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ABSTRACT

MULTI-MODAL EGOCENTRIC ACTIVITY RECOGNITION
THROUGH DECISION FUSION

Arabacı, Mehmet Ali

Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Alptekin Temizel

Co-Supervisor: Assoc. Prof. Dr. Elif Sürer

January 2023, 106 pages

The usage of wearable devices has rapidly grown in daily life with the development of sensor
technologies. The most prominent information for wearable devices is collected from optics
which produces videos from an egocentric perspective, called First Person Vision (FPV). FPV
has different characteristics from third-person videos because of the large amounts of ego-
motions and rapid changes in scenes. Vision-based methods designed for third-person videos
where the camera is away from events and actors, cannot be directly applied to egocentric
videos. Therefore, new approaches, which are capable of analyzing egocentric videos and
accurately fusing inputs from various sensors for specified tasks, should be proposed. In this
thesis, we proposed two novel multi-modal decision fusion frameworks for egocentric activity
recognition. The first framework combines hand-crafted features using Multi-Kernel Learn-
ing. The other framework utilizes deep features using a two-stage decision fusion mechanism.
The experiments revealed that combining multiple modalities, such as visual, audio, and other
wearable sensors, increased activity recognition performance. In addition, numerous features
extracted from different modalities were evaluated within the proposed frameworks. Lastly,
a new egocentric activity dataset, named Egocentric Outdoor Activity Dataset (EOAD), was
populated, containing 30 different egocentric activities and 1392 video clips.

Keywords: first-person vision, egocentric activity recognition, multi-modality, decision fu-
sion
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ÖZ

KARAR TÜMLEŞTİRME YOLUYLA ÇOK-KİPLİ BİRİNCİ ŞAHIS HAREKET
TANIMA

Arabacı, Mehmet Ali

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Alptekin Temizel

Ortak Tez Yöneticisi: Doç. Dr. Elif Sürer

Ocak 2023, 106 sayfa

Sensör teknolojilerinin gelişmesiyle birlikte giyilebilir cihazların günlük hayattaki kullanımı
hızla artmıştır. Giyilebilir cihazlardaki en yaygın bilgi birinci şahıs görüsü olarak adlandı-
rılan ve optik sensörler ile elde edilmiş birinci şahıs perspektife sahip videolardır. Birinci
şahıs videolar büyük miktarda birinci şahıs hareketi içermeleri ve sahnelerdeki hızlı değişim-
ler nedeniyle üçüncü şahıs videolarından farklı özelliklere sahiptir. Kameranın olaylardan ve
aktörlerden uzak olduğu üçüncü şahıs videolarına göre tasarlanmış görsel tabanlı yöntemler
birinci şahıs videolarına doğrudan uygulanamamaktadır. Bu nedenle, birinci şahıs videolarını
analiz edebilen ve tanımlanan görevler için çeşitli sensörlerden gelen verileri doğru şekilde
birleştirebilen yeni yaklaşımlara ihtiyaç duyulmaktadır. Bu tezde, birinci şahıs hareket tanıma
problemi için çok-kipli karar tümleştirme kullanan iki yeni çatı önerilmiştir. Bunlardan ilki,
üretilen öznitelikleri Çoklu Kernel Öğrenmesi ile birleştirmektedir. Diğer çatı ise derin öznite-
likleri iki aşamalı karar tümleştirme mekanizması ile kullanmıştır. Gerçekleştirilen deneyler,
görsel, işitsel ve diğer giyilebilir sensör bilgilerinin birleştirilmesinin birinci şahıs hareket
tanıma performansını arttırdığını ortaya çıkarmıştır. Ek olarak, önerilen çatılar ile farklı kip-
lerden çıkarılan çok sayıda öznitelik test edilmiştir. Son olarak, 30 farklı birinci şahıs hareketi
ve 1392 video kayıt parçası içeren Egocentric Outdoor Activity Dataset (EOAD) isimli yeni
bir birinci şahıs hareket veri seti oluşturulmuştur.

Anahtar Kelimeler: birinci şahıs görü, birinci şahıs hareket tanıma, çok-kipli, karar tümleş-
tirme
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CHAPTER 1

INTRODUCTION

Nowadays, wearable devices have started to attract more attention with the evolution of mo-
bile devices and sensor technologies. Practical and affordable products have been presented
in different categories such as hand-held cameras, sports and action cameras, wearable cam-
era glasses, smartwatches, fitness trackers, smart clothing, wearable medical devices, and
virtual reality (VR) headsets. Using different hardware, software, and sensors, it is possi-
ble to build applications for different prominent sectors including business operations (logis-
tics, information access), security/safety (military, identity recognition), medical (activities
of daily living to assist caregivers to track elderly people [5], vital sign monitoring, chronic
disease management, brain/eye movement), wellness (physiological monitoring, gait/posture
correction), sport/fitness (sports performance, fitness monitoring, virtual coaching), lifestyle
computing (interactive gaming, shared experience), communication (interactive group, social
interactions, physical expression), glamor (decorative display, reactive response), or recom-
mendation systems (recommendation of music genres according to the type of activities [6]).

Optics and audio are the most commonly used sensors for wearable devices generating audio-
visual information. Besides optic cameras and microphones, additional embedded sensors
(e.g., eye tracking sensors, accelerometers, gyroscopes, depth sensors, magnetometers, light
sensors, proximity sensors, body-heat detectors, and temperature sensors) are also used to
get information about the users. The concept of audio-visual information taken through a
wearable camera is called Egocentric Vision or First-Person Vision (FPV). All these various
types of sensors can be used for different tasks such as action/activity recognition [1, 7–12],
object/hand recognition [13, 14], action/gaze anticipation [15–17], egocentric video summa-
rization [18, 19], social interactions [20, 21], human-object interaction [22, 23], pose estima-
tion [24–26], or privacy in egocentric videos [27, 28].

Human-centric characteristic of egocentric sensor information offers great potential and chal-
lenges to present new approaches to some of these tasks. In Figure 1, the number of studies
in egocentric vision and wearable sensors are listed annually according to their relevance to
the keywords for “first-person vision”, “first-person video”, “egocentric video”, “lifelogging
video”, “wearable video”, and “wearable sensor” on Web of Science. The graph reflects the
research potential of egocentric video-sensor analysis since the number of articles per year
has exploded in the last few years. The reason for that is possibly related to the increase of
affordable commercial products on the market which makes it easier to acquire first-person
vision and sensor data than before.
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Figure 1: Number of citations and publications over time, related to FPV and wearable sensor
analysis (until October 2022).

Although these wearable devices are employed for various tasks, a group of studies focused
on the recognition of daily activities for users. It was shown that physical inactivity increases
the risk of cardiovascular diseases, diabetes, breast cancer, and mental disorders such as de-
pression [29]. Therefore, it is important to analyze the daily activities of users and warn them
of the early stages of possible diseases. However, Egocentric Action Recognition (EAR) sys-
tems suffer from storing large amounts of video-sensor data since the resolutions of videos
have increased and the number of sensors has diversified over time. One of the most chal-
lenging tasks here is using these data collectively to improve egocentric activity analysis, such
as fast querying through hundreds of egocentric videos taken every day. Even though infor-
mation obtained from all these sensors allows us to analyze egocentric activities in a variety
of ways, this necessitates efficient algorithms capable of combining complementary sensor
information effectively and providing modularity to facilitate the inclusion of additional sen-
sors.

Publications that concentrate on EAR can be reviewed based on their sensor types: using only
visual information [7, 8, 30], using mobile and wearable sensor networks [31–33], and com-
bining visual information with other wearable sensors [15, 34–36]. Until recently, most of the
vision-based activity recognition methods have been designed for a third-person perspective.
In that case, actors are usually far away from the camera and do not participate in the activ-
ities or events [8]. Although vision is the primary source of information in FPV tasks, other
types of wearable sensors are also available including audio, accelerometers, gyroscopes and
Global Positioning Systems (GPS) [37].

Before proceeding to examine EAR approaches, it is better to define action and activity. In
some studies [8, 31, 38], the terms action and activity were used interchangeably while the
others [39–41] defined activity (or complex activity) as a collection of multiple actions (or
atomic activities) that are identified over temporal snippets using pattern-mining algorithms.
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This study’s focus was restricted to atomic ego-activities (e.g., walking, running, shaking
hands, hugging, or driving) rather than complex activities composed of verbs and nouns (e.g.,
prepare pizza, take a banana, or pour milk). Therefore, egocentric activities are differentiated
among video clips without establishing a time relationship between activities in this study.
Additionally, there are no restrictions on processing videos in real-time, and we did not use
any activity segmentation techniques as a preprocessing step.

Following are brief explanations of the EAR problem, the objective of this thesis, our research
topics, and the significance of this study.

1.1 Problem Definition

The proliferation of wearable devices on the market has resulted in large amounts of acquired
data, posing the challenge of analyzing them collected by these devices. In general, the dif-
ficulty is to efficiently process sensor data and make it usable for consumers. Nevertheless,
the nature of the problem may vary depending on the uniqueness of the applications. In some
cases, like interactive games or shared experiences, sensor data may need to be analyzed in
real-time. Or one needs to combine different sensor information (multi-modality) to extract
the key objects or events for the users (e.g., employing a front camera with an eye tracker).
These types of use cases force researchers to develop novel FPV analysis methods.

As previously noted, storing egocentric video-sensor data is troublesome, particularly for
lifelogging egocentric videos. Because lifelogging videos represent the recording of the users’
daily lives in varying degrees of detail, the resulting audio-visual data may be enormous.
Table 1 illustrates an example of the total quantity of data acquired for one year utilizing
various video resolutions and audio bitrates 1. The total amount of audio-video data indicates
that storage capacity is a significant problem. Improving video compression (or encoding)
techniques is one viable option to reduce storage capacity. Removing redundant data from
video footage is a second viable option. However, the redundancy of audio-visual content
highly depends on subjective criteria. As a result, developing efficient and effective FPV
algorithms capable of extracting meaningful information from tasks is critical in this domain.

Table 1: Typical storage size for one-year lifelogging video recording (6 hours/day)

Video Audio

Resolution Bitrate
(Mbps)

Datasize
(TByte)

Bitrate
(Mbps)

Datasize
(GByte)

480P 2.5 2.46 128 126
720P 5.0 4.93 384 378

1080P 8.0 7.88 384 378
4K 40.0 39.42 384 378

The fusion of information coming from different sensors (e.g., optic, audio, accelerometer,
inertial measurement units) to recognize egocentric activities is still an active research area.

1 It was assumed that the user would record their daily activities for 6 hours/day and the bitrates are taken
from YouTube’s recommended settings for standard quality uploads.
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Although the increase in sensor diversity brings out the need for adaptive fusion, there is a
limited number of studies that uses multiple sensors in the EAR. In addition to the complexity
of building effective fusion techniques, the temporal dynamics of the activities also require
regulating sensors’ data to synchronize them in time. At this point, it is better to mention
the main differences between egocentric activity recognition (EAR) and third-person activity
recognition (TAR) listed in Table 2.

Table 2: Comparison of TAR and EAR

TAR EAR

Viewpoint Usually far away from events
and actors

The observer is involved in the
events

Motion Characteristics Mostly does not suffer from
rapidly changing and uncontrol-
lable visual content

Large amount of ego-motion
such as spinning and falling
down

Sensor Types Video, audio Rich sensor networks (video,
audio, mobile, and wearable
sensors)

Content Surveillance videos, news,
movies, sport videos, and docu-
mentaries

Daily activities, action videos,
and lifelogging videos

Vision-based methods for activity recognition are typically designed for third-person videos
and cannot be directly applied to FPV. Video analysis from a third-person perspective is gen-
erally inadequate when the observer is personally involved in the events. Since the camera
undergoes a lot of ego-motion in FPVs according to the activities of the user, the motion in-
formation of actors (i.e., the head movement for head-mounted cameras or body movement
for chest-mounted cameras) is as important as that of foreground objects in videos. Addi-
tionally, the lighting, location (indoors, outdoors), and ego-motion rapidly change the visual
content. Third-person videos taken from wider angles tend to have a broader perspective than
egocentric videos.

Employing a single model does not necessarily produce high accuracy for all activities, given
that their characteristics vary according to their nature. Consequently, it was worthwhile to
study the possibility of developing fusion mechanisms for modalities weighing them relative
to their information levels. Thus, the proposed methods may dynamically weigh different
modalities (i.e., appearance, motion, audio, or sensor) and discriminate activities with more
precision.

In this research, we proposed two EAR frameworks that can be applied to multi-modal infor-
mation. The first framework combines multi-modal information with Multi-Kernel Learning
(MKL), a well-known method in ensemble learning. MKL offers an implicit fusion strat-
egy that performs feature selection and classification simultaneously. The second framework,
on the other hand, employs a two-stage decision fusion (TSDF) technique that adaptively
weights the decisions of single-stream EAR models based on their relevance to activities.
Unlike MKL, TSDF provided an explicit fusion technique with a confidence-based weighing
mechanism. Even though the two proposed frameworks are expandable with new sensors, the
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Figure 2: Stream and segment decisions for video clips.

addition of new modalities differs due to the nature of their fusion methods. For example,
MKL needs to retrain its weak learners after reselecting features and kernel sets. TSDF, on
the other hand, requires training a single-stream EAR model for the new modality (no need if
previously trained) and training fusion models that generate decision weights afterward.

After testing both frameworks, we discovered several advantages and disadvantages of them
compared to each other. For instance, MKL’s recognition performance on various egocentric
activity datasets was encouraging. However, choosing a universal feature and kernel set for
all datasets is challenging. On the other hand, it is easier to add new modalities for TSDF
since it only requires pre-trained EAR models and modality features to train fusion models.
Fusion models receive modality features as inputs and decision weights computed by the
confidences of the pre-trained EAR models as targets. In addition, TSDF allows the use
of heterogeneous EAR models (e.g., SVM and deep models) since the fusion models require
only the confidence scores of activities. Nevertheless, the TSDF approach has two limitations.
Firstly, it is obvious that EAR models should generate confidence scores, not just categorical
outcomes. Secondly, the features of all modalities for each video segment should be available
for training fusion models. Here, we need to clarify two terms which are video clips and
segments. Video clips refer to activity videos that include a single activity in them and consist
of hundreds or thousands of frames. On the other hand, video parts that are uniformly divided
according to a predetermined number are called video segments (Figure 2).

Table 3 depicts the comparison of MKL and TSDF-based EAR frameworks. The details of
the proposed frameworks will be discussed in the following chapters.

1.2 Purpose of the Study

This research aims to establish novel, adaptive, and expandable EAR frameworks utilizing
multi-modal information. In the context of this work, adaptive means that the framework is
expected to alter the weights of the particular modalities based on their contribution to the
recognition performance. Here, we speculate that cross-modalities complement each other to
discriminate egocentric activities. In addition to this, one of the other goals is to simplify the
process of adding new modalities to the proposed frameworks.
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Table 3: Comparison of MKL and TSDF-based EAR frameworks

MKL-based EAR TSDF-based EAR

Fusion Strategy
Implicit: using feature selection
and classification

Explicit: using confidence-based
decision fusion pipeline

Expandability
Reselect feature and kernel set Train single-stream EAR model

for new modality

Retrain MKL model Retrain fusion models

Stream Types Multi-stream for MKL Single-stream for EAR models

for Model Training Multi-stream for fusion models

Advantages

Adaptiveness for different datasets Easy to integrate new modalities

Allows using of heterogeneous
EAR models together (i.e., SVM,
deep models)

Limitations
Hard to select universal feature
and kernel set

EAR models should be calibrated
and produce confidence scores

1.3 Research Questions

In accordance with the purpose of the study, the following questions will be explored in this
study:

Question 1: Can Multi-Kernel Learning procedures be applied to fuse optical, audio, and
wearable sensor data for EAR tasks?

Question 2: Is it possible to develop an EAR framework utilizing an explicit fusion strategy
using confidence-based weights generated by pre-trained single-stream EAR models?

1.4 Contributions of the Study

This research proposed two novel frameworks to fuse multi-modal data from various sensors.
The proposed framework recognizes egocentric activities using audio, video, and wearable
sensors. According to our knowledge, this is one of the first studies to use the audio sensor in
conjunction with visual data and other mobile sensors to investigate this particular issue. By
altering the relative importance of the modality information, we present flexible frameworks
that can balance modalities from different sources and adapt to a variety of scenarios involving
distinct activity classes. The MKL-based technique provides an effective fusion procedure
that maximizes recognition performance even if one or more sensor information is absent.
Additionally, TSDF-based design allows easy integration of new modalities without needing
to train the whole framework again. Through this research, we also publish a new egocentric
activity dataset named Egocentric Outdoor Activity Dataset (EOAD) containing 30 different
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activities. The results indicate that the proposed frameworks yield comparable or superior
results compared to the state-of-the-art techniques.

We published the following papers and proceedings from this study:

• M. A. Arabacı, F. Özkan, E. Surer, P. Jančovič, A. Temizel, "Multi-modal egocentric
activity recognition using multi-kernel learning," Multimedia Tools and Applications,
vol. 80, no. 11, 16299-16328, 2021 [1].

• F. Özkan, M. A. Arabaci, E. Surer, A. Temizel, "Boosted multiple kernel learning for
first-person activity recognition," in 2017 25th European Signal Processing Conference
(EUSIPCO), pp. 1050-1054. IEEE, 2017 [7].

1.5 Organization of the Thesis

Chapter 2 provides a comprehensive overview of egocentric action/activity recognition ap-
proaches. In Chapter 3, the proposed methodology for the MKL-based approach is provided,
along with its system-level architecture and some implementation-specific information. In
Chapter 4, the TSDF-based strategy for identifying egocentric actions/activities is described.
A new egocentric activity dataset, the Egocentric Outdoor Activity Dataset (EOAD), which
consists primarily of outdoor egocentric actions, is also presented in Chapter 4. Lastly, Chap-
ter 5 summarizes the overall findings of this study and provides a future direction for further
research studies.
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CHAPTER 2

RELATED WORK

There is a strong connection between first-person vision and the development of egocentric
activity recognition (EAR) literature. Therefore, the following section provides a brief sum-
mary of the first-person vision. After that, EAR-related studies will be discussed in detail.

2.1 First Person Vision (FPV)

The earliest examples of FPV research literature date back to the 1990s. Several experiments
using wearable devices were presented in one of the earliest seminal works [42] on this topic.
Following that, MediaLab (MIT) demonstrated the possibilities of FPV by playing "Patrol,"
a real-time space game [43]. One of the most promising studies [44] detected the strong
relationship between eye movements and FPV by demonstrating that the eyes are typically
focused on the same object throughout the action. There have also been commercial inter-
ests in FPV, and several products have been introduced, including SenseCam by Microsoft
Research in 2006, GoPro Hero in 2010, and Google Glass Project in 2012.

Increasing attention to the FPV domain triggered some of the research areas consisting of ego-
centric action recognition [1, 8, 9], scene understanding from egocentric videos [45, 46], video
summarization and retrieval [18, 19], eye gaze tracking and analysis with head-mounted cam-
eras [47], social saliency and multi-user analytics [23], egocentric action anticipation [48–50],
attention and saliency for understanding human-object interaction [51]. On the other hand,
several emerging topics are expected in the near future, such as personalization of visual anal-
ysis, socio-behavioral modeling, understanding group dynamics and interactions, egocentric
video as big data, and first-person vision for robotics.

FPV provides additional information compared to third-person videos, such as recording the
essential parts of the scene [52], rapidly expanding egocentric video datasets with the new
commercial wearable devices, scene recognition using illumination and global scene charac-
teristics [53], and estimating significant objects by monitoring eye and head movements [54].
While FPV analysis has certain practical benefits, it also presents several challenges that must
be overcome [55]. FPV analysis should deal with problems such as ego-motion, highly vari-
able and uncontrollable videos due to rapidly changing scenes and time (i.e., day, night,
indoor, outdoor), and real-time processing constraints for specific applications. Besides, it
should also be efficient while processing videos to optimize the battery life of the devices.
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2.2 Egocentric Action Recognition (EAR)

Even though there exist diverse research topics in the FPV domain, in this thesis, we will
focus on activity recognition from egocentric videos. Hence, this section provides a summary
of the works that are associated with the EAR. Within this scope, the studies related to the
EAR are grouped according to their input (e.g., vision, or multi-modal), or method (e.g., deep
learning, fusion, or attention) types.

2.2.1 Vision-based EAR

Vision-based activity detection algorithms primarily analyze videos captured from a third-
person perspective [56–59]. Vision-based EAR can be categorized into the object and motion-
based techniques [51]. In object-based methods, activity recognition is performed using the
object(s) detected in videos (i.e., detection of cheese and bread objects imply "making cheese
sandwich" activity) [60], which makes them dependent on the availability of objects in par-
ticular actions (thus can only be used to detect actions involving specific objects) and directly
related to the object recognition performance, which is susceptible to occlusions. Methods
that focus on objects to recognize egocentric activities have made it necessary to examine
how people interact with those objects [61, 62]. In addition, hand segmentation [13, 14] has
become a significant problem at a low level, as the accuracy of the EAR is tied to the segmen-
tation performance [63, 64].

Motion-based techniques rely on the premise that different activities, such as running, walk-
ing, stair climbing, and writing, require distinct body motions and that these motion patterns
can be utilized to identify activities [30, 65]. In [66], the authors utilized first-person dense
trajectories in the motion pyramidal structure. The relative strengths of motion along the
trajectories were then utilized to generate multiple bag-of-words descriptions that were later
merged into a single action descriptor. In another study, motion features in egocentric videos
were used to extract biometric data, and users could be accurately recognized from a few sec-
onds of walking-related video [67]. In [8], a structural learning approach was used with HOF,
Log-C, and cuboid features to discriminate interaction-related actions, such as hugging and
throwing objects.

2.2.2 Multi-modal EAR

Processing of multi-modal sensor data to solve pre-defined tasks has some challenges, such as
cross-modality regulation/synchronization, developing efficient fusion algorithms, or needing
expertise for the selected input types. However, additional data from different sensor sources
have the potential to obtain complementary information to describe the activities. Therefore,
using multi-sensor data has become one of the promising strategies for EAR instead of a
single modality. For that purpose, many embedded sensors on mobile and wearable devices
were utilized to identify the user’s activities. Each sensor type delivers essential information
about an activity. For instance, motion sensors can monitor the user’s movements to identify
the motion patterns of various activities, such as walking, standing, and running. Other types
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of sensors, such as the accelerometer, gyroscope, magnetometer, and inertial measurement
units, can also derive this motion pattern (IMUs).

In [68, 69], the audio information was utilized for EAR in addition to visual information.
The objects outfitted with radio-frequency identification (RFID) tags were also used for ac-
tion recognition [70, 71], while some other works [72, 73], combined RFID tags with visual
information. On the other hand, accelerometer data allow us to discriminate different phys-
ical activities [29, 74]. In addition, the information gathered by proximity and light sensors
indicates whether the actor is in a dark or bright environment [75]. Pedometer sensors or
specialized wearable gadgets that count steps and monitor heart rate or pulse can also pro-
vide important information regarding the health issues of their users [76]. To create and pick
acceptable characteristics for a specific human activity recognition (HAR) system, however,
several studies in this subject require significant heuristic expertise [37].

Only a few studies deal with the problem of combining information from optical and wearable
sensors for EAR. In [15], a head-mounted camera and an eye tracker were used to recognize
objects the actor interacted with in videos, which were then used to recognize the actor’s activ-
ities. Similarly, in [34], EAR was accomplished using a camera coupled with a wearable eye
tracker to acquire gaze measurements in which a 2-D image point in each frame represented
the gaze location. A multi-modal approach combining new sensor features with dense trajec-
tory features [35] was published and applied to their publicly available dataset (Multi-modal
Egocentric Activity Dataset) [36]. An early study evaluated audio information with optical
information for detecting human activities from a wearable camera and microphone [69].

Audio has not been extensively studied in the EAR field, with few datasets containing RGB
frames and audio. However, it is a potential alternative for specific actions where visual ap-
pearance and motion are insufficient. For example, [1] suggested combining audio-visual
features with MKL and MKBoost. Using the training set, MKL was used to learn the weights
of various features, kernels, and their parameters. Concerning the features, the authors con-
sidered employing complementary features from different modalities: from videos, they ex-
tracted global features using the Grid Optical-Flow-based Features (GOFF), Vision-based
inertial features (VIF) (both from [30]), and Log-Covariance (Log-C) features [77]; local
features from videos leveraging Cuboids [57]; and, for audio features, they utilized Mel-
frequency cepstral coefficients (MFCCs) [78]. In addition to the MKL and MKBOOST, an
SVM was utilized for the classification stage. In another work [79], temporal-binding (the
combination of modalities within a range of temporal offsets) of RGB, optical-flow and, au-
dio was accomplished with a multi-modal architecture and demonstrated that audio is com-
plementary to the appearance and motion representation of the RGB and optical-flow inputs.

2.2.3 Deep Learning in EAR

Even though hand-crafted features produce promising results for task-specific activity recog-
nition problems, the difficulties of detecting complex activities still require additional study.
Recent research has demonstrated that deep learning approaches can extract high-level rep-
resentations on spatial and temporal dimensions, making them more suitable for complicated
activity identification. In addition, deep networks enable the features to be automatically
learned rather than manually developed. Deep learning-based algorithms can be utilized as an
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alternative for various activity recognition subtasks, such as feature extraction [80–82], kernel
fusion [83], and human-object interaction exploration [84].

Recently, many algorithms based on deep learning have been applied to the EAR. Feature
extraction [81, 82, 85], kernel fusion [83], and human-object interaction exploration [86]
are some of the subtasks that employ deep neural networks for activity detection. Another
study [82] utilized auto-encoders to extract appearance and motion features from raw input
and recreate it using its decoding technique. Then, the learned appearance and motion fea-
tures produced an egocentric activity representation that can be easily fed to supervised learn-
ing models for activity recognition. One of the most influential research [65] suggested a 3D
CNN architecture for long-term activity identification in egocentric movies by generalizing
the concept of sparse optical flow volume-based temporal filtering [87]. A twin-stream net-
work architecture was employed in a different study [88]. One stream analyzed appearance,
and the other analyzed motion information by explicitly training the network to segment hands
and localize objects to distinguish egocentric actions. Recent research [2] presented a two-
stream CNN architecture that uses long-term fusion pooling operators to capture the temporal
structure of actions by exploiting a succession of frame-wise appearance and motion elements
in actions.

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)-based hy-
brid deep learning models have become state-of-the-art in image and video captioning re-
search [89–91]. CNNs can capture the spatial relationship, whereas RNNs can utilize the
temporal relationship. Combining CNNs and RNNs could thereby improve the ability to ex-
tract video features and transfer them to a sentence, which is likewise a sequence like a video.

In [92], following 4000 tests on sensor-based Human Activity Recognition (HAR) datasets,
RNNs and Long Short-Term Memory (LSTM) were recommended to recognize short activi-
ties with the natural order, and CNNs were recommended for recognizing long-term repetitive
activities. According to a separate study [93], LSTM-based techniques cannot describe long-
lasting activities due to their rising complexity. In other words, deep learning models may
obtain high recognition performance for a subset of tasks while receiving poorer performance
ratings for the remainder.

2.2.4 Fusion-based Methods in EAR

Fusion of modalities may occur at the feature [94, 95] or classifier [96, 97] level. Before the
final classification, feature-level fusion combines various features to produce more discrim-
inative features. In [98], appearance and motion (generating a single feature vector) were
processed by a 3D CNN, while a Faster Region-based Convolutional Neural Network was
utilized for the object features. The detector’s features were fused with the motion and ap-
pearance features individually by applying learned gate weights (from the opposite branch).
Prior to collecting the final feature vector for a branch, an extra step of attention was applied
to make use of the features from the opposite branch. Another work [99] employed a non-
linear fusion technique in which weighted addition was performed to combine shareable and
distinctive components (obtained through non-linear mapping of the original features).
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On the other hand, classifier (or decision) level fusion techniques use each individual feature
independently in the classification process. The final decision is taken by combining decisions
for individual features. In [100] a late fusion mechanism was introduced for three modalities
of data: RGB (for appearance, using a Batch Normalised Inception), Optical-Flow (for mo-
tion, using a Temporal Segment Network), and object features (confidence scores obtained
from an object detector) to anticipate actions.

2.2.5 Attention-based Methods in EAR

With the recent surge of interest in deep neural networks, attention-based models have shown
promising results on a variety of complex tasks, including image and video captioning [101,
102], machine translation and handwriting synthesis [103, 104], image recognition (e.g.,
Street View House Numbers dataset [105]), game-playing and tracking [106], and visual ques-
tion answering [107–110]. The visual attention mechanism aims to identify relevant regions
in visual information and concentrate on these parts to extract information, mimicking the
human perception and line of thinking while completing specific tasks. Various tasks, such
as object recognition [105] and action recognition [93, 111–115], utilized visual attention
techniques.

Attention models proposed for EAR incorporate object and egocentric cues using pre-processed
inputs such as hand mask, homography [85], gaze prediction [116], and localized objects [88].
For spatial attention models gaze behavior is important since it reflects a person’s thinking
process, represents human attention [54], and is coordinated with egocentric actions. At-
tention models in vision are divided into two categories: bottom-up attention and top-down
attention [117, 118]. The bottom-up attention includes human attention when they are per-
forming free-viewing on a scene or an image, in which the objects or regions that “stand out”
relative to the neighboring parts (saliency) attract human attention. In comparison, human
attention when they are performing certain tasks (e.g., object manipulation) belongs to the
category of top-down attention, which is task-driven [116].

Attention models are also defined as soft attention models and hard attention models. In
attention models, a probability distribution over a grid of features is first predicted to indicate
the level of attention on each region. The soft attention models use the attention distribution
to re-weigh the features, while the hard attention models select the feature with the highest
probability to represent the data. Both soft and hard attention models are explored in [102] to
generate image captions. The soft attention model is trained using back-propagation and the
hard attention model is trained using a reinforcement algorithm.

Attention mechanisms proposed for egocentric activity recognition generate spatial [119],
temporal [93, 120], or spatio-temporal [113, 121] attention maps. The spatial attention mech-
anism attempts to identify representative visual regions for the selected task. Temporal at-
tention is utilized to weigh the frame-level characteristics according to their importance in
identifying actions. Finally, spatio-temporal attention maps are employed to choose frames
and areas simultaneously.

Recently, convolution-free methods compete with CNNs on image recognition tasks [122–
124]. In [125, 126], transformers were applied to video understanding tasks such as ac-
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tion recognition and EAR. In one of the recent studies, [127], a multi-modal framework,
Video-Audio-Text Transformer (VATT), was proposed that processes raw inputs (video, au-
dio, text) applied on various tasks such as video action recognition, audio event classification,
image classification, and text-to-video retrieval. VATT mainly kept the architecture of Bidi-
rectional Encoder Representations from Transformers (BERT) [128] and Vision Transformer
(ViT) [129] except for the separate usage of tokenization and linear projection layers for each
modality.
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CHAPTER 3

EGOCENTRIC ACTIVITY RECOGNITION USING
MULTI-KERNEL LEARNING

This chapter describes the specifics of egocentric activity recognition using an MKL-based
technique. We propose an EAR system that combines optical, audio, and wearable sensor
data with multi-modal characteristics [1]. The suggested framework is capable of adaptable
feature weighting and is expandable with additional features and modalities.

The fusion of modalities may occur at the feature level [36, 94, 95] or classifier level [96,
97]. Before the final classification, feature-level fusion combines distinct types of features to
produce more discriminative features. Classifier (or decision) level fusion approaches, on the
other hand, utilize each feature separately in the classification process. The ultimate decision
is made by combining the decisions for each feature. Using two MKL approaches (MKBoost
[130] and SimpleMKL [131]), we extract and combine diverse sets of characteristics collected
from visual, audio, and wearable sensor data. SimpleMKL employs decision-level fusion
to pick kernel weights using a weighted two-norm (L2) regularization that promotes sparse
kernel combinations. MKBoost, on the other hand, combines a boosting strategy with MKL
learning to enable concurrent feature selection and decision-level fusion.

The following section explains the details of the proposed MKL-based framework.

3.1 Proposed Framework

The suggested multi-modal framework based on MKL is depicted in Figure 3. First, features
are retrieved from each sensor’s raw data. Then, each extracted feature is utilized as an input
to the MKL algorithm which simultaneously performs feature selection and classification.
Weak learners are used in order to determine the optimal feature and kernel combinations
following MKL training. Lastly, the EAR is executed using the trained model for test videos
with previously selected features and kernels.

The visual, audio, and sensor aspects that were utilized in this study are described in the
subsequent section. Additionally, the following section discusses the single and multi-kernel
learning methodologies.
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Figure 3: The proposed solution for EAR using visual, audio, and sensor features [1]

.

3.1.1 Feature Extraction

Various types of features were retrieved from visual, audio, and sensor data in this study.
When picking the characteristics, three significant criteria were taken into account. One of
them is to accommodate the variety of characteristics that may contain supplementary data
regarding egocentric actions. Second, given that our primary objective is not to offer a novel
feature, existing visual, audio, and sensor features that have been effectively used on EAR
problems in the past were favored. In order to evaluate the effectiveness of the suggested
learning technique with other state-of-the-art methods, a similar collection of features was
chosen using the same datasets.

The following section describes the specifics of all visual, audio, and sensor features em-
ployed in this framework. The selection of feature sets for distinct datasets is discussed in
Section 3.2.

3.1.1.1 Visual Features

Effective encoding of ego-motion is essential for EAR systems [30, 65], therefore, we chose
a set of visual features (GOFF, VIF, HOG, HOF, and MBH) that maintains motion patterns
globally and locally in the temporal dimension. Grid Optical Flow-based Features (GOFF) are
motion-based video features taken from spatio-temporal information and intended exclusively
for FPVs [30]. Virtual Inertia Features (VIF) [30] are used to model egocentric activities by
approximating inertia data (velocity and acceleration). Log-Covariance (Log-C) [77] charac-
teristics are dense video characteristics obtained from optical flow data and intensity gradi-
ent. The cuboid feature utilizes sparse 3D space-time data to extract local information [132].
Dense trajectory features are a set of visual features (Trajectory, Histogram of Oriented Gradi-
ents (HOG), Histogram of Optical Flows (HOF), and Motion Boundary Histograms (MBH))
that present an effective solution for motion-related vision problems by recognizing motion
patterns over densely recorded sample locations utilizing optical flow fields.
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Grid Optical Flow-based Features (GOFF):

GOFF is utilized to model the distinguishable motion patterns within optical flow information
such as amplitude, direction, and frequency [30]. A set of features, including Motion Magni-
tude Histogram Features (MMHF), Motion Direction Histogram Features (MDHF), Motion
Direction Histogram Standard-Deviation Feature (MDHSF), Fourier Transform of Motion Di-
rection Access Frame (FTMAF), and Fourier Transform of Grid Motion Per-Frame (FTMPF),
are created using video frames divided into grids to identify the motion characteristics of ac-
tivities.

MMHF is the histogram representation of 15-level non-uniform quantization of grid optical
flow magnitude values [30]. MDHF is another histogram form of grid optical flow when its
direction values are quantized. MDHF was quantified evenly into 36 levels, with 10o between
each level. MDHSF is a 36-dimensional vector that represents the standard deviation of each
direction bin along the temporal dimension. FTMAF is a frequency-based characteristic that
assesses the variance throughout the temporal dimension for each direction bin using decom-
posed frequency bands. FTMAF, unlike MDHSF, assigns 25 levels to the detailed dynamics
of motion direction. FTMPF examines the variance of grid optical flow within a 25-level
frame. After concatenating all of the sub-features, GOFF’s resulting feature vector has a size
of 137.

Virtual Inertia Feature (VIF):

Without actual inertial sensors, VIF transmits virtual inertial information derived from the
intensity centroid across frames in a video [30]. Three distinct sub-features were extracted
in the temporal dimension: zero-crossing (ZC), 4MEKS, and frequency-domain feature (FF).
ZC calculates the zero-crossing rates of velocity and acceleration data using velocity and ac-
celeration values derived from the intensity centroid for each frame. The time-domain prop-
erties of 4MEKS reveal each inertial signal’s minimum, maximum, median, mean, standard
deviation, energy, kurtosis, and average. The FF feature stores low-frequency variations in
acceleration and velocity. Ten frequency components were selected for this study. Much like
GOFF, the VIF sub-features were combined to create a 106-dimensional feature vector.

Log Covariance (Log-C):

A dense set of localized features can be effectively represented using the feature covariance
matrix. With the aid of feature covariance matrices, local features can be represented in
a lower dimension. In this study, the feature covariance matrix was determined by using
optical flow and gradient vectors. The intensity gradient of raw video sequences was used to
determine the temporal direction and first-order partial derivative of optical flow for spatial x
and y directions, as well as the spatial divergence, vorticity, gradient tensor, and the rate of
strain tensor for each pixel of a video frame [77].

Only the dimension of the feature vectors is connected to the dimension of the covariance
matrix (i.e., 12x12 in this study). The Riemannian manifold on which covariance matrices
are located was transformed into a Euclidean manifold using the matrix logarithm [133]. The
size of the feature vector was reduced to 78 due to its symmetry. Each video clip’s feature
vectors were grouped using k-means after being normalized by standard deviation. Bag-of-
Visual-Words (BoVW) is then used to define a descriptor for each unique activity video. With
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a predetermined range of cluster sizes, a dictionary size of 300 produced the best classification
results for a single feature. However, except for the classifiers utilizing histogram intersection
kernels, which will be covered in more detail in the following section, principal component
analysis (PCA) was used for the descriptor to reduce the dimension of sparse BoVW vectors.

Cuboid:

Local video features include a sparse 3D XYT space-time feature called cuboid [132] in addi-
tion to the global video features. Prior to [57], cuboids had been successfully used for activity
recognition tasks. In order to take into account both the spatial and temporal dimensions, the
cuboid feature was developed as an alternative to 2D interest point detectors.

Before the feature extraction process, an interest point detector found the corners in space
and time by reacting strongly to the movement of small areas in space and time. At each
point of interest, the brightness gradient and optical flow information were used to make
a cuboid feature [132]. The cuboid was set up to generate descriptors using BoVW, like
Log-C. The histogram size was set to 500 using a set of cluster sizes determined by the
classification performance of each feature. PCA reduces the dimension, except for the kernels
at the histogram intersection.

Dense Trajectory Features:

By recognizing motion patterns over densely tracked sample points using optical flow fields,
dense trajectories provide an excellent solution for motion-related vision challenges. They
were also utilized to represent ego motions in egocentric videos [36], comprising a set of
visual characteristics including trajectory, HOG, HOF, and MBH. The information regarding
a trajectory is merely the concatenation of normalized displacement vectors. HOG focuses on
static appearance information, whereas HOF and MBH measure video motion information.

The Fisher vectors were employed to encode the dense trajectory descriptors using an approx-
imated Gaussian Mixture Model (GMM) extracted as described in [59]. The cluster size for
the GMM was 25, and 1% of the descriptors were randomly chosen to estimate the model
while creating the codebook. Using PCA, the dimensions of the features are reduced by half.
The power and L2 normalization processes were then applied to the Fisher vectors.

3.1.1.2 Audio Features

The utterance of an activity audio recording needs to be translated into a vector space to
integrate video, audio, and sensor modalities using SVM and MKL-based frameworks. This
was achieved by using a well-established methodology for speaker identification from the
speech [134, 135] in this study.

The first step divides an audio signal into frames, and a spectrum-based feature vector repre-
sents each frame. Mel-frequency cepstral coefficients (MFCCs) [78] were utilized as frame
characteristics for this purpose. Each frame was subjected to the discrete Fourier transform.
The resulting magnitude spectrum was transferred to a bank of Mel-spaced triangular filters,
followed by the discrete cosine transform, which yielded MFCCs. Before settling on the
configuration, we investigated a range of parameter values: frame length of 40 ms, 10 ms
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shift between subsequent frames, and 23 filter-bank channels. The initial 12 MFCCs were
used. The frame energy was included as the 13th feature. These features were appended with
their temporal derivatives, referred to as the delta and delta-delta coefficients, calculated as
described in [136] using the span of +3 and +2 frames, respectively. This produced a 39-
dimensional representation of each signal frame’s features.

With diagonal covariance matrices, the Gaussian mixture model (GMM) was used to model
the distribution of these feature vectors. Initially, a class-independent model, known as
the Universal Background Model (UBM), was estimated utilizing all training data from all
classes. Using class-specific training data, a class-dependent GMM is generated by perform-
ing a maximum a-posteriori adaptation [137] of the component mean vectors of the UBM.
The mean vectors of the resultant class-dependent GMM components are then concatenated
to generate a ’supervector’ [138]. Each utterance of each class is assigned a supervector,
resulting in a set of supervectors per class. Then, supervectors are employed as vector rep-
resentations of each class to classify activities. Using varied numbers of GMM components
ranging from 16 to 64 resulted in comparable performance.

Consequently, the number of components is set to 16 throughout the trials. Using the PCA,
the dimension reduction of the supervectors was evaluated. However, applying PCA to the
supervectors had no noticeable impact on the results.

3.1.1.3 Sensor Features

The data from the wearable sensors (accelerometer, gravity, gyroscope, linear acceleration,
magnetic field, and rotation vector) include 19 dimensions of time-series information. In
this research, each dimension of sensor data was regarded as a one-dimensional signal and
translated into trajectories using sliding windows. Fisher encoding was executed similarly to
dense trajectory features after creating numerous trajectories from sensor data. We employed
the same feature extraction process and parameter settings as in [36].

3.1.2 Activity Recognition

Support vector machines (SVMs) were selected as the baseline approach representing single
kernel learning, and they were compared to two well-known MKL algorithms: MKBoost and
SimpleMKL. MKBoost employs boosting to solve a variant of the MKL problem, thereby
avoiding the need to perform complex optimization tasks [130]. In contrast, SimpleMKL
proved to be a fast and effective converging approach compared to other MKL optimization
algorithms [139]. The subsection that follows briefly addresses the specifics of these strategies
in connection to the EAR problem.

3.1.2.1 Single Kernel Learning

SVM is a kernel-based approach, and using kernels enables operation in feature spaces with
greater dimensions than the original. In this study, SVM was employed in order to learn a
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single kernel with features created by concatenating all individual features. The most common
kernel types for support vector machines are linear, polynomial, and radial basis functions
(RBFs). After conducting multiple experiments, linear and polynomial kernels (3rd order)
yielded the best recognition results for two pre-specified feature sets applied to egocentric
datasets defined in Chapter 3.2.

The linear and polynomial kernels used in this study are defined as:

κ(xi, xj) = ⟨xi, xj⟩

κ(xi, xj) = (⟨xi, xj⟩+ l)p
(1)

where κ represents kernel function, x’s are the features, p is the maximal order of monomials
making up the new feature space and l is a bias towards lower order monomial. This kernel
definition’s underlying premise is that creating new features as byproducts of existing ones is
frequently advantageous [140].

As a result of using the BoVW model for Log-C and cuboid, one of the feature sets in-
cludes histogram-based features. In addition to polynomial kernels, a modified version of the
histogram intersection kernel (DC-Int) [38] was selected because it was explicitly built for
histogram-based features:

κ(xi, xj) = exp(−
C∑
c=1

D(Hc
i , H

c
j )) (2)

where C is the number of channels, Hc
i and Hc

j are W dimensional histograms of cth channel
for ith and jth videos and D(Hc

i , H
c
j ) is the histogram distance defined as:

D(Hc
i , H

c
j ) = 1− (

W∑
m=1

min(him, hjm)/
W∑

m=1

max(him, hjm)) (3)

where him and hjm are the mth histogram bins identified for ith and jth videos, respectively.

3.1.2.2 MKL

SVM is an efficient technique for solving classification and regression problems [141] where
the data representation is determined implicitly by the kernels κ(x, xi). MKL transforms the
single kernel solution into the weighted sums of several kernels, as seen below:

N∑
i=1

α∗
i κ(x, xi) + b (4)

where N is the number of samples, α∗
i and b are coefficients to be learned from examples,

while κ(., .) is a given positive definite kernel associated with a reproducing kernel Hilbert
space. Multiple kernels have been shown to improve the interpretability of a decision function
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and its performance [142],

κ(x, xi) =

K∑
k=1

dkκk(x, xi) (5)

where K is the number of kernels, dk ≥ 0 and
∑K

k=1 dk = 1.

MKBoost:

MKBoost employs a boosting framework to learn an ensemble of multiple single-kernel base
kernel classifiers. Using a similar technique to Adaboost [143], the kernel and classifier com-
bination weights can be efficiently computed through the boosting learning process [130]. In
this method, specific kernel classifiers (κ) with multiple kernels (K) are repeatedly learned
using a subset of M examples (r ∗ M where 0 < r < 1) via a series of boosting trials
t = 1, ..., T , where T signifies the total number of boosting trials.

The MKBoost algorithm was initially developed for binary classification tasks, despite being
applied to multi-class situations in our framework. For this aim, multi-class classifiers per-
form classification tasks at each trial, and samples within each class are boosted to maintain
class balance. In addition, the feature selection procedure has been updated to examine all
feature combinations (P ) for each trial (i.e., 7 combinations for 3 features). This procedure’s
pseudocode is described in Algorithm 1.

At each boosting trial, the weight distribution χt, is changed to reflect the relative value of the
training instances for learning. Additionally, the weights of incorrectly classified instances
are increased while the others are reduced to effectively prioritize examples that are difficult
to classify.

The selected kernels and feature combinations with their corresponding weights are utilized
during the testing phase. The final prediction for test samples is based on the weighted total
of the kernel predictions for each test sample.

SimpleMKL:

SimpleMKL provides an answer to MKL by employing a weighted l2 normalization. The
proposed technique is founded on a gradient descent wrapping standard SVM solver [131]
that calculates the kernel combination.

SimpleMKL consists of two basic processes, as described in [144]: solving a standard SVM
optimization problem with the given kernel weights d and updating kernel weights using
the gradient calculated with another parameter (γ) obtained in the first step. In addition,
the gradient update procedure must consider kernel weights’ non-negative and normalization
properties [144]. In this algorithm, K denotes the number of kernels, κ the base kernel, dk the
kernel weights, J the differentiable objective function, and∇D the gradient descent directions
at each step. In Algorithm 2, the pseudo-code for SimpleMKL is presented.
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Algorithm 1 MKBoost
Input: (x, y), κ, T
Output: ŷ

1: training set (Strain): (x1, y1), ..., (xM , yM )
2: test set (Stest): (xM+1, yM+1), ..., (xN , yN )
3: labels: y = 1, ..., L
4: feature combinations: p = 1, ..., P
5: kernel pool: κk(., .) : XxX → R where k = 1, ...,K
6: Training Phase
7: for t← 1 to T do
8: Select r ∗M sample indices (it) using distribution χt where 0 < r < 1
9: for p← 1 to P do

10: Select pth feature combination for training: Sp
train[it]

11: for k ← 1 to K do
12: Train weak classifier (κk) with Sp

train(it)

13: Compute training error over all samples (Sp
train): ∈kp= 1

M

∑M
m=1 fk(x

p
m) ̸=

yi

14: Select the best classifier for pth feature combination :∈p= argmin
k
∈kp

15: Select the best classifier (ft) and feature combination (pt) for trial :∈t= argmin
p
∈p

16: Set the weight for trial: Wt =
1
2 ln(

1−∈t
∈t

)

17: Update sample distribution: χt+1(i) = χt(i)

{
e−Wt if κt(xi) = yi

eWt if κt(xi) ̸= yi
for i =

1, ...,M
18: χt+1 =

χt+1

Zt
where Zt is a normalization factor to make χt+1 a distribution

19: Test Phase
20: for i←M + 1 to N do
21: Ŷc ← 0 where c = 1, ..., C
22: for t← 1 to T do
23: Predict the label for trial: ct = ft(S

pt
test[i])

24: Ŷ [ct]← Ŷ [ct] +Wt ∗ ct
25: Predict the final label: ŷi = argmaxc Ŷc

3.2 Experiments

Three egocentric datasets were used to evaluate the effectiveness of the proposed framework:
JPL First-Person Interaction [8], DogCentric Activity Dataset (DogC) [38], and Multi-modal
Egocentric Activity Dataset (MEAD) [31]. We have taken into account the variety of activities
when selecting the datasets. For instance, the movies in JPL were recorded indoors with a
passive actor, but the videos in DogC have an animal perspective. On the other hand, MEAD
contains footage of human actors captured in diverse environments (indoor and outdoor) and
at different times of the day.

JPL [8] consists of first-person footage of eight actors engaging in interaction-level tasks. For
each actor, there are four positive (i.e., friendly) interactions (shaking hand, hugging, petting,
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Algorithm 2 SimpleMKL

Input: dk
Output: κk

1: dk ← 1
K for i=1,...,K

2: while stopping criterion not met do
3: Compute J(d) by using an SVM solver with κ =

∑
k dkκk

4: Compute ∂J
∂dk

for k = 1, ...,K and descent direction∇D

5: Set µ = argmax(dk), J† = 0, d† = 0,∇†
D = ∇D

6: while J† < J(d) do
7: Set kernel weights and gradient descent: d = d†,∇D = ∇†

D

8: v = arg min
(k|∇k

D<0)
(− dk

∇k
D

), γmax = − dv
∇v

D

9: Update parameters: d† = d+ γmax∇D,∇µ†

D = ∇µ
D −∇v

D, ∇v†
D = 0

10: Compute J† by using an SVM solver with κ =
∑

k d
†
kκk

11: Linear search along D for γ ∈ [0, γmax] (calls an SVM solver for each trial value)
12: d← d+ γ∇D

waving hand), one neutral (pointing) interaction, and two negative (i.e., hostile) interactions
(punching, throwing things). There are 84 videos with a resolution of 320x240 at 30 frames
per second. The clips vary in length, with an average of 7.77 seconds.

DogC [38] covers 10 distinct types of activities from the dog’s perspective. Video resolutions
are 320x240 at either 24 or 48 frames per second, and the average clip length is 4.12 seconds.
Some activities include playing with a ball, drinking, feeding, looking left/right, patting, and
shaking. Unlike the other datasets, the amount of videos for each activity differs (feed and
shake have 25 videos while playing with a ball has just 14 videos), making it imbalanced in
terms of its class samples.

MEAD [31] is unlike previous egocentric activity datasets since it contains multi-modal sen-
sor data (optic, audio, accelerometer, gravity, gyroscope, linear acceleration, magnetic field,
and rotation vector). Twenty life-logging activities are categorized into four categories: am-
bulation, daily activities, office work, and exercise. Each category has 10 clips, which are
exactly 15 seconds long. There are 200 videos with 1280x720 resolution at 29.9 frames per
second. The audio was captured at a frequency of 48 kHz with 16 bits per sample. No mean-
ingful information was detected at higher frequencies, so the audio was downsampled to 24
kHz before feature extraction.

The feature sets were chosen based on the sensor information available in the datasets, the
diversity of features (i.e., GOFF holds the global motion in frames while VIF presents video-
based inertia information), and the features utilized by other state-of-the-art algorithms. Since
JPL and DogC only had visual sensor information, only visual features were used. Addition-
ally, GOFF and VIF were utilized for the first time in [30] with JPL, cuboid was proposed
in [8] for JPL, and cuboid and Log-C were employed in [7] for both JPL and DogC. There-
fore, a mixture of GOFF, VIF, Log-C, and cuboid was chosen as the feature set to demonstrate
that the proposed method can effectively combine various visual aspects. In contrast, MEAD
contains visual, audible, and wearable sensor data. In [31], dense trajectory and sensor char-
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acteristics were recovered from MEAD; these features are also chosen for use in the current
study. In contrast to [31], however, GMM-based supervector audio features were extracted
and obtained by modeling MFCCs to demonstrate that it is possible to add the modality to
the proposed MKL-based framework and increase the overall recognition performance. As a
result, the suggested framework was assessed in two settings: one employs visual character-
istics (GOFF, Log-C, cuboid) and virtual inertia (VIF) extracted from JPL and DogC, while
the other uses visual (dense trajectory), audio, and sensor (FVS) information extracted from
MEAD.

The kernel types employed for single kernel learning vary based on the chosen feature set.
For example, the polynomial kernel of the third order was chosen for the first experimental
setting consisting of GOFF, VIF, Log-C, and cuboid. In contrast, the linear kernel was selected
for the second feature set consisting of FVS, audio, and dense trajectory information. The
characteristics of the features have a direct bearing on the selection of various kernel types.
GOFF, VIF, Log-C, and cuboid store data in a compact manner that typically necessitates non-
linear decision bounds. However, FVS, audio, and dense trajectory information were encoded
with Fisher vectors, which contain sparse vectors that are often separable using linear kernels.

A single feature vector in our tests represented each video clip. Consequently, the number of
samples equals the number of videos in the datasets. Training and test sets were generated
at random at each iteration, and the final assessment results were determined by averaging
100 test iterations. Each JPL exercise has nine training films and three test movies, while
each MEAD activity includes eight training videos and two test videos. DogC, unlike JPL
and MEAD, has a variable amount of video clips for each activity, of which around 75% are
selected for training.

Before doing tests with MKL algorithms, a kernel pool should be predefined. However, look-
ing for the optimal kernel set for each combination of features is time-consuming. Thus, only
one set of basis kernels was chosen for each dataset, and all trials were conducted using the
same pool of basis kernels.

As stated in (6), Precision (P ), Recall (R), Accuracy (A), and F1-score (F ) metrics were used
to evaluate the findings, taking into account True Positive (TP ), True Negative (TN ), False
Positive (FP ), and False Negative (FN ) scores.

P =
TP

TP + FP
R =

TP

TP + FN

A =
TP + TN

TP + TN + FP + FN
F = 2

P ∗R
P +R

(6)

As an additional performance measurement metric, kappa statistics were chosen, a well-
known discriminating statistical tool to evaluate the classification accuracy of different clas-
sifiers that generally provides better interclass discrimination than overall accuracy [145].
Using the marginal probabilities of the ground truth, kappa statistics predict labels whose
probabilities add up to the values of the confusion matrix.
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Below is the formulation of Kappa statistics:

p0 =

L∑
i=1

pii pe =

L∑
i=1

pi ∗ pî κ̂ =
p0 − pe
1− pe

(7)

where L is the number of classes, pi is the probability of ith class according to the ground
truth, pî is the probability of ith class according to the prediction, p0 is the observed accuracy
and pe is the sum of the marginal proportions.

The suggested system was mostly built with MATLAB 2018b, and OpenCV 3.2.0 was used
to estimate optical flow. In addition, the following third-party toolboxes were employed:
LibSVM 0.9.20 [146], the toolbox for cuboid extraction created by Dollar et al. [132], and
the SimpleMKL toolbox [144]. The LibSVM and SimpleMKL toolboxes have been changed
so that histogram intersection kernels can be used.

The evaluation process was identical for all datasets. The performance of each dataset’s char-
acteristics was evaluated. The feature combinations were analyzed to determine the impact
of feature types on the recognition scores. Each dataset’s results were tabulated individu-
ally. The performance of the proposed method was assessed utilizing all of its aspects and
compared to state-of-the-art methods.

3.3 Results

In this section, we will present the results taken for 3 datasets (JPL, DogC, and MEAD) as
well as comparative results with the other state-of-the-art methods.

3.3.1 JPL Dataset

Table 4 displays the average F1-scores for single features and their combinations in the JPL
dataset. SimpleMKL works better for optical flow-based features, while the histogram in-
tersection kernel performs better for histogram-based features, as determined by the results
(Log-C and cuboid). The lower performance of the local visual feature compared to the global
visual feature is another significant point.

The JPL videos were captured with a passive actor, and video clips are devoid of foreground
items (only one or two persons appear in the videos). There are two standard motion features
in videos: global camera motion (e.g., punching, hugging) and local motion occurring just in
one location inside the field of view (e.g., throwing things, pointing), while the other regions
lack motion information. As evidenced by the outcomes, these motion characteristics benefit
the global features.

When multiple global features are combined, the combinations that include GOFF consis-
tently receive the most significant results. This is expected given that GOFF is the most dis-
criminative feature based on the performance of individual features. When all characteristics
(global and local) are employed, however, MKBoost and SimpleMKL algorithms outperform
SVM-based classifiers.
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Figure 4 depicts the resultant confusion matrices for JPL activities using the selected classi-
fiers. According to these findings, pet and point activities have the lowest recognition rates
compared to other activities. In addition, MKBoost produces a better-balanced recognition
performance, making it more trustworthy than its competitors.

Table 4: F1-score of single features and their combinations for JPL (MKL-based EAR)

SVM-Poly SVM-Hist MKBoost SimpleMKL
Single Features

Global GOFF 0.91 0.91 0.92 0.92
Global VIF 0.85 0.86 0.86 0.87
Global Log-C 0.80 0.84 0.82 0.82
Local Cuboid 0.69 0.71 0.70 0.70

Combination of Global Features

GOFF + VIF 0.92 0.92 0.93 0.93
GOFF + Log-C 0.90 0.87 0.93 0.92
VIF + Log-C 0.84 0.86 0.85 0.85

GOFF + VIF + Log-C 0.91 0.89 0.93 0.93
Combination of Global and Local Features

Global + Local 0.92 0.92 0.93 0.93

Figure 4: Confusion matrices of SVM, Histogram Intersection, MKBoost and SimpleMKL
learning methods for JPL.
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3.3.2 DogC Dataset

DogC is an outdoor, imbalanced dataset comprised of animal perspectives. Additionally,
ego-motion is far greater than JPL and MEAD, making it the most difficult dataset. Table
5 displays the average F1-scores for both single-feature and combination performances for
the DogC dataset. In contrast to JPL, the performance gap between global and local visual
elements is relatively minimal, indicating that local motion characteristics are equally as rele-
vant as global motion. In addition, MKBoost and SimpleMKL have scores for global feature
combinations that are remarkably close. However, SimpleMKL obtains the best performance
when combining global and local features.

Table 5: F1-score of single features and their combinations for DogC (MKL-based EAR)

SVM-Poly SVM-Hist MKBoost SimpleMKL
Single Features

Global GOFF 0.56 0.59 0.59 0.61
Global VIF 0.42 0.46 0.47 0.47
Global Log-C 0.47 0.51 0.53 0.49

Local Cuboid 0.43 0.36 0.41 0.41

Combination of Global Features

GOFF + VIF 0.60 0.61 0.63 0.63
GOFF + Log-C 0.59 0.63 0.62 0.63
VIF + Log-C 0.53 0.52 0.56 0.55

GOFF + VIF + Log-C 0.62 0.63 0.63 0.63
Combination of Global and Local Features

Global + Local 0.64 0.62 0.63 0.65

Figure 5 depicts the confusion matrices of DogC for various learning strategies. Since they
are frequently mistaken, "looking left" and "looking right" behaviors have the lowest cate-
gorization accuracy. These two activities share many similarities, except for their motion
directions.

3.3.3 MEAD Dataset

MEAD has a greater number of egocentric activity classes and is more complex. In addition,
this dataset’s videos demonstrate greater variety because they were shot at different times of
day and locations (indoor and outdoor). In addition, MEAD has access to multi-modal sensor
information, including visual, audio, and wearable sensors. Therefore, the combination of
characteristics was chosen based on their primary modalities to provide the results (video,
audio, and sensor).

Table 6 displays the outcomes of the experiment. Specifically, dense trajectory features
demonstrated their ability to differentiate activities by modeling the ego-motions in films
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Figure 5: Confusion matrices of SVM, Histogram Intersection, MKBoost, and SimpleMKL
learning methods for DogC.

with encouraging results in single-feature trials. The single-feature performance of classi-
fiers is highly similar. Therefore, it is impossible to determine the relative performance of
classifiers based on the performance of a single feature.

New modalities often improve final identification performance, except when the sensor and
audio combinations are employed in conjunction with linear SVM. For instance, the best
single-feature sensor and audio performances are 62% and 46%, respectively. When these
two features are integrated with MKL, their performance score increases by as much as 69%,
indicating that sensor and audio modalities provide complementary information for activities.
Combining distinct modalities improved the performance of MKL-based learning algorithms
in general. The difference between the maximum accuracy of individual features and the
accuracy of all feature combinations is more pronounced for MEAD (from 82% to 87%) than
for JPL (from 92% to 93%). This indicates that the additional capabilities (mainly audio) are
more complementary when used in conjunction with the other features. In addition, when the
sensor and audio features are merged, SimpleMKL outperforms other classifiers because of
its superior weighing of multimodal variables.

Figure 6 shows the confusion matrices produced by SVM, MKBoost, and SimpleMKL. When
the ego-motion level of activity is minimal (e.g., reading, organizing files, or texting), recog-
nition performance is poor. In contrast, performance improves for tasks involving greater
ego-motion (i.e., walking, doing push-ups, or walking downstairs).
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Table 6: F1-score of single features and their combinations for MEAD (MKL-based EAR)

SVM-Linear MKBoost SimpleMKL

Single Features

Video Trajectory 0.63 0.64 0.65

Video HOG 0.72 0.72 0.72

Video HOF 0.82 0.82 0.82

Video MBH 0.72 0.72 0.73

Sensor FVS 0.64 0.63 0.62

Audio Audio 0.44 0.43 0.46

Combination of Modalities

Sensor + Video 0.83 0.85 0.86

Video + Audio 0.84 0.85 0.86

Sensor + Audio 0.63 0.67 0.69

Combination of All Modalities

Video + Sensor + Audio 0.84 0.86 0.87

3.3.4 Comparative Results

In this section, the average accuracy (A), precision (P), recall (R), Kappa value (K), and F1-
scores (F) are compared with those of state-of-the-art approaches (Table 7). Utilizing all
modalities, we obtained the following results: (a) global and local features for JPL and DogC,
and (b) video, audio, and sensor features for MEAD.

For JPL, the results are compared to four other works: [7, 8, 30, 81]. GOFF and VIF char-
acteristics were employed with SVM and kNN classifiers in [30]. In [8], a structural learn-
ing approach was used with HOF, Log-C, and cuboid features, whereas [7] presented an
MKL-based solution with the same features. In [81], a convolutional long-short-term mem-
ory (LSTM) was employed to encode features with convolutional neural networks (CNNs)
while retaining long-term temporal changes. The results indicate that SimpleMKL and MK-
Boost have comparable performance and score the highest. In addition, increasing the feature
set for the proposed MKL-based solution enhances the overall accuracy when compared to
the findings in [7], which utilizes a subset of the features.

For DogC, we considered the outcomes of [7, 30, 38] in which DogC was also evaluated. The
method described in [38] integrated global (dense optical flow and local binary pattern) and
local (normalized pixel values, HOG, and HOF) motion descriptors with a modified histogram
intersection kernel.

The results of MEAD were compared to those of [36], which utilized identical video and
sensor features. In contrast to [36], MKL utilized an audio feature as an additional modality.
It should be underlined that adding merely audio without modifying the learning mechanism
employed, as in [36] increased recognition accuracy from 83 to 84 percent. In addition to

29



Figure 6: Confusion matrices of linear SVM, MKBoost, and SimpleMKL algorithms for
MEAD [1].
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increasing recognition accuracy from 84% to 87%, replacing linear SVM with MKL yielded
another significant result.

Table 7: Comparative performances of MKL-based EAR

Dataset Method A P R κ F

JPL

Ryoo & Matthies [8] 0.90 - - - -

Abebe et al. [30] - 0.87 0.85 - 0.86

Ozkan et al. [7] 0.87 - - - -

Sudhakaran & Oswald [81] 0.91 - - - -

SVM 0.91 0.92 0.91 0.89 0.91

DC-Int 0.87 0.90 0.87 0.87 0.89

MKBoost 0.92 0.94 0.92 0.91 0.93

SimpleMKL 0.92 0.93 0.92 0.91 0.93

DogC

Abebe et al. [30] - 0.62 0.59 - 0.61

Iwashita et al. [38] 0.61 - - - -

Ozkan et al. [7] 0.65 - - - -

SVM 0.63 0.65 0.63 0.58 0.64

DC-Int 0.60 0.64 0.60 0.59 0.62

MKBoost 0.61 0.64 0.63 0.57 0.63

SimpleMKL 0.64 0.66 0.65 0.61 0.65

MEAD

SVM (Song et al. [36]) 0.84 0.86 0.84 0.84 0.85

MKBoost 0.86 0.85 0.86 0.85 0.86

SimpleMKL 0.87 0.88 0.87 0.86 0.87

Table 8 demonstrates that a single kernel solution is the fastest for both training and testing,
whereas MKBoost is the slowest. Modern SVM solvers approach a scaling rule that shows the
computational cost of addressing the SVM issue contains both a quadratic and a cubic compo-
nent expanding at least as n2 when C is small and n3 when C gets large [147]. MKBoost, on
the other hand, consists of several kernel solvers whose number is proportional to the number
of feature combinations (F ), the number of trials (T ), and the size of the base kernel pool
(Kp). MKBoost’s timing performance is consistent with the theoretical calculation since its
training time equals F ∗ T ∗ Kp ∗ Tsingle, where Tsingle is the training time required for a
single kernel. SimpleMKL, as opposed to MKBoost, employs the previous SVM solution that
provides a good prediction for the current SVM training. Thus, the calculation time required
for SVM training is drastically reduced. SimpleMKL might be favored as an alternate learn-
ing algorithm for sensor data streams based on its rapid convergence and efficient learning
performance, although being slower than the single kernel technique.
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Table 8: Time complexity analysis of MKL-based EAR

Training Time per Sample
(ms)

Test Time per Sample
(ms)

Single
Kernel

MKBoost SimpleMKL
Single
Kernel

MKBoost SimpleMKL

Single Channel 6.6 14946.7 79.5 4.2 207.4 14.6
2 Channels 6.8 30320.6 182.7 4.3 254.3 18.9
3 Channels 7.2 71371.8 189.1 4.5 255.3 16.6

3.4 Discussion

Statistical analysis was performed using the base kernel and feature selections for MKBoost
to figure out how flexible MKL techniques are. For this aim, each experiment’s base kernels
and properties were recorded as their merits and limitations.

3.4.1 Base Kernel Selection

Base kernel selection is one of the most crucial training processes. This part presents the
statistical outcomes of 100 test repetitions for base kernel type selection (Figure 7). According
to the findings, the linear kernel was the most popular across all the datasets. However,
the selection characteristics of the three datasets are distinct. After the linear kernel, the
polynomial kernel was the most popular for JPL, whereas RBF, hist-int, and DC-hist were
used less frequently. DogC selected hist-int, and poly at a similar rate, whereas DC-Hist
was the least preferred kernel. The algorithm primarily selected a linear kernel for the MEAD
dataset. Although RBF and polynomial kernels were also chosen, they were far less preferred.
This demonstrates that the retrieved features from the MEAD dataset were predominantly
linearly separable. A broader selection of base kernels for DogC suggests that most of its
characteristics are non-linearly separable samples. JPL dataset features were revealed to be
more diverse in terms of their linear separability.

3.4.2 Feature Selection

Feature selection is another crucial step in the training process. Figure 8 depicts the frequency
of selection for distinct qualities. At each trial, a feature is believed to be chosen if it is
included in selected feature combinations. The JPL and DogC datasets contain GOFF, VIF,
Log-C, and cuboid features, whereas the MEAD dataset groups the features for the primary
modalities (video, sensor, and audio) for readability. For instance, GOFF is assumed to be
selected when any feature combination containing GOFF (for instance, GOFF+VIF+Log-C)
is selected. According to the results, the optical flow-based characteristic GOFF is the most
discriminative for JPL. GOFF is the second most popular feature of DogC, following cuboid.
The most popular MEAD features are video features compared to sensors and audio.
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Figure 7: The number of selected base kernels for each dataset [1].

On the other hand, the selection rates of features reveal some information on the peculiarities
of egocentric datasets. The characteristics can be arranged in the order of their selection
frequency for various datasets as follows: JPL: GOFF > VIF > Log-C > Cuboid, DogC:
Cuboid > GOFF > VIF > Log-C; MEAD: Video > Sensor > Audio.

The various ordering of the datasets demonstrates that MKBoost can adapt to input data with
distinct features. While global features typically provided the most remarkable results for
JPL, local characteristics were more crucial for DogC due to the more chaotic nature of dog
movements.

Figure 8: The number of selected features for each dataset [1].
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(a) (b)

(c) (d)

Figure 9: The number of selected feature combinations of JPL (a), DogC (b) and MEAD (c)
for the given feature composition color codes (d) [1].

In addition, a more in-depth analysis of kernel and feature selection was conducted to deter-
mine which feature combinations are most frequently utilized with specific base kernels. As
illustrated in Figure 9, the histograms of the selected base kernels were recovered for each
feature combination. Figure 9-(d) displays the feature combination IDs and their respective
feature compositions. The feature included in the associated feature combination is high-
lighted in yellow, and their names are abbreviated as follows: GOFF:G, VIF:V , Log-C:L,
Cuboid:C, Audio:A, Dense Trajectory Features:T , Sensor Features:S. The feature combina-
tion IDs for JPL and DogC are identical. However, they differ for MEAD because it employs
a distinct set of properties.

Figure 9-(a) demonstrates that GOFF, VIF, and GOFF+VIF (Feature IDs 1, 2, and 5) were
JPL’s most often chosen features. For DogC, cuboid and GOFF (Feature IDs 4 and 1) were
predominantly selected as single features, while cuboid was included in the most often se-
lected feature combinations (Figure 9-(b)). Conversely, dense trajectory features were chosen
in nearly all feature combinations for MEAD (Figure 9-(c))). Although audio has a high se-
lection rate (Figure 8) for MEAD, it is typically selected in conjunction with other features,
indicating that it gives complementary information to the other modalities.
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3.4.3 Analysis of the Overall Framework

An MKL-based framework was applied to three types of sensor data (video, audio, and wear-
able sensors) to identify egocentric activities in this study. The results demonstrate that the
suggested method effectively distinguishes egocentric actions and provides a framework that
may be expanded with additional sensors. New characteristics from these modalities are
essentially new information channels that basic learners must learn adaptively. Each charac-
teristic’s weight is determined by its contribution to classification performance. Thus, feature
selection and model training are performed simultaneously.

The performance results demonstrate that the suggested framework consistently achieves
higher performance than the current best practices. Multiple kernel learning is anticipated
to produce generally superior results compared to single kernel learning. In some instances,
single-kernel solutions, such as cuboid for DogC and FVS for MEAD, provide the optimum
performance. Using the same set for all possible feature combinations does not always result
in the ideal solution. Experiments have demonstrated that when the kernel pool for MKL is
adequately modified, the performance outcomes are equivalent to those of the single kernel
approach. In addition, it was discovered that MKBoost was inferior to SimpleMKL for DogC
and MEAD. Boosting requires a substantial number of labeled samples to achieve acceptable
classification performance [148]; however, the number of samples employed in this work is
constrained by the number of videos in the datasets. As DogC and MEAD contain signif-
icantly fewer videos, the MKBoost performance for these datasets remains inferior. MKL
approaches (particularly SimpleMKL) outperform the others when combining features, mak-
ing it a prominent method for feature fusion.

Notably, the use of several modalities (i.e., video and audio) increases the effectiveness of
activity recognition, suggesting that the multi-modal features contain complementary infor-
mation from various domains. Furthermore, it is noted that MKL is a more effective solution
for multi-modal features than other state-of-the-art techniques. For example, combining sen-
sor characteristics with audio for MEAD significantly improves MKL performance relative to
single-kernel learning.

Unlike single kernel learning and MKBoost, the temporal complexity of SimpleMKL, which
executes an optimization procedure to calculate the kernel weights, is hard to quantify. Due to
the fact that the procedure of feature extraction is the same for all learning strategies, the time
complexity for training and testing was analyzed among classifiers. In Table 8, the average
processing time for MEAD video clips is shown. Tests were conducted with one channel
(video), two channels (video+sensor), and three channels (video+sensor+audio) in order to
determine the variance in execution times with regard to the number of channels. Intel®
CoreTM i5-6200U @ 2.30GHz with 8GB RAM was the PC setup for the experiments.

In addition, the suggested framework yielded encouraging results on three distinct egocentric
datasets containing between 7 and 20 actions, demonstrating its scalability. Even while MKL
techniques achieved satisfactory learning results for the EAR problem, they need the configu-
ration of a predefined kernel pool. MKL methods may not be able to converge to the optimal
solution if the basis kernels are not chosen appropriately.
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In this thesis, we offered a new framework for EAR based on multimodal features and multi-
kernel learning classification. Experiments have demonstrated that mixing many modalities
enhances recognition performance. On three distinct egocentric datasets, the suggested so-
lution demonstrated superior performance compared to state-of-the-art methods. This study
demonstrates that employing MKL with multimodal characteristics is an effective strategy for
EAR.

Alternatively, the variation of the selected feature and kernel sets for MKL is closely related to
the properties of egocentric datasets. Because the recording settings of videos (i.e., location,
time, actors), accessible sensor information (i.e., visual, audio, sensor), and the dynamics
of egocentric activities vary among datasets, it is impossible to establish a universal set of
optimal features and kernels. To give a generic solution to recognize egocentric actions, it is
necessary to propose an adaptable approach that dynamically learns the changing conditions
of datasets such as the one presented in this study.

Combining visual data with audio or wearable sensors requires additional EAR research. In
contrast to third-person activity recognition, egocentric activity datasets may contain more
information about activities thanks to a range of sensors that capture the event directly. To
recognize users’ activities, it is required to design new frameworks that can mix features from
diverse domains effectively and practically.

The suggested framework adaptively combines several modalities, although it depends on
handcrafted characteristics. On the other hand, a growing number of research propose end-
to-end solutions utilizing deep learning algorithms employing visual [2, 65, 88] and wearable
sensor data [149, 150]. Developing a generic end-to-end solution that automatically learns
the characteristics intrinsic to multiple modalities is an open research question.
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CHAPTER 4

EGOCENTRIC ACTIVITY RECOGNITION
USING TWO-STAGE DECISION FUSION

The primary objective in this part is to develop a two-stage decision fusion (TSDF) mech-
anism that adaptively weighs input modalities based on their relevance to activities. Using
such a mechanism may contribute to the fusion process of the proposed solutions for different
modalities. For example, the system may focus more on appearance for the activities having
weak motion patterns (in other words having low magnitudes optical flow vectors), such as
rock climbing, paragliding, or scuba diving. On the other hand, activities including strong
motion patterns (such as running or cycling) may pay more attention to motion information.
In addition, audio information may contain distinguishing characteristics, such as the sound
of engines while driving cars or riding motorcycles. As depicted in Figure 10, one study [2]
demonstrated that applying different weights during the decision fusion phase of appearance
and motion streams improves action recognition performance. However, the weights were
manually adjusted to examine their effects of them on the recognition performance. In con-
trast, in this work, we aimed to build adaptive weighing models that can improve the overall
accuracy by generating weights for the segment and video-level decisions instead of manually
providing weights. For that purpose, we design two distinct weighing models for segment and
video levels named stream and segment fusion models.

Figure 10: Recognition accuracy vs stream weight factor [2].
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Figure 11: Stream and segment decisions for video clips.

Before discussing the designs of stream and segment fusion models in detail, it is better to
make the definition of the segment and video-level decisions. Each video clip in our problem
includes a single activity and consists of hundreds or thousands of frames. Since it is not fea-
sible to process every frame in video clips, the frames are sampled throughout the videos. A
video clip is divided uniformly in time into a predetermined number of parts for this purpose.
Here, the classification of activities is completed for each segment, referred to as segment-
level decisions. The segment decisions are then fused (mixed) to provide the final choice for
the corresponding video clip. The final decision is known as the video-level decision (Figure
11). Therefore, the stream fusion model generates weights for the segment-level decisions.
On the other hand, segment fusion model outputs are employed to weigh the fused segment
decisions.

4.1 The Proposed Framework

The proposed solution consists of three distinct phases. The first phase is training single-
stream, EAR models. In the second phase, the confidences of the pre-trained single-stream
EAR models are employed to produce training weights for the stream and segment fusion
models. The last phase involves the fusion of single-stream EAR model decisions for the test
set at the segment and video levels according to the outputs of fusion models.

Stream and segment fusion problems have been considered as separate regression tasks. For
stream fusion, two approaches were employed: one uses deep features combined with var-
ious types of regressors, and the other utilizes a deep regression architecture (Variational
Auto-Encoders, or VAEs). On the other hand, a class-aware regression-based approach was
proposed for segment fusion using the class predictions coming from segment-level decisions.

38



Figure 12: The phases of the proposed weighing solution.

Figure 13: Simple linear regression with one independent variable.

Before proceeding, it is essential to clarify some basic concepts regarding regression. Simple
regression refers to the scenario of a single scalar predictor variable x and a single scalar
response variable y (e.g., simple linear regression in Figure 13).

Many regression, often known as multivariable regression, refers to the extension to multi-
ple and vector-valued predictor variables. Multivariate regression is sometimes mistaken for
multiple, or multivariable regression [151]. Multivariate regression (also known as multiple-
output regression or multi-output regression) measures the degree to which numerous inde-
pendent variables (predictors) and multiple dependent variables (responses) are associated. In
multivariate regression, the outputs often depend on both the input and the other. This indi-
cates that the outputs are frequently interdependent and may necessitate a model that predicts
both outputs jointly or each output based on the other outputs.

In our case, the regressor model will generate weights for each stream depending on the
input and each other that corresponds to multivariate regression. Multivariable or multiple
regressors predict a single result at each time for segment-weighing regressors (Table 9).
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Table 9: Regression types for stream and segment weighing

Predictors Response Variable Regression Type

Stream
Weights

Multiple-independent
variables

Multiple-dependent variables Multi-variate Regressor

Segment
Weights

Multiple-independent
variables

Single variable Multivariable Regressor

To design a TSDF-based EAR system, we chose backbone models from ConvNet architec-
tures. In literature, two-stream networks have recently become state-of-the-art activity recog-
nition methods for both EAR [116] and HAR [152]. The two-stream ConvNets generally
receive appearance and motion streams as inputs. While the appearance stream generates
visual features from RGB images, the motion stream generates motion characteristics from
stacked optical flows. In this study, we utilized an audio stream to diversify the modalities and
also to test whether the cross-modalities contribute to the results similar to the MKL-based
EAR framework.

The following section presents two distinct designs (deep feature-based, and VAEs-based) of
stream fusion. Later, the class-aware segment fusion strategy will be discussed in detail.

4.1.1 Stream Decision Fusion

As mentioned before, we designed the weight estimation as a regression problem. For that
purpose, a supervised learning procedure was defined to train regression models. Therefore,
target weights for modalities need to be specified for training. However, it is hard to determine
the importance of modalities for activities. We believed that the confidence scores of pre-
trained single-stream EAR models can be utilized as modality weights. To do this, confidence
scores of each single-stream EAR model are collected corresponding to the actual classes and
normalized to determine target weights as shown below:

W stream
s = [w1

s w
2
s . . . wM

s ] (8)

where W stream
s represents normalized stream weight vector for the selected segment, M is

the number of modalities, and ws corresponds to the scalar weight of the selected segment.
On the other hand, the scalar stream weight for the selected modality is computed as below:

wmi
s =

cmi
t∑M

j=1 c
mj

t

(9)

where wmi
s corresponds to the scalar weight for the selected segment and modality index, and

c
mj

t is the confidence value of the target class for the selected modality index.

Table 10 shows an example of a four-class scenario.
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Table 10: Weight generation of streams for training (4-class problem)

Target Class Stream Type C1 C2 C3 C4 Stream Weights
RGB Flow Audio

C1
RGB 0.80 0.10 0.10 0.00

0.38 0.43 0.19Flow 0.90 0.05 0.00 0.05

Audio 0.40 0.30 0.20 0.10

C4
RGB 0.20 0.50 0.20 0.10

0.12 0.59 0.29Flow 0.30 0.10 0.10 0.50

Audio 0.20 0.25 0.30 0.25

C2
RGB 0.70 0.10 0.20 0.00

0.33 0.00 0.67Flow 0.90 0.00 0.10 0.00

Audio 0.20 0.20 0.55 0.05

The following sections explain two distinct designs for model-based stream fusion, one of
which uses deep features with various regressors while the other utilizes VAEs for the weight
estimation problem.

4.1.1.1 Deep Feature-based Stream Fusion

The first approach uses some of the well-known regressors with deep features and stream
weights generated by pre-trained EAR models. Some of these regressors explicitly enable
multiple outputs (e.g., linear regression, k-neighbors, decision trees, random forest). Others
(i.e., SVR) require some workarounds to predict multi-output variables. On the other hand,
the collected features are initially fused which are then given to regression models as inputs.
Figure 14 depicts the proposed flowchart of stream weighing with deep features.

Linear, k-nearest neighbor, decision tree, random forest, support vector (direct and chained
multi-output), Lasso and Ridge, XGBoost, and NGBoost regressors were employed as multi-
variate regressors and explained in the following paragraphs.

Linear Regression:

Multiple linear regression is an expansion of simple linear regression to the case of multi-
ple independent variables and a particular case of general linear models with one dependent
variable only. The basic model for multiple linear regression is:

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + ϵi (10)

for each observation i = 1, . . . , n.
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Figure 14: Deep feature-based stream weighing.

In the formula above we consider n observations of one dependent variable and p independent
variables. Thus, Yi is the ith observation of the dependent variable, Xij is ith observation
of the jth independent variable, j = 1, . . . , p. The values βj represent parameters to be
estimated, and ϵi is the ith independent identically distributed normal error.

K-Nearest Neighbor (KNN) Regressor:

Regression is performed based on k-nearest neighbors. The target is predicted by local inter-
polation of the targets associated with the nearest neighbors in the training set. In our work,
the number of neighbors was selected as 10.

Decision Tree Regressor:

Decision Trees are one of the non-parametric methods of supervised learning used for classi-
fication and regression. The objective is to develop a model capable of predicting the value
of a target variable using simple decision rules learned from the data features. A tree can be
viewed as a piecewise constant approximation.

Random Forest Regressor:

Random Forest is an ensemble technique that can handle regression and classification tasks
using many decision trees and the Bootstrap and Aggregation technique, also known as bag-
ging. Rather than depending on individual decision trees to determine the final result, this
method combines many decision trees.

Support Vector Regressor:

A support vector machine algorithm aims to locate a hyperplane in an n-dimensional space
that classifies the data points in a distinct way. Support Vectors refer to the data points on ei-
ther side of the hyperplane that is closest to the hyperplane. These variables affect the position
and direction of the hyperplane and contribute to the formation of the SVM. Hyperplanes are
decision boundaries used to predict the output of a continuous function. Support Vectors refer
to the data points on either side of the hyperplane that is closest to the hyperplane. Support
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Vector Regression is a technique for supervised learning that predicts discrete values. Support
Vector Regression employs the same underlying concept as SVMs. The objective of SVR is
to identify the optimal fit line. The best-fitting line in SVR is the hyperplane with the most
significant number of points.

Unlike other Regression models, the SVR seeks to fit the best line within a threshold value, as
opposed to minimizing the difference between the actual and predicted values. The threshold
value is the distance between the hyperplane and the boundary line.

SVR is a regression technique with a single output. Therefore, the output dimension must
be expanded relative to the number of input modalities. Direct and chain multi-output are the
two primary methods to convert SVR to multi-output configuration, described in the following
sections.

Direct Multi-output:

By dividing the multi-output regression problem into multiple sub-problems, it is possible to
use regression models designed to predict a single value (i.e., SVR) for multi-output regres-
sion. The most apparent approach is splitting a multi-output regression problem into multiple
single-output regression problems.

If, for instance, a multi-output regression problem required the prediction of three values
y1, y2, and y3 given an input X , this may be partitioned into three single-output regression
problems:

• Problem 1: Given X , predict y1

• Problem 2: Given X , predict y2

• Problem 3: Given X , predict y3

Developing a multi-output regressor may involve developing a separate regression model for
predicting each output value. Direct multi-output can be thought of as a direct approach
because each target value is modeled directly. The direct multi-output regression approach
divides the problem into individual problems for each target variable to be predicted. This
presumes that the outputs are independent, which may be different. Nonetheless, this method
can yield reasonably accurate predictions on various scenarios and may be worth a try if only
as a baseline for performance.

Our research used linear, RBF, and polynomial kernels to evaluate SVR regression models
with a direct multi-output approach and linear, RBF, and polynomial kernels.

Chained Multi-output:

The second method for multi-output regression is a chained version of the direct multi-output
method. The prediction from the first model is used as input for the second model, and the
process of output-to-input dependency is repeated throughout the chain of models. The first
model in the sequence uses the input and predicts one outcome. The second model uses the
data and output from the previous model to generate a prediction.
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For example, if a multi-output regression problem required the prediction of three values y1,
y2, and y3 given an input X , then this could be partitioned into three dependent single-output
regression problems as follows:

• Problem 1: Given X , predict y1

• Problem 2: Given X and ŷ1, predict y2

• Problem 3: Given X , ŷ1, and ŷ2, predict y3

Similar to the direct multi-output approach, SVR was used with linear, RBF, and polynomial
kernels.

LASSO and Ridge Regression:

LASSO stands for the acronym of Least Absolute Shrinkage and Selection Operator. Regu-
larization techniques like LASSO and Ridge regressions use variable selection and regulariza-
tion to make the predictions of a statistical model more accurate and easy to understand. The
method favors basic, sparse models—models with fewer parameters. This sort of regression
is ideal for models with a high degree of multicollinearity or to automate certain aspects of
model selection, such as variable selection and parameter removal.

LASSO Regression employs the L1 regularization approach. It is utilized when there are
numerous features since it performs feature selection automatically. L1 regularization adds
a penalty proportional to the absolute value of the coefficient’s magnitude. This type of reg-
ularization may produce sparse models with few coefficients. Some coefficients can become
zero and be eliminated from the model.

LLasso(β̂) =
n∑

i=1

(yi − xiβ̂)
2 + λ

m∑
j=1

|βj | (11)

where yi is the outcome, xi := (x1, x2, . . . , xp) is the covariate vector for the ith case, and
β := (β1, β2, . . . , βp) is the coefficient vector.

If the regularization is performed using the L2 regularization technique, it’s called Ridge
Regression.

LRidge(β̂) =

n∑
i=1

(yi − xiβ̂)
2 + λ

m∑
j=1

(β̂j)
2 (12)

Setting λ to 0 is the same as using the Ordinary Least Square (OLS), while the larger its value,
the stronger the coefficients’ size penalized.
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Figure 15: Gradient boosting algorithm.

XGBoost:

XGBoost stands for eXtreme Gradient Boosting [153]. The gradient-boosting decision tree
algorithm is implemented by the XGBoost package. This approach is also known as gra-
dient boosting, multiple additive regression trees, stochastic gradient boosting, and gradient
boosting machines. Boosting is an ensemble strategy in which new models are introduced to
existing models to correct their errors. Models are successively introduced until no further
improvements are possible. A well-known example is the AdaBoost algorithm, which weighs
difficult-to-predict data points.

Gradient boosting is a technique in which new models are constructed to predict the residuals
or errors of previous models, which are then merged to form the final prediction (Figure 15).
Gradient boosting is named so because it employs a gradient descent approach to minimize
loss when adding new models. This method applies to both regression and classification
predictive modeling issues.

XGBoost is a more regularized variation of Gradient Boosting with the following advantages:

• Utilizes advanced regularization (L1 & L2), which enhances the generalization capa-
bilities of the model.

• Provides superior performance to gradient boosting.

• Training may be parallelized/distributed across clusters and is extremely quick.

• Computes second-order gradients, i.e., second partial derivatives of the loss function,
which provide additional information regarding the gradient’s direction and how to
reach the loss function’s minimum.

• Manages values absent from the dataset. XGBoost can handle missing values internally
when missing values are not treated differently during data manipulation.
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NGBoost:

Natural Gradient Boosting (NGBoost) is a technique for probabilistic prediction using gradi-
ent boosting [3]. Standard regression models yield a point estimate conditional on covariates,
whereas probabilistic regression models return a complete probability distribution over the re-
sulting space conditional on covariates. This enables the estimation of prediction uncertainty.
Utilizing the natural gradient to accomplish gradient boosting by recasting it as a problem
of estimating the parameters of a probability distribution is the fundamental idea here. NG-
Boost is configurable concerning the selection of the base learner, distribution, and scoring
rule (Figure 16).

Figure 16: NGBoost algorithm [3].

Here, we need to add some notes about base learners, probability distribution, and scoring
rules:

• Base Learner: The most common choice is Decision Trees, which tend to work well
on structured inputs.

• Probability Distribution: The distribution needs to be compatible with the output
type—Normal distribution for real-valued outputs, Bernoulli for binary outputs.

• Scoring rules: Maximum Likelihood Estimation is an obvious choice. More robust
rules such as Continuous Ranked Probability Scores are also suitable.

Ordinary gradients are often inappropriate for learning multi-parameter probability distribu-
tions (such as the Normal distribution). As demonstrated in the preceding illustration of
probabilistic regression, the training dynamics with natural gradients tend to be significantly
more stable and produce a better match (Figure 17).

Figure 17: Ordinary gradient descent and NGBoost regression sample outputs [3].
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4.1.1.2 VAEs-based Stream Fusion

We employed Variational Auto-Encoders (VAEs) regressor as the second approach for stream
fusion. Convolutional-based deep architectures have been preferred for traditional computer
vision tasks, such as image classification [154, 155] and object detection [156, 157] over the
past decade. Simply, it consists of numerous convolutional layers, followed by a few fully-
connected layers and a classification softmax layer with, for example, a cross-entropy loss
(ConvNets). In addition to classification, ConvNets have been used to address also regression
problems [158] with the increasing popularity of deep regression.

On the other hand, deep auto-encoders (AEs) have been explicitly utilized for unsupervised
learning issues. They build a representation in latent space (z) for the provided inputs (x) by
passing through an encoding function (e) and reconstruct them with a decoding function (d)
from their latent representation (x̂) (Figure 18). In the simple case, only the reconstruction
loss is computed to measure between the input data x and the encoded-decoded data d(e(x)).

AEs may also generate content by decoding randomly sampled points from the latent space.
At that moment, the regularity of the latent space determines the quality and relevance of
generated data. The irregularity of data in the latent is one of the main problems for AEs.
Variational Auto-Encoders (VAEs) have been suggested to address this anomaly by regulariz-
ing training to prevent overfitting and guarantee that the latent space has desirable properties
that permit the generative process. During the encoding-decoding process, VAEs incorporate
some regularization of the latent space rather than recording input as a single point. It is en-
coded as a distribution (p) over the latent space. Figure 19 illustrates the distinction between
AE and VAE dataflow.

Figure 18: Illustration of an auto-encoders [4].

In practice, the encoded distributions are normally distributed (x ∼ N (0, I)), so the encoder
may be taught to deliver the mean (µx) and covariance matrix (σx) that describes these Gaus-
sians. Input is encoded as a distribution with some variance rather than a single point so that
the latent space regularization may be expressed naturally: the distributions generated by the
encoder must be close to a standard normal distribution. Consequently, the loss function that
is minimized when training VAEs is composed of a "reconstruction term" (on the final layer),
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Figure 19: Autoencoder and variational autoencoder differences [4].

Figure 20: Using auto-encoders as the content generator [4].

which tends to make the encoding-decoding scheme as efficient as possible, and a "regulariza-
tion term" (on the latent layer), which tends to regularize the organization of the latent space
by bringing the distributions returned by the encoder closer to a standard normal distribution.
This term is the Kulback-Leibler (KL) divergence between the returned and Gaussian distri-
butions. The Kullback-Leibler divergence between two Gaussian distributions has a closed
form that may be written simply in terms of their means and covariance matrices. Figure
20 depicts the structure of VAEs and their loss function, which consists of a reconstruction
term (which makes the encoding-decoding scheme efficient) and a regularization term (which
makes the latent space regular).

VAEs are frequently employed to discover the complex distributions underlying imaging
data [159]. VAEs have been effectively used for numerous neuroimaging challenges, includ-
ing de-noising [159], anomaly detection [160], and clustering tasks [161], as an unsupervised
learning framework. Some publications have used VAEs in the context of supervised regres-
sion; that is, regression seeks to predict a scalar outcome from a picture based on a specific
training set. In neuroimage analysis, for instance, a scalar (outcome) prediction might be a bi-
nary variable indicating whether a subject belongs to the control group or a disease group or a
continuous variable encoding a subject’s age. The following section describes the application
of VAEs to regression concerns.
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Variational Auto-encoders for Regression:

Several attempts have been made to integrate regression models into the VAEs framework
by doing regression analysis directly on the encoder’s learned latent representations [162].
However, these studies continue to decouple the regression model from the auto-encoder such
that the regression must be trained using a distinct objective function. Recent breakthroughs
in learning disentangled latent representations [163, 164] were utilized to bridge the gap be-
tween the two models [161]. In the latent space, a representation is considered disentangled
if changes along one dimension of that space are explained by a specific element of variation
(such as age or modality weights in our case) while being relatively invariant to other factors
(such as sex or race) [163]. In [161], a similar concept has been adopted to construct a unified
model that combines regression and auto-encoding. The proposed architecture was evaluated
for its ability to forecast a subject’s age based only on its structural MR image which is de-
pendent on age. The inference model constructed a probabilistic encoder for determining the
latent representation and a probabilistic regressor for predicting age which is different from
the traditional VAE modeling of latent representations.

The Proposed Solution with VAE Regressor:

Similar to the technique in [161], the deep features from various modalities can be represented
in a disentangled manner in latent space using the stream weights as ground truth during the
training phase. Figure 21 depicts the training of the proposed VAE regressor for stream weight
predictions. Different from [161], the fused deep features were utilized as inputs to the VAE
regressor instead of MRI or ROI images. The VAE regressor is expected to encode the given
features in the latent space using the specified stream weights.

The features following fusion are supplied to the VAE regressor. The VAE regressor encodes
the specified feature in the latent space using the specified stream weights. There are two
main differences between the regressor in [161] and ours according to input types and output
dimensions. In [161], the input is an MRI picture, however, the VAE-based stream fusion
model receives the fused deep features. Additionally, the regressor in [161] produces a scalar
output corresponding to age, but the proposed fusion model has multi-dimensional vector
output for stream weights.

The proposed VAE regressor has three error sources during the training phase:

• Reconstruction error (or expected negative log-likelihood of the datapoint): The
expectation is taken concerning the encoder’s distribution over the representations by
taking a few samples. This term encourages the decoder to learn to reconstruct the data
using samples from the latent distribution. A significant error indicates that the decoder
is unable to reconstruct the data.

• KL Divergence: The divergence between the encoder’s distribution and the prior dis-
tribution. This divergence measures how much information is lost and encourages its
values to be Gaussian.

• Prediction error: The loss between the predicted weights and the ground truth.
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Figure 21: The training of the proposed VAE regressor.

Here, we applied several types of prediction errors listen in (Table 11) including the formula-
tion and descriptions.

4.1.2 Class-aware Segment Fusion

Segment fusion is accomplished at the video level by weighing the segment decisions that
have been fused. In a typical case, video-level decisions correspond to selecting the ac-
tivity with the highest votes, and segment-level decisions are treated equally. Nonetheless,
segment-level activity data may differ within video segments. As a result, we establish an
additional weight parameter that determines the contribution of segment information to the
associated activity. The purpose of segment fusion is to enhance the accuracy of video-level
decisions. For that purpose, we utilized the confidence scores of actual classes generated by
single-stream EAR models similar to the definition of stream weighing. However, this time
the sum of confidence scores throughout all streams is considered as segment weights. The
formulation of computing segment weights is given below:

W segment = [w1 w2 . . . wK ] (14)

where W segment represents segment weight vector for a video clip, K is the number of seg-
ments, and w corresponds to the scalar weight of the selected segment. On the other hand, the
scalar segment weight is computed as below:

wk =

M∑
m=1

cmkt (15)

where wk corresponds to the scalar weight of kth segment, M is the number modalities, and
ckt is the confidence score of target class (t) for kth segment.
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Table 11: Prediction error formulations used for VAE

Prediction Error Description

Mean Squared Error (MSE) 1
n

∑n
t=1 e

2
t

Mean Absolute Error (MAE) 1
n

∑n
t=1 |et|

Smooth L1 Loss
Creates a criterion that uses a squared term
if the absolute element-wise error falls be-
low beta and an L1 term otherwise. It is less
sensitive to outliers than MSE loss and in
some cases prevents exploding gradients. 0.5 ∗ e

2
t

β
, if |et| < β

|et| − 0.5 ∗ β, otherwise
(13)

Adaptive Robust Loss By introducing robustness as a continuous
parameter, the loss function enables the gen-
eralization of algorithms based on robust
loss minimization, enhancing the perfor-
mance of fundamental vision tasks. The
general probability distribution that results
from interpreting the loss as the negative
log of a univariate density includes the nor-
mal and Cauchy distributions as specific ex-
amples. This probabilistic interpretation al-
lows the development of neural networks in
which the robustness of the loss modifies it-
self automatically during training, enhanc-
ing the performance of learning-based tasks
[165].
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Figure 22: Class-aware segment fusion

Assuming there is a consensus between EAR models for the actual class (i.e., all single-
stream EAR models generate the highest confidence score (1.0) for the actual class) regarding
a particular segment (during training); then the segment will have the maximum weight that
corresponds to the number of modalities (in our case 3.0). Otherwise, segment weights will be
lower, especially in the case of miss-classification scenarios. Table 12 displays some examples
of segment weight computation for training.

Table 12: Weight generation of segments for training (4-class problem)

Target Class Stream Type C1 C2 C3 C4 Segment Weight

C1
RGB 0.80 0.10 0.10 0.00

2.10Flow 0.90 0.05 0.00 0.05

Audio 0.40 0.30 0.20 0.10

C4
RGB 0.20 0.50 0.20 0.10

0.85Flow 0.30 0.10 0.10 0.50

Audio 0.20 0.25 0.30 0.25

C2
RGB 0.70 0.10 0.20 0.00

0.30Flow 0.90 0.00 0.10 0.00

Audio 0.20 0.20 0.55 0.05

Figure 22 also depicts the solution proposed for segment weighing. Similar to stream fusion,
deep features should be fused before training. Additionally, a set of regression models are
trained for each class. A model switcher is employed to switch between weighing models
based on the segment decision generated in the first phase (segment-level decision). The
details of constructing a training set for segment weighing will be explained in Section 4.2.7.
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4.2 Experiments

In this section, the experimental setup is described in detail, including the dataset used for
the evaluation, frame extraction to provide input to the selected deep learning models, dataset
splitting, the configuration for single-stream EAR models, and the stream and segment fusion
settings.

4.2.1 Egocentric Outdoor Activity Dataset (EOAD)

Before implementing the proposed approach, we analyzed the publicly available egocentric
activity datasets regarding their activity definitions, the number of samples/activities, and
modality types (Table 13). A collection of datasets describes activities as composed of ac-
tions and interacting objects, typically presented as verb-noun pairs. Object detection/seg-
mentation, hand segmentation, and hand pose estimation are crucial tasks for these datasets
that examine human-object interactions. The scope of this study does not, however, include
human-object interactions. Consequently, the selected datasets contain just verbs and no
nouns.

On the other hand, previous tests demonstrated that incorporating audio information improves
activity recognition performance. Therefore, we also decided to choose datasets with natural
audio in addition to visual information.

After eliminating datasets based on the definition of activities and the selected modality types,
we realized that only two of them (HUJI [65, 87] and FPVSum [166]) met the criteria. How-
ever, the number of samples and diversity of activities for HUJI sand FPVSum were insuffi-
cient. Thus, we merged these datasets and also populated them with new YouTube videos.

The selection of YouTube videos was performed according to several criteria. Firstly, videos
with overlayed text were not accepted. Secondly, we especially selected unstabilized video
footage to get raw ego-motion characteristics that give clues about egocentric activities. More-
over, the videos should have natural sound (having no audio montage). Additionally, the
videos should be continuous without a scene cut or jump in time. Video samples were trimmed
depending on scene changes for long videos (such as driving, scuba diving, and cycling). The
final dataset consists of video clips, including single actions for each video clip and having
natural audio information.

The following is a list of EOAD activities: american football, basketball, biking, boxing,
bungee jumping, driving, go-kart, horse riding, ice hockey, jet ski, kayaking, kitesurfing,
longboarding, motorcycle, paintball, paragliding, rafting, rock climbing, rowing, running,
sailing, scuba diving, skateboarding, skiing, soccer, stair climbing, surfing, tennis, volleyball,
walking.
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Table 13: Summary of the most relevant egocentric action recognition datasets

Dataset Year #clips #activities Sample activities Modality

UEC [167] 2011 890 28 upright, jog, updown, downright, downfor-
ward, slowjog, run, twist, walk, pullups, down-
rightleft, crawnet, downleft

Video

ADL [168] 2012 436 32 combing hair, make up, brushing teeth, washing
hands/face, making tea, vacuuming, watching tv

Video

GTEA Gaze [169] 2012 511 94 take bread, open peanut, close jam, pour milk,
sandwich bread

Video, Audio,
Gaze

GTEA Gaze+
[169]

2012 3371 44 prepare American breakfast, prepare pizza, pre-
pare snack, prepare greek salad, prepare pasta
salad, prepare turkey sandwich and prepare
cheeseburger

Video, Audio,
Gaze

JPL [8] 2013 57 7 shaking hand, hugging, petting, waving hand,
pointing, punching, throwing

Video

LENA [170] 2014 260 13 read, watch videos, walk straight, walk up and
down, drink, housework

Video

HUJI [65, 87] 2014 148 9 driving, biking, motorcycle, walking, boxing,
horseback, running, skiing, stair climbing

Video, Audio

BEOID [23] 2014 742 34 prepare coffee using the machine, place the cup
on the mat, add sugar, check the printer is loaded
with paper manually, use the keypad, adjust the
seat, adjust chest pad, weight then use the ma-
chine

Video, Gaze

MEAD [31] 2015 200 20 cycling, doing push-ups, making phone calls,
running, sitting, working at PC

Video, Audio,
Wearable
Sensors

FPVSum [166] 2018 124 8 biking, horseback, skiing, longboarding, rock
climbing, scuba, skateboarding, surfing

Video, Audio

First-Person Hand
Action (FPHA)
[171]

2018 1175 45 pour juice, sprinkle spoon, scoop spoon, put tea
bag, wash sponge, read the paper, use calculator,
high five, pour wine, pay coin, open wallet

Video, Depth
Map, 3D hand
poses, 6D
Object Pose

EPIC-Kitchens
[172]

2018 50547 2747 pour tofu onto the pan, open the bin, take onion,
pick up a spatula, pour pasta into the container,
open fridge, put down tofu container, pick up the
bag, cut onion

Video, Audio

EGTEA Gaze+
[111]

2018 10325 106 inspect/read a recipe, open fridge, put eat-
ing utensil (somewhere), spread condiment (on)
bread (using) eating utensil, pour oil (from) oil
container (into) pan

Video, Audio,
Gaze

Charades-Ego
[173]

2018 30516 157 washing a window, holding a broom, closing a
refrigerator, putting broom somewhere, opening
a refrigerator, tidying up with a broom, lying on
a bed, taking a broom, washing a mirror, drink-
ing from a cup

Video

EPIC-Tent [174] 2019 921 11 pickup stake bag, open support bag, open tent
bag, spreadtent, tie top

Video, Gaze

EPIC-Kitchens-
100 [175]

2020 89979 4025 clean pan, dry hand, slice chili, take a banana,
put bag, squeeze lemon, put plate

Video, Audio

H20 [176] 2021 184 36 read a book, take out cocoa, grab chips, place
book, apply the spray, close milk

Video, 3D
hand poses, 6D
object poses
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The resulting statistics after selecting the video clips are given below:

• HUJI: 49 distinct videos - 148 video clips for 9 activities (driving, biking, motorcycle,
walking, boxing, horse riding, running, skiing, stair climbing)

• FPVSum: 39 distinct videos - 124 video segments for 8 activities (biking, horse riding,
skiing, longboarding, rock climbing, scuba, skateboarding, surfing)

• YouTube: 216 distinct videos - 1120 video clips for 27 activities (american football,
basketball, bungee jumping, driving, go-kart, horse riding, ice hockey, jet ski, kayaking,
kitesurfing, longboarding, motorcycle, paintball, paragliding, rafting, rock climbing,
rowing, running, sailing, scuba diving, skateboarding, soccer, stair climbing, surfing,
tennis, volleyball, walking)

Table 14 provides a comprehensive listing of the overall number of videos and clips for each
activity, as well as the total duration of videos. Multiple video clips depicting egocentric
activities may be included in a video. Therefore, video clips were gathered from manually
designated time intervals in videos, and each video clip contains only a single activity. As a
result, we did not use any video segmentation technique to localize activities in time.

In this study, a three-stream architecture (RGB, Flow, and Audio) is preferred to test the
proposed solution. For that reason, RGB, Optical Flow, and LMS frames were extracted for
the videos in the dataset. The following section explains the extraction of data frames used
with deep networks in detail.
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Table 14: EOAD activity videos summary

Actions Total Videos Total Clips Total Duration

(hh:mm:ss)

American Football 11 79 00:12:31

Basketball 8 72 01:50:20

Biking 12 26 03:06:39

Boxing 15 23 00:56:38

Bungee Jumping 13 15 00:05:29

Driving 8 37 01:31:32

GoKart 8 11 01:11:32

Horse Riding 10 12 02:38:19

Ice Hockey 8 108 01:16:55

Jetski 8 15 00:45:00

Kayaking 10 54 01:08:39

Kitesurfing 8 53 00:29:01

Longboarding 10 13 00:42:54

Motorcycle 12 49 01:24:01

Paintball 15 15 00:54:52

Paragliding 17 19 00:58:48

Rafting 10 10 00:29:21

Rock Climbing 10 10 01:30:27

Rowing 11 11 01:03:52

Running 9 51 02:51:24

Sailing 10 17 01:09:52

Scuba Diving 10 10 01:17:37

Skateboarding 9 131 00:24:58

Skiing 11 38 03:29:29

Soccer 13 170 01:08:50

Stair Climbing 12 17 01:43:12

Surfing 10 50 00:26:47

Tennis 9 52 00:36:21

Volleyball 9 129 00:45:58

Walking 8 95 01:31:51

Total 30 314 1392 37:43:08
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American Football Basketball Biking Boxing Bungee Jumping

Driving Go-Kart Horse Riding Ice Hockey Jet-ski

Kayaking Kitesurfing Longboarding Motorcycle Paintball

Paragliding Rafting Rock Climbing Rowing Running

Sailing Scuba Diving Skate Ski Soccer

Stair Climbing Surfing Tennis Volleyball Walking

Figure 23: EOAD activities.
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4.2.2 Frame Extraction and Data Augmentation

The details of frame extraction and the selected data augmentation methods for each modality
are explained in the following sections.

4.2.2.1 RGB

RGB frames were extracted using the FFmpeg video and audio converter tool [177] with their
native resolutions. After that, the resolutions were rescaled to 320x240. In addition, the multi-
scale cropping [178] technique was employed as data augmentation that was adapted to the
task of action recognition. For that purpose, we fixed the input image size to 320 x 240 pixels
and randomly chose the cropping width and height from the range 256,224,192,168. The
cropped regions were then resized to 224x224. Importantly, this cropping method introduces
multi-scale augmentation and aspect ratio augmentation. Because, images generally contain
more information than the corners, the center portion of the images (224x224) was cropped
for the test phase. Figure 24 depicts some of the samples for RGB frames.

4.2.2.2 Optical Flow

The motion information of activities was modeled with optical flows. For that purpose, a code
repository [179] on GitHub was utilized in which optical flows were estimated by the TVL1
method [180]. The estimation was performed over native resolutions of RGB frames which
were then resized to a resolution of 320x240.

The motion directions were insignificant for the activities in our dataset. Therefore, horizontal
flip augmentation was employed by reversing the rows of pixels to make the models robust
against the changes in motion directions. Similar to RGB frames, the center portion of op-
tical flow frames (224x224) was cropped during tests. Figure 25 shows some of the frames
estimated for optical flow.

4.2.2.3 Audio

The LMS is a pretty effective method for studying an audio file’s spectral and temporal evo-
lution. The Mel scale is a perceptual pitch scale proposed by [181] in 1940. In particular, the
Mel scale attempts to imitate the non-linear human ear’s perception of sound by being more
discriminative at lower frequencies and less at higher frequencies. Below is the relationship
between pitch (in Mel scale) and frequency (in Hz):

p = Mel(f) = 2595 ∗ log (1 + f

700
) (16)

where p = Mel(f) indicates the perceived pitch p[Mel] of a sound at frequency f [Hz].
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American Football Basketball

Go-kart Horseback

Ice Hockey Paintball

Paragliding Tennis

Figure 24: Sample feature frames for RGB.
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Basketball

Go-kart

Ice Hockey

Tennis

Figure 25: Sample feature frames for Optical Flow (left: horizontal, right: vertical).
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Inversely, f = Mel−1(p) can be stated as the inverse connection, allowing the frequency (Hz)
to be calculated from the pitch (p) (Mel). The behavior of the human ear can be reproduced
using the so-called Mel filterbank, a collection of K triangular filters where each filter has
a maximum response at the center frequency and drops linearly toward 0 until reaching the
center frequency of the two neighboring filters. Specifically, the Mel scale filter centered on
pitch p can be modeled as follows:



f −Mel−1(p− 1)

Mel−1(p)−Mel−1(p− 1)
, Mel−1(p− 1) ≤ f < Mel−1(p)

Mel−1(p+ 1)− f

Mel−1(p+ 1)−Mel−1(p)
, Mel−1(p) ≤ f < Mel−1(p+ 1)

0, otherwise

(17)

The whole Mel filterbank can be described as a two-dimensional matrix H of size FxK,
where columns include the coefficients associated with the various filters Hp(f) (correspond-
ing to K distinct pitches) and rows corresponding to frequencies.

By applying the Mel filterbank H to the spectrogram of an audio signal, the Log-Mel Spec-
trogram (LMS) may be computed, which is an important and extensively used speech and
audio processing tool [182–184]. LMS can be represented as a 2D matrix L of size TxK for
a signal assessed over T temporal samples and F frequency bins. The matrix is computed as
follows:

L = ln (S ·H + ϵ) (18)

where S is a 2D matrix with size TxF containing the spectrogram of the audio signal (i.e., the
magnitude of the Short-Time Fourier Transform (STFT), with frequency information along
columns and time information along rows), · computes the matrix multiplication, ln(·) com-
putes the natural logarithm, and ϵ is a small constant used to avoid feeding zeros to the log-
arithm. The resulting LMS brings information about the spectral content of the audio signal
(in Mel scale) as a function of the temporal evolution: along columns, pitches are founded in
Mel scale; along rows, the temporal evolution.

The configuration to extract the LMS feature in this work is given below:

• Audio sampling rate : 16 kHz

• Window length : 0.025 sec

• Hop length : 0.010 sec

• Number of Mel bins : 64
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Figure 26 shows some samples of LMS features for the selected egocentric activities repre-
sented as RGB frames.

American Football

Boxing

Go-kart

Jet-ski

Motorcycle

Tennis

Figure 26: Sample LMS feature frames for Audio.

4.2.3 Dataset Splitting

The video clips used for training, validation and test sets for each activity are listed in Table
15. As mentioned before, multiple video clips may belong to a video because of trimming it
for some reasons (i.e., scene cut, temporary overlayed text on videos, or video parts unrelated
to activities). In addition, we know that each video clips contain single activity. Therefore,
we did not apply any video segmentation method to localize activities.

The minimum number of videos for each activity was selected as 8, and the video samples in
the experimental setup were divided as 50%, 25%, and 25% for training (4 videos), validation
(2 videos), and test (2 videos), respectively. On the other hand, videos were split according
to the raw video footage to prevent the mixing of similar video clips (having the same actors
and scenes) into training, validation, and test sets simultaneously. Therefore, we ensured that
the video clips trimmed from the same videos were split together into training, validation, or
test sets to make a fair comparison.

Some activities have continuity throughout the video, such as scuba, longboarding, or rid-
ing horse which also have an equal number of video segments with the number of videos.
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However, some activities, such as skating, occurred in a short time, making the number of
video segments higher than the others. As a result, the number of video clips for training,
validation, and test sets was highly imbalanced for activities (i.e., jetski and rafting have 4;
however, soccer has 99 video clips for training).

Table 15: Dataset splitting for EOAD

Action Label Train Validation Test

#Segments Total Duration #Segments Total Duration #Segments Total Duration

AmericanFootball 34 00:06:09 36 00:05:03 9 00:01:20

Basketball 43 01:13:22 19 00:08:13 10 00:28:46

Biking 9 01:58:01 6 00:32:22 11 00:36:16

Boxing 7 00:24:54 11 00:14:14 5 00:17:30

BungeeJumping 7 00:02:22 4 00:01:36 4 00:01:31

Driving 19 00:37:23 9 00:24:46 9 00:29:23

GoKart 5 00:40:00 3 00:11:46 3 00:19:46

Horseback 5 01:15:14 5 01:02:26 2 00:20:38

IceHockey 52 00:19:22 46 00:20:34 10 00:36:59

Jetski 4 00:23:35 5 00:18:42 6 00:02:43

Kayaking 28 00:43:11 22 00:14:23 4 00:11:05

Kitesurfing 30 00:21:51 17 00:05:38 6 00:01:32

Longboarding 5 00:15:40 4 00:18:03 4 00:09:11

Motorcycle 20 00:49:38 21 00:13:53 8 00:20:30

Paintball 7 00:33:52 4 00:12:08 4 00:08:52

Paragliding 11 00:28:42 4 00:10:16 4 00:19:50

Rafting 4 00:15:41 3 00:07:27 3 00:06:13

RockClimbing 6 00:49:38 2 00:21:59 2 00:18:50

Rowing 5 00:47:05 3 00:13:21 3 00:03:26

Running 21 01:21:56 19 00:46:29 11 00:42:59

Sailing 7 00:39:30 4 00:14:39 6 00:15:43

Scuba 5 00:35:02 3 00:23:43 2 00:18:52

Skate 91 00:15:53 30 00:07:01 10 00:02:03

Ski 14 01:48:15 17 01:01:59 7 00:39:15

Soccer 102 00:48:39 52 00:13:17 16 00:06:54

StairClimbing 6 01:05:32 6 00:17:18 5 00:20:22

Surfing 23 00:12:51 17 00:06:52 10 00:07:04

Tennis 34 00:27:04 9 00:06:03 9 00:03:14

Volleyball 87 00:19:14 35 00:07:46 7 00:18:58

Walking 49 00:43:02 36 00:38:25 10 00:10:23

740 20:22:37 452 09:20:23 200 08:00:08
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4.2.4 EAR Model Training

The first phase of the proposed framework is to train EAR models using the training frames.
Here, two different training strategies were adopted one of them corresponds to the deep
feature-based solution and the other served for the VAEs-based approach. Both of them em-
ployed ResNet50 v1.5 (pre-trained with ImageNet [185]) as their backbone models.

The deep feature-based strategy used a pre-trained ResNet50 model as a feature extractor for
RGB, Optical-Flow, and Audio streams. The information at the average pooling layer was
utilized as deep features for modalities. Firstly, each video clip was divided into K equal
parts in time corresponding to video segments. In this research, the number of segments was
selected as 25 as in [2]. In other words, each video clip was represented with 25 samples.
After that, the sample frames were selected within the pre-defined segments. While the sam-
ples were randomly selected within the segments in the training set, they were chosen as the
middle frames for validation and test sets. Lastly, Support Vector Machines (SVM) classi-
fiers were employed as EAR models with a grid-search mechanism using linear, RBF , and
polynomial kernels. As a result, three independent SVM-based EAR models were trained
for each modality.

On the other hand, ResNet50 models were fine-tuned for the VAEs-based regression strategy.
For that purpose, a fully-connected layer was appended to the ResNet model with an addi-
tional Softmax layer as shown in Figure 27. We also applied a grid search according to the
learning rate, and dropout ratio, during the training EAR models for each modality.

Figure 27: ResNet50 architecture for RGB stream

4.2.5 Feature Fusion

The proposed regression models employed the fused deep features as inputs. Therefore, it
is necessary to combine the features coming from three modalities for model training. To do
this, we used various fusion strategies taken from RGB, optical flow, and audio streams (Table
16). Additionally, various scalers were utilized, as shown in Table 17. Finally, the optimal
configuration according to the results for the related regression model was chosen.
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As the regression models utilize the fused features to weigh the streams, the efficiency of
the feature fusion is a crucial point that should be emphasized. The fused features should
contain coherent information from all modalities to anticipate their relevance. In addition to
conventional fusing strategies such as summing or averaging features, we employed a pooling
mechanism called Compact Bilinear Pooling [186] for deep feature fusion. For a two-stream
case, Bilinear Pooling [153] combines streams while conserving spatial information to in-
crease task performance. The result of our bilinear pooling layer is x = fs1fs2, where fs1
and fs2 are the first and second stream features, respectively. Sum pooling compresses spatial
features before classification. Prior to assigning features to the regressors, the signed square
root (x ← sign(x)

√
|x|) and L2 normalization is applied. Compact Bilinear Pooling, as

proposed in [186], was used to reduce memory and accelerate training without sacrificing
performance.

Table 16: Deep feature fusion formulations

Feature Fusion Definition

Feature sum x = frgb + fflow

Feature mean x = (frgb + fflow)/2

Feature max x = max(frgb + fflow)

Feature append x = [frgb, fflow]

Compact Bilinear Pooling [186]

Table 17: Deep feature scalers

Feature Scaling Definition

Standard scaling Standardize features by removing the mean and scaling to unit
variance

Minimum maximum scaling Transform features by scaling each feature to a given range

Maximum absolute scaling Scale each feature by its maximum absolute value

Robust scaling Scale features using statistics that are robust to outliers

Normalizer Normalize samples individually to unit norm

Power transformer scaling Apply a power transform featurewise to make data more
Gaussian-like

4.2.6 Stream Decision Fusion

The configurations used for experiments to fuse stream decisions will be explained in this
section. The following section contains the details of the deep feature-based stream fusion
approach. After that, the configuration of the VAEs-based stream fusion model will be given.
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4.2.6.1 Deep Feature-based Stream Fusion

After feature fusion, the fused features were used to train multivariate regression models
listed in Section 4.1.1.1. Scikit-learn package (v1.0.2) [187] was utilized for the implemen-
tation of linear, k-nearest neighbor, decision tree, random forest, support vector (direct and
chained multi-output), Lasso and Ridge regression models. In addition, XGBoost (v1.4.2)
and NGBoost (v0.3.12) packages were also used independently to be able to use XGBoost
and NGBoost regressors.

A Hyperparameter search was conducted for each regression model with the given function
interfaces. Then, the modality weights computed from test samples were compared with the
weights obtained by the trained regression models to determine if the model can accurately
predict the stream weights.

4.2.6.2 VAEs-based Stream Fusion

VAEs regression model was implemented based on the GitHub repository [188] of the first
author of [161]. We performed an ablation study for latent vector dimensions and the number
of coder & decoder blocks. The best configuration was selected according to Mean Absolute
Error (MAE) performance metric. The final configuration for the selected VAE regressor is
given below:

• Feature dimension: 2048

• Latent space dimension: 16

• Number of code blocks for encoder & decoder: 4

• Activation function for code blocks: ReLU

• Optimizer: Adam

• Sample weighting for loss: No

• Label loss type: L1

• Learning rate: 10−4

• Dropout: 0.8

4.2.7 Class-aware Segment Fusion

Practically, three different configurations were set for segment fusion models. The first one
learns segment weights from all available samples without knowing their class labels (class-
independent segment weighing). The second one adopted a class-aware fusion strategy using
only the segment weights of the selected classes for training. Here, a set of regression models
were trained independently for each class. Lastly, we adopted another class-aware approach,
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however, this time the training sets were populated with the samples of other classes as well
as the selected class samples. The weights of other classes are set to 0 which also means the
model is expected to produce 0 weight for misclassified segments. To satisfy dataset balance,
we set the total number of samples for other classes equal to the number of the selected class
samples.

For experiments, we used the same set of regression models, feature fusion and scalers ex-
plained in Section 4.1.1.1 and 4.2.5, respectively. Firstly, the experiments were performed
for RGB-Flow input to evaluate three different configurations. After that, the best configu-
ration was selected for the following tests. The experimental results showed that the class-
independent stream-weighing model could not learn the target weights effectively. The second
configuration which is the training of class-aware fusion models with only the weights of the
selected class samples achieved better results compared to the class-independent fusion strat-
egy. However, the third configuration which uses the weights of other classes (as 0) and the
selected classes had the best performance with minimum validation errors. As a result, the
third configuration of segment fusion was used for future tests.

4.3 Results

In this section, the results of the proposed stream and segment weighing mechanism will be
discussed in detail. Firstly, we shared the results for single modalities without a fusion mech-
anism. The case of fusing decisions with equal weights at the segment and video levels was
taken as the baseline. On the other hand, we needed to validate the proposed confidence-
based fusion process at first. To do this, the ideal cases were investigated while the fusion of
stream and segment decisions is weighted based on the confidence values of actual classes.
After that, model-based fusion results of two different stream fusion procedures are explained
one of which uses deep features with various regressors and the other utilizes VAEs for the
regression problem. Later, the outcomes of the class-aware segment fusion model are dis-
cussed. Finally, the stream and segment fusion models giving the best performances were
concatenated to evaluate their effects on EAR performances.

4.3.1 Single Stream

Single-stream performances for each modality were selected as baselines before the fusion
process. For that purpose, each EAR model was trained independently. It is apparent from
Table 18, which shows the classification accuracies of the segment and video levels, appear-
ance (RGB) provides the most discriminative information to recognize egocentric activities
compared to motion and audio streams. Additionally, we observed that the aggregation of
the segment decisions boosts the overall classification accuracy for all modalities at the video
level. However, performance improvements were not at the same level for all modalities. For
example, using the average of segment decisions almost doubled video level accuracy (from
31.14% to 57.50%) for motion stream. On the other hand, the aggregation of segment de-
cisions did not make any significant effect on the precision of video decisions for the audio
stream (from 24.16% to 25.50%).
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Table 18: Single stream performances for RGB, Flow, and Audio

Stream Type
Classification Accuracy

(%)

Segment-Level Video-Level

RGB 59.80 78.50

Optical Flow 31.14 57.50

Audio 24.16 25.50

The comparative results of the confusion matrices at the segment and video levels are given
in Figure 28 and Figure 29, respectively. The confusion matrix of the RGB stream indicates
that the activity groups having similar visual scenes can be mixed up such as {walking,
runnning, stairclimbing}, or {rafting, kayaking}. On the other hand, the activities
having unique visual identifiers (steering wheel for driving, horses’ mane for horseback,
or rock textures for rockclimbing) were recognized accurately. In general, the recognition
characteristics of motion stream are similar to RGB except for the activities including the
low magnitude of optical-flow vectors (i.e., scuba) or having similar motion dynamics (e.g.,
americanfootball, and soccer). Even if an audio stream can not discriminate most activities
(e.g., biking, horseback, icehockey, kayaking, longboarding, paintball, rockclimbing,
rowing), it had a greater classification accuracy for some of them such as driving, ski, and
surfing (over 70%).

4.3.2 Ideal Case for Stream and Segment Fusion

We conduct some experiments to validate the proposed method in the ideal case. Here, we
defined the ideal case as computing stream and segment weights based on the confidence
scores of actual classes.

4.3.2.1 Stream Fusion

The proposed framework offers a solution to weight stream decisions based on the normal-
ized confidence scores of single-stream EAR models for the actual classes. Therefore, we
computed the stream weights for the ideal case at first and then fuse stream decisions ac-
cording to the computed normalized weights. Table 19 depicts baseline and ideal cases for
each combination of modalities. The results demonstrated the practical limits of the proposed
solution.
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Figure 28: Confusion matrices for single streams at segment level
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RGB

Optical-Flow

Audio

Figure 29: Confusion matrices for single streams at video-level
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Table 19: Ideal case for stream weighing

Stream Type Segment-Level Video-Level

RGB Flow Audio Stream
Weighing

Accuracy
(%)

Best Single
(%)

Segment
Weighing

Accuracy
(%)

Best Single
(%)

Equal 60.28
59.80

Equal

79.00
78.50

Ideal 67.38 87.00
Equal 51.85

59.80
62.00

78.50
Ideal 66.58 81.50
Equal 31.50

31.14
34.50

57.50
Ideal 44.80 63.00
Equal 56.08

59.80
67.50

78.50
Ideal 71.68 86.50

Selected
Not Selected

From Table 19, we can see that weighing streams according to the confidence scores of ac-
tual classes increases segment recognition accuracies for all multi-stream cases (RGB-Flow:
60.28% -> 67.38%, RGB-Audio: 51.85% -> 66.58%, Flow-Audio: 31.50% -> 44.80%, RGB-
Flow-Audio: 56.08% -> 71.68%). Increasing segment recognition accuracy was also in-
directly increases video level performances (RGB-Flow: 79.00% -> 87.00%, RGB-Audio:
62.00% -> 81.50%, Flow-Audio: 34.50% -> 63.00%, RGB-Flow-Audio: 67.50% -> 86.50%).
As a result, the proposed confidence-based weighing scheme achieved better results in ideal
conditions compared to the results of averaging decisions.

Exceeding only the accuracy of the baseline method (in our case, equally weighing decisions)
is not enough to declare the efficiency of the proposed fusion mechanism. The fusion re-
sults should also achieve at least the best single-stream performances. Otherwise, it has no
meaning to use multi-stream for the specified tasks. Therefore, the best single-stream perfor-
mances were also listed in Table 19 to show another baseline for fusion models. It is clear
that stream weighing can improve the accuracy compared to the baseline method and the best
single-stream configurations for all multi-stream combinations. The results showed the great
potential of a confidence-based weighing scheme.

Another important point worth mentioning is the relationship between segment and video
accuracy. It is apparent that increasing the precision of segment classification contributes
to the video-level results. However, better segment accuracy does not always necessitate
to get better video classification results. For example, although RGB-Flow-Audio had the
highest segment classification score (71.68%), its video-level accuracy (86.50%) was lower
than RGB-Flow (87.00%). Additionally, the difference between segment level accuracy was
lower than 1% for RGB-Flow and RGB-Audio whereas video-level classification of RGB-
Flow was 5.50% better than RGB-Audio. These findings clearly showed that there is not a
linear relationship between segment and video-level results. The most likely explanation for
this situation is that some segments have a greater impact on changing the state of video-level
predictions from False (i.e., misclassified) to True (i.e., correctly classified).
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4.3.2.2 Segment Fusion

Segment fusion models were employed to weigh segment decisions in accordance with the
sum of confidence scores acquired from single-stream EAR models. Table 20 shows the
recognition results after weighing the fused segment decisions (averaged in this case) based on
the confidence scores. In this case, segment decision fusion has only an effect on video-level
performance. Similar to stream fusion, confidence-based segment fusion also increased the
recognition performance for all multi-stream combinations (RGB-Flow: 79.00% -> 91.00%,
RGB-Audio: 62.00% -> 74.00%, Flow-Audio: 34.50% -> 52.00%, RGB-Flow-Audio: 67.50%
-> 81.50%). However, weighing segment decisions could not exceed the best single-stream
EAR accuracy for RGB-Audio and Flow-Audio.

Table 20: Ideal case for segment weighing

Stream Type Segment-Level Video-Level

RGB Flow Audio Stream
Weighing

Accuracy
(%)

Best Single
(%)

Segment
Weighing

Accuracy
(%)

Best Single
(%)

Equal

60.28 59.80
Equal 79.00

78.50
Ideal 91.00

51.85 59.80
Equal 62.00

78.50
Ideal 74.00

31.50 31.14
Equal 34.50

57.50
Ideal 52.00

56.08 59.80
Equal 67.50

78.50
Ideal 81.50

Selected
Not Selected

4.3.2.3 Stream and Segment Fusion

After validating stream and segment fusion for the ideal case, these two fusion procedures
were concatenated using ideal weights. Table 21 depicts the classification accuracies for
both segment and video levels. Combining confidence-based weighing at the segment and
video levels had significant improvement in recognition performances. For example, using
only confidence-based stream weighing for RGB-Flow increased the classification accuracy
from 60.28% to 67.38% which indirectly increased video classification accuracy (for equal
segment weighing) from 79.00% to 87.00%. However, using also confidence-based segment
weighing for decisions instead of equal weighing increased the accuracies from 87.00% to
95.00% which provides a significant improvement compared to the baseline having 78.50%
video classification accuracy. It should also be emphasized that using only segment weighing
for RGB-Audio and Flow-Audio could not improve video classification results. However,
combining segment weighing with confidence-based stream weighing helps exceed baseline
scores significantly (RGB-Audio: 74.00% to 95.00%, Flow-Audio: 52.00% to 85.00%).
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Table 21: Ideal case for stream and segment weighing

Stream Type Segment-Level Video-Level

RGB Flow Audio Stream
Weighing

Accuracy
(%)

Best Single
(%)

Segment
Weighing

Accuracy
(%)

Best Single
(%)

Equal 60.28
59.80

Equal 79.00
78.50

Ideal 67.38 Ideal 95.00
Equal 51.85

59.80
Equal 62.00

78.50
Ideal 66.58 Ideal 95.00
Equal 31.50

31.14
Equal 34.50

57.50
Ideal 44.80 Ideal 85.00
Equal 56.08

59.80
Equal 67.50

78.50
Ideal 71.68 Ideal 95.00

Selected
Not Selected

Figure 30 depicts the state transitions of segments and videos from False (misclassifica-
tion) to True (correct classification) after applying a confidence-based weighing scheme for
the ideal case. The first finding is that the accuracies of segment classification can be im-
proved for all activities. Another important finding is that increasing recognition accuracy at
the segment level does not always guarantee improvement at video level classification, espe-
cially for the activities recognized with high accuracies such as american football, driving,
paragliding, or volleyball. Lastly, the transition from False to True for some segments
has a more significant impact on the results of video classification. For instance, changing the
state of decisions of 27 segments from False to True for motorcycle provided the change of
four videos from False to True. However, using confidence-based segment weighing fusion
changed the states of approximately 60 segments for soccer activity which means helping
only three videos to change their states from False to True.

Figure 30: False to True state transitions for ideal case.
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4.3.3 Model-based Stream Fusion

In this section, the results of deep feature-based and VAEs-based stream weighing models
will be given in detail.

4.3.3.1 Deep Feature-based Stream Fusion

We utilized a parameter search approach for each regressor and chose the configuration that
yielded the lowest MAE scores during training. The chosen model was employed to weigh the
segment-level decisions for each modality while using equal weights for segment decisions at
video levels. Another analysis was conducted to identify the segments whose predictions al-
tered after segment fusion according to weights produced by regression models. This enables
us to comprehend the impact of using regression weights. Table 22 shows the experimen-
tal outcomes of the deep feature-based regressors in which ’TF ’ and ’FT ’ represent the
state transitions of decisions at the segment and video-levels after applying the model-based
weights. Here, ’TF ’ indicates the segments whose state was changed from True to False,
and ’FT ’ indicates those whose state was changed from False to True, compared to the
baseline. In addition, percentage gains in accuracy were provided for both the segment and
video levels.

According to Table 22, XGBoost yielded the best performance by giving the minimum MAE
score. In ideal conditions (shown in the last row in Table 22), the status of 439 segments can
be changed from False to True, corresponding to 8.60% improvement in segment classifica-
tion accuracy. According to our findings, the optimal model altered the status of 225 segments
from False to True, whereas 83 segments were changed from True to False. Moreover, the
increase at the segment level did not result in an improvement at the video level; instead, the
video classification results decreased. Similar outcomes were also reported for several other
regressors (i.e., decision tree, SVR using Polynomial kernels, Ridge, or NGBoost regressors).
In conclusion, the improvement in segment classification accuracy is not necessarily accom-
panied by an increase in the video-level classification, as segments shifting from False to
True may not contribute to the video-level decisions.

Stream weighing models are employed to improve the classification accuracy of segments.
However, it also indirectly enhances video classification accuracy since more accurate seg-
ment decisions produce better video classification results. On the other hand, the proposed
fusion method should also exceed the best single-stream results for the selected modality
types. Consequently, the evaluation was performed according to two criteria; the model-
based fusion results compared with baseline&ideal fusion as well as the best single-stream
results for the selected modality types. Table 23 includes the related comparison scores in
which there are several definitions in Weighing Strategy heading as Equal, Model, and
Ideal. Equal means the decisions were weighted equally. Model corresponds to using
model-generated (the best model which was XGBoost in this work - Table 22) weights for
stream fusion. Lastly, Ideal denotes the weights computed by the confidence scores of actual
classes.
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Table 22: Deep feature-based stream weighing results

Model MAE ± Std Segment-Level Video-Level
TF FT TF FT

Linear 0.24 ± 0.29 32 99 2 2
kNN 0.23 ± 0.27 52 137 1 3
Decision Tree 0.24 ± 0.28 38 70 3 2
Random Forest 0.25 ± 0.29 46 133 1 3

Multi-output SVR
Linear 0.25 ± 0.29 12 69 1 1
RBF 0.23 ± 0.27 53 176 4 5

Polynomial 0.24 ± 0.28 31 103 3 2

Chain SVR
Linear 0.24 ± 0.29 18 79 1 2
RBF 0.23 ± 0.27 47 164 3 5

Polynomial 0.24 ± 0.28 30 99 3 2
LASSO 0.25 ± 0.29 6 47 0 1
Ridge 0.24 ± 0.28 27 98 3 2
XGBoost 0.23 ± 0.27 83 225 6 5
NGBoost 0.24 ± 0.24 31 102 3 2
Ideal Case N/A 9 439 0 19

In this work, stream and segment fusion with equal weights were considered as the baseline.
It is clear from Table 23 that model-based stream fusion improved the classification accura-
cies for all modality combinations (RGB-Flow: 60.28% -> 61.74%, RGB-Audio: 51.85% ->
54.64%, Flow-Audio: 31.50% -> 32.00%, RGB-Flow-Audio: 56.08% -> 61.94%). Addition-
ally, model-based stream fusion had better recognition accuracy for all modality combinations
compared to the best single-stream segment classification results except RGB-Audio. RGB-
Audio had the best single-stream classification accuracy at 59.80% for segments while having
54.64% activity recognition accuracy after model-based fusion.

Indirect effects of stream fusion outcomes were observed with video-level classification re-
sults. Similar to segment-level classification results, model-based segment fusion improved
video-level classification accuracy for all modalities (RGB-Flow: 79.00% -> 82.50%, RGB-
Audio: 62.00% -> 69.00%, Flow-Audio: 34.50% -> 38.00%, RGB-Flow-Audio: 67.50%
-> 83.00%). Additionally, model-based segment fusion had better recognition performances
compared to the best single-streams for RGB-Flow (78.50% (best single) -> 82.50%), and
RGB-Flow-Audio (78.50% (best single) -> 83.00%). However, video decisions using model
weights remained under the best single-stream performances for RGB-Audio (78.50% (best
single) -> 69.00%) and Flow-Audio (57.50% (best single) -> 38.00%).

4.3.3.2 VAEs-based Stream Fusion

We conducted some experiments to realize the learning capacity of the VAEs regressor before
using it in the proposed framework. For that purpose, the model was trained with the config-
uration given in Section 4.2.6.2. The predicted stream weights for RGB and Flow modalities
and their target values for the train set are shown in Figure 31 (a) and (b), respectively. Each
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Table 23: EAR performances with deep feature-based stream weighing

Stream Type Segment-Level Video-Level

RGB Flow Audio Stream
Weighing

Accuracy
(%)

Best Single
(%)

Segment
Weighing

Accuracy
(%)

Best Single
(%)

Equal 60.28
59.80

Equal

79.00
78.50Model 61.74 82.50

Ideal 67.38 87.00
Equal 51.85

59.80
62.00

78.50Model 54.64 69.00
Ideal 66.58 81.50
Equal 31.50

31.14
34.50

57.50Model 32.00 38.00
Ideal 44.80 63.00
Equal 56.08

59.80
67.50

78.50Model 61.94 83.00
Ideal 71.68 86.50

Selected
Not Selected

color code in the plots represents a different activity. On the other hand, Figure 31 (c) and
(d) show the predictions of RGB and Flow weights for the validation set consisting of unseen
video clips. In the ideal condition, the target and predicted weights should align on the diag-
onal axis in the figures. Even if the weights did not align on the diagonal axis, it is obvious
that the prediction values have a correlation with the target values for both the training and
validation set. The correlation for the training and validation sets show the model’s capacity
to learn the labeled weights and its generalization performance, respectively.

Table 24 depicts the changes of states (TF or FT ) for segment and video samples after
using VAE regressor weights as stream weights. Additionally, the best configurations for
deep feature-based stream regressors were selected that are listed in Table 22). The exper-
iments demonstrated that XGBoost generated the best weights for segment fusion and im-
proved segment-level classification accuracy (+2.84%). The VAEs regressor, on the other
hand, had comparable results with XGBoost for segment-level decision weighting (+2.50%).

Table 24: VAEs-based stream weighing results

Model MAE ± Std Segment-Level Video-Level
TF FT TF FT

kNN 0.23 ± 0.27 52 137 1 3
Multi-output SVR RBF 0.23 ± 0.27 53 176 4 5
Chain SVR RBF 0.23 ± 0.27 47 164 3 5
XGBoost 0.23 ± 0.27 83 225 6 5
VAE 0.24 ± 0.24 31 102 3 2
Ideal Case N/A 9 439 0 19
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(a) (b)

(c) (d)

Figure 31: Predicted and target weights for VAE regressor: training set (RGB (a) and Flow
(b)) and validation set (RGB (c) and Flow (d)).

Hyperparameter Tuning for VAEs Regressor

In this part, we shared the stream fusion results of various VAE configurations to realize
whether a superior configuration existed. For that purpose, the numbers of coder-decoder
blocks (default:4) and latent space dimensions (default:16) were altered, and the models were
retrained for stream fusion.

The number of coder-decoder blocks was searched from 3 to 5 in the first place. However,
changing the number of blocks had no significant effect on the positive or negative outcomes
(Table 25). Secondly, various dimensions (4, 8, and 32) of latent space were tried to encode
the fused features. Table 25 shows increasing or reducing the latent dimension decreased the
regression performance. Therefore, the default configuration for the latent dimension was
selected as 16.
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Table 25: VAEs-based stream weighing results for different latent dimensions

Model Latent MAE ± Std Segment-Level Video-Level
Dimension TF FT TF FT

VAE

4 0.24 ± 0.24 31 102 3 2
8 0.23 ± 0.27 52 137 1 3
16 0.23 ± 0.27 53 176 4 5
32 0.23 ± 0.27 47 164 3 5

Ideal Case N/A N/A 9 439 0 19

4.3.4 Class-aware Segment Fusion

The first stage of the proposed decision fusion framework aims to weigh input streams accord-
ing to their information level for the related egocentric activities. However, if the information
from all channels does not contain enough information for segments to recognize egocentric
activities, then the importance of decisions for those segments becomes less critical. There-
fore, segment decisions were weighted during video fusion in the second stage.

The second stage of the decision fusion framework needs the fused features and the predicted
classes. The predictions after segment fusion are used to switch to the class-dependent re-
gression models. On the other hand, the fused features were given as inputs to the selected
models.

To test whether the regression model can learn segment weights and generalize them, a test
set-up for RGB-Flow was prepared to receive the actual segment labels for model switching.
According to this test configuration, we assumed that there is no misclassification for seg-
ments. Figure 32 shows the prediction and target weights of the train (left) and validation
(right) sets for Go-Kart, Ice Hockey, Motorcycle, Surfing, Running, and Driving. The results
clearly showed that the models have the capacity to learn the training weights. Addition-
ally, they can generalize the weight prediction efficiently except for several activities such as
Running, or Driving.

To summarize the segment fusion results, we performed various tests for all multi-modal
combinations (Table 26). Considering that using the segment weighing model only affects
the video-level fusion, segment-level results were ignored for this case. Therefore, we did not
specify the results of segment-level performances. Similar to the stream fusion experiments,
we shared the decision fusion results for Equal, Model, and Ideal conditions. The decision
fusion with equal weights was considered as the baseline and Ideal cases give the practical
limits for the proposed confidence-based approach. Lastly, the model-based segment fusion
scores are presented to compare them with the baseline and ideal case.
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Figure 32: The prediction and target segment weights for train (left) and validation (right)
samples
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Table 26: EAR performances with segment weighing

Stream Type Segment-Level Video-Level

RGB Flow Audio Stream
Weighing

Accuracy
(%)

Best Single
(%)

Segment
Weighing

Accuracy
(%)

Best Single
(%)

Equal N/A N/A

Equal 79.00
78.50Model 82.00

Ideal 91.00
Equal 62.00

78.50Model 70.00
Ideal 74.00
Equal 34.50

57.50Model 40.00
Ideal 52.00
Equal 67.50

78.50Model 76.50
Ideal 81.50

Selected
Not Selected

The results clearly show that using class-aware segment weighing models contributes to
video-level accuracies while using the combination of two streams (RGB-Flow: 79.00% ->
82.00%, RGB-Audio: 62.00% -> 70.00%, Flow-Audio: 34.50% -> 40.00%) and three streams
(RGB-Flow-Audio: 67.50% -> 76.50%) as inputs. Additionally, model-based segment-level
fusion had better recognition accuracy for RGB-Flow (82.00%) when compared to the best
single-stream video classification result (78.50%). However, the model-based approach could
not exceed the best single-stream video accuracy for other combinations (RGB-Audio: 78.50%
(best single) -> 70.00%, Flow-Audio: 57.50% (best single) -> 40.00%, and RGB-Flow-
Audio: 78.50% (best single) -> 76.50%).

4.3.5 Stream and Segment Fusion

Selecting the most effective stream and segment-weighing models was the basis for the final
experiments. Table 27 demonstrates the results.

The last experiments were performed by concatenating the best stream and segment weighing
models (Table 27). In such a scenario, decision fusion is conducted in two stages, first at the
segment level and then at the video level. The segment fusion results are the same as when
using only the stream weighing models. Therefore, it is better to focus on the video-level
results. These results showed us adding segment weighing models did not contribute to the
video-level results except for Flow-Audio input. For Flow-Audio, the results were signifi-
cantly improved at the video level (from 38% to 55.50%). However, for other combinations,
video-level performances stayed at the same levels. Similar to the previous experiments,
RGB-Flow and RGB-Flow-Audio inputs produced better results than the best single streams.
On the other hand, RGB-Audio and RGB-Flow inputs could not reach the performances of
the single streams.
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Table 27: EAR performances using stream and segment weighing

Stream Type Segment-Level Video-Level

RGB Flow Audio Stream
Weighing

Accuracy
(%)

Best Single
(%)

Segment
Weighing

Accuracy
(%)

Best Single
(%)

Equal 60.28
59.80

Equal 79.00
78.50Model 61.74 Model 83.00

Ideal 67.38 Ideal 87.00
Equal 51.85

59.80
Equal 62.00

78.50Model 54.64 Model 69.50
Ideal 66.58 Ideal 81.50
Equal 31.50

31.14
Equal 34.50

57.50Model 32.00 Model 55.50
Ideal 44.80 Ideal 63.00
Equal 56.08

59.80
Equal 67.50

78.50Model 61.94 Model 83.00
Ideal 71.68 Ideal 86.50

Selected
Not Selected

4.3.6 Comparative Results

Lastly, the proposed two-stage decision fusion framework was compared to the state-of-the-
art methods Stacking Ensemble [189] and MKBoost [130] in Table 28. Stacking Ensemble
is one of the well-known ensemble learning techniques. Simply, it trains multiple classifiers
for the same feature set. Then, train another classifier (called a meta-classifier) that takes
pre-trained classifiers’ outputs as features. MKBoost, on the other hand, combines a boosting
strategy with MKL learning.

The results showed that Stacking Ensemble performance worsens as the number of features
increases. Additionally, MKBoost consistently produced better segment classification results.
However, the proposed framework is significantly better at the video level than MKBoost.

Table 28: Comparative performances of the proposed framework with Stacking Emsemble
and MKBoost

Stream Type Segment-Level Accuracy Video-Level Accuracy

RGB Flow Audio Stacking MKBoost Proposed Stacking MKBoost Proposed

61.30 63.12 61.74 79.50 81.50 83.00
48.32 57.22 54.64 56.50 67.00 69.50
29.90 33.74 32.00 36.00 41.50 55.50
51.76 61.26 61.94 64.00 73.00 83.00

Selected
Not Selected

81



4.4 Discussion

Ideal case experiments have confirmed the observation of performance boost when the stream
decisions are weighted correctly. Instead of making a brute force search for stream weights as
in [2], we adopted an adaptive confidence-based fusion mechanism. However, the results had
also shown the practical limits of performance boosting in the case of the stream and segment
weights computed by the actual confidences of pre-trained EAR models.

The complexity of stream weighing is mainly caused by its diverse characteristics. Noisy
samples may have higher weights than they should after the normalization step. For exam-
ple, an RGB frame including a low entropy scene (i.e., composed of plain areas), the optical
flow frames having no motion, or the audio frames having noise or silence contain irrelevant
information for the selected activities. However, when these inputs are in the same segment,
it becomes hard to determine the optimal weights for stream decisions. Additionally, another
conflict arises because of the dependency of stream weights on the activity types. For ex-
ample, a basketball hoop in an RBG frame will probably have high weight for Basketball
activity. On the other hand, the same frame will have a lower weight for Running activity
if an actor is running near a basketball court. That creates ambiguity by causing the same or
similar frames to take different weights for different activities.

On the other hand, stream fusion models always helped to exceed the performance of base-
line scores. Additionally, they also contributed to segment recognition precision compared to
the best single-stream performances except for RGB-Audio input. As mentioned before, it is
hard to weigh the streams efficiently without knowing their activity classes since the value of
the same information differs according to its related class. Here, the segment-level classifi-
cation improvement looks slightly better than the similar weighing procedure; nevertheless,
the improvement at the video level was significantly better. This is most likely caused by the
state transitions of segments from False to True that also make the misclassified videos to
be predicted correctly.

We observed that most of the stream and segment fusion models suffered from overfitting
during training except several ones such as XGBoost, and NGBoost. In addition, XGBoost
achieved the best weight estimations for both streams and segments in most cases compared
to other regression models which also shows its generalization capability. XGBoost uses the
power of ensemble learning by decreasing the variance of the general model through bagging,
eliminating bias due to boosting, and having accurate predictions because of stacking. To
prevent overfitting, XGBoost incorporates a regularized model similar to regularized greedy
forest [190], however, simplifies the objective and algorithm for parallelization [153]. More-
over, in our problem using boosting mechanism may contribute to the weight estimations,
especially for streams including noisy and ambiguous samples. We know that boosting is
an effective way to divide samples into subsets to better discriminate them with the selected
ensemble models.

Class-aware segment fusion models proved their efficiency of segment weighing in case of re-
ceiving segment labels from equally weighted stream decisions (Section 4.3.4). The proposed
segment fusion models improved the video-level classification scores for all stream combina-
tions (RGB-Flow, RGB-Audio, Flow-Audio, and RGB-Flow-Audio (Table 26). Video-level
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recognition accuracy exceeded the best single-stream performance for RGB-Flow. Though,
an apparent limitation of the method is that it suffers from falling behind the single-stream
performances for RGB-Audio, and Flow-Audio.

Using standalone stream and segment fusion models succeeded in improving the perfor-
mances of egocentric activity recognition (explained in Section 4.3.3, and 4.3.4). The an-
ticipation of using the stream fusion model beforehand is to have better segment classification
results, thereby having greater overall performance than using models independently. How-
ever, when they were used together, we could stay within the scores of using only stream
and segment weighing models except for only Flow-Audio. As mentioned, segment fusion
models are efficient when fed by actual segment labels or equally weighted stream decisions.
Therefore, a possible explanation of these results is related to the impacts of segment state
transitions to the video-level fusion. In our case, it is evident that increasing segment classifi-
cation accuracy did not contribute to the model-based segment fusion results.

Stacking ensemble learning is designed to improve modeling performance, although is not
guaranteed to result in an improvement in all cases. On the other hand, MKBoost consistently
had better segment classification results than the proposed method, except for RGB-Flow-
Audio. However, the TSDF-based approach achieved greater classification performance at
the video-level, which shows the importance of segment weighing models.

The other issue that should be highlighted is the imbalance of the EOAD dataset. We ensured
data balance for segment fusion models by selecting the same amount of samples from the
selected and other classes. However, data imbalance may cause stream fusion models (deep-
feature based and VAEs regressors) to overfit the target weights of major classes (i.e., soccer
has 99 training samples while rafting has only 4). To overcome this problem, EOAD may
be populated with additional video clips, especially for activities with insufficient samples,
such as jet ski, horseback, go− kart, longboarding, rafting, rock climbing, scuba, and
stair climbing. Another option may be to re-sample EOAD activities using under-sampling
and over-sampling techniques. However, under-sampling may cause data insufficiency while
training, especially VAEs regressor. On the other hand, over-sampling needs more compli-
cated procedures because of the complexity of generating synthetic data from the observation
of minor classes (e.g., Synthetic Minority Over-sampling Technique [191]).

Alternatively, the architecture of the VAEs regressor may be reviewed for the EAR task. For
example, considering the success of ViTs, an attention mechanism may be designed in front
of the VAEs regressor instead of using typical feature fusion techniques. In addition, we
know that a subset of segments is more critical to change the state of video-level decisions
from False to True. A custom loss function may be defined to force the models to pay more
attention to these segments.

On the other hand, one of the alternative approaches that can be applied to EAR tasks is
Multi-Instance Learning (MIL). MIL is a weakly supervised algorithm that learns over train-
ing instances that are composed of sets (also called bags) including multiple samples with
a single label. For MIL, classification is performed at two levels: bag and instance which is
similar to the proposed framework’s segment and video levels. Although level-based classifi-
cation is similar, one should carefully analyze the problem characteristics of MIL consisting
of data distribution, the definition of task, ambiguity of instance labels, and the composition
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of bags. For example, one study [192] referred to the problem of high witness rate (i.e.,
the high proportion of positive samples in positive bags) eliminating the need for MIL usage.
Consequently, the EAR problem can be characterized as a typical supervised problem with
one-sided noise.

Additionally, transformer architectures have been recently used for multi-modal tasks mostly
under vision-language problems such as visual questioning answering (VQA) [193], cross-
modal retrieval [194], or image captioning [195]. Multi-modal transformers are categorized
as multi-stream transformers (utilizing independent Transformers for each modality concate-
nated by another Transformer to learn cross-modal representation) [196–198] and single-
stream transformers (feeding multi-modal input to a single transformer) [199–202]. Addi-
tionally, one of the recent research [127] proposed a multi-stream transformer architecture
(called a Video-Audio-Text Transformer (VATT)) that takes raw signals as inputs and ex-
tract multi-modal representations to solve a variety of downstream tasks such as video action
recognition, audio event classification, image classification, and text-to-video retrieval. The
proposed solution takes raw video (3D RGB voxels), audio, and text information. Addition-
ally, Noise Contrastive Estimation (NCE) and Multiple Instance Learning NCE (MIL-NCE)
are employed to align video-audio and video-text pairs. Although EOAD lacks text informa-
tion and the proposed solution is still computationally intensive, VATT architecture can be
used as an alternative approach.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This research offers two novel multi-modal EAR frameworks, one of which employs MKL
classification for feature selection and decision fusion, and the other utilizes a two-stage de-
cision fusion pipeline. These two approaches have several differences, advantages, and limi-
tations. The most notable difference between them is their fusion strategies. The MKL-based
approach combines sensor information using its feature selection and classification ability.
Contrary, the two-stage decision fusion technique learns the weights for stream and segment
decisions explicitly using EAR model confidences of actual classes. Another difference is
about adding new sensors to the proposed frameworks. One should retrain the MKL frame-
work in case of adding a new modality. In addition, feature and kernel sets should be res-
elected. On the other hand, the two-stage decision fusion technique requires training of the
EAR model for the new modality as well as training of stream and segment fusion models.
The types of features are also different: the MKL-based solution receives hand-crafted fea-
tures extracted for each video clip, and the other utilizes deep features acquired from segments
after dividing video clips. Therefore, MKL-based framework features need expertise for dif-
ferent modalities for using hand-crafted features, whereas two-stage decision fusion does not
expect intensive domain knowledge for feature extraction.

For the MKL-based framework, experiments have demonstrated that combining multiple
modalities improves recognition performance. The suggested solution had a superior per-
formance on three different egocentric datasets compared to state-of-the-art methods. There-
fore, the results showed that employing MKL with multimodal characteristics is an effective
strategy for EAR. Alternatively, the variation of the selected feature and kernel sets for MKL
is closely related to the properties of egocentric datasets. Because the recording settings of
videos (i.e., location, time, actors), accessible sensor information (i.e., visual, audio, sensor),
and the dynamics of egocentric activities vary among datasets, it is impossible to establish
a universal set of optimal features and kernels. To give a generic solution for recognizing
egocentric actions, it is necessary to propose an adaptable approach that dynamically learns
the changing conditions of datasets such as the one presented in this study.

Even if the MKL-based framework adaptively combines several modalities’ features, it de-
pends on handcrafted features. A growing number of research propose end-to-end solu-
tions utilizing deep learning algorithms employing visual [2, 65, 88] and wearable sensor
data [149, 150]. Therefore, the second part of the research focused on using deep models and
deep features to fuse multi-modal information. For that purpose, we proposed a confidence-
based EAR system with a two-stage decision fusion pipeline that utilizes deep features for

85



decision fusion models. At first, the stream decisions produced by EAR models are fused
according to their decision weights. After that, the fused segment decisions are also weighted
in the second stage. The decision weights are determined based on their relative significance
to the selected activities. In this work, the significance of decisions is associated with con-
fidence collected from pre-trained EAR models. Normalized confidence values are used as
weights for stream decisions, and their sum is used for segment decisions. The experiments
for the ideal case using confidences as weights validated the proposed approach and boosted
the segment and video-level classification performances.

Adaptive stream weighting is intended to resolve two primary issues during fusion. One of
them is to lessen the impact of inputs with poor quality (i.e., low light conditions or saturated
frames). The second one is to prefer the modalities with the most information regarding the
associated activity. The results demonstrated that it is hard to estimate the weights of a stream
independent from its class, as the relevance of information may be more significant for one
activity while it may be of lesser importance for another. Even if segment weighting models
did not approach the practical limits of the ideal case, they have a considerable favorable
impact on the results at the video level. On the other hand, we demonstrated that class-aware
model-based segment weights considerably improve the classification accuracy at the video
level. This allows the segments to be efficiently weighted based on the information they
provide for the associated class. In addition, the proposed regression model architecture can
learn this information and correlate it with segment weights. Finally, stream and segment
models were concatenated to realize their effects on the results. However, the video-level
precision did not alter or have limited improvements in the results.

We know that the class-aware segment fusion models need more accurate segment classifica-
tion results to reach their potential which was also proved by experiments in this work. There-
fore, increasing segment classification performance is crucial to effectively use the proposed
two-stage decision fusion framework. One of the future works may be to add an attention
mechanism in front of the VAEs regressor instead of using standard feature fusion techniques
to increase segment classification accuracy.

30 different egocentric activities have been defined in EOAD. Due to this, it is not possible to
recognize any other activities using the proposed frameworks. However, an additional binary
classifier may be trained to discriminate the samples according to whether or not they belong
to the pre-defined activity set.

Another alternative approach may be to use multi-instance learning (MIL) for egocentric
activity recognition. The definition of bag and instance in MIL is similar to segment and
video-level classification. However, MIL-based solutions should be carefully designed to
take advantage of them. Otherwise, it may not achieve satisfactory results compared to typi-
cal supervised learning techniques.

MIL is a weakly supervised algorithm that learns over training instances that are composed of
sets (also called bags) including multiple samples with a single label. For MIL, classification
is performed at two levels: bag and instance which is similar to the proposed framework’s
segment and video levels. Although level-based classification is similar, one should carefully
analyze the problem characteristics of MIL consisting of data distribution, the definition of
task, ambiguity of instance labels, and the composition of bags. For example, one study [192]
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referred to the problem of high witness rate (i.e., the high proportion of positive samples
in positive bags) eliminating the need for MIL usage. Consequently, the problem can be
characterized as a typical supervised problem with one-sided noise.

Even though the audio stream or wearable sensors have restricted single-stream performance
levels, it is interoperable with other modalities. Therefore, it is evident that utilizing several
modalities from various sensors improves EAR performance. For example, it was demon-
strated in ideal case experiments for a two-stage decision fusion approach that it is possible
to achieve satisfactory results by combining a low-precision stream (i.e., Audio) with a high-
performance stream (i.e., RGB). However, combining visual data with audio or wearable
sensors still requires additional EAR research. In contrast to third-person activity recogni-
tion, egocentric activity datasets may contain more information about activities thanks to a
range of sensors that capture the event directly. To recognize users’ activities, it is required
to design new frameworks that can combine features from different domains effectively and
practically.
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