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ABSTRACT 

 

DEVELOPMENT AND VALIDATION OF SELECTED RESPONSE TEST 

TO MEASURE STUDENTS’ DECLARATIVE KNOWLEDGE OF 

TRIANGLES 

 

 

 

 

Güneş, Melike 

Master of Science, Mathematics Education in Mathematics and Science Education 

Supervisor : Prof. Dr. Behiye Ubuz 

 

 

December 2022, 68 pages 

 

Currently, relatively limited selected-response tests are available to measure 

high school students' geometry knowledge. By adhering to Standards for 

Educational and Psychological Testing set by the American Educational 

Research Association (AERA et al., 2014), the current study seeks to develop 

an objective type of selected-response test for assessing 11-grade students' 

declarative knowledge of triangles, specifically definitions of types of 

triangles, congruent and similar triangles and identification of triangles and 

then determine the validity evidence for the test (DKTT) based on test 

content, internal structure, and reliability. Four factors emerged from using 

the Exploratory Factor Analysis (EFA) for the analysis of test 

dimensionality. These factors were named 'Identification of Triangles (Factor 

1)', 'Definitions of Congruent and Similar Triangles (Factor 2)', Minimal 

Definitions of Types of Triangles  (Factor 3)', and 'Non-minimal Definitions 

of Types of Triangles with Auxiliary Elements (Factor 4)'. The Cronbach's 

alpha and McDonald's omega coefficients for the entire test were 0.71 and 

0.75, respectively. This test will contribute to thoroughly measuring the 
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students' knowledge of definitions of types of triangles, congruent and 

similar triangles, and identification of triangles, measuring students' 

declarative knowledge of triangles. 
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ÖZ 

 

ÖĞRENCİLERİN ÜÇGENLER KONUSUNDA BİLDİRİME DAYALI 

BİLGİLERİNİ ÖLÇMEK İÇİN SEÇİLMİŞ YANIT TESTİNİN 

GELİŞTİRİLMESİ VE DOĞRULANMASI 

 

 

 

Güneş, Melike 

Yüksek Lisans, Matematik Eğitimi, Matematik ve Fen Bilimleri Eğitimi  

Tez Yöneticisi: Prof. Dr. Behiye Ubuz 

 

 

Aralık 2022, 68 sayfa 

 

Şu anda, lise öğrencilerinin geometri bilgilerini ölçmek için nispeten sınırlı seçilmiş 

yanıtlı testler mevcuttur. Mevcut çalışma özellikle üçgen çeşitlerinin, eş ve benzer 

üçgenlerin tanımları ve üçgenlerin belirlenmesinde 11. sınıf öğrencilerinin bildirime 

dayalı üçgen bilgilerini ölçmek için nesnel bir seçilmiş yanıt testi türü geliştirmeyi 

Amerikan Eğitim Araştırmaları Derneği (AERA ve diğ., 2014) tarafından belirlenen 

Eğitimsel ve Psikolojik Test Standartlarına bağlı kalarak amaçlamaktadır ve 

ardından testin içeriği, iç yapısı ve güvenilirliğine dayalı olarak testin geçerlilik 

kanıtını (DKTT) belirlemektedir. Test boyutluluğunun analizi için Açımlayıcı Faktör 

Analizi'nin (AFA) kullanılmasından dört faktör ortaya çıkmıştır. Bu faktörler, 

'Üçgenlerin Belirlenmesi (Faktör 1)', 'Eş ve Benzer Üçgenlerin Tanımları (Faktör 2)', 

'Üçgen Çeşitlerinin Minimal Tanımları  (Faktör 3)' ve ' Yardımcı Elemanlar ile 

Üçgen Çeşitlerinin Minimal Olmayan Tanımları (Faktör 4)' olarak adlandırılmıştır. 

Tüm test için Cronbach alfa ve McDonald's omega katsayıları sırasıyla 0.71 ve 0.75 

olarak bulunmuştur. Bu test, öğrencilerin üçgen çeşitleri, eş ve benzer üçgenlerin 

tanımları ve üçgenleri belirleme bilgilerinin derinlemesine ölçerek öğrencilerin 

üçgenler hakkındaki bildirimsel bilgilerinin ölçülmesine katkıda bulunacaktır. 
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CHAPTER 1  

1 INTRODUCTION  

Identifying triangles, defining triangle types, and congruent and similar triangles are 

important for success in higher-level mathematics courses. The ability to identify 

triangles by their characteristics and properties is essential for understanding more 

advanced concepts in geometry, such as congruence and similarity, transformations, 

spatial reasoning, and the properties of two- and three-dimensional shapes. In the 

teaching and learning of mathematics, definitions are crucially significant (Cansız 

Aktaş, 2016; Miller, 2018; Zazkis & Leikin, 2008; Zaslavsky & Shir, 2005). 

Researchers have indicated that teachers do not always possess sufficient knowledge 

of definitions, nor do they have the flexibility needed to consider alternate versions 

of definitions for a single concept (Fujita & Jones, 2007; Leikin & Winicki-

Landman, 2001; Pickreign, 2007). Even students in senior high schools have 

difficulty learning plane geometry terms, defining and categorizing shapes, and 

properties of shapes (Atebe, 2008; Clements & Battista, 1992; Fuys et al., 1988; 

Usiskin, 1982). Triangles are one of the most frequently addressed topics in the 

mathematics curriculum (see Miyakawa, 2017; Otten et al., 2014). 

Previous research has emphasized the definitions' importance for geometrical  

knowledge and the deductive structure of geometry since they play a crucial role in 

developing an understanding of the meanings of the concepts and are used as 

building blocks for the construction of geometrical theorems (Mariotti & Fischbein, 

1997; Pimm, 1993; Wilson, 1990). Numerous studies have demonstrated that 

geometrical definitions are a challenge for both learners and many pre- and in-service 

teachers across all grade levels. They have trouble defining terms and using 

definitions to identify, classify, and generate examples and non-examples of the 
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defined concept (Hershkowitz, 1987; Hershkowitz, 1989; Hershkowitz, 1990; Fujita 

& Jones, 2007; Marches, 2012; Pickreign, 2007; Vinner & Dreyfus, 1989). Other 

studies have investigated how students understand the definitions of some geometric 

figures, such as triangles and quadrilaterals (e.g., Fujita & Jones, 2007; Kaur, 2015; 

Usiskin, 2008). It is observed that studies put more emphasis on defining the concept 

of a triangle than types of triangles (e.g., Tsamir et al., 2015; Ulusoy, 2021; 

Zaslavsky & Shir, 2005). Thus, studies about definitions of types of triangles are 

scarce, and instruments used to collect data were comprised of open-ended questions 

such as "define right triangle" (Mayberry, 1983; Pielsticker, 2022; Ubuz & Aydın, 

2018). Additionally, there have been a few studies that have clearly focused on 

definitions of congruent and similar triangles (e.g., Dündar & Gündüz, 2017; 

González & Herbst, 2009; Haj-Yahya, 2022). Beyond knowing the definitions, one 

of a concept's (triangle) roles is to enable someone to identify both examples and 

non-examples of the category. Therefore, non-examples result from concept 

acquisition (Tsamir et al., 2008). Students are encouraged to solely employ critical 

attributes when producing and identifying examples of geometric concepts in 

mathematics classes since acknowledging critical attributes is essential for correctly 

identifying figures (van Hiele, 1958). One of the primary goals of educators is to 

enable students to identify examples and develop geometrical conceptions using only 

critical attributes (Tsamir et al., 2008). Utilizing precise mathematical terminology 

can help to achieve this goal (Tsamir et al., 2015). Students are expected to select 

and identify triangles based on the following critical attributes: (a) being closed, (b) 

three sides, (c) three vertices, and (d) three angles. Declarative knowledge refers to 

information that is stored in an individual's memory and can be explicitly stated or 

declared, such as facts, definitions, and concepts. In this case, students' knowledge 

of definitions for different types of triangles, congruent and similar triangles, and the 

critical attributes that are used to identify triangles (examples and non-examples) are 

declarative knowledge about related geometry concepts. When the studies on these 

topics were reviewed, it was found that the majority of the studies used open-ended 

questions on their measurement tool following using interviews (e.g., Bernabeu et 
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al., 2021; Burger & Shaugnessy, 1986; Clements et al., 1999; Ulusoy, 2022), 

whereas studies using selected-response (SR) opted for multiple-choice as the format 

for the SR (e.g., Usiskin, 1982; Senk, 1989; Ubuz, 2017). CR (constructed response) 

assessments frequently align with authentic scientific practices, such as constructing 

explanations or arguments based on evidence and provide teachers with greater 

insight into student thinking in their classrooms, allowing them to modify teaching 

strategies to meet learning objectives (Gerard & Linn, 2016). CR items can be 

straightforward or highly complex, and they can generate answers that are very brief 

or extremely long (Hogan, 2013). They make guessing almost impossible, are 

generally more complex than multiple-choice items, and are often rated by assessors 

using pre-determined criteria (Haladyna & Rodriguez, 2013). They are thought to 

allow for more in-depth and exhaustive measures, hence increasing content validity 

(Dennis & Newstead, 1994). However, inter-rater reliability has been recognized as 

an issue in scoring constructed-response items (Attali et al., 2013; Gierl et al., 2014; 

Kuo et al., 2016; Shermis & Burstein, 2013), as well as rater fatigue and drift 

(Almond, 2014). In measuring cognitive achievement and ability, selected-response 

formats provide a number of validity advantages. They promote content validity 

evidence by enabling a complete and representative sample of the cognitive domain; 

this representativeness of the content sampling procedure increases the validity 

evidence for domain inferences and minimizes one major threat to validity—

construct underrepresentation (Haladyna & Downing, 2004; Messick, 1989). 

Objectivity is a crucial feature of every effective measurement, and it contributes to 

the test development process's validity evidence, defensibility, and efficiency. SR 

format aligns with the purpose of this study, which is to develop a selected-response 

test to measure 11th-grade students' declarative knowledge of definitions of types of 

triangles and congruent and similar triangles and to determine the validity evidence 

for the test based on its content, internal structure, and reliability because the SR 

format promotes content validity evidence by enabling a representative sample of 

the cognitive domain being measured (declarative knowledge) and is objective in 

nature, which will contribute to the overall validity of the test. 
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Compared to single-answer MC questions, MTF items have the ability to cover a  

wider breadth of topics (Dudley, 2006). Higher test reliabilities have been discovered 

when employing MTF compared to MC since this makes it possible for more 

information to be exposed per testing period (Frisbie & Sweeney, 1982; Javid, 2014; 

Kreiter & Frisbie, 1989; Mobalegh & Barati, 2012; Siddiqui et al., 2016). MTF 

questions encourage fast and precise scoring, require less reading than a 

corresponding multiple-choice question (Frisbie & Becker, 1991). Furthermore, they 

can assess higher cognitive abilities, such as comprehension, under Bloom's 

taxonomy (Downing & Yudkowsky, 2009; Richardson, 1992). Limitations and 

constraints for employing MTF questions include the fact that they have been 

demonstrated to have lower discrimination values than multiple-choice items; 

however, this disadvantage is mitigated by the fact that more items may be used 

concurrently (Frisbie & Becker, 1991). Another issue with MTF questions is that a 

high guess rate may add noise and damage an instrument's internal validity (Couch 

et al., 2018). 

1.1 Purpose of the Study 

The purposes of the study are as follows: 

1. To develop a selected-response test to measure 11th-grade students’ 

declarative knowledge of definitions of types of triangles, congruent and 

similar triangles, and identification of triangles by following the Standards 

for Educational and Psychological Testing set by the American Educational 

Research Association (AERA et al., 2014). 

2. To determine the validity evidence for the test (DKTT) based on test content, 

internal structure, and reliability. 

1.2 Research Questions of the Study 

This study addressed the following research questions: 
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1. What are the dimensions of the Declarative Knowledge Test of Triangles 

(DKTT)? 

2. What is the validity evidence of DKTT based on the test content? 

3. Is DKTT reliable? 

1.3 Significance of the Study 

The majority of studies regarding the triangle definition or identification mentioned 

above collected validity evidence for the instrument based on test content (through 

judgmental evidence) (e.g., Atebe, 2008; Dündar & Gündüz, 2017; Fujita & Jones, 

2007; Tsamir et al., 2015; Ulusoy, 2021). A few research (e.g., Ubuz & Aydın, 2018; 

Chinnappan et al., 2012; Gutiérrez & Jaime, 1998; Usiskin, 1982) that focused on 

developing a geometry test also included judgmental evidence and empirical 

evidence in addition to reliability estimates. When the literature was examined, the 

questions for defining triangles or types of a triangle were open-ended (i.e., asked 

students to write their definitions of triangles or types of a triangle) (see Altıparmak 

& Gürcan, 2021; Gutiérrez & Jaime, 1998; Tsamir et al., 2015; Ubuz & Aydın, 2018; 

Ulusoy, 2021), while studies on identification of triangles generally ask students to 

draw a triangle (e.g., Burger & Shaughnessy, 1986; Ulusoy, 2021) or participants 

choose a triangle (or cylinder or circle) from a series of figures (e.g., Tsamir et al., 

2015; Senk, 1989; Ubuz, 2017). Researchers focused on the relationship between 

congruent triangle theorems and similar triangle theorems (e.g., Casanova, Cantoria 

& Lapinid, 2021; Haj-Yahya, 2022; Llinares & Clemente, 2019; López & Guzmán, 

2011; Lutfi & Jupri, 2020; Parastuti et al., 2018; Patkin & Plaksin, 2011; Serow, 

2006), proof in congruent and similar triangles (e.g., López & Guzmán, 2011; Leung 

et al., 2014; Sears & Chávez, 2015; Wang, Wang & An, 2018), students' difficulties 

in solving congruency and/or similarity questions that correspond to declarative and 

procedural knowledge level (Biber, 2020; Casanova et al., 2021; Poon & Wong, 

2017; Wang et al., 2018; Wijaya et al., 2021), and the definitions of congruent and 

similar triangles using open-ended questions (e.g., González & Herbst, 2009; Haj-
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Yahya, 2022; Dündar & Gündüz, 2017). This test will contribute to measuring 

students' declarative knowledge of triangles and, in particular, explore how these 

definitions and identifications are differentiated among students. Developing an 

accurate assessment of students' knowledge is essential for identifying areas of 

strength and weakness and for informing instructional decisions. By identifying the 

dimensions of the Declarative Knowledge Test of Triangles (DKTT), the study 

provides a detailed understanding of the content and structure of the test, which can 

be useful for educators and researchers. Using MTF questions in DKTT has several 

advantages. Firstly, they can be used to assess a large amount of content in a 

relatively short period of time. This can be particularly useful when testing a large 

number of students, as it allows for efficient assessment of their knowledge. 

Secondly, they are easy to score, as each option has only two possible responses. 

This can save time and resources compared to other types of questions that require 

more detailed scoring. MTF questions can be effective in measuring declarative 

knowledge as they require students to demonstrate their knowledge of concepts 

(triangle types, congruent and similar triangles, identification of triangles). They 

require students to think critically about the content and make judgments about its 

accuracy; thus, they measure students' ability to analyze and evaluate information. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Declarative Knowledge 

In cognitive psychology, there is a foundational difference between declarative 

(knowing about things) and procedural (knowing how) knowledge, as well as 

conditional knowledge (knowing when and where) knowledge (Kuhn, 2000). 

Nevertheless, these three types of knowledge have a hierarchical relation (Galeshi, 

2014). According to Jüttner et al. (2013), mastery of content progresses from a low 

level of sophistication (declarative knowledge) to an intermediate level of 

sophistication (procedural knowledge) and eventually to the greatest degree of 

sophistication (conditional knowledge). 

Anderson (1976, 1993, 2013) emphasizes that declarative acts, the conscious and 

control, are the foundations of knowledge and that this control opens the way for 

procedural processes. Furthermore, he contends that declarative knowledge is the 

base for knowledge transfers. Procedural knowledge, on the other hand, plays a 

crucial role in organizing concepts and gaining declarative knowledge (Lawson et 

al., 2000; Lawson, 1991). This is consistent with previous research, which has shown 

that procedural and declarative forms of knowledge are connected, and that one may 

be obtained from the other (Li et al., 1994; Ten Berge & Van Hezewijk, 1999; Dacin 

& Mitchell, 1986; Sahdra & Thagard, 2003; Willingham et al., 1989; Thagard, 2006; 

Hao et al., 2007; Lawson et al., 1991; Hanisch et al., 1991). Besides, declarative 

and/or conditional knowledge contribute to the procedural knowledge of students 

(Byrnes & Wasik, 1991; Engelbrecht et al., 2005; Hiebert & Wearne, 1996; Kuhn et 

al., 2016; Mack, 1990; Moss & Case, 1999). A reciprocal relation among declarative, 



 

 

8 

conditional, and procedural knowledge has been reported in several research Aydın 

& Ubuz, 2010; Eryılmaz Çevirgen, 2012). According to the study of Aydın and Ubuz 

(2010), declarative knowledge improves conditional knowledge by enhancing the 

understanding of concepts and relationships between concepts. Likewise, declarative 

knowledge has a reciprocal relationship with procedural knowledge, implying that 

improving the knowledge of a concept contributes to improved algorithm selection 

and implementation or vice versa. 

Declarative knowledge is defined by cognitive psychologists (e.g., Ragan & Smith, 

1999) as long-term memory storage of facts and experiences (Yilmaz & Yalcin, 

2012), and it is also referred to as "knowing-that" or "knowing what" (Aydın & Ubuz, 

2010, p.443). It encapsulates both the knowledge of what something is and the 

knowledge of concepts and principles (Paris et al., 1983). Defined differently, 

declarative knowledge is information that can be recovered from memory without 

hesitation and is a key to achieving success in mathematics (Miller & Hudson, 2007). 

Recalling definitions of triangles (e.g., right, isosceles, and equilateral triangles) and 

congruence and similarity of triangles, their geometric properties, and notations for 

congruent and similar triangles are examples of declarative knowledge. 

2.2 Mathematical Definitions 

According to Tall and Vinner (1981), a definition is simply a set of words used to 

explain a concept. Unlike definitions generally, mathematical definitions "have the 

property that everything satisfying it belongs to the corresponding category and that 

everything belonging to the category satisfies the definition." (Alcock & Simpson, 

2002, p. 28). Mathematical definitions have various distinctive characteristics. 

Definitions must be unambiguous (always understood in the same sense) (Zaslavsky 

& Shir, 2005) and only contain accurate mathematical terminology (Borasi, 1992; 

Levenson, 2012) since they are generated in a shared community (Zaslavsky & Shir, 

2005). Furthermore, there may be different definitions of the same mathematical 

concept that are equivalent (de Villiers, 1998). Mathematicians and educators value 
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this property of definitions because it allows for multiple equivalent ways to define 

a given object (Harel et al., 2006). According to van Hiele & van Hiele's third (1958) 

level: it is acceptable that one attribute can be derived from another or several 

attributes. For example, two different definitions of an equilateral triangle are given 

below. 

• An equilateral triangle is a triangle in which all three sides are equal in length. 

• An equilateral triangle is a triangle in which all three angles are equal and 

measure 60 degrees each. 

Both definitions describe the equilateral triangle, and it is possible to derive one 

attribute (e.g., the equal side lengths) from the other attribute (e.g., the equal angles). 

This property is associated with the arbitrary nature of definitions, which are human 

creations (Linchevsky, 1992). Each definition is a component of a more elaborate, 

interconnected system of definitions (Van Dormolen & Zaslavsky, 2003). 

Alternative definitions range in minimality or form (e.g., textual vs. symbolic) 

(Linchevski, 1992; Van Dormolen & Zaslavsky, 2003; Zandieh & Rasmussen, 2010; 

Zaslavsky & Shir, 2005). . Only the descriptions necessary to ensure the object's 

identification are included in minimal definitions. Minimal definitions frequently 

follow a hierarchy, i.e., they incorporate definitions that have previously been 

formed by the community (Van Dormolen & Zaslavsky, 2003; Zaslavsky & Shir, 

2005). 

Understanding the development of meaning and the core of geometric concepts, 

theorems, and proofs depends heavily on definitions in geometry (Usiskin et al., 

2008). A geometric concept's definition is seen to categorize appropriate examples 

and non-examples of that concept. The non-example of a concept stands for the 

geometric figure that does not meet the related attributes of the definition of the 

concept (Tsamir et al., 2015). The defining characteristics of a concept (called 

critical attributes) are what determine the necessary and sufficient conditions that 

define the concept's geometric properties (Tall & Vinner, 1981). To illustrate, the 

critical attributes of similar triangles are their angles and the lengths of their sides. 

In order for two triangles to be considered similar, they must have the same angles 
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(this is a sufficient condition). Any two triangles that have the same angles will 

automatically meet the other essential condition for being similar as well, which is 

that the ratios of the lengths of their corresponding sides must be equal (these two 

conditions are both necessary for two triangles to be considered similar). In 

geometry, it is acceptable for definitions to include only the minimum set of 

necessary and sufficient attributes. The necessary attributes are those that are present 

in all examples of the concept, while sufficient attributes are a subset of necessary 

attributes that allow us to deduce the remaining necessary attributes. Vinner (1991) 

and Van Dormolen & Zaslavsky (2003) pointed out that it is ideal for mathematical 

definitions to include the minimum number of necessary attributes needed to define 

the concept. Leikin and Winicky-Landman also emphasized the importance of 

minimal definitions, stating that the essence of a mathematical definition is the 

identification of the necessary and sufficient conditions that define a concept, using 

the minimum number of such conditions possible (Leikin & Winicky-Landman, 

2000, p. 64). 

2.3 Identification of the Geometrical Shapes 

Geometric concepts are derived from formal concept definitions and are abstract 

ideas (Tsamir et al., 2008). It is highlighted that analyzing the parts of concept 

images can help determine how well learners comprehend a concept (Vinner & 

Hershkowitz, 1980). This is why it has been so carefully explored how examples and 

non-examples may be used to comprehend learners' concept images, particularly in 

the domain of geometry (e.g., Cohen & Carpenter, 1980; Petty & Jansson, 1987; 

Vinner, 1991; Wilson, 1986). Beyond simply knowing its definition, the "concept 

image" is crucial to comprehending a concept: It is regarded to be "the total cognitive 

structure that is associated with the concept, which includes all the mental pictures 

and associated properties and processes" (Tall & Vinner, 1981, p. 152). Learners' 

concept images and definitions of two- and three-dimensional geometric shapes have 

received more focus in recent years. The majority of study has concentrated on the 



 

 

11 

geometric solids knowledge of prospective math teachers (Bozkurt & Koç, 2012; 

Ertekin et al., 2014; Gökkurt & Soylu, 2016; Horzum & Ertekin, 2018; Kocak, et al., 

2017; Ubuz & Gökbulut, 2015; Unlu & Horzum, 2018). Moreover, a few studies 

focused on how early-year teachers or students identify and exemplify cylinders and 

prisms (Tsamir et al., 2015), while others examined middle school students' concept 

images of geometric solids (Türnüklü & Ergin, 2016). According to studies, 

prospective math teachers at middle schools struggle to identify prisms (Horzum & 

Ertekin, 2018). According to Kocak et al. (2017), prospective middle school 

mathematics teachers only drew a right circular cylinder by identifying several 

critical attributes using a prototypical example (right circular cylinder). Accordingly, 

many studies have used particular identification tasks that include examples and non-

examples to examine how well learners have learned geometric concepts, such as 

triangles (Burger & Shaughnessy, 1986; Tsamir et al., 2008), parallelograms (Fujita, 

2012; Petty & Jansson, 1987; Ulusoy & Çakıroğlu, 2017), squares (Razel & Eylon, 

1991), quadrilaterals (Vinner, 1991; de Villers, 1998; Currie & Pegg, 1998; Pratt & 

Davison, 2003; Zaslavsky & Shir, 2005). The concept image evolves and changes as 

time goes on due to experience. This process involves a concept's characteristics or 

properties, such as important geometric shape attributes, as well as an overview of 

all objects that fall under the concept in its entirety and the ability to identify 

connections between the concept and other concepts (Weigand et al., 2018). The 

prototypical examples of quadrilaterals are often identified correctly, but 

quadrilaterals in different orientations are not recognized (Fujita & Jones, 2007; 

Okazaki & Fujita, 2007; Fujita, 2012; Monaghan, 2000). Additionally, the 

equilateral and isosceles triangles are the most common prototypical triangles 

(Tsamir et al., 2008); children may not identify a triangle if it is not aligned with a 

horizontal side (e.g., Burger and Shaughnessy 1986). Non-prototypical examples are 

frequently viewed as non-examples (Hershkowitz, 1989; Schwarz & Hershkowitz, 

1999; Wilson, 1990). Students are anticipated to solely employ critical attributes 

when constructing and identifying examples of geometric concepts in mathematics 
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classes since understanding critical attributes are important for correctly identifying 

figures (van Hiele & van Hiele, 1958). 

In their article on classifying examples and non-examples of triangles (Tirosh & 

Tsamir, 2008; Tsamir et al., 2008), they explained that intuitive examples of triangles 

and intuitive examples of non-triangles are figures that the tendency is to correctly 

identify them as triangles or as non-triangles, respectively, which is the basis for our 

question on measuring to identify triangles. Likewise, unintuitive examples of 

triangles and unintuitive examples of non-triangles are triangles and non-triangles, 

which are commonly misclassified as non-triangles and triangles, respectively. No 

formal definition establishes the differences between intuitive and non-intuitive 

examples and non-examples. They are based on replies from regular students for 

several tasks that demand them to identify examples and non-examples of the 

concept of a triangle. In this study, while intuitive non-examples include non-

examples that were quickly identified as not being triangles (e.g., circles and 

trapezoids), non-intuitive non-examples included figures (i.e., missing a critical 

attribute of being a triangle, such as being an open or concave figure) that are not 

triangles and non-intuitive examples that are triangles. This study excludes 

prototypical examples (also known as intuitive examples) since children correctly 

identify them (Aslan & Aktaş Arnas, 2007; Tsamir et al., 2008). 

Research studies on students understanding of identifying triangles mainly involved 

constructed-response questions (e.g., Bernabeu et al., 2021; Burger & Shaugnessy, 

1986; Dağlı & Halat, 2016; Gutiérrez & Jaime, 1998; Lee, 2022; Mullis et al., 2000; 

Roldán-Zafra et al., 2022; Senk, 1989; Tsamir et al., 2008; Ubuz, 2017; Ulusoy, 

2021, 2022; Usiskin, 1982; van Hiele, 1986) or used multiple-choice questions (e.g., 

Senk, 1989; Ubuz, 2017). We created multiple true-false questions where each 

option refers to a different figure that should be classified as a triangle or non-triangle 

which allowed us to more accurately identify students who had a complete, partial, 

or minimal understanding of the various answer statements (Brassil & Couch, 2019; 

Couch et al., 2015; Sands et al., 2018). 
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2.4 Triangle and Types of Triangles  

The literature has focused on students' definition of a triangle (e.g., Burger & 

Shaughnessy, 1986; Ulusoy, 2021; Tsamir et al., 2015), identifying the properties of 

isosceles triangles(e.g., Chinnappan et al., 2012; Senk, 1989; Ubuz, 2017), and 

equilateral triangles (e.g., Gutiérrez & Jaime, 1998; Serow, 2006; Ubuz & Aydın, 

2018; Usiskin, 1982; Altıparmak & Gürcan, 2021; Jin & Wong, 2021).In the study 

of Ubuz (2017), multiple-choice questions in the Van Hiele test asking to identify 

the triangle and analyze the properties of equilateral and isosceles triangles in 

declarative knowledge level were used. Additionally, students were asked to explain 

their rationale for each question based on their choice and establish a connection 

between equilateral triangle-isosceles triangle shape classes or concepts. In the 

question in which the properties of the isosceles triangle were asked, 57.5% of the 

students answered the question, "only two angles should be equal to each other." In 

the explanations, they stated that the two sides of the isosceles triangle are equal in 

length; therefore, the two angles corresponding to these sides must be equal in 

measure. Most students stated that they marked the option "must have at least two 

equal angles" because it was the closest to their thoughts. Altıparmak and Gürcan 

(2021) asked 4th-grade students to define a rectangle, square, equilateral triangle, 

isosceles triangle, and scalene triangle and the properties and relationship between 

these geometric shapes, identify them and explain the reason for their identification. 

The results showed that definitions of triangles are more accurate than those of 

rectangles and squares. The number of students who answered correctly to the 

definition of an equilateral triangle was the most among other geometric shapes. 

Equilateral triangles were correctly defined by 61 students, isosceles triangles by 56 

students, and scalene triangles by 55 students. However, only five students out of 

156 responded that the equilateral triangle is an isosceles triangle when asked which 

of the following triangles is isosceles (e.g., Ubuz, 2017). Despite creating a correct 

definition, the students were unable to depict this knowledge in their drawings for 

equilateral, isosceles, and scalene triangles. In a recent study by Ulusoy (2021), 
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prospective early childhood teachers and prospective elementary school 

mathematics teachers wrote improper statements for triangle definitions by using 

necessary but insufficient conditions or neither necessary nor sufficient conditions 

with frequent incorrect terminology utilization. The necessary and sufficient 

conditions were provided in the formal statements for defining a triangle; however, 

they were mainly non-minimal and/or employed incorrect mathematical 

terminology. This finding is aligned with that of Tsamir's (2015) study, which found 

that only five out of the 31 definitions offered by early-year teachers were minimal 

and correct. When these studies were examined (Altıparmak & Gürcan, 2021; 

Gutiérrez & Jaime, 1998; Tsamir et al., 2015; Ubuz & Aydın, 2018; Ulusoy, 2021), 

the questions for defining triangles or types of a triangle were open-ended (i.e., asked 

students to write their own definitions of triangles or types of a triangle), and students 

were asked to draw the triangle or choose the triangle from the alternatives of the 

multiple-choice questions. These questions were useful for gathering detailed and 

qualitative information and exploring the respondent's knowledge and thoughts. 

However, one characteristic of these questions was that they could be time-

consuming to analyze, as the responses may need to be coded and classified. In this 

case, it may be more effective to use closed-ended questions with a predetermined 

set of responses to measure students' declarative knowledge of triangles more 

objectively and reliably. 

2.5 Congruent and Similar Triangles  

An integral part of the foundational knowledge required to teach plane geometry is 

the concept of congruent triangles (Patkin & Plaksin, 2011), and it has a significant 

place due to its connection with similarity since if two triangles are congruent, they 

are also similar (Haj-Yahya, 2022). 

Numerous research has examined how students perceive the theorems pertaining to 

congruent and/or similar triangles (Hadas et al., 2000; Hoyles, 1998; Jones et al., 

2013). These research investigated students' understanding of how necessary and 
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sufficient the criteria in the congruent and similar triangle theorems are for 

constructing and generating congruent or similar triangles. The theorems for 

congruent and similar triangles may be used as formal definitions for congruent and 

similar triangles since they have all the necessary and sufficient characteristics of 

mathematical definitions, such as minimalism and elegance (Van Dormolen & 

Zaslavsky, 2003; Zaslavsky & Shir, 2005). According to a recent research by Haj-

Yahya (2022), participants did not consider the two theorems of congruent and 

similar triangles as the concepts' formal definitions. Others rejected the similar 

triangle theorem, which had only angles in its formal definition, but they agreed with 

the congruent triangle theorem, which had three equal sides. In order to attain van 

Hiele's (1958) third level, students were considered to have reached it if they agreed 

with both minimum and non-minimal definitions of congruent and similar triangles. 

At this level, students are aware that definitions are arbitrary, and they are able to 

acknowledge equivalence and accept equivalent definitions as in Gutiérrez and 

Jaime's (1998) study. Additionally, outcomes showed a strong inclination towards 

non-minimal definitions of congruent and similar triangle concepts. The majority of 

the students provided minimum definitions that only contained sides, according to 

an analysis of their replies and a comparison with those of the students who provided 

minimal definitions that also included angles. 

Researchers used various instruments mainly consisting of constructed questions to 

gather data on congruent and similar triangles and the relationship between 

congruent triangle theorems and similar triangle theorems (e.g., Casanova, Cantoria 

& Lapinid, 2021; Haj-Yahya, 2022; Llinares & Clemente, 2019; López & Guzmán, 

2011; Lutfi & Jupri, 2020; Parastuti, Usodo et al., 2018; Patkin & Plaksin, 2011; 

Serow, 2006), proof in congruent and similar triangles (e.g., López & Guzmán, 2011; 

Leung et al., 2014; Sears & Chávez, 2015; Wang, Wang & An, 2018), the definitions 

of congruent and similar triangles (e.g., González & Herbst, 2009; Haj-Yahya, 2022; 

Dündar & Gündüz, 2017), students' difficulties in solving congruency and/or 

similarity questions (Biber, 2020; Casanova et al., 2021; Poon and Wong, 2017; 

Wang et al., 2018; Wijaya et al., 2021). Students' difficulties were found to be 
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stemmed from the fact that they did not master the basic concept of congruence and 

similarity (Ngirishi & Bansilal, 2019; Wijaya et al., 2021) and finding the similarity 

in overlapped triangles and Angle-Angle type questions when questions are 

examined in terms of similarity types (e.g., Biber, 2020; Poon & Wong, 2017), 

correspondence conceptions of congruency(Jones & Fujita, 2013), also in math 

language, natural language (Wang et al., 2018). The purposes of Haj-Yahya's (2022) 

study were how participants defined similar triangles and congruent triangles 

concepts; and what the characteristics of the definitions of congruent and similar 

triangles were by using open-ended questionnaires and interviews. In the first stage, 

the students were asked to define the congruent and similar triangles concepts. 

Categories of responses to the questions in Task 1 were generated by the results of 

the first stage of the questionnaire (e.g., non-minimal definition, minimal definition 

including only sides). The second stage of the questionnaire examined the 

participants' perceptions of the mathematical definitions of congruent and similar 

triangles. In the first question of the second stage, there were two definitions for 

similar triangles. One definition is a non-minimal definition, while the other is a 

minimal definition and similar triangles theorem based including only angles(AA 

theorem). In the second question of the second stage, there were two definitions for 

congruent triangles. One is a non-minimal definition, while the other is a minimal 

and congruent triangle theorem based including only sides (SSS theorem). The 

results of the study revealed that only a third of the participants agreed that the Angle-

Angle Similarity Theorem was a formal definition of similar triangles, while half of 

the participants believed that the Side-Side-Side Congruence Theorem was a formal 

definition of congruent triangles. The students in the study who did not consider the 

similarity and congruence theorems to be formal definitions provided reasoning, 

such as the distinction between definitions and theorems due to the essence of the 

concept (see Okazaki, 2013) or general acceptance of definitions. On the other hand, 

those who did consider the theorems to be formal definitions gave explanations such 

as the theorems being equivalent to definitions or containing all necessary and 

sufficient attributes to define the concept, which aligns with the formal deductive 
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level in van Hiele and van Hiele's hierarchy. The participants in the study believed 

that the equality or proportionality of a triangle's side lengths was more fundamental 

to the concepts of congruence and similarity than the angles of the triangles, which 

explains why more participants accepted the minimal definition of congruent 

triangles, which is based on the Congruence Theorem and only includes side lengths, 

rather than the minimal definition of similar triangles, which is based on the 

Similarity Theorem and only includes angles. 

This research adopted the categorization for definitions of triangle types, congruent 

and similar triangles, by Zazkis & Leikin (2008). The definition is regarded as 

correct (appropriate) if it has necessary and sufficient conditions, incorrect 

(inappropriate) if necessary but not necessary, or not necessary and not sufficient. 

Only those descriptions are included in minimal definitions that are required to 

ensure object identification. Minimal definitions frequently follow a hierarchy, i.e., 

they comprise definitions that have already been created by the community (Van 

Dormolen & Zaslavsky, 2003; Zaslavsky & Shir, 2005). A hierarchical relationship 

between several concepts has been proposed by van Dormolen and Zaslavsky (2003). 

It can be concluded that definitions of an equilateral triangle based on triangles and 

the definition of a right triangle based on a polygon are hierarchical in nature when 

it is distinguished between levels of hierarchy (Shir & Zaslavsky, 2001, 2002). As 

Shir and Zaslavsky (2001) stated, the degree of the hierarchy of a concept can vary, 

and the degree decreases as one goes back. When defining the types of triangles 

following Shir & Zaslavsky (2001), it can be thought of as level 1 to define based on 

triangles, level 2 to define them based on polygons, and level 3 to define based on 

geometric shapes. 

Based on the framework of van Dormolen and Zaslavsky (2003), Zazkis & Leikin 

(2008), we developed a Declarative Knowledge Test of Triangles (DKTT) and 

categorized the options for the definitions for the types of triangles and congruence 

and similar to those depicted in Table 2.1. Since triangle types may also be defined 

by auxiliary elements of a triangle, employing such elements were also included in 

the framework. Likewise, the familiarity or unfamiliarity of the definitions was 
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introduced to the framework since it can affect students' responses in terms of 

picking the correct and incorrect definitions. 

Table 2.1 Framework for the Options of DKTT 

Content 

The 
Hierarchy 
of the 
Concept  

Conditions Minimality 

Intuitive 
/Non-

Intuitive-
Examples 
and Non-
examples 
of 
Triangles 

Using 
Auxiliary 
element  

Familiarity 
of 
Definitions 

Definitions 
of Types of 
Triangles 

Level 1 
(based on 

triangle) 

Necessary 
and 

Sufficient 

Minimal 

  
(e.g., 
median, 
altitude) 

  

Level 
2(based 
on 
polygon) 

Necessary 

and not 
sufficient 

Non-
minimal 

Level 3 
(based on 
geometric 
shape) 

Not 
necessary 
and not 
sufficient 

  

Identification 
of Triangles 

      

Intuitive 

non-
example 

    

Non-

intuitive 
non-
example  

Non-
intuitive 
example  
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Table 2.1 Framework for the Options of DKTT (continued) 

Definitions 
of 
Congruent 
and 

Similar 
Triangles 

  

Necessary 
and 
Sufficient 

Minimal 

      

Necessary 
and not 
sufficient 

Non-

minimal 

Not 

necessary 
and not 
sufficient 
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CHAPTER 3  

3 METHOD AND RESULTS 

There are two studies in this chapter. Test development is the focus of Study 1, 

whereas instrument testing is the focus of Study 2. 

3.1 Study 1: Test Development 

The purposes of the study are to develop a selected-response test to measure 11th-

grade students’ declarative knowledge of definitions of types of triangles, congruent 

and similar triangles, and identification of triangles by following the Standards for 

Educational and Psychological Testing set by the American Educational Research 

Association (AERA et al., 2014) and then determine the validity evidence for the test 

(DKTT) based on test content, internal structure, and its reliability. The test 

development phases are detailed below under validity evidence based on test content.  

3.1.1 Validity Evidence Based on Test Content 

According to the Standards for Educational and Psychological Testing (AERA et al., 

2014), content-based evidence constitutes the topic, wording, administration, and 

format of the items or questions on a test. It may also emerge from professional 

judgments of the connection between test components and the construct. Sources of 

validity based on test content are explained in Study 1: Test Development. 

3.1.1.1 Generating Multiple True-False Questions on Triangles 

The test development process began with the generation of multiple true-false 

questions based on essay-type questions from the Geometry Knowledge Test about 
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Triangles (GKT-T), which was developed by Ubuz and Aydın (2018) in light of 

learning objectives on triangles. Only questions in the declarative knowledge domain 

asking the definition of triangle types (equilateral, isosceles, right triangle), 

congruence and similarity of triangles, and identification of triangles were built on 

from the GKT-T to generate multiple true-false questions.It was determined that the 

Multiple True-False (MTF) item format would be appropriate for this developed test 

after considering the study's purpose, the level of knowledge it measures, its content, 

and the possible correct and incorrect responses that students can provide to open-

ended questions. In other words, the following supports our decision to use MTF as 

the item format: 

• The concepts under consideration can be defined differently. 

• More figures can be identified as a triangle. 

• Each response must be marked as either true or false by the student. MTF 

questions can therefore be used to identify students who have mixed 

understanding (Parker et al., 2012). 

• MTF enables us to provide more options compared to the multiple-choice 

(MC) format. 

• MTF question format covers a wider range of subjects than the MC format, 

which only collects a single student response, whereas MTF questions give 

numerous data on student understanding (Couch et al., 2018). 

• MTF items are easy to administer and score, making them a convenient and 

efficient testing method. 

• MTF items can be less subjective than other items, such as essay questions, 

which can be evaluated differently by different graders. This can make 

multiple true-false items a more fair and reliable way to test knowledge. 

Three steps were followed in the question generation process: 
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3.1.1.1.1 Writing Different Responses to the Questions 

In this step, we tried to write different correct and incorrect responses to the 

concepts by considering possible errors and misconceptions that students might 

have. Table 3.1 depicts the options written in this step. 

Table 3.1 Options for the Concepts Defined by Us 

The concepts defined  Options for the corresponding concepts 

An equilateral triangle 1, 2, 3, 5, 6, 7 

A right triangle 12, 13, 15, 16 

An isosceles triangle 22, 23, 24, 25, 26 

Congruence of triangles 32, 33, 34, 35, 37, 38 

Similarity of triangles 42, 43, 44 

 

3.1.1.1.2 Taking Possible Responses from Literature 

The literature was also helpful in providing students’ responses to the questions 

which asked about the identification of triangles and definitions for congruent and 

similar triangles. This helped to ensure that the test options were representative of 

the full range of the constructs being measured and that they were appropriate for the 

intended test-taking population (11-grade students). We conducted a thorough 

review of the literature in the areas in which the identification of triangles, definitions 

for congruent and similar triangles, and types of triangles related to the declarative 

knowledge that the test is intended to measure. The options taken from the literature 

and their question content was given in Table 3.2. 

Identification of triangles: In Ubuz and Aydın (2018)’s article, students were 

asked to identify which figures represent a triangle. Figure 3.1 shows the figures 

that are triangles or non-triangles. Figure 3.1 was used as students’ responses to the 

identifying triangles. 
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Figure 3.1 Figures Used in Identifying Triangles 

Intuitive non-examples were non-examples that were quickly identified as not being 

triangles (i.e., A and I in Figure 3.1), non-intuitive non-examples were missing 

critical attributes of being triangles (i.e., B, D, E, F, and G in Figure 3.1) that were 

not triangles and non-intuitive examples were triangles (i.e., C and H in Figure 3.1). 

We excluded prototypical examples (also known as intuitive examples) since 

children correctly identify them (Aslan et al., 2007; Tsamir et al., 2008).  

Definitions of congruent triangles: For definitions of congruent triangles, we used 

one incorrect response from Haj-Yahya (2022)’s study, which is “Two congruent 

triangles are similar if each of the triangles covers the other” (p. 11). 

Table 3.2 Options Taken From the Literature and Their Question Content 

Options  The question content of options is… 

50, 51, 52, 53, 54, 55, 56, 57, 58 the identification of triangles 

36 the definitions of congruent triangles 

 

3.1.1.1.3 The First Field Testing of the 11th Graders by Essay-type 

Questions 

383 11th-grade students from five schools in Ankara—three Anatolian and two 

Science High Schools—were given essay-type questions whose learning objectives 
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are shown in Table 3.3. The frequency of the answers given by the students to the 

questions was determined. Most of the responses the students provided were asked 

to define triangle types, and congruent and similar triangles were those we had 

previously written. Students who gave different responses to these questions are used 

to create new options. Students’ responses were not considered for identifying 

triangles since figures were used as options. 

Table 3.3 Learning Objectives of Essay-type Questions 

Learning Objectives 

Define equilateral triangle 

Define right triangle 

Define isosceles triangle 

Identify triangles 

Define congruency of triangles 

Define similarity of triangles 

Specifically, options 4, 8, 9, 10, and 11 for the definition of an equilateral triangle; 

options 14, 17, 18, 19, 20, and 21 for the definition of a right triangle; options 27, 

28, 29, 30, 31 for the definition of congruent triangles; options 39, 40, and 41 for the 

definition of similar triangles are extracted from students’ responses. The learning 

objectives of developing the “Declarative Knowledge Test of Triangles (DKTT)” are 

shown in Table 3.4. 

Table 3.4 Learning Objectives of DKTT 

Learning Objectives Options 

Select correct and incorrect definitions for an equilateral 

triangle  

1-11 

Select correct and incorrect definitions for a right triangle  12-21 

Select correct and incorrect definitions for an isosceles 

triangle  

22-31 
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Table 3.4 Learning Objectives of DKTT (continued) 

Select correct and incorrect definitions for congruent 

triangles 

32-41 

Select correct and incorrect definitions for similar triangles 42-49 

Select figures that represent and do not represent triangles  50-58 

 

3.1.1.2 Item Refinement 

Expert evaluation and developmental field tests were employed to refine the 

questions and options. Before testing the instrument, the developed questions were 

sent to four university staff members and two high school mathematics teachers for 

the subject matter expert evaluation in order to evaluate the instrument's content, 

context, and construct, along with checking each item's readability, clarity, and 

congruency with the related geometrical knowledge construct. The three university 

staff members were who conducted research on geometry and had extensive 

university-level mathematics teaching expertise; one member had considerable 

experience and research in mathematics education. The mathematics teachers had 

notable amount of experience in teaching mathematics and geometry at the high 

school level. Revisions made by subject matter experts are given below: 

• The university staff members who work in geometry and teachers 

accentuated the usage of side lengths and angle measures rather than only 

side and angle when defining triangle types, congruent and similar 

triangles. 

• An option created by the student's definition, "A right triangle is a triangle 

formed by joining the non-adjacent sides of two perpendicular line 

segments," was removed from the test because subject matter experts 

thought it was problematic because joining the non-adjacent sides of two 

perpendicular line segments can create more than one triangle, how these 

lines join were not clear (e.g., linear, curve). 
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• The option, which is similar to Euclid's method of superposition, "Two 

triangles are congruent if one can cover the other and vice versa,"  was 

decided to be kept in the test by most experts, although "cover" has no 

mathematical definition. 

• The answer key for option 21, "A right triangle is a triangle whose product 

of the slopes of two perpendicular sides is -1.", is determined to be incorrect 

by experts since it was not comprehensive when the right triangle was placed 

in the Cartesian coordinate system. Assume that we place one of the right 

sides of a right triangle on the x-axis in the Cartesian coordinate system; the 

x-axis has a slope of 0. When we place the other perpendicular side on the y-

axis, the slope of the y-axis is infinity. The product of the slopes of these two 

perpendicular sides, 0.∞ is indeterminate and does not equal -1; therefore, 

this definition is not comprehensive. 

Also, a second developmental field test was carried out to refine and assure the 

clarity and comprehensibility of the options. Four students were interviewed, two of 

them were middle achievers, and the remaining two were high achievers based on 

their previous semester's mathematics grades, and their thought processes were 

analyzed as they answered each option. The reason for choosing these four students 

was to get a diverse sample of test-takers with different levels of achievement in 

mathematics which could help to prevent Type 1 and Type 2 errors. Including both 

middle and high achievers in the second field test allowed us to see how the options 

being tested were understood by a range of students and to identify any potential 

issues with clarity or comprehensibility that might not have been apparent with a 

more homogenous group of test-takers and then to make appropriate modifications 

to improve the clarity and comprehensibility of the options being tested. The 

following modifications are implemented to the options after the interview: 

• Option 7,” Equilateral triangle is a triangle with equal side lengths and 

congruent interior angle measures.”, was rewritten because it was 

misunderstood by some interviewed students who understood that the 

length of the sides is equal to the measure of the interior angles. 
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• Options 10 and 11 are understood by the students as interior angle measures 

and exterior angle measures of an equilateral triangle are equal. We rewrote 

these options as “an equilateral triangle is a triangle in which all interior 

angles are congruent, all exterior angles are congruent, and side lengths are 

equal in length.”. 

• Option 21, “a right triangle is a triangle whose slopes of two perpendicular 

sides are opposite multiplicative inverses of each other.”, was altered as “A 

right triangle is a triangle whose product of the slopes of two perpendicular 

sides is -1.” because students were not familiar with the former definition. 

Hence, the definition was revised to be what learners see in theorems found 

in mathematics textbooks stating that if two nonvertical lines are 

perpendicular, the product of their slopes is −1. 

After making changes to the questions and their options based on the findings from 

the second field testing, third field testing was conducted to decide the average 

amount of time students required to complete the test. The test was administered to 

6 students, including middle and high achievers, without time limitations. When 

the students were given the test, the time it took each student to complete it was 

recorded to predict how long the test would take. Each student's time spent on the 

test was recorded, along with an estimation of how long it would take them to 

finish the test. The test was completed by the students at the following times: 15, 

16, 17, 17, 20, and 20 minutes. The time limitation for this test was established at 

20 minutes since the student who took the longest finished it in that amount of 

time. 

3.2 Study 2: Instrument Testing 

Instrument testing is an essential part of test development, as it ensures that the 

measurement tool being used to conduct the test is accurate and reliable. The 

following sections describe the instrument testing, as well as identify the underlying 

dimensions of the DKTT. 
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3.2.1 Declarative Knowledge Test of Triangles (DKTT) 

In DKTT, Question 1 has 11 options; Questions 2, 3, and 4 have ten options each; 

Questions 5 and 6 have eight and nine options, respectively. There are 6 question 

stems and a total of 58 options based on these questions. Questions 1, 2, and 3 ask 

students to select correct and incorrect definitions for the types of triangles 

(equilateral triangle, right triangle, and isosceles triangle). Questions 4 and 5 ask to 

select correct and incorrect definitions for congruent triangles and similar triangles, 

respectively. Question 6 asks students to select figures that represent a triangle. 

3.2.2 Test Administration and Scoring 

Declarative Knowledge Test of Triangles (DKTT), a test of six question stems and 

58-option, was administered to 379 grade-11 students, and 20 minutes were given to 

them to complete the test. Table 3.5 describes the information on the gender and high 

school types of the students participating in the study. Half of the students are male, 

and half are female. While the rate of Anatolian High School students was 39.3%, 

the rate of Science High School students was 60.7%. Anatolian High Schools are 

educational institutions that aim to prepare students for higher education programs 

according to their interests, abilities, and achievements. Middle Schools or İmam-

hatip Middle Schools are institutions that provide boarding and/or daytime education 

with a four-year education period, and students are placed on the basis of the central 

exam score or address information. Course schedules and curricula approved by the 

Ministry are applied in these schools. Education is done in Turkish. Science High 

Schools are educational institutions that aim to be a source for the education of 

students in the fields of science and mathematics as scientists. They are institutions 

that provide boarding and/or daytime education in a Middle School or İmam-hatip 

Middle school with a four-year education period based on the central exam score. 

While students with high scores are placed in Science High Schools, those with lower 

scores are placed in Anatolian High Schools. In Science High Schools, course 
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schedules and curricula approved by the Ministry are applied. Laboratory and 

application studies are emphasized in science programs. Education is done in 

Turkish. Moreover, science high schools aim to be a resource for students to be 

trained as scientists in the fields of science and mathematics. The curricula of Science 

and Anatolian High Schools are the same, however, the student at Science High 

School studies Physics, Chemistry, and Biology for 15 hours per week, while the 

student at Anatolian High School studies 6 hours per week. 

Table 3.5 Gender and School Type Distribution of Students 

  
Frequency 

(f) 

Percent (F 

%) 

Valid 

Percent 

Gender 
Male 180 47.5 50 

Female 180 47.5 50 
 Total 360 95 100 

  Missing 19 5   

Total 379 100   

School 
Anatolian 149 39.3  

Science 230 60.7  

Total 379 100   

 

The response to each option is coded as "1" if the response is correct and "0" if 

incorrect. There were six questions in DKTT, with 8 and 11 options under each. The 

students received two distinct scores for Questions 1, 2, 3, 4, and 5, and three distinct 

scores for Question 6. Each option under Questions 1 to 5 was categorized as either 

a minimal or non-minimal definition of the concept corresponding to the question. 

For each question, 1 to 5, the total score of students' responses to the options with 

minimal definitions were added and named as sub-score items with the minimal 

definition for the question. Likewise, the total score of students' responses to the 

options with non-minimal definitions was added and named as sub-score items that 

are non-minimal definitions for the question. To clarify, students' answers for each 

option under Question 1 were categorized as either minimal or non-minimal 
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definitions. The total score from options with minimal definitions was added and 

named as the minimal definitions for Question 1. The new score is named sub-score 

item S1.1. Similarly, the total score from options with non-minimal definitions was 

added, which is the non-minimal definitions for Question 1, and the new score is 

named sub-score item S1.2. Question 6 asks students to identify triangles and non-

triangles. There are two types of non-valid triangle examples (intuitive non-examples 

and non-intuitive non-examples) and one atypical triangle example: non-intuitive 

example (Tsamir et al., 2008). Three separate scores were created by adding the 

responses to the options from the provided figures corresponding to these classes 

(intuitive non-examples, non-intuitive non-examples, and non-intuitive examples). 

Sub-scored item S6.1 is the total score for options that fall in intuitive non-

examples(non-triangle), sub-scored item S6.2 is the total score for options that fall 

in non-intuitive non-examples (non-triangle), and sub-scored item S6.3 is the total 

score for options that fall in non-intuitive examples (triangle).This scoring method 

is utilized because many options had the same theoretical justification, and the use 

of factor analysis in validating instruments containing dichotomous data is 

contentious. While some authors (Polit, 1996; Streiner, 1994) advise against using 

factor analysis with dichotomous data, other statisticians advise using it with 

discretion (Tabachnick & Fidell, 2001). Information about the sub-scores used in 

factor analysis was given in Table 3.6.  

Table 3.6 Sub-scored Items of DKTT 

Sub-scored Items The total score of options involving … 

S1.1 minimal definitions for an equilateral triangle 

S1.2 non-minimal definitions for an equilateral triangle 

S2.1 minimal definitions for a right triangle 

S2.2 non-minimal definitions for a right triangle 
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Table 3.6 Sub-scored Items of DKTT (continued) 

S3.1 minimal definitions for an isosceles triangle 

S3.2 non-minimal definitions for an isosceles triangle 

S4.1 minimal definitions for congruent triangles 

S4.2 non-minimal definitions for congruent triangles 

S5.1 minimal definitions for similar triangles 

S5.2 non-minimal definitions for similar triangles 

S6.1 intuitive non-example 

S6.2 non-intuitive non-example 

S6.3 non-intuitive examples 

 

3.2.3 Validity Evidence Based on Test Content of the DKTT 

Item analysis of DKTT (i.e., item difficulty and discriminations index) was 

calculated to provide evidence based on test content. Findings regarding DKTT's 

item difficulty and item discrimination indices for sub-scored items were given in 

detail. 

3.2.3.1 Item Discrimination and Difficulty Index for Sub-scored Items 

We used the recognized range of 0.24-0.91 for the item difficulty indices for DKTT’s 

sub-scored items, as proposed by Downing and Yudkowsky (2009). Sub-scored 

items under 0.24 were classified as extremely difficult, which DKTT did not have, 
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whereas options over 0.91 were classified as extremely simple sub-scored items 

(S6.1, S6.2, and S6.3). The remaining sub-scored items were determined to be of 

moderate difficulty (S1.1, S1.2, S2.1, S2.2, S3.1, S3.2, S4.1, S4.2, S5.1, S5.2).  

Ebel and Frisbie (1991) classified sub-scored items according to the following rules: 

sub-scored items with an index of 0.2 were poor sub-scored items (S1.1, S1.2, S2.1, 

S2.2, S3.1, S5.1, S6.1, and S6.3), but indices of greater than 0.4 show excellent 

discrimination (S3.2), between 0.30 and 0.39 show good discrimination (S4.1, S5.2, 

and S6.2), and 0.20 to 0.29 indicate acceptable discrimination (S4.2). 

Based on the item discrimination and difficulty indices provided in Table 3.7, the 

following interpretations can be made: 

The item discrimination index for sub-scored items S1.1, S1.2, S3.1, S5.1, S6.1, and 

S6.3 indicated that these items were not able to differentiate between high- and low-

ability test takers effectively. These non-discriminant sub-scored items were 

definitions of an equilateral triangle (S1.1 and S1.2), minimal definitions for an 

isosceles triangle (S3.1) and similar triangles (S5.1), and intuitive non-example 

(S6.1) and non-intuitive examples (S6.3) of triangles. Among these items, minimal 

definitions of an equilateral triangle (S1.1), isosceles triangle (S3.1), and similar 

triangles (S5.1) were of moderate difficulty, while intuitive non-example (S6.1) and 

non-intuitive examples of triangles (S6.3),  and non-minimal definitions of an 

equilateral triangle (S1.2) were found to be relatively easy. The item discrimination 

index for sub-scored items S2.1 (minimal definitions for a right triangle), S2.2 (non-

minimal definitions for a right triangle), S5.2 (non-minimal definitions for similar 

triangles), S6.2 (non-intuitive non-example), S4.1 (minimal definitions for 

congruent triangles), S4,2 (non-minimal definitions for congruent triangles) 

indicated that these items were able to differentiate between high- and low-ability 

test takers to some extent. Among these sub-scored items, S2.1, S2.2, S5.2, and S4.1 

were of moderate difficulty; S6.2 and S4.2 were relatively easy. S3.2 (non-minimal 

definitions for an isosceles triangle) was able to effectively differentiate between 

high- and low-ability test takers, and it was relatively easy. Lastly, sub-scored items 
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(S6.1, S6.2, and S6.3) about the identification of triangles were found to be relatively 

easy; thus, students were able to choose the correct and incorrect figures representing 

triangles. 

Table 3.7 Item Difficulty and Discrimination Indices for Sub-scored Items 

Sub-scored Items Item Difficulty Index Item Discrimination 

Index 

S1.1 0.54 0.13 

S1.2 0.82 0.15 

S2.1 0.75 0.17 

S2.2 0.56 0.17 

S3.1 0.64 0.13 

S3.2 0.86 0.4 

S4.1 0.74 0.3 

S4.2 0.85 0.29 

S5.1 0.61 0.13 

S5.2 0.53 0.3 

S6.1 0.95 0.16 

S6.2 0.93 0.32 

S6.3 0.95 0.13 
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3.2.4 Validity Evidence Based on Internal Structure: Assessing 

Dimensionality of DKTT 

The degree to which the relationships between test items and test components fit 

the construct upon which the suggested test scores interpretations are based can 

be shown through an analysis of a test's internal structure (AERA et al., 2014). 

A part of validating a test's internal structure is assessing the test's 

dimensionality. A prevalent statistical technique to assess the dimensionality of 

a data set is factor analysis (Bollen, 1989; Brown, 2006; Kline, 2015; Thompson, 

2004). This is a statistical method that is used to identify underlying patterns or 

relationships among a set of variables. In the context of a test, factor analysis can 

be used to identify the underlying dimensions or factors that are measured by the 

test items and to assess the extent to which the test items are related to these 

factors. This can provide evidence of the internal structure of the test and can 

help to demonstrate the validity of the test. In this study, Exploratory Factor 

Analysis (EFA) was used to provide evidence to support the validity of an 

internal structure of a measurement instrument (DKTT) by verifying the number 

of underlying dimensions and the pattern of item-to-factor relationships (i.e., 

factor loadings). The reason for using EFA is that compared to other techniques, 

such as item response theory and latent variable modeling, EFA is relatively easy 

to perform and interpret, allows us to investigate a wide range of structures, 

including simple structures with one or two factors, as well as more complex 

structures with multiple factors. It is a widely accepted and commonly used 

technique in the field of psychology and education research and can help us 

identify patterns in a large dataset, especially useful when working with a large 

number of variables and looking for ways to simplify the data. The Exploratory 

Factor Analysis (EFA) included the following: 

1. Measures of fit, such as the KMO measure and Bartlett's test of sphericity, 

which can be used to assess the suitability of the data for factor analysis. 
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2. The total variance explained is included in the results of exploratory factor 

analysis. It indicates the proportion of the total variance in the data that is 

accounted for by the factors. This can be useful for determining the adequacy 

of the factor solution and for comparing different factor solutions. 

3. The number of factors extracted and the eigenvalues of the factors. The 

eigenvalues can be used to determine the relative importance of each factor. 

4. A scree plot, which is a graph that shows the eigenvalues of the factors on 

the y-axis and the number of factors on the x-axis. The point at which the plot 

levels off indicates the number of factors that should be retained. 

5. The factor loadings, which are the correlations between the factors and the 

individual variables in the data. High factor loadings indicate that a particular 

variable is strongly associated with a particular factor. 

6. The parallel analysis method is used to determine the number of factors to 

retain. It involves generating random data with the same characteristics as the 

original data, and then performing factor analysis on the random data. The 

number of factors with eigenvalues greater than those in the random data is 

the number of factors that should be retained in the original data. The parallel 

analysis method is useful because it provides a more objective way to 

determine the number of factors to retain, compared to methods such as the 

scree plot, which can be subject to interpretation. 

7. An unrotated factor matrix was included in the results of EFA. This matrix 

shows the factor loadings before the factors have been rotated, and can be 

useful for identifying the underlying structure of the data, and provide 

valuable information. 

8.  A rotated factor matrix, which shows the factor loadings after the factors 

have been rotated to a more interpretable orientation. 

9. An interpretation of the factors and their meaning. This involved examining 

the variables with high loadings on each factor and determining what they 

have in common, in order to come up with a label or name for the factor. 
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3.2.4.1 KMO and Bartlett’s Test 

Before utilizing factor analysis, sampling adequacy and sphericity were tested by 

Kaiser-Meyer- Olkin and Bartlett’s test, respectively, by using SPSS 25, shown in 

Table 3.8. 

The Kaiser-Meyer-Olkin (KMO) measure is a statistic that assesses the suitability 

of data for factor analysis. It ranges from 0 to 1, with values closer to 1 indicating 

that the data is more suitable for factor analysis. In this case, the KMO measure is 

0.77, which suggests that the data is suitable for factor analysis. 

Bartlett's test of sphericity is a statistical test used to assess the null hypothesis that 

the correlation matrix of the data is an identity matrix, which would indicate that 

the variables are not related. In this case, the approximate chi-square value is 

1487.889, the degrees of freedom is 78, and the significance value is 0.000. These 

results indicate that the null hypothesis can be rejected, and that the variables are 

related. 

Table 3.8 KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.77 

Bartlett's Test of Sphericity 

Approx. Chi-

Square 
1487.89 

df 78 

Sig. 0 

 

3.2.4.2 Total Variance Explained 

The following table contains the number of extracted dimensions, the initial 

eigenvalues connected to the specified dimensions, the percentage of the total 

variance, and the cumulative percentage of every dimension. Principal Axis 

Factoring (PAF) is employed as an extraction method because it does not assume 
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multivariate normality and is less likely to encounter estimation issues than, say, 

maximum likelihood extraction (Fabrigar & Wegener, 2012). Additionally, PAF 

allows for the factors to be rotated in order to achieve a more interpretable solution. 

Only factors having eigenvalues are greater than one retained for DKTT, as shown 

in Table 3.9 and Table 3.10. The tables presented the results of exploratory factor 

analysis, including the total variance explained by each factor. The initial 

eigenvalues and the extraction sums of squared loadings were two different ways of 

quantifying the amount of variance explained by each factor. The total and 

cumulative percentages of variance explained by each factor were also shown. The 

numbers under the "factor" column indicate the specific factor or dimension that 

each row of data. 

The results indicate that the first factor explains the largest amount of variance, with 

an initial eigenvalue of 3.584 and a total percentage of variance explained of 27.569. 

The second factor explains the next largest amount of variance, with an initial 

eigenvalue of 1.809 and a total percentage of variance explained of 13.915. The 

remaining factors each explain progressively less variance.  

Overall, the results suggest that the first two factors explain the majority of the 

variance in the data, while the remaining factors explain progressively less variance.  

Table 3.9 Total Variance Explained with Unrotated Matrix 

Fact

or 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Total 

% of 

Variance 

Cumulat

ive % Total 

% of 

Variance 

Cumulative 

% 

1 3.584 27.569 27.569 3.222 24.788 24.788 

2 1.809 13.915 41.483 1.431 11.004 35.792 

3 1.355 10.420 51.903 .706 5.431 41.223 

4 1.163 8.948 60.851 .627 4.827 46.049 
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Table 3.9 Total Variance Explained with Unrotated Matrix (continued) 

5 .956 7.358 68.209    

6 .877 6.743 74.951    

7 .706 5.427 80.379    

8 .648 4.982 85.361    

9 .563 4.333 89.694    

10 .505 3.884 93.578    

11 .428 3.293 96.871    

12 .254 1.955 98.826    

13 .153 1.174 100.000    

Extraction Method: Principal Axis Factoring. 

It is typically more informative to interpret the total variance explained from the 

rotated factor matrix, rather than from the unrotated matrix. This is because the 

rotated matrix provides a more interpretable representation of the factors, which 

can make it easier to understand the results and make inferences about the data. 

Therefore, the total variance explained from the rotated factor matrix is given 

below. When the matrix is rotated, factor 4 may not be retained.  

Table 3.10 Total Variance Explained with Rotated Matrix 

Factor 

Initial Eigenvalues 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance Cumulative % Total 

% of 

Variance 

Cumulative 

% 

1 3.584 27.569 27.569 2.312 17.786 17.786 

2 1.809 13.915 41.483 1.712 13.166 30.952 
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    Table 3.10 Total Variance Explained with Rotated Matrix (continued) 

3 1.355 10.420 51.903 1.290 9.924 40.877 

4 1.163 8.948 60.851 .672 5.173 46.049 

5 .956 7.358 68.209    

6 .877 6.743 74.951    

7 .706 5.427 80.379    

8 .648 4.982 85.361    

9 .563 4.333 89.694    

10 .505 3.884 93.578    

11 .428 3.293 96.871    

12 .254 1.955 98.826    

13 .153 1.174 100.000    

    Extraction Method: Principal Axis Factoring. 

3.2.4.3 Scree Test Method 

The scree test is a method used in exploratory factor analysis to determine the 

number of factors to retain in the analysis. This approach plots the eigenvalues' 

magnitudes (vertical axis) against their ordinal numbers (whether the first 

eigenvalue, the second, etc.). The magnitude of subsequent eigenvalues often 

decreases abruptly before seeming to level off. It is suggested that all eigenvalues 

(and hence factors) be kept in the abrupt decline that comes before the line when 

they begin to level out. According to the scree plot in Figure 3.1, the magnitude of 

successive eigenvalues is steeped and then tends to level off after the fourth-factor 

number. 
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                   Figure 3.2 Scree Plot 

3.2.4.4 Parallel Analysis Method 

The parallel analysis method is a statistical technique used in exploratory factor analysis 

(EFA) to determine the number of factors that should be extracted from a dataset. This 

method involves generating random data with the same characteristics as the original dataset 

and then conducting an EFA on the random data. The number of factors extracted from the 

random data was then used as a benchmark to determine the appropriate number of factors 

to extract from the original dataset. Thus, only factors whose eigenvalues are higher than 

their random counterparts will be kept from the original data set. Alternately, the 95th 

percentile of these duplicated values can be used as the comparison value instead of the 

average of the eigenvalues for a particular component, offering a slightly more rigorous 

evaluation of factor significance. (Pituch & Stevens, 2015). After applying the parallel 

analysis, the number of factors to be retained was specified as four factors. The naming of 

the factors will be explained in the next section. 

3.2.4.5 Unrotated and Rotated Component Matrix 

The matrix represents the results of a principal axis factoring analysis on a set of 

variables on declarative knowledge of triangles. The analysis was able to extract 

four factors, and a total of 42 iterations were required. 
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The sub-scored items in the matrix shown in Table 3.11 represent total scores for 

different options involving various definitions of types of triangles, congruent and 

similar triangles, and identification of triangles. The options were divided into two 

categories: those involving minimal definitions (S1.1, S2.1, S3.1, S4.1, S5.1 etc.) 

and those involving non-minimal definitions (S1.2, S2.2, S3.2, S4.2, S5.3 etc.). The 

definitions were equilateral triangles, right triangles, isosceles triangles, congruent 

triangles, and similar triangles. The final three items in the matrix (S6.1, S6.2, and 

S6.3) involve non-examples, with S6.1 being intuitive non-examples and S6.2 and 

S6.3 being non-intuitive non-examples and examples, respectively. 

Factor loadings represent the strength and direction of the association between each 

item (variable or measure) and a particular factor in a factor analysis. Factor loadings 

can range from -1 to 1, with negative values indicating a negative association and 

positive values indicating a positive association. The absolute value of the factor 

loading indicates the strength of the association, with larger values indicating a 

stronger association. 

In table 3.11, the item S6.1 (intuitive non-examples) has a loading of .79 on Factor 

1, -.45 on Factor 2, and .14 on Factor 3. This indicates that S6.1 has a strong positive 

association with Factor 1, a moderate negative association with Factor 2, and a weak 

positive association with Factor 3. 

S6.2 (non-intuitive non-examples) has a loading of .79 on Factor 1, -.40 on Factor 2, 

and .17 on Factor 3. This indicates that S6.2 has a strong positive association with 

Factor 1, a moderate negative association with Factor 2, and a weak positive 

association with Factor 3.  

S6.3 (non-intuitive example) has a loading of .73 on Factor 1 and -.39 on Factor 2. 

This indicates that S6.3 has a strong positive association with Factor 1 and a 

moderate negative association with Factor 2. Overall, question asking identification 

of triangles was loaded onto factor 1.  
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S4.1(minimal definitions for congruent triangles) has a loading of .60 on Factor 1, 

.281 on Factor 2, -.352 on Factor 3, and .129 on Factor 4. This indicates that S4.1 

has a strong positive association with Factor 1, a moderate positive association with 

Factor 2, a moderate negative association with Factor 3, and a weak positive 

association with Factor 4.  

S5.1 (minimal definitions for similar triangles) has a loading of .55 on Factor 1, .25 

on Factor 2, -.22 on Factor 3, and .22 on Factor 4. This indicates that S5.1 has a 

moderate positive association with Factor 1, a moderate positive association with 

Factor 2, a moderate negative association with Factor 3, and a moderate positive 

association with Factor 4. 

S4.2 (non-minimal definitions for congruent triangles) has a loading of .48 on Factor 

1, .16 on Factor 2, and -.33 on Factor 3. This indicates that S4.2 has a moderate 

positive association with Factor 1, a weak positive association with Factor 2, and a 

moderate negative association with Factor 3. 

S3.2 (non-minimal definitions for an isosceles triangle) has a loading of .339 on 

Factor 1, .31 on Factor 2, and -.14 on Factor 4. This indicates that S3.2 has a moderate 

positive association with Factor 1, a moderate positive association with Factor 2, and 

a weak negative association with Factor 4. 

S5.2 (non-minimal definitions for similar triangles) has a loading of .26 on Factor 1 

and -.15 on Factor 3. This indicates that S5.2 has a weak positive association with 

Factor 1 and a moderate negative association with Factor 3. 

S3.1 (minimal definitions for an isosceles triangle) has a loading of .43 on Factor 1, 

.63 on Factor 2, .24 on Factor 3, and -.41 on Factor 4. This indicates that S3.1 has a 

moderate positive association with Factor 1, a strong positive association with Factor 

2, a moderate positive association with Factor 3, and a moderate negative association 

with Factor 4. 
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S2.1, S1.1, and S1.2 represent the total scores for options involving minimal 

definitions for a right triangle, minimal definitions for an equilateral triangle, and 

non-minimal definitions for an equilateral triangle, respectively. The factor loadings 

for these items indicate how strongly they are associated with each of the four factors 

that were extracted in the principal axis factoring analysis. Specifically, S2.1 has a 

factor loading of 0.322 on Factor 1, 0.374 on Factor 2, and 0.295 on Factor 3, but 

low loading on Factor 4. S1.1 has a factor loading of 0.212 on Factor 2 and 0.20 on 

Factor 3, but low loading on Factors 1 and 4. S1.2 has low loading on Factors 1, 2, 

and 3, but a factor loading of 0.245 on Factor 4. 

          Table 3.11 Unrotated Component Matrix of DKTT 

Sub-

scored 

Items 

Factor 

1 2 3 4 

S6.1 .799 -.452 .138  

S6.2 .787 -.407 .164  

S6.3 .740 -.390   

S4.1 .602 .286 -.344 .141 

S5.1 .552 .258 -.210 .226 

S4.2 .485 .170 -.330  

S3.2 .339 .319  -.148 

S5.2  .264  -.149 

S3.1  .426 .619 .225 

S2.1  .322 .377 .305 

S1.1   .212 .209 
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Table 3.11 Unrotated Component Matrix (continued) 

S2.2  .186 .210 .325 

S1.2    .262 

Extraction Method: Principal Axis Factoring. 

Suppressed small coefficients below absolute value of .10. 

Table 3.12 Rotated Factor Matrix of DKTT 

Sub-

scores 

Items 

Factor 

1 2 3 4 

S6.1 .906 .206   

S6.2 .878 .195   

S6.3 .794 .269   

S4.1 .153 .732 .153  

S5.1 .156 .631 .147 .151 

S4.2 .151 .592   

S5.2  .305   

S3.1  .220 .866 -.127 

S2.1  .157 .483 .270 

S3.2  .305 .367  

S1.1   .291 .106 

S2.2  .115 .168 .590 

S1.2    .437 
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Extraction Method: Principal Axis Factoring. 

Rotation Method: Varimax with Kaiser 

Normalization. 

Rotation converged in 5 iterations.  

Suppressed small coefficients below absolute value 

of .10. 

The rotated factor matrix showed the results of a principal axis factoring analysis 

on a set of variables or data related to declarative knowledge of triangles. The 

analysis was able to extract four factors, and a varimax rotation with Kaiser 

normalization was applied. The rotated factor matrix shows the factor loadings 

for each item on each of the four factors. Based on Table 3.12, factor 1 appears to 

be primarily associated with items S6.1, S6.2, and S6.3, which are related to the 

identification of triangles. Factor 2 is associated with items S4.1, S5.1, S4.2, and 

S5.2, which are related to minimal definitions for congruent triangles and similar 

triangles and non-minimal definition of congruent triangles. Factor 3 is associated 

with items S3.1, S2.1, and S3.2, which are related to minimal definitions for 

isosceles triangles and right triangles. Factor 4 is associated with items S2.2 and 

S1.2, which are related to minimal definitions for equilateral triangles. S1.1 

(minimal definitions for an equilateral triangle) does not have any significant 

factor loadings, indicating that it is not strongly associated with any of the four 

factors. S5.2 is included in Factor 2 (Definitions of Congruent and Similar 

Triangles) due to its theoretical construct and item characteristics, the option 

under S5.2 (i.e., Option 45) being an ambiguous statement that might have caused 

low factor loads of S5.2.  

However, S3.2 is not included any of the factors identified since options under 

S3.2 were involved definitions of an obtuse-angled triangle and a scalene triangle 

instead of an isosceles triangle and consequently having low factor load. 
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Factor 1: Identification of Triangles 

S6.1 (sub-score of intuitive non-example), S6.2 (sub-score of non-intuitive non-

example), and S6.3 (sub-score of non-intuitive examples) fell under factor 1 and 

were named as identification of triangles because it measures to identify triangles 

among diverse objects using triangle attributes and/or visual figures.   

Factor 2: Definitions of Congruent and Similar Triangles 

S4.1(minimal definitions for congruent triangles), S5.1 (minimal definitions for 

similar triangles), S4.2(non-minimal definitions for congruent triangles), and S5.2 

(non-minimal definitions for similar triangles) fell under factor 2 and were named as 

definitions of congruent and similar triangles. S4.1, S4.2, and S5.1 are differentiated 

because each option falling in these sub-scores constitutes AA (Angle-Angle), SSS 

(Side-Side-Side), and ASA (Angle-Side-Angle) theorems, along with using the 

Turkish meaning of congruent and similar (i.e., Mason, 1989).  

Factor loadings greater than .40 represent a strong association; however, the factor 

load for 5.2 is .30. Options in S5.2 are 42, “Two triangles are similar if and only if 

their corresponding angles are the same size and the lengths of their corresponding 

sides are in the same proportion.” and option 45; “Two triangles are similar if their 

corresponding angles are congruent, and the lengths of the corresponding sides are 

different.” They are non-minimal definitions for similar triangles. The only 

difference in these options is that while 42 says the lengths of two triangles  

corresponding sides have the same proportion, option 45 says they are different. 

When we look at the theoretical construct for this sub-scored item (S5.2), we can 

include it as the definition of congruent and similar triangles. When item 

characteristics were examined, it has found that S5.2 was able to differentiate 

between high- and low-test takers and had a moderate difficulty. Hence these may 

not contribute to low factor loading. The complex structure of the Option 42 and 45 

involving 2 sentences that are not similarity theorem could lead to low factor loading 

in S5.2. 
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Factor 3: Minimal Definitions of Types of Triangles  

 S3.1 (minimal definitions for an isosceles triangle) and S2.1 (minimal definitions 

for a right triangle) are called minimal definitions of types of triangles. 

Factor loading for S3.2 (sub-score for the non-minimal definitions of an isosceles 

triangle) is below .40. S3.2 is sub-score of Option 27, "An isosceles triangle is a 

triangle with two sides of equal length and two angles of equal measure which are 

less than 90 degrees." and Option 29, "An isosceles triangle is a triangle that has no 

measures of congruent angles or lengths of sides.". The reason for low factor loading 

might be that Option 27 is the definition of an obtuse-angled triangle while option 

29 is the definition of a scalene triangle. 

S1.1, the sub-score of minimal definitions of an equilateral triangle, has a low factor 

loading (.29). Options in S1.1 involves minimal definitions for an equilateral triangle 

including sides, except option 6. S1.1 were found to be not able to differentiate 

between high- and low-ability test takers effectively and has moderately difficult. 

Besides that, the explanation for the low loading may be linguistic in nature because 

the name of the equilateral triangle may hint at the participants' replies. To conclude, 

having low discrimination index and linguistic issue could lead to low factor loading 

for S1.1.  

Factor 4: Non-minimal Definitions of Types of Triangles with Auxiliary 

Elements   

S2.2 is the sub-score of the non-minimal definition of a right triangle, and S 1.2 is 

the sub-score of the non-minimal definition of an equilateral triangle. Thus, this 

factor 4 is named for non-minimal definitions of types of triangles with auxiliary 

elements.  The common characteristics of the sub-scored items in DKTT is that they 

include basic geometry concepts (e.g., point) and auxiliary elements of a triangle 

(e.g., median, altitude of a triangle). Furthermore, options in S1.2 involves points, 

equal distance, having three equal interior angle measure of 60 degrees, median, the 
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length of altitude, exterior angles along with angle measure and side lengths of a 

triangle. 

3.3 Reliability 

To evaluate the internal consistency for the entire DKTT and each factor 

independently, we computed Cronbach's alpha and McDonald's omega coefficients 

(see Table 3.13). In Table 3.13, the McDonald's omega values range from 0.746 to 

0.931. This indicates that the DKTT has good reliability, as the omega values are all 

above 0.7. Cronbach's alpha is another measure of reliability that is commonly used. 

The Cronbach's alpha values in Table 3.13 range from 0.67 to 0.727. This also 

indicates good reliability, as alpha values above 0.7 are generally considered 

acceptable (Bagozzi, & Yi, 2012). The Cronbach's alpha value is acceptable for 

DKTT because of the nature of the test, that is, the declarative knowledge construct 

being multifaceted. This might make it more challenging to achieve a high level of 

internal consistency on the test as the sub-scored items measure slightly different 

dimensions of the declarative knowledge. Overall, the results in Table 3.13 suggest 

that the DKTT (Declarative Knowledge Test of Triangles) has good reliability, as 

indicated by the high values for both McDonald's omega and Cronbach's alpha. 

Table 3.13 Reliability of DKTT 

Frequentist Individual Item Reliability Statistics  

 Sub-

scored 
If item dropped 

Item McDonald's ω Cronbach's α 

S1.2 0.931   0.727   

S2.1 0.919   0.699   

S2.2 0.929   0.721   

S3.1 0.909   0.69   

S4.1 0.896   0.67   

S4.2 0.924   0.704   

S5.1 0.904   0.677   

 



 

 

50 

Table 3.13 Reliability of DKTT (continued) 

S5.2 0.928 0.716 

S6.1 0.926 0.714 

S6.2 0.916 0.695 

S6.3 0.927 0.715 

DKTT 0.746 0.71 
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CHAPTER 4  

4 CONCLUSION 

The purpose of this study is to develop a selected-response test to measure 11th-

grade students' declarative knowledge of definitions of types of triangles, congruent 

and similar triangles, and the identification of triangles by following the Standards 

for Educational and Psychological Testing set by the American Educational 

Research Association (AERA et al., 2014) and then determine the validity evidence 

for the test (DKTT) based on test content, internal structure, and reliability. In the 

current study, in addition to the reliability of the DKTT, we further supplied three 

sources of validity evidence based on test content, internal structure, and reliability 

in the method and results chapter of this thesis. 

4.1 Identification of Triangles 

Many studies have examined learners' acquirement of the triangle concept using 

particular identification tasks that include examples and non-examples (Burger & 

Shaughnessy,1986; Tsamir et al.,2008). In the DKTT, students were asked to identify 

triangles among given figures between options 50 and 58 and S6.1, S6.2, and S6.3. 

From rotated factor matrix of DKTT, it has found that Factor 1 is primarily related 

to the identification of triangles, as the highest loadings for this factor are found in 

S6.1, S6.2, and S6.3. S6.1. Sub-scored item S6.1 is the total score for options that 

fall in intuitive non-examples (non-triangle), sub-scored item S6.2 is the total score 

for options that fall in non-intuitive non-examples (non-triangle), and sub-scored 

item S6.3 is the total score for options that fall in non-intuitive examples (triangle). 

However, it has been found that students can erroneously identify triangular non-

examples with convex or concave curved sides as triangles (Clements et al.,1999; 

Tsamir et al., 2008). They pointed out that intuitive examples of triangles and 
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intuitive examples of non-triangles are figures and that students are more likely to 

identify them correctly as triangles or non-triangles, respectively. Similarly, 

unintuitive examples of triangles and unintuitive examples of non-triangles are 

triangles and non-triangles, respectively, which are commonly misidentified as non-

triangles and triangles (Tirosh & Tsamir, 2008; Tsamir et al., 2008). The results of 

this study revealed that students were able to select the figures that are triangle and 

non-triangle by considering their critical attributes (e.g., closed, two-dimensional). 

The DKTT provided a measurement tool to identify students' partial or incorrect 

knowledge of identifying triangles. As a result, we stressed that intuitive and non-

intuitive examples and non-examples should be included in teaching triangles. 

4.2 Types of Triangles 

Three sides, three vertices, three angles, the sum of every two sides being greater 

than the third, being closed, and the total of the interior angles being 180° are all 

crucial attributes of a triangle. Apart from these, we found that types of triangles can 

be defined by using auxiliary elements of triangles during the test development 

process. For instance, "an isosceles triangle is a triangle in which the orthocenter is 

a vertex of the triangle.". Additionally, it was found that students have difficulty 

acknowledging the equilateral triangle as an isosceles triangle (Altıparmak et al., 

2021; Ubuz, 2017). This is in line with the result of this study showed that almost 

48% of students selected that an isosceles triangle is a triangle whose at least  two 

sides are equal in length. Furthermore, the present study revealed that students tended 

to choose non-minimal definitions over minimal ones correctly. This result is 

consistent with Tsamir's (2015) research, which revealed that only five of the 31 

definitions provided by early-year teachers were minimal and correct. In DKTT, two 

of the four factors were loaded based on the minimality and non-minimality of 

triangle types as in Minimal Definitions for Types of Triangles (Factor 3)' and Non-

Minimal Definitions of Triangle Types Including Auxiliary Elements (Factor 4)'.  

Similar to what previous research has shown (e.g., Hannibal, 1999; Tsamir et al., 
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2015), this study also demonstrated that certain inappropriate terminology is 

employed in the definitions of types of triangles that are written (e.g., shape, joining 

non-adjacent sides). Option 14 states, for instance, "An isosceles triangle is a 

geometric object formed by the joining of three non-linear points, any two of them 

at right angles." Using the terminology shape instead of 3-sided polygon or triangle 

generates equivocacy in the definition since a shape may be open or closed and two-

dimensional or three-dimensional (e.g., (Hannibal, 1999; Tsamir et al., 2015), and 

how lines join was not clearly explained (e.g., linear, curve).  

4.3 Congruent and Similar Triangles 

If the options in DKTT meet all the necessary and sufficient characteristics of 

mathematical definitions, such as minimality/non-minimality, theorems for 

congruent and similar triangles are utilized as formal definitions for congruent and 

similar triangles(Van Dormolen & Zaslavsky, 2003; Zaslavsky & Shir, 2005). 

Furthermore, students' responses to DKTT questions were unaffected by the fact that 

some of the options were theorems for congruent and similar triangles during the 

interview. For the definition of congruent triangles, 20% and 69% of students 

correctly selected minimal definitions and non-minimal definitions, respectively. In 

addition, for similar triangles, 6% and 25% of them correctly chose minimal and 

non-minimal definitions, respectively. As also revealed in Haj-Yahya's (2022) 

article, students tended to select non-minimal definitions for congruent and similar 

triangles more correctly than minimal ones. The DKTT results revealed that 15% of 

students were considered to have attained van Hiele's (1958) third level for defining 

congruent triangles and 2% for similar triangles since they selected both minimal 

and non-minimal definitions of congruent and similar triangles. The result of EFA 

depicted that sub-scored items under the congruent and similar triangles were loaded 

in Factor 2. 

To conclude, four factors emerged from using the EFA to analyze test 

dimensionality. These factors were named 'Identification of Triangles (Factor 1)', 
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'Definitions of Congruent and Similar Triangles Factor 2', 'Minimal Definitions for 

a Right and an Isosceles Triangle (Factor 3)', and 'Non-minimal Definitions for 

Equilateral and Right Triangles (Factor 4)'. During the EFA process, some sub-

scored items with poor loadings were not included in the factors.  

The DKTT could be administered to 11th-grade students to measure their knowledge 

of these concepts (types of triangles, congruent and similar triangles, and identifying 

triangles), with the results being used to identify areas of strength and weakness in 

students' knowledge of these topics. The test could also be used as part of a more 

extensive research study on the effectiveness of different teaching methods or 

educational interventions on students' knowledge of triangles. 

In terms of future studies on the DKTT, it may be helpful to conduct additional 

research further to establish the validity and reliability of the test. This could include 

collecting data from a larger sample of 11th-grade students and examining the test's 

performance in different educational settings or with different groups of students. It 

may also be helpful to compare the DKTT to other declarative knowledge measures 

or assess the test's validity evidence based on relations to another variable by 

examining its relationship to other measures of achievement or performance. Future 

studies could also delve deeper into how students with different linguistic abilities 

perform on DKTT. 
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