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ABSTRACT

PERFORMANCE PREDICTION FOR IMPLICITLY DEFINED
ESTIMATORS OF NON-RANDOM PARAMETERS

Mehmetcik, Erdal
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Çağatay Candan

Co-Supervisor: Prof. Dr. Umut Orguner

January 2023, 118 pages

This thesis study is concerned with performance prediction for estimators with non-

random parameters. A rather general class of estimators, called implicitly defined

estimators (IDEs), is of main interest. An implicitly defined estimator declares the

minimizer/maximizer of a selected cost/reward function as the parameter estimate.

The maximum likelihood (ML) and the least squares estimators are among the well-

known examples of this class. An exact MSE expression for implicitly defined esti-

mators with a symmetric and unimodal objective function is derived. It is also shown

that the expression reduces to the Cramer-Rao lower bound (CRLB) and mis-specified

CRLB in the large sample size regime for ML and mis-specified ML estimation, re-

spectively. The expression is shown to yield the Ziv-Zakai bound (without the valley

filling function) for the maximum a posteriori (MAP) estimator when it is used in

a Bayesian setting, that is, when an a-priori distribution is assigned to the unknown

parameter. Extension of the suggested expression to the case of nuisance parame-

ters is studied and some approximations are given to ease the computations for this

case. Numerical results indicate that the suggested MSE expression not only pre-
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dicts the estimator performance in the asymptotic region; but it is also applicable for

the threshold region analysis, even for IDEs whose objective functions do not sat-

isfy the symmetry and unimodality assumptions. Advantages of the suggested MSE

expression are its conceptual simplicity and its relatively straightforward numerical

calculation due to the reduction of the estimation problem to a binary hypothesis

testing problem, similar to the usage of Ziv-Zakai bounds in random parameter esti-

mation problems. The proposed approach for MSE approximation is adapted for bias

prediction applications, and similar numerical studies are repeated. Several possible

applications of the proposed performance prediction method are studied, and example

cases are given.

Keywords: Performance prediction, maximum likelihood, parameter estimation, Ri-

cian fading, bias prediction, Cramér-Rao lower bound, Ziv-Zakai lower bound
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ÖZ

RASTGELE OLMAYAN PARAMETRELİ ÖRTÜLÜ TANIMLANAN
KESTİRİMCİLER İÇİN PERFORMANS TAHMİNİ

Mehmetcik, Erdal
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Çağatay Candan

Ortak Tez Yöneticisi: Prof. Dr. Umut Orguner

Ocak 2023 , 118 sayfa

Bu tez çalışmasında rastgele olmayan parametreler için kullanılan kestirimcilerin per-

formans kestirimi ele alınmaktadır. Oldukça genel bir kestirimci sınıfı olan örtülü

olarak tanımlı kestirimciler ana ilgi odağıdır. Örtülü olarak tanımlı kestirimciler se-

çilen maliyet/ödül fonksiyonunu minimize/maksimize eden parametreyi kestirim de-

ğeri olarak sunan kestirimcilerdir. En yüksek olabilirlik kestirimcisi ve en küçük ka-

reler kestirimcisi bu sınıfa ait en iyi bilinen kestirimciler arasındadır. Simetrik ve tek

tepeli hedef fonksiyonuna sahip kestirimciler için hatasız şekilde ortalama kare hata

değeri (MSE) veren bir ifade türetilmiştir. Büyük örnek sayısı bölgesinde en yüksek

olabilirlik (ML) ve yanlış modellenmiş en yüksek olabilirlik kestirimcileri için, türe-

tilen ifadenin sırasıyla Cramer-Rao alt sınırına ve yanlış modellenme durumundaki

Cramer-Rao alt sınırına yakınsadığı gösterilmiştir. Rastgele parametreler için (bilin-

meyen parametreye bir dağılım atandığı durumda) ve maksimum artçıl kestirimcisi

(MAP) için, türetilen ifadenin Ziv-Zakai alt sınırına (vadi doldurma fonksiyonu olma-

yan) yakınsadığı gösterilmiştir. Türetilen ifadenin, belirsizliği arttıran parametrelerin

vii



bulunduğu durumda da kullanılabilen hali geliştirilmiş ve hesaplamaları kolaylaştır-

mak için bazı yaklaşık ifadeler önerilmiştir. Nümerik sonuçlarla, hedef fonksiyonları

simetrik ve tek tepeli olmayan kestirimciler için dahi, önerilen MSE ifadesinin sa-

dece asimptotik bölgede değil, aynı zamanda eşik değer bölgesindeki analiz için de

kullanılabileceği gösterilmiştir. Önerilen ifade, kestirim problemini ikili hipotez testi

problemine çevirdiğinden (rastgele parametre kestirimi problemindeki Ziv-Zakai alt

sınırındaki kullanıma benzer olarak) kavramsal olarak daha basit ve nümerik hesap-

lamalar için daha uygun bir yapı sağlamaktadır. MSE tahmini için türetilen ifadeler

yanlılık tahmini için de uyarlanmış ve benzer nümerik testler tekrarlanmıştır. Önerilen

ifadelerin uygulamaları için çok sayıda örnek sunulmuştur.

Anahtar Kelimeler: Performans kestirimi, en yüksek olabilirlik, parametre kestirimi,

Rician sönümlenme, yanlılık tahmini, Cramér-Rao alt sınırı, Ziv-Zakai alt sınırı
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Parameter estimation is one of the major subjects in statistical signal processing. Al-

most every sensor system utilizes a form of parameter estimation method, either to

make sense of the sensor readings (i.e., estimating a parameter) or to improve the

accuracy they provide. Two fundamental questions are of interest about the system

and the estimator performance,

1. What is the utmost accuracy we can achieve using the given sensor/measure-

ment system?

2. What is the accuracy of a given sensor system and the estimation method we

decide to use?

The answer to the first question is provided by the lower limit expressions known as

“performance bounds” [3]. These bounds have different uses in many applications.

For instance, in the system design stage, one can assess whether the performance

requirements are feasible or beyond the fundamental limits by checking these bounds,

without the need for the actual system.

Note that, the first question is not specific to which estimator is to be used. In practice

one needs to choose an estimator and calculate its performance. Performance bounds

do not provide any information about a specific estimator’s performance, which in

turn brings us to the second question. When a specific estimator is chosen, its perfor-

mance can be assessed either by deriving the error statistics analytically or resorting

to Monte Carlo methods (which is a rather sophisticated way of saying computer

1



simulations). Deriving the error statistics is in general (except for some trivial cases)

is a tedious task. And conducting Monte Carlo analysis requires implementing the

estimator along with the simulated test environment and data.

A relatively easier way might be to calculate the performance bounds for a specific

estimator, as they can be used to characterize the performance of some estimators (for

certain signal to noise ratio values). Such estimators (whose performance converge

to the bound) are called efficient estimators. An important example to this case is

the Cramer Rao Lower Bound (CRLB) [4, 5, 6] and the Maximum Likelihood (ML)

estimator [7], under additive white Gaussian noise. CRLB is perhaps the most cele-

brated lower bound for estimator performance, and the calculation of CRLB is rather

straightforward for most problems. Consider the Gaussian case where we have the

noisy observation vector x ∈ RN with the likelihood function f(x; θ) where θ is the

(non-random) parameter to be estimated. CRLB is a lower limit on the variance of

any unbiased estimator θ̂ with the following expression,

var(θ̂) ≥ 1

−E
{
∂2 ln f(x;θ)

∂θ2

} = CRLB (1.1)

The maximum likelihood estimator for this problem has the following form:

θ̂ML = arg max
θ

f(x; θ). (1.2)

For high signal to noise ratio (SNR) values, ML is known to be an efficient estima-

tor, whose performance approaches CRLB, as illustrated by computer simulations in

Figure 1.1. This figure also emphasizes the major drawback of using CRLB in ML

performance characterization, as the bound is not tight at all SNR values. The regions

in Figure 1.1 have the following names and interpretations;

• Asymptotic region, where the performance closely follows CRLB,

• Threshold region, where CRLB does not provide a reachable bound, but the

estimator is still able to extract information from the observations,

• No information region, where the estimator performs (asymptotically) as if the

observation vector is composed only of the noise component.

Although the ML estimator performance is calculated using the CRLB at high SNR

values, the ML performance quickly deteriorates as SNR decreases below a certain

2



threshold SNR. In most cases, the main concern is determining this threshold SNR

value, as the estimator accuracy starts to depreciate with a small SNR drop from this

value.

Figure 1.1: Regions of operations for maximum likelihood estimator and the thresh-

old SNR for a direction of arrival problem.

Note that CRLB is still a lower bound in all regions of operation, however it is an

optimistic bound (meaning that the lower bound is not reachable) outside the asymp-

totic region. The reason that CRLB diverges from the actual ML performance is the

fact that CRLB formulation is concerned with the local errors around the true value

of the parameter (note that the definition is only concerned with the derivative at the

true parameter value). In other words, as SNR value decreases the estimator output

starts to produce results that are far-off from the true parameter. These large devia-

tions are called gross errors, and are the main reason of the optimistic behavior of

CRLB at low SNR values. Figure 1.2 illustrates the effect of gross errors on ML

performance curve. For three different SNR values the histogram of the error signal

is provided here, and as seen in the histogram for SNR = 8 dB the error distribution

has a local peak around zero (i.e. the estimates are within close proximity of the true

parameter, no gross errors). On the other hand, in the threshold region the error distri-

bution consists of multiple local peaks. In this specific array processing problem, the

3



local peaks correspond to the side-lobe positions of the array beam-pattern at the true

DOA. Lastly, in the no-information region, the error is distributed almost uniformly

over the possible values of the true parameter.
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Figure 1.2: Histograms of error signals at different regions of operation.

There are different performance bounds in literature, which can model the threshold

effect to a certain degree, as we will explain the issues in detail in Chapter 2.

Another approach to predict the estimator performance is to resort to some approx-

imations. In [1] and [2], to simplify the probability calculations, the Taylor series

expansion of the objective function that is minimized by the estimator (in case of

ML estimator this is the likelihood function) is used to derive an approximate per-

formance prediction. This approach yields very simple formulas, however as CRLB,

the method fails to model the threshold effect, as the Taylor series expansion is only

carried out around the true parameter value. Another drawback of this method is that

it may yield different performance predictions for the equivalent estimators. For in-

stance, maximizing the likelihood function and the log-likelihood function yields the

same estimates, however their Taylor series expansions are not necessarily identical
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(An example case is given in Appendix C explaining this phenomenon). Another

approximation, the method of interval errors (MIE, [8]), overcomes this problem by

approximately calculating the gross error probabilities and using these probability

values to generate a weighted sum of asymptotic performance and no-information

region performance. The main difficulty here is to approximate these gross error

probabilities. After that the calculation of asymptotic performance is also required.

This thesis is mainly concerned about approximately predicting the performance of

an estimator (of non-random parameters) for all regions of operations using a rather

simple form, as an alternative to the Taylor series expansion based and MIE based

methods. The proposed approach is derived for implicitly defined estimators (IDEs),

which constitute a more general form of estimators maximizing an objective function,

with the following form;

θ̂ = arg max
θ

L(x; θ). (1.3)

Note that the aforementioned Taylor series expansion based methods and MIE can be

applied for this type of estimators as well (with varying degrees of difficulty). The

main idea in the proposed approach is to assume (approximate) the objective function

L(x; ·) as a symmetric, uni-modal and strictly decreasing function around the true

parameter. This approach simplifies the equations for certain types of problems, as

will be explained in detail in the following chapters.

1.2 Contributions and Novelties

In this study, an approximate MSE expression for IDEs of non-random parameters

has been proposed, which

• gives the true MSE when the objective function of the IDE is symmetric and

unimodal,

• reduces to the CRLB in the large sample size regime for ML estimation,

• reduces to the misspecified CRLB (MCRLB) [9, 10] in the large sample size

regime for misspecified ML estimation [10, 11],

5



• reduces to the ZZB when an a-priori distribution is assigned to the parameter

of interest for maximum a posteriori (MAP) estimation.

The proposed approach is extended for bias prediction as well. It is also shown (in

Appendix B) that the proposed approach can be utilized to predict any higher order

statistics of the error signal through the calculation of the moment generating func-

tion. Several applications of the proposed approach are presented. These applications

are mentioned briefly in the outline of the thesis in the next section. For example,

detailed derivations for the DOA estimation under Rician fading case are given where

closed form expressions for the error probability for the proposed approach are cal-

culated. It is also shown that the classical Cramér-Rao Bound fails to represent the

Maximum-Likelihood performance even at high SNR values when fading is domi-

nant. Parts of this study have been published in [12] and [13].

1.3 The Outline of the Thesis

The organization of the thesis is as follows;

• Chapter 2 summarizes the background material on random and non-random

parameter estimation, performance lower bounds and approximate performance

prediction methods for non-random parameter estimation.

• Chapter 3 explains the proposed approach for an approximate performance pre-

diction of implicitly defined estimators (of non-random parameters) in detail.

The material in this chapter is published in [13]. The extension of this MSE

prediction method to the bias prediction problem is given in this chapter as

well.

• Chapter 4 provides different applications using the proposed performance pre-

diction method;

* Direction of arrival estimation performance prediction under Rician fad-

ing channels.

* Online performance prediction in case of sensor failures (part of this sec-

tion was published in [12]),
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* Array layout optimization by minimizing the probability of gross errors,

* Performance prediction for DOA estimation by ESPRIT method,

• Chapter 5 summarizes the fundamental findings of the overall study and con-

cluding remarks.

• Appendix A describes an exceptional case where the proposed approximation

fails to converge.

• Appendix B contains the derivation of the moment generating function of the

estimation error using the proposed approximations. Hence higher order statis-

tics of the estimation error can be predicted using the same approach.

• Appendix C provides an example where Taylor series expansion based perfor-

mance prediction methods [1, 2] yield different performance predictions for

equivalent estimators.

• Appendix D contains the derivation of Maximum Likelihood estimator, for pa-

rameterized mean model under Rician fading.

• Appendix E contains the summary of results of Stein’s unified analysis of the

error probability, which was used in Section 4.1.

• Appendix F contains the implementation details of the numerical simulations

in Section 3.6.
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CHAPTER 2

BACKGROUND

2.1 Random and non-random parameter estimation

The topic of parameter estimation can be divided into two classes, namely the estima-

tion of random and non-random (deterministic) parameters. The random parameter

estimation (Bayesian estimation) assumes that the parameter of interest is a random

variable with an a-priori distribution and the observations on a realization of the un-

known parameter are obtained according to a known probabilistic mapping. Under

this setting, the optimal estimator that minimizes the risk, say mean square error

(MSE) or mean absolute error, is a functional of the posterior density of the parame-

ter. For instance, the optimal estimator minimizing the MSE is the mean value of the

parameter with respect to the posterior density [7]. In general, the posterior density

calculation is the key step for the Bayesian formulation. Unfortunately, a closed form

expression for the posterior density (and its moments) which does not involve integra-

tion, differentiation and limit operations is rarely available. In many problems, one

has to resort to the Monte Carlo methods or approximate inference techniques for an

inexact realization of the optimal Bayesian estimator. In such problems, the estimator

success is typically evaluated by comparisons with the performance bounds. Bayes-

ian performance bounds have a vast literature [3]. Typically, these bounds do not im-

pose any constraints on the estimator. For instance, the Bayesian Cramer Rao lower

bound (CRLB) [3, 8], Weiss Weinstein bound (WWB) [14], Bayesian Bhattacharya

bound [8] are derived using the covariance inequality principle (hence, sometimes

referred as covariance bounds) and applicable in general to any type of estimators.

Another main class is the Ziv-Zakai bound (ZZB) [15, 16, 17] type bounds which are

derived by converting the estimation problem into a binary detection problem. Ba-
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yesian CRLB is one of most fundamental bounds and provides the achievable MSE in

the asymptotic region which is the high signal-to-noise ratio (SNR) region. However,

it suffers from the threshold effect [15, 16, 17], meaning that it provides unachievable

(optimistic) lower bounds at medium or low SNR values. ZZB and WWB are among

the tightest Bayesian bounds in all regions of operation [3, 17]. Bayesian bounds con-

tinue to be an active research area. Recently, Bayesian bounds for estimating periodic

parameters (e.g., phase) have been developed [18, 19, 20].

Non-random parameter estimation involves some challenges unique to this setting.

In this setting, an estimator can be improved for a specific value of the parameter at

the expense of performance for other parameter values [7, 21]. Since there is no a-

priori distribution associated to the parameter of interest, it is not possible to balance

the performance gains and losses for different parameter values as in the Bayesian

setting. For example, the estimator ignoring the measurements and producing a con-

stant value, say α, as the estimate has no error if the unknown parameter is indeed α;

but, suffers from performance losses at all other parameter values. The development

of lower bounds for the non-random parameter estimation also suffers from similar

inherent admissibility problems. To overcome these problems, the estimators in this

setting are typically restricted to the class of unbiased estimators and examined under

the title of minimum variance unbiased estimators [7].

The performance bounds for the non-random parameter estimation are also developed

for a specific class of estimators. For example, CRLB (for non-random parameters),

Hammersley-Chapman-Robbins Bound (HCRB) [22], Barankin Bound [23, 24] re-

quire the estimator to be unbiased in an open neighborhood of a point, over a set of

two-points and over a set of many-points, respectively (also see [25]). In [26], a gen-

eral bound form for unbiased estimators is given and it is shown that CRLB, HCRB

and BB can be derived by a proper choice of the kernel function of their integral

transform.

Note that the unbiasedness condition may not be practical or may be difficult to sat-

isfy, especially for the parameters with a finite support, since the estimation error

approaches a one-sided distribution at the edges of the parameter space in such cases

[15]. Although it has been shown that for some problems with periodic parameters

10



[27, 28, 29], the problem with the one-sided error distribution at the edges may van-

ish; uniformly unbiased estimators do not exist in these cases either [30].

Furthermore, the unbiasedness condition may not even be desirable in some prob-

lems. It is known that there exist realizable biased-estimators for some problems

whose MSE is lower than the Cramer-Rao bound for unbiased estimators [31]. Per-

haps, the most important aspect of unbiasedness condition is in relation with the max-

imum likelihood estimator. It is well known that the maximum likelihood estimator

is unbiased and efficient in the large sample size regime, under fairly general condi-

tions, providing a basis for the theoretical and practical adoption of the unbiasedness

condition [32, 33].

The main problem considered in this thesis is prediction of implicitly defined esti-

mators (IDEs) of non-random parameters. IDEs are estimators which produce an

estimate by maximizing an objective function of the measurements over the param-

eter set under consideration. The maximum likelihood (ML) estimator, least squares

estimators are some well known examples.

In this study, we present an approximate MSE expression for IDEs of non-random

parameters that

• gives the true MSE when the objective function of the IDE is symmetric and

unimodal,

• reduces to the CRLB in the large sample size regime for ML estimation,

• reduces to the misspecified CRLB (MCRLB) [9, 10] in the large sample size

regime for misspecified ML estimation [10, 11],

• reduces to the ZZB when an a-priori distribution is assigned to the parameter

of interest for maximum a posteriori (MAP) estimation.

There are already some approximate MSE expressions available in the literature for

IDEs of non-random parameters. For instance, [1] provides formulas for MSE and

bias of IDEs using Taylor series expansion of the cost function along with some ap-

proximate expressions for certain expectations and derivatives. The study in [2] also

uses Taylor expansion approach and derives different approximations in the scalar
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parameter case. Both of these approaches are based on the Taylor series expansion

around the true parameter value and provide simple MSE expressions; but do not take

into account the gross errors which becomes the significant factor as the estimator

nonlinearity increases and/or SNR is decreased below the threshold SNR.

The majority of work on the estimator performance prediction focuses on the perfor-

mance of the ML estimator. The ML estimator is known to be asymptotically efficient

(performance approaching CRLB at large sample size) under some regularity condi-

tions [8, 32, 33]. The method of interval errors (MIE) is a celebrated method that

was proposed by Van Trees [8] to assess the performance of the ML estimator in

the threshold region. This method depends on a careful selection of intervals in the

parameter space and the calculation of their probabilities. Different approximations

have been proposed to approximate the probabilities [34, 35, 36]. The MSE expres-

sion proposed in the present study can be interpreted as a more principled version of

the method of interval errors where the need for the interval selection and the gross

error probability calculation or approximation is not required.

Notation: Throughout the thesis lower and uppercase letters denote scalars, e.g., a, A.

Bold lowercase letters denote vectors, e.g., a. Bold uppercase letters denote matrices,

e.g., A. The ith element of the vector a is denoted by [a]i. The i, jth element of the

matrix A is denoted by [A]i,j . <{·} denotes the real part of the complex argument.

2.2 Summary of approximate performance prediction methods in literature

In this section we briefly give the descriptions of some well known performance

bounds and approximate performance prediction methods. In all cases, we assume

a noisy observation x ∼ f(x; θ) of the unknown parameter θ.

2.2.1 Cramér-Rao Lower Bound (CRLB)

The Cramér-Rao Lower Bound is probably the most celebrated lower bound in litera-

ture. For any unbiased estimator, the variance of its estimate is bounded below by the
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following expression [7],

var(θ̂) ≥ 1

−E
{
∂2 ln f(x;θ)

∂θ2

} = CRLB (2.1)

where it is assumed that the probability distribution function f(x; θ) satisfies the fol-

lowing regularity condition

E
{
∂ ln f(x; θ)

∂θ

}
= 0,∀θ. (2.2)

Equation (2.1) can also be written in the following form,

var(θ̂) ≥ 1

E
{[

∂ ln f(x;θ)
∂θ

]2
} = CRLB (2.3)

Note that this form of CRLB is a bound for non-random parameter estimation.

2.2.2 Misspecified Cramér-Rao Lower Bound (MCRB)

When the assumed model x ∼ f(x; θ) is different than the true model x ∼ f̄(x), it

is called a model mismatch. MCRLB is a lower bound for such cases. Following the

formulation by [37], the MCRLB is defined as

MCRLB ,
B(θ∗)

A2(θ∗)
(2.4)

where,

A(θ∗) , Ef̄
[
∂2

∂θ2
ln f(x; θ∗)

]
, B(θ∗) , Ef̄

[(
∂

∂θ
ln f(x; θ∗)

)2]
. (2.5)

Note that the expectations are with respect to the true density f̄ , while the assumed

density is f . Here θ∗ is the parameter value that the mismatched ML estimator con-

verges asymptotically, i.e., as the number of observations increases towards infinity.

2.2.3 Barankin Bound (BB)

Barankin Bound [23, 24, 38] is one of the classical lower bounds on parameter esti-

mation, which makes use of a grid of test points over the parameter space to find a

minimum error limit.

var(θ̂) ≥ h(B− 11T)−1hT = BB (2.6)
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where

h ,
[
θ1 − θ θ2 − θ . . . θN − θ

]T

(2.7)

is the vector composed of the so called test points, 1 = [ 1 1 . . . 1 ]T, and the

Barankin matrix is [B]i,j , [µ(θi, θj)] with the following definition

µ(θi, θj) ,
∫
f(x|θi)f(x|θj)

f(x|θ)
dx (2.8)

Note that BB with a single test point optimized over a grid, is equivalent to the

Hammersley-Chapman Robbins Bound (HCRB [22, 25]).

2.2.4 Ziv-Zakai Bound (ZZB)

The Ziv-Zakai Bound (ZZB) is a Bayesian lower bound, different than the non-

Bayesian bounds explained in this section. The reason of studying this bound is

its relation to the proposed method in Chapter 3. ZZB represents a class of bounds

which relate the MSE in an estimation problem to the probability of error in a bi-

nary hypothesis testing problem, [3]. ZZB is originally developed in [15] and many

improvements over the years have been made [16, 17, 39, 40, 41]. We present the

following result without the valley filling function for the scalar parameter case of

Ziv-Zakai Bound,

ZZB ,
1

2

∫ ∞
0

h

[∫ ∞
−∞

[p(θ) + p(θ + h)]Pmin(θ, θ + h)dθ

]
dh. (2.9)

Here p(θ) is the prior pdf of the random parameter θ, and Pmin(θ, θ + h) is the

minimum probability of error for the following binary hypothesis testing problem:

H0 : x ∼ f(x|θ) and H1 : x ∼ f(x|θ + h) with the prior hypothesis probabilities of

p(θ) and p(θ + h), respectively.

2.2.5 Fessler’s method, [1]

The method presented by Fessler in [1] is the first approximate performance predic-

tion method we investigate. Note that this is not a lower bound on mean square error

(MSE). Fessler’s method is concerned with the approximate MSE for estimators with
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the following form,

θ̂ = arg max
θ

L(x; θ) (2.10)

where x = [ x1 x2 . . . xN ]T is the noisy observation vector and L(·; ·) is the

objective function. These types of estimators are called implicitly defined estimators.

Fessler’s method is based on using the Taylor series expansion of the cost function

and implicit function theorem to approximate the MSE of the estimator θ̂ = h(x) as

follows,

Cov(θ̂) ≈
[
∇20L(x̄; θ̌)

]−1∇11L(x̄; θ̌)Σx

[
∇11L(x̄; θ̌)

]H [∇20L(x̄; θ̌)
]−1

(2.11)

where x̄ denotes the noiseless measurements, θ̌ = h(x̄) is the parameter estimate

generated by the estimator function with noiseless measurements, and Σx is the co-

variance matrix of the measurement vector. The (j, k)th element of the operators∇20

and ∇11 are as follows,

[
∇20
]
j,k

=
∂2

∂θj∂θk
,
[
∇11
]
j,k

=
∂2

∂θj∂xk
. (2.12)

2.2.6 So’s method, [2]

The method by So et al. [2] is another approximate method for MSE prediction. We

again consider the estimators of the form given in (2.10). MSE prediction by So’s

method is as follows,

var θ̂ ≈
E
{
| ∂
∂θ
L(x; θ)|2

}
E
{
∂2

∂θ2L(x; θ)
}
E
{[

∂2

∂θ2L(x; θ)
]∗} (2.13)
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CHAPTER 3

PERFORMANCE PREDICTION OF IMPLICITLY DEFINED

ESTIMATORS

In this section we explain the main findings of this thesis study. The proposed MSE

prediction method for implicitly defined estimators of non-random parameters is ex-

plained in detail. As a natural extension of the proposed MSE prediction method, we

also present the bias prediction version. The results are tested with different estima-

tion problems using Monte Carlo simulations.

3.1 Problem Definition

We consider the estimation of the non-random real-valued vector θ , [θ1 θ2 · · · θJ ]T

from the measurements x , [x0 x1 · · · xN−1]T ∈ CN distributed according to

f(x; θ̄) where θ̄ , [θ̄1 θ̄2 · · · θ̄J ]T denotes the true value of θ. An implicitly de-

fined estimator (IDE) generates an estimate θ̂ , [θ̂1 θ̂2 · · · θ̂J ]T by maximizing an

objective function L(·, ·) of the measurements and the parameters as shown below:

θ̂ , arg max
θ
L(x;θ). (3.1)

The most well-known example of IDEs is the ML estimator where the objective

function L(·, ·) is the likelihood function f(x;θ). Other examples of IDEs are M-

estimators and (nonlinear) least square estimators. We see that the estimate θ̂ given

by (3.1) is determined by the measurements implicitly, hence the name implicitly de-

fined estimator.

In this study we are interested in the performance of IDEs and we give an expression
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for the (diagonal elements of the) MSE matrix of the estimate θ̂ which is defined as

MSE(θ̄) ,E
[
(θ̂ − θ̄)(θ̂ − θ̄)T

]
, (3.2)

Here it should be mentioned that the methodology presented in the current work can

be straightforwardly extended to the other moments of the estimation error θ̂ − θ̄.

Except for few cases like ML estimation for Gaussian likelihoods with linear models,

the estimate θ̂ in (3.1) cannot be analytically expressed in terms of the measure-

ments x, i.e., one cannot find a closed form expression for the function h(·) such that

θ̂ = h(x). As a consequence, the determination, evaluation and comparison of per-

formance (say, in terms of MSE) of an IDE usually involves extensive Monte Carlo

studies and/or problem specific approximations. In this work we first give an MSE

expression which is exact for an IDE of a scalar parameter whose objective function

is both symmetric (around the estimate) and unimodal in Section 3.2. Since the sym-

metry and unimodality conditions are typically satisfied by the objective functions

of IDEs in the asymptotic or small error region, as further examined in Section 3.3;

we suggest using the MSE expression to study the performance of IDEs in the small

error and threshold regions. We refrain from calling the suggested MSE expression

as a bound due to the lack of performance guarantees in the non-asymptotic regions.

The suggested expression can be considered to be in the same league as the MIE [8]

which lacks a performance guarantee in all regions including the asymptotic region.

Such expressions are also called approximate bounds in some studies [36, 42]. Yet,

our main goal in this study is to develop an MSE expression similar to ZZB, which is

known to be a tight random parameter estimation bound in the threshold and asymp-

totic regions, for non-random parameters.

3.2 Case of a Scalar Parameter with Symmetric and Unimodal Objective Func-

tions

In this section we are going to restrict ourselves to a scalar unknown parameter θ ∈ R

(i.e., J = 1) and provide a predicted MSE expression which is equal to the true MSE

for an IDE whose objective function satisfies symmetry and unimodality assumptions.

Our main results are given in the following theorem and its corollary.
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Figure 3.1: Illustration of the fact that the events (θ̂ − θ) ≥ ε and (θ̂ − θ) ≤ −ε
are equivalent to the events L(x; θ + 2ε) ≥ L(x; θ) and L(x; θ − 2ε) ≥ L(x; θ),

respectively, when the assumptions of Theorem 1 hold.

Theorem 1 Consider the IDE given as

θ̂ , arg max
θ
L(x; θ). (3.3)

Let the objective function L(x; ·) satisfy the following conditions for all x ∈ CN .

1. L(x; θ̂+h) = L(x; θ̂−h) for all h ∈ R, i.e., the objective function is symmetric

around its peak.

2. L(x; θ) is strictly-increasing (strictly-decreasing) for θ < θ̂ (θ > θ̂).

Define the true estimator statistic Vθ̂(θ) as

Vθ̂(θ) , E[(θ̂ − θ)2], (3.4)

where θ is an arbitrary fixed parameter value. Then,

Vθ̂(θ) = V̂θ̂(θ), (3.5)

19



where the predicted statistic V̂θ̂(θ) is defined as

V̂θ̂(θ) , 2

∫ ∞
−∞
|ε|P (L(x; θ + 2ε) ≥ L(x; θ))dε. (3.6)

Proof: The main idea of the proof is to show that the events (θ̂−θ) ≥ ε and (θ̂−θ) ≤
−ε are equivalent to the events L(x; θ + 2ε) ≥ L(x; θ) and L(x; θ − 2ε) ≥ L(x; θ),

respectively, when the assumptions of the theorem are held. An illustration of this

equivalence is given in Figure 3.1. Note that the true estimator statistic Vθ̂(θ) defined

in (3.4) can be written as [17, 43]

Vθ̂(θ) = 2

∫ ∞
0

εP
(
|θ̂ − θ| ≥ ε

)
dε

= 2

∫ ∞
0

ε
[
P
(
θ̂ − θ ≥ ε

)
+ P

(
θ̂ − θ ≤ −ε

)]
dε, (3.7)

and the expression (3.5) follows from (3.7) if the equalities

P (θ̂ − θ ≥ ε) =P (L(x; θ + 2ε) ≥ L(x; θ)) , (3.8a)

P (θ̂ − θ ≤ −ε) =P (L(x; θ − 2ε) ≥ L(x; θ)) , (3.8b)

hold for ε > 0. In the following we first show that the equalities in (3.8) indeed hold

under the symmetry and unimodality assumptions of Theorem 1. Only the proof of

the equality (3.8a) will be made since the proof for (3.8b) is very similar. In order to

prove (3.8a), we will show that θ̂ − θ ≥ ε if and only if L(x; θ + 2ε) ≥ L(x; θ). The

proof has two parts.

• Proof of the implication θ̂ − θ ≥ ε⇒ L(x; θ + 2ε) ≥ L(x; θ): Suppose that

θ̂ ≥ θ + ε. Since ε > 0, it is clear that θ < θ̂. If θ + 2ε < θ̂, since L(x; θ)

is strictly increasing for all θ < θ̂ and since θ < θ + 2ε < θ̂, we would have

L(x; θ + 2ε) > L(x; θ) and this would make the inequality L(x; θ + 2ε) ≥
L(x; θ) hold. Hence, we only need to consider the case θ < θ̂ ≤ θ + 2ε.

In this case we will show that the inequality L(x; θ + 2ε) ≥ L(x; θ) holds by

contraposition. Suppose that the reverse inequality, i.e., L(x; θ+2ε) < L(x; θ),

holds. By the symmetry property we have

L(x; θ + 2ε) =L(x; θ̂ + (θ + 2ε− θ̂))

=L(x; θ̂ − (θ + 2ε− θ̂))

=L(x; 2θ̂ − θ − 2ε), (3.9)
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which shows that L(x; 2θ̂ − θ − 2ε) < L(x; θ). Since 2θ̂ − θ − 2ε ≤ θ̂ (since

2θ̂ − θ − 2ε is the mirror image of θ + 2ε (with respect to θ̂), which is greater

than or equal to θ̂) and since L(x; θ) is strictly increasing for all θ < θ̂, the

inequality L(x; 2θ̂ − θ − 2ε) < L(x; θ) implies that 2θ̂ − θ − 2ε < θ. This

inequality is equivalent to the inequality θ̂− θ < ε, which completes the proof.

• Proof of the implication L(x; θ + 2ε) ≥ L(x; θ)⇒ θ̂ − θ ≥ ε: Suppose that

L(x; θ + 2ε) ≥ L(x; θ). Since L(x; θ) is strictly decreasing for all θ > θ̂, we

cannot have θ > θ̂. Hence, we need to have θ ≤ θ̂. If θ + 2ε < θ̂, we have

θ̂ − θ > 2ε > ε, which makes the inequality θ̂ − θ ≥ ε hold. Hence, we only

need to consider the case θ ≤ θ̂ ≤ θ + 2ε. By the symmetry property (3.9)

we see that L(x; 2θ̂ − θ − 2ε) = L(x; θ + 2ε) ≥ L(x; θ). Since we have

2θ̂ − θ − 2ε ≤ θ̂ and θ ≤ θ̂ and since L(x; θ) is increasing for all θ < θ̂, we

need to have 2θ̂ − θ − 2ε ≥ θ. This inequality is equivalent to the inequality

θ̂ − θ ≥ ε, which completes the proof.

Hence the equalities in (3.8) hold and we can write (3.7) as

Vθ̂(θ) , 2

∫ ∞
0

ε
[
P (L(x; θ + 2ε) ≥ L(x; θ)) + P (L(x; θ − 2ε) ≥ L(x; θ))

]
dε,

(3.10a)

= 2

∫ ∞
0

εP (L(x; θ + 2ε) ≥ L(x; θ)) dε

+ 2

∫ ∞
0

εP (L(x; θ − 2ε) ≥ L(x; θ)) dε, (3.10b)

= 2

∫ ∞
0

εP (L(x; θ + 2ε) ≥ L(x; θ)) dε

+ 2

∫ −∞
0

εP (L(x; θ + 2ε) ≥ L(x; θ)) dε, (3.10c)

= 2

∫ ∞
0

εP (L(x; θ + 2ε) ≥ L(x; θ)) dε

− 2

∫ 0

−∞
εP (L(x; θ + 2ε) ≥ L(x; θ)) dε, (3.10d)

= 2

∫ ∞
−∞
|ε|P (L(x; θ + 2ε) ≥ L(x; θ)) dε , V̂θ̂(θ), (3.10e)

which completes the proof. �

The following remark applies Theorem 1 to find the true MSE of the estimator θ̂.
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Remark 1 (MSE of IDE) The true MSE of the IDE θ̂ in Theorem 1 is given as

MSE(θ̄) = M̂SE(θ̄) (3.11)

where the predicted MSE, denoted as M̂SE(θ̄), is defined as

M̂SE(θ̄) , 2

∫ ∞
−∞
|ε|P

(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
dε. (3.12)

Proof: The proof is trivial by realizing that MSE(θ̄) = Vθ̂(θ̄) and M̂SE(θ̄) = V̂θ̂(θ̄).

�

In the special case of a parameter θ with finite support, e.g., θ ∈ [θmin, θmax], the

estimation error θ̂− θ̄ is restricted to the interval [θmin− θ̄, θmax− θ̄] and the predicted

MSE becomes

M̂SE(θ̄) = 2

∫ θmax−θ̄
2

θmin−θ̄
2

|ε|P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
dε. (3.13)

We can interpret the MSE expression (3.12) intuitively as follows. When the proba-

bility P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
is large for large values of |ε|, then it is probable

for the IDE θ̂ to make gross errors, resulting in a large MSE. On the other hand, if

this probability is small for large values of |ε|, the contribution of gross errors in the

MSE becomes negligible, resulting in a small MSE. Consequently, IDEs with a small

MSE would have the probability P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
(thought of as a func-

tion of ε) highly concentrated in a small neighborhood of ε = 0 and quickly vanishing

elsewhere. More specifically, a sufficient and necessary condition for existence of

the integral in the MSE expression (3.12) is P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
= o(1/|ε|2),

i.e., the probability P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
decaying strictly faster than 1/|ε|2 as

|ε| → ∞. An exceptional case where the decay is slower than 1/|ε|2 with an infinite

parameter support is given in Appendix A. The integral in the MSE expression (3.13),

on the other hand, always exists.

We can put the expression M̂SE(θ̄) to a test by considering the optimal but infeasible

estimator θ̂ = θ̄. This estimator can be formulated as an IDE using the objective

function L(x; θ) , −(θ − θ̄)2. Since the objective function L(x; ·) does not depend

on the measurements x, we see that the probability of the deterministic event L(x; θ̄+
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2ε) ≥ L(x; θ̄) is given as

P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
=

1, ε = 0

0, otherwise
. (3.14)

When (3.14) is substituted into (3.12), we have M̂SE(θ̄) = 0, which is the true MSE.

Similarly, for the feasible (but biased) version of this estimator θ̂ = θ0, where θ0 ∈ R,

the objective function is L(x; θ) , −(θ − θ0)2 and the corresponding probability

becomes

P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
=

1, −(θ̄ + 2ε− θ0)2 ≥ −(θ̄ − θ0)2

0, otherwise

=


1, 0 ≥ ε ≥ −θ̄ + θ0

1, −θ̄ + θ0 ≥ ε ≥ 0

0, otherwise

, (3.15)

which yields M̂SE(θ̄) = (θ̄ − θ0)2 when substituted into (3.12) for both θ0 ≥ θ̄ and

θ0 ≤ θ̄. This also is the true MSE. The following corollary applies the result in

Theorem 1 to ML estimation.

Corollary 1 (MSE of ML Estimator) If the likelihood function f(x; ·) satisfies the

conditions in Theorem 1, then the true MSE of the ML estimate θ̂ is given as

MSEML(θ̄) = M̂SEML(θ̄) (3.16)

where the predicted MSE, denoted as M̂SEML(θ̄), is defined as

M̂SEML(θ̄) , 2

∫ ∞
−∞
|ε|P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
dε. (3.17)
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Proof: Since we have L(x; θ) , f(x; θ), we can write

P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
= P

(
f(x; θ̄ + 2ε) ≥ f(x; θ̄)

)
(3.18a)

=

∫
I
(
f(x; θ̄ + 2ε) ≥ f(x; θ̄)

)
f(x; θ̄) dx (3.18b)

=

∫
f(x;θ̄) 6=0

I
(
f(x; θ̄ + 2ε) ≥ f(x; θ̄)

)
f(x; θ̄) dx (3.18c)

=

∫
f(x;θ̄) 6=0

I

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
f(x; θ̄) dx (3.18d)

= P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
, (3.18e)

where I(·) denotes the indicator function for event arguments. Substituting the last

probability into the integral in (3.12) completes the proof. �

Note that the expression (3.17) connects the MSE of the ML estimate to the error

probability of a likelihood ratio test. This connection between estimation and detec-

tion theory is further explored in Section 3.3.3 in relation with the ZZB.

Theorem 1 and its corollary provide compact expressions to evaluate the MSE of an

implicitly defined estimator exactly even when there is no explicit analytical expres-

sion connecting the estimate θ̂ to the measurements x. However, it has some limita-

tions imposed by the assumptions required for its validity. In fact, almost all practical

estimation problems violate one of the assumptions of symmetry, unimodality and in-

finite support (of the parameter θ). For these problems it is certainly possible to have

MSE(θ̄) 6= M̂SE(θ̄). Hence, in general the proposed expressions in (3.12) and (3.17)

can only serve as approximate MSE performance prediction tools. Keeping this fact

in mind, we show several relations between the suggested MSE expression and well-

known bounds in Section 3.3.

3.3 Relationship to Performance Bounds

In this section we present the relationship of the suggested MSE expression (3.17) to

some well-known performance bounds.
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3.3.1 Relationship to CRLB

In this section, we consider the ML estimation for a scalar parameter θ ∈ R. In order

to use the large sample asymptotic results for the ML estimate θ̂, we are going to

assume that the elements xn, n = 0, . . . , N − 1, of the measurement vector x are

independent and identically distributed as xn ∼ f(xn; θ̄) 1. The likelihood for the

measurement vector x is then given as

f(x; θ) =
N−1∏
n=0

f(xn; θ). (3.19)

The relationship of the suggested MSE expression M̂SEML(θ̄) to CRLB is given in

the following proposition.

Proposition 1 Assume that

A0 The parameter θ has finite support, i.e., θ ∈ [θmin, θmax], and the true parameter

value θ̄ satisfies θ̄ ∈ (θmin, θmax).

A1 The first three derivatives of ln f(x; θ) with respect to θ exist for all θ and are

continuous with respect to θ.

A2 For every θ, the functions | ∂i
∂θi

ln f(x; θ)|, i = 0, 1, 2, 3, are dominated by func-

tions bi(x), i = 0, 1, 2, 3, which all have finite variance.

A3 The KL divergence D(f(x; θ̄)||f(x; θ)), where

D(f(x)||g(x)) ,
∫
f(x) ln

f(x)

g(x)
dx, (3.20)

has a unique minimum with respect to θ at θ = θ̄.

A4 The expectation E
[
∂2

∂θ2 ln f(x; θ̄)
]

is non-zero.

The assumption A0 is sufficient (but not necessary) for the convergence of the integral

in (3.17). Under the assumptions A1-A3, it can be shown that (See [32, Theorem 2.1])

1 In order not to incorporate additional notation, we will keep here the individual measurements xn ∈ C as
scalars but the same results can be obtained for the case when xn is a vector.
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the ML estimate θ̂ , arg maxθ ln f(x; θ) is consistent, i.e., θ̂ a.s.→ θ̄ as N →∞ . Then,

we have

M̂SEML(θ̄)→ MSEML(θ̄) (3.21)

asN →∞, i.e., the finite support version of the MSE expression M̂SEML(θ̄) in (3.17)

converges to the true large sample asymptotic MSE of the ML estimate θ̂ as N →∞.

If the ML estimate is also asymptotically efficient, then we have

M̂SEML(θ̄)→ C(θ̄), (3.22)

as N → ∞ where C(θ̄) , I−1(θ̄) with C(θ̄) and I(θ̄) denoting the CRLB and the

Fisher information matrix, respectively, at the true parameter value θ̄.

Proof: We can write the probability in the integrand of M̂SEML(θ̄) in (3.17) as

P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
= P

(
ln
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 0

)
(3.23a)

= P

(
1

N
ln
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 0

)
(3.23b)

= P

(
1

N
ln
f(x; θ̄ + 2ε)

f(x; θ̄)
+D(θ̄||θ̄ + 2ε) ≥ D(θ̄||θ̄ + 2ε)

)
(3.23c)

≤ P

(∣∣∣∣ 1

N
ln
f(x; θ̄ + 2ε)

f(x; θ̄)
+D(θ̄||θ̄ + 2ε)

∣∣∣∣ ≥ D(θ̄||θ̄ + 2ε)

)
→ 0 (3.23d)

for ε 6= 0 as N →∞ where D(θ̄||θ̄+ 2ε) stands for D(f(x; θ̄)||f(x; θ̄+ 2ε)). This is

because we have
1

N
ln
f(x|θ̄ + 2ε)

f(x|θ̄)
p→ −D(θ̄||θ̄ + 2ε) (3.24)

as N → ∞ by the law of large numbers and D(θ̄||θ̄ + 2ε) > 0 for ε 6= 0 due

to the assumption A3. As a result, as N → ∞, the integration in (3.17) will be

effectively only over an infinitesimal neighborhood of ε = 0 and it is only the behavior

of the probability P
(
f(x; θ̄ + 2ε)/f(x; θ̄) ≥ 1

)
as ε→ 0 which determines the MSE

expression M̂SEML(θ̄) in (3.17).

Using the assumption A1, we can now obtain the Taylor expansion of ln f(x; θ̄ + 2ε)

around ε = 0 given as

ln f(x; θ̄ + 2ε) = ln f(x; θ̄) + 2
∂

∂θ
ln f(x; θ̄)ε

+ 2
∂2

∂θ2
ln f(x; θ̄)ε2 +

4

3

∂3

∂θ3
ln f(x; θ̃)ε3, (3.25)
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where θ̃ is between θ̄ and θ̄ + 2ε. Since the ∂3

∂θ3 ln f(x; θ̃) is bounded by assumption

A2 as N →∞, the approximation

ln f(x; θ̄ + 2ε) ≈ ln f(x; θ̄) + 2
∂

∂θ
ln f(x; θ̄)ε+ 2

∂2

∂θ2
ln f(x; θ̄)ε2 (3.26)

becomes valid as ε→ 0. By rearranging, we can write

ln
f(x; θ̄ + 2ε)

f(x; θ̄)
≈ 2

∂

∂θ
ln f(x; θ̄)ε+ 2

∂2

∂θ2
ln f(x; θ̄)ε2 (3.27)

as ε→ 0.

We can also write the Taylor expansion of ∂
∂θ

ln f(x; θ̂) around θ = θ̄ given as

0 =
∂

∂θ
ln f(x; θ̂)

=
∂

∂θ
ln f(x; θ̄) +

∂2

∂θ2
ln f(x; θ̄)(θ̂ − θ̄) +

1

2

∂3

∂θ3
ln f(x; θ′)(θ̂ − θ̄)2, (3.28)

where θ′ is between θ̂ and θ̄. Since the ∂3

∂θ3 ln f(x; θ) is bounded by assumption A2 as

N →∞, the approximation

0 ≈ ∂

∂θ
ln f(x; θ̄) +

∂2

∂θ2
ln f(x; θ̄)(θ̂ − θ̄) (3.29)

becomes valid as θ̂ a.s.→ θ̄ as N →∞. Rearranging, we obtain

∂

∂θ
ln f(x; θ̄) ≈ − ∂2

∂θ2
ln f(x; θ̄)(θ̂ − θ̄) (3.30)

as N →∞. Substituting ∂
∂θ

ln f(x; θ̄) in (3.30) into (3.27), we get

ln
f(x; θ̄ + 2ε)

f(x; θ̄)
≈ −2ε

∂2

∂θ2
ln f(x; θ̄)(θ̂ − θ̄ − ε) (3.31)

as ε→ 0 andN →∞. We can now substitute the result (3.31) into the the probability

in the integrand of M̂SEML(θ̄) in (3.17) to obtain

P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
= P

(
− ε ∂

2

∂θ2
ln f(x; θ̄)(θ̂ − θ̄ − ε) ≥ 0

)
. (3.32)

Using assumptions A1-A4, it can be shown that (See [37, Lemma 2.1 Part-i] or [44,

Lemma 4.1 Part-i])

− 1

N

∂2

∂θ2
ln f(x; θ̄)

p→− E
[
∂2

∂θ2
ln f(x; θ̄)

]
= I(θ̄) > 0 (3.33)
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as N → ∞ where we used the law of large numbers. This allows us to write (3.32)

as

P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
=P

(
ε(θ̂ − θ̄ − ε) ≥ 0

)
=


P
(
θ̂ − θ̄ ≥ ε

)
, ε > 0

1, ε = 0

P
(
θ̂ − θ̄ ≤ ε

)
, ε < 0

,

(3.34)

for ε→ 0 andN →∞. Note that the probabilities P
(
θ̂−θ̄ ≥ ε

)
, ε > 0 and P

(
θ̂−θ̄ ≤

ε
)
, ε < 0 would vanish as N →∞, just as the probability P

(
f(x; θ̄ + 2ε)/f(x; θ̄) ≥

1
)
, ε 6= 0, itself, thanks to the fact that θ̂ a.s.→ θ̄. As a result, we can substitute the right

hand side of (3.34) into the finite support version of the integral (3.17) to get

M̂SEML(θ̄) , 2

∫ θmax−θ̄
2

θmin−θ̄
2

|ε|P
(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
dε

= 2

∫ θmax−θ̄

θmin−θ̄
|ε|P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
dε (3.35a)

= −2

∫ 0

θmin−θ̄
εP
(
θ̂ − θ̄ ≤ ε

)
dε

+ 2

∫ θmax−θ̄

0

εP
(
θ̂ − θ̄ ≥ ε

)
dε (3.35b)

=

∫ 0

θmin−θ̄
ε2fθ̂−θ̄(ε) dε+

∫ θmax−θ̄

0

ε2fθ̂−θ̄(ε) dε (3.35c)

=

∫ θmax−θ̄

θmin−θ̄
ε2fθ̂−θ̄(ε) dε = E[(θ̂ − θ̄)2] , MSEML(θ̄), (3.35d)

asN →∞, which completes the proof of (3.21). The proof of (3.22) follows trivially

if the ML estimate θ̂ is also asymptotically efficient. �

3.3.2 Relationship to MCRLB

In this section, we consider the misspecified ML (MML) estimation [10, 11] for a

scalar parameter θ ∈ R. In order to use the asymptotic results for the MML estimate

θ̂, we are going to assume that the elements xn, n = 0, . . . , N−1, of the measurement

vector x are independent and identically distributed as xn ∼ f̄(xn) where f̄(·) denotes

the true measurement distribution. The true distribution for the measurement vector
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x is then given as

f̄(x) =
N−1∏
n=0

f̄(xn). (3.36)

We assume that MML estimate θ̂ is calculated by maximizing the assumed likelihood

f(x; θ) given in (3.19). The relationship of the suggested variance expression V̂θ̂(θ)

to MCRLB [9, 10] is given in the following proposition.

Proposition 2 Assume that

A0 The parameter θ has finite support, i.e., θ ∈ [θmin, θmax].

A1 The first three derivatives of ln f(x; θ) with respect to θ exist for all θ and are

continuous with respect to θ.

A2 For every θ, the functions | ∂i
∂θi

ln f(x; θ)|, i = 0, 1, 2, 3, are dominated by func-

tions bi(x), i = 0, 1, 2, 3, which all have finite variance with respect to the true

measurement distribution f̄(x).

A3 The KL divergence D(f̄(x)||f(x; θ)) has a unique minimum with respect to θ

at θ = θ∗ ∈ (θmin, θmax).2

A4 The expectation Ef̄
[
∂2

∂θ2 ln f(x; θ∗)
]

is non-zero.

The assumption A0 is sufficient (but not necessary) for the convergence of the integral

in (3.6). Under the assumptions A1-A3 it can be shown that (See [32, Theorem 2.1])

the MML estimate θ̂ , arg maxθ ln f(x; θ) is misspecified consistent, i.e., θ̂ a.s.→ θ∗ as

N →∞ . Then, we have

V̂MML(θ∗)→ VMML(θ∗) (3.37)

as N → ∞, i.e., the finite support version of the expression V̂MML(θ∗) converges

to the true large sample asymptotic variance VMML(θ∗) of the MML estimate θ̂ as

N → ∞. If the MML estimate is also asymptotically misspecified efficient, then we

have

V̂MML(θ∗)→
B(θ∗)

A2(θ∗)
(3.38)

2 Note that the existence of the KL divergenceD(f̄(x)||f(x; θ)) necessitates additionally the existence of the
Ef̄ [ln f̄(x)], which we implicitly assume for the sake of conceptual simplicity. We may eliminate the need for
the existence of Ef̄ [ln f̄(x)] by stating this assumption differently as in [32, 37, 44].
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as N →∞ where the quantity B(θ∗)
A2(θ∗)

is the MCRLB and

A(θ∗) , Ef̄
[
∂2

∂θ2
ln f(x; θ∗)

]
, B(θ∗) , Ef̄

[(
∂

∂θ
ln f(x; θ∗)

)2]
. (3.39)

Proof: In the case of MML estimation, we set L(x; θ) , ln f(x; θ) in the probability

in the integrand of V̂θ̂(θ) in (3.6). We can now write the probability in V̂θ̂(θ) as

P
(

ln f(x; θ∗ + 2ε) ≥ ln f(x; θ∗)
)

= P

(
1

N
ln
f(x; θ∗ + 2ε)

f(x; θ∗)
≥ 0

)
(3.40a)

=P

(
1

N
ln

f̄(x)

f(x; θ∗)
− 1

N
ln

f̄(x)

f(x; θ∗ + 2ε)
≥ 0

)
(3.40b)

=P

(
1

N
ln

f̄(x)

f(x; θ∗)
− 1

N
ln

f̄(x)

f(x; θ∗ + 2ε)

−
(
D(θ∗)−D(θ∗ + 2ε)

)
≥ D(θ∗ + 2ε)−D(θ∗)

)
(3.40c)

≤P
(∣∣∣∣ 1

N
ln

f̄(x)

f(x; θ∗)
− 1

N
ln

f̄(x)

f(x; θ∗ + 2ε)
−
(
D(θ∗)−D(θ∗ + 2ε)

)∣∣∣∣
≥ D(θ∗ + 2ε)−D(θ∗)

)
→ 0 (3.40d)

for ε 6= 0 as N → ∞ where D(θ) stands for D(f̄(x)||f(x; θ)). This is because we

have

1

N
ln

f̄(x)

f(x; θ∗)
− 1

N
ln

f̄(x)

f(x; θ∗ + 2ε)

p→ D(θ∗)−D(θ∗ + 2ε) (3.41)

as N → ∞ by the law of large numbers and D(θ∗ + 2ε) > D(θ∗) for ε 6= 0 due

to the assumption A3. As a result, as N → ∞, the integration in (3.12) will be

effectively only over an infinitesimal neighborhood of ε = 0 and it is only the behavior

of the probability P
(

ln f(x; θ∗ + 2ε) ≥ ln f(x; θ∗)
)

as ε → 0 which determines the

expression V̂θ̂(θ∗).

Following a similar approach that is used for obtaining (3.27), we can write

ln
f(x; θ∗ + 2ε)

f(x; θ∗)
≈ 2

∂

∂θ
ln f(x; θ∗)ε+ 2

∂2

∂θ2
ln f(x; θ∗)ε

2 (3.42)

as ε→ 0. Using an approach similar to that used for obtaining (3.30) we can get

∂

∂θ
ln f(x; θ∗) ≈ −

∂2

∂θ2
ln f(x; θ∗)(θ̂ − θ∗) (3.43)

as N →∞. Substituting ∂
∂θ

ln f(x; θ∗) in (3.43) into (3.42), we get

ln
f(x; θ∗ + 2ε)

f(x; θ∗)
≈ −2ε

∂2

∂θ2
ln f(x; θ∗)(θ̂ − θ∗ − ε) (3.44)
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as ε→ 0 and N →∞. We can now substitute the result (3.44) into the probability in

the integrand of V̂ (θ∗)

P
(

ln f(x; θ∗ + 2ε) ≥ ln f(x; θ∗)
)

= P

(
− ε ∂

2

∂θ2
ln f(x; θ∗)(θ̂ − θ∗ − ε) ≥ 0

)
.

(3.45)

Using the assumptions A1-A4, it can be shown that (See [37, Lemma 2.1 Part-i]

or [44, Lemma 4.1 Part-i])

− 1

N

∂2

∂θ2
ln f(x; θ∗)

p→− Ef̄
[
∂2

∂θ2
ln f(x; θ∗)

]
= −A(θ∗) > 0 (3.46)

as N → ∞ where we used the law of large numbers. This allows us to write (3.45)

as

P
(

ln f(x; θ∗ + 2ε) ≥ ln f(x; θ∗)
)

=P
(
ε(θ̂ − θ∗ − ε) ≥ 0

)

=


P
(
θ̂ − θ∗ ≥ ε

)
, ε > 0

1, ε = 0

P
(
θ̂ − θ∗ ≤ ε

)
, ε < 0

, (3.47)

for ε → 0 and N → ∞. Note that the probabilities P
(
θ̂ − θ∗ ≥ ε

)
, ε > 0 and

P
(
θ̂−θ∗ ≤ ε

)
, ε < 0 would vanish asN →∞, just as the probability P

(
ln f(x; θ∗+

2ε) ≥ ln f(x; θ∗)
)
, ε 6= 0, itself, thanks to the fact that θ̂ a.s.→ θ∗. As a result, we can

substitute the right hand side of (3.47) into the finite support version of the integral in

V̂θ̂(θ∗) to get

V̂MML(θ∗) ,2

∫ θmax−θ∗
2

θmin−θ∗
2

|ε|P (ln f(x; θ∗ + 2ε) ≥ ln f(x; θ∗)) dε (3.48a)

=2

∫ θmax−θ∗

θmin−θ∗
|ε|P (ln f(x; θ∗ + 2ε) ≥ ln f(x; θ∗)) dε (3.48b)

=− 2

∫ 0

θmin−θ∗
εP
(
θ̂ − θ∗ ≤ ε

)
dε

+ 2

∫ θmax−θ∗

0

εP
(
θ̂ − θ∗ ≥ ε

)
dε (3.48c)

=

∫ 0

θmin−θ∗
ε2fθ̂−θ∗(ε) dε+

∫ θmax−θ∗

0

ε2fθ̂−θ∗(ε) dε (3.48d)

=

∫ θmax−θ∗

θmin−θ∗
ε2fθ̂−θ̄(ε) dε (3.48e)

=E[(θ̂ − θ∗)2] , VMML(θ∗), (3.48f)
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asN →∞, which completes the proof of (3.37). The proof of (3.38) follows trivially

if the MML estimate θ̂ is also asymptotically misspecified efficient. �

Note that according to the proposition, V̂ (θ∗) converges to the asymptotic variance

VMML(θ∗) of the MML estimate θ̂. When the true measurement distribution f̄(·)
admits the same parameterization as the assumed measurement distribution f(·; θ)
with the true parameter value θ = θ̄, i.e., f̄(x) = f̄(x; θ̄), then we might predict the

MSE performance of the MML estimator θ̂ as

M̂SEMML(θ̄) , V̂MML(θ∗) + (θ∗ − θ̄)2, (3.49)

which would converge to the true MSE of the MML estimator as N → ∞ if the

assumptions of Proposition 2 are satisfied.

3.3.3 Relationship to ZZB

We consider a Bayesian estimation problem where the parameter θ is assigned with

the prior distribution f(θ). The MAP estimate of θ can then be defined as follows.

θ̂ , arg max
θ
f(x|θ)f(θ) (3.50)

where the likelihood f(x; θ) is shown with the conditioning notation as f(x|θ) since

θ is now a random variable. Note that the MAP estimator given above corresponds to

an IDE with the objective function L(x; θ) , f(x|θ)f(θ). The true MSE of the MAP

estimator is given as

MSEMAP ,
∫ ∫

(θ̂ − θ)2f(x|θ) dxf(θ) dθ (3.51a)

=E
[
E
[
(θ̂ − θ)2

∣∣θ]] (3.51b)

=E
[

MSEMAP(θ)
]
, (3.51c)

where the outer expectation in (3.51b) is with respect to the random variable θ and

MSEMAP(θ) denotes the true MSE of the MAP estimator when θ is given, i.e.,

MSEMAP(θ) , E
[
(θ̂ − θ)2

∣∣θ], (3.52)

where the expectation is only with respect to the noisy measurements x given θ. Since

the problem becomes a non-random parameter estimation problem when θ is given,
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we can predict MSEMAP(θ) of the MAP estimator using (3.12) as follows.

M̂SEMAP(θ) = 2

∫ ∞
−∞
|ε|P

(
f(x|θ + 2ε)f(θ + 2ε) ≥ f(x|θ)f(θ)

∣∣∣θ) dε. (3.53)

By substituting the MSE estimate M̂SEMAP(θ) in (3.53) into the place of MSEMAP(θ)

in (3.51c) we can predict the overall MSE of the MAP estimate as follows.

M̂SEMAP , E[M̂SEMAP(θ)] (3.54a)

, 2

∫ ∞
−∞

f(θ)

∫ ∞
−∞
|ε|P

(
f(x|θ + 2ε)f(θ + 2ε) ≥ f(x|θ)f(θ)

∣∣∣θ) dε dθ (3.54b)

=

∫ ∞
−∞

∫ ∞
−∞
|ε|f(θ)P

(
f(x|θ + 2ε)f(θ + 2ε) ≥ f(x|θ)f(θ)

∣∣∣θ) dε dθ

+

∫ ∞
−∞

∫ ∞
−∞
|ε|f(θ − 2ε)P

(
f(x|θ − 2ε)f(θ − 2ε) ≥ f(x|θ)f(θ)

∣∣∣θ) dε dθ

(3.54c)

=

∫ ∞
−∞

∫ ∞
−∞
|ε|f(θ)P

(
f(x|θ + 2ε)f(θ + 2ε) ≥ f(x|θ)f(θ)

∣∣∣θ) dε dθ

+

∫ ∞
−∞

∫ ∞
−∞
|ε|f(θ + 2ε)P

(
f(x|θ)f(θ) ≥ f(x|θ + 2ε)f(θ + 2ε)

∣∣∣θ + 2ε
)

dε dθ

(3.54d)

=

∫ ∞
−∞

∫ ∞
−∞
|ε|(f(θ) + f(θ + 2ε))

×
[
π1P

(
π2f(x|θ + 2ε) ≥ π1f(x|θ)

∣∣∣θ)
+ π2P

(
π1f(x|θ) ≥ π2f(x|θ + 2ε)

∣∣∣θ + 2ε
)]

dε dθ (3.54e)

=

∫ ∞
−∞

∫ ∞
−∞
|ε|(f(θ) + f(θ + 2ε))P e

min(θ, θ + 2ε) dε dθ (3.54f)

= 2

∫ ∞
0

∫ ∞
−∞

ε(f(θ) + f(θ + 2ε))P e
min(θ, θ + 2ε) dθ dε

=
1

2

∫ ∞
0

∫ ∞
−∞

ε(f(θ) + f(θ + ε))P e
min(θ, θ + ε) dθ dε, (3.54g)

where P e
min(θ1, θ2) is the minimum probability of error for the binary hypothesis test-

ing problem given below.

H1 : x ∼ f(x|θ1), (3.55a)

H2 : x ∼ f(x|θ2), (3.55b)

with the prior hypothesis probabilities P (H1) = π1 and P (H2) = π2 = 1−π1 where

π1 ,
f(θ1)

f(θ1) + f(θ2)
, π2 ,

f(θ2)

f(θ1) + f(θ2)
. (3.56)
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The expression (3.54g) can be seen to be the ZZB (See [17, Eqn. (14)]) without the

so-called valley filling function. As a result M̂SEMAP calculated using (3.12) in a Ba-

yesian framework is equal to the ZZB. Note that this equality is satisfied irrespective

of whether the objective function f(x|θ)f(θ) satisfies the assumptions of Theorem 1

or not. If the objective function f(x|θ)f(θ), which is actually the joint density f(x, θ)

of x and θ, also satisfies the conditions of Theorem 1, then this would mean that

MSEMAP(θ) = M̂SEMAP(θ) for all θ ∈ R and hence MSEMAP = M̂SEMAP = ZZB

and hence ZZB would have to be tight, i.e., ZZB would have to be equal to the true

average MSE of the MAP estimate θ̂. As a result, the conditions of Theorem 1 are

also a set of sufficient conditions for ZZB to be tight.

3.4 Extension to the Case with Nuisance Parameters

Suppose now that we have J > 1 unknown scalar parameters, i.e., θ ∈ RJ , and

we would like to estimate only one of them while keeping the others as unknown

nuisance parameters. Without loss of generality we assume that we would like to

estimate θ1 while treating the other parameters θ2, . . . , θJ as nuisance parameters. We

can express the estimate θ̂1 for θ1 as

θ̂1 , [θ̂]1 = arg max
θ1

[
max
θ\1
L(x;θ)︸ ︷︷ ︸

,L1(x,θ1)

]
= arg max

θ1
L1(x, θ1), (3.57)

where θ\1 , [θ2 θ3 · · · θJ ]T . If we assume that the function L1(x; θ1) defined as

L1(x; θ1) , maxθ\1 L(x;θ) satisfies the conditions in Theorem 1, applying the result

of Remark 1 to the IDE in (3.57) would give

M̂SE(θ̄1) = 2

∫ ∞
−∞
|ε|P

(
L1(x; θ̄1 + 2ε) ≥ L1(x; θ̄1)

)
dε,

= 2

∫ ∞
−∞
|ε|P

(
max
θ\1
L(x; θ̄1 + 2ε,θ\1) ≥ max

θ\1
L(x; θ̄1,θ\1)

)
dε. (3.58)

With the selection L(x;θ) , f(x;θ) ≥ 0, we can obtain the MSE of the ML estimate

θ̂1 of θ1 similarly to Corollary 1 from (3.58) as

M̂SEML(θ̄1) = 2

∫ ∞
−∞
|ε|P

(
maxθ\1 f(x; θ̄1 + 2ε,θ\1)

maxθ\1 f(x; θ̄1,θ\1)
≥ 1

)
dε, (3.59)
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connecting the MSE of the ML estimator to the error probability of a generalized

likelihood ratio test (GLRT) (instead of a likelihood ratio test) in the presence of

nuisance parameters [45].

In Section 3.5.2 below, we are going to investigate the expression (3.59) further on

the specific case of the parametric mean model and make approximations to facilitate

its calculation, which are later extended to the general case in a remark.

3.5 Application to ML Estimation with the Parametric Mean Model with Gaus-

sian Noise

We consider ML estimator with the measurement model given as

x = m(θ̄) + v, (3.60)

where v ∼ CN (v; 0, σ2IN) represents the measurement noise and the manifold func-

tion m : RJ → CN is, in general, a complex-valued function of the unknown pa-

rameter vector θ ∈ RJ . The measurement model in (3.60) is widely used in signal

processing applications. For example, a linear manifold function m(θ̄) = Hθ̄ may

represent a multi-input multi-output (MIMO) communication system; a non-linear

manifold function may represent the array response in the direction of arrival estima-

tion problems [7].

The likelihood function for an arbitrary θ is given as

f(x;θ) = CN (x; m(θ), σ2IN). (3.61)

We investigate the cases of a scalar parameter with and without nuisance parameters

in different subsections below. In order to calculate the predicted MSE values we will

need the following log-likelihood ratio expression.

ln
f(x;θ)

f(x; θ̄)
=

1

σ2

(
2<{m̃H(θ; θ̄)(x−m(θ̄))} − ‖m̃(θ; θ̄)‖2

)
, (3.62)

where m̃(θ1;θ2) ,m(θ1)−m(θ2).
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3.5.1 Case of a Scalar Parameter with No Nuisance Parameters

Suppose now that we have a scalar parameter θ with the true value θ̄ (J = 1). Note

that this case can also be interpreted to be the case when we have multiple parameters

θ = [θ1 θ\1] and the true values θ̄\1 of the nuisance parameters θ\1 are perfectly

known. We can evaluate the probability in (3.17) as

P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
= P

(
ln
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 0

)
(3.63a)

=P
(
2<{m̃H(θ̄ + 2ε; θ̄)v} ≥ ‖m̃(θ̄ + 2ε; θ̄)‖2

)
(3.63b)

=Nccdf

(
‖m̃(θ̄ + 2ε; θ̄)‖2; 0, 2σ2‖m̃(θ̄ + 2ε; θ̄)‖2

)
(3.63c)

=Nccdf

(
‖m̃(θ̄ + 2ε; θ̄)‖; 0, 2σ2

)
, (3.63d)

under the assumption that ‖m̃(θ̄ + 2ε; θ̄)‖ 6= 0, where Nccdf(x;µ,Σ) denotes the

complementary cumulative distribution function (ccdf) of a real Gaussian random

vector with meanµ and covariance Σ evaluated at x. Assuming that ‖m̃(θ̄+2ε; θ̄)‖ 6=
0 for almost all ε ∈ R, we can substitute this probability expression into (3.17) to get

M̂SEML(θ̄) = 2

∫ ∞
−∞
|ε|Nccdf

(
‖m̃(θ̄ + 2ε, θ̄)‖; 0, 2σ2

)
dε. (3.64)

Remark 2 If both the function m(·) and the measurement noise v are real-valued,

i.e., if we have m : R → RN and v ∼ N (v; 0, σ2IN), then, instead of (3.64), one

needs to use

M̂SEML(θ̄) = 2

∫ ∞
−∞
|ε|Nccdf

(
‖m̃(θ̄ + 2ε, θ̄)‖; 0, 4σ2

)
dε. (3.65)

Using this expression amounts to replacing the variance σ2 in (3.64) with 2σ2. �

Note that the likelihood (3.61) does not satisfy the conditions of Theorem 1 and its

corollary in general except for some trivial cases, e.g., the case of linear or affine man-

ifold function m(θ). As a result, the predicted MSE expressions in (3.64) and (3.65)

are expected to be only an approximate estimate of the true MSE of the ML esti-

mator. Furthermore, a closed form solution rarely exists for the integrals in (3.64)

and (3.65). Therefore, numerical integration methods have to be used as shown in

Example 1 below.
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The relations in (3.64) and (3.65) provide some insight on the suggested MSE ex-

pression. As ‖m̃(θ̄ + 2ε, θ̄)‖, which is the norm of the difference between manifold

vectors m(θ̄ + 2ε) and m(θ̄), gets larger, it should be easier to accurately estimate

θ and we get a smaller predicted MSE value (since the function Nccdf(·) monotoni-

cally decreases as its argument gets larger). Also, it is interesting to see that, for the

simplest case m(θ) , θ, the expression for the predicted MSE in (3.64) simplifies to;

M̂SEML(θ̄) = 2

∫ ∞
−∞
|ε|Nccdf

(
|2ε|; 0, 2σ2

)
dε =

σ2

2
, (3.66)

which can be obtained by integration by parts. This result is expected, as the corre-

sponding ML estimator is θ̂ = <{x}, hence, the true MSE must be equal to half of

the noise variance. We have an exact result since the objective function is a Gaussian

likelihood satisfying the conditions of Theorem 1. We finally consider the following

example in order to illustrate the practical simplicity of the expression (3.64).

Example 1 (Frequency estimation using ML) Consider the following signal model.

xn = Aejω̄n + vn, n = 0, . . . , N − 1, (3.67)

where A ∈ C is the known complex amplitude; ω̄ ∈ [−π, π] is the unknown true fre-

quency to be estimated using the ML estimator; vn ∼ CN (vn; 0, σ2), n = 0, . . . , N −
1, is the white measurement noise. MSE of the ML estimator based on the measure-

ments xn, n = 0, . . . , N −1, can be calculated with the Matlab function given in Fig-

ure 3.2, which involves only three lines of code. A sample run can be made using the

command MSE_ML_frequency(pi/2, 1, 1, 16) for the true frequency value ω̄ =

π/2, amplitude A = 1, noise variance σ2 = 1 and number of samples N = 16 gives

M̂SEML(π
2
) = 6.417e-4 rad2. Note that the function calculateMSEhat(.) in

Figure 3.2 can be used for predicting the MSE performance of the ML estimator for

any measurement model of type (3.60) for a scalar parameter θ ∈ [θmin, θmax].

3.5.2 Case of a Scalar Parameter with Nuisance Parameters

When some nuisance parameters exist, we consider the case in Section 3.4 and use

the MSE expression in (3.59). Unfortunately it is analytically difficult to calculate

the maxima and the probabilities in the integrands on the right hand side of (3.59)

37



Figure 3.2: A Matlab code for predicting the MSE of the ML estimator for the fre-

quency estimation problem.

exactly. In the following, we are going to make some approximations to facilitate

the calculation. Similar approximations can also be made for the more general case

in (3.58) (See Remark 3 below).

maxθ\1 f(x; θ̄1 + 2ε,θ\1)

maxθ\1 f(x; θ̄1,θ\1)
≈

maxθ\1 f(x; θ̄1 + 2ε,θ\1)

f(x; θ̄1, θ̄\1)

= max
θ\1

f(x; θ̄1 + 2ε,θ\1)

f(x; θ̄1, θ̄\1)

≈ max
θ\1∈Θ\1

f(x; θ̄1 + 2ε,θ\1)

f(x; θ̄1, θ̄\1)
, (3.68)

where the first approximation in (3.68) is made by assuming that the maximum in the

denominator of the left hand side is achieved approximately at the true values of the

nuisance parameters, i.e., at θ\1 = θ̄\1, which is reasonable under asymptotic condi-

tions. The set Θ\1 , {θ1
\1,θ

2
\1, . . . ,θ

Nθ
\1 } appearing in (3.68) is a set of grid points

including the true value θ̄\1 of θ\1. Using these approximations, we can approximate
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the probability in (3.59) as

P

(
maxθ\1 f(x; θ̄1 + 2ε,θ\1)

maxθ\1 f(x; θ̄1,θ\1)
≥ 1

)
≈ P

(
max
θ\1∈Θ\1

f(x; θ̄1 + 2ε,θ\1)

f(x; θ̄1, θ̄\1)
≥ 1

)
(3.69a)

= P

(
max
θ\1∈Θ\1

ln
f(x; θ̄1 + 2ε,θ\1)

f(x; θ̄1, θ̄\1)
≥ 0

)
(3.69b)

= P

(
max
θ\1∈Θ\1

[
2<{m̃H(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)v}

− ‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖2
]
≥ 0

)
(3.69c)

= 1− P
(

max
θ\1∈Θ\1

[
2<{m̃H(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)v}

− ‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖2
]
≤ 0

)
(3.69d)

where m̃(θ1
1,θ

1
\1; θ2

1,θ
2
\1) , m(θ1

1,θ
1
\1) −m(θ2

1,θ
2
\1). Let us now define the matrix

M̃ε ∈ RN×Nθ and the vector µ̃ε ∈ RNθ as

M̃ε ,


m̃H(θ̄1 + 2ε,θ1

\1; θ̄1, θ̄\1)
...

m̃H(θ̄1 + 2ε,θNθ\1 ; θ̄1, θ̄\1)


H

(3.70)

µ̃ε ,


∥∥m̃(θ̄1 + 2ε,θ1

\1; θ̄1, θ̄\1)
∥∥2

...∥∥m̃(θ̄1 + 2ε,θNθ\1 ; θ̄1, θ̄\1)
∥∥2

 . (3.71)

We can now write (3.69d) as

P

(
maxθ\1 f(x; θ̄1 + 2ε,θ\1)

maxθ\1 f(x; θ̄1,θ\1)
≥ 1

)
≈ 1− P

(
2<{M̃H

ε v} ≤ µ̃ε
∣∣∣θ̄)

= Nccdf

(
µ̃ε; 0, 2σ

2<
{
M̃H

ε M̃ε

})
, (3.72)

under the assumption that ‖m̃(θ̄1 + 2ε,θi\1; θ̄1, θ̄\1)‖ 6= 0 for i = 1, . . . , Nθ. Note

that the inequalities between vector quantities above should be interpreted in an ele-

mentwise manner. The probability given in (3.72) is the generalization of the single

parameter probability in (3.63c) to the case of (presence of) nuisance parameters. In

fact, when we select the set Θ\1 as Θ\1 = {θ̄\1}, i.e., when we have a grid com-

posed of only the true nuisance parameter θ̄\1, the probability (3.72) reduces to the
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probability (3.63c). Moreover, since the set Θ\1 contains the true value θ̄\1, the prob-

ability (3.72) is always larger than or equal to the probability (3.63c). Substituting

the result (3.72) into (3.59) we get

M̂SE(θ̄1) = 2

∫ ∞
−∞
|ε|Nccdf

(
µ̃ε; 0, 2σ

2<
{
M̃H

ε M̃ε

})
dε. (3.73)

Note that since the probability (3.72) is always larger than or equal to the probabil-

ity (3.63c), the predicted MSE in (3.73) is always larger than or equal to the single

parameter predicted MSE in (3.64).

Although we ended up with an analytical expression for the predicted MSE in the nui-

sance parameter case, unfortunately, the calculation of the predicted MSE in (3.73)

involves the numerical calculation of the Nθ-variate normal (c)cdf which can be car-

ried out for only small values of the number of grid points Nθ. Furthermore, the

covariance matrix <
{
M̃H

ε M̃ε

}
might be ill-conditioned or singular which makes the

calculation of the probability even more difficult. As a result, the calculation of the

predicted MSE in (3.73) would be computationally infeasible for large grid sizes Nθ.

To avoid this calculation, we might follow an alternative approach by approximating

the right hand side of (3.69c) as

P

(
maxθ\1 f(x|θ̄1 + 2ε,θ\1)

maxθ\1 f(x|θ̄1,θ\1)
≥ 1

)
≈ P

(
max
θ\1∈Θ\1

[
2<{m̃H(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)v}

− ‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖2
]
≥ 0

)
(3.74a)

≈ max
θ\1∈Θ\1

P

([
2<{m̃H(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)v}

− ‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖2
]
≥ 0

)
(3.74b)

After these approximations, we can calculate the probability expression for the max-
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imization problem as follows:

= max
θ\1∈Θ\1

P
(

2<{m̃H(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)v}

≥ ‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖2
)

(3.75a)

= max
θ\1∈Θ\1

Nccdf

(
‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖2; 0, 2σ2‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖2

)
(3.75b)

= max
θ\1∈Θ\1

Nccdf

(
‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖; 0, 2σ2

)
(3.75c)

= Nccdf

(
min

θ\1∈Θ\1
‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖; 0, 2σ2

)
, (3.75d)

under the assumption that minθ\1∈Θ\1 ‖m̃(θ̄1+2ε,θ\1; θ̄1, θ̄\1)‖ 6= 0. The approxima-

tion sign in (3.74a) represents the approximations made until reaching (3.69c). The

approximation sign in (3.74b) can be replaced with a greater than equal to sign, i.e.,

the right hand side of it is a lower bound for the left hand side. Substituting (3.75d)

into (3.59) gives the predicted MSE expression shown below:

M̂SEML(θ̄1) = 2

∫ ∞
−∞
|ε|Nccdf

(
min

θ\1∈Θ\1
‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖; 0, 2σ2

)
dε

(3.76)

The predicted MSE in (3.76) is always smaller than or equal to the computation-

ally prohibitive predicted MSE in (3.73) due to the approximation made in (3.74b),

however, it requires the calculation of the ccdf of only a univariate normal random

variable. Note that the MSE in (3.76) is still always larger than or equal to the single

parameter MSE in (3.64) since the parameter grid Θ\1 contains the true value θ̄\1 of

θ\1. This is because of the fact that

min
θ\1∈Θ\1

‖m̃(θ̄1 + 2ε,θ\1; θ̄1, θ̄\1)‖ ≤ ‖m̃(θ̄1 + 2ε, θ̄\1; θ̄1, θ̄\1)‖ = ‖m̃(θ̄1 + 2ε; θ̄1)‖

(3.77)

and that the function Nccdf(·, 0, 2σ2) monotonically increases as its argument gets

smaller.

The intuitive meaning of the MSE expression (3.76) can be explained as follows.

When the nuisance parameters θ\1 are known, i.e., we have the case of a single pa-

rameter in Section 3.5.1, the MSE is seen to be dependent on the distance between the

mean vector m(θ̄1 + 2ε, θ̄\1) and the true mean vector m(θ̄1, θ̄\1), which was shown
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as (the magnitude of) the vector m̃(θ̄1 + 2ε; θ̄1) , m̃(θ̄1 + 2ε, θ̄\1; θ̄1, θ̄\1) in (3.64).

On the other hand, when the the nuisance parameters θ\1 are not known, the predicted

MSE is dependent on minimum distance between the mean vectors m(θ̄1 + 2ε,θ\1),

where θ\1 takes values in a grid containing the true nuisance parameter value θ̄\1, and

the fixed true mean vector m(θ̄1, θ̄\1). Hence if the vector m(θ̄1 + 2ε,θ\1) is similar

to the fixed vector m(θ̄1, θ̄\1) for some values of the nuisance parameter θ\1 in the

grid, the resulting predicted MSE would get larger.

Remark 3 The approximations made in this section on (3.59) can be applied to the

general case (3.58) as follows.

P
(

max
θ\1
L(x; θ̄1 + 2ε,θ\1) ≥ max

θ\1
L(x; θ̄1,θ\1)

)
≈ P

(
max
θ\1∈Θ\1

L(x; θ̄1 + 2ε,θ\1) ≥ L(x; θ̄1, θ̄\1)
)
, (3.78a)

≈ max
θ\1∈Θ\1

P
(
L(x; θ̄1 + 2ε,θ\1) ≥ L(x; θ̄1, θ̄\1)

)
. (3.78b)

3.5.3 Application to ML Estimation under Model Mismatch

In this section we consider the problem of ML estimation with the parametric mean

model under model mismatch, also known as misspecified ML (MML) estimation in

the literature [11, 10]. For the sake of simplicity we consider only the scalar parame-

ter case, i.e., θ ∈ R. The measurements x are modeled as x = m̄(θ̄) + v, where m̄(·)
denotes the true mean function and v ∼ CN (v; 0, σ̄2IN) represents the measure-

ment noise with the true variance σ̄2. This model corresponds to the true likelihood

f̄(x; θ̄) , CN (x; m̄(θ̄), σ̄2IN). We are interested in the MSE of the mismatched ML

estimator θ̂ of θ given as

θ̂ , arg max
θ
f(x; θ), (3.79)

where the objective function is the assumed likelihood f(x; θ) given as

f(x; θ) , CN (x; m(θ), σ2I). (3.80)

For predicting the performance of the MML estimator given above, we can use the

MSE expression of Remark 1 by setting L(x; θ) , f(x; θ) and calculating the prob-

ability in the integrand of (3.12) with respect to the true measurement distribution
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f̄(·; θ̄). The log-likelihood ratio ln f(x;θ̄+2ε)

f(x;θ̄)
in this case is given as

ln
f(x; θ̄ + 2ε)

f(x; θ̄)
=

1

σ2

(
2<
{
m̃H(θ̄ + 2ε; θ̄)(x− m̄(θ̄))

}
− ‖m̃(θ̄ + 2ε; θ̄)‖2

+ 2<
{
m̃H(θ̄ + 2ε; θ̄)µ(θ̄)

})
(3.81)

where the following definitions are used,

m̃(θ1;θ2) ,m(θ1)−m(θ2), (3.82)

µ(θ) , m̄(θ)−m(θ). (3.83)

We can now calculate the probability of the event ln(f(x; θ̄ + 2ε)/f(x; θ̄)) ≥ 0 with

respect to the true measurement distribution f̄(·; θ̄) as

P

(
ln
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 0

)
= Nccdf

(
‖m̃(·)‖ − 2<

{
m̃H(·)
‖m̃(·)‖

µ(θ̄)

}
; 0, 2σ̄2

)
(3.84)

under the assumption that ‖m̃(·)‖ 6= 0, where we dropped the arguments of the func-

tion m̃(θ̄+ 2ε; θ̄) for brevity. Substituting this expression into the integrand of (3.12)

we get the following predicted MSE for the MML estimate.

M̂SEMML(θ̄) = 2

∫ ∞
−∞
|ε|Nccdf

(
‖m̃(·)‖ − 2<

{
m̃H(·)
‖m̃(·)‖

µ(θ̄)

}
; 0, 2σ̄2

)
dε. (3.85)

3.6 Numerical Results

In this section, we examine the performance of the proposed MSE expression on

four different direction of arrival (DOA) estimation problems. The first two problems

study the conventional and misspecified ML estimation respectively. In the third one,

we investigate the performance of an IDE whose objective function is not the likeli-

hood function, but a function derived from the manifold characteristics. The fourth

problem investigates Bayesian DOA estimation. The implementation details of the

numerical experiments are given in Appendix F.
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3.6.1 DOA Estimation (No Model Mismatch)

Consider the DOA estimation problem with an N -element sensor array with the fol-

lowing array manifold.

aψ = [a1, a2, . . . , aN ]T, an = exp

(
j

2π

λ
pT
nuψ

)
, (3.86)

uψ =


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 , pn =


pxn

pyn

pzn

 , (3.87)

where, ψ , [φ, θ]T denotes the unknown DOA vector composed of azimuth φ ∈
[0, 2π) rads (measured from the x-axis in counter-clockwise direction) and elevation

θ ∈ [0, π) rads (measured from the z-axis). pn is the position vector of the nth sensor

containing the x, y and z-coordinates; N = 11 is the number of sensors; λ denotes the

wavelength. The sensor array is illustrated in Figure 3.3a. The sensor positions for

this configuration have the following analytical form

pxn =
1

4
cos
(
n
π

4

)
, pyn =

1

4
sin
(
n
π

4

)
, pzn =

1

4
sin
(
n
π

4

)
. (3.88)

The sensor measurement vector x ∈ CN under additive noise is modeled as

x = βaψ̄ + v, (3.89)

where v ∼ CN (v; 0, σ2IN); β ∈ R (β is taken as a real-valued scalar with no

loss of generality due to the circular symmetry of the complex Gaussian noise) and

ψ̄ , [φ̄, θ̄]T denotes the true value of the angle vector ψ. The true target angular

positions are φ̄ = 25◦ and θ̄ = 60◦. The beampattern of the array, obtained using the

conventional, i.e., Bartlett, beamformer with coefficients steered to the true DOA, for

this angular position is shown in Figure 3.3b. The beampattern contains sidelobes as

high as −2 dB, with a response normalized to 0 dB at the true DOA. Consequently,

the array is prone to gross errors. With these definitions, the ML estimator involves

the following optimization problem:

ψ̂ = arg max
ψ
<{xHaψ}. (3.90)

Since the signal model is a parametric mean model with the mean function m(ψ) =

βaψ, the finite support versions of the expressions (3.64) and (3.76) can be utilized
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for MSE prediction. We consider three different cases: (i) Azimuth φ is unknown,

but elevation θ = θ̄ is known; (ii) Elevation θ is unknown, but azimuth φ = φ̄ is

known; (iii) Both azimuth φ and elevation θ are unknown. The results of 105 Monte

Carlo simulations are given in Figure 3.4 and Figure 3.5 for azimuth and elevation

estimation problems respectively. Without and with nuisance parameter cases are

given in both figures. For comparison purposes the corresponding CRLBs (see [46]

for the analytical expressions), Barankin bounds (BBs) [24] with single test point

optimized over a grid, Fessler’s method [1], So et al.’s method [2], and method of

interval errors (MIE) [34] are also illustrated. As seen in these figures, the proposed

method is able to predict the threshold SNR below which the ML estimator starts

following the CRLB and tracks the CRLB in the asymptotic region as expected. BB,

on the other hand, converges to CRLB at a much smaller SNR value than the ML

estimator. MIE closely follows the ML estimator in the threshold region. This is

essentially due to the problem specific selection of the intervals and accurate gross

error probability calculation. Note that MIE does not have any assumptions on the

objective function, such as symmetry or unimodality, leading to a better tracking of

ML estimator performance especially in the threshold region. Taylor expansion based

methods of Fessler and So et al. follow the CRLB values in all regions of operation

and they are unable to take into account the gross errors the ML estimator makes

below the threshold SNR.
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(b) Array beampattern at true DOA, φ = 25◦, θ = 60◦.

Figure 3.3: Array configuration and array beampattern at true DOA.
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Figure 3.4: Azimuth estimation performance curves for the array configuration in

Figure 3.3a, without and with nuisance parameter (azimuth angle). Note that the

y-axis limits are the same for both figures. True DOA: φ̄ = 25◦, θ̄ = 60◦.
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Figure 3.5: Elevation estimation performance curves for the array configuration in

Figure 3.3a, without and with nuisance parameter (elevation angle). Note that the

y-axis limits are the same for both figures. True DOA: φ̄ = 25◦, θ̄ = 60◦.
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3.6.2 DOA Estimation (Model Mismatch)

In this section we consider the misspecified ML estimation problem examined in Sec-

tion 3.5.3 on the parameterized mean model. For this purpose, we consider the near

field azimuth estimation problem with known elevation angle, in which the estimator

uses the plane wave propagation assumption (far field assumption) rather than the true

propagation model which is the spherical spreading.

A uniform circular array of radius 5λ/3 with 12 elements is used. The signal of

interest emanates from a target at a range of 5λ, which is closer than the far-field

limit 2(10λ/3)2/λ = 200λ/9 [47]. The array configuration and the target posi-

tion are illustrated in Figure 3.6. The true signal model is given as m̄(φ̄) =

-2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

Figure 3.6: 12 element uniform circular array with a radius of 5
3
λ and target of interest

at 5λ range.

[ā1, ā2, . . . , āN ]T, ān = exp
(
− j 2π

λ
dn(φ̄)

)
, where dn(φ) = ‖pn − ruφ‖, uφ =

[cos(φ), sin(φ)]T, pn = [pxn, p
y
n]T and r is the range of the target from the array

center as illustrated in Figure 3.6. The assumed model by the estimator is the plane

wave model, given as m(φ) = [a1, a2, . . . , aN ]T, an = exp
(
j 2π
λ

pT
nuφ

)
. There is no

49



misspecification in the noise variance, i.e., σ2 = σ̄2. The MSE values for this

experiment with 10,000 Monte Carlo runs are given in Figure 3.7 along with the cor-

responding MCRLBs [9, 10], BBs [24], and the results for Fessler’s [1] and So et al.’s

[2] methods. Note that the Matlab codes for these simulations are available at [48].

MCRLB reduces to the following expression for this specific problem.

MCRLB(φ̄) = C−1
D (φ̄)ID(φ̄)C−1

D (φ̄), (3.91)

where

ID(φ) =
2

σ2

∥∥∥∥∂m(φ)

∂φ

∥∥∥∥2

, CD(θ) = −ID(φ) + 2<
{[

∂2m(φ)

∂θ2

]H

µ(φ)

}
, (3.92)

and µ(·) was defined in (3.83). BB [24] with a single test point optimized over a grid,

which is also the HCRB [22, 25] can be expressed as follows.

BB(φ̄) = HCRB(φ̄) = max
φ

(φ− φ̄)2

e
2
σ2 ‖m(φ)−m(φ̄)‖2 − 1

. (3.93)

The results given in Figure 3.7 indicate that the proposed MSE expression again pre-

dicts the threshold SNR quite closely and tracks MCRLB in the small error region.

On the other hand BB is optimistic about the threshold SNR and both Fessler’s and

So et al.’s methods yield the same results as CRLB and MCRLB for the no model

mismatch and model mismatch cases respectively.
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(a) No model mismatch, both models use plane wave propagation
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(b) Model mismatch, assumed model uses plane wave propagation, while the actual

model is spherical spreading

Figure 3.7: Far-field performance (a) and near-field performance (b) of a 12 element

uniform circular array (Figure 3.6), for a target at 5λ distance. Note that the y-axis

limits are the same for both figures.
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3.6.3 Bayesian DOA Estimation

In this section we study the DOA estimation problem in a Bayesian framework. We

consider a uniform linear array composed of N = 15 sensors with λ/2 element spac-

ing. The signal model is as follows

xn = αejπ cos(φ)n︸ ︷︷ ︸
mn(φ)

+wn, n = 0, 1, . . . , N − 1, (3.94)

where α ∈ C is the unknown complex amplitude, wn ∼ CN (wn, 0, σ
2
w), and φ is

the unknown azimuth angle to be estimated. The unknown angle φ has now a prior

density f(φ), which is given as the symmetric beta distribution

β(a, b) ,
∫ 1

0

φa−1(1− φ)b−1dφ, 0 ≤ φ ≤ π

f(φ) =
1

πβ(a, a)

(
φ

π

)a−1(
π − φ
π

)a−1

, (3.95)

with a = 10, and the performance of the ML and MAP estimators is examined.

The proposed Bayesian MSE expression for the ML estimator can be expressed as

M̂SEML =
∫ π

0
f(φ)M̂SEML(φ)dφ where

M̂SEML(φ) = 2

∫ π−φ
2

−φ
2

|ε|Nccdf

(
‖m̃(φ+ 2ε;φ)‖; 0, 2σ2

w

)
dε, (3.96)

where the integration limits are selected as in (3.13) with φmin , 0 and φmax , π. The

proposed MSE expression for the MAP estimator can be expressed as M̂SEMAP =∫ π
0
f(φ)M̂SEMAP(φ)dφ where

µI(φ, ε, σ
2
w) , ‖m̃(φ+ 2ε;φ)‖+

σ2
w

‖m̃(φ+ 2ε;φ)‖
log

(
f(φ)

f(φ+ 2ε)

)
M̂SEMAP(φ) = 2

∫ π

−π
|ε|Nccdf

(
µI(φ, ε, σ

2
w); 0, 2σ2

w

)
dε. (3.97)

Note that M̂SEMAP(φ) in (3.97) reduces to M̂SEML(φ) in (3.96) when the prior is

flat. BCRLB for this Bayesian estimation problem is given as [3]

BCRLB =

(
π2SNR

N(N − 1)(2N − 1)

3

×
∫ π

0

sin2 φf(φ) dφ+
4(a− 1)(2a− 1)

π2(a− 2)

)−1

, (3.98)
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Figure 3.8: Bayesian DOA estimation performance of MAP and ML estimators along

with the values of BCRLB, ZZB and the proposed MSE prediction expressions (for

ML and MAP).

where SNR , |α|2
σ2
w

and N = 15. ZZB (without the valley filling function) for the

problem can be expressed as

ZZB =
1

2

∫ π

0

∫ π

0

h(f(φ) + f(φ+ h))P e
min(φ, φ+ h)dφdh, (3.99)

where the minimum error probability P e
min(φ1, φ2) can be calculated as

P e
min(φ1, φ2) =π1Nccdf

(
‖m̃(φ2;φ1)‖+

σ2
w

‖m̃(φ2;φ1)‖
log

π1

π2

; 0, 2σ2
w

)
+ π2Nccdf

(
‖m̃(φ1;φ2)‖+

σ2
w

‖m̃(φ1;φ2)‖
log

π2

π1

; 0, 2σ2
w

)
,

(3.100)

with the prior probabilities π1 ,
f(φ1)

f(φ1)+f(φ2)
and π2 , 1 − π1. Figure 3.8 shows the

RMSE performances of the MAP and ML estimators over 10,000 Monte Carlo runs

for each SNR value along with the values of BCRLB, ZZB and the proposed MSE

prediction expressions M̂SEML and M̂SEMAP. The values of ZZB and the proposed

MSE prediction expression M̂SEMAP are identical, as expected from the results of

Section 3.3.3.
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3.7 Approximate bias prediction

In this section we present the natural extension of the proposed MSE prediction

method in Section 3.1 to the bias prediction. We repeat the Monte Carlo experi-

ments to test the bias prediction performance of the proposed method. Bounds on

bias performance of estimators received limited attention in literature over the years,

[39, 49]. On the other hand, approximate bias prediction methods [1, 2] are Taylor

expansion based methods and suffer from the threshold effect problem, explained in

detail in the preceding sections. We begin by proposing the following theorem for

bias prediction of implicitly defined estimators of the form θ̂ = arg maxθ L(x; θ) as

follows;

Theorem 2 (Bias of IDE) Let the objective functionL(x, ·) satisfy the following con-

ditions.

1. L(x; θ̂+h) = L(x; θ̂−h) for all h ∈ R, i.e., the objective function is symmetric

around its peak.

2. L(x; θ) is strictly-increasing (strictly-decreasing) for θ < θ̂ (θ > θ̂).

Then the bias of the IDE θ̂ is given as

B̂(θ) =

∫ ∞
−∞

sgn(ε)P (L(x; θ + 2ε) ≥ L(x; θ)) dε . (3.101)

Proof: The proof follows a simple analytical derivation, up to a point where we use

the equivalence of the events (θ̂ − θ) ≥ ε and (θ̂ − θ) ≤ −ε to the events L(x; θ +

2ε) ≥ L(x; θ) and L(x; θ− 2ε) ≤ L(x; θ), respectively, when the assumptions of the

theorem hold. This equivalence is proven in Section 3.2 for Theorem 1, and will not

be repeated here. The proof starts from the definition of bias,

B̂(θ) = E{θ̂ − θ; θ} , E{e; θ̄}

=

∫ ∞
−∞

efe(e; θ)de

=

∫ 0

−∞
efe(e; θ)de+

∫ ∞
0

efe(e; θ)de. (3.102)
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Using integration by parts (dν = fe(e; θ)de, ν = F(e; θ)), we have∫ 0

−∞
efe(e; θ)de = eF(e; θ)|0−∞ −

∫ 0

−∞
F(e; θ)de

= −
∫ 0

−∞
P (θ̂ − θ ≤ ε)dε. (3.103)

Making a change of variable ε← −ε we get∫ 0

−∞
efe(e; θ)dε =

∫ 0

∞
P (θ̂ − θ ≤ −ε)dε. (3.104)

Similarly for the second term in (3.102) we have,∫ ∞
0

efe(e; θ)de = eFc(e; θ)|∞0 −
∫ ∞

0

Fc(e; θ)de

=

∫ ∞
0

P (θ̂ − θ ≤ ε)dε. (3.105)

Note that, fe(·; ·) is the probability density function, F(·; ·) is the cumulative distri-

bution function and Fc(·; ·) is the complementary cumulative distribution function.

Using (3.104) and (3.105) in (3.102) we have,

B̂(θ) =

∫ 0

∞
P (θ̂ − θ ≤ −ε)dε+

∫ ∞
0

P (θ̂ − θ ≤ ε)dε

=

∫ 0

∞
P (L(x; θ − 2ε) ≥ L(x; θ)) dε

+

∫ ∞
0

P (L(x; θ + 2ε) ≥ L(x; θ)) dε

= −
∫ 0

−∞
P (L(x; θ + 2ε) ≥ L(x; θ)) dε

+

∫ ∞
0

P (L(x; θ + 2ε) ≥ L(x; θ)) dε. (3.106)

Note that the equivalence of the events (θ̂ − θ) ≥ ε and (θ̂ − θ) ≤ −ε to the events

L(x, θ + 2ε) ≥ L(x, θ) and L(x, θ − 2ε) ≤ L(x, θ), respectively was used in the last

expressions. We can further simplify the last equation to the following general form.

B̂(θ) =

∫ ∞
−∞

sgn(ε)P (L(x; θ + 2ε) ≥ L(x; θ)) dε. (3.107)

�

The following corollary applies the result in Theorem 2 to ML estimation.
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Corollary 2 (Bias of ML Estimator) If the likelihood function f(x; ·) satisfies the

conditions in Theorem 2, then the bias of the ML estimate θ̂ is given as

B̂ML(θ) = 2

∫ ∞
−∞

sgn(ε)P

(
f(x; θ + 2ε)

f(x; θ)
≥ 1

)
dε. (3.108)

Proof: The proof is trivially provided using the result in Section 3.2. In (3.18) it

is shown that P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
= P

(
f(x; θ̄ + 2ε)
f(x; θ̄)

≥ 1

)
. Using this

equality in (3.107) we can reach (3.108). �

For the case of nuisance parameters, we can adapt the results in Section 3.4. For this

case we have J > 1 unknown scalar parameters, i.e., θ ∈ RJ , and we would like

to estimate only one of them (θ1) while keeping the others (θ\1 , [θ2 θ3 · · · θJ ]T )

as unknown nuisance parameters. Using the same approach in Section 3.4, we can

express bias of the estimate θ̂1 for θ1 as follows

B̂(θ̄1) = 2

∫ ∞
−∞

sgn(ε)P
(
L1(x; θ̄1 + 2ε) ≥ L1(x; θ̄1)

)
dε,

= 2

∫ ∞
−∞

sgn(ε)P
(

max
θ\1
L(x; θ̄1 + 2ε,θ\1) ≥ max

θ\1
L(x; θ̄1,θ\1)

)
dε.

(3.109)

With the selection L(x;θ) , f(x;θ) ≥ 0, we can obtain the bias of the ML estimate

θ̂1 of θ1 similarly to Corollary 2 from (3.109) as

B̂ML(θ̄1) = 2

∫ ∞
−∞

sgn(ε)P

(
maxθ\1 f(x; θ̄1 + 2ε,θ\1)

maxθ\1 f(x; θ̄1,θ\1)
≥ 1

)
dε. (3.110)

Note that the only difference in bias expressions is instead of |ε| we have sgn(ε) in

the integrand. Consequently, we can apply similar approximations for the calculation

of the probability within the integrand in (3.110) as in Section 3.5.2.

3.8 Numerical Results

We consider the same numerical problems given in Section 3.6. Bias prediction re-

sults for azimuth and elevation estimation problems for ML estimation are given in

Figure 3.9, model mismatch case is given in Figure 3.10. Although the bias prediction

results do not seem to closely follow the actual bias values of ML estimator below the

threshold SNR, the sign of the bias is predicted with a higher accuracy.

56



-10 -5 0 5 10 15 20 25 30

-25

-20

-15

-10

-5

0

(a) Azimuth estimation at true DOA: φ̄ = 25◦, θ̄ = 60◦.
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(b) Elevation estimation at true DOA: φ̄ = 25◦, θ̄ = 60◦.

Figure 3.9: Azimuth and elevation estimation bias curves for the array configuration

in Figure 3.3a.
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Figure 3.10: Near-field and far-field DOA estimation bias of a 12 element uniform

circular array, for a target at 5λ distance.
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CHAPTER 4

APPLICATIONS IN DOA ESTIMATION

In this chapter we present the applications of the proposed performance prediction

method in direction of arrival (DOA) estimation.

4.1 Direction of Arrival Estimation under Rician Fading

In this section we examine the DOA problem under fading conditions. We start from

the signal model and derive the analytical form of the Cramér-Rao Lower Bound first.

Using Monte Carlo analysis we show that the CRLB is overly optimistic in character-

izing ML performance even at high SNR values under severe fading conditions. We

then derive the exact probability expressions for the proposed method in Chapter 3

for ML estimation and show that the proposed method is able to characterize the ML

performance even under severe fading, using Monte Carlo analysis.

We consider the problem of estimating the parameter θ using the following measure-

ment vector,

x = βaθ + v, (4.1)

where β ∼ CN (µF , σ
2
F ) is the fading coefficient, aθ ∈ CN is the manifold vector and

v ∼ CN (0, σ2I) is the additive white Gaussian noise vector. This type of modeling

induces randomness to the observed deterministic signal, and generally used to model

the multi-path effects in the environment. Since the arrival times of different multi-

path signals would be changing in time (hence their phase), the overall sum of the

components would induce a variation in the signal of interest, in our case aθ. Note

that a large σF would indicate a large effect due to multipath signals. Also, a zero

mean fading coefficient can be used to model the case where the direct path signal is
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not observed. To represent the degree of variation in the direct path signal, the fol-

lowing parameter called Rician factor is defined; K , |µF |2
σ2
F

. A large Rician factor K

means that the direct path signal dominates the multi-path signals and a Rician factor

of 0 means there is no direct path signal, only multi-path signals. Note that we have

the following signal to noise ratio definition with the signal model in (4.1),

SNR =
E{|[βaθ]k|2}
E{|[v]k|2}

=
|µF |2 + σ2

F

σ2
=
σ2
F

σ2
(K + 1) (4.2)

Note that as σ2
F → 0 (or K →∞), the SNR expression reduces to the expression for

the non-fading case, SNR→ |µ2|/σ2.

4.1.1 Cramér-Rao Lower Bound calculation

Using the derivation in [7, Appendix 15C], Cramér-Rao Lower Bound for complex

Gaussian case with a scalar parameter θ has the following form

FIM = tr

{
C−1

x

∂Cx

∂θ
C−1

x

∂Cx

∂θ

}
+ 2<

{
∂µH

x

∂θ
C−1

x

∂µx

∂θ

}
. (4.3)

Where FIM is the Fisher Information Matrix and is equal to CRLB−1. Note that

Cx = Cx(θ) and µx = µx(θ), and we dropped the dependence on θ for brevity. The

following identity will be used to simplify the first term in (4.3),

CxC−1
x = I,

∂Cx

∂θ
C−1

x + Cx
∂(C−1

x )

∂θ
= 0,

∂

∂θ
C−1

x = −C−1
x

∂Cx

∂θ
C−1

x , (4.4)

which can be used to write (4.3) as

FIM = tr

{
−∂Cx

∂θ

∂(Cx)−1

∂θ

}
+ 2<

{
∂µH

x

∂θ
C−1

x

∂µx

∂θ

}
. (4.5)

For the signal model in (4.1) we have the following expressions for µx, Cx and C−1
x ,

µx = µFaθ, (4.6)

Cx = σ2I + σ2
Faθa

H
θ , (4.7)

C−1
x =

1

σ2
I− γaθa

H
θ , γ ,

σ2
F

σ2(σ2 + σ2
F ‖aθ‖

2)︸ ︷︷ ︸
N

. (4.8)
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Note that the simple form for C−1
x is obtained bu using the spectral theorem to invert a

matrix ([50, p.45]) for matrices of the form I+αuuH (where α ∈ R and u ∈ CN ). To

calculate the first derivatives with respect to θ, the special form of the array manifold

vector aθ will be of some use;

[aθ]k = exp

(
j

2π

λ
pT
kuθ

)
,[

∂aθ
∂θ

]
k

= j
2π

λ
pT
k u̇θ exp

(
j

2π

λ
pT
kuθ

)
,

∂aθ
∂θ

= Daθ,
∂aH

θ

∂θ
= aH

θ D∗,

D , diag

(
j2πpT

1 u̇θ
λ

, . . . ,
j2πpT

N u̇θ
λ

)
, (4.9)

where pk is the position vector of the kth sensor, and uθ = [ cos(θ) sin(θ) ]T.

Consequently, the first derivatives of for µx, Cx and C−1
x are as follows;

∂µx

∂θ
= µFDaθ, (4.10)

∂Cx

∂θ
= σ2

F

(
Daθa

H
θ + aθa

H
θ D∗

)
, (4.11)

∂(C−1
x )

∂θ
= −γ

(
Daθa

H
θ + aθa

H
θ D∗

)
. (4.12)

Using these expressions in (4.5), we have,

FIM =tr{γσ2
F

(
Daθa

H
θ + aθa

H
θ D∗

)2}

+ <
{
|µF |2aH

θ D∗
(

1

σ2
I− γaθa

H
θ

)
Daθ

}
=γσ2

F

[
tr{Daθa

H
θ Daθa

H
θ }+ tr{Daθa

H
θ aθa

H
θ D∗}

+ tr{aθaH
θ D∗Daθa

H
θ }+ tr{aθaH

θ D∗aθa
H
θ D∗}

]
+

2|µF |2

σ2
<{aH

θ D∗Daθ} − 2γ|µF |2<{aH
θ D∗aθa

H
θ Daθ} (4.13)

Note that;

aH
θ Daθ =

N∑
n=1

j
2π

λ
pT
n u̇θ.
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Using this, and the identity tr{AB} = tr{BA}, the FIM expression can be put into

the following form,

CRLB−1
fading =γσ2

F

[(
N∑
n=1

j2πpT
n u̇θ
λ

)2

+
N∑
n=1

‖aθ‖2

∣∣∣∣2πpT
n u̇θ
λ

∣∣∣∣2

+
N∑
n=1

‖aθ‖2

∣∣∣∣2πpT
n u̇θ
λ

∣∣∣∣2 +

(
N∑
n=1

−j2πpT
n u̇θ

λ

)2 ]

+
2|µF |2

σ2

N∑
n=1

‖aθ‖2

∣∣∣∣2πpT
n u̇θ
λ

∣∣∣∣2 − 2γ|µF |2
∣∣∣∣∣
N∑
n=1

j2πpT
n u̇θ
λ

∣∣∣∣∣
2

=

(
2γσ2

F +
2|µF |2

σ2

)
N

N∑
n=1

∣∣∣∣2πpT
n u̇θ
λ

∣∣∣∣2

−
(
2γ|µF |2 + 2γσ2

F

) ∣∣∣∣∣
N∑
n=1

2πpT
n u̇θ
λ

∣∣∣∣∣
2

. (4.14)

We can write this general form for CRLB under Rician fading in terms of Rician

factor K and signal to noise ratio SNR as follows,

CRLB−1
fading =2 SNR

(
K

K + 1
+

SNR

1 + SNR N
K+1

)
N

N∑
n=1

∣∣∣∣2πpT
n u̇θ
λ

∣∣∣∣2

− 2 SNR
SNR
K+1

1 + SNR N
K+1

∣∣∣∣∣
N∑
n=1

2πpT
n u̇θ
λ

∣∣∣∣∣
2

. (4.15)

When there is no fading, by simply setting σ2
F = 0 and γ = 0 in (4.14), we have

CRLB−1
no−fading = 2

|µF |2

σ2
N

N∑
n=1

∣∣∣∣2πpT
n u̇θ
λ

∣∣∣∣2 = 2 SNR×N
N∑
n=1

∣∣∣∣2πpT
n u̇θ
λ

∣∣∣∣2 . (4.16)

For a uniform line array with λ/2 element spacing, we have pT
k u̇θ = −λ

2
k sin(θ).

And the corresponding CRLB value for Rician fading case is as follows;
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CRLB−1
ULA,fading =2 SNR

(
K

K + 1
+

SNR

1 + SNR N
K+1

)
N

N∑
n=1

|πk sin(θ)|2

− 2 SNR
SNR
K+1

1 + SNR N
K+1

∣∣∣∣∣
N∑
n=1

πk sin(θ)

∣∣∣∣∣
2

=2 SNR

(
K

K + 1
+

SNR

1 + SNR N
K+1

)
Nπ2 sin2(θ)

N∑
n=1

k2

− 2 SNR
SNR
K+1

1 + SNR N
K+1

π2 sin2(θ)

∣∣∣∣∣
N∑
n=1

k

∣∣∣∣∣
2

=2 SNR

(
K

K + 1
+

SNR

1 + SNR N
K+1

)
π2 sin2(θ)

N2(N + 1)(2N + 1)

6

− 2 SNR
SNR
K+1

1 + SNR N
K+1

π2 sin2(θ)
N2(N + 1)2

4
. (4.17)

Similarly, when fading is not present (σ2
F = 0), we have the CRB expression from

(4.16) as follows:

CRLB−1
ULA,no−fading =2 SNRπ2 sin2(θ)

N2(N + 1)(2N + 1)

6
. (4.18)

Although it is not readily apparent, the CRLB for Rician fading does not introduce

a big change especially at high SNR values. At high SNR values the CRLB will be

dominated by the 2 |µF |
2

σ2 term, which in turn is the CRLB value for non-fading case. It

is harder to make the same deduction for the general case (non-ULA arrays). For this

reason, we can test the CRLB expression with Monte Carlo simulations for different

levels of fading. Figure 4.1 shows the performance curves for ML estimator for a 12-

element uniform circular array with a radius of 5λ/3. CRLB curves are also present in

the same figure. Clearly the CRLB under Rician fading is overly optimistic. For low

Rician factors the ML performance is not characterized by CRLB even at high SNR

values. In the following section we derive the closed form expression of probabilities

that are used in the proposed performance prediction method (Chapter 3) and show

that the proposed method is able to characterize ML performance even for low Rician

factor values.

63



-10 -5 0 5 10 15 20 25

10
-1

10
0

10
1

10
2

K=0

K=1

K=3

K=5

K=10

K=100

Figure 4.1: ML performance and CRLB curves for different Rician factors, for a

12-element uniform circular array with 5λ/3 radius. Note that CRLB stays overly

optimistic in characterizing the ML performance in for low (≤ 10) Rician factors

over a wide range of SNR values.

4.1.2 Approximate performance prediction for ML with parameterized mean

model under Rician fading

We are interested in the mean square error (MSE) of the maximum likelihood (ML)

estimator θ̂ of θ given as

θ̂ , arg max
θ
f(x; θ), (4.19)

where the objective function is the likelihood function f(x; ·) given as

f(x; θ) , CN (x; mθ,Σθ) ,

mθ = µFaθ,

Σ = σ2I + σ2
Faθa

H
θ . (4.20)

Note that the ML estimator has the following form for this problem (see Appendix D),

θ̂ML = arg max
θ

2µF<{aH
θ x}+

σ2
F

σ2
v

|aH
θ x|2. (4.21)
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In order to use the result in (3.17) for ML estimation under Rician fading, we need

the likelihood ratio, or equivalently the log-likelihood ratio (LLR),

Λ =− (x−mθ+2ε)
HΣ−1

θ+2ε(x−mθ+2ε) + (x−mθ)
HΣ−1

θ (x−mθ)

=− (x−mθ+2ε)
H

(
1

σ2
I− σ2

F

σ2(σ2 + σ2
F‖aθ+2ε‖2)

aθ+2εa
H
θ+2ε

)
(x−mθ+2ε)

+ (x−mθ)
H

(
1

σ2
I− σ2

F

σ2(σ2 + σ2
F‖aθ‖2)

aθa
H
θ

)
(x−mθ), (4.22)

where we used the identity in (4.8) for matrix inverses. Note that ‖aθ‖2 = ‖aθ+2ε‖2 =

N , where N is the number of sensors in the array. Let γ , σ2
F

σ2(σ2+σ2
FN)

, then

Λ =− 1

σ2
‖x−mθ+2ε‖2 + γ|aH

θ+2ε(x−mθ+2ε)|2

+
1

σ2
‖x−mθ‖2 − γ|aH

θ (x−mθ)|2

=
1

σ2

(
−‖x‖2 + 2<{mH

θ+2εx} − ‖mθ+2ε‖2 + ‖x‖2 − 2<{mH
θ x}+ ‖mθ‖2

)
+ γ|aH

θ+2εx− aH
θ+2εmθ+2ε|2 − γ|aH

θ x− aH
θ mθ|2

=
1

σ2

(
2<{mH

θ+2εx} − 2<{mH
θ x}

)
+ γ|aH

θ+2εx− aH
θ+2εmθ+2ε|2 − γ|aH

θ x− aH
θ mθ|2. (4.23)

Note that ‖mθ‖2 = ‖mθ+2ε‖2 = N |µF |2, hence they cancelled each other out in the

last step. Also aH
θ mθ = aH

θ+2εmθ+2ε = NµF . Let y0 = aH
θ x and y+ = aH

θ+2εx, then

we have

Λ =
1

σ2
(2<{µ∗Fy+} − 2<{µ∗Fy0}) + γ|y+ −NµF |2 − γ|y0 −NµF |2

=
1

σ2
(2<{µ∗Fy+} − 2<{µ∗Fy0}) + γ|y+|2 − 2γ<{Nµ∗Fy+}+ γ|NµF |2

− γ|y0|2 + 2γ<{Nµ∗Fy0} − γ|NµF |2

=2

(
1

σ2
−Nγ

)
<{µ∗Fy+} − 2

(
1

σ2
−Nγ

)
<{µ∗Fy0}+ γ|y+|2 − γ|y0|2

=γ

[
|y+|2 + 2

(
1

γσ2
−N

)
<{µ∗Fy+}+

(
1

γσ2
−N

)2

|µF |2

− |y0|2 − 2

(
1

γσ2
−N

)
<{µ∗Fy0} −

(
1

γσ2
−N

)2

|µF |2
]

=γ

∣∣∣∣y+ +

(
1

γσ2
−N

)
µF

∣∣∣∣2 − γ ∣∣∣∣y0 +

(
1

γσ2
−N

)
µF

∣∣∣∣2 . (4.24)
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Expanding the γ term within parentheses, we can make further simplifications as,

Λ =γ

∣∣∣∣∣∣y+ +

 1
σ2
F

σ2(σ2+σ2
FN)

σ2
−N

µF

∣∣∣∣∣∣
2

− γ

∣∣∣∣∣∣y0 +

 1
σ2
F

σ2(σ2+σ2
FN)

σ2
−N

µF

∣∣∣∣∣∣
2

=γ

∣∣∣∣y+ +
σ2

σ2
F

µF

∣∣∣∣2 − γ ∣∣∣∣y0 +
σ2

σ2
F

µF

∣∣∣∣2 . (4.25)

Consequently we have reached the difference of two non-central χ2 (chi-square) dis-

tributed random variables of one degree of freedom. Luckily we are not forced to

delve into these distributions as we are interested in P(Λ ≥ 0), which has the follow-

ing form.

P(Λ ≥ 0) =P

(
γ

∣∣∣∣y+ +
σ2

σ2
F

µF

∣∣∣∣2 − γ ∣∣∣∣y0 +
σ2

σ2
F

µF

∣∣∣∣2 ≥ 0

)

=P

(∣∣∣∣y+ +
σ2

σ2
F

µF

∣∣∣∣2 ≥ ∣∣∣∣y0 +
σ2

σ2
F

µF

∣∣∣∣2
)
. (4.26)

The probability in equation (4.26) has an analytical form (see Appendix E, Stein’s

unified analysis of the error probability). To use the analytical forms, we need the first

two moments of each Gaussian (each term within | · |2) and their cross correlation.

z0 ,y0 +
σ2

σ2
F

µF = aH
θ x +

σ2

σ2
F

µF (4.27)

z+ ,y+ +
σ2

σ2
F

µF = aH
θ+2εx +

σ2

σ2
F

µF (4.28)

Since x ∼ CN (mx,Rx) and y0, y1 is defined as y0 = aH
θ x and y+ = aH

θ+2εx;

the random variables z0 and z+ are complex-valued circularly symmetric Gaussian

random variables with the following mean, variance and covariance;

E{z0} = aH
θ mx +

σ2

σ2
F

µF ,

E{z+} = aH
θ+2εmx +

σ2

σ2
F

µF ,

E{|z0 − z̄0|2} = aH
θ Rxaθ,

E{|z+ − z̄+|2} = aH
θ+2εRxaθ+2ε,

cov(z0, z+) = aH
θ Rxaθ+2ε. (4.29)
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When there is no model mismatch, we have

mx =µFaθ (4.30a)

Rx =σ2I + σ2
Faθa

H
θ . (4.30b)

When the assumed model differs from the true model as x = βgθ + v, we have

mx =µFgθ (4.31a)

Rx =σ2I + σ2
Fgθg

H
θ . (4.31b)

With these derivations, we can use the results in Section 3.5 for parameterized mean

model and model mismatch. To check the derivations, we reconsider the DOA prob-

lem with a 12 element circular array in Section 3.6.2, under Rician fading with the

observation model in (4.1). The same model mismatch (near-field and far-field) is

applied by changing the array manifold vector, as in Section 3.6.2. The results for

different Rician factors (K = 10 and K = 15) are given in Figure 4.2. Note that

the proposed method is able to predict the threshold SNR as well as the asymptotic

performance for both model match and model mismatch cases.
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Figure 4.2: Near-field (model mismatch) and far-field (no mismatch) performance of

a 12 element uniform circular array, for a target at 5λ distance, under Rician fading,

(a) for K = 10, and (b) for K = 15 .
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4.1.3 On the accuracy of far-field approximation in direction finding

In this section, we investigate the far-field region assumption and try to verify the

commonly used results with a different approach and discuss its tightness using the

threshold behavior of performance curves. In most direction of arrival (DOA) appli-

cations, the target is assumed in the far-field region. Hence the signal model assumes

a plane wave propagation. The far-field limit of a sensor array with an array aperture

of D operating at the center frequency fc is defined in [51] as,

Rfar-field =
2D2

λ
, (4.32)

where λ = c
fc

is the wavelength, and c is the propagation speed of the wave within

the medium.
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Figure 4.3: Beampatterns for a 5 element uniform line array with λ/2 spacing (using

spherical spreading) for different target ranges.

The effect of far-field region can be illustrated by observing the beampatterns for

different ranges of a target (using spherical spreading propagation model). The results

for a 5 element uniform line array with λ/2 element spacing is given in Figure 4.3

and Figure 4.4.

In many cases, identifying the threshold region is crucial, as the performance of

the estimator dramatically increases in the threshold region with a small increase in

SNR. As explained in Chapter 1, this threshold behavior is attributed to gross error
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Figure 4.4: Beampatterns for a 5 element uniform line array with λ/2 spacing (using

spherical spreading) for different target ranges

events. The probability of gross error events have a direct correlation with the array

beampattern. Additionally, if the DOA estimation system uses the far-field propaga-

tion model, a model mismatch will be induced as well. For a complex exponential

signal exp (jωt), emitted/reflected from the target with a position vector pT , the

received signal has the following form:

rk (t) = Aexp (jωt) exp

(
−j 2π

λ
‖pT − pk‖

)
, (4.33)

where A is the complex valued amplitude and λ is the wavelength corresponding to

the radial frequency ω. Dropping the carrier term the received signal (for the kth

sensor) can be put into the following form for a linear array, using pk = [ xk 0 ]T:

rk = A exp

(
−j 2π

λ
‖pT − pk‖

)

= A exp

−j 2π

λ

∥∥∥∥∥∥
 Rcos (θ) − xk
Rsin (θ)

∥∥∥∥∥∥


= A exp

(
−j 2π

λ

√
(R cos (θ)− xk)2 + (R sin (θ))2

)
= A exp

(
−j 2π

λ

√
R2 − 2Rcos(θ) xk + x2

k

)
= A exp

(
−j 2π

λ

√
(R− xkcos (θ) )2 + x2

ksin
2 (θ)

)

= A exp

−j 2π

λ

∥∥∥∥∥∥
 R− xkcos (θ)

xksin (θ)

∥∥∥∥∥∥
 . (4.34)
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The benefit of the last equation is that it enables us to use the norm approximation

(given in [52]) to be used:

‖x‖2 = |xm|

√
1 +

∑N
k=1,k 6=m x

2
k

x2
m

, (4.35)

m = arg max
k=1, 2, ..., N

|xk| (4.36)

‖x‖2 ≈ |xm|

(
1 +

1

2

N∑
k=1, k 6=m

x2
k

x2
m

)
(4.37)

where x ∈ RN , x 6= 0. Here the only approximation is
√

1 + x ≈ 1 + x
2

for small x.

For R > 2xk, we can use the following form for rk:

rk ≈ Aexp

(
−j 2π

λ

(
(R− xkcos (θ) ) +

1

2

x2
ksin

2 (θ)

R− xkcos (θ)

))
. (4.38)

For large values of R (far field), the equation reduces to the following form,

rk ≈ A′ exp

(
−j 2π

λ
(R− xkcos (θ))

)
= A′ exp

(
−j 2π

λ
R

)
exp

(
j

2π

λ
xkcos (θ)

)
= A′′ exp

(
j

2π

λ
xkcos (θ)

)
, (4.39)

which is the common assumption in most direction of arrival (DOA) applications and

antenna theory [51].

We study the same example in Chapter 3 for model mismatch case. In that test sce-

nario, the target was placed closer than the far-field limit. We can calculate the pro-

posed MSE prediction expression for a grid of SNR and target range values and com-

pare the results with the Cramer-Rao Lower Bound to observe whether the far-field

limit expression is succesful at predicting the performance loss to the range. This

ratio will represent the shift of the threshold region, as CRLB will be much smaller

than the predicted MSE values below the threshold SNR value. Results for a uniform

circular array with a 5λ/3 radius is given in Figure 4.5 and Figure 4.6. Note that the

array aperture for this array is the array diameter, 10λ/3. Consequently, the far field

region begins at 200λ/9. The results in this figure show that, the far-field assump-

tion is a valid one even at very low Rician factors. This on the other hand can be

interpreted that the far-field limit is not a tight limit value for direction finding (DF)

applications.
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Figure 4.5: Ratio of predicted MSE values for ML estimator to CRLB for various

SNR and target range values, for a Rician factor of 5. Note that the color scale is set

between 5 and > 20.
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Figure 4.6: Ratio of predicted MSE values for ML estimator to CRLB for various

SNR and target range values, for a Rician factor of 50. Note that the color scale is set

between 1 and > 2.
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4.2 DOA Estimation by an IDE (ESPRIT)

In this section we present the application of the proposed MSE prediction method

in Section 3 to an implicitly defined estimator (other than ML estimator), namely

ESPRIT. We consider a uniform linear array composed of N = 15 sensors with λ/2

element spacing. The signal model is as follows

xn = αejπ cos(φ̄)n︸ ︷︷ ︸
,mn(φ̄)

+wn, n = 0, 1, . . . , N − 1, (4.40)

where α ∈ C is the unknown complex amplitude, wn ∼ CN (wn, 0, σ
2
w), and φ̄ =

35π/180 rad is the unknown true azimuth angle to be estimated. We denote the spatial

frequency with ω̄ and define ω̄ , π cos(φ̄).

Due to the structure of uniform linear arrays, we can write mn(φ̄) = ejω̄mn−1(φ̄)

for the elements of the array manifold vector mn(φ̄) in (4.40), which is the rotational

invariance property exploited in ESPRIT [53]. Using this property, we can define a

somewhat adhoc cost function as follows

J(ω) =
N−1∑
n=1

|xn − ejωxn−1|2. (4.41)

By minimizing (4.41), we can get an estimate for ω as ω̂ , arg minω J(ω) =

arg
(∑N−1

n=1 x
∗
n−1xn

)
; from which an estimate for the DOA can be generated as φ̂ ,

arccos
(
ω̂
π

)
, which we call the ESPRIT estimate. Note that the cost function J(·) is

neither symmetric around the estimate, nor is unimodal. Hence it does not satisfy

the conditions for which the proposed method yields the true MSE. The cost function

J(ω) in (4.41) can be written in matrix form as follows.

J(ω) =
∥∥A1x− ejωA0x

∥∥2

= xH
(
A1 − ejωA0

)H (
A1 − ejωA0

)
x, (4.42)

where

x =
[
x0 x1 . . . xN−1

]T

,

A0 =
[

I(N−1) 0(N−1)×1

]
,

A1 =
[

0(N−1)×1 I(N−1)

]
. (4.43)
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Figure 4.7: Non-random DOA estimation performance of ESPRIT along with values

of different bounds and MSE prediction expressions.

Using ω , π cos(φ), we get,

J(φ) = xH
(
A1 − ejπ cos(φ)A0

)H(
A1 − ejπ cos(φ)A0

)
x. (4.44)

Note that in order to use the approximate MSE expression in (3.12), we need to eval-

uate the following probability,

P
(
J(φ̄+ 2ε) ≤ J(φ̄)

)
= P

(
J(φ̄+ 2ε)− J(φ̄) ≤ 0

)
, P (∆J2ε ≤ 0), (4.45)

where the inequalities are the reverse of those in Remark 1 since we have a mini-

mization problem instead of a maximization problem in our IDE. Using (4.44) and

after some basic algebraic operations we can express ∆J2ε , J(φ̄ + 2ε) − J(φ̄) as

∆J2ε = xHQx where

Q , (ejπ cos(φ̄) − ejπ cos(φ̄+2ε))AH
1 A0 + (e−jπ cos(φ̄) − e−jπ cos(φ̄+2ε))AH

0 A1. (4.46)

Even though the density of the quadratic form ∆J2ε = xHQx is known to be the

generalized chi-squared distribution and can be evaluated numerically [54, Appendix
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A], we pursue a Gaussian fit to the density in order to simplify the probability calcu-

lations. To do that, we evaluate the first two moments of ∆J2ε. Using the fact that

xHQx is always real, we can reach the following expressions (after some algebra)

µ∆(φ̄, ε) =E{∆J2ε} = σ2
wtr
(
Q) + mH(φ̄)Qm(φ̄), (4.47a)

σ2
∆(φ̄, ε) = Var{∆J2ε} = σ4

wtr(Q2) + 2σ2
wmH(φ̄)Q2m(φ̄), (4.47b)

where m(φ) , [m0(φ), m1(φ), · · · ,mN−1(φ)]T and we used the result E[(yHQy)2] =

tr2(QΣ) + tr((QΣ)2) for any Hermitian matrix Q and y ∼ CN (y; 0,Σ) [55, Ch. V,

Lemma 2.2]. With the Gaussian fit, an approximation to the suggested MSE expres-

sion becomes

M̂SE(φ̄) ≈ 2

∫ π−φ̄
2

− φ̄
2

|ε|Ncdf

(
0;µ∆(φ̄, ε), σ2

∆(φ̄, ε)
)

dε. (4.48)

where we used (3.13) with φmin = 0; φmax = π to set the integration limits and the

cdf of the normal distribution is used instead of the ccdf due to the reversal of the

inequalities in (4.45). Figure 4.7 shows the results of 10,000 Monte Carlo runs for

this experiment. The CRLB, BB with single test point optimized over a grid, Fessler’s

[1] and So et al.’s [2] methods are also illustrated for comparison purposes. Note that

the estimator in this experiment is not efficient, hence its performance does not reach

CRLB at high SNR. Consequently, the estimator performance is not characterized by

the CRLB in any SNR region. Therefore, one needs the asymptotic MSE values as

well as the pairwise error probabilities in order to calculate the MSE prediction using

MIE. BB provides a very optimistic prediction for this specific problem as in the

earlier examples. Although Fessler’s and So et al.’s methods predicted the estimator

performance well at high SNR region, they have difficulty in representing gross errors

of the estimator for low SNR values. The proposed method, on the other hand, closely

follows the estimator performance in all SNR regions.

Using the results in Section 3.7 we can also examine the bias performance. The

approximate expression in this case reduces to,

M̂SE(φ̄) ≈
∫ π−φ̄

2

− φ̄
2

sgn(ε)Ncdf

(
0;µ∆(φ̄, ε), σ2

∆(φ̄, ε)
)

dε. (4.49)

Bias prediction results of the method are given in Figure 4.8. As seen in this figure,

the Taylor expansion based method by So et al. [2] is unable to predict estimator bias
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Figure 4.8: Direction of arrival estimation bias for a uniform linear array of 15 ele-

ments with λ/2 element spacing using ESPRIT.

for low SNR values. The proposed method is able to track the behavior of estimator

bias along with the sign of the bias as seen in the zoomed subplot.
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4.3 Online array performance prediction in case of sensor failures

In this section we present an application of the proposed method in Chapter 3 to

predict the sensor array performance (for direction of arrival estimation) in case one

or more sensors fail to operate. This application may have some use in military sensor

arrays, as they quite often are exposed to very harsh conditions. Although these arrays

and their sensors are designed to withstand the expected harsh conditions, there is

always a non-zero probability to observe a faulty sensor. Also, it is always possible

to be in an unfortunate accident which results in a certain portion of the array to

be damaged and some sensors may be unable to function properly. In such cases,

the operator or the system may decide to disable certain sensors within the array

due to its unreliable readings. The system performance will also change depending

on the number of the disabled sensors, and depending on the “importance” of those

sensors. Even if most of the array sensors are not in use, the overall system can still be

useful for a particular angular sector. In such cases, the operator needs a performance

prediction to assess the reliability of array outputs. As the number of combinations of

sensors that might be disabled is in general very large (2N subsets for an N -element

array), it is more practical to assess the array performance online. The problem here

is to provide the operator with a prediction of the current performance statistics, in a

rather simple and abstract manner. Since the performance deviates depending on the

signal to noise ratio, bearing and frequency, representation of 4-dimensional data as

simple as possible is also a challenge.

Using Bayesian performance bounds is not an appropriate solution, because the Ba-

yesian bound represents the weighted (by apriori density of the parameter) sum of the

performance for all possible DOA angles. As a result, the operator cannot understand

performance in which angular sector is affected from a rise in the Bayesian bound.

Consequently, we need to resort to non-Bayesian methods, bounds or approximate

performance metrics. Using approximate metrics is a better way for this problem,

since the estimation method is known and actually its current performance is ques-

tioned. As explained in detail in Chapter 2 the threshold region performance must

also be predicted, since the decrease in the number of healthy sensors is likely to

shift the threshold SNR to higher values. For these reasons, the proposed method in
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Chapter 3 is a good candidate for this application. The system performance can be

calculated online using the parametric mean model presented in Section 3.5 to calcu-

late the system performance for different direction of arrival angles for different SNR

values.

To illustrate this application, a 12 element circular array with directional elements is

used. The sensor directivity is defined as,

dn(φ) = | cos(φ− φn) + 0.5|8, φn =
2πn

N
(4.50)

where, N = 12 is the number of sensors in the array. With directional elements, we

have the following parametric mean model for direction of arrival estimation on a

plane (azimuth only),

aψ = [a1, a2, . . . , aN ]T, an = dn(φ) exp

(
j

2π

λ
pT
nuφ

)
, (4.51)

uφ =

 cos(φ)

sin(φ)

 , pn =

 pxn

pyn

 , (4.52)

where, φ is the azimuth angle ∈ [0, 2π) rads (measured from the x-axis in counter-

clockwise direction). pn is the position vector of the nth sensor containing the x and

y. The sensor measurement vector x ∈ CN under additive noise is modeled as

x = aφ + v, x ∼ CN (aφ, σ
2IN). (4.53)

With these definitions, we can use (3.64) for a grid of azimuth angles and SNR val-

ues. The configuration and performance of fully operational sensor array are given in

Figure 4.9 and 4.10. Array configuration and performance when three sensors are not

operational are given in Figure 4.11 and 4.12. Since the array sensors are directional,

and most of the information from an angular sector is collected from the sensors di-

rected to that direction, we can expect the array performance to deteriorate in the

angular sectors of the broken sensors for this problem. Figure 4.12 clearly indicates

a performance drop in these sectors.
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Array geometry and sensor beampatterns

Available sensors

Sensor directivity patterns

Figure 4.9: Sensor array configuration when all sensors are operational.
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Figure 4.10: Sensor array performance when all sensors are operational.
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Array geometry and sensor beampatterns

Available sensors

Sensor directivity patterns

Broken sensors

Figure 4.11: Sensor array configuration when 3 sensors are lost.
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Figure 4.12: Sensor array performance when 3 sensors are lost.
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4.4 Array layout optimization by minimizing the probability of gross errors

As explained in detail in previous chapters, the performance of ML estimator is af-

fected drastically below a certain threshold SNR value. And the reason for this abrupt

change in performance is gross errors. Consequently, if the threshold SNR value

is to be lowered, the probability of gross errors must be decreased. In this section

we present a possible application of the proposed performance prediction method in

Chapter 3 to sensor array layout optimization by minimizing the gross error probabil-

ity. The idea to optimize sensor positions to reduce the probability of gross errors is

not new (see for instance [56]). We present an extension of this idea, i.e. using the

performance prediction method as the cost function of the optimization routine.

Consider the direction of arrival problem, where we have a set of sensors with noisy

observations. Array processing literature tells us that to increase the directivity index

of a sensor array, the critically sampled array aperture must be increased. This is an

analogous observation to frequency estimation, in which we need a longer observation

period to better estimate the center frequency. However, increasing the array aperture

may not be feasible due to mechanical constraints, or the number of sensors may

be too large for the available processing power in the system. In such cases, the

sensor positions are still a design parameter and can be re-arranged (within certain

constraints). The cost function in this case can be chosen as the average or maximum

of predicted MSE values for ML estimator for the desired angle of arrivals, and a

specific SNR value. The optimization problem can be constructed as follows;

min
ps

∑
φ∈Φ

M̂SE(φ), s.t. ps ∈ S, SNR = η0 (4.54)

where, ps is an N by 2 matrix (x and y coordinates, for a 2D array optimization),

composed of sensor positions. S is the set of feasible sensor positions, and Φ is the

set of angles for which the probability of error is to be minimized at an SNR value of

η0. To simplify the optimization definition, we can use polar coordinates for sensor

positions, and define the constraints accordingly as,

min

rn ∈ [rnmin, r
n
max]

θn ∈ [θnmin, θ
n
max]

∑
φ∈Φ

M̂SE(φ), s.t. SNR = η0 (4.55)
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Choosing this SNR value is critical at this point, since if we choose an SNR value

above the threshold SNR, the optimization is forced to minimize the CRLB essen-

tially. This in turn does not provide any improvement for reducing the gross error

probability. The threshold SNR value under consideration here belongs to the base-

line array configuration, whose gross error performance is to be improved. As a

result, we need to find the threshold SNR before beginning the optimization routine.

Note that choosing an SNR value in no-information region is again a futile attempt

for this problem, since we have the same number of sensors and cannot move the

no-information region a useful amount.

Note that the optimization problem in (4.55) requires a 2N-dimensional search. Heuris-

tic optimization algorithms (such as genetic algorithm, simulated annealing etc. [57])

can be used here to provide "a" solution (not necessarily "the" global optimum solu-

tion). In the following example, genetic algorithm is used to optimize the array layout

to minimize the probability of gross errors. An 8-element uniform circular array with

a 5λ
3

radius is used as a baseline array (Figure 4.13), whose gross error probability is to

be reduced. The optimization in (4.55) is carried out for 8 sensor positions {rk, θk}8
k=1

for a set of azimuth angles covering [0, 2π) with 10 degree steps, i.e. Φ = {2πn
36
}35
n=0.

The cost function in (4.55) is evaluated for an SNR value of 6 dB, which is within

the threshold region of the average performance curve for the azimuth angles in Φ (as

seen in Figure 4.16). The feasible area for each sensor position, is defined as follows;

rnmin =
5λ

6
, rnmax =

5λ

3
,

θnmin =
2πn

8
− π

12
, θnmin =

2πn

8
+

π

12
, n = 1, . . . , 8. (4.56)

The default routine in Matlab for genetic algorithm is used to find a solution with

these constraints. The optimized array configuration and feasible search areas is given

in Figure 4.13. The performance of the optimized array is tested with 104 Monte

Carlo runs for each azimuth angle in Φ. The average performance for each sensor

configuration is given in Figure 4.16. The performance for each azimuth angle in Φ

is given in Figure 4.14

Note that the optimization objective was to reduce the predicted MSE value at 6 dB

SNR. As seen in the results in Figure 4.16, the optimization routine succeeded in

finding a solution as the performance is significantly improved for this SNR value.
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Figure 4.13: 8 element uniform circular array and layout optimized array configura-

tions. Note that the search for genetic optimization is constrained to the feasible areas

(one sensor within each closed region).

The actual goal of the optimization was also satisfied, the threshold SNR is shifted to

lower levels (i.e. gross error probability is decreased for identical SNR values). Note

that this improvement comes with a trade-off, which is the asymptotic performance.

The uniform circular array provides a higher accuracy at high SNR values, which was

not included in the objective of the optimization.
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ML MSE for uniform circular array
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Figure 4.14: MSE values for each direction of arrival angle in Φ (using ML estimator)

for the uniform circular array in Figure 4.13.

ML MSE for optimized array
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Figure 4.15: MSE values for each direction of arrival angle in Φ (using ML estimator)

for the optimized array configuration in Figure 4.13.
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Figure 4.16: Average of MSE values (for ML estimator) for direction of arrival angles

in Φ = {2πn
36
}35
n=0, for each array configuration. 104 Monte Carlo runs are carried out

for each azimuth angle.
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CHAPTER 5

CONCLUSION

In this study we propose an MSE expression for the performance prediction of IDEs

of non-random parameters. The method provides the exact MSE value when the

objective function of the IDE is unimodal and symmetric. Even though, this is a

rather stringent restriction for the general practice; the symmetric unimodal objec-

tive function assumption is in alignment with the operation of consistent estimators

in the asymptotic region. The maximum likelihood estimator is the prime example

for consistent estimators. Specific to the maximum likelihood estimator, it has been

shown that the suggested MSE expression reduces to the CRLB and MCRLB in no-

misspecification and misspecification cases, respectively. Furthermore, the suggested

expression also yields the ZZB when an a-priori distribution is assigned to the un-

known parameter for the MAP estimator.

An extension of the suggested MSE expression to the parameter estimation in the

presence of nuisance parameters is given. Numerically friendly, but approximate, ver-

sions of the MSE expression are developed and some application examples are given.

Numerical results show that the expression not only predicts the performance in the

asymptotic region, but also provides valuable information in the threshold region. We

consider that the applicability of the expression in other regions is related with the

gradual degradation of asymptotic region operation conditions as the operating point

moves from asymptotic region to the threshold region, say, with the reduction of SNR.

A possible interpretation for the MSE expression can be given in relation to the

method of intervals (MIE). The MIE predicts the MSE by taking into account both

small and gross error events via CRLB and the interval error probabilities, respec-

tively. The suggested MSE expression for the ML estimator uses the likelihood ratio
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for the same purpose; but it does not have a problem specific interval selection.

Another interpretation for the MSE expression can be given in connection with the

ZZB. As in ZZB, the suggested MSE expression is based on the pairwise error prob-

abilities. Furthermore, the average of the expression for the MAP estimator exactly

reproduces ZZB for random parameters. Hence, the suggested MSE expression for

the ML estimator can also be considered, at least informally, as the non-random pa-

rameter version of the ZZB.

The relationship of the proposed MSE expression with hybrid performance bounds is

also an interesting subject and is left as a future work.

An interesting observation in the non-random parameter case was that, for medium

and low SNR, the proposed MSE expressions usually slightly underestimated the true

MSE of the estimators. Hence, a potential future study is to investigate whether the

proposed expressions have any lower bounding properties in medium and/or low SNR

regions under some conditions.

As a natural extension of the proposed MSE prediction method, bias prediction ex-

pression is also derived, and similar numerical studies are repeated.

Several applications are presented where the proposed expressions are utilized.

• Direction of arrival estimation under Rician fading problem is examined in de-

tail, and it is shown that CRLB is not a useful tool for predicting the ML per-

formance under Rician fading even in the high SNR region (or at least feasibly

high SNR regime). Exact probability of error expressions are derived for the

proposed prediction method, and it is shown (by numerical results) that the pro-

posed method is able to predict the performance in all SNR regions. Note that

the fading model under consideration produced the same fading effect on all

sensors for a given snapshot. As a possible extension to this study, the case

where each sensor is affected with a different realization from the same fading

distribution can be studied. The mismatch effect in this case is also an interest-

ing subject to be studied as well.

• A nonlinear IDE example (DOA estimation by ESPRIT) is given, and proba-
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bility of error expressions are derived. Certain probability expressions are ap-

proximated using a Gaussian distribution by matching the first two moments,

and numerical results are presented.

• Commonly used far-field assumption is shown to be an overly cautious factor

by using the mismatched model performance of ML estimator.

• Calculation of the proposed MSE estimation method for a grid of values in the

parameter space is proposed for online performance prediction of large sensor

arrays, which will be especially useful in case of sensor failures. This approach

gives the array operator to make a decision to use the sensor array for certain

parameter values, even multiple sensors at random positions are defective.

• The proposed expression is used as the cost function to optimize sensor po-

sitions, that is to minimize the probability of gross error events. An example

is given where a constrained optimization problem is constructed to improve

the threshold SNR value. It is shown (using Monte Carlo simulations) that the

gross error performance of a uniform circular array is improved, at the cost of

asymptotic performance.
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APPENDIX A

INFINITE SUPPORT BOUNDED M(·) CASE

In this section we analyze a case when the approximate performance prediction method

presented in Chapter 3 does not produce a finite prediction. Consider the estimation

problem of θ ∈ R from the following single measurement;

x = arctan(θ̄) + w (A.1)

where w ∼ N (0, σ2
w). ML estimator for this case is θ̂ML = tan(x), as a result we

have,

m(θ) = arctan(θ) (A.2)

m̃(θ̄ + 2ε; θ̄) = m(θ̄ + 2ε)−m(θ̄) (A.3)

= arctan(θ̄ + 2ε)− arctan(θ̄) (A.4)

According to our method;

M̂SE(θ̄) = 2

∫ ∞
−∞
Nccdf

(
| arctan(θ̄ + 2ε)− arctan(θ̄)|; 0, 4σ2

w

)
dε (A.5)

Note that the variance is 4σ2
w, since the noise term is real (i.e., w ∈ R). We know that

| arctan(θ) ≤ π/2| for all θ. Then,

| arctan(θ̄ + 2ε)− arctan(θ̄)| ≤ | arctan(θ̄ + 2ε)|+ | arctan(θ̄)|

≤ π

2
+
π

2
= π. (A.6)

Since Nccdf(·) is a monotonically decreasing function, we have

Nccdf

(∣∣arctan(θ̄ + 2ε)− arctan(θ̄)
∣∣ ; 0, 2σ2

w

)
≥ Nccdf(π; 0, 2σ2

w) > 0. (A.7)
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Using this in our MSE prediction expression we have,

M̂SE(θ̄) ≥ 2

∫ ∞
−∞
|ε|Nccdf(π; 0, 2σ2

w)dε

= 2Nccdf(π; 0, 2σ2
w)︸ ︷︷ ︸

≥0

∫ ∞
−∞
|ε|dε︸ ︷︷ ︸

→∞

→∞ (A.8)

Hence for this problem M̂SE → ∞ for all θ̄ and σw. This happens because θ has

infinite support and the function |m(·)| is bounded. When m(·) is bounded, the prob-

ability P
(
f(x; θ̄ + 2ε) ≥ f(x; θ̄)

)
might be lower bounded by a positive constant for

all ε and might not tend to zero as ε→∞, resulting in an infinite MSE prediction.
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APPENDIX B

MOMENT GENERATING FUNCTION OF ESTIMATION ERROR

In this section we will derive the moment generating function of the estimation error

for the cases where the assumptions of Theorem 1 hold (symmetric and unimodal

objective function). Consider the IDE for θ ∈ R.

θ̂ , arg max
θ
L(x; θ) (B.1)

We have proven that for a symmetric and unimodal L(x; ·), we have

P
(
θ̂ − θ̄ ≥ ε

)
=P

(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

(B.2)

P
(
θ̂ − θ̄ ≤ −ε

)
=P

(
L
(
x; θ̄ − 2ε

)
≥ L

(
x; θ̄
))

(B.3)

Define the estimation error η as

η , θ̂ − θ̄. (B.4)

We would like to calculate the moment generating function defined as

M(s) , E {esη} . (B.5)

We can see that

1−M(s) =E {1− esη} (B.6)

=

∫ ∞
−∞

(1− esη) fη(ε)dε (B.7)

=

∫ ∞
0

(1− esη) fη(ε)dε+

∫ 0

−∞
(1− esη) fη(ε)dε (B.8)

=I+ + I− (B.9)
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We now calculate the integrals on the right hand side above separately. For the first

integral I+, using integration by parts we have

u =1− esη, du = −sesεdε, (B.10)

dv =fη(ε)dε, v = −
∫ ∞
ε

fη(ε
′)dε′ = −Fcη(ε). (B.11)

Where Fη(ε) is the cumulative distribution function. Then,

I+ =

∫ ∞
0

(1− esε) fη(ε)dε

=− (1− esε) Fcη(ε)

∣∣∣∣∞
ε=0

−
∫ ∞

0

(
−Fcη(ε)

)
(−sesε) dε

=− s
∫ ∞

0

Fcη (ε) esεdε

=− s
∫ ∞

0

P (η ≥ ε) esεdε

=− s
∫ ∞

0

P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε. (B.12)

Similarly, using integration by parts for the second integral I− we have,

u =1− esη, du = −sesεdε, (B.13)

dv =fη(ε)dε, v =

∫ ε

−∞
fη(ε

′)dε′ = Fη(ε). (B.14)

Then,

I− =

∫ 0

−∞
(1− esε) fη(ε)dε

= (1− esε) Fη(ε)

∣∣∣∣0
ε→−∞

−
∫ 0

−∞
Fη(ε) (−sesε) dε

=s

∫ 0

−∞
Fη (ε) esεdε

=− s
∫ 0

∞
Fη (−ε) e−sεdε

=− s
∫ 0

∞
P (η ≥ −ε) e−sεdε

=− s
∫ 0

∞
P
(
L
(
x; θ̄ − 2ε

)
≥ L

(
x; θ̄
))

e−sεdε

=s

∫ 0

−∞
P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε. (B.15)
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Combining (B.12) and (B.15) we get

1−M(s) =− s
∫ ∞

0

P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε

+ s

∫ 0

−∞
P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε

=− s
∫ ∞
−∞

sign(ε)P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε (B.16)

which gives,

M(s) =1 + s

∫ ∞
−∞

sign(ε)P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε. (B.17)

For the specific case of ML estimation, we have

M(s) =1 + s

∫ ∞
−∞

sign(ε)P

(
f(x; θ̄ + 2ε)

f(x; θ̄)
≥ 1

)
esεdε. (B.18)

We can see that,

d

ds
M(s) =

∫ ∞
−∞

sign(ε)P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε

+ s

∫ ∞
−∞
|ε|(P )

(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
esεdε, (B.19)

where we used sign(ε)ε = |ε|. Substituting s = 0 we get

E{η} =
d

ds
M(s)

∣∣∣∣
s=0

=

∫ ∞
−∞

sign(ε)P
(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
dε (B.20)

which is the expression we found for the bias. We can calculate the 2nd order deriva-

tive of M(s) w.r.t. s as follows.

d2

ds2
M(s) =

∫ ∞
−∞
|ε|P

(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε

+

∫ ∞
−∞
|ε|P

(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε

+ s

∫ ∞
−∞

ε|ε|P
(
L
(
x; θ̄ + 2ε

)
≥ L

(
x; θ̄
))

esεdε. (B.21)

Substituting s = 0 we get

E{η2} =
d2

ds2
M(s)

∣∣∣∣
s=0

= 2

∫ ∞
−∞
|ε|P

(
L(x; θ̄ + 2ε) ≥ L(x; θ̄)

)
dε, (B.22)

which is the expression we found for the MSE.
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APPENDIX C

INCONSISTENCY OF TAYLOR EXPANSION BASED METHODS

In this section, we consider the prediction of the MSE of the maximum likelihood

(ML) estimate (MLE) using the method presented in [2], which we will refer to as

So’s approach.

We consider the ML estimation of a real scalar parameter θ ∈ R, with the true value

θ̄, using the measurement likelihood denoted as f(x; θ) where x ∈ CN is the mea-

surement vector. The ML estimate can be posed in two different ways:

θ̂ML-1 = arg max
θ

ln f(x; θ), (C.1)

and

θ̂ML-2 = arg max
θ
f(x; θ), (C.2)

which are obviously equivalent, i.e., θ̂ML-1 = θ̂ML-2, for all x, since the natural log-

arithm function i.e., ln(·), is a monotonically increasing function. The approximate

MSE prediction expression in So’s approach can be summarized (for the case of a

real scalar parameter) as follows [2].

M̂SESo(θ̄) ,
E
{(

∂
∂θ
L(x; θ̄)

)2
}

(
E
{
∂2

∂θ2L(x; θ̄)
} )2 , (C.3)

whereL(x; θ) is the objective function to be maximized and all expectations are taken

over the random vector x. Note that in the estimation problems (C.1) and (C.2), the

objective functions are L1(x; θ) , ln f(x; θ) and L2(x; θ) , f(x; θ), respectively.

If the objective function L1(x; θ) , ln f(x; θ) is used in ML, So’s approach gives the

following MSE prediction.

M̂SESo-1(θ̄) =
E
{(

∂
∂θ

ln f(x; θ̄)
)2
}

(
E
{
∂2

∂θ2 ln f(x; θ̄)
})2 . (C.4)
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Note that the CRLB for this problem is given as

CRLB(θ̄) =
−1

E
{
∂2

∂θ2 ln f(x; θ̄)
} =

1

E
{(

∂
∂θ

ln f(x; θ̄)
)2
} . (C.5)

Consequently, the MSE expression in (C.4) can be written as

M̂SESo-1(θ̄) =
E
{(

∂
∂θ

ln f(x; θ̄)
)2
}

(
E
{
∂2

∂θ2 ln f(x; θ̄)
})2

=
E
{(

∂
∂θ

ln f(x; θ̄)
)2
}

(
E
{(

∂
∂θ

ln f(x; θ̄)
)2
})2

=
1

E
{(

∂
∂θ

ln f(x; θ̄)
)2
} = CRLB(θ̄). (C.6)

As a result, So’s approach yields CRLB as the predicted MSE for (C.1). We are now

going to examine So’s approach for (C.2).

If the objective function L2(x; θ) , f(x; θ) is used in ML, So’s approach gives the

following MSE prediction.

M̂SESo-2(θ̄) =
E
[ (

∂
∂θ
f(x; θ̄)

)2 ](
E
[
∂2

∂θ2f(x; θ̄)
])2 . (C.7)

Unfortunately, in general, the MSE expression in (C.7) is not equal to that in (C.4).

We are going to prove this considering a very simple estimation problem. Consider

the estimation problem for a real scalar θ ∈ R measured under Gaussian noise, i.e.,

we consider the model

x = θ + ν, ν ∼ N (0, σ2), (C.8)

which has the likelihood function given as

f(x; θ) = N (x; θ, σ2). (C.9)

M̂SESo-1(θ̄) for this problem is given as M̂SESo-1(θ̄) = CRLB(θ̄) = σ2. In order to

calculate M̂SESo-2, we can derive the following identities for a univariate Gaussian

distribution.

∂

∂θ
N (x; θ, σ2) =

(x− θ)
σ2

N (x; θ, σ2), (C.10a)

∂2

∂θ2
N (x; θ, σ2) =

(
(x− θ)2

σ4
− 1

σ2

)
N (x; θ, σ2). (C.10b)
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The numerator in (C.7) is then given as

E

{(
∂

∂θ
N (x; θ̄, σ2)

)2
}

=

∫
(x− θ̄)2

σ4
N 2(x; θ̄, σ2)N (x; θ̄, σ2)dx. (C.11)

Noting that we have

N 2(x; θ̄, σ2) = N (θ̄; θ̄, 2σ2)N
(
x; θ̄,

σ2

2

)
=

1√
4πσ2

N
(
x; θ̄,

σ2

2

)
, (C.12)

we can write (C.11) as

E

{(
∂

∂θ
N (x; θ̄, σ2)

)2
}

=
1

σ4
√

4πσ2

∫
(x− θ̄)2N

(
x; θ̄,

σ2

2

)
N
(
x; θ̄, σ2

)
dx.

(C.13)

We can simplify the integrand in (C.13) as

N
(
x; θ̄,

σ2

2

)
N
(
x; θ̄, σ2

)
= N

(
θ̄; θ̄,

3σ2

2

)
N
(
x; θ̄,

σ2

3

)
=

1√
3πσ2

N
(
x; θ̄,

σ2

3

)
.

(C.14)

Hence we can write (C.13) as

E

{(
∂

∂θ
N (x; θ̄, σ2)

)2
}

=
1

σ4
√

4πσ2

∫
(x− θ̄)2 1√

3πσ2
N
(
x; θ̄,

σ2

3

)
dx

(C.15a)

=
1

σ4
√

4πσ2
√

3πσ2

σ2

3
(C.15b)

=
1

3πσ4
√

12
. (C.15c)

For the denominator in (C.7), we can write

E
[
∂2

∂θ2
N (x; θ̄, σ2)

]
=

∫ (
(x− θ̄)2

σ4
− 1

σ2

)
N 2(x; θ, σ2)dx (C.16a)

=
1

σ4

∫
(x− θ̄)2 1√

4πσ2
N
(
x; θ̄,

σ2

2

)
dx

− 1

σ2

∫
1√

4πσ2
N
(
x; θ̄,

σ2

2

)
dx (C.16b)

=
σ2

2σ4
√

4πσ2
− 1

σ2
√

4πσ2
(C.16c)

= − 1

2σ2
√

4πσ2
. (C.16d)
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Using (C.15c) and (C.16d), we can obtain M̂SESo-2 in (C.7) as,

M̂SESo-2(θ̄) =
E
{
x
(
∂
∂θ
N (x; θ̄, σ2)

)2
}

E
{
∂2

∂θ2N (x; θ̄, σ2)
}2

=

1
3πσ4

√
12

1
4σ44πσ2

=
8

3
√

3
σ2

6= σ2 = M̂SESo-1(θ̄). (C.17)

As a result, So’s approach might not give the same MSE predictions for monotone

transformations of the cost function. In other words, different MSE predictions, e.g.,

M̂SESo-1(θ̄) 6= M̂SESo-2(θ̄) can be obtained for identical estimators, e.g., θ̂ML-1 =

θ̂ML-2. Using a similar methodology, we can show that Fessler’s approach [1], which

is based on Taylor series approximations like So’s approach, has a similar problem for

some estimation problems. The proposed approach in this thesis study (in Chapter 3)

does not have this problem since the event

f(x; θ̄ + 2ε) ≥ f(x; θ̄) (C.18)

is the same as the event

ln f(x; θ̄ + 2ε) ≥ ln f(x; θ̄) (C.19)

for all ε ∈ R and hence their probabilities are the same. Similarly, any monotone

function of the objective function would not change these events, keeping the MSE

predictions identical.
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APPENDIX D

MAXIMUM LIKELIHOOD ESTIMATOR DERIVATION UNDER RICIAN

FADING

Consider the DOA estimation problem under additive white Gaussian noise and Ri-

cian fading conditions, with the following signal model,

x = βaθ + v (D.1)

where β ∼ CN (µF , σ
2
F ) is the fading coefficient, µf ∈ R is the fading mean and

σ2
F is the fading variance. aθ ∈ CL, ‖aθ‖ = 1,∀θ is the array manifold vector (of

an L-element array). Lastly v ∼ CN (0, σ2
vI) is the additive white Gaussian noise

component.

Note that µF can be real or complex in general. We assume a real fading mean com-

ponent without any loss of generality, as the noise component is circularly symmet-

ric complex Gaussian, and normalizing the overall observation vector with µ∗F/|µF |
would yield the same formulation.

Note that the observation vector is still a complex Gaussian vector,

x ∼ CN (µx,Cx), µx = µFaθ, Cx = σ2
Faθa

H
θ + σ2

vI (D.2)

fX(x) =
1

πL|Cx|
exp

(
−(x− µx)HC−1

x (x− µx)
)
. (D.3)

Consequently, the log-likelihood function Λ(θ) can be written as follows,

Λ(θ) = ln fX(x; θ)

= lnπL − ln |Cx| − (x− µx)HC−1
x (x− µx) (D.4)

The Maximum Likelihood estimator has the following definition;

θ̂ML , arg max
θ

Λ(θ) = argminθ−Λ(θ). (D.5)
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And for the problem under consideration we have,

θ̂ML = argminθ ln |Cx|+ (x− µx)HC−1
x (x− µx) (D.6)

Note that we omitted the constant term lnπL, as it does not affect minimization. Note

that the determinant covariance matrix of x can be simplified as,

|Cx| =
∣∣σ2
vI + σFaθa

H
θ

∣∣
=

∣∣∣∣σ2
v

(
I +

σ2
F

σ2
v

aθa
H
θ

)∣∣∣∣
= (σ2

v)
L

∣∣∣∣(I +
σ2
F

σ2
v

aθa
H
θ

)∣∣∣∣
= (σ2

v)
L

∣∣∣∣(1 +
σ2
F

σ2
v

aH
θ aθ

)∣∣∣∣
= (σ2

v)
L

(
1 +

σ2
F

σ2
v

)
= (σ2

v)
L + σ2

F (σ2
v)
L−1. (D.7)

Note that in the above derivations we used the identity |I + uvH| = 1 + uHv, see

[50]. Note that the determinant term is independent of θ and can be omitted from

minimization considerations. Using a similar derivation for C−1
x , we can arrive at the

following expression,

C−1
x =

1

σ2
v

I− σ2
F

σ2
v(σ

2
v + σ2

F )
aθa

H
θ =

1

σ2
v

I− γaθa
H
θ (D.8)

where we defined γ , σ2
F

σ2
v(σ2

v+σ2
F )

. As a result the quadratic term can be simplified as

follows,

θ̂ML = argminθ(x− µx)HC−1
x (x− µx)

= argminθ(x− µx)H 1

σ2
v

I(x− µx)− γ|aH
θ (x− µx)|2

= argminθ
1

σ2
v

‖x− µx)‖2 − γ|aH
θ (x− µx)|2

= argminθ
1

σ2
v

(
‖x‖2 + ‖µx‖2 − 2<{µH

x x}
)
− γ|aH

θ (x− µx)|2

= argminθ
1

σ2
v

(
−2µF<{aH

θ x}
)
− γ|aH

θ x− µF |2

= argminθ−2µF<{aH
θ x}

(
1

σ2
v

− γ
)
− γ|aH

θ x|2

= argminθ−
2µF

σ2
v + σ2

F

<{aH
θ x} − σ2

F

σ2
v(σ

2
v + σ2

F )
|aH
θ x|2.
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Getting rid of the common multipliers we can arrive at the following result,

θ̂ML = arg max
θ

2µF<{aH
θ x}+

σ2
F

σ2
v

|aH
θ x|2. (D.9)

It is interesting to see that the resulting estimator is a weighted sum of coherent

(<{aH
θ x}) and non-coherent estimators (|aH

θ x|2). This is similar to combining two

noisy measurements of a parameter with different variances. To obtain an estimate

with a lower variance, their weights should be proportional to the information each

measurement carries. In this case, the overall estimator tends to lean towards the

coherent estimator when the direct path signal is strong, hence its coefficient is pro-

portional to µF . And similarly, the non-coherent estimator has a weight that is pro-

portional to the power of multi-path signal component, σ2
F .
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APPENDIX E

STEIN’S UNIFIED ANALYSIS OF THE ERROR PROBABILITY

Consider two correlated complex Gaussian random variables, z1f ∼ CN (z̄1f , N1f )

and z2f ∼ CN (z̄2f , N2f ). The probability P (|z1f | ≤ |z2f |) can be calculated using

Stein’s unified analysis of the error probability [58, 59] with the following equation:

P(|z1f | < |z2f |) =
1

2

[
1−Q1(

√
b,
√
a) +Q1(

√
a,
√
b)
]

− A

2
exp

(
−a+ b

2

)
I0(
√
ab) (E.1)

where I0(·) is the modified Bessel function of the first kind of order zero, and Q1(·)
is the first order Marcum Q-function, and we have used the following definitions,

z̄if =mif + jµif = |z̄if |ejθif , i = 1, 2. (E.2)

Sif =
1

2
|z̄if |2, (E.3)

Nif =
1

2
E
{
|zif − z̄if |2

}
, (E.4)

ρf =
1

2
√
N1fN2f

E {(z1f − z̄1f )
∗ (z2f − z̄2f )} , (E.5)

φ = arg(ρcf + jρsf ), (E.6) a

b

 =
1

2

S1f + S2f + 2
√
S1fS2f cos(θ1f − θ2f + φ)

N1f +N2f + 2
√
N1fN2f |ρf |2

+
1

2

S1f + S2f − 2
√
S1fS2f cos(θ1f − θ2f + φ)

N1f +N2f − 2
√
N1fN2f |ρf |2

∓ 1

2

2(S1f − S2f )√
(N1f +N2f )2 − 4N1fN2f |ρf |2

, (E.7)

A =
N1f −N2f√

(N1f +N2f )2 − 4N1fN2f |ρf |2
. (E.8)
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APPENDIX F

IMPLEMENTATION DETAILS OF THE METHODS USED IN SECTION 3.6

AND SECTION 4.2

F.1 Implementation Details for Section 3.6.1

• ML estimate is calculated on a grid. The grid consists of 3600 uniformly spaced

points in the interval [−π, π] for (scalar) azimuth estimation, and 3600 uni-

formly spaced points in the interval [0, π] for (scalar) elevation estimation. For

the case of nuisance parameter, azimuth and elevation angles are selected such

that the corresponding unit vectors have an approximately uniform distribu-

tion over the unit sphere. To do so, elevation interval [0, π] is divided into

200 equally spaced values {θk}200
k=1, and each constant elevation circle on the

unit sphere is divided into d(100 sin(θk)e points where d·e denotes the ceiling

function. By doing so, a total of 198192 grid points (φ-θ pairs) are obtained.

BBs [24] are calculated with a single test point which is optimized on a grid.

The single and multiple parameter BB grids are selected the same as the grids

used for ML. MIE grid points are selected as the local maxima outside the

mainlobe in the beampattern for the scalar parameter estimation case, which

requires a peak finding algorithm over the 1D beampattern function. For the

case of a nuisance parameter, the beampattern function is a 2D surface, and

grid points are the local maxima on this surface. For both cases the beam-

pattern function is calculated over the ML grid, and local maxima are found

using Matlab built-in functions (findpeaks(·) for maxima on the 1D curve,

imregionalmax(·) for maxima on the 2D surface). For both cases, grid

points are illustrated in Figure F.1.

113



0 50 100 150 200 250 300 350

-20

-15

-10

-5

0

(a) Known elevation (scalar parameter)

0 60 120 180 240 300 360
0

20

40

60

80

100

120

140

160

180

-30

-25

-20

-15

-10

-5

0

True DOA

Grid points

(b) Unknown elevation (Nuisance parameter)

Figure F.1: Grid points of the MIE for azimuth estimation.

Proposed method does not require grid point selection for the scalar parameter

case. For the case of a nuisance parameter, grid points are selected over the

entire support of the nuisance parameter with logarithmic spacing around the

true value, making the grid denser as the grid points approach the true parameter

value. In Matlab notation, the grid is defined as follows

δθ = logspace(−7, log10emax, 60), (F.1a)

Θ\1 = [θ̄, θ̄ − δθ, θ̄ + δθ]. (F.1b)

The statement (F.1a) generates 60 logarithmically spaced points within the in-

terval [10−7, emax]. We selected emax = π/2 for the elevation angle as the nui-

sance parameter and emax = π for the azimuth angle as the nuisance parameter.

F.2 Implementation Details for Section 3.6.2

• ML grid consists of 3600 uniformly spaced points in the interval [−π, π] for

(scalar) azimuth estimation. BB grid is the same as the ML grid. Other methods

do not require grid points.
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F.3 Implementation Details for Section 4.2

• BB grid is the same as the ML grid for the problem in Section 3.6.2. Other

methods do not require grid points.

The numerical integrals of the proposed method in all subsections up to this point are

taken using the Matlab function integral(·) with the following tolerance values:

AbsTol=1e-5, RelTol=1e-5. The integration limits for the numerical integrals

of the proposed method were set as ε ∈
[−π−φ̄

2
, π−φ̄

2

]
for azimuth estimation and

ε ∈
[
− θ̄

2
, π−θ̄

2

]
for elevation estimation.

F.4 Implementation Details for Section 3.6.3

• ML and MAP use the same grid, which consists of 8192 uniformly spaced

points over [−π, π] for ω = π cos(φ). The (non-uniform) grid points for φ are

calculated using expression arccos(ω
π

) from the grid for ω.

• The double integral for ZZB is taken using the numerical integration function

of Matlab integral2(·) with the default tolerance settings.

• The numerical integrals of M̂SEML(φ) and M̂SEMAP(φ) are taken using the

Matlab function integral(·) with the tolerance values AbsTol=1e-18,

RelTol=1e-12. The integrals with respect to the prior are calculated over a

uniform grid over the inverval [0, π] with the grid spacing 0.01.
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