

S3 0.883 0.906 + 2.65 0.903 0.923 + 2.24

E3

S1 0.832 0.834 + 0.90 0.805 0.840 + 4.29

S2 0.857 0.859 + 0.23 0.841 0.865 + 2.83

S3 0.868 0.845 - 2.70 0.777 0.803 + 2.81

E4

S1 0.840 0.841 + 0.10 0.784 0.861 + 9.74

S2 0.769 0.819 + 6.46 0.763 0.832 + 9.03

S3 0.757 0.843 +11.37 0.734 0.882 +20.17 (*)

S4 0.896 0.911 + 1.64 0.926 0.937 + 1.18

E5

S1 0.839 0.885 + 5.48 0.791 0.903 +12.31

S2 0.819 0.833 + 1.57 0.735 0.833 +11.7 (*)

S3 0.895 0.885 - 1.12 0.881 0.888 + 0.76

S4 0.656 0.745 +13.55 0.714 0.849 +15.86 (*)

E6

S1 0.718 0.818 +13.39 0.686 0.904 +24.29 (*)

S2 0.812 0.816 + 0.53 0.757 0.801 + 5.47

S3 0.927 0.936 + 0.85 0.945 0.950 + 0.46

S4 0.755 0.750 - 0.66 0.750 0.780 + 3.85

In all cases, BOFRF successfully improved the performance of all local RF models.

In cases of (i), the percentage of improvements was usually around the same level

86



at all sites, that is between 1-6%. In cases of (ii), a significant improvement was

observed in sites having poor models with low AUC values. BOFRF increased the

local AUC value from 0.752 to 0.856 in Environment 2 (13.86% increase), from 0.734

to 0.882 in Environment 4 (20.17% increase), from 0.735 to 0.833 and from 0.714 to

0.849 in Environment 5 (11.7% and 15.86% increase, respectively), and from 0.686

to 0.904 in Environment 6 (24.29% increase). In these settings, the improvement on

the best-performing model was usually around 0-2%, but this is something expected

because these models can only be improved up to a certain level as they already have

high AUC values. Fig. 7.1 shows the comparison of the local RF with BOFRF on the

Pima Indian Diabetes dataset. In the figure, orange bars represent the performance of

local RF, whereas green bars represent the performance of BOFRF.

Figure 7.1: Comparison of the local RF with BOFRF in the Pima Indian Diabetes

dataset.

On the Diabetic Retinopathy dataset, three environments were set up, i.e., Environ-

ments 7, 8, and 9 as shown in Table 7.2. In Environment 8, where the participating

sites had AUC values close to each other, the same level of improvement was observed

as in the Pima Indian Diabetes dataset. In Environment 7, there were two sites, Site

1 and Site 2, with AUC values of 0.666 and 0.742, respectively. BOFRF improved

the AUC values by 9.8% and 2.03%, respectively. In Environment 9, Site 1 was kept

as it is and two new sites having AUC values as low as Site 2 in Environment 7 were

introduced. In this case, BOFRF significantly improved the AUC values by 20.44%

and 30.72%.

87



Table 7.2: Comparison of algorithms based on the AUC values in federated environ-

ments built on the Diabetic Retinopathy dataset.

Env.

#

Site

#

Local

Ada

BOPPID Change

(%)

Local

RF

BOFRF Change (%)

E7
S1 0.692 0.718 + 3.76 0.742 0.757 + 2.03

S2 0.693 0.695 + 0.32 0.666 0.732 + 9.80 (*)

E8

S1 0.710 0.720 + 1.49 0.708 0.727 + 2.69

S2 0.703 0.768 + 9.18 0.774 0.788 + 1.85

S3 0.684 0.739 + 2.98 0.704 0.740 + 5.12

E9

S1 0.692 0.705 + 1.80 0.742 0.745 + 0.31

S2 0.729 0.747 + 2.41 0.658 0.793 +20.44 (*)

S3 0.707 0.823 +16.51 0.638 0.833 +30.72 (*)

Figure 7.2: Comparison of the local RF and BOFRF in the Diabetic Retinopathy

dataset.

On the South African Heart Disease dataset, sites having the lowest AUC values in all

experiments were introduced and the performance improvement was evaluated. The

results for Environments 10, 11, and 12 are shown in Table 7.3. In Environment 10,

Site 1 had a local RF model with an AUC value of 0.580, and Site 2 had a local RF

model with an AUC value of 0.758. After applying BOFRF, the AUC values increased

88



by 30.77% and 4.71%, and became 0.759 and 0.793, respectively. In Environment 11,

Site 3 had a very low AUC value of 0.573 due to its imbalanced data with only 22%

positive. BOFRF provided 21.21% of improvement on this site and increased its

AUC value to 0.696. Similarly, it increased the AUC of Site 1 in Environment 11

from 0.618 to 0.709 by 14.7%, and the AUC of Site 2 in Environment 12 from 0.599

to 0.685 by 14.22%. The overall comparison of local RF and BOFRF in the Diabetic

Retinopathy and South African Heart Disease datasets is displayed in Fig. 7.2 and

Fig. 7.3, respectively.

As a result of these experiments, it was observed that for all sites, the proposed

BOFRF algorithm successfully improved the prediction performance of the local

RF. In particular, BOFRF significantly improved the prediction performance of sites

whose local model was poor (i.e., having an AUC value less than 0.75). Such cases

were highlighted in Tables 7.1, 7.2 and 7.3 with “(*)” near the percentage of change

values. For instance, in Environments 6, 9, and 10, it was observed that BOFRF in-

creased the local AUC value from 0.686 to 0.904 (24.29% increase), 0.638 to 0.833

(30.72% increase), and 0.580 to 0.759 (30.77% increase), respectively, with the help

of other well-performing models. Furthermore, it was also observed that even a site

with a poor local model can provide a remarkable contribution to the other sites in

BOFRF as presented in Environments 7 and 9.

89



Table 7.3: Comparison of algorithms based on the AUC values in federated environ-

ments built on the South African Heart Disease dataset.

Env.

#

Site

#

Local

Ada

BOPPID Change

(%)

Local

RF

BOFRF Change (%)

E10
S1 0.509 0.607 + 19.30 0.580 0.759 +30.77 (*)

S2 0.708 0.708 0.00 0.758 0.793 + 4.71

E11

S1 0.613 0.653 + 6.52 0.618 0.709 +14.70 (*)

S2 0.726 0.751 + 3.39 0.771 0.773 + 0.19

S3 0.582 0.669 +14.92 0.573 0.696 +21.21 (*)

E12

S1 0.728 0.683 - 6.17 0.692 0.718 + 3.07

S2 0.597 0.679 +13.81 0.599 0.685 +14.22 (*)

S3 0.629 0.687 + 9.13 0.724 0.741 + 2.38

Figure 7.3: Comparison of the local RF and BOFRF in the South African Heart Dis-

ease dataset.

7.1.2 Comparison of BOFRF with BOPPID

In the observational experiments, it was observed that BOFRF provided better AUC

results than BOPPID in 91.6% of the cases. In addition, the percentage of improve-

ment provided by BOFRF was higher than that provided by BOPPID in 77.7% of the

90



cases as shown in Figures 7.4, 7.5 and 7.6, where blue bars represent the percentage

of improvement provided by BOPPID, whereas green bars represent the percentage

of improvement provided by BOFRF. The average change percentages of BOFRF and

BOPPID were 9.04% and 4.67% respectively, which shows that BOFRF can improve

the performance of the local models better than BOPPID.

Figure 7.4: Comparison of the percentage of improvement provided by BOPPID and

BOFRF on their baseline local models in observational experiments conducted on the

Pima Indian Diabetes dataset.

Figure 7.5: Comparison of the percentage of improvement provided by BOPPID and

BOFRF on their baseline local models in observational experiments conducted on the

Diabetic Retinopathy dataset.

91



Figure 7.6: Comparison of the percentage of improvement provided by BOPPID and

BOFRF on their baseline local models in observational experiments conducted on the

South African Heart Disease dataset.

7.1.3 BOFRF vs Personalized BOFRF

In the integration step of BOFRF, weak classifiers having an MCC value below a cer-

tain threshold value, are removed to improve the prediction performance of the final

federated ensemble classifier. The results in the observational experiments presented

in the previous sections were obtained with a threshold value of 0.2. Then, secondly

in this study, a personalized version of BOFRF was implemented, where each partici-

pant fine-tunes the hyperparameters of BOFRF locally, including threshold, ensemble

strategy and parameters of random forest, to come up with a better-performing feder-

ated model on their own datasets.

In the second type of observational experiments, the personalized BOFRF was run in

the same environments where the base BOFRF was run and the results obtained by

both were compared. The AUC values that were obtained by the base BOFRF and

personalized BOFRF in federated environments built on the Pima Indian Diabetes,

Diabetic Retinopathy and South African Heart Disease datasets and the threshold

value (τ ) giving the corresponding AUC value are presented in Tables 7.4, 7.5 and

7.6, respectively. The values of all hyperparameters are provided in Appendix A.

As shown in the tables, using a different threshold value than 0.2 gave better AUC

result in 86.1% of the cases, while the threshold value of 0.2 gave the best result in

92



%13.9 of the cases. Among 36 cases in total, the highest improvements that per-

sonalized BOFRF provided over BOFRF were observed in Site 2 in Environment 3

(3.93%), Site 3 in Environment 9 (4.08%), Site 3 in Environment 11 (4.02%), and Site

3 in Environment 12 (5.13%). The corresponding threshold values for these are 0.3,

0.3, 0.4 and 0.1, respectively. This shows that in some cases using a larger threshold

value, which eliminates a greater number of weak classifiers, helps producing better-

performing federated models; while in some other cases, it is better to use a smaller

threshold value, which allows to include weaker classifiers in the federated model.

That’s why it is a good idea to use a fine-tuning approach to personalize of BOFRF

for specific sites.

93



Table 7.4: AUC comparison of base BOFRF and personalized BOFRF in federated

environments built on the Pima Indian Diabetes dataset.

Env.

#

Site

#

Local RF BOFRF Personalized

BOFRF

Improvement

(%)

τ

E1
S1 0.763 0.841 0.841 0.00 0.2

S2 0.828 0.843 0.860 + 2.02 0.3

E2

S1 0.738 0.802 0.805 + 0.37 0.15

S2 0.752 0.856 0.881 + 2.92 0.25

S3 0.903 0.923 0.950 + 2.93 0.25

E3

S1 0.805 0.840 0.853 + 1.55 0.1

S2 0.841 0.865 0.899 + 3.93 0.3

S3 0.777 0.803 0.824 + 2.62 0.3

E4

S1 0.784 0.861 0.869 + 0.93 0

S2 0.763 0.832 0.841 + 1.05 0

S3 0.734 0.882 0.888 + 0.68 0.1

S4 0.926 0.937 0.937 0.00 0.2

E5

S1 0.791 0.903 0.903 0.00 0.2

S2 0.735 0.833 0.846 + 1.56 0.3

S3 0.881 0.888 0.888 0.00 0.2

S4 0.714 0.849 0.856 + 0.82 0.3

E6

S1 0.686 0.904 0.911 + 0.77 0.3

S2 0.757 0.801 0.805 + 0.50 0.4

S3 0.945 0.950 0.953 + 0.32 0.25

S4 0.750 0.780 0.790 + 0.78 0.4

94



Table 7.5: AUC comparison of base BOFRF and personalized BOFRF in federated

environments built on the Diabetic Retinopathy dataset.

Env.

#

Site

#

Local RF BOFRF Personalized

BOFRF

Improvement

(%)

τ

E7
S1 0.742 0.757 0.758 + 0.13 0

S2 0.666 0.732 0.742 + 1.37 0.4

E8

S1 0.708 0.727 0.727 0.00 0.2

S2 0.774 0.788 0.790 + 0.25 0

S3 0.704 0.740 0.741 + 0.14 0

E9

S1 0.742 0.745 0.746 + 0.13 0.3

S2 0.658 0.793 0.795 + 0.25 0.3

S3 0.638 0.833 0.867 + 4.08 0.3

Table 7.6: AUC comparison of base BOFRF and personalized BOFRF in federated

environments built on the South African Heart Disease dataset.

Env.

#

Site

#

Local RF BOFRF Personalized

BOFRF

Improvement

(%)

τ

E10
S1 0.580 0.759 0.768 + 1.19 0.3

S2 0.758 0.793 0.799 + 0.76 0

E11

S1 0.618 0.709 0.714 + 0.71 0.4

S2 0.771 0.773 0.783 + 1.29 0.4

S3 0.573 0.696 0.724 + 4.02 0.4

E12

S1 0.692 0.718 0.718 0.00 0.2

S2 0.599 0.685 0.685 0.00 0.2

S3 0.724 0.741 0.779 + 5.13 0.1

95



7.2 Results of Statistical Experiments

The statistical experiments were performed on the SHELTER dataset. In these experi-

ments, 247 environments were built in total, consisting of every possible combination

of countries in federated settings with two, three, four, five, six, seven, and eight

sites. For example, Czechia (CZ) is involved in 7 settings with two sites (Czechia and

another country), 21 settings with three sites (Czechia and two more countries), 35

settings with four sites, 35 settings with five sites, 21 settings with six sites, 7 settings

with seven site, and 1 setting with eight sites. In each environment, first, the local

random forest model, which is the baseline of BOFRF, was run at each site (coun-

try) without using the federated learning approach. Then, the BOPPID and BOFRF

algorithms were run in each of the 247 environments, and the mean AUC and accu-

racy values were calculated for each country. In Tables 7.7 and 7.8, these values are

compared along with their standard deviations and p-values.

Table 7.7: Achieved AUC values of countries along with their standard deviations in

real federated environments built on the SHELTER dataset.

Site

Non-federated Federated

Local RF

(Baseline)
BOPPID BOFRF p-value

CZ 0.621 ± 0.039 0.630 ± 0.016 0.659 ± 0.026 0.000

DE 0.677 ± 0.039 0.645 ± 0.021 0.688 ± 0.005 0.000

EN 0.645 ± 0.023 0.681 ± 0.011 0.692 ± 0.012 0.001

FI 0.699 ± 0.032 0.687 ± 0.011 0.715 ± 0.019 0.000

FR 0.702 ± 0.007 0.685 ± 0.004 0.714 ± 0.005 0.000

IL 0.743 ± 0.026 0.751 ± 0.005 0.777 ± 0.003 0.000

IT 0.703 ± 0.046 0.687 ± 0.013 0.705 ± 0.015 0.000

NL 0.767 ± 0.015 0.794 ± 0.008 0.781 ± 0.003 1.000

96



Table 7.8: Achieved accuracy values of countries along with their standard deviations

in real federated environments built on the SHELTER dataset.

Site

Non-federated Federated

Local RF

(Baseline)
BOPPID BOFRF p-value

CZ 0.680 ± 0.035 0.692 ± 0.010 0.717 ± 0.017 0.000

DE 0.658 ± 0.020 0.641 ± 0.014 0.663 ± 0.010 0.000

EN 0.661 ± 0.042 0.686 ± 0.013 0.697 ± 0.010 0.001

FI 0.623 ± 0.011 0.631 ± 0.048 0.702 ± 0.005 0.000

FR 0.609 ± 0.015 0.603 ± 0.013 0.646 ± 0.014 0.000

IL 0.831 ± 0.043 0.834 ± 0.005 0.848 ± 0.003 0.000

IT 0.849 ± 0.018 0.861 ± 0.005 0.862 ± 0.008 0.228

NL 0.744 ± 0.005 0.763 ± 0.016 0.773 ± 0.008 0.001

The statistical experiments confirmed the findings obtained in observational experi-

ments; that is, BOFRF improved the prediction power of the baseline local random

forest model in all cases. In particular, in Table 7.7, the best improvement was ob-

served in Czechia (CZ) and England (EN), which had the lowest AUC value in their

baseline random forest models, that is, the two most unsuccessful local classifiers.

On the other hand, BOPPID provided the best improvement on the site having the

best performing local model, the Netherlands (NL), which is also the only case in

which BOPPID produced better result than BOFRF. This is understandable because

BOPPID is designed to give more importance to the site’s own local model than the

others in the federated model. However, in all the other cases, BOFRF produced

better results than BOPPID.

In statistics, the hypothesis testing can be performed as either one-tailed or two-tailed,

where a tail refers to the side at either end of a distribution curve [122]. If the hypoth-

esis is about testing if "X is greater than Y" or "X is smaller than Y", then one-tailed

test is applied. If it is about testing if "X is not equal to Y", then two-tailed test

97



is applied. The right-tailed test and left-tailed test are two types of one-tailed tests.

Right-tailed tests are used when the hypothesis contains a greater than symbol, and

left-tailed are used when the hypothesis contains a smaller than symbol.

To statistically verify that BOFRF outperforms BOPPID, right-tailed Z-test was ap-

plied. The alternative hypothesis H1 was that the mean AUC value of BOFRF (µ)

is greater than the mean AUC value of BOPPID (µ0) at a given level of significance.

The null hypothesis was just the opposite as formulated in (7.1).

H0 : µ ≤ µ0

H1 : µ > µ0

(7.1)

After the hypothesis statements were written, the Z-scores were calculated using the

formula

Z =
x− µ0

σ −
√
n

(7.2)

where x is the mean AUC value of BOFRF, σ is the standard deviation, and n is the

sample size. After the Z-tests were run, the corresponding p-value of each test were

calculated based on the output Z-scores. The level of significance was determined as

α = 0.05. If the p-value ≤ 0.05, the null hypothesis should be rejected, otherwise it

cannot be rejected. The null hypothesis can also be rejected if the Z-score ≥ 1.645,

which is the critical value for the significance level of 0.05. As shown in Table 7.7,

the p-value of all sites except the Netherlands were either 0.000 or 0.001, which

means that the null hypothesis is rejected, hence the alternative hypothesis is true. The

reason that p-values of the sites had such low values was because their corresponding

Z-scores had extremely high values, ranging from 7 to 52. Appendix B contains the

complete list of Z-scores. The results obtained with the accuracy values were in line

with those obtained with the AUC values. As shown in Table 7.8, BOFRF gave better

accuracy results than BOPPID in all cases. The only p-value that was not below 0.05,

hence not rejecting the null hypothesis, was that of Italy. Consequently, in seven

out of eight sites in both AUC and accuracy, statistically significant evidences were

obtained to confirm that BOFRF outperforms BOPPID.

98



Fig. 7.7 and Fig. 7.8 elaborate the comparison of AUC and accuracy values shown in

Table 7.7 and Table 7.8 respectively, and provide line charts to depict the influence of

the increasing number of sites on the performance of the algorithms. In the figures,

the blue lines represent the mean values of BOFRF, whereas the orange lines represent

the mean values of BOPPID. The AUC/accuracy value of the baseline local RF model

is represented by a straight green line. To illustrate, in Fig. 7.7, the mean AUC values

of BOFRF for Czechia in federated settings with two, three, four, five, six, and seven

sites were calculated as 0.643, 0.649, 0.658, 0.661, 0.665, and 0.678, respectively.

The blue-painted areas in the figure show the range in which the values of BOFRF

change, that is, the area between the minimum and the maximum values, and the

blue lines indicate the average values for each setting. In Czechia, England, Finland,

Italy, and the Netherlands, the blue line followed an ascending path, implying that for

an increasing number of sites, the performance of the BOFRF increased as well. In

the case of France, increasing number of sites did not significantly affect the result;

hence, the line followed a straight path, indicating that the same level of improvement

was observed in all scenarios. A decrease in performance for an increasing number of

sites was only observed in Germany and Israel, but in both cases, the rate of decrease

was limited and BOFRF performed better than local RF and BOPPID in all scenarios.

99



Figure 7.7: Overall AUC comparison of BOFRF with the baseline local RF model

and BOPPID.

100



Figure 7.8: Overall accuracy comparison of BOFRF with the baseline local RF model

and BOPPID.

101



7.3 Results of the Experiments for Clustered BOFRF

The experiments for evaluating the performance of the clustered BOFRF algorithm

were conducted on the SHELTER dataset. Following the steps of the algorithm ex-

plained in Sec. 5.2, first, a characteristic vector was created for each country. These

vectors are presented in Appendix C. Then, the clustered BOFRF algorithm was ex-

ecuted with different number of clusters and by using different distance metrics. In

this section, the results of these experiments are presented. For the sake of traceabil-

ity, the distance between each country calculated with the Manhattan and Eucledian

distance metrics is listed in Tables 7.9 and 7.10, respectively.

Table 7.9: Manhattan Distance matrix on the SHELTER dataset.

CZ DE EN FI FR IL IT NL

CZ - 1.64 1.81 2.23 2.10 1.72 1.83 1.67

DE 1.64 - 1.74 1.60 1.47 1.62 1.51 0.94

EN 1.81 1.74 - 2.17 1.13 1.47 1.76 1.61

FI 2.23 1.60 2.17 - 2.26 2.16 2.12 1.57

FR 2.10 1.47 1.13 2.26 - 1.80 1.64 1.64

IL 1.72 1.62 1.47 2.16 1.80 - 0.94 1.70

IT 1.83 1.51 1.76 2.12 1.64 0.94 - 1.84

NL 1.67 0.94 1.61 1.57 1.64 1.70 1.84 -

102



Table 7.10: Eucledian Distance matrix on the SHELTER dataset.

CZ DE EN FI FR IL IT NL

CZ - 0.63 0.76 0.77 0.80 0.64 0.60 0.71

DE 0.63 - 0.64 0.59 0.54 0.51 0.48 0.30

EN 0.76 0.64 - 0.74 0.43 0.45 0.56 0.58

FI 0.77 0.59 0.74 - 0.72 0.83 0.78 0.56

FR 0.80 0.54 0.43 0.72 - 0.55 0.55 0.52

IL 0.64 0.51 0.45 0.83 0.55 - 0.28 0.57

IT 0.60 0.48 0.56 0.78 0.55 0.28 - 0.54

NL 0.71 0.30 0.58 0.56 0.52 0.57 0.54 -

7.3.1 Experiment with 2 clusters and Manhattan distance

In the first experiment covered in this section, the clustered BOFRF algorithm was

executed with 2 clusters and by using Manhattan distance as the distance calculation

metric. The algorithm randomly selected Czechia (CZ) as the initial centroid, hence

the second centroid became Finland (FI), which is the farthest site to Czechia with a

distance of 2.23 as shown in Table 7.9. Then, the remaining countries were assigned

to the nearest centroid. As a result, the first cluster was formed as Czechia, England,

France, Israel and Italy, and the second cluster was formed as Finland, Germany and

the Netherlands. Later, the personalized BOFRF algorithm was run on these clusters

separately, and the AUC values presented in Table 7.11 were obtained. As can be

seen in the table, the AUC value of the clustered BOFRF was better than the AUC

value of the base local RF model in all cases. In addition, when the AUC value was

compared with the mean AUC value of the 247 environments set up in Sec. 7.2, it

was observed that the AUC value of the clustered BOFRF was better than the mean

AUC value in all cases.

103



Table 7.11: Achieved AUC values of countries with 2 clusters formed with Manhattan

distance.

Site
Local RF

(Baseline)
BOFRF (Mean) Clustered BOFRF

Cluster

1

CZ 0.621 0.659 0.676

EN 0.645 0.692 0.703

FR 0.702 0.714 0.719

IL 0.743 0.777 0.777

IT 0.703 0.705 0.720

Cluster

2

DE 0.677 0.688 0.697

FI 0.699 0.715 0.762

NL 0.767 0.781 0.781

7.3.2 Experiment with 2 clusters and Eucledian distance

In the second experiment, the clustered BOFRF algorithm was again executed with 2

clusters, but this time Eucledian distance was used as the distance calculation metric.

In this experiment, the randomly selected site, hence the first centroid, was Germany

(DE), and the second centroid was England (EN) with a distance of 0.64 as shown

in Table 7.10. After running the algorithm, the clusters presented in Table 7.12 were

formed. As shown in the table, the clustered BOFRF model once again outperformed

the local RF model in all cases. The AUC values obtained with the clustered BOFRF

were no better than the mean AUC value in two of the cases, which are Czechia and

Italy, but the result was still acceptable as it was an improvement over the local model.

104



Table 7.12: Achieved AUC values of countries with 2 clusters formed with Eucledian

distance.

Site
Local RF

(Baseline)
BOFRF (Mean) Clustered BOFRF

Cluster

1

CZ 0.621 0.659 0.647

DE 0.677 0.688 0.689

FI 0.699 0.715 0.743

IT 0.703 0.705 0.703

NL 0.767 0.781 0.783

Cluster

2

EN 0.645 0.692 0.688

FR 0.702 0.714 0.722

IL 0.743 0.777 0.779

7.3.3 Experiment with 3 clusters and Eucledian distance

In the third experiment, the number of clusters was increased to 3 and the algorithm

was forced to perform the same initialization presented in the previous section. The

aim was to analyze whether adding one more cluster would be beneficial in further

improving the prediction power of the sites. After repeating the clustering process of

the algorithm once more, the cluster consisting of England, France and Israel (Cluster

2 in Table 7.12) remained the same, but the other cluster was split into two as shown in

Table 7.13. The results showed that although the clustered BOFRF outperformed the

local RF in 4 out of 5 cases, splitting the relevant cluster once again did not improve

the prediction power of the sites in that cluster when compared to not splitting it,

such that Czechia’s AUC dropped from 0.647 to 0.633, Finland’s AUC dropped from

0.743 to 0.732, Italy’s AUC dropped from 0.703 to 0.689, and the Netherland’s AUC

dropped from 0.783 to 0.780. The only improvement was for Germany, where the

AUC value increased from 0.689 to 0.690.

105



Table 7.13: Achieved AUC values of countries with 3 clusters formed with Eucledian

distance.

Site
Local RF

(Baseline)
BOFRF (Mean) Clustered BOFRF

Cluster

1

CZ 0.621 0.659 0.633

DE 0.677 0.688 0.690

IT 0.703 0.705 0.689

Cluster

2

FI 0.699 0.715 0.732

NL 0.767 0.781 0.780

Cluster

3

EN 0.645 0.692 0.688

FR 0.702 0.714 0.722

IL 0.743 0.777 0.779

106



CHAPTER 8

CONCLUSION

In this study, first, a novel federated ensemble classification algorithm for horizon-

tally partitioned data called Boosting-based Federated Random Forest (BOFRF) is

proposed, which not only increases the predictive power of all participating sites, but

also provides significantly high improvements on the predictive power of sites hav-

ing unsuccessful local models. The novelty of BOFRF lies in adapting the idea of

boosting to random forest in a federated manner and introducing a new aggregation

and weight calculation methodology in the integration phase. Second, to further im-

prove the classification performance of participating sites, a personalized version of

BOFRF is presented. The proposed BOFRF algorithm provides an adequate level

of privacy in its base and personalized form as the actual data is not shared among

the participants. However, in federated environments, a sneaky site may attempt to

identify an individual in any of the datasets. To prevent this from happening, two

privacy-preserving implementations of the proposed algorithm are provided. Lastly,

an extension of BOFRF, namely clustered BOFRF, is proposed to cluster the par-

ticipating sites according to their data distribution similarities or differences prior to

running the algorithm.

To evaluate the effectiveness of BOFRF, a number of observational and statistical

experiments are conducted on four healthcare datasets. The experiments show that

BOFRF can successfully generate a powerful global model for all sites participating

in the federated setting, regardless of whether they have well-performing or under-

performing local models. The empirical results show that BOFRF consistently im-

proves the prediction performance of local RF model, hence achieves the main objec-

tive of federated learning because BOFRF considers the performance of each deci-

107



sion tree across all sites with equal emphasis. When compared to one of the best-

performing existing solutions, namely BOPPID, the most important advantage of

BOFRF is that it provides significantly high prediction improvement for the sites

whose local model is not performing well, suggesting that the algorithm also attained

the expected impact. The particularly important feature of BOFRF that enables it

to achieve this is its novel MCC-based weight calculation methodology, which takes

both target classes (0 and 1) into account when calculating the weights of each de-

cision tree. In the experiments, it was observed that the closer the AUC value of

the local site is to 0.5, which is regarded as the failure limit, the more improvement

BOFRF can provide given successful local models from other sites. This is important

because in federated environments, enhancing the prediction capability of unsuccess-

ful sites is much more important than the others in many cases. Thanks to BOFRF,

these sites could benefit from the advantages of federated machine learning, that is,

the ability to make accurate predictions despite the insufficient data they have in their

repositories. Therefore, unless the usage of AdaBoost models is more convenient

than RF models for some datasets (e.g., datasets producing high bias and low vari-

ance models), BOFRF would be a better choice than BOPPID because of the better

prediction improvement it can provide for the sites, especially those with relatively

unsuccessful local models.

In the literature, there are numerous solutions utilizing deep learning methods for

federated learning [123, 124]. Although federated deep-learning approaches can pro-

duce better results than traditional federated learning methods in certain settings, they

are computationally expensive, bring a communication overhead, and require a large

amount of training data. Therefore, the implementation of federated solutions on tra-

ditional machine learning methods, including random forest, is still an important topic

that has been widely studied by researchers. In this regard, the proposed solution is

considered to be an essential contribution to state-of-the-art federated solutions.

Using decision trees as weak classifiers is a useful approach to follow in federated set-

tings because decision trees have many advantages over other machine learning meth-

ods, such as the ability to handle categorical data and the ability to deal with outliers

and noisy or missing data. Furthermore, although the participating sites mostly share

the same set of features, they may still have some local features that are not present

108



in others. This is not an issue in random forest because the standard random forest

algorithm already uses the idea of taking a random subset of features to build each

decision tree to prevent overfitting; hence, the local features are not present in every

decision tree generated at sites. However, this is valid up to a point because the more

local features differ from each other, the more vertical they become, which may pre-

vent the BOFRF algorithm from producing successful results. Therefore, it should be

noted that this work is currently limited to horizontally partitioned data; hence, it may

not be suitable for applications in vertical settings. Furthermore, the work presented

in this study does not focus on improving the robustness of the proposed algorithm.

Future enhancements could include the addition of a validation step, where the sites

approve the retrieval of decision trees sent by other sites. In addition, the effect of

applying feature selection techniques [125, 126] prior to running the actual algorithm

could also be analyzed to handle heterogeneous data.

109



110



REFERENCES

[1] M. B. Malik, M. A. Ghazi, and R. Ali, “Privacy preserving data mining tech-

niques: current scenario and future prospects,” in 2012 third international con-

ference on computer and communication technology, pp. 26–32, IEEE, 2012.

[2] X.-D. Zhang, A matrix algebra approach to artificial intelligence. Springer,

2020.

[3] R. Nosowsky and T. J. Giordano, “The health insurance portability and ac-

countability act of 1996 (HIPAA) privacy rule: implications for clinical re-

search,” Annu. Rev. Med., vol. 57, pp. 575–590, 2006.

[4] “Regulation (EU) 2016/679 of the european parliament and of the coun-

cil of 27 april 2016 on the protection of natural persons with re-

gard to the processing of personal data and on the free movement

of such data, and repealing directive 95/46/ec (general data protec-

tion regulation) (text with eea relevance).” https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32016R0679, Last accessed: 26.08.2022.

[5] V. Koutkias, “From data silos to standardized, linked, and fair data for phar-

macovigilance: current advances and challenges with observational healthcare

data,” Drug Safety, vol. 42, no. 5, pp. 583–586, 2019.

[6] C. C. Aggarwal and P. S. Yu, “A general survey of privacy-preserving data

mining models and algorithms,” in Privacy-preserving data mining, pp. 11–

52, Springer, 2008.

[7] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-

anonymity and l-diversity,” in 2007 IEEE 23rd international conference on

data engineering, pp. 106–115, IEEE, 2006.

[8] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated learning,”

111



Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 13,

no. 3, pp. 1–207, 2019.

[9] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept

and applications,” ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 10, no. 2, pp. 1–19, 2019.

[10] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning

of deep networks using model averaging,” arXiv preprint arXiv:1602.05629,

vol. 2, 2016.

[11] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and

Y. Zhou, “A hybrid approach to privacy-preserving federated learning,” in Pro-

ceedings of the 12th ACM workshop on artificial intelligence and security,

pp. 1–11, 2019.

[12] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and

H. V. Poor, “Federated learning with differential privacy: Algorithms and per-

formance analysis,” IEEE Transactions on Information Forensics and Security,

vol. 15, pp. 3454–3469, 2020.

[13] W. Zhang, T. Zhou, Q. Lu, X. Wang, C. Zhu, H. Sun, Z. Wang, S. K. Lo, and F.-

Y. Wang, “Dynamic-fusion-based federated learning for COVID-19 detection,”

IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15884–15891, 2021.

[14] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Fed-

erated learning with matched averaging,” arXiv preprint arXiv:2002.06440,

2020.

[15] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,

methods, and future directions,” IEEE Signal Processing Magazine, vol. 37,

no. 3, pp. 50–60, 2020.

[16] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,”

Journal of artificial intelligence research, vol. 11, pp. 169–198, 1999.

[17] I. Palit and C. K. Reddy, “Scalable and parallel boosting with mapreduce,”

IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 10,

pp. 1904–1916, 2011.

112



[18] Y. Li, C. Bai, and C. K. Reddy, “A distributed ensemble approach for min-

ing healthcare data under privacy constraints,” Information sciences, vol. 330,

pp. 245–259, 2016.

[19] Z.-H. Zhou, “Ensemble learning,” in Machine learning, pp. 181–210, Springer,

2021.

[20] B. V. Dasarathy and B. V. Sheela, “A composite classifier system design: Con-

cepts and methodology,” Proceedings of the IEEE, vol. 67, no. 5, pp. 708–713,

1979.

[21] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE transactions

on pattern analysis and machine intelligence, vol. 12, no. 10, pp. 993–1001,

1990.

[22] R. Polikar, “Ensemble learning,” in Ensemble machine learning, pp. 1–34,

Springer, 2012.

[23] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4, p. e1249, 2018.

[24] S. Zhang, Y. Chen, W. Zhang, and R. Feng, “A novel ensemble deep learning

model with dynamic error correction and multi-objective ensemble pruning for

time series forecasting,” Information Sciences, vol. 544, pp. 427–445, 2021.

[25] A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng, “An ensemble of fine-

tuned convolutional neural networks for medical image classification,” IEEE

journal of biomedical and health informatics, vol. 21, no. 1, pp. 31–40, 2016.

[26] M. Abdar, M. Zomorodi-Moghadam, X. Zhou, R. Gururajan, X. Tao, P. D.

Barua, and R. Gururajan, “A new nested ensemble technique for automated

diagnosis of breast cancer,” Pattern Recognition Letters, vol. 132, pp. 123–

131, 2020.

[27] T. Zhou, H. Lu, Z. Yang, S. Qiu, B. Huo, and Y. Dong, “The ensemble deep

learning model for novel COVID-19 on CT images,” Applied soft computing,

vol. 98, p. 106885, 2021.

113



[28] M. P. Perrone and L. N. Cooper, “When networks disagree: Ensemble methods

for hybrid neural networks,” tech. rep., Brown Univ Providence Ri Inst for

Brain and Neural Systems, 1992.

[29] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–

140, 1996.

[30] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,

2001.

[31] R. Hornung and M. N. Wright, “Block forests: random forests for blocks of

clinical and omics covariate data,” BMC bioinformatics, vol. 20, no. 1, pp. 1–

17, 2019.

[32] A. Hajjem, F. Bellavance, and D. Larocque, “Mixed-effects random forest for

clustered data,” Journal of Statistical Computation and Simulation, vol. 84,

no. 6, pp. 1313–1328, 2014.

[33] C. A. Field and A. H. Welsh, “Bootstrapping clustered data,” Journal of the

Royal Statistical Society: Series B (Statistical Methodology), vol. 69, no. 3,

pp. 369–390, 2007.

[34] M. Samanta and A. H. Welsh, “Bootstrapping for highly unbalanced clustered

data,” Computational Statistics & Data Analysis, vol. 59, pp. 70–81, 2013.

[35] R. E. Schapire, “The strength of weak learnability,” Machine learning, vol. 5,

no. 2, pp. 197–227, 1990.

[36] P. Bühlmann and B. Yu, “Boosting,” Wiley Interdisciplinary Reviews: Compu-

tational Statistics, vol. 2, no. 1, pp. 69–74, 2010.

[37] “What is the difference between bagging and boosting?.”

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/,

Last accessed: 08.10.2022.

[38] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” Journal of computer and system sci-

ences, vol. 55, no. 1, pp. 119–139, 1997.

114



[39] C. Ying, M. Qi-Guang, L. Jia-Chen, and G. Lin, “Advance and prospects of ad-

aboost algorithm,” Acta Automatica Sinica, vol. 39, no. 6, pp. 745–758, 2013.

[40] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a sta-

tistical view of boosting (with discussion and a rejoinder by the authors),” The

annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[41] J. H. Friedman, “Greedy function approximation: a gradient boosting ma-

chine,” Annals of statistics, pp. 1189–1232, 2001.

[42] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge dis-

covery and data mining, pp. 785–794, 2016.

[43] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,

“Lightgbm: A highly efficient gradient boosting decision tree,” Advances in

neural information processing systems, vol. 30, 2017.

[44] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Cat-

boost: unbiased boosting with categorical features,” Advances in neural infor-

mation processing systems, vol. 31, 2018.

[45] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,”

in Artificial intelligence and statistics, pp. 1273–1282, PMLR, 2017.

[46] O. Goldreich, Foundations of cryptography: volume 2, basic applications.

Cambridge university press, 2009.

[47] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-preserving

deep learning via additively homomorphic encryption,” IEEE Transactions on

Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[48] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,

D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-

preserving machine learning,” in proceedings of the 2017 ACM SIGSAC Con-

ference on Computer and Communications Security, pp. 1175–1191, 2017.

115



[49] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, and Y.-a. Tan, “Se-

cure multi-party computation: theory, practice and applications,” Information

Sciences, vol. 476, pp. 357–372, 2019.

[50] F. Wang, H. Zhu, R. Lu, Y. Zheng, and H. Li, “A privacy-preserving and non-

interactive federated learning scheme for regression training with gradient de-

scent,” Information Sciences, vol. 552, pp. 183–200, 2021.

[51] Y. Liu, Z. Ma, Z. Yan, Z. Wang, X. Liu, and J. Ma, “Privacy-preserving fed-

erated k-means for proactive caching in next generation cellular networks,”

Information Sciences, vol. 521, pp. 14–31, 2020.

[52] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Personalized

cross-silo federated learning on non-IID data.,” in AAAI, pp. 7865–7873, 2021.

[53] T. Nishio and R. Yonetani, “Client selection for federated learning with het-

erogeneous resources in mobile edge,” in ICC 2019-2019 IEEE international

conference on communications (ICC), pp. 1–7, IEEE, 2019.

[54] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learning via

momentum gradient descent,” IEEE Transactions on Parallel and Distributed

Systems, vol. 31, no. 8, pp. 1754–1766, 2020.

[55] S. Gambs, B. Kégl, and E. Aïmeur, “Privacy-preserving boosting,” Data Min-

ing and Knowledge Discovery, vol. 14, no. 1, pp. 131–170, 2007.

[56] J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S. Patterson, “Privacy-

preserving decision trees over vertically partitioned data,” ACM Transactions

on Knowledge Discovery from Data (TKDD), vol. 2, no. 3, pp. 1–27, 2008.

[57] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Za-

hur, and D. Evans, “Privacy-preserving distributed linear regression on high-

dimensional data.,” Proc. Priv. Enhancing Technol., vol. 2017, no. 4, pp. 345–

364, 2017.

[58] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and

B. Thorne, “Private federated learning on vertically partitioned data via

entity resolution and additively homomorphic encryption,” arXiv preprint

arXiv:1711.10677, 2017.

116



[59] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang, “Se-

cureboost: A lossless federated learning framework,” IEEE Intelligent Systems,

vol. 36, no. 6, pp. 87–98, 2021.

[60] Y. Liu, Y. Liu, Z. Liu, Y. Liang, C. Meng, J. Zhang, and Y. Zheng, “Federated

forest,” IEEE Transactions on Big Data, 2020.

[61] N. Ge, G. Li, L. Zhang, and Y. Liu, “Failure prediction in production line based

on federated learning: an empirical study,” Journal of Intelligent Manufactur-

ing, pp. 1–18, 2021.

[62] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated

learning,” Computers & Industrial Engineering, vol. 149, p. 106854, 2020.

[63] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learning: A

survey on enabling technologies, protocols, and applications,” IEEE Access,

vol. 8, pp. 140699–140725, 2020.

[64] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Federated

learning for healthcare informatics,” Journal of Healthcare Informatics Re-

search, vol. 5, no. 1, pp. 1–19, 2021.

[65] Q. Wang and Y. Zhou, “FedSPL: federated self-paced learning for privacy-

preserving disease diagnosis,” Briefings in Bioinformatics, vol. 23, no. 1,

p. bbab498, 2022.

[66] O. Choudhury, Y. Park, T. Salonidis, A. Gkoulalas-Divanis, I. Sylla, et al.,

“Predicting adverse drug reactions on distributed health data using federated

learning,” in AMIA Annual symposium proceedings, vol. 2019, p. 313, Ameri-

can Medical Informatics Association, 2019.

[67] Q. Dou, T. Y. So, M. Jiang, Q. Liu, V. Vardhanabhuti, G. Kaissis, Z. Li, W. Si,

H. H. Lee, K. Yu, et al., “Federated deep learning for detecting COVID-19 lung

abnormalities in CT: a privacy-preserving multinational validation study,” NPJ

digital medicine, vol. 4, no. 1, pp. 1–11, 2021.

[68] M. Abdul Salam, S. Taha, and M. Ramadan, “COVID-19 detection using fed-

erated machine learning,” PLoS One, vol. 16, no. 6, p. e0252573, 2021.

117



[69] A. Vaid, S. K. Jaladanki, J. Xu, S. Teng, A. Kumar, S. Lee, S. Somani, I. Paran-

jpe, J. K. De Freitas, T. Wanyan, et al., “Federated learning of electronic health

records improves mortality prediction in patients hospitalized with covid-19,”

medRxiv, 2020.

[70] C. Alvarez-Romero, A. Martínez-García, A. A. Sinaci, M. Gencturk, E. Mén-

dez, T. Hernández-Pérez, R. Liperoti, C. Angioletti, M. Löbe, N. Ganapathy,

et al., “Fair4health: Findable, accessible, interoperable and reusable data to

foster health research,” Open Research Europe, vol. 2, no. 34, p. 34, 2022.

[71] C. Alvarez-Romero, A. Martinez-Garcia, J. T. Vega, P. Díaz-Jimènez,

C. Jimènez-Juan, M. D. Nieto-Martín, E. R. Villarán, T. Kovacevic, D. Bokan,

S. Hromis, et al., “Predicting 30-day readmission risk for patients with chronic

obstructive pulmonary disease through a federated machine learning archi-

tecture on findable, accessible, interoperable, and reusable (FAIR) data: De-

velopment and validation study,” JMIR Medical Informatics, vol. 10, no. 6,

p. e35307, 2022.

[72] J. Carmona-Pírez, B. Poblador-Plou, A. Poncel-Falcó, J. Rochat, C. Alvarez-

Romero, A. Martínez-García, C. Angioletti, M. Almada, M. Gencturk, A. A.

Sinaci, et al., “Applying the FAIR4Health solution to identify multimorbidity

patterns and their association with mortality through a frequent pattern growth

association algorithm,” International Journal of Environmental Research and

Public Health, vol. 19, no. 4, p. 2040, 2022.

[73] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor,

“Federated learning for internet of things: A comprehensive survey,” IEEE

Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021.

[74] Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving traf-

fic flow prediction: A federated learning approach,” IEEE Internet of Things

Journal, vol. 7, no. 8, pp. 7751–7763, 2020.

[75] T. Zeng, O. Semiari, M. Mozaffari, M. Chen, W. Saad, and M. Bennis, “Fed-

erated learning in the sky: Joint power allocation and scheduling with uav

swarms,” in ICC 2020-2020 IEEE International Conference on Communica-

tions (ICC), pp. 1–6, IEEE, 2020.

118



[76] H. Cao, S. Liu, R. Zhao, and X. Xiong, “Ifed: A novel federated learn-

ing framework for local differential privacy in power internet of things,”

International Journal of Distributed Sensor Networks, vol. 16, no. 5,

p. 1550147720919698, 2020.

[77] Y. Qu, S. R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, “A blockchained federated

learning framework for cognitive computing in industry 4.0 networks,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2964–2973, 2020.

[78] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niy-

ato, and C. Miao, “Federated learning in mobile edge networks: A compre-

hensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,

pp. 2031–2063, 2020.

[79] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving federated

learning personalization via model agnostic meta learning,” arXiv preprint

arXiv:1909.12488, 2019.

[80] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., “Advances and

open problems in federated learning,” Foundations and Trends® in Machine

Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[81] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized federated

learning,” arXiv preprint arXiv:2003.13461, 2020.

[82] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning: A

meta-learning approach,” arXiv preprint arXiv:2002.07948, 2020.

[83] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast

adaptation of deep networks,” in International conference on machine learn-

ing, pp. 1126–1135, PMLR, 2017.

[84] K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and D. Ra-

mage, “Federated evaluation of on-device personalization,” arXiv preprint

arXiv:1910.10252, 2019.

[85] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated

learning with personalization layers,” arXiv preprint arXiv:1912.00818, 2019.

119



[86] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task

learning,” Advances in neural information processing systems, vol. 30, 2017.

[87] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global and

local models,” arXiv preprint arXiv:2002.05516, 2020.

[88] C. T. Dinh, N. Tran, and J. Nguyen, “Personalized federated learning with

moreau envelopes,” Advances in Neural Information Processing Systems,

vol. 33, pp. 21394–21405, 2020.

[89] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Personalized

federated learning: An attentive collaboration approach,” 2020.

[90] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated learn-

ing,” IEEE Transactions on Neural Networks and Learning Systems, 2022.

[91] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning: Model-

agnostic distributed multitask optimization under privacy constraints,” IEEE

transactions on neural networks and learning systems, vol. 32, no. 8, pp. 3710–

3722, 2020.

[92] M. Duan, D. Liu, X. Ji, Y. Wu, L. Liang, X. Chen, Y. Tan, and A. Ren, “Flex-

ible clustered federated learning for client-level data distribution shift,” IEEE

Transactions on Parallel and Distributed Systems, 2021.

[93] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical cluster-

ing of local updates to improve training on non-IID data,” in 2020 International

Joint Conference on Neural Networks (IJCNN), pp. 1–9, IEEE, 2020.

[94] L. Yu, W. Nie, L. Xin, and M. Guo, “Clustered federated learning based on data

distribution,” in 2021 3rd International Conference on Advanced Information

Science and System (AISS 2021), pp. 1–5, 2021.

[95] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient framework

for clustered federated learning,” Advances in Neural Information Processing

Systems, vol. 33, pp. 19586–19597, 2020.

120



[96] M. Gencturk, A. A. Sinaci, and N. K. Cicekli, “BOFRF: A novel boosting-

based federated random forest algorithm on horizontally partitioned data,”

IEEE Access, vol. 10, pp. 89835–89851, 2022.

[97] T. Bruckhaus, “The business impact of predictive analytics,” in Knowledge

discovery and data mining: Challenges and realities, pp. 114–138, Igi Global,

2007.

[98] J. Davis and M. Goadrich, “The relationship between precision-recall and ROC

curves,” in Proceedings of the 23rd international conference on Machine learn-

ing, pp. 233–240, 2006.

[99] B. W. Matthews, “Comparison of the predicted and observed secondary struc-

ture of T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-Protein

Structure, vol. 405, no. 2, pp. 442–451, 1975.

[100] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen, “Assessing

the accuracy of prediction algorithms for classification: an overview,” Bioin-

formatics, vol. 16, no. 5, pp. 412–424, 2000.

[101] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced

data using matthews correlation coefficient metric,” PloS one, vol. 12, no. 6,

p. e0177678, 2017.

[102] D. Chicco and G. Jurman, “The advantages of the matthews correlation coef-

ficient (mcc) over f1 score and accuracy in binary classification evaluation,”

BMC genomics, vol. 21, no. 1, pp. 1–13, 2020.

[103] R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-

rated predictions,” Machine learning, vol. 37, no. 3, pp. 297–336, 1999.

[104] C. Adams, “Trusted third party,” in Encyclopedia of Cryptography and Secu-

rity, pp. 1335–1335, Springer, 2011.

[105] H.-Y. Chien, “Dynamic public key certificates with forward secrecy,” Electron-

ics, vol. 10, no. 16, p. 2009, 2021.

[106] A. Gurevich and E. Gudes, “Privacy preserving data mining algorithms with-

out the use of secure computation or perturbation,” in 2006 10th International

121



Database Engineering and Applications Symposium (IDEAS’06), pp. 121–

128, IEEE, 2006.

[107] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools for pri-

vacy preserving distributed data mining,” ACM Sigkdd Explorations Newslet-

ter, vol. 4, no. 2, pp. 28–34, 2002.

[108] S. Kumar, “Understanding k-means, k-means++ and, k-medoids clustering

algorithms,” 2020. https://towardsdatascience.com/understanding-k-means-k-

means-and-k-medoids-clustering-algorithms-ad9c9fbf47ca.

[109] M. Ali, “Implementing k-means clustering with k-means++ initialization

in python,” 2021. https://medium.com/geekculture/implementing-k-means-

clustering-with-k-means-initialization-in-python-7ca5a859d63a.

[110] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seed-

ing,” 2006.

[111] J. Brownlee, “Distance measures for machine learning,” 2020.

https://machinelearningmastery.com/distance-measures-for-machine-learning.

[112] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior

of distance metrics in high dimensional space,” in International conference on

database theory, pp. 420–434, Springer, 2001.

[113] J. W. Smith, J. E. Everhart, W. Dickson, W. C. Knowler, and R. S. Johannes,

“Using the ADAP learning algorithm to forecast the onset of diabetes mellitus,”

in Proceedings of the annual symposium on computer application in medical

care, p. 261, American Medical Informatics Association, 1988.

[114] “Pima indians diabetes database.” https://www.kaggle.com/uciml/pima-

indians-diabetes-database, Last accessed: 26.08.2022.

[115] B. Antal and A. Hajdu, “An ensemble-based system for automatic screening of

diabetic retinopathy,” Knowledge-based systems, vol. 60, pp. 20–27, 2014.

[116] D. Dua and C. Graff, “UCI machine learning repository,” 2019.

http://archive.ics.uci.edu/ml.

122



[117] T. Taveira-Gomes, “Machine learning on the diabetic retinopathy debrecen

data set data set,” 2016. https://rpubs.com/tiagotaveira/debrecen.

[118] C. Bartley, “Replication data for: South african heart disease,” 2016.

[119] “SHELTER: Services and health for elderly in long term care.”

https://cordis.europa.eu/project/id/223115, Last accessed: 20.10.2022.

[120] G. Onder, I. Carpenter, H. Finne-Soveri, J. Gindin, D. Frijters, J. C. Henrard,

T. Nikolaus, E. Topinkova, M. Tosato, R. Liperoti, et al., “Assessment of nurs-

ing home residents in europe: the services and health for elderly in long term

care (SHELTER) study,” BMC health services research, vol. 12, no. 1, pp. 1–

10, 2012.

[121] G. Onder, R. Liperoti, D. Fialova, E. Topinkova, M. Tosato, P. Danese, P. F.

Gallo, I. Carpenter, H. Finne-Soveri, J. Gindin, et al., “Polypharmacy in nurs-

ing home in europe: results from the SHELTER study,” Journals of Geron-

tology Series A: Biomedical Sciences and Medical Sciences, vol. 67, no. 6,

pp. 698–704, 2012.

[122] O. C. Ibe, “Chapter 9 - introduction to inferential statistics,” in Fundamentals

of applied probability and random processes, pp. 275–305, Boston: Academic

Press, second edition ed., 2014.

[123] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. Deng, “Privacy-preserving fed-

erated deep learning with irregular users,” IEEE Transactions on Dependable

and Secure Computing, 2020.

[124] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and privacy-

preserving federated deep learning,” in ICC 2019-2019 IEEE international

conference on communications (ICC), pp. 1–6, IEEE, 2019.

[125] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki, “A ro-

bust graph-based semi-supervised sparse feature selection method,” Informa-

tion Sciences, vol. 531, pp. 13–30, 2020.

[126] L. Chamakura and G. Saha, “An instance voting approach to feature selection,”

Information Sciences, vol. 504, pp. 449–469, 2019.

123



124



APPENDIX A

HYPERPARAMETER VALUES IN THE OBSERVATIONAL

EXPERIMENTS

Table A.1: Hyperparameter values giving the best result in the observational experi-

ments.

E
nv

ir
on

m
en

t#

Si
te

n_
es

tim
at

or
s

m
in

_s
am

pl
es

_s
pl

it

m
in

_s
am

pl
es

_l
ea

f

m
ax

_f
ea

tu
re

s

m
ax

_d
ep

th

cr
ite

ri
on

th
re

sh
ol

d

en
se

m
bl

e_
st

ra
te

gy

E1 S1 100 8 2 7 14 gini 0.2 global

S2 50 4 2 7 14 IG 0.2 global

E2 S1 100 8 2 7 14 gini 0.15 global

S2 50 4 2 3 14 gini 0.25 global

S3 150 6 3 7 15 IG 0.25 global

E3 S1 50 6 2 5 14 IG 0.1 global

S2 50 8 2 5 14 IG 0.3 global

S3 150 8 3 5 13 IG 0.3 global

E4 S1 150 6 3 7 15 IG 0 global

S2 50 4 2 3 14 gini 0 global

S3 50 4 2 7 14 IG 0.1 global

S4 150 6 3 7 15 IG 0.2 global

Continued on next page

125



Table A.1: Hyperparameter values giving the best result in the observational experi-

ments. (Continued)

E5 S1 50 6 2 5 14 IG 0.2 global

S2 150 6 3 7 15 IG 0.3 global

S3 50 8 2 3 13 gini 0.2 local

S4 50 6 2 5 15 IG 0.3 global

E6 S1 50 8 2 3 13 gini 0.3 global

S2 50 4 2 7 14 IG 0.4 global

S3 150 6 3 7 15 IG 0.25 local

S4 50 4 2 3 14 gini 0.4 global

E7 S1 150 7 14 auto none IG 0 global

S2 150 3 13 auto none IG 0.4 global

E8 S1 100 3 15 auto none IG 0.2 global

S2 100 3 15 auto none IG 0 global

S3 150 5 14 auto none IG 0 global

E9 S1 150 7 14 auto none IG 0.3 global

S2 100 5 14 auto none IG 0.3 global

S3 100 5 14 auto none IG 0.3 global

E10 S1 50 6 2 5 5 gini 0.3 global

S2 50 6 2 5 5 gini 0 global

E11 S1 150 2 3 7 7 IG 0.4 global

S2 150 3 3 3 9 IG 0.4 local

S3 100 3 2 9 7 gini 0.4 global

E12 S1 30 6 3 7 7 gini 0.2 global

S2 30 2 3 3 9 gini 0.2 global

S3 50 4 2 7 7 IG 0.1 local

126



APPENDIX B

Z SCORES OF THE SITES IN THE SHELTER DATASET

Table B.1: Z-scores of countries for AUC and accuracy in federated environments

built on the SHELTER dataset.

Site Z-score for AUC Z-score for accuracy

Czechia (CZ) 10.72 14.11

Germany (DE) 22.44 14.70

England (EN) 7.22 7.51

Finland (FI) 14.51 16.55

France (FR) 50.54 24.63

Israel (IL) 52.50 27.85

Italy (IT) 10.58 0.75

The Netherlands (NL) -16.82 6.22

127



128



APPENDIX C

CHARACTERISTIC VECTORS IN THE SHELTER DATASET

Table C.1: Characteristic vector of the countries in the SHELTER dataset.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

CZ .72 .68 .59 .57 .82 .53 .82 .60 .31 .87 .92 .72 .63 .86 .66

DE .79 .45 .75 .70 .81 .61 .83 .64 .79 .70 .91 .81 .75 .90 .65

EN .72 .74 .38 .64 .87 .62 .87 .93 .88 .93 .93 .75 .86 .88 .65

FI .75 .41 .72 .29 .82 .54 .90 .75 .74 .87 .96 .91 .85 .93 .33

FR .76 .68 .53 .71 .58 .58 .84 .94 .88 .70 .92 .80 .89 .83 .57

IL .71 .66 .50 .77 .78 .84 .96 .75 .75 .87 .95 .76 .70 .93 .77

IT .73 .59 .57 .72 .62 .79 .92 .68 .67 .91 .90 .80 .81 .94 .84

NL .67 .47 .77 .53 .78 .56 .81 .74 .91 .75 .94 .72 .79 .87 .71

129



130



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Gençtürk, Mert

Nationality: Turkish (TC)

EDUCATION

Degree Institution Year of Graduation

M.S. Computer Engineering Department, METU 2015

B.S. Computer Engineering Department, METU 2012

High School Kastamonu Göl Anadolu Öğretmen Lisesi 2007

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2018-Present SRDC Software Research & Development

and Consultancy Corp.

Technical Manager &

Researcher

2015-2018 SRDC Software Research & Development

and Consultancy Ltd.

Senior Software

Engineer & Researcher

2012-2015 SRDC Software Research & Development

and Consultancy Ltd..

Software Engineer

2010-2012 SRDC Software Research & Development

and Consultancy Ltd.

Part-time Software

Developer

131



PUBLICATIONS

Journal Publications

1. M. Gencturk, A. A. Sinaci, N. K. Cicekli, "BOFRF: A novel boosting-based

federated random forest algorithm on horizontally partitioned data," IEEE Ac-

cess, vol. 10, pp. 89835-89851, 2022. DOI: 10.1109/ACCESS.2022.3202008

2. C. Alvarez-Romero, A. Martinez-Garcia, J. T. Vega, P. Díaz-Jiménez, C. Jiménez-

Juan, M. D. Nieto-Martín, ..., M. Gencturk, A. A. Sinaci, M. Ollero-Baturone,

C. L. Parra-Calderón, "Predicting 30-day readmission risk for patients with

chronic obstructive pulmonary disease through a federated machine learning

architecture on findable, accessible, interoperable, and reusable (FAIR) data:

Development and validation study," JMIR Medical Informatics, vol. 10, no. 6,

p. e35307, 2022. DOI: 10.2196/35307

3. J. Carmona-Pírez, B. Poblador-Plou, A. Poncel-Falcó, J. Rochat, C. Alvarez-

Romero, A. Martínez-García, C. Angioletti, M. Almada, M. Gencturk, A. A.

Sinaci, et al., "Applying the FAIR4Health solution to identify multimorbidity

patterns and their association with mortality through a frequent pattern growth

association algorithm," International Journal of Environmental Research and

Public Health, vol. 19, no. 4, p. 2040, 2022. DOI: 10.3390/ijerph19042040

4. C. Alvarez-Romero, A. Martínez-García, A. A. Sinaci, M. Gencturk, E. Mendéz,

T. Hernández-Pérez, R. Liperoti, C. Angioletti, M. Löbe, N. Ganapathy, et al.,

"FAIR4Health: Findable, Accessible, Interoperable and Reusable data to foster

Health Research," Open Research Europe, vol. 2, no. 34, p. 34, 2022. DOI:

10.12688/openreseurope.14349.2

5. A. A. Sinaci, F. J. Núñez-Benjumea, M. Gencturk, J. Malte-Levin, T. De-

serno, C. Chronaki, G. Cangioli, C. Cavero-Barca, J. M. Rodríguez-Pérez, M.

M. Pérez-Pérez, et al., "From raw data to FAIR data: the FAIRification work-

flow for health research," Methods of Information in Medicine, vol. 59, no. S

01, pp. e21-e32, 2020. DOI: 10.1055/s-0040-1713684

132



International Conference Publications

1. M. Gencturk, G. B. L. Erturkmen, H. Gappa, W. Schmidt-Barzynski, A. Stein-

hoff, P. Abizanda, T. Robbins, O. Pournik, B. Ahmad, H. Randeva, et al., "The

design of a mobile platform providing personalized assistance to older multi-

morbid patients with mild dementia or mild cognitive impairment (MCI)," in

10th International Conference on Software Development and Technologies for

Enhancing Accessibility and Fighting Info-exclusion (DSAI 2022), 2022, pp.

1-7. DOI: 10.1145/3563137.3563138

2. G. B. L. Erturkmen, M. Baskaya, B. Sarigul, M. Yuksel, T. Namli, S. Gonul, G.

Yilmaz, M. Gencturk, J. Bloemeke, T. N. Arvanitis, et al., "Enabling Patient

Adherence via Personalised, Just-in Time Adaptive Interventions in ADLIFE

Architecture," in 10th International Conference on Software Development and

Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI

2022), 2022, pp. 1-6. DOI: 10.1145/3563137.3563151

3. O. Pournik, B. Ahmad, G. Despotou, S. N. L. C. Keung, H. Muir, Y. Mohamad,

H. Gappa,G. B. L. Erturkmen, M. Yuksel, M. Gencturk, et al., "CAREPATH

methodology for development of computer interpretable, integrated clinical

guidelines," in 10th International Conference on Software Development and

Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI

2022), 2022, pp. 1-6. DOI: 10.1145/3563137.3563155

4. H. Gappa, Y. Mohamad, M. Breidenbach, ..., M. Gencturk, M. Yuksel, J.

Ayadi, L. Gilardi, A. Consoli, L. Ferrazzini, C. A. Velasco, "Making Person-

Centred Health Care Beneficial for People with Mild Cognitive Impairment

(MCI) or Mild Dementia–Results of Interviews with Patients and Their Infor-

mal Caregivers," in International Conference on Computers Helping People

with Special Needs, 2022, pp. 468-474. DOI: 10.1007/978-3-031-08648-9_54

5. M. Perbix, M. Löbe, S. Stäubert, A. A. Sinaci, M. Gencturk, M. Quintero,

A. Martinez-Garcia, C.a Alvarez-Romero, C. L. Parra-Calderon, A. Winter, "A

Formal Model for the FAIR4Health Information Architecture," in Advances in

Informatics, Management and Technology in Healthcare, 2022, pp. 446-449.

DOI: 10.3233/SHTI220761

133



6. O. Pournik, B. Ahmad, S. N. L. C. Keung, O. Khan, G. Despotou, A. Con-

soli, J. Ayadi, L. Gilardi, G. B. L. Erturkmen, M. Yuksel, M. Gencturk, et al.,

"CAREPATH: Developing Digital Integrated Care Solutions for Multimorbid

Patients with Dementia," in Advances in Informatics, Management and Tech-

nology in Healthcare, 2022, pp. 487-490. DOI: 10.3233/SHTI220771

7. M. Gencturk, A. Teoman, C. Alvarez-Romero, A. Martinez-Garcia, C. L.

Parra-Calderon, B. Poblador-Plou, N. Löbe, A. A. Sinaci, "End User Evalua-

tion of the FAIR4Health Data Curation Tool," in Public Health and Informatics,

2021, pp. 8-12. DOI: 10.3233/SHTI210110

8. C. Alvarez-Romero, A. Martinez-Garcia, M. Gencturk, A. A. Sinaci, C. L.

Parra-Calderon, "FAIR4Health FAIRification Tools," in 16th International Dig-

ital Curation Conference, Apr. 2021.

9. A. A. Sinaci, T. Namli, S. Postaci, M. Gencturk, G. B. L. Erturkmen, "Trans-

forming Health Data into Timeseries for Predictive Analytics," in 11th Congress

of Medical Informatics (TurkMIA), Nov. 2018.

10. M. Gencturk, M. Sahin, E. Simsek, Y. Kabak, "Certification in Electronic

Emergency Management," in Recent Trends in Control and Sensor Systems in

Emergency Management, 2018, pp. 84-94. DOI: 10.1007/978-3-319-70452-

4_8

11. G. Schimak, D. Havlik, P. Kutschera, R. Duro, M. Gencturk, "Emergency

Maps Tool as a Collaborative Instrument for Decision Makers in a Command

and Control Environment," in Recent Trends in Control and Sensor Systems in

Emergency Management, 2018, pp. 1-13. DOI: 10.1007/978-3-319-70452-4_1

12. R. Duro, M. Gencturk, G. Schimak, P. Kutschera, D. Havlik, K. Kutschera,

"Framework for Enabling Technical and Organizational Interoperability in the

Management of Environmental Crises and Disasters," in International Sympo-

sium on Environmental Software Systems, 2017, pp. 290-301. DOI: 10.1007/978-

3-319-89935-0_24

13. M. Gencturk, E. Evci, A. Guney, Y. Kabak, G. B. L. Erturkmen, "Achiev-

ing Semantic Interoperability in Emergency Management Domain," in Inter-

134



national Symposium on Environmental Software Systems, 2017, pp. 279-289.

DOI: 10.1007/978-3-319-89935-0_23

14. M. Gencturk, M. Redaelli, Y. Kabak, G. B. L. Erturkmen, R. Arisi, L. Toscano,

"Automating the Development and Implementation of Interoperability Profiles,"

in 8th International Conference on Interoperability for Enterprise Systems and

Applications , Mar. 2016.

15. M. Gencturk, R. Duro, Y. Kabak, B. Bozic, K. Kahveci, B. Yilmaz, "Inter-

operability Profiles for Disaster Management and Maritime Surveillance," in

eChallenges e-2015 Conference, 2015, pp. 1-9.

DOI: 10.1109/eCHALLENGES.2015.7441073

16. M. Gencturk, O. Eren, M. Yuksel, "Evaluation Study for Self Management of

Patients with Ankylosing Spondylitis (AS) through a Personal Health System,"

in The European League Against Rheumatism (EULAR) Congress, Jun. 2015.

17. M. Gencturk, R. Arisi, L. Toscano, Y. Kabak, M. Di Ciano, A. Palmitessa,

"Profiling Approach for the Interoperability of Command & Control Systems

with Sensing Systems in Emergency Management," in 6th International IFIP

Working Conference on Enterprise Interoperability, May 2015.

18. B. Bozic, M. Gencturk, R. Duro, Y. Kabak, G. Schimak, "Requirements En-

gineering for Semantic Sensors in Crisis and Disaster Management," in Inter-

national Symposium on Environmental Software Systems, 2015, pp. 397-406.

DOI: 10.1007/978-3-319-15994-2_40

19. M. Gencturk, E. Alpay, G. B. L. Erturkmen, A. Dogac, H. Aydin, "Self-

Management of Patients with Severe Arthritis through a Personal Health Sys-

tem: the Turkish Case Study in the PALANTE Project," in eChallenges e-2014

Conference, 2014, pp. 1-7.

20. T. Namli, S. Postaci, M. Gencturk, A. Dogac, A. Yalcinkaya, C. Taskin, "Ad-

dressing the Adoptability Challenges of the PHR Systems: SharingCare," in

eChallenges e-2013 Conference, Oct. 2013.

21. T. Namli, S. Postaci, M. Gencturk, A. Dogac, A. Yalcinkaya, I. Kiremitci, C.

Taskin, E. Erkel, "A Personal Health Ecosystem: SharingCare," in Med-e-Tel

135



Conference, Apr. 2013.

22. S. Postaci, M. Gencturk, R. V. Basar, A. Yilmaz, G. B. L. Erturkmen, M. Yuk-

sel, A. Dogac, A. Yalcinkaya, T. Namli, C. O. Etemoglu, "mePHR: A Mobile

Personal Health System (PHS) Framework," in eChallenges e-2012 Confer-

ence, Oct. 2012.

136


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	Background and Related Work
	Data Management
	Central Data Management
	Distributed Data Management

	Ensemble Learning
	Combination Strategies
	Bagging
	Random Forest

	Boosting
	AdaBoost


	Federated Learning
	Horizontal Federated Learning
	MultBoost
	AdaboostPL
	BOPPID

	Vertical Federated Learning
	Applications of Federated Learning

	Personalized Federated Learning
	Clustered Federated Learning

	Boosting-based Federated Random Forest (BOFRF) Algorithm
	The Base Algorithm
	Complexity Analysis of BOFRF
	Personalized BOFRF
	Complexity Analysis of Personalized BOFRF
	Hyperparameter Tuning

	Privacy-Preserving Implementations of BOFRF
	Privacy Issues
	Centralized Implementation with a Trusted Third Party
	Decentralized Implementation Using Secure Sum Protocol
	Remarks

	Clustered BOFRF
	Clustering Approach
	Clustered BOFRF Algorithm
	Complexity Analysis of Clustered BOFRF

	Experiments
	Datasets
	The Pima Indians Diabetes dataset
	The Diabetic Retinopathy dataset
	The South African Heart Disease dataset
	The SHELTER dataset

	Experiment Setup
	Evaluation Procedure

	Results
	Results of Observational Experiments
	Comparison of BOFRF with Local Random Forest
	Comparison of BOFRF with BOPPID
	BOFRF vs Personalized BOFRF

	Results of Statistical Experiments
	Results of the Experiments for Clustered BOFRF
	Experiment with 2 clusters and Manhattan distance
	Experiment with 2 clusters and Eucledian distance
	Experiment with 3 clusters and Eucledian distance


	Conclusion
	REFERENCES
	Hyperparameter values in the observational experiments
	Z Scores of the sites in the SHELTER dataset
	Characteristic Vectors in the SHELTER Dataset
	CURRICULUM VITAE

