
CLOCK SYNCHRONIZATION AND WEAK TDMA FOR CAN FD:
IMPLEMENTATION AND EVALUATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İSMET ONUR DEMIREL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2022

Approval of the thesis:

CLOCK SYNCHRONIZATION AND WEAK TDMA FOR CAN FD:
IMPLEMENTATION AND EVALUATION

submitted by İSMET ONUR DEMIREL in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Prof. Dr. Klaus Werner Schmidt
Co-supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Ulaş Beldek
Mechatronics Engineering, Çankaya University

Date: 27.12.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: İsmet Onur Demirel

Signature :

iv

ABSTRACT

CLOCK SYNCHRONIZATION AND WEAK TDMA FOR CAN FD:
IMPLEMENTATION AND EVALUATION

Demirel, İsmet Onur
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ece Güran Schmidt

Co-Supervisor: Prof. Dr. Klaus Werner Schmidt

December 2022, 67 pages

The Controller Area Network (CAN) is the most widespread in-vehicle communica-

tion protocol. Although CAN has been used for many decades, there are very recent

software-based enhancements that enable accurate clock synchronization and time-

slotted medium access on CAN, denoted as weak time division multiple access (WT-

DMA), for deterministic bus access. In addition, there are recent updates to the CAN

hardware such as CAN with flexible data rate (CAN FD) in order to both increase the

available bit rate and the length of CAN message frames.

This thesis takes into account that the mentioned software-based improvements have

been proposed and evaluated for the standard CAN protocol but not for CAN FD.

That is, the thesis first realizes different clock synchronization methods for CAN

FD on state-of-the-art microcontroller evaluation boards. Making use of these clock

synchronization methods, the thesis further implements WTDMA and confirms its

correct operation for CAN FD. As an important feature, all the implementations are

done in software and are hence compatible to both CAN and CAN FD standard.

v

Keywords: Controller Area Network, CAN with Flexible Data Rate, Clock Synchro-

nization, Weak TDMA

vi

ÖZ

CAN FD İÇİN ZAMAN SENKRONİZASYONU VE ZAYIF TDMA:
GERÇEKLEME VE DEĞERLENDİRME

Demirel, İsmet Onur
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ece Güran Schmidt

Ortak Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Aralık 2022 , 67 sayfa

Kontrolör Alan Ağı (CAN) araç içi iletişim protokolleri arasında en yaygın olanı-

dır. On yıllardır kullanılıyor olmasına rağmen, güncel olarak CAN üzerinde yazı-

lım tabanlı kesin saat senkronizasyonunu sağlamak ve deterministik ortam erişimi

için zaman bölmeli ortam erişimi bir başka deyişle zayıf zaman bölmeli çoklu erişim

(WTDMA) üzerine iyileştirmeler yapılmaktadır. Ayrıca, CAN üzerinde veri hızını ve

CAN mesaj çerçevesinin uzunluğunu artırmak için donanımsal güncellemeler, örne-

ğin CAN Esnek Verihızı (CAN FD), yapılmaktadır.

Bu tezde, bahsedilen yazılım bazlı geliştirmelerin standart CAN için sunulduğu ve

değerlendirildiği fakat CAN FD için yapılmadığı göz önünde bulundurulmuştur. Bu

tez, ilk kez, farklı saat senkronizasyonu methodlarını CAN FD için teknoloji harikası

mikrokontrolcü işlemci kartlarında gerçeklemiştir. Bu saat senkronizasyonu method-

ları ile WTDMA uygulamasının CAN FD için doğru çalıştığını onaylar. Bu çalışma-

daki önemli bir özellik ise bu uygulamaların tamamen yazılım üzerinde yapıldığı ve

dolayısıyla hem CAN hem de CAN FD standartlarına uyumlu olduğudur.

vii

Anahtar Kelimeler: Kontrolör Alan Ağı, CAN Esnek Verihızı, Saat Senkronizasyonu,

Zayıf TDMA

viii

To my family and fiancé

ix

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my advisors Prof. Dr. Şenan

Ece Schmidt and Prof. Dr. Klaus Werner Schmidt for their trust, endless support,

encouragement, and guidance throughout the studies. Additional to my advisors, I

would like to thank Murat Akpınar for sharing his knowledge and experience, and

helping me in my studies.

I also thank TUBITAK (Scientific and Technological Research Council of Turkey)

for funding the studies conducted in this thesis [Project Code 119E277].

I want to thank my friends Güray, Sahra, Fatih, Hakan and Kaan Furkan for standing

with me during the thesis work. I would also thank to my family for supporting me

all the time.

Finally, I would like to present my gratitude to my fiancé for backing me up whenever

I needed.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND INFORMATION . 5

2.1 General Background on CAN . 5

2.2 CAN Messages . 6

2.3 Standard CAN Protocol . 8

2.4 CAN FD . 9

2.5 Clock Drift . 12

2.6 Clock Synchronization . 14

3 CONTRIBUTION . 15

3.1 Timestamping . 15

xi

3.1.1 Timestamping Background 15

3.1.2 Timestamping Implementation 16

3.2 Offset Correction Methods . 18

3.2.1 Gergeleit’s Method . 18

3.2.2 AUTOSAR Method . 20

3.2.3 Offset Correction Implementation 23

3.3 Drift Correction Based on Timestamps 26

3.3.1 Drift Correction Background 26

3.3.2 Drift Correction Implementation 29

3.4 Weak TDMA . 30

3.4.1 Weak TDMA Background 31

3.4.2 Weak TDMA Implementation 35

4 EVALUATION . 39

4.1 Development and Test Environment 39

4.1.1 Microchip SAM E54 Xplained Pro Evaluation Board 39

4.1.2 MPLAB x IDE Software Development Environment 41

4.1.3 CAN Analyzer . 42

4.2 Experiment Setup . 43

4.3 Clock Synchronization . 44

4.3.1 Gergeleit’s Method . 45

4.3.2 AUTOSAR Method . 47

4.3.3 AUTOSAR Method with Drift Correction 47

4.3.4 Experimental Results . 47

xii

4.3.5 Statistical Evaluation . 50

4.4 Weak TDMA . 53

4.4.1 Evaluation of WTDMA for CAN 55

4.4.2 Evaluation of WTDMA for CAN FD 57

5 CONCLUSION . 59

REFERENCES . 61

xiii

LIST OF TABLES

TABLES

Table 2.1 Minimum and maximum of the frame bit length depending on l. . . 8

Table 4.1 Message and Schedule Properties 54

Table 4.2 Observed ratios of schedule violations. 56

Table 4.3 Properties of Messages for Increased Bus Load 56

Table 4.4 Properties of Messages for Third Experiment 57

Table 4.5 Observed ratios of schedule violations. 57

Table 4.6 Observed ratios of schedule violations. 58

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 CAN frame - standard format. 7

Figure 2.2 CAN frame - extended format. 7

Figure 2.3 CAN FD Frames . 11

Figure 2.4 (a) Clock drift; (b) Offset correction; (c) Drift correction. 14

Figure 3.1 The components of TS on CAN. 16

Figure 3.2 Illustration of RM transmission in Gergeleit’s method. 18

Figure 3.3 Illustration of clock difference in Gergeleit’s method 19

Figure 3.4 Illustration of the method according to AUTOSAR. 21

Figure 3.5 Illustration of clock difference in AUTOSAR method. 21

Figure 3.6 WTDMA notation and example illustration. 33

Figure 3.7 Minimum window size and minimum frame length. 35

Figure 4.1 SAM E54 Xplained Pro evaluation board. 40

Figure 4.2 MPLAB x IDE Project Configuration interface 41

Figure 4.3 PCAN-View analyzer interface 42

Figure 4.4 Experiment setup illustration 43

Figure 4.5 Slave nodes’ clock drift with respect to master node 44

xv

Figure 4.6 Illustration of the Gergeleit’s method with a timestamping inac-

curacy eTS . 46

Figure 4.7 Comparison of clock synchronizations - Short Run. 48

Figure 4.8 Comparison of clock synchronizations - Long Run 49

Figure 4.9 Comparison of clock synchronizations - Histogram 50

Figure 4.10 Clock synchronization performance of changing RM period . . . 51

Figure 4.11 Clock synchronization performance of changing CAN bitrate . . 52

Figure 4.12 Clock synchronization performance of changing communication

protocol . 53

xvi

LIST OF ABBREVIATIONS

ACK Acknowledgement

CAN Controller Area Network

CAN FD CAN Flexible Datarate

CAN-DS CAN with Determinism and Synchronization

CRC Cyclic Redundancy Check

CO Clock Oscillator

CS Clock Synchronization

DLC Data Length Code

EoF End of Frame

FUP Follow Up

GPIO General Purpose Input Output

HR Hardware Register

HP Hyper Period

IA Initial Accuracy

ID Identification

IDE Integrated Development Environment

IFS Inter Frame Spacing

LC Local Clock

LTI Long Term Instability

lcm least common multiplier

MCU MicroController Unit

ppm parts per million

QoS Quality of Service

RC Reference Clock

xvii

RM Reference Message

RT Response Time

RTR Remote Transmission Request

SoF Start of Frame

SW-CS Software-Based Clock Synchronization

SYNC Synchronization

TDMA Time Division Multiple Access

TM Time Master

TR Trigger

TS Timestamp

TTCAN Time Triggered CAN

WCRT Worst Case Response Time

xviii

CHAPTER 1

INTRODUCTION

The Controller Area Network (CAN) [1] is the most prominent in-vehicle commu-

nication bus in modern cars [2, 3, 4, 5]. Specifically, CAN is still indispensable

for safety critical components such as engine control, transmission control, braking,

steering and suspension control that require high real-time quality of service (QoS)

[4, 6, 7]. After the first introduction in the mid 1980s, the advancement of the legacy

CAN protocol is yet ongoing with extensions such as CAN with Flexible Data-rate

(CAN FD) [8] in 2012 and CAN XL [9] starting from 2018. In particular, CAN XL

will offer data rates above 10 Mbps and payloads of up to 2048 bytes [6, 9] to meet the

stringent demand of modern applications. Due to the continuing importance of CAN,

the recent literature is highly interested in possible improvements for CAN such as

advanced clock synchronization (CS) [10, 11, 6] and security methods [4, 2, 5].

Real-time messages on CAN need to be received before their specified deadline

[12, 13, 14]. To evaluate this deadline constraint, the conventional schedulability

analysis proposed in [15] and its revised version [16] have been used in the auto-

motive industry [17]. In this analysis, the worst-case response times (WCRTs) of

CAN messages are computed by considering the unlikely scenario, where all CAN

messages are ready for transmission at the same time. Here, it is claimed that bus

utilization up to 80% can be reached with a suitable priority assignment policy [18].

Nevertheless, it is not possible to freely change the pre-assigned priorities of CAN

messages in industrial applications [19, 20] such that approaches for increasing the

bus utilisation that only benefit from the optimal priority assignments are not practi-

cal. Furthermore, such priority assignment methods provide a lower bus utilization in

case of tighter deadlines.

1

It is shown that assigning offsets to CAN messages of individual nodes increases the

efficiency of the bandwidth usage by spreading the message load of each node over

time [21, 19]. Even though CAN messages from different nodes may still be ready

for transmission simultaneously, a major performance improvement is achieved with

the usage of offsets in terms of WCRTs even without applying CS [19]. Addition-

ally, the bounded phases concept, which benefits from CS in the order of ms has been

introduced in [22]. It is shown in [19] that the usage of offsets with a CS accuracy

of 1 ms allows reaching an average bus load of 83% if the deadlines are assumed to

be equal to message periods. It has to be noted that the given bus load is computed

with the breakdown utilisation notion in [18] that facilitates to reach higher bus util-

isation with higher deadline requirements. Even though the bounded phase approach

with offset assignments seems to facilitate CAN messages meeting their deadlines,

its usability in case of tight deadline requirements is questionable.

In addition to software-based approaches such as the offset assignment and the bounded

phase concept, Time Triggered CAN (TTCAN) [23] has been proposed to enable de-

terministic bus access at the expense of the modification of the CAN protocol and its

underlying hardware. A bus usage close to 100% seems achievable in TTCAN since

a global clock among the nodes makes it possible to schedule all CAN messages in a

deterministic way [24, 19]. However, to date TTCAN has not been used in produc-

tion cars [25] to the best of our knowledge due to the lack of compatibility with the

existing CAN protocol and hardware.

Apart from TTCAN for in-vehicle networks, Time Division Multiple Access (TDMA)

is employed in many communication systems to provide collision-free transmission

with bounded access delay [26]. In TDMA, time is divided into isolated windows and

only one node is allowed to transmit in a specific window. Moreover, guard times are

introduced to avoid any interference between windows of different nodes [27], which

leads to a reduction in the bus utilization.

In addition to the described previous methods, the very recent work in [28] makes two

important observations. Although there is progress in CS for CAN, there are various

possible methods for improving the clock accuracy. Such improvements pave the

way for the deterministic medium access on CAN, which is highly desired to provide

2

efficient bandwidth utilization and deterministic message response times [19, 26, 27].

Second, it holds that CAN is a non-preemptive bus and possible message collisions

are managed by the CAN arbitration mechanism without a performance penalty. That

is, when realizing window-based access on CAN it is not required to temporarily

isolate the windows of different nodes since possible overlaps will be resolved by the

usage of Carrier Sense Multiple Access/Collision Resolution (CSMA/CR) and the

non-preemptive message transmission on CAN. That is, there are no very stringent

CS requirements when realizing TDMA over CAN. Accordingly, [28] proposes a

novel Weak TDMA (WTDMA) model for CAN, where time slots can temporarily

overlap, different from the classical TDMA. Specifically, WTDMA can operate even

with a moderate clock accuracy among the nodes that can even be provided with

any of the existing software-based CS (SW-CS) methods for CAN such as [29, 11].

Nevertheless, it has to be noted that WTDMA has only been realized and evaluated

for the standard CAN protocol but not for the more advanced CAN FD.

The main contribution of this thesis is the realization of clock synchronization algo-

rithms and WTDMA for CAN FD. The thesis first implements two different offset

correction algorithms on recent microcontroller evaluation boards that support CAN

FD. Gergeleit’s method [30] is implemented as an efficient method that requires the

minimum number of additional messages on the CAN bus. Furthermore, the AU-

TOSAR method is realized to achieve a better clock accuracy. Since offset correc-

tion methods cannot ensure a sufficient clock accuracy, an additional drift correction

method is developed and implemented. As a result, a clock accuracy in the order of

few microseconds is achieved. The thesis further implements WTDMA for CAN FD

and confirms its correct operation for different parameter settings.

The remainder of the thesis is as follows. Chapter 2 gives the required background in-

formation on CAN and clock synchronization. The detailed concepts and implemen-

tation steps are described in Chapter 3 and evaluated in Chapter 4. Finally, Chapter 5

gives conclusions.

3

4

CHAPTER 2

BACKGROUND INFORMATION

In this chapter, the background information needed throughout this thesis is intro-

duced. First, the basic information about the CAN protocol and its message formats

is given. Afterwards, CAN FD (CAN with flexible data rate) is explained which

is the extension of CAN protocol that enables higher bus speed and larger message

payloads. Moreover, clock synchronization for CAN is explained since it constitutes

the basic concept used in this thesis. Before explaining used offset correction meth-

ods, local clock and clock drift concepts are described to be more clear. Gergeleit’s

and AUTOSAR methods which are the mostly used offset correction methods are

explained. In addition, drift correction is discussed as a means to improve the clock

synchronization quality. In the last part, the adaption of time division multiple access

(TDMA) to CAN in the form of weak TDMA is explained.

2.1 General Background on CAN

CAN is an asynchronous, multi-master, serial data bus that was designed by Robert

Bosch GmbH in 1983 and was standardized in 1993. CAN realizes a priority-based

non-preemptive bus arbitration, whereby the present message with the highest pri-

ority gains access to an empty bus. Since it was developed with this purpose, it is

highly applicable for real-time control operations in vehicles. Apart from the auto-

motive industry, CAN is applicable in different industrial safety critical applications

that need communication between multiple devices within certain time limits. It pro-

vides a simple network by reducing wiring and allowing multiple microcontrollers to

communicate on a single bus.

5

CAN protocol is defined with both of it’s hardware and software specifications. Hard-

ware specifications contains Physical Layer control. The messages are transferred by

two wires, and bits are sent by differential signalling. These are not in the scope of

this thesis, however, these are the main reasons that make CAN simple, cheap and

less error prone in the application areas with electrical noise.

Physical Layer control of CAN is defined with the first introduction of CAN, and

used as the same by now. However, software specifications and it’s extensions are

improved as time passes. Standard CAN has a 1 Mbps bus speed limit, and a maxi-

mum message payload of 8 Bytes. In order to exceed these limits, CAN FD in 2012

[31] and CAN XL in 2018 [9] are presented in the literature. CAN Flexible Data-rate

offers up to 10 Mbps in the payload and CAN XL offers up to 2048 bytes payload in

order to extend standard CAN limitations.

2.2 CAN Messages

CAN messages are sent in frames to control communication. There are four different

types of frame in CAN. These are data frame, remote frame, error frame and overload

frame. The data frame is the standard frame for sending data. Remote frame is used

to ask for transmission of a message with the same ID from a different node. Error

frames can be transmitted by any node when an error is detected in message transfer.

The overload frame is used for providing time delay between remote and data frames.

In a standard CAN data frame, there exist seven different fields as shown in Figure 2.1.

These are start of frame field (SoF), arbitration field, control field, data field, cyclic re-

dundancy check (CRC) field, acknowledgement (ACK) field, and end of frame (EoF)

field. A node starts sending a message by setting the start of frame bit to dominant

if there is no message on the bus. Then ID field is sent to bus, where the arbitration

starts in case of any other nodes are sending their messages to the bus. By the end of

ID field, the arbitration ends and the highest priority message continues sending its

message.

CAN also supports an extended format where there is 29 bit ID as shown in Figure 2.2

instead of 11 in the standard format. In the extended format, the arbitration ends with

6

S
O
F

ID
(11 bit)

R
T
R

r0 DLC
(4 bit)

PAYLOAD
(0 to 8 byte)

CRC
(15 bit)

A
C
K

EOF
(7 bit)

IFS
(3 bit)

Arbitration
Field

I
D
E

Control
Field

D
E
L

D
E
L

Data
Field

CRC
Field

ACK
Field

End of
Frame

Figure 2.1: CAN frame - standard format.

the extension of ID. Afterwards, there is a 6 bit control field that contains the data

length code (DLC) which states the total size of payload that can be varying between

0 to 8 bytes. The 16 bit CRC field is consisting of 15 bit CRC coding and a recessive

CRC delimiter bit. This CRC sequence is the security check for all receiving nodes.

If any invalid receiving node gets invalid CRC coding during the transmission of the

message, it sends error frame. At the end of a data frame before the end of frame

field, there is ACK field consisting of ACK and ACK delimiter bits. Sender node sets

the ACK bit to recessive and receiving nodes send a dominant bit for the first bit of

the ACK field. The end of frame field is made up of seven consecutive recessive bits.

There should be also at least three recessive bits as inter frame spacing between each

frames.

S
O
F

Base ID
(11 bit)

R
T
R

r0 DLC
(4 bit)

PAYLOAD
(0 to 8 byte)

CRC
(15 bit)

A
C
K

EOF
(7 bit)

IFS
(3 bit)

Arbitration
Field

I
D
E

Control
Field

D
E
L

D
E
L

Data
Field

CRC
Field

ACK
Field

End of
Frame

S
R
R

Ext. ID
(18 bit) r1

Figure 2.2: CAN frame - extended format.

Both of the above formats of CAN data frame have 7 fields. Except from the data

field, the other 6 field have constant length in bytes. Therefore, the total length of the

CAN frame, is sum of 6 constant length and a variable size data field length. This

total length is also effected by the bit stuffing applied by the CAN protocol itself,

which is a bit of opposite value is inserted into the message after five consecutive

same value bits [1]. By considering these information, the frame bit length varies

between a minimum value fmin (determined by the frame header and payload) and a

7

maximum value fmax (determined by the maximum bit stuffing) as follows [16]:

fmin = g + 8 · l + 13 (2.1)

fmax = g + 8 · l + 13 +
⌊g + 8 · l − 1

4

⌋
, (2.2)

whereby g = 34 for the standard format (11-bit identifiers) and g = 54 for the ex-

tended format (29-bit identifiers) of CAN. l is varying between 0 to 8 as the pay-

load size. The corresponding values for the possible standard format CAN frame bit

lengths are shown in Table 2.1.

l 0 1 2 3 4 5 6 7 8

fmin 47 55 63 71 79 87 95 103 111

fmax 55 65 75 85 95 105 115 125 135

Table 2.1: Minimum and maximum of the frame bit length depending on l.

Moreover, we call the bit rate B and the corresponding bit time τbit = 1/B. Using

τbit, in terms of time duration, the bounds of the message length of M is calculated

as Lmin = fmin · τbit and Lmax = fmax · τbit, respectively.

2.3 Standard CAN Protocol

CAN communication is based on broadcasting fixed type of messages. The message

has payload, which is the meaningful part of the message, with the size of 0 to 8 bytes

range. Bit rate is limited between 10 kbps and 1 Mbps for the standard CAN protocol.

However, all nodes in the system must have the same speed for the successful and

durable operation.

CAN protocol is more convenient to be used in multiple node systems by broadcasting

messages, rather than two node communication each other. All nodes can sense the

medium and any of them can start sending a message if there is no other ongoing

message. The messages do not have a receiver ID, instead they have message ID

which must be unique for proper operation. The message on the bus is received

by all other nodes simultaneously. Nodes can accept the message or ignore it by

8

differentiating from it’s message ID. Moreover, each node sends an acknowledgement

after each message to the transmitter node in order to inform that transmission is

successful.

The nodes are receiving messages by sensing the bus level. The voltage level of the

bus is not concerned here, on the other hand some more information about the bus

level should be given in order to explain how CAN is a non-preemptive communi-

cation protocol. The bus level can be either logic ’1’ or ’0’. For CAN bus, logic

’0’ bit is called dominant bit and logic ’1’ bit is called recessive bit. The nodes are

sensing the medium before sending message, and wait until the bus is empty. When

the bus become empty, more than one node can start transmission at the same time.

In order to prevent collision of simultaneously sent two different messages, the bus

level is determined by a logic AND operation such that bus value is dominant if at

least one of the bits is ’0’ among the messages. Two messages can not be transferred

in the bus at the same time, therefore the message priority is considered at this point.

The arbitration between multiple messages is solved by bit-wise arbitration based on

the message priorities in case of multiple nodes started transmitting at the same time.

During this arbitration, each transmitter node senses the bus level and checks whether

it is the sent bit or not. Until a level inequality, node continues sending the message

and sensing the medium. In the inequality case, it means a message with higher pri-

ority (smaller ID value) is sent at the same time by a different CAN node. Hence,

the sender stops sending the message and gives the bus access to the higher priority

message. This arbitration sequence is happening in the ID sending time, after a suc-

cessful arbitration other transmitter nodes waits for the bus being empty again after

the message is sent. This behaviour makes CAN protocol non-preemptive and solves

the arbitration without performance degradation since no data loss or bandwidth loss

happens.

2.4 CAN FD

It has to be noted that the standard CAN Bus does not meet the data rate requirements

of contemporary in-vehicle communication anymore. However, CAN is a trusted pro-

tocol being used for many years in countless applications in the automotive industry.

9

For these reasons, CAN FD (CAN with Flexible Data Rate) which both offers much

higher bandwidth than CAN and backward compatibility with CAN is developed by

Bosch [31, 32].

CAN FD operates at two different bit rates within a message frame. It has the same

bit rate and the arbitration method as CAN but it switches to a higher bit rate during

the data phase. CAN FD payload is up to 64 Bytes. Therefore at a given bus load,

the overhead of the frame decreases down to 15% [33] and theoretical net bit rates

about 5 Mbps are possible [32]. Furthermore, the arbitration phase baud rate limits

the overall baud rate of the frame. For example, a frame with 64 bytes payload, 11

bit standard ID, 1 Mbps of arbitration phase baudrate, 8 Mbps of dataphase baud

rate has net bit rate about 5.9 Mbps [34]. Furthermore, the increase of baud rate is

also beneficial for higher layer software protocols. [35] assesses the effectiveness

and performance of CAN FD with respect to CAN bus in agricultural systems using

higher layer protocols like J1939 and ISOBUS.

Car manufacturers begin to adapt CAN FD in their system design. Toyota, Denso,

and Renesas cooperate for autonomous driving system developments. Renesas con-

tributes with micro controllers and System on Chip (SoC) devices featuring CAN FD

[36]. According to [37], Mercedes considers introducing CAN FD in their S-class

series cars. There are some works to adopt CAN FD to real network systems and

CAN FD is considered to be used in the same network with CAN [38], [39].

According to [40], CAN FD data phase bit rates up to 2 Mbit/s will be used in the first

CAN FD systems. The network topology will be like star or hybrid. Later generation

CAN FD systems will increase the data rate up to 5 Mbit/s. CAN FD frames can be

divided into three parts, which are arbitration phase, data phase and arbitration phase

again as can be seen in Fig.2.3. The bit rate switches to higher rate only during data

phase and switches back to its old rate when the data phase is over.

CAN FD frame format differs from CAN frame format in terms of payload length,

Data Length Code (DLC) and CRC computation method. Therefore, some hardware

changes are required in the controllers. If the payload size is kept as 8 Bytes as in

standard CAN messages, there is no need for any software changes [41]. CAN FD

supports payload size of up to 64 Bytes. In such implementations software changes

10

© 2013 . Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide: 12

CAN FD Frame

CAN FD Frame

Arbitration Phase

(standard bit rate)

Arbitration Phase

(standard bit rate)

Data Phase

(optional high bit rate)

 Consist of two phases – Arbitration phase and Data phase

S
O

F

1

r1

ID
E

E
D

L

r0

E
S

I

A
C

K

A
C

K
 D

e
lim

it
e

r

C
R

C
 D

e
lim

it
e

r

1

B
R

S

1

1

1

1

1

1

1

1

Identifier

11

DLC

4

Data

0..512

CRC

17 / 21

EOF

7

IFS

3

1

1

1

1

EOF

7

1

1

CAN FD Extended Frame

1

1

1

S
O

F

r1

E
D

L

r0

E
S

I

A
C

K

A
C

K
 D

e
lim

it
e

r

C
R

C
 D

e
lim

it
e

r

B
R

S

Identifier

11

DLC

4

Data

0..512

CRC

17 / 21

IFS

3

ID
E

Extended

Identifier

18

S
R

R

1 1 1 1

Arbitration Phase Data Phase Arbitration Phase

(a) CAN FD Base Frame

© 2013 . Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide: 12

CAN FD Frame

CAN FD Frame

Arbitration Phase

(standard bit rate)

Arbitration Phase

(standard bit rate)

Data Phase

(optional high bit rate)

 Consist of two phases – Arbitration phase and Data phase

S
O

F

1

r1

ID
E

E
D

L

r0

E
S

I

A
C

K

A
C

K
 D

e
lim

it
e
r

C
R

C
 D

e
lim

it
e
r

1

B
R

S

1

1

1

1

1

1

1

1

Identifier

11

DLC

4

Data

0..512

CRC

17 / 21

EOF

7

IFS

3

1

1

1

1

EOF

7

1

1

CAN FD Extended Frame

1

1

1

S
O

F

r1

E
D

L

r0

E
S

I

A
C

K

A
C

K
 D

e
lim

it
e
r

C
R

C
 D

e
lim

it
e
r

B
R

S

Identifier

11

DLC

4

Data

0..512

CRC

17 / 21

IFS

3

ID
E

Extended

Identifier

18

S
R

R

1 1 1 1

Arbitration Phase Data Phase Arbitration Phase

(b) CAN FD Extended Frame

Figure 2.3: CAN FD Frames

are required. The cost to implement CAN FD is very similar to CAN implementation

costs [31].

The frames with the base ID have 11 bits ID representation while the frames with

the extended ID has 29 bits ID representation. Furthermore, some control bit values

in the frame change according to the ID type. CAN FD data frames for Base and

Extended ID can be seen in Fig.2.3a and in Fig.2.3b.

Since the CAN-FD frames have differences with standard CAN frames, their bit

length is calculated differently compared to the equations in 2.1 and 2.2. Moreover,

the CAN-FD frame has different rates for different fields which makes bit length cal-

culation insufficient in its own. Therefore, it is better to calculate time duration of the

message length. Bit stuffing is still valid for CAN-FD frames, hence message length

11

calculations for the maximum length is as follows [42]:

Lmin = (g + 18) · τa + (27 + 8 · l) · τd (2.3)

Lmax = (g +
⌊g + 2

4

⌋
+ 12) · τa + (27 + 8 · l +

⌊8 · l + 6

4

⌋
) · τd, (2.4)

whereby g is equal to identifier size, that is either 11 or 29 bit, depending on the CAN

message format. l stands for the payload size and varies between 0 and 64 in CAN-

FD. CRC field is 17 bits plus 4 fixed stuff bits for payload sizes up to 16 bytes, and

21 bits plus 5 fixed stuff bits for payload sizes larger than 16 bytes. In case of bit

stuffing, after slowing down to arbitration speed, the ACK, EOF and IFS fields do not

apply bit stuffing [42].

2.5 Clock Drift

The local clock of a node, called LC in this thesis, is briefly explained as timer module

features of a microcontroller unit. The main components of LC are the clock source

and the clock value. Clock source is mostly a crystal or sometimes internal clock

generators, and they are called clock oscillator (CO). In every periodic tick from CO,

a hardware register (HR) is incremented, which forms the clock value [43, 44]. The

clock value has two properties, resolution and maximum value. Resolution of the

clock states the time amount between each clock value increment. This time amount

depends on two things, the nominal frequency fCO,N = 1/TCO,N of CO and the

number of CO ticks nHR,N for each increment. Using these factors, one increment

in a node N ’s local clock value equals to a time duration TN = nHR,N · TCO,N =

nHR,N/fCO,N . The other property, maximum value of clock, depends on the storage

of clock value variable. The width of the HR determines the maximum value of the

clock. The resolution and the maximum value determine the maximum time amount

that local clock can evaluate. After that time, the operation varies with respect to

software decision. The common use case is being aware of maximum value and

counting again starting from zero.

After giving brief information about local clock, it is time to explain clock drift.

Clock drift occurs by having different time values in LC for different CAN nodes.

This difference is caused by the fact that each CO in CAN nodes have different rate

12

in providing periodical ticks [43]. This rate change occurs due to a deviation in actual

frequency of CO. This difference of actual frequency and ideal frequency arise from

short term, long term and environmental frequency instability effects [45, 46]. This

difference is measured in ppm (parts per million). The fabrication errors causes fre-

quency instability in the order of 50 ppm, aging per year and temperature variations

(between -40 to 125 ◦C) causes 5 ppm and up to 150 ppm accordingly [47]. Know-

ing these, the actual frequency fN of node N ’s CO is dependent to time and can be

expressed in the form

fN(t) = fCO,N · (1 + kIA,N + kLTI,N + kEI,N(t)). (2.5)

Here, kIA,N is the initial accuracy (IA) based on fabrication errors, kLTI,N is the

long term frequency instability (LTI) due to aging and kEI,N(t) represents the time-

varying environmental instability (EI) depending on temperature, pressure, humidity

and noise from the voltage supply [43, 48, 49]. Then, the local time cN(t) of node

N ’s LC is determined by

cN(t) = NN(t) · TN =
⌊ ∫ t

0

fN(τ)

nHR,N

dτ
⌋
· TN , (2.6)

whereby ⌊•⌋ is the floor operation. As stated before, the LC of each CAN node

diverges from real time due to these frequency instability reasons.

In order to mention about a time difference, we define the clock difference of node N

with respect to a reference clock (RC) which is accepted to equal to the real time as

∆cN(t) = cN(t)− cRC(t). (2.7)

When we consider that real time is given by the LC value cTM of a given master

node in the experiments of this thesis, it holds that cRC(t) = cTM(t). Then, a node

N has the clock offset ∆NN(t) = NN(t) −
⌊
cTM(t)
TN

⌋
in terms of clock value. Next,

the accuracy of the node N ’s accuracy is described as the maximum value of clock

difference maxt |∆cN(t)|. As a result of these calculations, a node N ’s clock drift dN

is the rate of change of ∆cN(t) and can be approximated for small values of τ as

dN(t) =
d

dt
(∆cN(t)) ≈

∆cN(t)−∆cN(t− τ)

τ
. (2.8)

13

2.6 Clock Synchronization

This section outlines the concept of clock synchronization on CAN. We consider a

time master (TM) node, which is assumed to have a perfect local clock and a generic

slave node Sy, whose local clock has to be synchronized with the TM. Writing eSy

for the local clock difference of Sy and TM, Fig. 2.4 (a) shows the behavior if no

clock synchronization is applied. That is, eSy changes linearly due to the unavoidable

oscillator drifts of Sy and TM [43].

Figure 2.4: (a) Clock drift; (b) Offset correction; (c) Drift correction.

Clock synchronization on CAN involves offset correction and drift correction. Both

techniques are commonly based on timestamps that are taken simultaneously by each

node and the TM transmits its timestamp with a period T on the CAN bus. Any slave

node Sy periodically applies offset correction [30, 29, 10] by adjusting its local clock

based on the difference of its own timestamp and the received timestamp from the TM

as shown in Fig. 2.4 (b). That is, after offset correction at T, 2T, . . ., eSy is close to

zero, whereas the local clock of Sy drifts until the next offset correction. In any case,

|eSy | is bounded by a maximum value â that quantifies the clock accuracy of the clock

synchronization method. The clock drift between offset corrections can be further

reduced by applying drift correction based on drift estimates from the timestamps

[50, 51, 6, 52] as illustrated in Fig. 2.4 (c).

It has to be emphasized that offset correction directly uses timestamps and drift cor-

rection is performed based on drift estimates that are computed from timestamps.

That is, the clock accuracy of CS methods strongly depends on the timestamp accu-

racy, which is an important criterion for the implementation of CS methods on CAN.

14

CHAPTER 3

CONTRIBUTION

This chapter describes the methods implemented in the scope of this thesis. Section

3.1 explains the realization of timestamping and Section 3.2 provides details about the

application of offset correction. Drift correction is implemented in Section 3.3 and

realization of time division multiple access (TDMA) for CAN is discussed in Section

3.4.

3.1 Timestamping

3.1.1 Timestamping Background

Timestamping on CAN can be characterized by two main components. First, the TS

process is initiated with a trigger (TR) signal at the TR instant on each CAN node,

which occurs during a periodic reference message (RM) sent by the TM. Second, the

TR signal is detected and a copy of the current value of the local clock is taken by a

function that is denoted as the TS service. The actual time instant when the timestamp

is taken is indicated by a TS signal after the completion of the TS service. The basic

setting is illustrated in Fig. 3.1 for an arbitrary k-th TS instant of the TM and a slave

node Sy.

Here, tTR
TM,k and tTR

Sy ,k
are the respective TR instants, dSVTM,k and dSVSy ,k

show the respec-

tive time durations of the TS service and tTS
TM,k and tTS

Sy ,k
represent the times of the

supposedly synchronous TS signals for the TM and Sy.

The TS quality of a slave node Sy is characterized by the distribution of the differences

between tTS
TM,k and tTS

Sy ,k
. Accordingly, the TS quality directly depends on the quality

15

TM

Sy

t
dTM,k
sv

tSy,k
TR

tTM,k
TR tTM,k

TS

dSy,k
sv

tSy,k
TS

Figure 3.1: The components of TS on CAN.

of the TR instant and TS service.

It has to be noted that software implementations commonly use the end of the ref-

erence message (EoM) [30, 50, 51, 29, 50] as specified in the CAN in Automation

(CiA) standard 603 [53] as the TR instant. Since this TR instant is directly deter-

mined by the internal bit timing mechanisms of CAN, the TR instant quality depends

on the CAN protocol itself. Differently, the TS service quality depends on its imple-

mentation. An implementation in hardware is expected to provide a constant time of

the TS service and will hence perform better than a software implementation with po-

tentially varying delays. Accordingly, when implementing timestamping in software,

much care has to be taken in order to achieve deterministic execution times of the TS

service.

3.1.2 Timestamping Implementation

Timestamping on the TM is implemented in the form of a timer (TC4) that creates

an interrupt with the RM period T . In addition, a second timer (TC0) holds the local

time of the TM. The timers are configured as shown below.

TC4_TimerCallbackRegister(TC4_Callback_InterruptHandler,

(uintptr_t)NULL);

TC4_TimerStart();

TC0_TimerStart();

Whenever the timer for the RM expires, the callback function "TC4_Callback_InterruptHandler"

is called to take a timestamp.

16

void TC4_Callback_InterruptHandler(TC_TIMER_STATUS status,

uintptr_t context){

timestampValue = TC0_Timer32bitCounterGet();

}

A timestamp on the slave is taken whenever a RM is received. RM message prop-

erties change between Gergeleit’s method and the AUTOSAR methods. Still, the

implementation of timestamping is similar. To this end, it is required to configure the

receive message frame and the callback register for message reception. This example

is from the AUTOSAR implementation of a slave. Here, the timestamp is taken after

the follow-up (FUP) message. FUP is filtered and saved into the RX buffer of CAN

peripheral.

CAN_MSG_RX_FRAME_ATTRIBUTE msgFrameAttr =

CAN_MSG_RX_DATA_FRAME;

CAN1_RxCallbackRegister(CAN_Callback_Handler_Fup, 0,

CAN_MSG_ATTR_RX_FIFO0);

The timestamp is then taken in the callback function after RM reception.

void CAN_Callback_Handler_Fup(uintptr_t context)

{

if (CAN1_MessageReceive(&rx_messageID,

&rx_messageLength, (uint8_t*)rx_message, 0,

CAN_MSG_ATTR_RX_FIFO0, &msgFrameAttr) == true)

{

timestampValue = TC0_Timer32bitCounterGet();

}

}

17

3.2 Offset Correction Methods

The literature provides two well-known software-based methods for offset correc-

tion on CAN that are implemented for CAN FD in this thesis. Gergeleit’s method

is described in Section 3.2.1 and the method based on the AUTOSAR standard is

explained in Section 3.2.2. Implementation details are provided in Section 3.2.3.

3.2.1 Gergeleit’s Method

The software-based offset correction method by Gergeleit [30] is illustrated in Fig.

3.2. Reference messages (RMs in gray boxes) with the message duration tRM are sent

by the TM node M with a period T and received synchronously by any CAN node

(slaves and Master) at tk = k · T , k = 0, 1, With each RM reception at tk, M

and each slave Si take a timestamp of their respective local clock tk,M and tk,Si. M

then transmits tk,M with the next RM such that each slave Si receives this timestamp

at tk+1. The difference between the received value tk,M and the stored value tk,Si is

then used to perform the clock update

cSi(t
+
k+1) = cSi(t

−
k+1) + tk,M − tk,Si. (3.1)

Here, cSi(t
−
k+1) and cSi(t

+
k+1) represent the local clock value of Si before and after

the update, respectively. For proper operation, RM must be transmitted in each cycle

k. The advantage of Gergeleit’s method compared to following method, AUTOSAR

method, is that it only requires a single RM in each synchronization period T .

(k+1)·Tk·T

tk-1,M
cycle k

(k-1)·T
t

tk-1,Si

tk-2,M

tk-1,M

tk,M

tk,Sitk,M tk+1,Sitk+1,M

tRM

Figure 3.2: Illustration of RM transmission in Gergeleit’s method.

In Fig. 3.3, the illustration of clock difference is shown if Gergeleit’s method defined

18

in [30] is applied. To specify, this illustration shows the difference of the local clocks

of TM and a slave node Si. T represents the period of RM and dSi represents the

drift of the Si local clock compared to local clock of TM. This drift causes a time

difference of dSi ·T between two consecutive RMs. The boxes on the timeline in Fig.

3.3 shows the messages on the CAN bus. The blue boxes represent the RMs and the

gray ones are the regular messages transmitted on the bus.

Figure 3.3: Illustration of clock difference in Gergeleit’s method

The figure in 3.3 indicates there is no time difference between TM and Si in the

beginning. Therefore, at time T the slave makes zero correction. The first correction

is applied at time 2 · T . The slave node corrects its local clock according to the

timestamp taken at time T . The clock difference at time T is equal to dSi · T , that is

the amount of correction. As it can be seen in the illustration, the theoretical upper

limit guaranteed by Gergeleit’s method [30] is dSi · 2 · T due to the approach of

correction with respect to the previous timestamp. This approach also prevents this

method from always fully compensating for the clock difference in every correction.

This only happens if the previous timestamp has the same drift as the current RM.

Moreover, Gergeleit’s method is used in several research works benefiting from its

low bandwidth consumption and easy implementation in software. [54] applied Gerge-

leit’s method with a 32-bit microcontroller, and it is claimed that a global clock is

obtained with an approximate error of 4.5 microseconds . Nevertheless, having a

global clock accuracy in the order of 4.5µs is not possible without having very fre-

19

quent RMs which is not the desired case because of the higher bandwidth usage on

CAN. The other possibility is having low clock drifts which does not agree with the

real-world usage of the CAN bus. Additionally, there are fault-tolerant applications

of Gergeleit’s method in the literature [55]. The main steps of Gergeleit’s method are

summarized in Algorithm 1. Note that different functions are implemented for the

TM and for the slaves.

Algorithm 1 Gergeleit’s Method Implementation
1: Function: master_main()

2: Set Timer2 interrupt as RM period

3: while 1 do

4: if Timer2 reaches RM period then

5: Send RM message that contains prevTime

6: Save prevTime

7: end if

8: end while

9: Function: slave_main()

10: Set CAN receive interrupt

11: while 1 do

12: if RM received then

13: Save masterTime from received message

14: correctionTime = masterTime - prevTime

15: correctTimer(correctionTime)

16: Save prevTime

17: end if

18: end while

3.2.2 AUTOSAR Method

The other offset correction method used in the thesis is the AUTOSAR method. Ac-

cording to the AUTOSAR specification [29], the master node sends a SYNC message

right before the RM, also called as Follow-up (FUP), in each cycle k as shown in

Fig. 3.4. Each slave node Si takes a timestamp t̂k,Si right after receiving the SYNC

20

message and the master transmits its timestamp t̂k,M in the RM just upon the SYNC

message. At the reception time tk = k · T of the RM, each slave corrects its local

clock based on the difference between timestamp of TM and its own timestamp:

cSi(t
+
k) = cSi(t

−
k) + t̂k,M − t̂k,Si. (3.2)

(k+1)·Tk·T

tk,M
t

tk+1,M

tk,Sitk,M tk+1,Sitk+1,M

SYNC SYNC

tRM
cycle k

Figure 3.4: Illustration of the method according to AUTOSAR.

Different from Gergeleit’s method, the AUTOSAR method requires two messages

(SYNC and RM) per cycle k in order to take the timestamp close to the update time

with the advantage of a more accurate offset correction.

The following illustration in Fig. 3.5, shows the clock difference when AUTOSAR

clock synchronization method is applied. The orange boxes on the timeline repre-

sents the SYNC messages which are sent just before the following RM which are

represented by blue boxes.

Figure 3.5: Illustration of clock difference in AUTOSAR method.

The main steps of the AUTOSAR method are summarized in Algorithm 2. Again,

21

there are different functions for the TM and for the slaves.

Algorithm 2 AUTOSAR Method Implementation
1: Function: master_main()

2: Set Timer2 interrupt as RM period

3: while 1 do

4: if Timer2 reaches RM period then

5: Send SYNC message

6: Save prevTime

7: end if

8: if SYNC message received then

9: Send FUP message containing prevTime

10: end if

11: end while

12: Function: slave_main()

13: Set CAN receive interrupt

14: while 1 do

15: if SYNC received then

16: Save myTime

17: end if

18: if FUP received then

19: Save masterTime from received message

20: correctionTime = masterTime - myTime

21: correctTimer(correctionTime)

22: end if

23: end while

There is a trade-off in AUTOSAR when compared to the Gergeleit’s method. The

positive side is the local clock difference after the correction is approximately zero

which is the desired case. The negative side of the trade-off is, AUTOSAR uses two

consecutive RMs, SYNC and FUP messages, in one cycle, which means occupying

double bandwidth. In the illustration in Fig. 3.5, the clock drift correction error is

the time during the FUP messages sent which is shown in blue boxes in the timeline.

In a real application, this duration is much shorter compared to the RM cycle period

22

of T . Hence, the clock drift appeared in sending the FUP message, that is the extra

amount of time causing to error after correction, is negligible with respect to the clock

difference error dSi · T that occurred in one cycle.

Lastly, it has to be emphasized that both methods can have better performance in

clock accuracy if the RMs are sent more frequently, which decreases the T value.

However, the desired goal is to achieve higher performance by using low bandwidth

usage on the already limited CAN bandwidth.

3.2.3 Offset Correction Implementation

The difference between the two described offset correction methods is in the genera-

tion and reception of timestamps sent in RMs. For Gergeleit’s method, a timestamp

is sent in an RM in every period of T determined by the timer interrupt.

void TC4_Callback_InterruptHandler(TC_TIMER_STATUS status,

uintptr_t context)

{

refMes = true;

message[0] = prevTime; // Send the previous timestamp

CAN1_MessageTransmit(messageID,

messageLength,message,CAN_MODE_FD_WITH_BRS,

CAN_MSG_ATTR_TX_FIFO_DATA_FRAME);

}

By definition, the timestamps on the TM should be generated after the TM receives

its own RM message. However, this is not possible in our implementation due to

the lack of a receive interrupt emitted by its own transmission on the microcontroller

boards used in this thesis. Hence, the timestamps on the TM are generated after

the transmission interrupt of the RM, which indicates that the RM transmission is

completed. This procedure is shown in the following callback function:

void CAN_Callback_Handler(uintptr_t context){

timeRead = TC0_Timer32bitCounterGet();

23

if(refMes){

prevTime = timeRead;

refMes = false;

}

}

In the AUTOSAR method, the timestamp is sent in a follow-up message. That is,

first, the RM with empty content (SYNC) is sent upon the timer interrupt emitted in

every period of T .

void TC4_Callback_InterruptHandler(TC_TIMER_STATUS status,

uintptr_t context)

{

refTimeValue = TC0_Timer32bitCounterGet();

dummyMessage[0] = 0;

CAN1_MessageTransmit(syncMessageID,messageLength,

dummyMessage, CAN_MODE_FD_WITH_BRS,

CAN_MSG_ATTR_TX_FIFO_DATA_FRAME);

syncMsg = true;

}

Then, with the successful transmission of the RM, the follow-up message is sent with

the correct timestamp.

void CAN_Callback_Handler(uintptr_t context)

{

timestampValue = TC0_Timer32bitCounterGet();

if(syncMsg == true){

message[0] = timestampValue;

CAN1_MessageTransmit(fupMessageID,messageLength,

message, CAN_MODE_FD_WITH_BRS,

CAN_MSG_ATTR_TX_FIFO_DATA_FRAME);

syncMsg = false;

24

}

if((fupMsg == true)){

fupMsg = false;

}

}

On the slave, the clock correction is carried out with the timestamp received in the

RM for Gergeleit’s method as follows. Since there is a delay of 2 cycles in getting

the current counter value and updating it, this value is added to the counter.

void correctTimer(uint32_t update){

TC0_Timer32bitCounterSet(TC0_Timer32bitCounterGet()

+ update + 2);

}

void CAN_Callback_Handler(uintptr_t context)

{

myTime = TC0_Timer32bitCounterGet();

if (CAN1_MessageReceive(&rx_messageID, &rx_messageLength,

(uint8_t*)rx_message, 0, CAN_MSG_ATTR_RX_FIFO0,

&msgFrameAttr))

{

masterTime = (int)rx_message[0];

myTimeCorrection = masterTime - myPrevTime;

myPrevTime = myTime;

correctTimer(myTimeCorrection);

}

}

Specifically, the timestamp in the RM is compared with the previous timestamp.

Then, the difference between timestamps is corrected in the slave node. Differently,

for the AUTOSAR method, the current timestamp is taken instead of the previous one

when receiving the RM.

25

void CAN_Callback_Handler_Sync(uintptr_t context)

{

if (CAN1_MessageReceive(&dummyrx_messageID,

&rx_messageLength, (uint8_t*)dummy_message,

0, CAN_MSG_ATTR_RX_FIFO0, &msgFrameAttr))

{

myTimestamp = TC0_Timer32bitCounterGet();

}

}

Then, this timestamp is used for the clock update when receiving the follow-up mes-

sage. Hereby, an offset of 15 clock ticks is added to compensate for software delays

observed during experiments.

void CAN_Callback_Handler_Fup(uintptr_t context)

{

if (CAN1_MessageReceive(&rx_messageID, &rx_messageLength,

(uint8_t*)rx_message, 0, CAN_MSG_ATTR_RX_FIFO1,

&msgFrameAttr))

{

masterTimestamp = (int)rx_message[0] + 15; // Add offset

myNewTimeCorrection = masterTimestamp - myTimestamp;

correctTimer(myNewTimeCorrection);

}

}

3.3 Drift Correction Based on Timestamps

3.3.1 Drift Correction Background

In order to improve the clock accuracy of offset correction methods, it is required to

realize drift correction. That is, in addition to the periodic clock corrections after the

26

reception of RMs as given in (3.1) and (3.2), the value of any slave Si’s LC also needs

to be corrected between RMs. To this end, we note that the local clock cSi of slave Si

will deviate by a clock difference ∆cSi from the local clock cM of the TM after each

clock correction with period T . That is, assuming that both clock values are identical

at some time t, we can write the following relation.

cSi(t+ T)− cSi(t) = cSi(t+ T)− cM(t) = cM(t+ T) + ∆Si − cM(t). (3.3)

That is, the local clock of Si drifts with a time value of ∆Si within a time interval of

cM(t+T)−cM(t) such that the clock drift dSi of Si with respect to M can be computed

as

dSi =
∆cSi

cM(t+ T)− cM(t)
=

cSi(t+ T)− cSi(t)

cM(t+ T)− cM(t)
. (3.4)

It is clear that dSi can be computed by the slave Si by using the current and previ-

ous timestamps of TM and Si. One way of compensating this drift is to perform a

periodic local clock update with a period τ << T . Considering a drift dSi with its

corresponding accumulated clock difference cSi within one RM period T and , it holds

that NSi = T/τ clock updates with the value

uSi =
∆cSi
NSi

(3.5)

need to be performed between RMs. In summary, the proposed drift correction pro-

cedure is as follows.

1. Compute dSi and ∆cSi after receiving a RM at time t,

2. Compute uSi after receiving a RM at time t,

3. Apply clock updates with the value uSi and period τ .

More precisely, the drift correction procedure is summarized in Algorithm 3.

27

Algorithm 3 Drift Correction Implementation
1: Function: slave_main()

2: Set CAN receive interrupt

3: Set Timer4 interrupt for Drift Correction

4: while 1 do

5: if RM received then

6: Save masterTime from received message

7: Calculate correctionTime with CS algorithm

8: masterTimeDifference = masterTime - prevMasterTime

9: myTimeDifference = myTime - prevMyTime

10: if myTimeDifference - masterTimeDifference > totalDriftCorrected then

11: driftCorrection = -1

12: driftCorrectionPeriod = masterTimeDifference / (myTimeDifference -

masterTimeDifference - totalDriftCorrected)

13: else

14: driftCorrection = 1

15: driftCorrectionPeriod = masterTimeDifference / (masterTimeDifference

+ totalDriftCorrected - myTimeDifference)

16: end if

17: totalDriftCorrected = 0

18: prevMasterTime = masterTime

19: prevMyTime = myTime + correctionTime

20: Set Timer4 period to driftCorrectionPeriod

21: correctTimer(correctionTime)

22: end if

23: end while

24: Function: Timer4Interrupt()

25: correctTimer(driftCorrection)

26: totalDriftCorrected += driftCorrection

28

3.3.2 Drift Correction Implementation

Drift correction is implemented together with the offset correction method according

to AUTOSAR. Following the explanation in the previous section, the clock drift is

computed when receiving the follow-up message. After calculating TM’s and Si’s

timestamp changes in one RM period, the drift direction is decided. If the slave has

a higher time difference than the master, the slave applies negative drift corrections

in order to equalize the local clocks. The total corrected drift is taken into account in

every RM period in order to correctly calculate the next drift. It is accumulated in each

drift correction and cleared in every offset correction. Besides the drift correction,

offset correction algorithms remains the same.

void CAN_Callback_Handler_Fup(uintptr_t context)

{

if (CAN1_MessageReceive(&rx_messageID, &rx_messageLength,

(uint8_t*)rx_message, 0, CAN_MSG_ATTR_RX_FIFO1,

&msgFrameAttr) == true)

{

masterTime = (int)rx_message[0] + 15; //Add offset

myNewTimeCorrection = masterTime - myTime;

masterTimeDifference = masterTime - masterPrevTime;

myTimeDifference = myTime - myPrevTime;

if(myTimeDifference - masterTimeDifference >

totalDriftCorrected){

driftCorrection = -1;

driftCorrectionPeriod = masterTimeDifference /

(myTimeDifference - masterTimeDifference -

totalDriftCorrected);

}

else{

driftCorrection = +1;

driftCorrectionPeriod = masterTimeDifference /

(masterTimeDifference - myTimeDifference +

29

totalDriftCorrected);

}

totalDriftCorrected = 0;

masterPrevTime = masterTime;

myPrevTime = myTime + myNewTimeCorrection;

if(masterTimeDifference == 0){

myNewTimeCorrection = 0;

myPrevTime=0;

driftCorrectionPeriod=400000000;

}

TC2_Timer32bitCounterSet(0);

TC2_Timer32bitPeriodSet(driftCorrectionPeriod);

correctTimer(myNewTimeCorrection);

}

}

Using the computed parameters, drift correction is applied with the timer interrupt

(TC2).

void TC2_Callback_InterruptHandler(TC_TIMER_STATUS status,

uintptr_t context)

{

correctTimer(driftCorrection);

totalDriftCorrected += driftCorrection;

}

3.4 Weak TDMA

The realization of clock synchronization establishes a common time base for all nodes

on a CAN bus. On the one hand, this enables the execution of simultaneous actions

by different CAN nodes. On the other hand, this also makes it possible to coordinate

the message transmissions of CAN nodes in order to increase the determinism of

the communication and hence decrease message response times. This section first

30

explains the concept of weak TDMA for CAN that was introduced in [28].

3.4.1 Weak TDMA Background

We assume that the nodes on a CAN bus have synchronized clocks with a maximum

clock difference of θ between any node and the global clock of a TM node. We note

that such clock synchronization can be established by the methods described in the

previous sections. Then, the medium-access method in [28] introduces an offset oi

and a transmission window size wi for each message Mi ∈ M. Hereby, the a-th

instance of message Mi ∈ M is denoted as Mi,a. Writing yi,a = oi + a · pi for

a = 0, 1, . . ., we define the time intervals

Ii,a = yi,a + [0, wi), (3.6)

during which the message instances Mi,a can be transmitted. Accordingly, a message

schedule consists of the set of offsets O = {o1, . . . , om} and the set of window sizes

W = {w1, . . . , wm}. We further use the hyper-period (HP)

H = lcm(p1, . . . , pm), (3.7)

which characterizes the time after which the schedule repeats. The number of repeti-

tions of Mi per HP is ri = H/pi.

Depending on decision of O and W , windows of different messages may overlap.

Hence, we use feasible schedules in the sense that

1. ∀i ∈ {1, . . . ,m}, it holds that Lmax
i ≤ wi,

2. ∀i, j ∈ {1, . . . ,m} with i ̸= j, a ∈ {0, . . . , ri − 1} and b ∈ {0, . . . , rj − 1}, it

holds that Ii,a ∩ Ij,b = ∅

That is, a feasible schedule ensures that 1) each message fits in its assigned window

and 2) the windows of any two different messages do not overlap. That is, each mes-

sage obtains exclusive access to the CAN bus during its assigned window, ensuring

deterministic message transmission. In order to explain this fact, we introduce some

additional notation, which is given for the duration of one HP. Specifically, the fol-

lowing time instants are needed:

31

• yi,a: starting time of the window for Mi,a,

• gi,a: time instant when the generation of Mi,a is triggered by its node µ(Mi),

• ei,a: time instant when Mi,a is ready to enter arbitration on the CAN bus,

• ui,a: time instant when the CAN bus is guaranteed to be free for Mi,a,

• si,a: time instant when Mi,a starts transmission,

• fi,a: time instant when Mi,a finishes transmission including Inter Frame Spac-

ing (IFS),

• Li,a: length of the a-th instance of message Mi.

In addition, we recall the bound ∆µ(Mi) for the (MCU-dependent) maximum software

delay between the time instant when the generation of message instance Mi,a is trig-

gered and the time instant when Mi,a is ready to enter arbitration on the CAN bus.

Specifically, it consists of the software tasks such as detecting the trigger, preparation

of the CAN message content and its placement into the CAN controller transmission

buffer. Furthermore, θ is the bound for the clock difference of any node relative to the

global clock on the CAN bus.

Fig. 3.6 provides an illustration of the WTDMA operation and the notation intro-

duced above. To this end, the figure shows the transmission of different instances of

the consecutive messages Mi, Mj and Mk in two different HPs (denoted as HPn and

HPn+1). The window start times are shown by dashed lines and the range of times

where each message instance can enter arbitration is displayed by red and green ar-

rows.

We note that this range is for example given by the interval [yi,a−θ, yi,a+θ+∆µ(Mi)]

for the message instance Mi,a. To point out the possible cases, Mi,a starts transmission

at the latest possible time si,a = yi,a+ θ+∆µ(Mi) in HPn of the example. Then, Mj,b

starts transmission when the bus becomes idle right after the transmission of Mi,a

at time sj,b = si,a + Li,a = fi,a = uj,b. Here, it is important to note that, even if

ej,b < fi,a, that is, Mj,b is ready before the transmission of Mi,a is completed, Mj,b

is transmitted after Mi,a as long as ej,b > si,a. Intuitively, this amounts to the fact

that the time instant si,a when Mi,a starts transmission is guaranteed to be before the

32

Figure 3.6: WTDMA notation and example illustration.

time instant sj,b when Mj,b starts transmission. Similarly, Mk,c starts transmission

after the transmission of Mj,b is completed at fj,b. A different scenario is shown for

HPn+1. Here, the message instance Mi,a+ri is transmitted at the earliest possible time

yi,a+ri − θ. As a consequence, the CAN bus is idle at uj,b+rj = fi,a+ri before Mj,b+rj

is ready and Mj,b+rj is transmitted right at sj,b+rj = ej,b+rj . The same is true for

Mk,c+rk . At this point, we emphasize that a message can be ready during the time

window of the previous message without affecting the WTDMA operation. That is,

different from TDMA, the WTDMA operation does not require guard times between

time windows for different messages and hence allows a more efficient bandwidth

usage.

Using the above notation, we next quantify the correct operation of WTDMA. Con-

sider that K messages are transmitted on the CAN bus according to a given WTDMA

schedule. Then, we denote each message that is not transmitted in the specified order

as a schedule violation and write

V =
Number of schedule violations

K
(3.8)

for the ratio of schedule violations. We note that V = 0 is required for the correct

33

operation of WTDMA.

We further introduce the starting time delay

ϕj,b = sj,b − gj,b (3.9)

as the difference between the transmission start time sj,b and the trigger time gj,b of

instance Mj,b.

Finally, the RT Ri,a of instance Mi,a is computed by adding the starting time delay

ϕi,a and the actual message length Li,a:

Ri,a = ϕi,a + Li,a. (3.10)

Then, [28] shows that WTDMA operates correctly, that is, V = 0, if

wmin > wsafe = ∆max + 2 · θ. (3.11)

Hereby, wsafe denotes the safe window size. Furthermore, the starting time delay ϕj,b

and the RT Rj,b of any message instance Mj,b are bounded by

ϕj,b ≤ ϕmax = ∆max + 2 θ and Rj,b ≤ Rmax
j = ϕmax + Lmax

j . (3.12)

Specifically, this result provides a lower bound for the window size depending on the

software delay ∆max and the maximum clock difference θ. Since the window size for

each message Mi ∈ M depends on its payload size Bi, the smallest window size is

obtained for messages with Bi = 0 as 55 · τbit (11 bit ID) and 80 · τbit (29 bit ID).

Considering realistic values of ∆max = 20µs and θ = 5µs for the software delay and

the maximum clock difference, the minimum required safe window size ∆max+2·θ =

30µs in (3.11) can be compared with the minimum message length wmin (11 bit ID)

for different bit rates as shown in Fig. 3.7.

It is readily observed that the messages with minimum length are much larger than

the minimum required window size even for large bit rates. That is, the proposed

WTDMA method is expected to work well in practice.

34

Figure 3.7: Minimum window size and minimum frame length.

Algorithm 4 Weak TDMA Implementation
1: Function:main()

2: while 1 do

3: if Timer reaches any scheduled message then

4: Send that scheduled message

5: Update that scheduled message’s time

6: end if

7: end while

3.4.2 Weak TDMA Implementation

This part is constructed on clock synchronization methods as implemented in the pre-

vious section. After having an accurate global clock among the nodes, the preparation

of a valid scheduler is required. The implementation of WTDMA for each message

in the scheduler requires the realization of a periodic message transmission with a

given offset and period. Determining the correct offset time is performed by polling

the timer value for checking if the current time is passed by any of the offset of the

message to be sent. After sending that message, offset value is updated by adding the

period of that message.

35

while (true)

{

timeControl = TC0_Timer32bitCounterGet();

if(timeControl > offset0)

{

offset0 += period0;

sendMessage(id0, size0, canfdEnabled0);

if(offset0 >= 400000){ // Highest timer value

offset0 -= 400000;

}

}

else if(timeControl > offset1)

{

offset1 += period1;

sendMessage(id1, size1, canfdEnabled1);

if(offset1 >= 400000){

offset1 -= 400000;

}

}

.

.

.

}

This infinite while loop contains the number of messages that are transmitted by a

node and hence need to be handled by the scheduler for that node. After any mes-

sage’s time has arrived, a message is sent to the bus with the corresponding message

id, payload size, and message type which is a selection between CAN and CAN-FD.

void sendMessage(uint32_t canID, uint8_t messsageSize,

bool canFdEnabled)

{

currentTime[0] = TC0_Timer32bitCounterGet();

36

if(canFdEnabled)

{

CAN1_MessageTransmit(canID,messsageSize,currentTime,

CAN_MODE_FD_WITH_BRS, CAN_MSG_ATTR_TX_FIFO_DATA_FRAME);

}

else

{

CAN1_MessageTransmit(canID,messsageSize,currentTime,

CAN_MODE_NORMAL, CAN_MSG_ATTR_TX_FIFO_DATA_FRAME);

}

return;

}

37

38

CHAPTER 4

EVALUATION

This chapter evaluates the described implementation of clock synchronization and

weak TDMA (WTDMA) for both CAN and CAN FD. First, Section 4.1.1 gives in-

formation about the test environment and Section 4.2 describes the experimental setup

together with some properties of the used hardware such as oscillator drift. The per-

formance of the clock synchronization is evaluated in Section 4.3 and the correct

operation of WTDMA is verified in Section 4.4.

4.1 Development and Test Environment

In order to explain the experiments and the setup, brief explanation about the hard-

ware and software tools used in the experiments is given in the following sections.

4.1.1 Microchip SAM E54 Xplained Pro Evaluation Board

For testing, identical evaluation boards, that are SAM E54 Xplained Pro series from

Microchip [56] are used. These boards have a microcontroller from the SAM E54

family, ATSAME54P20A. This evaluation board includes an on-board embedded de-

bugger and it needs no external tool for programming or debugging. The board has a

USB serial converter that allows using serial communication directly from the USB

port. It also has several external peripherals to extend the functionality supplied by

the microcontroller. The SAM E54 Xplained Pro multifunctional evaluation board is

shown in Fig. 4.1.

The board has ATA6561 CAN physical layer transceiver, produced by Microchip, that

39

Figure 4.1: SAM E54 Xplained Pro evaluation board.

supports both CAN and CAN FD [56]. This property is the main reason of choosing

this evaluation board for experiments. On-board CAN FD support makes this board

favorable for this thesis work without requiring any external CAN FD controller.

There are two crystals on the board with frequency of 32.768 kHz and 12 MHz from

the same supplier, Kyocera Crystal Device Corporation [56]. The first one is used

for real-time operations and it is not the concern of our work. The 12 MHz crystal,

with product number CX3225CA12000D0KPSC1, is used as clock source for the

controller. There is also an internal clock generator inside the microcontroller, but it

is not as stable as the external crystal.

In our experiments, three different peripherals of the controller are used. The External

Interrupt Controller (EIC) peripheral is used as general-purpose input-output (GPIO)

functionality for external triggering. It has to be noted that this functionality is not

used as part of the implementation of clock synchronization and WTDMA, but it is

needed for taking timestamps by the synchronous triggering from all the nodes. The

Timer peripheral is used for realizing the local clock of each node. The capability of

reading and updating the timer value at any time is crucial for the experiments. The

nominal frequency of timers used in the experiments is 100 MHz, which equals to a

period of 100 ns between each timer tick. The timers are used as a 32-bit timer by the

concatenation of two 16-bit timers. Together, they can count up to approximately 430

seconds, which is slightly more than 7 minutes. For experiments that are longer than

one timer cycle, the timers start from 0 after overflowing. The last peripheral used in

40

the experiments is the most essential one, the CAN peripheral. The board is capable

of reading CAN and CAN-FD messages with the same command. For transmission,

only a single parameter allows choosing the protocol between CAN and CAN-FD.

The bitrate, sample point, and total time quanta are configurable. In the experiments,

they are configured with exactly the same parameters for clean communication.

4.1.2 MPLAB x IDE Software Development Environment

MPLAB x IDE is developed by Microchip as the development environment for its

own microcontrollers. It is an expandable, highly configurable software program that

incorporates powerful tools to configure, develop, debug and qualify embedded de-

signs for Microchip microcontrollers. This IDE has own configuration panel for easy

application development. This configuration panel is used for changing parameters

for peripherals supported by the microcontroller, that can be seen in Fig 4.2. MPLAB

x IDE has the capability of importing and building multiple projects into a single

workspace, which makes it easy to work with different projects. All the projects are

developed in C programming language and built in XC-32 compiler of Microchip.

Figure 4.2: MPLAB x IDE Project Configuration interface

41

4.1.3 CAN Analyzer

PCAN-USB FD device is used for monitoring the CAN bus activities. It is capable

of receiving and sending messages as well as analyzing the bus load. It can operate

with both CAN and CAN-FD simultaneously after configuring the nominal and data

bitrate values.

PCAN-View is the software developed by the same company, PEAK. In our projects,

it is used for observing and recording the messages on the bus. It has several use-

ful features, such as displaying the data in hexadecimal or decimal format, showing

the maximum, minimum and mean values of bus load in a recording. It can save

the records for further analyzing in external software. These records contain save

time, CAN ID, message type, message length and payload data. These are more than

enough parameters for analyzing the CAN operation.

Figure 4.3: PCAN-View analyzer interface

42

4.2 Experiment Setup

There are 3 MCU boards [56] in the experimental setup. These boards are acting

as CAN nodes TM, S1 and S2. They are connected to each other by CAN lines to

communicate with each other. There is a CAN analyzer device, capable of monitoring

CAN and CAN-FD messages in the bus. In real-world applications, the nodes are only

connected by CAN bus. In our controlled experimental setup, there is also an external

GPIO connection. This external connection ensures simultaneous timestamping. This

is crucial for analyzing the performance of clock synchronization.

Figure 4.4: Experiment setup illustration

The motivation of this thesis work is the inevitable clock drift of local clocks of dif-

ferent microcontrollers. Accordingly, a clock drift measurement serves as the initial

experiment conducted during the thesis work. In order to achieve clock synchro-

nization, the nodes should correct their timer. The performance of this operation is

measured by how much of the drift is corrected. To be more precise, the basis of the

clock drift should be measured.

Evaluation boards have external crystals for feeding the clock sources of the con-

trollers. Even though the crystals are from the same producer and have the same part

number, there is again some time drift between the clocks. Each microcontroller’s

timer feature is used to measure its internal clock. The timer configurations are set up

identically for conducting a controlled experiment. The timers are set to 100 ns tick

period. An external signal is used for measuring the timer value at the same instant

43

for all the nodes. In this experiment, one node is used as a signal generator. That node

can be called the master node. All other nodes, slave nodes, measure their timer value

when the trigger signal arrives. The master node is also measuring its own time when

the signal is received. GPIO feature of the microcontrollers is used for generating and

receiving the signal. The period of this external signal, that is sampling period, is 20

microseconds. The result of the clock drift measurement is shown in Figure 4.5.

Figure 4.5: Slave nodes’ clock drift with respect to master node

The result shows that the short-term frequency instability is very small as explained

in Section 2.5. The measured clock drift has a linear shape. This means constant drift

exists between the nodes. Since the boards are from the same vendor, the time drifts

are quite low. For the first slave node, clock drift is ≈ 1.5 ppm. For the second slave

node, this value is ≈ 3 ppm.

4.3 Clock Synchronization

Measuring the clock difference between the nodes shows that, there is a constant drift

in local times which accumulates as time passes. In order to apply TDMA behaviour

to the CAN bus, all messages on the bus should be transmitted within their allocated

time. This deterministic bus access requires a synchronization mechanism. The es-

sential element for this mechanism is a global clock with defined bounds on the time

44

difference between the nodes.

In this section, three different clock synchronization methods are experimented and

analyzed in detail. The first method is Gergeleit’s method [30], which is the first

method proposed in the literature. The AUTOSAR method [29] is used in the second

experiment. It has to be noted that the first two methods are only used for offset

correction. That is, corrections are only applied once in a RM period, whereas the

clock difference linearly increases between corrections. In order to overcome this

problem, the last method is introduced. It is a hybrid method, where the slaves are

running the AUTOSAR CS method and at the same time estimate the clock drift

between each RM. In this method, the offset correction is assisted by corrections

applied with respect to the drift estimations for further improvement.

All experiments are conducted in a controlled experimental setup, in order to analyze

their performance correctly. Experiments are conducted by changing different param-

eters to understand the dependency on that parameter. Specifically, the RM period,

CAN bit-rate and protocol (using whether CAN or CAN FD) are changed between

the experiments.

4.3.1 Gergeleit’s Method

The starting point of clock synchronization experiments is Gergeleit’s method. In this

experiment, there is one master and one slave node. According to Gergeleit’s method,

the master node is sending its local time as a reference time and slave nodes apply

clock correction according to the difference between the reference time and their own

local times. In this method, clock correction is applied with respect to the previous

timestamp. This causes one RM period delay to the clock correction.

One of the key points to be emphasized in Gergeleit’s method is, since the correction

is applied depending on the previous timestamp, initialization time of timers should be

equivalent. In the case of different starting times, Gergeleit’s method is not capable of

eliminating that time difference. In our experiment, an external GPIO signal is used

for starting each node’s timer at the same time for achieving the intended behavior

from this method.

45

Timestamping has a crucial effect on the performance of Gergeleit’s method. The

timestamp should be saved at the start of receiving the reference message for both the

master and slave nodes. In the experiment, the slave node is using an interrupt handler

for receiving messages and it allows timestamping in the correct spot. However, for

the master node, that is not possible to receive its own messages due to limitations

caused by the evaluation board [56]. To achieve the optimum timestamping point,

a transmission complete interrupt is used instead of the interrupt of receiving the

reference message. This causes minor software errors in experiments as mentioned in

Section 3.2.3. This software error occurred by the delay in receiving messages is not

constant, therefore a perfect compensation is not possible at all times. In any case,

the time difference is staying within some bounds.

When there are imperfections in the implementation, the illustration in Fig. 4.6 shows

the expected effect of an error in timestamping eTS [28]. The reason behind this

behavior can be explained in this way. At t = 0, the time difference between master

and slave node is zero. However, due to the errors, the slave node calculates the

time difference as eTS , and applies the wrong correction accordingly. Even if this

inaccuracy in timestamping occurs only once, while other timestamps are recorded

properly, the effect of this timestamping error at t = 0 remains in the following

cycles. Gergeleit’s method is sensitive to timestamping errors because it is operating

depending on the previous errors. If some errors occur in operation, they accumulate

such that the clock difference of master and slave regularly increase which is the

opposite of the desired behavior of clock synchronization.

Figure 4.6: Illustration of the Gergeleit’s method with a timestamping inaccuracy eTS

46

4.3.2 AUTOSAR Method

The experiments are followed by another synchronization algorithm, that is called

AUTOSAR method. This synchronization algorithm has advantages and disadvan-

tages over Gergeleit’s method. It has better results in terms of clock correction, how-

ever, it uses twice the bandwidth as Gergeleit’s method. The main reason behind this

fact is that AUTOSAR uses two RMs instead of one compared to Gergeleit’s method.

The timestamping importance is valid for AUTOSAR as well. Same experimental

setup is used as in the previous experiment.

The other advantage over Gergeleit’s method is, that the AUTOSAR method is fault

tolerant in case of inequality of starting times. In the AUTOSAR method, correction

is applied with respect to the time difference between two consecutive CAN messages

whereas Gergeleit’s method uses the timestamp taken at the previous RM. This allows

that a node can join a running CAN setup any time and be synchronized with the

master on the fly.

4.3.3 AUTOSAR Method with Drift Correction

Drift correction is conceptually different than the other clock synchronization meth-

ods. Both Gergeleit’s and the AUTOSAR methods work as offset correction methods.

They apply correction with respect to the RMs and update the local time once in ev-

ery RM period. On the other hand, drift correction tries to eliminate the constant drift

during the RM period. After estimating the drift value, correction is applied in the

amplitude of a timer tick. This method is more sensitive to any case of error because

having any error causes wrong drift estimation. Wrong drift estimation has a snow-

balling effect because the number of applied corrections is much more than offset

correction methods.

4.3.4 Experimental Results

We first compare the clock difference measurements for the different methods during

short measurement periods for eye inspection. Figure 4.7 shows the clock difference

47

measurements during a period of 20 s for both CAN and CAN FD. In these measure-

ments, TM and S1 are used. The bit rate for standard CAN is 250 kbps which is also

equal to the speed of arbitration phase of CAN-FD. The data bit rate is 4 Mbps for

CAN-FD. Each CS applied in measurements has 1 second for RM period.

Figure 4.7: Comparison of clock synchronizations - Short Run.

Regarding Gergeleit’s method, it can be seen that the clock differences evolve as

expected from the conceptual plot in Figure 4.6. Here, it is interesting to observe that

the results for CAN and CAN FD are very similar.

Looking at the results for the AUTOSAR method, it can be seen that the clock differ-

ence increases linearly between RMs and is reset to approximately zero with every

RM. This is the case for both CAN and CAN FD.

When applying drift correction, the obtained clock differences depend on the quality

of the drift estimate, which changes with the reception of each RM. Ideally, with a

perfect drift estimation, the clock difference should stay constant after each offset

correction according to the AUTOSAR method. Nevertheless, if the drift estimation

is not perfect, a linear drift between RMs can still be observed. However, this drift

is reduced compared to the drift without drift correction. Again, the results for CAN

48

and CAN FD are very similar.

In order to provide more insight on the long-term evolution of the clock differences,

longer experiments in the order of 2000 s, which corresponds to more than 30 min

were conducted. One representative measurement is shown in Figure 4.8.

Figure 4.8: Comparison of clock synchronizations - Long Run

Looking at the results for Gergeleit’s method, it is interesting to observe that the clock

differences fluctuate over time. That is, here, the effect of inaccuracies as described

above can directly be seen for both CAN and CAN FD. Differently, using the AU-

TOSAR method leads to predictable clock differences, which are only bounded by

the almost constant oscillator drift. The maximum clock differences can be improved

by applying drift correction, whereby the quality of the drift correction depends on

measurement and timestamping inaccuracies.

This observation is further supported by the histogram plot in Figure 4.9. Here, it

can be seen that the clock differences for Gergeleit’s method are almost uniformly

distributed between the upper bound of around 3.75µs and the lower bound of about

−2µs. This is expected since linear clock drift occurs between the RMs. The clock

differences above and below the stated bounds have to be interpreted as outliers that

49

occur due to inaccuracies. A similar result can be seen for the AUTOSAR method

but with smaller maximum values. When using drift correction, the clock differences

are very tightly centered around 0µs.

Figure 4.9: Comparison of clock synchronizations - Histogram

4.3.5 Statistical Evaluation

The illustrative measurements in the previous section were taken for a single CAN

bus configuration. In this section, we conduct a detailed evaluation of the effect of

different bus parameters on clock differences. Hereby, important performance metrics

for each clock synchronization algorithm are the mean and maximum values of clock

differences between master and slave nodes. The maximum time difference is the

parameter taken into account when constructing a WTDMA schedule. Still, the mean

value is a good indicator for evaluating the performances of the CS methods. We

note that, all of the experiments are conducted for more than 30 minutes by recording

100000 samples from each node.

In Fig. 4.10, the effect of the RM period on the performance of the clock synchro-

nization methods is shown. In the experiments, communication is performed by CAN

FD with a nominal bit rate of 250 kbps and a data bit rate of 4Mbps. The implemen-

tation imperfection leads to unexpected mean clock accuracy in Gergeleit’s method.

50

However, the AUTOSAR and drift correction methods show the expected results.

Specifically, for the AUTOSAR method, the maximum clock difference increases ap-

proximately with a factor of 2 when increasing the RM period, which is due to the

longer duration of drifting clocks without offset correction. In addition, the mean er-

ror is more or less half of the maximum error, which is in line with the clock drift of

the nodes. Here, it is beneficial to recall that the clock drift between TM and S1 node

is approximately 1.5 ppm, which corresponds to an accumulated clock difference of

3µs after a duration of 2 s. The drift correction method has a very low mean clock ac-

curacy since it applies correction between RM periods. Most importantly, the clock

accuracy of the drift correction method is almost not affected by changing the RM

period. The reason for this result is that the measurement inaccuracies are reduced

for larger RM periods, which leads to better drift estimates.

Figure 4.10: Clock synchronization performance of changing RM period

The other parameter to be explored is the bit rate of CAN messages. First, this param-

eter is analyzed for standard CAN protocol in three experiments. Afterward 4 of the

commonly used CAN-FD bit rates are used. The related tests are performed with an

RM period of 1 s. It is expected to have similar results while varying the CAN bitrate,

which is confirmed in Fig. 4.11. The drift correction method has again the best result

51

when we analyzed the whole traffic excluding the first RM period. For comparing the

mean values, the results are similar to the previous experiment.

Figure 4.11: Clock synchronization performance of changing CAN bitrate

The last parameter is changing the communication protocol between CAN and CAN-

FD. This experiment is important to show the possibility of using both protocols

whenever needed. These tests are conducted with 250 kbps nominal bit timing and 4

Mbps data bit timing in CAN-FD counterpart. RM period is selected as 1 second. The

results are similar in both maximum and mean time differences for all three methods.

The key point is that, this experiment shows that the realization of clock synchroniza-

tion is possible with CAN-FD without any significant performance degradation. This

allows the implementation of WTDMA by using CAN-FD. which is superior to the

standard CAN.

52

Figure 4.12: Clock synchronization performance of changing communication proto-

col

4.4 Weak TDMA

The realization of Weak TDMA based on successful clock synchronization is the

ultimate goal of this thesis work. After achieving bounded clock differences, we

can use the concept of a global clock between the nodes on the bus. The minimum

window size for the scheduler can be calculated by the maximum message length, the

current data bus speed and the maximum clock error using 3.11.

Experiments are performed with the setup defined in Section 4.2. The software imple-

mentation details are given in Sec. 3.4.2. The standard CAN bit rate and arbitration

bit rate for CAN-FD is selected as 250 kbps. The data bit rate for CAN-FD is selected

as 2 Mbps.

For analyzing the tests, the success criteria is the number schedule violations defined

in 3.8. Also the theoretical maximum bus utilization as well as analyzed bus utiliza-

tion values are given for better interpretation.

53

Table 4.1: Message and Schedule Properties

ID oi pi li ID oi pi li ID oi pi li

10 1.08 5 0 30 1.52 5 0 50 1.96 5 0

11 1.30 5 0 31 1.74 5 0 51 2.44 5 1

12 2.18 5 1 32 2.70 5 1 52 2.96 5 2

13 3.90 5 3 33 3.26 5 2 53 3.56 5 3

14 15.00 20 8 34 4.62 5 4 54 4.24 5 4

15 15.54 20 8 35 5.00 20 8 55 5.54 20 8

16 40.00 200 8 36 10.00 20 8 56 10.54 20 8

17 80.00 200 8 37 20.00 40 8 57 20.54 40 8

18 120.00 200 8 38 40.54 200 8 58 80.54 200 8

19 200.00 1000 8 39 160.00 200 8 59 120.54 200 8

20 400.00 1000 8 40 200.54 1000 8 60 160.54 200 8

21 600.00 1000 8 41 400.54 1000 8 61 600.54 1000 8

1 0.00 1000 8 42 800.00 1000 8 62 800.54 1000 8

2 0.54 1000

oi and pi are given in ms. Umax = 100% when B = 250 kbps

54

While realizing the WTDMA method, the message set in Table 4.1 is used. The

message set includes messages with different payloads (li in bytes) size and periods

(pi in ms). The period of messages are changing between 5 ms and 1000 ms similar

to existing message sets such as the SAE and PSA example message sets [15, 57,

58, 24]. The schedule has mostly 8 bytes of messages, on the other hand there are

several messages with 0, 1, 2, 3, 4 bytes payloads. According to equation 3.11, short

messages are more challenging for WTDMA. If the bit rate B equals to 250 kbps, in

terms of bus utilization, the theoretical upper limit of this schedule is 100% due to bit

stuffing. The minimum bus utilization is also calculated as 83.84% using the equation

2.2. The actual bus utilization has also recorded by the CAN analyzer for each test.

Moreover, the offset of messages are arranged manually in order to obtain a feasible

WTDMA.

Experiments are conducted such that 106 CAN messages are received by the CAN

analyzer. Using this scheduler table, 3200 messages are sent in 1 second. This makes

each experiment approximately 300 seconds long.

In the tests, AUTOSAR with Drift Correction CS algorithm is used. In Table 4.1, the

messages in the first column are sent by the TM, where messages with ID 1 and 2 are

the SYNC and FUP messages. The second and third column messages are sent by S1

and S2 respectively.

4.4.1 Evaluation of WTDMA for CAN

The first experiments are performed for showing the correct implementation of WT-

DMA. For this, two experiments are conducted. In order to run WTDMA success-

fully, the clock difference between nodes are bounded to some value. Using equation

3.11, for safe window size while using 250 kbps CAN bus, the upper limit of clock

accuracy is calculated as 100 µs assuming the maximum software delay is 20 µs.

Since all of the CS methods used in this thesis have far more better accuracy, no syn-

chronization is used to analyze failure of WTDMA. In the first experiment, two slave

nodes apply AUTOSAR with DC. In the second experiment one of the nodes, S1,

applies no correction at all. Table 4.2 shows the resulting schedule violations.

55

Table 4.2: Observed ratios of schedule violations.

Exp1 Exp2

V 0 0.084

First experiment with ideal conditions has no schedule violations. This ensures that

WTDMA concept is working. In the second experiment the schedule violations are

coming from S1 as it is not using any CS method. It is important to tell that, for the

first 144 seconds there is no schedule violations. When looking at the clock accuracy

at that time, a clock difference of 220 µs is monitored between S1 and TM. After that

time, only 0 payload messages are having schedule violations at first. From then, the

ratio of violated messages starts to increase. The resultant schedule violation ratio

is calculated around 300 seconds, which is the duration of the experiment. If the

experiment went beyond, the violation ratio would increase since all the messages

of S1 cause violations. While the theoretical upper limit of the bus load is 100%,

the analyzer recorded a mean of 87.2% utilization with a maximum of 88.7% and

minimum of 85.5% during the tests. The reason for the deviations in the utilization is

the bit stuffing, which depends on the message content and hence changes during the

experiment.

In the third experiment, the message size of the following messages shown in Table

4.3 in the schedule is increased.

Table 4.3: Properties of Messages for Increased Bus Load

ID Bi ID Bi ID Bi

10 1 30 1 50 1

11 1 31 1 51 2

12 2 32 2 52 3

13 4 33 3 53 4

34 5 54 5

That is, there are no more messages with a payload of 0 Byte, and the calculated

maximum bus load increased to 111.2% with this change. In the fourth experiment, a

56

different modification is applied to the schedule to show that bus utilization is not the

only factor of affecting the message violation. The changes in Table 4.4 are applied

in the fourth experiment. That is, the shortest messages in this schedule still have a

payload of 0Byte.

Table 4.4: Properties of Messages for Third Experiment

ID Bi ID Bi

12 6 31 6

Looking at the results in Table 4.5, we can see that WTDMA can handle a bus load

up to 97.5% in the third experiment. That is, increasing the payload of messages and

giving them less window size than their maximum message length is compensated in

WTDMA due to the varying bit stuffing as was also observed in [28]. Specifically,

it is very unlikely that the maximum bit stuffing has to be applied for all messages

at the same time, which is a known fact in the literature [59]. On the other hand,

in the fourth experiment, schedule violations are observed at a maximum bus load

of 97.0%. Even though the bus load is less compared to the third experiment, it has

high violations such as 0.081 since the shortest messages of experiment 4 are shorter

than the shortest messages of experiment 3. These violations happen due to the bus

arbitration mechanism of CAN. If the delay of a message is longer than the total

length of the message, the next message in the scheduler gains access to the bus if it

has a higher priority ID.

Table 4.5: Observed ratios of schedule violations.

Exp3 Exp4

V 0 0.081

4.4.2 Evaluation of WTDMA for CAN FD

CAN-FD has various advantages over standard CAN. Additional experiments are

conducted to show this superior protocol, CAN-FD, is also capable of running WT-

DMA schedule. In experiment 5, experiment 4 is repeated with all the nodes using

57

CAN-FD. Finally, in experiment 6, all the messages in Table 4.1 have 8 times more

payload to show that CAN-FD can also run WTDMA at a maximum load just like

standard CAN. The resulting schedule violations are shown in Table 4.6.

Table 4.6: Observed ratios of schedule violations.

Exp5 Exp6

V 0 0

Here, it has to be noted that the bus load in experiment 5 is significantly decreased to

a maximum of 70% since all messages are sent on CAN-FD. Moreover, no schedule

violation has occurred. This result ensures that CAN-FD is capable of running WT-

DMA scheduler. For the last experiment, it is the case that a maximum utilization of

87% is observed on the bus since all the messages contain an 8 times higher payload

than the one specified in Table 4.1. Even though several messages have the maximum

payload of 64 bytes, all the messages in the schedule are sent in their correct order

during the test.

In all of these tests, one of the messages, for each node, in the schedule carries times-

tamps for checking if the CS algorithm is working properly or not. The performance

of CS algorithms is parallel to the results in the previous section. Moreover, the

correct operation of the CS is confirmed by the fact that WTDMA works without

problem.

58

CHAPTER 5

CONCLUSION

Controller Area Network (CAN) is still the most widely used in-vehicle communica-

tion bus in modern vehicles since it features advantages such as reliability, low cost,

and simplicity. Considering that CAN is frequently used for safety-critical automotive

applications which require high real-time Quality of Service (QoS), there are major

shortcomings of CAN. First, CAN has a limited bandwidth, which is not sufficient

for modern applications such as advanced driver assistance systems (ADAS) or au-

tonomous vehicles. Second, CAN does not support clock synchronization and does

not guarantee deterministic bus access.

The first shortcoming is mitigated by recent efforts to increase the bandwidth of CAN

with the definition and hardware realization of new protocols such as CAN with Flexi-

ble Data-rate (CAN-FD) in 2012 and CAN with Extended Length (CAN-XL) in 2021.

Specifically, CAN FD is already used in many vehicle applications. The second short-

coming is addressed in software by very recent work on highly accurate clock syn-

chronization for CAN that further enables the realization of time-slotted access on

CAN in the form of weak time division multiple access (WTDMA). Nevertheless,

these developments are only performed for the standard CAN protocol but not for

CAN FD.

This thesis implements and evaluates clock synchronization algorithms and WTDMA

for CAN FD. The thesis first implements two different offset correction algorithms

on recent microcontroller evaluation boards that support CAN FD. These methods

are based on periodic timestamps which are expected to be taken at the same time

by all nodes, and a time master whose local clock is assumed as the perfect clock

broadcasts its timestamp by sending a reference message to slave nodes. The slave

59

nodes correct their local clocks periodically whenever they receive timestamps of the

time master in reference messages. In addition, the timestamps can be used to perform

drift correction to achieve a better clock accuracy. The evaluation of the implemented

algorithms shows that a clock accuracy in the order of 1µs can be achieved on CAN

FD. These implementations show that CAN and CAN-FD have similar performances

about clock accuracy. Next, the thesis uses the clock synchronization algorithms to

realize WTDMA for deterministic bus access. In particular, WTDMA is implemented

in software and hence it is fully compatible with the CAN FD protocol. The correct

functionality of WTDMA is evaluated by hardware experiments. Most interestingly,

these experiments show that bus loads above 97% can be achieved without violating

the WTDMA schedule. In terms of maximum busload, both CAN and CAN-FD can

reach up to limits. Moreover, CAN-FD is capable of transferring more meaningful

data in similar bus utilization thanks to its capability of higher payload transmission.

Overall, the work in this thesis demonstrated that clock synchronization algorithms

and a WTDMA scheme can be effectively implemented and evaluated on the CAN-

FD protocol. The results showed that these techniques can achieve high levels of

clock accuracy and support high bus loads, making them suitable for use in safety-

critical automotive applications. The compatibility of these techniques with both

CAN and CAN-FD adds to their versatility and potential for widespread adoption

in the automotive industry. Moving forward, it would be interesting to explore the

potential of these techniques for other applications beyond the automotive industry.

The ability to achieve high levels of clock synchronization and deterministic bus ac-

cess could be beneficial in other fields where real-time performance and reliability are

important. Additionally, it would be useful to study the scalability of these techniques

to large networks with many nodes, as well as their robustness in the presence of net-

work failures or disruptions. Further research in these areas could help to extend the

utility and impact of these techniques.

60

REFERENCES

[1] I. Standard-11898, “Road vehicles-interchange of digital information – Con-

troller Area Network (CAN) for high-speed communication,” International

Standards Organisation (ISO), 1993.

[2] Y. He, Z. Jia, M. Hu, C. Cui, Y. Cheng, and Y. Yang, “The hybrid similar neigh-

borhood robust factorization machine model for can bus intrusion detection in

the in-vehicle network,” IEEE Transactions on Intelligent Transportation Sys-

tems, pp. 1–9, 2021.

[3] F. Amato, L. Coppolino, F. Mercaldo, F. Moscato, R. Nardone, and A. Santone,

“Can-bus attack detection with deep learning,” IEEE Transactions on Intelligent

Transportation Systems, pp. 1–10, 2021.

[4] K. Agrawal, T. Alladi, A. Agrawal, V. Chamola, and A. Benslimane, “Nove-

lads: A novel anomaly detection system for intra-vehicular networks,” IEEE

Transactions on Intelligent Transportation Systems, pp. 1–11, 2022.

[5] A. Michaels, V. S. S. Palukuru, M. J. Fletcher, C. Henshaw, S. Williams,

T. Krauss, J. Lawlis, and J. Moore, “Can bus message authentication via co-

channel rf watermark,” IEEE Transactions on Vehicular Technology, pp. 1–1,

2022.

[6] F. Luckinger and T. Sauter, “Software-based AUTOSAR-compliant precision

clock synchronization over CAN,” IEEE Transactions on Industrial Informatics,

vol. 18, pp. 7341–7350, Oct. 2022.

[7] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin, “Intra-

vehicle networks: A review,” IEEE Transactions on Intelligent Transportation

Systems, vol. 16, no. 2, pp. 534–545, 2015.

[8] F. Hartwich, “CAN with flexible data rate,” Ihe international CAN Conference

(iCC), 2012.

61

[9] R. B. GmbH, “CAN XL – the next step in CAN evolution.” https:

//www.bosch-semiconductors.com/media/ip_modules/pdf_

2/can_xl_1/canxl_intro_20210225.pdf, 2021. Accessed on

13.06.2022.

[10] M. Akpinar, K. W. Schmidt, and E. G. Schmidt, “Improved clock synchroniza-

tion algorithms for the controller area network (CAN),” in International Con-

ference on Computer Communication and Networks, pp. 1–8, IEEE, 2019.

[11] M. Akpınar, E. G. Schmidt, and K. Werner Schmidt, “Drift correction for the

software-based clock synchronization on controller area network,” in 2020 IEEE

Symposium on Computers and Communications (ISCC), pp. 1–6, 2020.

[12] S. Mubeen, J. Maki-Turja, and M. Sjodin, “Worst-case response-time analysis

for mixed messages with offsets in controller area network,” in Emerging Tech-

nologies Factory Automation, IEEE Conference on, pp. 1–10, 2012.

[13] Y. Chen, R. Kurachi, H. Takada, , and G. Zeng, “Schedulability comparison for

CAN message with offset: Priority queue versus FIFO queue,” RTNS, pp. 181–

192, 2011.

[14] H. Daigmorte and M. Boyer, “Evaluation of admissible can bus load with weak

synchronization mechanism,” in Proceedings of the 25th International Confer-

ence on Real-Time Networks and Systems - RTNS ’17, (Grenoble, FR), pp. 277–

286, 2017.

[15] K. Tindell and A. Burns, “Guaranteeing message latencies on controller area

network (CAN),” in In Proceedings of the 1st International CAN Conference,

pp. 1–2, CiA, 1994.

[16] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area network (CAN)

schedulability analysis: Refuted, revisited and revised,” Real-Time Syst., vol. 35,

pp. 239–272, April 2007.

[17] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extending worst case response-time

analysis for mixed messages in controller area network with priority and fifo

queues,” IEEE Access, vol. 2, pp. 365–380, 2014.

62

https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/can_xl_1/canxl_intro_20210225.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/can_xl_1/canxl_intro_20210225.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/can_xl_1/canxl_intro_20210225.pdf

[18] R. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller area network (can)

schedulability analysis with fifo queues,” in Real-Time Systems (ECRTS), 2011

23rd Euromicro Conference on, pp. 45–56, July 2011.

[19] H. Daigmorte, M. Boyer, and J. Migge, “Reducing CAN latencies by use of

weak synchronization between stations,” in Proceedings of the 16th Interna-

tional CAN Conference, pp. 1–8, 2017.

[20] K. W. Schmidt, “Robust priority assignments for extending existing con-

troller area network applications,” IEEE Transactions on Industrial Informatics,

vol. 10, pp. 578–585, Feb 2014.

[21] M. Grenier, L. Havet, and N. Navet, “Pushing the limits of CAN - scheduling

frames with offsets provides a major performance boost,” in European Congress

on Embedded Real Time Software, 2008.

[22] H. Daigmorte and M. Boyer, “Traversal time for weakly synchronized CAN

bus,” in International Conference on Real-Time Networks and Systems, pp. 35–

44, 2016.

[23] G. Leen and D. Heffernan, “Ttcan: a new time-triggered controller area net-

work,” Microprocessors and Microsystems, vol. 26, no. 2, pp. 77 – 94, 2002.

[24] K. Schmidt and E. G. Schmidt, “Systematic message schedule construction for

time-triggered CAN,” Vehicular Technology, IEEE Transactions on, vol. 56,

no. 6, pp. 3431–3441, 2007.

[25] N. Navet and F. Simonot-Lion, “In-vehicle communication networks: A histor-

ical perspective and review,” in Industrial Communication Technology Hand-

book, pp. 50–1, CRC Press, 2017.

[26] M. Hadded, P. Muhlethaler, A. Laouiti, R. Zagrouba, and L. A. Saidane, “Tdma-

based mac protocols for vehicular ad hoc networks: A survey, qualitative analy-

sis, and open research issues,” IEEE Communications Surveys Tutorials, vol. 17,

no. 4, pp. 2461–2492, 2015.

[27] O. Jubran and B. Westphal, “Optimizing guard time for tdma in a wireless sensor

network - case study,” in 39th Annual IEEE Conference on Local Computer

Networks Workshops, pp. 597–601, 2014.

63

[28] M. Akpınar, A GENERAL FRAMEWORK FOR THE DETERMINISTIC

MEDIUM ACCESS ON THE CONTROLLER AREA NETWORK. PhD thesis,

Middle East Technical University, 2022.

[29] AUTOSAR, “Specification of time synchronization over CAN – AUTOSAR CP

release 4.3.1,” Dec 2017.

[30] M. Gergeleit and H. Streich, “Implementing a distributed high-resolution real-

time clock using the CAN-bus,” in International CAN-Conference, 1994.

[31] F. Hartwich, “CAN with Flexible Data Rate,” in The international CAN Confer-

ence (iCC), 2012.

[32] “CAN with Flexible Data-Rate Specification version v1.0, Robert Bosch

GmbH.” https://can-newsletter.org/assets/files/

ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf.

Accessed on 2016.

[33] R. Lotoczky, “CAN-FD Flexible Data Rate CAN An Abbreviated primer.”

https://vector.com/portal/medien/vector_cantech/

Congress2013/1_9_CAN%20FD_Update.pdf. Accessed on 2016.

[34] A. K. Sinha and S. Saurabh, “CAN FD: Performance reality,” in 2017 3rd Inter-

national Conference on Computational Intelligence Communication Technology

(CICT), pp. 1–6, Feb 2017.

[35] G. M. Zago and E. P. de Freitas, “A Quantitative Performance Study on CAN

and CAN FD Vehicular Networks,” IEEE Transactions on Industrial Electron-

ics, vol. 65, pp. 4413–4422, May 2018.

[36] “Renesas provides chips for Toyota.” https://can-newsletter.

org/engineering/applications/171114_17-4_

renesas-provides-chip-for-toytas-self-driving-cars_

renesas. Accessed on 2017.

[37] “Mercedes W140: First car with CAN.” https://

can-newsletter.org/engineering/applications/160322_

25th-anniversary-mercedes-w140-first-car-with-can.

Accessed on 2017.

64

https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://vector.com/portal/medien/vector_cantech/Congress2013/1_9_CAN%20FD_Update.pdf
https://vector.com/portal/medien/vector_cantech/Congress2013/1_9_CAN%20FD_Update.pdf
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can

[38] H. S. An and J. W. Jeon, “Analysis of CAN FD to CAN message routing method

for CAN FD and CAN gateway,” in 2017 17th International Conference on

Control, Automation and Systems (ICCAS), pp. 528–533, Oct 2017.

[39] G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano, “Improving compatibility

between CAN FD and legacy CAN devices,” in 2015 IEEE 1st International

Forum on Research and Technologies for Society and Industry Leveraging a

better tomorrow (RTSI), pp. 419–426, Sept 2015.

[40] “CAN 2020: The future of CAN technology.” https:

//www.can-cia.org/news/cia-in-action/view/

can-2020-the-future-of-can-technology/2016/3/21/.

Accessed on 2017.

[41] B. Cheon and J. W. Jeon, “The CAN FD network performance analysis using

the CANoe,” in IEEE ISR 2013, pp. 1–5, Oct 2013.

[42] M. Tenruh, P. Oikonomidis, P. Charchalakis, and E. Stipidis, “Modelling, simu-

lation, and performance analyssi of a can fd system with sae benchmark based

message set,” Ihe international CAN Conference (iCC), 2015.

[43] H. Kim, X. Ma, and B. R. Hamilton, “Tracking low-precision clocks with time-

varying drifts using Kalman filtering,” IEEE/ACM Transactions on Networking,

vol. 20, pp. 257–270, Feb. 2012.

[44] K. S. Yildirim and A. Kantarci, “External gradient time synchronization in wire-

less sensor networks,” IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 3, pp. 633–641, 2014.

[45] G. Rodriguez-Navas, S. Roca, and J. Proenza, “Orthogonal, fault-tolerant, and

high-precision clock synchronization for the controller area network,” IEEE

Transactions on Industrial Informatics, vol. 4, pp. 92–101, May 2008.

[46] S. Park, H. Kim, H. Kim, C. N. Cho, and J. Choi, “Synchronization improve-

ment of distributed clocks in EtherCAT networks,” IEEE Communications Let-

ters, vol. 21, pp. 1277–1280, June 2017.

65

https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/

[47] “Cardinal components inc. applications brief no. a.n. 419.”

http://www.cardinalxtal.com/static/frontend/files/cardinal-measuring-clock-

stability.pdf.

[48] Z. Yang, L. He, L. Cai, and J. Pan, “Temperature-assisted clock synchroniza-

tion and self-calibration for sensor networks,” IEEE Transactions on Wireless

Communications, vol. 13, pp. 3419–3429, June 2014.

[49] B. Martinez, X. Vilajosana, and D. Dujovne, “Accurate clock discipline for long-

term synchronization intervals,” IEEE Sensors Journal, vol. 17, pp. 2249–2258,

April 2017.

[50] M. Akpınar, E. G. Schmidt, and K. Werner Schmidt, “Drift correction for the

software-based clock synchronization on controller area network,” in IEEE Sym-

posium on Computers and Communications, pp. 1–6, 2020.

[51] S. Einspieler, N. Rathakrishnan, A. Prabhakara, B. Steinwender, and W. Elmen-

reich, “High accuracy software-based clock synchronization over can,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–9, 2021.

[52] M. Akpınar, E. G. Schmidt, and K. W. Schmidt, “Highly accurate clock syn-

chronization with drift correction for the controller area network,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 33, pp. 4071–4082, Dec. 2022.

[53] “Cia 603 version 1.0.0 - CAN Network Time Management,” 2017.

[54] B. Donnelly and J. Cosgrove, “Achieving microsecond accuracy with 32 bit

microcontrollers using the controller area network (CAN),” in IET Conference

Proceedings, pp. 508–513, January 2004.

[55] D. Lee and J. Allan, “Fault-tolerant clock synchronisation with microsecond-

precision for CAN networked systems,” in International CAN Conference,

pp. 1–6, 2003.

[56] “Microchip SAM E54 Xplained Pro ATSAME54-XPRO.” https:

//www.microchip.com/content/dam/mchp/documents/OTH/

ProductDocuments/UserGuides/70005321A.pdf. Accessed on

10-09-2022.

66

https://www.microchip.com/content/dam/mchp/documents/OTH/ProductDocuments/UserGuides/70005321A.pdf
https://www.microchip.com/content/dam/mchp/documents/OTH/ProductDocuments/UserGuides/70005321A.pdf
https://www.microchip.com/content/dam/mchp/documents/OTH/ProductDocuments/UserGuides/70005321A.pdf

[57] N. Navet, Y.-Q. Song, and F. Simonot, “Worst-case deadline failure probability

in real-time applications distributed over controller area network,” Journal of

Systems Architecture, vol. 46, pp. 607 – 617, 2000.

[58] J. Fonseca, F. Coutinho, and J. Barreiros, “Scheduling for a TTCAN network

with a stochastic optimization algorithm,” in International CAN in Automation

Conference, 2002.

[59] A. Batur, E. G. Schmidt, and K. W. Schmidt, “Evaluation of response time dis-

tributions for controller area network messages,” in Signal Processing and Com-

munications Applications Conference, pp. 1–4, 2018.

67

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND INFORMATION
	General Background on CAN
	CAN Messages
	Standard CAN Protocol
	CAN FD
	Clock Drift
	Clock Synchronization

	CONTRIBUTION
	Timestamping
	Timestamping Background
	Timestamping Implementation

	Offset Correction Methods
	Gergeleit's Method
	AUTOSAR Method
	Offset Correction Implementation

	Drift Correction Based on Timestamps
	Drift Correction Background
	Drift Correction Implementation

	Weak TDMA
	Weak TDMA Background
	Weak TDMA Implementation

	EVALUATION
	Development and Test Environment
	Microchip SAM E54 Xplained Pro Evaluation Board
	MPLAB x IDE Software Development Environment
	CAN Analyzer

	Experiment Setup
	Clock Synchronization
	Gergeleit's Method
	AUTOSAR Method
	AUTOSAR Method with Drift Correction
	Experimental Results
	Statistical Evaluation

	Weak TDMA
	Evaluation of WTDMA for CAN
	Evaluation of WTDMA for CAN FD

	CONCLUSION
	REFERENCES

