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ABSTRACT

TRAJECTORY PLANNING AND TRACKING FOR AUTONOMOUS
VEHICLES

Çiçek, Haluk Levent

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Klaus Werner Schmidt

December 2022, 90 pages

Finding appropriate paths is an essential issue for the development of autonomous

vehicles and robots. Hereby, it has to be considered that autonomous vehicles cannot

follow sharp corners, as they cannot turn on a single point. Therefore, it is important

to compute smooth paths that have additional desirable properties such as minimum

length and sufficient distance from obstacles. Furthermore, practical applications re-

quire the computation of such paths in real time.

This thesis develops a general method for path planning and tracking of autonomous

vehicles. In line with the stated requirements, the proposed algorithm ensures smooth

curves and avoids sharp corners on the planned path. The proposed algorithm is based

on different existing path planning algorithm which named as the Voronoi Boundary

Visibilty and Steiner Points Repeatedly (VV-ST-R) that result in straight-line paths

with corners. The undesired sharp corners resulting from these algorithm are re-

placed by smooth curves using Bezier curves. In this way, the traceability of the road

is increased. As performance criteria, the path’s calculation time, the shortest path

distance to the obstacle, and the total length of the path are determined. In various

computational experiments, the proposed algorithm and the previous algorithm are
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compared. In addition, proposed method for choosing Bezier curve control points are

evaluated. It is found that the proposed algorithm results in short smooth paths with

a sufficient obstacle distance and a small computation time. Finally, the traceability

of the proposed paths is confirmed by driving simulations with car-like robots using

the Pure Pursuit algorithm for path tracking. It is further expected that the proposed

method can be used for both road vehicles and mobile robots.

Keywords: Path planning, Tracking, Autonomous vehicles, Mobile robots, Bezier

Curves
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ÖZ

OTONOM ARAÇLAR İÇİN YOL PLANLAMASI VE TAKİBİ

Çiçek, Haluk Levent

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Aralık 2022 , 90 sayfa

Uygun yolları bulmak, otonom araçların ve robotların geliştirilmesi için önemli bir

konudur. Burada otonom araçların tek bir noktadan dönemedikleri için keskin viraj-

ları takip edemeyecekleri de göz önünde bulundurulmalıdır. Bu nedenle, minimum

uzunluk ve engellerden yeterli mesafe gibi ilave istenen özelliklere sahip düzgün yol-

ları hesaplamak önemlidir. Ayrıca, pratik uygulamalar bu tür yolların gerçek zamanlı

olarak hesaplanmasını gerektirir.

Bu tez, otonom araçların yol planlaması ve takibi için genel bir yöntem geliştirmekte-

dir. Belirtilen gereksinimler doğrultusunda, önerilen algoritma düzgün eğriler sağlar

ve planlanan yolda keskin köşelerden kaçınır. Önerilen algoritma, Voronoi Boundary

Visibilty and Steiner Points Repeatedly (VV-ST-R) algoritması ile türetilen köşeli düz

çizgi yollar ile sonuçlanan mevcut yol planlama algoritmasına dayanmaktadır. Bu al-

goritmadan kaynaklanan istenmeyen keskin köşeler, Bezier eğrileri kullanılarak düz-

gün eğrilerle değiştirilir. Bu sayede yolun takip edilirliği artırılmış olur. Performans

kriteri olarak yolun hesaplama süresi, engele en kısa yol mesafesi ve yolun toplam

uzunluğu belirlenmiştir. Çeşitli hesaplama deneylerinde önerilen algoritma ve önceki
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algoritmalar karşılaştırılır. Ek olarak, Bezier eğrisi kontrol noktalarının seçilmesi için

önerilen yöntem değerlendirilir. Önerilen algoritmanın, yeterli bir engel mesafesi ve

küçük bir hesaplama süresi ile kısa düzgün yollar ile sonuçlandığı bulunmuştur. Son

olarak, önerilen yolların izlenebilirliği, yol takibi için Pure Pursuit algoritması kulla-

nılarak araba benzeri robotlarla simülasyonlar yapılarak doğrulanır. Ayrıca önerilen

yöntemin hem karayolu taşıtları hem de mobil robotlar için kullanılabilmesi beklen-

mektedir.

Anahtar Kelimeler: Yol planlama, Yol takibi, Otonom araçlar, Mobil robotlar, Bezier

Eğrileri
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CHAPTER 1

BACKGROUND INFORMATION

1.1 Introduction

Autonomous driving technologies have been researched for years. DERVISH, an

office navigation robot, won a robot competition in 1994 [1]. Many mobile robots and

autonomous vehicles have been developed since then. There are many differences in

these autonomous vehicles produced throughout history. As technology evolves and

new studies are carried out in this field, many car features have changed. However,

there are also standard features. One of these common features is the path planning

feature. The movements of these autonomous vehicles are not random, and they

somehow plan their paths and follow that path to accomplish tasks. This thesis was

written on the path planning and tracking of autonomous vehicles and mobile robots.

The path planner aims to create a safe path between the start and end points without

hitting obstacles in the vehicle’s environment. Following this generated path properly

is provided by the motion controller [2]. There are many studies in the literature for

path planning. These studies were conducted on some features considered necessary

in path planning. Path length, the time required to find the map, and safety can be

considered fundamental problems to be solved by path planning studies [3]. However,

most of these studies do not offer a comprehensive solution to these problems. For

this reason, there is a research [4] to explain and compare these solution proposals

in detail. After this comparison, according to the purpose, suitable algorithm can be

selected.

On the one hand, there are algorithms that directly compute smooth paths using cer-

tain types of curves such as splines, polynomial spiral, arcs, clothoids and Bezier

1



curves [5]. Such methods may have the disadvantage of larger computation times in

some cases [6]. On the other hand, there are methods that smoothen previously com-

puted simple paths with corners. For example, [7] tries to smoothen paths that are

constructed from hypercloids, [8] tries to smoothen paths together with a limit on the

maximum curvature and [9] introduces a parametric continuity in order to increase

the traceability of paths.

1.2 Basic Concepts

Some concepts need to be known in order to understand autonomous motion fully.

Autonomous motion is a topic that comprises multiple research fields. In order to

realize fully autonomous motion, it is necessary to bring together many different

concepts. Although the main topic of this thesis is path planning and tracking for

autonomous vehicles, it is essential to have information about other concepts used

in the autonomous movement. These basic concepts can be specified as localization,

mapping, perception, planning and waypoints, and motion control.

1.2.1 Localization

Knowing where the autonomous robot is in its environment is one of the essential

features of autonomous movement. The autonomous robot must reach the goal posi-

tion while moving in the environment for autonomous movement.To do this, it must

know the start and goal point. However, just knowing these is not enough for suc-

cessful autonomous motion. The robot must also know its position and whether it

has reached the start or goal point. Even if the autonomous robot localizes itself in

its immediate vicinity after not knowing its global position in the environment, this

is not enough for autonomous driving [10]. In [10], detailed research on localiza-

tion for autonomous motion has been done. The following two techniques Satellite

Navigation Systems and Landmark-Based Navigation, are two popular techniques for

localization for autonomous motion.
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• Satellite Navigation Systems

The quality of the localization may vary depending on the navigation system

used. Generally, the information from the navigation system is used by combin-

ing it with the digital map. A Digital map provides the information necessary

for the autonomous robot to detect the road. However, only using navigation

systems is not a satisfactory solution for localization. First, for using navigation

systems, open space is required. If buildings or underpasses are affecting the

signals, the results from the navigation systems will not be of the desired qual-

ity. That is why sensors are used in the vehicle along with navigation systems

[10].

• Landmark Based Navigation

Landmarks are unique structures, and these landmarks can be detected dur-

ing autonomous driving with the help of vehicle sensors. Since landmarks are

unique, when sensors detect these landmarks, relative position can be known

according to the measurements. After that, the global positions can easily be

found. Lidar and other vision sensors can be used to detect these landmarks

[10].

1.2.2 Mapping and Perception

An autonomous robot needs a map to localize itself inside that map. For the au-

tonomous robot to localize, it needs the data obtained from the environment and the

map data. In other words, the vehicle should know where the obstacles are and where

the accessible areas are. This map can be built with sensor measurements. When

an autonomous robot localizes itself, its measurements are the information about its

vicinity. As the vehicle moves, this information is acquired in different parts of the

map. The main phases of this operation are perception, processing, and fusion.

Perception is the result of sensor measurements. At each motion sequence, different

sensor readings can be gathered. Processing comes after perception to build a local

map representation of the vehicle’s vicinity. This local representation is transferred

to global representation in the fusion phase [11] .
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1.2.3 Planning

The primary purpose of this thesis is path planning and tracking for autonomous

robots. More detailed explanations and studies in this field will be provided later in

detail. However, it is necessary to give a summary before going on to the studies in

this field in the literature. Every autonomous movement has a specific purpose. In its

most general definition, the robot should be able to go from where it starts to move

to where it will arrive without hitting obstacles. Along this path, the autonomous

robot must not hit obstacles and must not get lost. For these reasons, autonomous

movement does not depend on a single concept. All concepts such as localization,

mapping, and perception mentioned in previous sections have the same importance

simultaneously.

Since this thesis focuses on path planning, the following sections will focus on this

and give detailed information about that. Each path planning algorithm evaluates

different parameters. Each algorithm has different features, such as serving different

autonomous robot models. An algorithm that works for one autonomous robot may

not be suitable for another. However, all these algorithms also have some standard

features. These properties are used to indicate and compare the performance of the

planned path. The main parameters of path planning are safety, path length, and

computation time. [12]. Algorithms in this field can be compared with each other

with these parameters.

1.2.4 Waypoints

Waypoints are points located at specific points that make up the planned path the

vehicle is intended to follow. In many studies in path planning, a series of waypoints

are used to indicate paths. Waypoints are selected from the points where there are no

obstacles. In order to be a safety path, if there is an obstacle on the path, algorithms

aim to find a path without hitting the obstacle by generating more waypoints. From

the starting point to the ending point, the autonomous robot is guided by waypoints

in this way. In path tracking studies, research is carried out on the controllers that can

follow these waypoints [13]. The connection of these waypoints with each other is
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directly related to the vehicle to be used in the study. Detailed information about this

topic will be given in chapter 3.

1.2.5 Motion Control

The autonomous robot finds a possible path to reach the goal with the help of path

planning algorithms. After the robot’s path is planned, it needs a controller to fol-

low this path. At that point, the motion control problem occurs. Motion control of

autonomous robots can be divided into three sub-problems: stabilization to a point,

path tracking, and path following. Path tracking and path following can be consid-

ered interrelated. The difference between these two problems is their dependency.

Path tracking is a function of time. On the other hand, path following depends on

the vehicle’s current state or different data [14]. During this tracking operation, a

steady motion is essential. Although a path has been created between the start and

end points, it is also essential to follow this path steadily. If this tracking is not steady,

hitting the obstacles around the planned path may occur. Even if there is no obstacle,

steady tracking is preferred for the comfort of the journey.

1.3 Path Planning and Tracking

One of the essential factors in path planning and tracking studies is whether the envi-

ronment is dynamic or static. In dynamic environments, the planned path should be

changed when an obstacle, person, or object is not expected to be there. This change

must be made quickly and safely. The robot may harm itself, its surroundings, and

even living beings in a possible collision. Therefore, the parameters to be considered

in dynamic environments are higher than in static environments. In addition, the re-

action time to environmental changes is as important as the planning of the path. In

static environments, there will not be such a problem as any unexpected obstacle is

not expected on the pre-planned path. However, since dynamic environments should

be included in possible situations in a realistic study, studies were carried out in both

scenarios. However, there are some standard features for the generated paths in both

scenarios. Some features are listed below.
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• Obstacle free paths

• Less computation time

• Paths as short as possible and with smooth turns

• Drivable paths that match the vehicle’s dynamic model

The study’s results will not be efficient if the paths generated are the paths

the vehicle cannot follow in a realistic scenario. This feature is also related

to the path having smooth turns. For instance, a car-type autonomous robot

cannot follow sharp turns with straight lines. Therefore, it is essential that

the path found for this type of vehicle has smooth turns. On the other hand,

omnidirectional robots that can turn in place can turn such sharp turns [3]. Thus,

even if the turns on the path are smooth, an undesirable situation may occur if

the road is long in this type of vehicle.

1.4 Related Works

1.4.1 Algorithms Used for Path Planning and Tracking

As mentioned above, finding a path between the starting and ending positions is not

enough without hitting obstacles on the path. It is also an essential factor that the

path length. Besides, it is also important in the path has smooth turns. Studies in

the field of path planning and tracking focused on these parameters and compared

different algorithms. In [15], researchers compared Probabilistic Roadmap (PRM)

and Genetic Algorithm (GA) techniques. As a result of their studies, both techniques

gave the desired result. However, they also have advantages and disadvantages against

each other. Although PRM has less computation time than GA, GA has been found to

find paths with smoother turns compared to PRM. For this reason, the better approach

will change according to the usage area.

In addition to static environments, path planning and tracking studies in dynamic en-

vironments were also examined to contribute to the path planning and tracking prob-

lem. The solution proposal has been published in [16] path planning and tracking in

dynamic environments problem. They used the sigmoid function to find a reference
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path that can be used to respond to changes in dynamic environments, and their solu-

tion is based on Model Predictive Control (MPC). A sigmoid function can be defined

as a function that has an S-Shaped curve. With the help of the sigmoid function, they

establish a reference trajectory. However, this reference trajectory should be changed

according to the obstacle’s position in dynamic environments. They use lidar to detect

the obstacle’s position, and they define this position by using lidar point clouds. They

assume that all objects can move with speed and acceleration. When the obstacle is

detected, they use the MPC’s predictive horizon state by using the obstacles’ coordi-

nates, speed, and acceleration to predict the position. After that, they publish a risk

index, a cost function to optimize collision avoidance during the tracking. Then, their

algorithm adapts to dynamic changes in the environment and chooses the optimal

scenario.

Research on path planning and tracking are also carried out within the scope of au-

tonomous overtaking. In [17], the authors reviewd of studies in this area. Since au-

tonomous overtaking will be in a dynamic environment, they drew attention to what

issues should be considered while working accordingly. As a result of their work,

they published the following information. They mentioned the importance of con-

sidering the vehicle’s dynamics, the environment’s constraints, and other information

about the environment for autonomous overtaking. Since the environment is dynamic,

highly accurate environment information is needed during autonomous lane chang-

ing. The vehicle can also access other environmental information with the Vehicle to

Everything communication. Thanks to this communication, the perception range will

be expanded, and the accuracy of the data will be increased.

In order for the studies to be efficient, autonomous driving must be accepted by the

people. To increase this, there are studies in the literature by observing human behav-

iors. There are examples in the research conducted in this area, considering human

behavior. The subsequent two studies contributed to this field by examining human

behavior. Many types of path planning and tracking research start with safety crite-

ria since it comes first in path planning applications Some studies start by examining

human drivers to offer adequate solutions for safety [18]. They start their studies by

analyzing the habits of a human driver. They aim to develop a safety model for ob-

stacle avoidance. Then, they use this safety model to build the artificial potential field
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(APF). Then, their algorithm finds a feasible path using this artificial potential field.

The acceptability of autonomous vehicles can be increased by designing a controller

with human behaviors during traffic scenarios. In [19], the authors aim that in their

study. They first modeled people’s driving styles in the traffic environment using

Artificial Potential Field. Then, they used this data in controller design processes to

optimize paths and control outputs. Thus, they enabled the autonomous vehicle to act

in human habits in traffic scenarios. The experiments in this study were conducted

in two modes: lane changing and car following scenarios. In these experiments, they

have seen that the controller reflects human behaviors using both careful driver and

aggressive driver models.

1.4.2 Algorithms Used for Smooth Path Planning and Tracking

The primary purpose of this thesis is not only path planning and tracking for au-

tonomous robots but also aims to include smooth curves instead of sharp corners as

much as possible. Some smooth curve generation studies that have been found as a

result of research that can be done are described below.

A review article also described the advantages and disadvantages of path smoothing

techniques. In [9], the advantages and disadvantages of splines are also mentioned.

Having a low computational cost of splines is a reason for preference. Using splines

allows using continuity on the path. However, the difficulty of creating a trade-off

between continuity and desired shape when using splines is also mentioned.

In [9], hypocycloids are the other technique whose advantages are described. It is

mentioned that they will be preferred because they are easy to calculate, but they also

have disadvantages as they do not guarantee continuity.

Studies in this field can be examined under two main headings. The first one is

algorithms that directly compute smooth paths. The second one is algorithms that

smoothen paths with corners.
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1.4.2.1 Algorithms that Directly Compute Smooth Paths

It will be helpful to examine more than one technique with a study that considers

the algorithms used to smooth the path in the field of path planning as a survey. In

[5], they mentioned Bezier Curves, Spline Curves, Polynomial Spirals, Arcs, and

Clothoids to find a smooth curve during path planning. Each technique has both

advantages and disadvantages. Any of these techniques can be used according to the

usage area. Control points are used in the Bezier curve. The first and last control

points are the curve’s beginning and end. Waypoints, usually in the middle, cannot

be included in the path. They have a global effect in creating the shape of the path.

In [20], B-spline curves are used to generate smooth paths. Their algorithms take

the positions of obstacles in the environment, the environment’s boundaries, and the

vehicle’s positions at the start and end points. It then aims to create a smooth path

between the start and end points by creating a B-spline curve such that curvature is

continuous with upper bounded curvature. There is a small slope discontinuity in

the knots of this curve created. However, since adjusting upper bounded curvature

constraints on narrow roads is challenging, their algorithm is unsuitable for use in

these areas.

In [6], they use Bezier curves to generate smooth paths. They also improved the

positioning of control points, making the Bezier curve challenging. In their algorithm,

they first create an n-th order Bezier curve and use this curve as a base. This curve has

location and velocity endpoint constraints. Then the curve is created. They modified

their algorithm for a path to be created between this base curve and control polygons.

They define the point they want the road to pass over as a via-point. Then they

determine the closest point on this via-pointe base curve. Then, they give the path its

final shape by applying a step that allows the path to passing through the via-point

with these defined points. In obstacle scenarios, they aim for the vehicle to follow the

modified path by positioning via points in free space. However, they did not conduct

a study on obstacle avoidance in their research. Considering parameter such as path

length, where to position via points can be a complex problem.
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1.4.2.2 Algorithms that Smoothen Paths with Corners

As examples are given above, many studies have been carried out in path planning.

These algorithms try to provide the safety criterion by standing at a certain distance

from the obstacles. However, these algorithms may not have smooth curves for ve-

hicles to rotate. Therefore, by adding on the previous algorithms, a smooth path is

obtained by adding studies. In [7], the sharp turns made in the path planning algo-

rithms using hypercloids were removed, and soft turns were added. Their algorithm

are adaptable to commonly used algorithms such as probabilistic roadmap or A*.

In addition, these algorithms are focused on replacing only sharp turns with smooth

curves. It does not include a solution for straight-line road segments without sharp

turns. In addition, they also considered the presence of more than one robot in the

environment and collision with each other in their studies. To prevent this situation,

they generate nodes.

[8] offers different path smoothing techniques. Upper-bounded continuous curvature

path-smoothing algorithm was chosen as the basic algorithm of their algorithms. In

the first algorithm example, they softened the path by using the empty spaces formed

in the linear paths. They used the maximum curvature feature as the second solution

proposal. When the maximum curvature constraint is not provided, the trackability of

the path will decrease, so this algorithm is used. They shorten the distance required to

provide the maximum distance constraint with their proposed algorithm. When they

were tested by combining the proposed algorithms, they both smoothed the path and

provided the maximum curvature constraint.

It will not be satisfactory enough that the path found is smooth. Having certain fea-

tures of the created smooth path will increase its preferability. In [9], they conveyed

the features that increase the preferability of path continuity. They explained two dif-

ferent types of continuity geometric and parametric continuity. Parametric continuity

can be defined as both the smoothness of the path and its parametrization. Geometric

continuity can be defined as the quality of the curve that the robot will follow. While

discontinuity between curves prevents paths from being preferred, tangential discon-

tinuity and curvature discontinuity are also not preferred conditions. The maximum

curvature concept can be used for curve traceability. The smaller this value, the higher
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the traceability of the path will be.

Pure pursuit algorithm is one of the methods used for path tracking as it is a very suc-

cessful algorithm in the field of path tracking. The pure pursuit algorithm is called the

geometric path tracking algorithm [21]. The algorithm aims to be on the pre-planned

path producing and using the steering angle. The algorithm first creates a look-ahead

point based on the vehicle’s current location and the look-ahead distance. The algo-

rithm creates a steering angle with this information and sends it to the autonomous

robot. After the autonomous robot fulfills the incoming command, it sends the current

position information again, and the algorithm continues this way.

1.4.3 Bezier Curve Usage for Smooth Path Planning

There are some smooth path planning methods such as; line and arc, spline curve,

clothoid curve and Bezier curve. Along these methods spline curve, clothoid curve

and Bezier curve methods have curvature continuity. If the path complexity feature

is compared along these methods, Bezier curve’s path complexity is simpler [22]

than other methods. Thus, following articles prefer to use Bezier curves to generate

smooth paths.

Comparison parameters of path planning algorithms are the shortest distance, lower

computation time, and completeness. For the car-like robots kinematic constraints

must be considered while planning path, such that to guarantee that the robot can

reach goal position. Using Bezier curves tries to find feasible path such that kinematic

constraints are considered. However, selection of the control points is one of the

main issues using Bezier curves. Different works have been done about how to select

Bezier curve control points.

In [23], there is a pre-planned piecewise linear path and Bezier curves are derived

from this path. By doing this, they aimed to make pre-planned path feasible and

trackable by car-like robots with kinematic constraints. Since the piecewise linear

path include sharp corners, and vecihcle fails to follow that path, they introduce new

method called Variable Waypoint Offset (VWO). Their offset value is proportional to

the heading angle of the vehicle and vehicle’s speed. From two adjacent line segments
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of pre-planend path, they calculate this offset value by using minimum turning radius

and heading angle. By using this offset value, they create a circle along the waypoint

and selects control points on that circle.

In [22], authors describe a strategy to find an obstacle free path between start and goal

position while tracking with good performance and smooth. Their work uses on-line

Bezier curves to find a smooth path while the robot faces an obstacle during its move-

ment. In their work, fourth order Bezier curve is used and first and last control points

are start and end point of the path, respectively. Their algorithm generates two new

control points which close to the start and end points. A quarter distance between

start and goal points and these two points are generated at this quarter distance away

from start and end points. To generate last control point, their algorithm uses desired

curvature value. With desired continuous curvature, new point is generated on the ve-

hicle’s moving direction. If resulting Bezier curve hits obstacle, algorithm generates

a new intermediate goal point and finds obstacle free path.

In [24], authors consider curvature continuous paths by generating feasible path for

autonomous robots. Since Bezier curve with large number of control points’ compu-

tation time is larger and numerically unstable. They used low degree Bezier curves to

find a smooth path. The first step of their algorithm is segmentation of the map such

as straight segments and corner segments. Along the map, they used different Bezier

curves segments with continuous at their end points. After segmentation, they used

quadratic Bezier curves at the corner segments. At the straight segments, they used

a Bezier curve according to the minimum number (minimum six) of control points

required for continuity.

There are some works Voronoi diagrams and Bezier curves to find a smooth path for

autonomous robots. Since the proposed method of this thesis is similar to this pro-

cedure, it will be better to explain their work. The following two work uses Voronoi

diagrams and Bezier curves.

In [25], piecewise linear path which is obtained from Voronoi diagram is used with

collision free Bezier curves to find the shortest and smooth path. Since the resulting

curve stays between convex hull of control points, they used Bezier curve to guarantee

that obstacle free path. In first step of their algorithm, they add some more points into
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a path so that the distance between them is more than a certain amount. These new

points is also helpful for the implementation of the Bezier curve in the sections where

the path is divided into parts in the algorithm.

In [26], Bezier curve based on Voronoi diagram is used to generate smooth paths.

Their work is based on four steps. In the first step, piecewise linear path is found

along the Voronoi Diagram. Then, Dijkstra algorithm is used to find the shortest

path. As a result, waypoints are located away from the obstacles to find an obstacle

free path, and these waypoints are used as control points for Bezier curve in the next

steps. Since Voronoi Diagram creates multiple waypoints to find an obstacle free path

in the corners, there are some crowded waypoints along the path. As a second step,

their algorithm removes these crowded control points to reduce the curve length. In

the third step, control points are subdivided into two ordered subsequences to obtain

collision free Bezier curve. As a final step, they add some additional control points

for smoother Bezier curve. Therefore, the resulting paths meet kinematic constraints

for autonomous robots. Then, as a next step they remove crowded control points to

reduce the curvature and path length. Finally, to find a continuously differentiable

Bezier curve segments, they insert additional control points. After all of these preper-

ations, they build Bezier curve along the path.

1.4.4 Advantages and Disadvantages of Smooth Path Planning Algorithms

In this section advantages and disadvantages of smooth path planning algorithms are

given [9].

Interpolation based smooth path planning algorithms are easy to compute, and curves

can be concatenated to get desired smooth path shapes. Also, they can be used for

local path planning for safety. However, when they are used it is difficult to control

coefficients of curves of higher order (>4), at higher order their computation time

becomes large and they are not suitable for high speeds .

Splines have low computational costs and provide curvature continuity which is im-

portant. However, when splines are used there is a trade-off between continuity and

shape, and it becomes difficult to balance it.

13



Another method is Dubin’s curves to generate smooth paths. Dubin’s curves can be

used because they are easy to compute and computation time is fast. However, there

is no curvature continuity.

Optimization based methods takes into account different constraints, and they can be

combined with other approaches. However, these methods consumes too much time

and might not necessarily converge.

Bezier curves is used to obtained smooth paths for this thesis. Bezier curves have

low computational cost, and control points allow to generate desired shape of path.

Also, multiple Bezier curves can be connected to each other to get desired path shape.

However, computation time increase at high orders. Since control points affects entire

path, it is difficult to place these control point’s locations. In chapter 3, the proposed

method is given to solve these problems while generating smooth paths.

1.5 Proposed Methods and Models

The main goal in this thesis is the computation of smooth paths for autonomous robots

in real time. To this end, our proposed method uses Bezier curves to generate smooth

curves instead of sharp corners in the planned path. We are using existing waypoints

generated from VV-ST-R that compute straight-line paths to add Bezier curves to the

path planning algorithms. Specifically, we are using these waypoints as control points

of Bezier curves.

This thesis will explain the proposed algorithm to generate smooth paths between start

and goal positions. The proposed algorithm uses Bezier curves to generate smooth

curves. A detailed explanation of Bezier curves and the proposed algorithm will be

given in chapter 3 and chapter 4.

1.6 Contributions and Novelties

Our main contributions are as follows:

• Development of an algorithm for refining straight-line paths by adding Bezier
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curves to remove corners,

• Avoiding obstacles by placing control points and waypoints in the obstacle-free

space,

• Handling curvature constraints,

• Application of the proposed method with different obstacle maps for both car-

like robots with Ackermann steering and differential drive robots.

1.7 The Outline of the Thesis

The remainder of the thesis is as follows.In chapter 2, motivation is given. Then, basis

studies of the proposed method will be examined from previous research. In chapter 3

The Bezier curve technique, which generates smooth curves instead of sharp corners,

will be explained. Then, proposed algorithms to generate Bezier curves, will be ex-

plained. In chapter 4 our proposed solution will be examined. Experimental results

will be shown. The effects of using Bezier curves and comparisons with different test

scenarios will be explained. Finally, the traceability of the path will be checked by

Pure Pursuit algorithm.
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CHAPTER 2

MOTIVATION

The main focus of this thesis is the computation of paths for non-holonomic robots

such as differential-drive robots or car-like robots with Ackeremann steering. In this

context, general performance criteria of path planning algorithms are path length,

computation time and finding obstacle-free paths. In addition, it is important to de-

termine drivable paths that can be tracked by the robots. This chapter provides the

motivation for the path-planning method developed in this thesis. Section 2.1 intro-

duces the generalized Voronoi diagram and Section 2.2 outlines the sampling-based

straight-line path planning method that is used as the basis for the developed method.

Then, Section 2.3 outlines the main idea of this thesis work with the aim of computing

drivable paths for differential-drive and car-like robots.

2.1 Generalized Voronoi Diagram

Voronoi diagrams have wide usage area. In archaeology, biology, computer science

etc. Voronoi diagrams are used because of their properties. If there are (N ) points

on the plane, Voronoi diagrams divide the plane into (N ) cells, such that each cell

contains only one point. The boundaries of each cell are equidistant from two or

more points. All the points inside each cell are closer to the point in the cell than the

points of the other cells [27].

The Generalized Voronoi Diagram (GVD) is frequently used for robotic path plan-

ning. The main idea of the GVD is to generate a path that keeps the maximum

distance to all the surrounding obstacles. To this end, we consider that a robot is

operating in an environment with several obstacles as illustrated in Figure 2.1.
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Figure 2.1: Example for an obstacle map with three obstacles and a boundary.

Then, the first step is to separate such map into Voronoi regions. Each Voronoi region

contains all the points that are closer to one of the obstacles than to any other obstacle.

The Voronoi regions for the obstacle map in Figure 2.1 are shaded in the same color

as the respective obstacle in Figure 2.2. Specifically, it can be seen that there are four

Voronoi regions. Three of the Voronoi regions belong to the obstacles with different

shapes that are placed inside the map area. The fourth Voronoi region belongs to the

boundary of the obstacle map.

Figure 2.2: Example VV-ST-R Path

It can be seen in Figure 2.2 that the Voronoi regions are separated by a boundary
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line. This boundary line has the property that all the points on the boundary line have

the same distance to at least two of the obstacles. Furthermore, there are branching

points on the boundary line, which correspond to points that have the same distance

to more than two obstacles. The defined boundary line is denoted as the obstacle

map’s Voronoi Boundary (VB). The VB for the obstacle map in Figure 2.1 is shown

in Figure 2.3.

Figure 2.3: Voronoi Boundary of the example obstacle map.

The most important property of the VB is that it characterizes all the points that

have a maximum distance to the obstacles in the obstacle map. That is, a robot that

follows the VB will keep the maximum obstacle distance and hence travel on a safe

path [3]. Nevertheless, it is the case that paths that are defined by the VB can take

unnecessary turns and are generally unnecessarily long. In addition, it is not ensured

that nonholonomic robots such as differential drive robots or car-like robots can track

the VB.

2.2 Voronoi Boundary Visibility (VV) and Steiner Points

As explained before, the points on the VB are at a maximum distance from obsta-

cles. Accordingly, there can be unnecessary turns and long distances when directly

following the VB. In order to address this issue, the recent work in [3] develops the
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VV_ST_R algorithm that makes use of the VB while shortening the path between

a given start and goal position. This algorithm iteratively applies two main steps.

As the first step, unnecessary waypoints are removed if a straight-line connection

between waypoints is possible without hitting an obstacle. As the second step, ad-

ditional waypoints are introduced if it is required to cut corners, for example when

turning around a curved obstacle. Illustrative examples are shown in Figure 2.4 to 2.7.

Here, obstacles are represented by black shapes and are extended by a user-defined

safety margin that is depicted in orange. Furthermore, each of the figures shows a

candidate path along the VB (magenta) from the start position (red dot) to the goal

position (green dot). In addition, the figures show the solution path computed by the

VV_ST_R algorithm in [3] (blue).

It can be seen from Figure 2.4 to 2.6 that the resulting paths can tightly follow curved

obstacles, while straight-line paths are used to take turns around rectangular obstacles.

Figure 2.4: Shortest path computation: Path 1.

Moreover, Figure 2.7 gives an example of a solution path that only encounters ob-

stacles in the form of polygons. In this case, the solution path very tightly approxi-

mates the shortest straight-line path which can be obtained from the visibility graph

as shown in [3].
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Figure 2.5: Shortest path computation: Path 2.

Figure 2.6: Shortest path computation: Path 3.
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Figure 2.7: Shortest path computation: Path 4.

The stated properties of the solution paths computed with the VV_ST_R algorithm

can be further seen in Figure 2.8 and 2.9. Specifically, Figure 2.8 illustrates the prop-

erties of solution paths when turning around polygon-shaped obstacles. Similar to

a visibility graph, few waypoints are placed at the corners of the obstacles in order

to obtain a small number of straight-line segments. Differently, a larger number of

waypoints is introduced in the case of curved obstacles as can be seen in Figure 2.9

in order to approximate the curved shape of the obstacle.

Figure 2.8: Close-up of the solution path around the triangular obstacle in Figure 2.7.
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Figure 2.9: Close-up of the solution path around the elliptical obstacle in Figure 2.6.

2.3 Main Idea to Satisfy Drivable Short Paths

As an outcome of the previous discussion, it can be concluded that paths along the VB

are safe but generally unnecessarily long. In addition, while paths that are computed

by the VV_ST_R algorithms stay at a safe distance from obstacles by introducing a

safety margin, such paths are defined by waypoints that are connected by straight-line

segments. That is, although such paths can for example be tracked by omnidirectional

robots, they are not suitable for nonholonomic robots such as differential-drive robots

or car-like robots with Ackermann steering.

The main contribution of this thesis is the computation of smooth paths for nonholo-

nomic robots based on information from paths that are computed by the VV_ST_R

algorithm. Hereby, we consider the following important facts:

• In order to obtain safe smooth paths, it is desired to move waypoints away from

the obstacles,

• It is known that the area between the solution path and the corresponding VB

is obstacle-free space,

• In order to obtain smooth paths, a suitable curve that can easily be parametrized

has to be chosen.

In this thesis, the waypoints computed by the VV-ST-R algorithm are used to deter-
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mine control points of Bezier curves in order to generate safe and smooth paths to be

tracked by nonholonomic robots.
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CHAPTER 3

METHOD

3.1 Bezier Curves

In this thesis, Bezier curves are used to generate smooth curves instead of sharp cor-

ners along the path. Straight lines connecting the waypoints used during path plan-

ning may contain sharp corners for vehicles to follow. Therefore, it is preferable

to find paths in the form of smooth curves that vehicles can follow while following

waypoints. Bezier curves are one of the methods that can be used for this purpose [6].

Bezier curves can be created with given n + 1 control points. The straight lines

connecting these control points are called control polygons. The resulting smooth

Bezier curve will be formed within this control polygon [28]. In N − dimensional

space, the n− th order Bezier curve can be defined as:

P (t) =
n∑

i=0

Bn
i (t) · Pi, (0 ≤ t ≤ 1) , Pi ∈ RN (3.1)

where B(t) is called Bernstein polynomial and:

Bn
i (t) =

(
n

i

)
· ti (1− t)n−i ,

(
n

i

)
=

n!

i! · (n− i)!
(3.2)

Bezier curves have low computational costs, and the curve can be adjusted to the

desired characteristic thanks to control points. Moreover, multiple Bezier curves used

to obtain a whole path can be combined to create the desired path. On the other hand,

as the degree of the Bezier curve increases, the computation cost increases as well,

and the adjustment of the curve becomes more difficult. This is because each control

point affects the global path [9].
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Figure 3.1: Bezier Curve Example with Six Control Points

In Fig. 3.1, an example Bezier curve with six control points can be seen. The solid

line curve represents the Bezier Curve and, the dashed lines represent a straight-line

connection between control points. As seen in the Fig. 3.1, a smooth curve is defined

by the control points. The primary purpose of using Bezier curves is to add some

smooth curves on the sharp corners in the planned path to track by the autonomous

vehicle. In this thesis Bezier curve of order six is used. The control points’ locations

have a direct effect on the result curve. Thus, the locations of the each control point

must be selected carefully. Since in the path planning algorithms aims that finding

obstacle free paths, the locations of the control points needs to be selected to find an

obstacle free Bezier curves. Finding the control points locations of the Bezier curves

will be examined in Section 3.3.

26



3.2 Bezier Curves and Curvature

It has to be considered that mobile robots have a lower bound on their turning radius.

Considering that the curvature of a path is defined as the inverse of the turning radius,

this implies that the curvature of paths for mobile robots needs to be limited. That

is, when using Bezier curves for robotic path planning, the path curvature has to be

taken into account. The calculation of the curvature of a Bezier curve is as follows:

κ(t) =
P

′
x(t)P

′′
y (t)− P

′
y(t)P

′′
x (t)

[P ′
x(t)

2 + [P ′
y(t)

2]3/2
(3.3)

where Px(t) and Py(t) represents x and y coordinates of the Bezier curve along the

path parameter t with 0 ≤ t ≤ 1 and •′ denotes the derivative with respect to t. As

special cases, the curvatures of the start and end positions of a Bezier curve are

κ(0) =
2 |(P1 − P0)× (P2 − P1)|

3 |P1 − P0|3
(3.4)

and

κ(1) =
2 |(Pn−1 − Pn−2)x(Pn − Pn−1)|

3 |Pn − Pn−1|3
(3.5)

While the above computation allows for validating the curvature of a single Bezier

curve, one more issue arises when constructing paths by concatenating Bezier curves.

In order to obtain drivable paths, the curvature of Bezier curves at the connection

points needs to be the same. To this end, we consider the following important property

of Bezier curves. Consider two Bezier curves as shown in Figure 3.2. Then, it holds

that the two Bezier curves have the same curvature at the connection point if the last

three control points of the first Bezier curve and the first three control points of the

second Bezier curve are collinear.

Figure 3.2: Concated Bezier curves with collinear control points.
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3.3 Proposed Solution to Find Smooth Paths

In Chapter 2, the VB and the VV-ST-R path are explained. However, these paths

may have sharp corners. Since differential-drive or car-like robots cannot follow these

sharp corners in a realistic scenario, the obtained path must not have these kinds of

sharp corners The main contribution of this thesis is adding smooth curves to these

obtained paths instead of sharp corners. In this section, the main components of the

proposed algorithm are explained using several representative path segments from the

example map in the previous chapter.

Figure 3.3: Example VV_ST_R path segments of the map in Figure 2.1.

First consider the left and right upper plot. Here, it is the case that a waypoint is

placed at a corner of an obstacle. In the left plot, the path changes direction very

little, whereas the path changes direction in the right plot. In both cases, it is de-

sired to move the path away from the obstacle in the direction of the green arrow as

indicated in the plot. Second, consider the lower right plot. Here, two waypoints

are located at corners of a polygon-shape obstacle and the path directly follows the

obstacle on a straight line. In this case, it is desired to move both waypoints away

from the obstacle as indicated by the green arrows to create space for a smooth turn.

28



Finally, consider the lower left plot. Here, multiple waypoints are placed around a

curved obstacle. In principle, it is desired to move the path away from the obstacle in

direction of the green arrows. However, it can be observed that the waypoints are very

close to each other, which makes it difficult to fit concatenated Bezier curves through

the waypoints. Alternatively, it is possible to merge close waypoints and move the

resulting merged waypoints away from the obstacle. This procedure is illustrated in

Figure 3.5.

Figure 3.4: Example VV-ST-R Path

In the following sections, we first describe the procedures for merging and moving

waypoints before explaining the overall algorithm for computing smooth paths.

3.3.1 Merging Close Waypoints

As was illustrated before, the VV-ST-R Algorithm in Section 2.2 performs turns by

creating multiple points at points close to the obstacles. However, these corners are

combined with straight lines, making it difficult to follow. In this thesis, we introduce

a distance threshold ∆Dist. If the distance between two consecutive waypoints is less

than ∆Dist (that is, waypoints are very close to each other), the mean value of these

points are selected as new coordinates for the merged point. The pseudo code of
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merging close waypoint is given in Step 1.

Step 1 Merge Close Points
1: Calculate distances between successive waypoints

2: if distance < ∆Dist then

3: Generate new waypoint from mean value of close waypoints

4: Calculate Normal Vector (N⃗ ) pointing out from the obstacle

5: end if

Fig. 3.5 is given to illustrate the example of merging close waypoints and computing

a suitable normal vector.

Figure 3.5: Merging waypoints together with the computation of a normal vector.

3.3.2 Move Waypoints Away from the Obstacle

New waypoints are obtained with the procedure described in the Step 1. These new

waypoints will serve as the control points needed to create the Bezier curves and

obtain smooth paths. These new points obtained may be close to obstacles or even

merged control points may be in obstacle region. To prevent this situation, the points

close to the obstacles have to be moved farther away from the obstacles. Hereby, we
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use the normal vector N⃗ computed in Step 1 in the case of merged waypoints. For

the remaining waypoints, we proceed as illustrated in Figure 3.6.

Figure 3.6: Normal vector computation for moving waypoints.

That is, first the angle α between two successive straight-line path segments is com-

puted. Then, the normal vector N⃗ points in the direction of the corresponding bissec-

trice away from the obstacle.

Using the described procedures for computing the normal vector N⃗ , the pseudo code

for moving waypoints away from the obstacle is given in Step 2. Here, we introduce

mmin and mmax as pre-defined parameters to indicate how much waypoints should

be moved at least and at most, respectively. In addition, the parameter ∆Vb is the

distance between the current waypoint and the closest point on the VB.

Step 2 Move Points Away from Obstacle
1: Find closest point on VB for current waypoint: ∆VB

2: if Waypoint is a merged waypoint then

3: Determine N⃗ as in Step 1

4: else

5: Use N⃗ ad described in Figure 3.6

6: end if

7: Move waypoint along N⃗ by max{min{0.5 ·∆VB,mmax},mmin}

That is, the waypoint is moved between the obstacle and the VB as long as the mini-

mum and maximum values mmin and mmax are not exceeded. The result of applying

Step 2 is demonstrated for different values of ∆Dist and mmax in Figure 3.7 and 3.8.

Specifically, more points are merged and the waypoints are farther away from the
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obstacles in Figure 3.8 since ∆Dist and mmax are chosen larger.

Figure 3.7: Moved waypoints in the example map.

Figure 3.8: Moved waypoints in the example map for a larger value of ∆Dist and

mmax.
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3.3.3 Generate Helper Control Points for Bezier Curve

In this thesis, we propose to directly use the moved waypoints after applying the VV-

ST-R algorithm and the procedure in Section 3.3.2 as control points for Bezier curves.

Specifically, any two successive waypoints serve as the start and end point of a Bezier

curve. In order to ensure a continuous curvature of concatenated Bezier curves at

these start and end points, we apply the strategy described in Section 3.2. That is, for

both start and end point, we insert two additional collinear "helper" control points.

Hereby, we proceed as illustrated in Figure 3.9.

Figure 3.9: Helper control points

That is, we use the previously computed information of the moved waypoint and the

associated normal vector N⃗ and determine the direction in which the helper waypoints

are inserted as orthogonal to N⃗ . Accordingly, a Bezier curve will enter any waypoint

(that is used as control points) in the same direction as the concatenated Bezier curve

leaves the waypoint.

In summary, we use Bezier curves of order six as a smooth curve between successive

moved waypoints. In order to ensure a continuous curvature of the overall curve,

helper control points are inserted at the start and end point of each Bezier curve. The

first two helper control points are created near to the start point of Bezier curve. Step

3 explains the creation procedure of these two helper control points. We consider

the Wi is the current waypoint and Wi+1 is the next waypoint. Furthermore, d⃗1 =

Wi+1 − Wi is the direction vector from the current control point to the next control

point.
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Step 3 Generate Two Helper Points Near First Control Point

1: Define d⃗1 = Wi+1 −Wi

2: if Wi is the start position of the path then

3: Define h⃗1 as a unit vector pointing along the orientation of the robot

4: else

5: Determine h⃗1 as the direction of the last helper control points to the current

Bezier curve segment’s start point

6: end if

7: Create first helper control point as Hi,1 = Wi + γ · h⃗1 · ||d⃗1||
8: Create second helper control point Hi,2 = Wi + 2 · γ · h⃗1 · ||d⃗1||

That is, the helper control points are inserted along a pre-defined direction with a

distance that depends on the distance between the current waypoint Wi and the next

waypoint Wi+1 (which are used as control points). Here, the coefficient γ can be

chosen to adjust the curvature of the Bezier curve around Wi as will be explored later

in the thesis. Examples for the insertion of the helper control points are given in

Figure 3.10.

Figure 3.10: Helper control point examples.

It can be seen in the upper plots that the direction of the helper control points at the
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start position is determined by the orientation of the robot, whereas the direction of

the helper points at intermediate waypoints are dertermined by the direction of the

previous helper control points in order to satisfy collinearity. Next, the insertion of

the other two helper control points at the end point of the Bezier curve has to be

discussed. Step 4 explains the creation procedure of these two helper control points.

To this end, we recall the illustration in Figure 3.9. The current waypoint is denoted

as Wi and the previous waypoint is Wi−1.

Step 4 Generate Two Helper Points Near Last Control Point

1: Calculate d⃗2 = Wi −Wi−1

2: if Wi is the end position of the path then

3: h⃗2 = d⃗2/||d⃗2||
4: else

5: Calculate h⃗2 as a unit vector that is orthogonal to the normal vector N⃗

6: end if

7: Create fourth control point near by the end point of current Bezier curve segment:

H4 = Wi − 2 · γ · h⃗2 · ||d⃗2||
8: Create fifth control point near by the end point of current Bezier curve segment:

H5 = Wi − γ · h⃗2 · ||d⃗2||

In the Fig. 3.11, the creation of the helper points is shown. Since the control points

around the start and end point of each Bezier curve are collinear, it makes it possible

to have the same curvature of connected Bezier curve segments.

Figure 3.11: Generated helper control points at end point
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3.3.4 Insert New Control Points for Bezier Curve

One of the main purposes of path planning algorithms is to find an obstacle-free

path. During the creation of the Bezier curve, the algorithm needs to make sure that

no obstacle is hit. To this end, the points on the Bezier curves are compared with

the obstacle region. If any of these points hit an obstacle, the following procedure

generates new waypoints in the obstacle-free space close to this point. By doing this,

hitting an obstacle is avoided. Step 5 explains the creation procedure of inserting new

waypoint in case any obstacle is hit. Cs is the start point, Ce is the endpoint of the

current Bezier curve segment and Co is the point hitting the obstacle. d⃗se = Ce − Cs

is a direction vector from the start control point to the end control point of the Bezier

curve segment. d⃗obs = Co−Cs is a direction vector from the start control point of the

Bezier curve segment to the point in the obstacle region.

Step 5 Insert New Waypoint Away From Obstacle
1: if Bezier curve point in obstacle region then

2: Calculate d⃗se = Ce − Cs from control point locations

3: Calculate d⃗obs = Co − Cs from obstacle point and control points

4: Generate new control point as Cs + d⃗Tse · d⃗o.
5: end if

That is, the new point is placed on the connection line between Cs and Ce, which is

guaranteed to be in obstacle-free space.

36



3.3.5 Creation of Bezier Curves

Having explained the main components of our smooth path planning algorithm based

on Bezier curves and the waypoints computed by the VV-ST-R algorithm, we can

now summarize the steps in Algorithm 1. The algorithm first merges the close

Algorithm 1 Proposed Path Planning Algorithm

1: mergeClosePoints();

2: movePointsAwayFromCorner();

3: for iteration=2,. . . ,Length Of Waypoints-1 do

4: generateTwoHelperPointsNearF irstControlPoint();

5: generateTwoHelperPointsNearLastControlPoint();

6: createBezierCurveOfOrder6FromConsecutiveWaypoints();

7: if Path hits obstacle then

8: insertNewWaypointAwayFromObstacle();

9: i := i− 1

10: end if

11: end for

waypoints from the VV-ST-R algorithm as explained in Section 3.3.1. Then, the

resulting waypoints are moved away from the obstacle borders or corners as described

in Section 3.3.2. The helper control points at the start and end of each Bezier curve

segment are then added as pointed out in Section 3.3.3. Finally, a Bezier curve is

generated from the computed points and it is checked if the curve intersects with the

obstacle region. If yes, the method for adding waypoints as introduced in Section

3.3.4 is applied.

Until now, only figures that illustrate the different steps of the algorithm were shown.

Fig. 3.12 displays the path obtained as a result of the application of the full path plan-

ning algorithms. In this figure green lines represent the VB, the magenta line repre-

sents the VV-ST-R path, green and red filled points are the start and end points, black

filled points are the helper control points and the blue line represents the generated

smooth path.
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Figure 3.12: Generated Smooth Path with Bezier Curve Segments

3.3.6 Handling Curvature Constraints

The proposed algorithm in Algorithm 1, generates a smooth path by using Bezier

curve segments. However, a curvature constraint value is not used in this algorithm.

To handle a curvature constraint, the following Step 6 is added at the end of the Bezier

curve creation.

Step 6 Handling Curvature Constraint
1: Introduce maximum curvature κ

2: if Bezier curve’s curvature > κ then

3: Increase the value of γ in Step 3 and 4 and re-compute the Bezier curve

segment

4: end if

The results of the proposed Algorithm 1 in different maps, the effect of the curvature

constraint value will be given in the next chapter.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, the differences between the proposed algorithm and the original al-

gorithms will be shown. The comparison parameters are the path length, minimum

distance to the obstacle and computation time. MATLAB is used for all calcula-

tions and figures in the experimental results section. All experiments run under the

same condition with MATLAB on a laptop with Intel(R) Core(TM) i7-9750H CPU

@ 2.60GHz processor and 16GB Ram.

4.1 Selected Maps

There is a large variety of different maps in this thesis to try the proposed algorithm as

shown in Figure 4.1. These maps are chosen to have different features to observe the

performance of the proposed algorithm for maps with different characteristics. Map

1, 2, 5, 6, 7, 8, 9, 16, 21, 24, 25, and 26 have multiple possible paths between the same

start and goal positions. Other maps have only one path between the start and goal

position. Also, there are more different characteristics apart from the possible path

numbers. Some maps (i.e., Map 1, 7, 23, 25, . . . ) are sparse maps such that robots can

move easily. On the other hand, some maps (i.e., Map 10, 12, 16, 21,. . . ) have narrow

passages between the obstacles such that the maneuverability of the robot is limited.

These narrow passages affect the curvature of the path. In the following sections,

different experiments on these maps are explained. The proposed algorithm’s effect

is examined on narrow passages and wide free spaces.
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Figure 4.1: Used Maps List
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4.2 Application of the Proposed Algorithm without Curvature Constraint

The main purpose of the proposed algorithm is to find a smooth path between start

and goal positions. For this purpose, the proposed algorithm uses pre-calculated way-

points from the VV-ST-R algorithm. The VV-ST-R also uses the VB as its basis. Since

the path along the VB has a long path length, VV-ST-R focuses to find a shorter path.

However, both of the algorithms find paths that are composed of straight lines. There-

fore, nonholonomic robots such as differential-drive robots or car-like robots cannot

follow these paths. The proposed algorithm aims to use the safe area between the

VB and the VV-ST-R paths. Therefore, it is expected that the proposed algorithm can

find a safe and drivable path for nonholonomic robots. For the result comparison,

the minimum distance to the obstacle, and total path length are selected. Also, the

computation time for different maps is compared.

4.2.1 Comparison with Path Length

The first comparison parameter is the path length. The VB aims that the safest path

between start and goal positions. Thus, it places its waypoints away from the obstacle,

and the resulting path becomes longer. VV-ST-R aims that the shortest path between

the start and goal position. Thus, it places its waypoints near the obstacle and its

path is shorter than the VB path. Since the proposed algorithm uses a safe region

between these two algorithms to place Bezier curve control points, the resulting length

is expected in the middle of these two algorithms.

In Fig. 4.3 and Fig. 4.2, there are sparse maps. Therefore, the VB path’s length is

much larger than the other two algorithms. The proposed algorithm’s path length is

between the VB path and VV-ST-R path but closer to the VV-ST-R.

In Fig. 4.6, Fig. 4.5 and Fig. 4.4, there are sharp corners and tight passages between

the obstacles. Since there is limited free space, the path length difference between

VB and VV-ST-R is smaller than the other maps. In this kind of maps, the proposed

algorithm’s path length is still closer to the VV-ST-R path. The difference between the

proposed algorithm’s path length and VV-ST-R’s path length is because the proposed

algorithm changes the locations of control points more distant from the obstacles.
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Figure 4.2: Obtained Smooth Path for Map 17

Figure 4.3: Obtained Smooth Path for Map 26
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Figure 4.4: Obtained Smooth Path for Map 25

Figure 4.5: Obtained Smooth Path for Map 12
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Figure 4.6: Obtained Smooth Path for Map 10

The path length is affected by the sharpness of the corners and the type of passages

between obstacles. It is known that VB places its waypoint as far as possible from

the nearest obstacle. Also, VB waypoints are equal distances away from the adjacent

obstacles. On the other hand, VV-ST-R algorithm places its waypoint as much as

closer to the obstacle to obtain the shortest path. If obstacles are so close to each other

both of the algorithms generate their waypoints almost similar locations between the

obstacles. Then, the path length is affected by this situation. In conclusion for this

comparison, the proposed algorithm can find path length in the middle of VB and VV-

ST-R paths. In sparse maps, VV-ST-R’s path length is much shorter than the VB path.

The proposed algorithm finds a path whose length of the path is closer to the VV-ST-

R path. In maps with narrow passages, the proposed algorithm can find similar path

lengths with both the VB and VV-ST-R algorithms because free areas are limited and

waypoints generated almost similar locations. For all the maps, different from VV-

ST-R and VB paths, the proposed algorithm’s solution includes smooth curves not,

sharp corners. In Table 4.1, the path length comparison is shown for three different

algorithms.
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Path Length (px)

Map Voronoi Diagram VV-ST-R Bezier Curve Implementation

Map 1 655.0 504.8 511.6

Map 2 549.9 428.5 441.8

Map 3 1472.4 1253.6 1310.2

Map 4 1064.9 910.5 923.7

Map 5 943.6 750.4 770.5

Map 6 827.1 686.3 703.7

Map 7 702.4 552.9 573.9

Map 8 648.6 503.7 524.5

Map 9 635.6 512.7 519.1

Map 10 1224.7 1100 1160.3

Map 11 1210.8 989.4 1020.3

Map 12 794.6 681.3 696.8

Map 13 1797.4 1276.7 1310.4

Map 14 1246.5 946.2 970.8

Map 15 956.8 677.1 694.4

Map 16 503.1 472.8 480.1

Map 17 666.9 538.5 544.1

Map 18 809.1 599.6 607.5

Map 19 705.3 575.9 592.3

Map 20 1411.1 1262.5 1299.7

Map 21 1077.5 864.4 868.4

Map 22 1094 873.1 886.1

Map 23 2042.6 1734.6 1761.2

Map 24 757.6 698.3 719.1

Map 25 790.2 642.7 652.1

Map 26 1004.7 704.3 717.3

Table 4.1: Path Length Results Comparison

4.2.2 Comparison with Minimum Distance to Obstacle

The second comparison parameter is the minimum distance to the obstacle. The VB

path aims at the safest path between the start and goal positions. VV-ST-R aims at the
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shortest path between the start and goal position. Therefore, the minimum distance is

smaller for the VV-ST-R algorithm. However, both of the algorithms cannot produce

a drivable path. Since the proposed algorithm generates smooth curves instead of

straight lines between the VB path and the VV-ST-R path, the control points of the

Bezier curve are placed at a safe distance between the VB path and the VV-ST-R path.

Therefore, the minimum distance parameter of the proposed algorithm is between the

VB and VV-ST-R algorithms.

In Fig. 4.7 and Fig. 4.8, there are sparse maps. The pink line represents the obtained

VV-ST-R path and the green line represents the VB path. The resulting smooth path

is shown with blue lines. Although the free spaces are wide, the VB aims to find the

safest path by giving the distance to the nearest obstacle, its minimum distance to the

obstacle parameter is larger than the other algorithms. Since the proposed algorithm

tries to find smooth paths it creates control points away from the obstacles. Thus,

its minimum distance to the obstacle parameter is between the VB and VV-ST-R

algorithms but much closer to the VV-ST-R path.

Figure 4.7: Obtained Smooth Path for Map 1

On the other hand, in Fig. 4.9 and Fig. 4.10 there are narrow passages between obsta-

cles. Therefore, the minimum distance to the obstacle parameter is almost the same
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Figure 4.8: Obtained Smooth Path for Map 13

for all three algorithms. Nevertheless, the proposed algorithm finds a smooth path

between the start and goal position.

Figure 4.9: Obtained Smooth Path for Map 2
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Figure 4.10: Obtained Smooth Path for Map 20

The second comparison parameter is the minimum distance to the obstacle. The result

of this comparison is similar to the path length comparison. Also, both comparison

parameters are affected by each other. Since the VB algorithm places its waypoints as

much as away from the obstacle the minimum distance to the obstacles becomes large

and the path length will increase. On the other hand, the VV-ST-R algorithm places

its waypoints near the obstacle, and the path length will decrease. From the nature

of both VB and VV-ST-R algorithms, these two comparison parameters give similar

results to each other. In conclusion for this comparison, the proposed algorithm can

find the minimum distance to the obstacle in the middle of VB and VV-ST-R paths

if there are no narrow passages along the map. However, the proposed algorithm’s

result is closer to the VV-ST-R algorithm. In narrow passages, all three algorithms

find similar distances to the obstacle due to the limited free space. In Table 4.2, the

minimum distances to the obstacle are shown for three different algorithms. As shown

in that table, the minimum distance value for the proposed algorithm is between the

other two algorithms’ values for all of the maps. However, it is much closer to the

VV-ST-R path’s results.
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Minimum Distance to Obstacle (px)

Map Voronoi Diagram VV-ST-R Bezier Curve Implementation

Map 1 12 6 8.7

Map 2 12 6.5 7.6

Map 3 14 5.7 7.7

Map 4 14.3 6.1 7.6

Map 5 16 6.1 8.1

Map 6 9 6.1 7.7

Map 7 20 6.0 10.8

Map 8 13 6.5 9.8

Map 9 13 6 7.1

Map 10 8 6 7.4

Map 11 16.2 6 8.1

Map 12 10 5.8 7.6

Map 13 45 5.9 7.7

Map 14 20.1 5.8 10.2

Map 15 17 6.1 9.3

Map 16 8.2 6.1 6.8

Map 17 20 7.1 6.1

Map 18 15 6.1 7.4

Map 19 12 6.2 9.1

Map 20 8.9 5.8 6.8

Map 21 16 7.4 8.9

Map 22 6 6.1 6.2

Map 23 11 6.1 7.6

Map 24 8 6 6.4

Map 25 11 6.3 10.3

Map 26 27 6.1 7.8

Table 4.2: Minimum Distance to Obstacle Results Comparison

4.2.3 Comparison with Computation Time

The third comparison parameter is computation time. The proposed algorithm uses

previously computed VV-ST-R waypoints as control points of the Bezier curve seg-
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ments. Therefore, the computation times of previous algorithms are not included in

the comparison. Only the computation time of the proposed algorithm for different

maps is compared.

In Fig. 4.11 and Fig. 4.12, the smooth path around the circular shapes is shown.

Since more control points are calculated one after the other to pass circular obstacles,

computation time is long in maps containing more control points like these maps.

Figure 4.11: Obtained Smooth Path for Map 14

In Fig. 4.14 and Fig. 4.13, the smooth path between sharp obstacle ends is shown.

Since these are sparse maps, there are not many control points produced for this

map. Fewer control points are generated to give direction to the vehicle during turns.

Therefore, computation time is less in this and similar maps.

In conclusion for this comparison, the proposed algorithm’s computation time varies

according to the number of control points on the road. If there is a path on the map

that needs to be passed around detailed obstacles, the computation time is longer.

If the distance between the obstacles on the map is large and there is no need for

more control points to find the way, the computation time is shorter. In Table 4.3, the

computation time is shown for different maps with the proposed algorithm.
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Figure 4.12: Obtained Smooth Path for Map 22

Figure 4.13: Obtained Smooth Path for Map 9
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Computation Time (seconds)

Map Bezier Curve Implementation

Map 1 0.3373

Map 2 0.1188

Map 3 0.1584

Map 4 0.1149

Map 5 0.1293

Map 6 0.1413

Map 7 0.0997

Map 8 0.1132

Map 9 0.0703

Map 10 0.2419

Map 11 0.1966

Map 12 0.1458

Map 13 0.1122

Map 14 0.2885

Map 15 0.1085

Map 16 0.0743

Map 17 0.0601

Map 18 0.0556

Map 19 0.0869

Map 20 0.2548

Map 21 0.1355

Map 22 0.1544

Map 23 0.1078

Map 24 0.1502

Map 25 0.0710

Map 26 0.0919

Table 4.3: Computation Time Results Comparison between Different Maps
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Figure 4.14: Obtained Smooth Path for Map 18

4.3 Evaluation of Curvature Constraint

In this section, the results for the extended algorithm in Section 3.3.6 with curvature

constraint are shown. For the different curvature constraints, the comparisons are

made according to the total path length and minimum distance to the obstacle. For

these experiments, some example maps are selected. Since these maps have signif-

icant changes when curvature is changed, these maps are more suitable to show the

difference between different curvature constraints. Map 3, Map 13, Map 18, and Map

24 are selected to show differences both visually and in parameter comparisons.

4.3.1 Comparison with Path Length

In this section, a path length comparison is given. The comparison is made with

different curvature (κ) values. As shown in Table 4.4, path length increases when a

smaller curvature constraint is set. The main idea for addressing the curvature con-

straint is changing control point locations to obtain more smooth curves. It is known

that the control point’s locations have a direct effect on the Bezier curve. To handle

curvature constraints, the proposed algorithm places helper control points more far
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away from each other. Thus, the resulting Bezier curve becomes more smooth. This

causes an extension in the path length. In Table 4.4 maps have more changes than the

other maps in the path length when the curvature constraint is smaller. In addition,

these maps were chosen because it is easier to visually see the change in path in these

maps.

Path Length (px)

Map No Constraint κ = 0.5 κ = 0.25

Map 3 1310.3 1310.3 1314.1

Map 13 1310.4 1310.4 1313.4

Map 18 607.5 608.3 609.7

Map 24 719.1 719.2 720.4

Table 4.4: Path Length Comparison with Different Curvature Constraints

4.3.2 Comparison with Minimum Distance to Obstacle

In this section, the comparison of the minimum distance to the obstacle is given. The

comparison is made with different curvature (κ) values. As shown in Table 4.5, the

minimum distance to obstacle value for Map 3 and Map 24 decreased as the curvature

value decreased. This has been observed because the algorithm brings the path closer

to the far corners of the corridors to reach the desired curvature value. There were

no serious changes for Map 13, and Map 18. In these maps, the obstacle-free area is

wider and the curvature value is reached more easily.

In Fig. 4.15, and Fig. 4.16 different obtained paths for Map 3 are given with no curva-

ture constraint, and κ=0.25 respectively. There are u-turns on this map. To reach the

desired curvature value in u-turns, the algorithm has increased the distance between

the control points. In this way, there have been changes in the turns on the map. In

Fig. 4.17, the distance change between control points and the path’s shape change is

shown.

In Fig. 4.18, and Fig. 4.19 different obtained maps for Map 13 are given with no

curvature constraint, and κ=0.25 respectively. On the left side of this map, there are
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Minimum Distance to Obstacle (px)

Map No Constraint K = 0.5 K = 0.25

Map 3 7.77 7.77 7.74

Map 13 7.81 7.77 7.77

Map 18 7.42 7.41 7.41

Map 24 6.46 6.46 6.01

Table 4.5: Minimum Distance to Obstacle Comparison with Different Curvature Con-

straints

Figure 4.15: Obtained Smooth Path for Map 3 with No Curvature Constraint
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Figure 4.16: Obtained Smooth Path for Map 3 with κ=0.25

Figure 4.17: Close Up to Path Shape Difference for Map 3
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steep turns before the path progresses in a straight line. To reach the desired curvature

value, the algorithm has moved the control points away from each other. Since this is

a sparse map, the curvature value is handled by extending the path toward the empty

areas. In Fig. 4.20, the distance change between control points and the path’s shape

change is shown.

Figure 4.18: Obtained Smooth Path for Map 13 with No Curvature Constraint

In Fig. 4.21, and Fig. 4.22 different obtained maps for Map 18 are given with no

curvature constraint, κ=0.5, and κ=0.25 respectively. In this map, there is a sharp

turn on the pointed end of the obstacle at the top of the map. As the desired curvature

value decreases, the algorithm further increases the distance between control points,

and the desired curvature constraint is handled in this turn. In Fig. 4.23, the distance

change between control points and the path’s shape change is shown.

In Fig. 4.24, and Fig. 4.25 different obtained maps for Map 24 are given with no

curvature constraint, κ=0.5, and κ=0.25 respectively. The distance between obstacles

in this map is both narrow and includes sharp turns. In these sharp turns, the algorithm

was able to find the desired curvature value without violating the safety constraint. In

Fig. 4.26, the distance change between control points and the path’s shape change is

shown.
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Figure 4.19: Obtained Smooth Path for Map 13 with κ=0.25

Figure 4.20: Close Up to Path Shape Difference for Map 13
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Figure 4.21: Obtained Smooth Path for Map 18 with No Curvature Constraint

Figure 4.22: Obtained Smooth Path for Map 18 with κ=0.25
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Figure 4.23: Close Up to Path Shape Difference for Map 18

Figure 4.24: Obtained Smooth Path for Map 24 with No Curvature Constraint
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Figure 4.25: Obtained Smooth Path for Map 24 with κ=0.25

Figure 4.26: Close Up to Path Shape Difference for Map 24
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4.4 Validation of the Quality of Obtained Paths

MATLAB Robot Simulator [29] was used to test the traceability and quality of the

smooth paths obtained. In this tool Pure Pursuit path tracking controller is used. In

path tracking tests, both differential drive robot kinematics and Ackermann steering

kinematics were used. As a result of the trials with this tool, if the proposed algorithm

produces smooth paths, the robots can follow the path. However, if smooth paths can-

not be produced, an overshoot situation occurs, and the vehicle cannot follow the path.

From [30], we can understand why smooth paths are needed for traceability. The pure

pursuit algorithm identifies a target point a certain distance from the vehicle’s current

position. It tries to reach this determined point by drawing a circular arc.

The target point determined during the autonomous movement continuously shifts

according to the robot’s position. Thus, it creates a smooth and traceable path. The

look-ahead distance determines the target point determined here. The projected point

of the specified point is calculated. A triangle is created with the target point, the

projected point, and the vehicle’s instantaneous position. This way, the angle value

required to reach the target is calculated. Thus, the steering angle value is calculated,

and the vehicle is provided to go to the determined point on a curve. Since the vehicle

cannot maneuver on a point, it needs some distance to maneuver. However, this

distance will be considerably increased by sharp turns on the road. Therefore, if there

is a sharp turn on the path, the algorithm will create a curve to follow it. This will

cause it to overshoot from the planned path. For this reason, the vehicle must have a

smooth curve to follow.

Ackermann Steering Differential Drive

Wheel Base Lookahead Dist. Track Width Wheel Radius Lookahead Dist.

0.5 m 2 m 0.5 m 0.1 m 1 m

Table 4.6: Used Parameters for Ackermann Steering and Differential Drive

In the validation the quality of obtained path, both car-like robot with Ackermann

steering and differential drive robot are used. Compared to the straight-line maps

found with the VV-ST-R algorithm, the smooth path created with the Bezier curves
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found by the proposed algorithm could be followed better by the robots. It has been

observed that the vehicle can follow the path at different curvatures κ=0.5 and κ=0.25.

In Table 4.6, used parameters are given that used during the experiments.

In Table 4.7 and Table 4.8, tracking errors as a mean and maximum distance to the

generated smooth path for differential drive robot and Ackermann steering robot are

shown. In these tables, tracking errors of three different curvature values which are

κ=1, κ=0.50, and κ=0.25, are shown as maximum and mean. The less these values

are, the better the path can be followed. Mean and maximum values of errors in fol-

lowing the path found by the proposed algorithm are shown in the following tables.

For both differential drive and Ackermann steering robots, the robots can successfully

follow the paths generated with different curvatures. The main purpose of this exper-

iment is to show the relationship between the curvature value and the traceability of

the path. As mentioned in Section 4.3, the effect of the curvature change varies ac-

cording to the characteristic features of the map. This effect also showed itself in the

tracking errors section. Tracking errors have also changed according to the changes

in the path.

The biggest effect of the curvature value on following the path is shown in the Ta-

ble 4.8 for Map 15. For the large curvatures, maximum tracking distance to the gen-

erated path is higher than κ=0.25. Although the changes due to curvature in other

maps were not very large, the robots were able to successfully follow the smooth

paths with robots for each curvature value.
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Tracking Errors for Differential Drive Robot (meters)

K=1 K=0.5 K=0.25

Map Mean(m) Max(m) Mean(m) Max(m) Mean(m) Max(m)

Map1 0.1705 0.4538 0.1705 0.4538 0.1705 0.4538

Map2 0.1710 0.4416 0.1710 0.4416 0.1710 0.4416

Map3 0.1753 0.4623 0.1753 0.4623 0.1775 0.4559

Map4 0.1725 0.4608 0.1725 0.4608 0.1725 0.4608

Map5 0.1661 0.4800 0.1661 0.4800 0.1660 0.4645

Map6 0.1755 0.4522 0.1755 0.4522 0.1748 0.4547

Map7 0.1722 0.4556 0.1722 0.4556 0.1722 0.4556

Map8 0.1814 0.5837 0.1814 0.5837 0.1814 0.5837

Map9 0.1671 0.5165 0.1668 0.5945 0.1668 0.5945

Map10 0.1795 0.5708 0.1795 0.5708 0.1838 0.5819

Map11 0.1711 0.4794 0.1711 0.4794 0.1711 0.4794

Map12 0.1660 0.4699 0.1660 0.4699 0.1845 0.7830

Map13 0.1818 0.4883 0.1818 0.4883 0.1785 0.4702

Map14 0.1598 0.4706 0.1598 0.4706 0.1588 0.4623

Map15 0.1693 0.4675 0.1693 0.4675 0.1685 0.4705

Map16 0.1689 0.4345 0.1689 0.4345 0.1922 0.6501

Map17 0.1646 0.4459 0.1646 0.4459 0.1646 0.4459

Map18 0.1764 0.5493 0.1753 0.4804 0.1751 0.4558

Map19 0.1782 0.4359 0.1782 0.4359 0.1782 0.4359

Map20 0.1732 0.5974 0.1732 0.5974 0.1726 0.4607

Map21 0.1697 0.4539 0.1697 0.4539 0.1697 0.4539

Map22 0.1648 0.4727 0.1648 0.4727 0.1648 0.4727

Map23 0.1717 0.4619 0.1717 0.4619 0.1718 0.4577

Map24 0.1850 0.4908 0.1850 0.4908 0.1830 0.4520

Map25 0.1695 0.4574 0.1695 0.4574 0.1695 0.4574

Map26 0.1739 0.4757 0.1739 0.4757 0.1739 0.4757

Table 4.7: Tracking Errors for Differential Drive Robot
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Tracking Errors for Ackermann Steering Robot (meters)

K=1 K=0.5 K=0.25

Map Mean(m) Max(m) Mean(m) Max(m) Mean(m) Max(m)

Map1 0.1920 0.4248 0.1920 0.4248 0.1920 0.4248

Map2 0.2795 0.6716 0.2795 0.6716 0.2795 0.6716

Map3 0.3318 0.7659 0.3318 0.7659 0.3271 0.7752

Map4 0.2193 0.6729 0.2193 0.6729 0.2193 0.6729

Map5 0.2559 0.7012 0.2559 0.7012 0.2550 0.6904

Map6 0.2616 0.7268 0.2616 0.7268 0.2641 0.7249

Map7 0.2494 0.7145 0.2494 0.7145 0.2494 0.7145

Map8 0.2778 0.6326 0.2778 0.6326 0.2778 0.6326

Map9 0.2305 0.5533 0.1974 0.5532 0.1974 0.5532

Map10 0.3745 0.7678 0.3745 0.7678 0.3805 0.7658

Map11 0.2689 0.6888 0.2689 0.6888 0.2689 0.6888

Map12 0.2448 0.8013 0.2448 0.8013 0.2390 0.7486

Map13 0.1818 0.4883 0.1818 0.4883 0.2748 0.8068

Map14 0.2366 0.6940 0.2366 0.6940 0.2374 0.6757

Map15 0.3539 3.4686 0.3539 3.4686 0.2450 0.7434

Map16 0.2629 0.7220 0.2629 0.7220 0.2435 0.7263

Map17 0.1959 0.4562 0.1959 0.4562 0.1959 0.4562

Map18 0.2371 0.7378 0.2418 0.7553 0.2481 0.7765

Map19 0.2749 0.7322 0.2749 0.7322 0.2749 0.7322

Map20 0.2824 0.7437 0.2824 0.7437 0.2796 0.7375

Map21 0.1835 0.4476 0.1835 0.4476 0.1835 0.4476

Map22 0.2193 0.4638 0.2193 0.4638 0.2193 0.4638

Map23 0.2394 0.7443 0.2394 0.7443 0.2396 0.7347

Map24 0.3276 0.7844 0.3276 0.7844 0.3271 0.7953

Map25 0.2219 0.5779 0.2219 0.5779 0.2219 0.5779

Map26 0.2535 0.6838 0.2535 0.6838 0.2535 0.6838

Table 4.8: Tracking Errors for Ackermann Steering Robot
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In Table 4.9 and Table 4.10 minimum, mean and maximum velocities for a car-

like robot with Ackermann steering and differential drive robot are shown. These

robots are used with non-zero velocity. In these tables, the velocities of three different

curvature values which are κ=1, κ=0.50, and κ=0.25, are shown as minimum, mean

and maximum velocity parameters. As mentioned in Section 4.3, the effect of the

curvature change varies according to the characteristic features of the map. This

effect also showed itself in the velocities similar to tracking errors. Minimum, mean,

and maximum velocities have also changed according to the changes in the path.

In table comparison, minimum and maximum velocities are similar for both differ-

ential drive and car-like robot with Ackermann steering. Since both robots are tested

in the same environment, it is expected that the maximum velocities on flatter paths

and the minimum velocities on more sharp corner’s sections of the path are similar.

For this reason, it would be more useful to look at the mean velocities in order to ob-

serve the curvature effect more clearly. Mean velocities are different for these robots.

Generally, mean velocity of car-like robot with Ackermann steering is larger than the

differential robot’s mean velocity.

According to the characteristic features of the map, minimum, mean, and maximum

velocity values are given in the tables. However, looking at the velocity changes as a

plot instead of tables will be useful to understand the effect of the curvature value on

the velocity. In this way, it can be seen more clearly with which velocity the robots

follow the paths at the same curvature value.
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Velocities for Differential Drive Robot (meter/second)

K=1 K=0.5 K=0.25

Map Min Mean Max Min Mean Max Min Mean Max

Map 1 3.71 9.55 27.90 3.71 9.55 27.90 3.71 9.55 27.90

Map 2 2.40 5.78 30.86 2.40 5.78 30.86 2.40 5.78 30.86

Map 3 1.75 6.52 31.36 1.75 6.52 31.36 2.01 6.63 30.49

Map 4 2.33 9.35 30.84 2.33 9.35 30.84 2.33 9.35 30.84

Map 5 1.92 7.77 29.94 1.92 7.77 29.94 2.29 7.83 30.30

Map 6 1.89 6.02 31.04 1.89 6.02 31.04 2.32 6.17 31.04

Map 7 2.13 6.77 30.43 2.13 6.77 30.43 2.13 6.77 30.43

Map 8 2.51 5.04 27.22 2.51 5.04 27.22 2.51 5.04 27.22

Map 9 1.14 8.08 30.24 0.59 7.50 30.24 0.59 7.50 30.24

Map 10 1.82 4.10 27.46 1.82 4.10 27.46 2.00 4.14 30.21

Map 11 2.17 7.51 30.90 2.17 7.51 30.90 2.17 7.51 30.90

Map 12 1.52 6.89 30.85 1.52 6.89 30.85 2.08 6.40 30.85

Map 13 1.64 8.31 30.62 1.64 8.31 30.62 2.05 8.49 30.62

Map 14 1.90 8.29 30.85 1.90 8.29 30.85 2.40 8.30 30.85

Map 15 2.00 7.13 30.35 2.00 7.13 30.35 2.25 7.16 30.68

Map 16 1.69 6.27 31.22 1.69 6.27 31.22 1.96 6.47 31.22

Map 17 2.88 11.11 31.06 2.88 11.11 31.06 2.88 11.11 31.06

Map 18 1.20 9.49 31.53 1.57 9.44 29.44 2.03 9.45 30.79

Map 19 2.17 6.52 30.92 2.17 6.52 30.92 2.17 6.52 30.92

Map 20 1.76 6.32 29.57 1.76 6.32 29.57 2.16 6.32 28.63

Map 21 4.18 11.77 30.94 4.18 11.77 30.94 4.18 11.77 30.94

Map 22 3.03 8.05 31.05 3.03 8.05 31.05 3.03 8.05 31.05

Map 23 1.82 9.84 31.43 1.82 9.84 31.43 2.26 9.92 31.43

Map 24 1.73 4.82 30.67 1.73 4.82 30.67 2.02 4.93 30.67

Map 25 2.67 9.78 29.79 2.67 9.78 29.79 2.67 9.78 29.79

Map 26 2.25 9.21 31.37 2.25 9.21 31.37 2.25 9.21 31.37

Table 4.9: Velocities for Differential Drive Robot
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Velocities for Car-Like Robot with Ackermann Steering (meter/second)

K=1 K=0.5 K=0.25

Map Min Mean Max Min Mean Max Min Mean Max

Map 1 3.71 9.94 27.90 3.71 9.94 27.90 3.71 9.94 27.90

Map 2 2.40 6.93 30.86 2.40 6.93 30.86 2.40 6.93 30.86

Map 3 1.75 7.63 31.36 1.75 7.63 31.36 2.01 7.66 30.49

Map 4 2.33 9.96 30.84 2.33 9.96 30.84 2.33 9.96 30.84

Map 5 1.92 8.84 29.94 1.92 8.84 29.94 2.29 8.88 30.30

Map 6 1.89 6.79 31.04 1.89 6.79 31.04 2.32 6.95 31.04

Map 7 2.13 7.61 30.43 2.13 7.61 30.43 2.13 7.61 30.43

Map 8 2.51 5.42 27.22 2.51 5.42 27.22 2.51 5.42 27.22

Map 9 1.14 8.62 30.24 0.59 7.51 30.24 0.59 7.51 30.24

Map 10 1.82 5.03 27.46 1.82 5.03 27.46 2.00 4.98 30.21

Map 11 2.17 8.59 30.90 2.17 8.59 30.90 2.17 8.59 30.90

Map 12 1.52 7.88 30.85 1.52 7.88 30.85 2.08 7.33 30.85

Map 13 1.64 9.36 31.56 1.64 9.36 31.56 2.05 9.53 31.56

Map 14 1.90 8.83 30.85 1.90 8.83 30.85 2.40 8.81 30.85

Map 15 2.00 7.94 30.35 2.00 7.94 30.35 2.25 7.94 30.68

Map 16 1.69 7.00 31.22 1.69 7.00 31.22 2.05 7.22 31.22

Map 17 2.88 11.85 31.06 2.88 11.85 31.06 2.88 11.85 31.06

Map 18 2.16 10.98 31.53 2.08 10.79 29.44 2.03 10.65 30.79

Map 19 2.17 7.21 30.92 2.17 7.21 30.92 2.17 7.21 30.92

Map 20 1.76 7.22 29.57 1.76 7.22 29.57 2.16 7.18 28.63

Map 21 4.18 12.30 30.94 4.18 12.30 30.94 4.18 12.30 30.94

Map 22 3.03 8.68 31.05 3.03 8.68 31.05 3.03 8.68 31.05

Map 23 1.82 10.79 31.43 1.82 10.79 31.43 2.26 10.74 31.43

Map 24 1.73 5.56 30.67 1.73 5.56 30.67 2.02 5.71 30.67

Map 25 2.67 10.48 29.79 2.67 10.48 29.79 2.67 10.48 29.79

Map 26 2.25 10.37 31.37 2.25 10.37 31.37 2.25 10.37 31.37

Table 4.10: Velocities for Car-Like Robot with Ackermann Steering
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There are three different velocity vs time plot are given for different maps to un-

derstand difference between differential drive and car-like robot with Ackermann

steering. In Fig. 4.27, sparse map example is given for Map 1. Plots are similar

for both robots as a maximum and minimum velocities. Main difference occurs at

maximum velocity parts. Blue lines which are used for differential drive have more

sharp changes at maximum velocities. The change at the velocity occurs more quick

than the car-like robot with Ackermann steering. For instance, car like robot stays at

maximum velocity a bit longer than the differential drive robot.

In Fig. 4.28 and Fig. 4.29 two different plots are given with more different mean

velocities for both type of robots. Similar to the Fig. 4.27, general plots are similar.

Main changes occur at deceleration and acceleration parts. Generally, car-like robots

accelerate and decelerate earlier than the differential drive robot.

Figure 4.27: Velocity Differences for Map 1 with κ = 0.25
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Figure 4.28: Velocity Differences for Map 18 with κ = 0.25

Figure 4.29: Velocity Differences for Map 23 with κ = 0.25
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CHAPTER 5

CONCLUSION

This thesis explains research on path planning and tracking for nonholonomic robots

such as differential drive robots or car-like robots with Ackermann steering. These

robots are a field of research that is developing day by day and path planning and

tracking for such robots has great importance. It is essential that the planned path is

safe, as short as possible, and can be followed by the vehicle. It is preferred to include

smooth curves instead of sharp corners so that the planned path can be followed by a

non-holonomic robot.

In this thesis, the generation of smooth curves instead of sharp corners is made with

Bezier curves. The proposed algorithm includes the following steps; merging close

waypoints obtained from VV-ST-R algorithm’s waypoints, moving waypoints away

from the obstacle, generating helper control points for Bezier curve, inserting new

control points for Bezier curve if Bezier curve segments hit obstacle, and finally cre-

ation of Bezier curves with six control points. Other than that, to handle the curvature

constraints, if the Bezier curve segment’s curvature is larger than maximum curva-

ture value, the locations of the helper control points are changed to obtain desired

curvature.

The developed method is applied based on VB and VV-ST-R path planning algo-

rithms that generate straight-line paths with sharp corners. For the comparison pa-

rameters path length, minimum distance to the obstacle, and computation time are

selected. For the path length and minimum distance to the obstacle parameters results

are similar. Since the VB path aims that the safest path its minimum distance to the

obstacle and path length is the largest. Since the VV-ST-R path aims that the shortest

path its minimum distance to the obstacle and path length is the smallest. The pro-
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posed algorithm uses control points generated from VV-ST-R waypoints. However, it

changes waypoint locations away from the obstacle to find smooth curves. By doing

these changes, the proposed algorithm uses a safe region between the VB path and

the VV-ST-R path. Therefore, the path length and minimum distance to the obstacle

parameters are between two other algorithms. For the computation time parameter,

since previous algorithms are assumed to be calculated, only the computation time

between different maps is compared. The proposed algorithm’s computation time

varies according to the number of control points on the path. If there is a path on

the map that needs to be passed around detailed obstacles, the computation time is

longer. This is because of many control points are necessary to give direction around

the obstacles. If the distance between the obstacles on the map is large and there is

no need for more control points to find the way, the computation time is shorter.

Curvature constraint is another parameter for comparison. A small enough curvature

is necessary to ensure that nonholonomic robots can follow these generated smooth

paths with their kinematic constraints. To handle the curvature constraints another

method is applied to the proposed algorithm, changing helper control points. While

changing control points locations path length is also changed. To handle curvature

constraints, the proposed algorithm places helper control points from each other.

Thus, the resulting Bezier curve becomes more smooth. This causes an extension

in the path length. Therefore, the path length becomes larger when small curvature

is wanted. The minimum distance to obstacle value decreased as the curvature value

decreased. This has been observed because the algorithm brings the path closer to the

far corners of the corridors to reach the desired curvature value.

To further study the path quality, the Pure Pursuit algorithm was used for the trace-

ability of smooth paths by car-like robots with Ackermann steering and differential

drive robots. It was observed that the path found by the proposed algorithm could

follow smooth paths by the robots. However, the overshoot was observed in non-

smooth paths. Therefore, it was observed that the smooth paths generated in cases

with control points away from the obstacle had higher traceability by vehicles.
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Appendix A

PROPOSED ALGORITHMS RESULTS

Figure A.1: Obtained Smooth Path for Map 1
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Figure A.2: Obtained Smooth Path for Map 2

Figure A.3: Obtained Smooth Path for Map 3
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Figure A.4: Obtained Smooth Path for Map 4

Figure A.5: Obtained Smooth Path for Map 5
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Figure A.6: Obtained Smooth Path for Map 6

Figure A.7: Obtained Smooth Path for Map 7
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Figure A.8: Obtained Smooth Path for Map 8

Figure A.9: Obtained Smooth Path for Map 9
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Figure A.10: Obtained Smooth Path for Map 10

Figure A.11: Obtained Smooth Path for Map 11
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Figure A.12: Obtained Smooth Path for Map 12

Figure A.13: Obtained Smooth Path for Map 13
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Figure A.14: Obtained Smooth Path for Map 14

Figure A.15: Obtained Smooth Path for Map 15
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Figure A.16: Obtained Smooth Path for Map 16

Figure A.17: Obtained Smooth Path for Map 17
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Figure A.18: Obtained Smooth Path for Map 18

Figure A.19: Obtained Smooth Path for Map 19
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Figure A.20: Obtained Smooth Path for Map 20

Figure A.21: Obtained Smooth Path for Map 21
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Figure A.22: Obtained Smooth Path for Map 22

Figure A.23: Obtained Smooth Path for Map 23
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Figure A.24: Obtained Smooth Path for Map 24

Figure A.25: Obtained Smooth Path for Map 25
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Figure A.26: Obtained Smooth Path for Map 26
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