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ABSTRACT

A STUDY ON TRANSMIT BEAMFORMING AND NOISY
AUTOREGRESSIVE MODELING PROBLEMS

Çayır, Ömer

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Çağatay Candan

January 2023, 122 pages

This thesis presents algorithms for two problems in statistical signal processing. The

first problem is the transmit beamformer design under the peak-to-average power ra-

tio (PAPR) constraint. With the aim of establishing a trade-off between the power

efficiency (maximizing the average transmitted power in the main lobe) and other

metrics, such as the fluctuation of power in the main lobe and the peak-sidelobe level,

how the PAPR constraint affects the design problem is examined. In general, unimod-

ular weights, which have a constant magnitude and therefore ensure the lowest possi-

ble PAPR value, are used to maximize the average transmitted power at the expense of

other performance metrics. It is empirically shown that even a minor relaxation of the

design problem from the lowest PAPR condition leads to a significant improvement

in performance metrics at a negligible loss in power efficiency. A solution based on

the alternating direction method of multipliers (ADMM) is provided to achieve the

trade-off between the performance metrics. Moreover, a consensus ADMM-based

solution is presented for the equivalent problem in consensus form. The proposed

solutions can be used for both narrowband and wideband beamformers. The second

problem is the maximum likelihood autoregressive (AR) model parameter estimation
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from the independent snapshots observed under additive white Gaussian noise. In

addition to the AR model parameters, the measurement noise variance is included

among the unknowns of the problem to develop a general solution covering several

special cases, such as the case of known noise variance, noise-free snapshots, and

the single snapshot operation. The presented solution is based on the expectation-

maximization method, which is formulated by assigning the noise-free snapshots as

the missing data. An approximate version of the suggested method, at a significantly

reduced computational load with virtually no loss of performance, is also provided.

Keywords: Transmit Beamforming, Peak-to-Average Power Ratio, PAPR, Alternat-

ing Direction Method of Multipliers, ADMM, Autoregressive Process, Autoregres-

sive Model Parameter Estimation, Multiple Snapshots, Expectation-Maximization
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ÖZ

GÖNDERME HÜZMESİ OLUŞTURMA VE GÜRÜLTÜLÜ
ÖZBAĞLANIMLI MODELLEME PROBLEMLERİ ÜZERİNE BİR

ÇALIŞMA

Çayır, Ömer

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Çağatay Candan

Ocak 2023 , 122 sayfa

Bu tez, istatistiksel sinyal işlemede iki problem için algoritmalar sunmaktadır. İlk

problem, tepe gücü/ortalama güç oranı (PAPR) kısıtı altında gönderme hüzmesi oluş-

turucu tasarımıdır. PAPR kısıtının tasarım problemini nasıl etkilediği, güç verimliliği

(ana kulakta gönderilen ortalama gücü enbüyütme) ve, ana kulaktaki güç dalgalan-

ması ve tepe-yan kulak düzeyi gibi, diğer ölçevler arasında bir ödünleşim oluştur-

mak amacıyla incelenmektedir. Genelde, sabit bir büyüklüğe sahip olan ve bu ne-

denle mümkün olan en düşük PAPR değerini sağlayan özdeş büyüklükteki ağırlıklar

diğer başarım ölçevleri pahasına gönderilen ortalama gücü enbüyütmek için kullanıl-

maktadır. Tasarım probleminin en düşük PAPR koşulundan küçük bir gevşemesinin

bile güç verimliliğinde göz ardı edilebilir bir kayıpla başarım ölçevlerinde önemli

bir iyileşmeye yol açtığı deneysel olarak gösterilmektedir. Almaşık yön çarpanları

yöntemine (ADMM) dayanan çözüm, ölçevler arasındaki ödünleşimi elde etmek için

sağlanmaktadır. Ayrıca, mutabakat ADMM tabanlı çözüm mutabakat formundaki eş-

değer problem için sunulmaktadır. Önerilen çözümler hem dar bant hem de geniş

bant hüzme oluşturucular için kullanılabilmektedir. İkinci problem, toplanır beyaz
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Gauss gürültüsü altında gözlemlenen bağımsız anlık gözlemlerden en büyük olabi-

lirlik özbağlanımlı (AR) model parametre kestirimidir. AR model parametrelerine ek

olarak, ölçüm gürültüsü varyansı, bilinen gürültü varyansı durumu, gürültüsüz anlık

gözlemler ve tek anlık gözlem çalışması gibi, birkaç özel durumu kapsayan genel bir

çözüm geliştirmek için problemin bilinmeyenleri arasına dahil edilmektedir. Sunu-

lan çözüm, gürültüsüz anlık gözlemlerin eksik veri olarak atanmasıyla formüle edilen

beklenti-enbüyütme yöntemine dayanmaktadır. Önerilen yöntemin neredeyse hiç ba-

şarım kaybı olmadan önemli ölçüde azaltılmış bir hesaplama yükündeki bir yaklaşık

sürümü de sağlanmaktadır.

Anahtar Kelimeler: Gönderme Hüzmesi Oluşturma, Tepe Gücü/Ortalama Güç Oranı,

PAPR, Almaşık Yön Çarpanları Yöntemi, ADMM, Özbağlanımlı Süreç, Özbağla-

nımlı Model Parametresi Kestirimi, Çoklu Anlık Gözlemler, Beklenti-Enbüyütme
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for their joyful talks and all the help during my research assistantship.
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NOTATION

a a scalar (italic lowercase letter)

a a column vector (boldface lowercase letter)

A a matrix (boldface uppercase letter)

R set of real numbers

C set of complex numbers

R+ set of nonnegative real numbers, i.e., R+ = {a|a ∈ R, a ≥ 0}

R++ set of positive real numbers, i.e., R++ = {a|a ∈ R, a > 0}

RN set of the real-valued N -dimensional column vectors

CN set of the complex-valued N -dimensional column vectors

CN×L set of the complex-valued N × L dimensional matrices

Re {·} real part of a complex-valued argument

Im {·} imaginary part of a complex-valued argument

(·)∗ conjugate operator

(·)T transpose operator

(·)H Hermitian (conjugate transpose) operator

(·)−1 inverse operator

⊙ Hadamard (element-wise) product

∥ · ∥2 ℓ2 norm (Euclidean norm)

tr (·) trace operator

| · | absolute value operator

det (·) determinant operator

∠(·) phase angle operator (in radians)

card (·) cardinality operator
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vn the nth entry of vector v

vℓ,n the nth entry of vector vℓ

[M]ij the ith row and jth column entry of matrix M

vℓ,n:n+P vector [ vℓ,n vℓ,n+1 . . . vℓ,n+P ]T for a positive integer P

vℓ,n:−1:n−P vector [ vℓ,n vℓ,n−1 . . . vℓ,n−P ]T for a positive integer P

0N N -dimensional column vector with all entries being zero

0N×N N ×N dimensional matrix with all entries being zero

IN N ×N identity matrix

j
√
−1

v(k) v at the iteration number k

CN (0, σ2) density of the zero-mean complex-valued (circular symmetric)

white Gaussian noise with variance σ2

f(·) probability density function accounts for the continuous ran-

dom variables

E{·} expectation operator
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CHAPTER 1

INTRODUCTION

This thesis studies two problems of interest in statistical signal processing. The first

problem is an array signal processing problem, and the second one is a spectrum

estimation problem.

In a conventional narrowband transmit beamformer, each antenna element transmits

the same low-pass equivalent signal scaled by a chosen complex-valued weight. The

problem of transmit beampattern design is to determine the weights such that several

requirements, such as flat-top beampattern, low sidelobes, power efficiency, etc., are

satisfied. Typically, unimodular weights (weights with a constant magnitude) are used

in transmit beamforming to maximize the transmission power. Power maximization

is important to extend the instrumented range of the sensor, which is proportional to

(average power× aperture)1/4 [1] and also to enhance the signal-to-noise ratio (SNR)

affecting the accuracy of estimation operations conducted by the sensor. In addition

to the transmit power maximization, a beampattern with a flat main lobe and low side-

lobes is highly desirable for the reliability of the sensing system, [1]. Considerations

on the sidelobe level, such as the integrated sidelobe level and the peak sidelobe level,

are main considerations for receive beamforming systems for which several efficient

methods exist for their optimization [2, 3]. Unfortunately, the power maximization

requirement, which is unique to the transmit beamforming application, conflicts with

other requirements (sidelobe suppression, flat main lobe), and an engineering trade-

off has to be made in the construction of transmit beamformers. In Chapters 2 to 4,

we examine the transmit beamforming problem under a peak-to-average power ratio

(PAPR) constraint to enable such a trade-off for the design of flat-top beampatterns

with low sidelobes at high power efficiency.
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In the second part of the thesis, a problem in autoregressive (AR) modeling is studied.

The AR modeling of random signals is being used in many areas associated with

statistical signal processing [4], such as radar signal processing, speech processing,

and biomedical signal processing [5–8]. The richness of application venues for AR

models can be attributed to their success in representation and also to the availability

of efficient methods for model parameter estimation. In Chapter 5, we consider the

parameter estimation of AR processes observed under white noise. Our main goal is

to extend the maximum likelihood like AR model parameter estimator developed for

a single noise-free snapshot in [9] to the operation with multiple snapshots corrupted

by white noise. A computationally efficient version of the suggested method is also

presented.

This thesis concludes the discussion and the contributions of the developed meth-

ods. The thesis contents are associated with the following papers either published or

submitted.

• Chapters 2 and 3:

Ö. Çayır and Ç. Candan, “Transmit beamformer design with a PAPR constraint

to trade-off between beampattern shape and power efficiency,” Digit. Signal

Process., vol. 99, p. 102674, Apr. 2020, doi: 10.1016/j.dsp.2020.102674.

Software:

◦ C++ code, 2022, doi: 10.24433/CO.4042158. v1.

◦ MATLAB code, 2020, doi: 10.24433/CO.7886035.v1.

◦ Python code, 2022, doi: 10.24433/CO.2603813.v1.

◦ R code, 2022, doi: 10.24433/CO.1947438.v1.

• Chapter 5:

Ö. Çayır and Ç. Candan, “Maximum likelihood autoregressive model parameter

estimation with noise corrupted independent snapshots,” Signal Process., vol.

186, p. 108118, Sep. 2021, doi: 10.1016/j.sigpro.2021.108118.

Software:

◦ MATLAB code, 2021, doi: 10.24433/CO.7257794.v1.
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• Other studies not included in the thesis document:

Ö. Çayır, Ş. Bilgi Akdemir, and Ç. Candan, “Frequency estimation of a com-

plex exponential under signal intermittency and noise,” submitted to Signal

Process., Jul. 2022.

Software:

◦ MATLAB code, 2022, doi: 10.24433/CO.8142587.v1.
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CHAPTER 2

TRANSMIT BEAMFORMING PROBLEM WITH PAPR CONSTRAINT

2.1 Related Works

The problem of transmit beamforming under a peak-to-average power ratio (PAPR)

constraint has been studied for the MIMO (multiple-input and multiple-output) sys-

tems in the radar signal processing literature [10–15]. For instance, in [11], the wave-

form diversity feature allowing each antenna element to transmit independent wave-

forms is taken into account for the solution of transmit beamforming problem under

PAPR constraint. Several methods in the literature, such as [10,11,13,16], ignore the

PAPR constraint at the initial design stage and project the solution obtained without

the PAPR constraint onto the set of vectors satisfying the constraint via the operation

given in [17]. These methods have been shown to provide a good performance in spite

of the decoupling of the problem into two stages. Different from these methods, the

sequence design problem under a PAPR constraint is transformed to an unconstrained

problem which can be solved via a gradient-based numerical search in [18].

The mathematical formulation of the waveform design for active sensing (transmit

code design) is very similar to the transmit beamforming problem. As in transmit

beamforming, the waveform energy is known to be maximized with the choice of

unimodular sequences for the code design problem. Unimodular sequences also max-

imize the achievable sensitivity by maximizing the energy incident upon and reflected

from the targets [19]. Therefore, the design of periodic or aperiodic unimodular se-

quences with low autocorrelation sidelobes is a major goal for active sensing systems,

see [10,20–25]. Since the problem of low autocorrelation sidelobes is directly related

to the flatness of the spectral shape of the signal, the spectral shaping problem with
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unimodular sequences has been examined in several works including [21, 23, 26, 27].

In [26], the SHAPE algorithm is presented to design the sequences satisfying the tem-

poral envelope and spectral constraints by introducing auxiliary variables. In [21],

the Lagrange programming neural network (LPNN) is used to design unimodular se-

quences satisfying the spectral constraints. The ANSLM described in [27] minimizes

the ratio of the highest stopband level to the lowest passband level at the cost of a

higher ripple in the passband of the spectrum associated with a unimodular sequence.

2.2 PAPR Constraint

In this chapter, we describe the transmit beamforming problem with a constraint on

the antenna array weight w = [w1 . . . wN ]T ∈ CN that is induced by

PAPR (w) =

max
n∈{1,...,N}

|wn|2

(1/N)
N∑

n=1

|wn|2
, (2.1)

where the numerator and denominator are the maximum and average power of w

entries, respectively. We have PAPR (·) : CN → [1, N ]. The lower endpoint (1),

which implies equal maximum and average powers, is reached when all entries have

the same magnitude. The upper endpoint (N ) is reached when w has a single nonzero

entry. Moreover, the ratio (2.1) is independent of the phase of its argument, i.e., ∠w,

and is scale-invariant, that is, PAPR (w) = PAPR (sw) for any s ∈ C and |s| ≠ 0.

The PAPR adjustment of the weight as a constraint in a problem is not straightfor-

ward, especially when the problem without this constraint has a solution whose PAPR

is higher than that of the solution associated with the constrained problem. For in-

stance, in beampattern design, the weight with a higher dynamic range, namely the

weight that has a higher difference between the maximum and minimum magnitudes

of its entries, is generally required to produce narrower transition widths or a main

lobe with less power swing. These fine tunes are due to the entries whose magnitudes

are close to the minimum. However, the dynamic range of weight should be set as

low as possible to increase the power efficiency, a performance metric discussed later.

Before delving into the beamforming problem, we would like to give some notions

on PAPR constraint through a fundamental problem having PAPR constraint.
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2.3 A Problem With PAPR Constraint

For a given vector s ∈ CN , we consider finding the nearest vector to s among the vec-

tors with the total power P ∈ R++ (P > 0) and PAPR not exceeding σ ∈ [1, N ]. The

total power constraint is given to disambiguate the scale-invariant PAPR constraint

by fixing the denominator of (2.1) as P/N . The problem can be given as

w⋆ = argmin
w∈CN

∥w − s∥2

subject to PAPR (w) ≤ σ

∥w∥22 = P

(2.2)

and can be solved by an alternating projection method given in [17, Algorithm 2].

The method therein is also outlined in Algorithm 2.1.

In the initialization step, δ2 and P/N are equal to the desired peak and average power,

respectively. In Line 6, the magnitude of solution entries corresponding to the zero

entry indices of s is adjusted to make the remaining solution entries have the same

magnitude δ. In Line 8, the scaling factor γ is computed to share the remaining power

P −kδ2 among the smallest (in magnitude) entries. Line 10 determines whether there

is any entry having power higher than the desired peak power or not.

We can express the closed-form solutions when σ = 1 and PAPR (s) ≤ σ ≤ N in

(2.2). For the lower bound of PAPR, i.e., σ = 1, the solution is

w⋆ =
√
P/N ej∠s, (2.3)

which is unimodular and has the same phase as s. The reader should notice that

the nearest vectors w⋆ and s always have the same phase independently of σ since

PAPR (·) does not depend on the phase of its argument.

When σ = N , the solution becomes

w⋆ =

√
P

∥s∥2
s, (2.4)

which is also valid for σ ≥ PAPR (s).

Both (2.3) and (2.4) are given as the function of P and s. Hence, the relation between

P and s should be examined to have prior knowledge about the value of P , which
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Algorithm 2.1: Computation of the nearest vector having low PAPR [17, Algo-

rithm 2].
Input : s ∈ CN , σ ≥ 1, P ∈ R++

Output : w⋆ ∈ CN

Initialization: s← s/∥s∥2, δ =
√

σP/N , k = 0

1 Form T as the index set of the N − k smallest (in magnitude) entries of s.

2 while T is not unique do // Some entries of s may have the same magnitude

3 k = k + 1

4 Go to Line 1

5 end

6 if st = 0 for all t ∈ T then // Many solutions

7 w⋆
t =


√

P − kδ2

N − k
if t ∈ T

δ ej∠st otherwise.

8 else

9 γ =
√

P−kδ2∑
t∈T |st|2

10 if γ |st| > δ for any t ∈ T then

11 k = k + 1

12 Go to Line 1

13 else // Unique solution

14 w⋆
t =

γ st if t ∈ T
δ ej∠st otherwise.

15 end

16 end

17 return w⋆

changes the objective function value of (2.2). The effect of P on the objective function

value is discussed via an example. We let the problem be

minimize ∥w − s∥22
subject to PAPR (w) ≤ σ

∥w∥22 = P

(2.5)

with variables w ∈ CN and P ∈ R++. For the lower bound of PAPR, i.e., σ = 1, we

have w⋆ =
√

P/N ej∠s, as given in (2.3). After substituting this solution, which is a
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function of P , for w in the objective function of (2.5), we get

∥w − s∥22 = ∥w∥22 −wHs− sHw + ∥s∥22

= P − 2

√
P

N

N∑
n=1

|sn|+ ∥s∥22. (2.6)

Setting the partial derivative of (2.6) with respect to P equal to zero, we find the

minimizer as

P =
1

N

(
N∑

n=1

|sn|
)2

. (2.7)

For the upper bound of PAPR, i.e., σ = N , we have w⋆ =
√
P s/∥s∥2, as given in

(2.4). After replacing this solution with w, the objective function becomes

∥w − s∥22 = P − 2
√
P ∥s∥2 + ∥s∥22, (2.8)

and the minimizer of (2.8) is

P = ∥s∥22. (2.9)

Since the PAPR constraint in (2.5) is an inequality constraint, the minimizer given in

(2.9) is also valid for σ ≥ PAPR (s).

For the remaining values of PAPR, i.e., 1 < σ < PAPR (s), there is not a closed-form

expression for w⋆ due to the solution method of (2.2). Hence, only the interval of the

minimizer can be given as

1

N

(
N∑

n=1

|sn|
)2

< P < ∥s∥22

for 1 < σ < PAPR (s). Furthermore, assuming that P1 and P2 are the minimizers

associated with σ1 and σ2, respectively, if σ1 > σ2, then P1 > P2.

Note that (2.7) and (2.9) are equal only when PAPR (s) = 1. Moreover, the objective

function of (2.5) is zero only for σ ≥ PAPR (s).

Lemma 1. The achievable objective function value of (2.2) is zero if and only if

σ ≥ PAPR (s) and P = ∥s∥22.

Proof 1. Let w⋆ be the solution of (2.2), then ∥w⋆ − s∥2 ≥ 0 and equality holds,

i.e., the achievable objective function value of (2.2) is zero, only when w⋆ = s. Two

vectors w⋆ and s are linearly dependent if and only if σ ≥ PAPR (s), as given in

(2.4). From (2.4), w⋆ = s if and only if P = ∥s∥22. The proof is completed.
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When we describe our solution for the beamforming problem of interest later, we will

refer to Lemma 1 to make an assumption essential for improving the convergence

property of the suggested solution.

Next, we describe the transmit beamforming problem under the PAPR constraint.

2.4 System Model and Problem Formulation

We consider a phased array system with isotropic elements. The parameters are given

as follows:

• fc is the center frequency of the wave transmitted.

• c is the propagation speed of the wave in the medium of interest.

• λ is the wavelength given as

λ =
c

fc
.

• N is the number of sensors at fixed positions.

• L is the number of direction samples ϕℓ, θℓ ∈ [−90◦, 90◦], ℓ = 1, . . . , L, where

ϕℓ and θℓ correspond to azimuth and elevation angles, respectively. Typically,

L≫ N , e.g., L = 20N .

• w = [w1 . . . wN ]T ∈ CN is the transmitter weight vector.

• P ∈ R++ is the total power of w entries, i.e., ∥w∥22 = P .

• σ ∈ [1, N ] is the PAPR upper bound for w, i.e., PAPR (w) ≤ σ.

• pn = [ pn,1 pn,2 pn,3 ]
T ∈ R3 is the position of the nth sensor that is

pn = pn,1ux + pn,2uy + pn,3uz, n = 1, . . . , N,

in the Cartesian coordinate system with the three-dimensional unit vectors ux,

uy, and uz corresponding to the directions x, y, and z, respectively.

• kℓ ∈ R3 is the wavenumber vector for the ℓth direction pair (ϕℓ, θℓ) that is

kℓ = (2π/λ) (cosϕℓ cos θℓux + sinϕℓ cos θℓuy + sin θℓuz), ℓ = 1, . . . , L.
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• aℓ ∈ CN is the array steering vector for the ℓth direction pair (ϕℓ, θℓ) that is

aℓ =
[
ejk

T
ℓ p1 . . . ejk

T
ℓ pN

]T
, ℓ = 1, . . . , L.

• b = [ b1 . . . bL ]
T ∈ RL

+ is the magnitude of the desired beampattern, where bℓ

corresponds to the ℓth direction pair (ϕℓ, θℓ) for ℓ = 1, . . . , L.

• h = [h1 . . . hL ]
T ∈ RL

+ contains the weighting coefficients for the squared

magnitude errors, where hℓ corresponds to the ℓth direction pair (ϕℓ, θℓ) for

ℓ = 1, . . . , L.

The goal is to approximate the magnitude of the desired transmit beampattern b by

using the transmitter weight vector w that satisfies the PAPR constraint PAPR (w) ⩽

σ. We also introduce an equality constraint ∥w∥22 = P for total power to disambiguate

the PAPR constraint as used in (2.2). The transmit beamforming problem of interest

is to optimize w ∈ CN by minimizing the weighted least squares error under the

PAPR constraint:

minimize
L∑

ℓ=1

hℓ

(
bℓ −

∣∣aH
ℓ w
∣∣)2

subject to PAPR (w) ≤ σ

∥w∥22 = P.

(2.10)

This formulation has several difficulties as follows:

• The objective function is nondifferentiable and nonconvex due to the absolute

value operator in the term
∣∣aH

ℓ w
∣∣.

• The total power constraint ∥w∥22 = P induces a nonconvex feasible set.

• The PAPR constraint is highly nonlinear and difficult to characterize, see Sec-

tion 2.3.

By transforming (2.10) into an equivalent problem having a convex objective func-

tion, we describe an ADMM-based method in the next chapter.
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CHAPTER 3

TRANSMIT BEAMFORMING PROBLEM WITH PAPR CONSTRAINT:

ADMM-BASED SOLUTION

In this chapter, we use the alternating direction method of multipliers (ADMM) to

solve the transmit beamforming problem under a peak-to-average power ratio (PAPR)

constraint. The ADMM is known to converge to the unique global optima for convex

problems, [28]. Yet, for nonconvex problems, it is not possible to ensure the optimal-

ity of the solution or even the convergence of the ADMM iterations. In spite of this

setback, ADMM has been successfully used in many problems.

3.1 Related Works and Contributions

In [23], unimodular sequences with low autocorrelation sidelobe are designed by

ADMM after introducing auxiliary variables to separate the linear and quadratic terms

of the objective function and to impose the nonconvex unimodularity constraint only

on the linear term. Furthermore, the spectrally shaped waveform design problem

is solved by using ADMM via controlling the passband ripple and peak stopband

level. In [25], an ADMM-based approach is proposed to solve optimization problems

subject to nonconvex magnitude constraints for frequency/angular domains, and sev-

eral application examples are given to demonstrate the effectiveness of the proposed

method. In [24], an ADMM-based solution PhareADMM is presented for the phase

retrieval problem by introducing auxiliary magnitude and phase variables to circum-

vent the absolute value operator in the objective function. By a simple modification

exploiting the unitary property of discrete Fourier transform (DFT), PhareADMM is

used to design unimodular periodic sequences having low autocorrelation sidelobe,
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[24]. The successful application of ADMM in many optimization problems has also

initiated the generalized studies on its convergence, [29].

Our formulation is similar to that of PhareADMM given in [24]. The main difference

is the inclusion of the PAPR constraint in the problem. The inclusion of the PAPR

constraint requires the introduction of distinct penalty parameters for the beampattern

shape and PAPR constraints. More specifically, the augmented Lagrangian function,

which is the objective function minimized in primal and auxiliary variable update

steps of ADMM, is defined by using distinct penalty parameters for the beampattern

shape and PAPR constraints. We also suggest a simple relation to set the penalty

parameters specifically for this problem. The suggested multiple penalty parameters

are to control the constraint violations individually, as in [30, 31], [32, p. 292].

This chapter presents the following main contributions.

• We examine the transmit beamformer design problem under the PAPR con-

straint to design a flat-top beampattern with low sidelobes at a small sacrifice

from the power efficiency. We use the phrase power efficiency to denote the de-

viation of the average transmitted power from its maximum value. The transmit

power is maximized with unimodular weights (σ = 1). The ratio of the average

transmitted power of an arbitrary weight vector to the maximum transmitted

power is the power efficiency, see Peff(wσ) in Table 3.2.

• We formulate an ADMM-based solution with multiple penalty parameters for

individually controlling the mismatches in the beampattern shape and PAPR

constraints. Different from earlier approaches (finding a solution without the

PAPR constraint and then projecting the solution onto a set satisfying the PAPR

constraint), the suggested method generates a solution via “mixing” the opti-

mization outputs for the spectral processing (i.e., beampattern shape) and tem-

poral processing (i.e., PAPR constraint), where the mixture is controlled via the

penalty parameters. The presented results are valid for both narrowband and

wideband beamforming problems and can be extended to the waveform design

problem.
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3.2 Proposed Method

The ADMM is a distributed convex optimization method, [28]. According to [28],

a well-defined projection onto nonconvex sets can also assist the convergence when

solving nonconvex problems, which have a convex objective function and noncon-

vex constraints. Inspired by this observation, we re-express the objective function of

(2.10) so as to avoid the nonconvex absolute value operator (| · |).

In [24], the auxiliary magnitude and phase variables are used to circumvent the ab-

solute value operator in the objective function. We define the auxiliary variables

αℓ ∈ R+ and βℓ ∈ R as

aH
ℓ w = αℓ e

jβℓ , (3.1)

where

αℓ =
∣∣aH

ℓ w
∣∣ and βℓ = ∠(aH

ℓ w),

for ℓ = 1, . . . , L. After replacing
∣∣aH

ℓ w
∣∣ with αℓ, (2.10) becomes

minimize
L∑

ℓ=1

hℓ (bℓ − αℓ)
2

subject to aH
ℓ w = αℓ e

jβℓ

PAPR (w) ≤ σ

∥w∥22 = P

(3.2)

with variables w ∈ CN , α1, . . . , αL ∈ R+ and β1, . . . , βL ∈ R. Thus, in (3.2),

the problem formulation in (2.10) has been converted to one with a convex objective

function and nonconvex constraints.

We suggest introducing an auxiliary vector v to prevent the appearance of the weight

vector w in the PAPR constraint. With this suggestion, a solution of (3.2) can be

generated by imposing the beampattern and PAPR constraints as the individual sub-

problems of ADMM:

minimize
L∑

ℓ=1

hℓ (bℓ − αℓ)
2

subject to aH
ℓ w = αℓ e

jβℓ

w = v

PAPR (v) ≤ σ

∥w∥22 = P

(3.3)
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with variables w,v ∈ CN , α1, . . . , αL ∈ R+ and β1, . . . , βL ∈ R. In (3.3), the

beampattern shape αℓ, ℓ = 1, . . . , L, and PAPR (v) constraints are coupled via the

equality constraint w = v.

The augmented Lagrangian for the application of ADMM on (3.3) requires the defi-

nition of penalty parameters as follows:

LρL,ρN (w,α,β,v,y,λ)

=
L∑

ℓ=1

hℓ (bℓ − αℓ)
2

+
L∑

ℓ=1

Re {yℓ}Re
{
aH
ℓ w − αℓ e

jβℓ
}
+

L∑
ℓ=1

Im {yℓ} Im
{
aH
ℓ w − αℓ e

jβℓ
}

+
ρL
2

L∑
ℓ=1

(
Re
{
aH
ℓ w − αℓ e

jβℓ
})2

+
ρL
2

L∑
ℓ=1

(
Im
{
aH
ℓ w − αℓ e

jβℓ
})2

+
N∑

n=1

Re {λn}Re {wn − vn}+
N∑

n=1

Im {λn} Im {wn − vn}

+
ρN
2

N∑
n=1

(Re {wn − vn})2 +
ρN
2

N∑
n=1

(Im {wn − vn})2, (3.4)

where ρL > 0 and ρN > 0 are distinct penalty parameters for beampattern shape and

PAPR constraints, respectively, y = [ y1 . . . yL ]
T ∈ CL and λ = [λ1 . . . λN ]T ∈

CN are the dual variables, α = [α1 . . . αL ]
T ∈ RL

+, β = [ β1 . . . βL ]
T ∈ RL

and v ∈ CN are the auxiliary variables. In (3.4), the real and imaginary parts of

the complex-valued terms from (3.3) are separately considered due to the nature of

ADMM, which is built on the real-valued and convex functions.

In many ADMM applications, the augmented Lagrangian functions are defined with

a single penalty parameter used for all constraints [30, 33, 34]. However, we utilize

two different penalty parameters ρL and ρN in this application. The use of a different

penalty parameter for every equality constraint provides a means of individually scal-

ing the constraint violations, as suggested in [31]. Further details on this approach

can be found in [35, Ch. 9].

We apply ADMM to minimize (3.4) under the PAPR constraint with respect to vari-

able sets {w} and {α,β,v} separately. We describe the ADMM steps involved in

each iteration as follows:

16



Step-1: For given variables at the iteration number k, w(k), y(k) and λ(k), the aux-

iliary variables at k + 1 can be determined by solving the problem{
α(k+1),β(k+1),v(k+1)

}
= argmin LρL,ρN

(
w(k),α,β,v,y(k),λ(k)

)
subject to PAPR (v) ≤ σ

∥v∥22 = P

(3.5)

with variables α ∈ RL
+, β ∈ RL and v ∈ CN .

Let z = [ z1 . . . zL ]
T = y/ρL ∈ CL and τ = [ τ1 . . . τN ]T = λ/ρN ∈ CN for

using the scaled form of ADMM. In (3.5), the objection function terms depending on

Re {v} can be manipulated algebraically as follows:

N∑
n=1

Re
{
λ(k)
n

}
Re
{
w(k)

n − vn
}
+

ρN
2

N∑
n=1

(
Re
{
w(k)

n − vn
})2

= − 1

2ρN

N∑
n=1

(
Re
{
λ(k)
n

})2
+

ρN
2

N∑
n=1

(
Re
{
w(k)

n − vn
}
+
(
Re
{
λ(k)
n

}
/ρN

))2
= − 1

2ρN

N∑
n=1

(
Re
{
λ(k)
n

})2
+

ρN
2

N∑
n=1

(
Re
{
w(k)

n − vn + τ (k)n

})2
,

where the first term is fixed since λ(k)
(
and τ (k)

)
is given for (3.5) in Step-1, and

does not affect the arguments minimizing (3.5). After using this approach, namely,

completing square and ignoring the constant terms, for the imaginary counterpart in

(3.5), we can combine the expressions depending on real and imaginary parts of v

and get a quadratic term depending on v as

ρN
2

N∑
n=1

(
Re
{
w(k)

n − vn + τ (k)n

})2
+

ρN
2

N∑
n=1

(
Im
{
w(k)

n − vn + τ (k)n

})2
=

ρN
2

(
w(k) + τ (k) − v

)H(
w(k) + τ (k) − v

)
=

ρN
2

∥∥w(k) + τ (k) − v
∥∥2
2
.

By applying the same procedure to the remaining terms corresponding to y(k)
(
and

z(k)
)
, we introduce a new objective function

g(α,β,v) =
L∑

ℓ=1

hℓ (bℓ − αℓ)
2 +

ρL
2

L∑
ℓ=1

∣∣aH
ℓ w

(k) + z
(k)
ℓ − αℓ e

jβℓ
∣∣2

+
ρN
2

∥∥w(k) + τ (k) − v
∥∥2
2

(3.6)
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such that

g(α,β,v)
c
= LρL,ρN

(
w(k),α,β,v,y(k),λ(k)

)
,

where the equality holds for a constant c, and write a problem equivalent to (3.5) as{
α(k+1),β(k+1),v(k+1)

}
= argmin g(α,β,v)

subject to PAPR (v) ≤ σ

∥v∥22 = P

(3.7)

with variables α ∈ RL
+, β ∈ RL and v ∈ CN .

In (3.7), v appears only in the last term of objective function. Hence, v(k+1) can be

determined by solving the equivalent problem

v(k+1) = argmin
v∈CN

∥∥w(k) + τ (k) − v
∥∥2
2

subject to PAPR (v) ≤ σ

∥v∥22 = P.

(3.8)

The problem (3.8) has the form of (2.2), which can be solved by following the steps

given in [17, Algorithm 2], see also Algorithm 2.1. The main role of v in this step

is to control the PAPR of w. By the residual convergence feature of ADMM, we

should observe that the primal residual converges to zero for PAPR constraint, i.e.,

w(k) − v(k) → 0N as k →∞, and hence, the PAPR and norm of w will be too close

to those of v after some iterations. However, this residual convergence depends on P .

Because P affects the objective function value of (3.8), as discussed in Section 2.3.

According to Lemma 1, the objective function value of (3.8) can take zero only when

σ ≥ PAPR
(
w(k) + τ (k)

)
and ∥v∥22 = ∥w(k)+τ (k)∥22. As a consequence, to eliminate

the possibly undesired effect of P on the residual convergence, we suggest replacing

P in (3.8) by ∥w(k) + τ (k)∥22. Thus, we use

v(k+1) = argmin
v∈CN

∥∥w(k) + τ (k) − v
∥∥2
2

subject to PAPR (v) ≤ σ

∥v∥22 =
∥∥w(k) + τ (k)

∥∥2
2
.

(3.9)

We note that the feasible set of (3.9) varies with k unlike that of (3.8). Hence, w(k)

can converge to a point which is not feasible for (2.10) due to the violation of the total

power constraint, i.e.,
∥∥w(k)

∥∥2
2
̸= P , when w(k) − v(k) → 0N as k →∞. By scaling
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w(k), we can obtain a point
√
P w(k)/

∥∥w(k)
∥∥
2

satisfying the total power constraint of

(2.10). As seen from the PAPR definition in (2.1), the scaling of a vector does not

change its PAPR, and we have

PAPR
(√

P w(k)/
∥∥w(k)

∥∥
2

)
= PAPR

(
w(k)

)
.

Moreover, after the scaling, only the transmit beampattern shape is shifted up or down

in dB scale, and the performance metrics, such as the peak sidelobe level (PSL) and

the power swing in the main lobe, are not affected.

Similarly, β appears only in the middle term of (3.6), that is the objective function of

(3.7). To determine β(k+1), an equivalent problem is

β(k+1) = argmin
L∑

ℓ=1

∣∣aH
ℓ w

(k) + z
(k)
ℓ − αℓe

jβℓ
∣∣2 (3.10)

with variables α ∈ RL
+ and β ∈ RL. Let γ = [ γ1 . . . γL ]

T ∈ CL, where γℓ = αℓ e
jβℓ ,

ℓ = 1, . . . , L. Then, the objective function of (3.10) can be expressed as

L∑
ℓ=1

∣∣aH
ℓ w

(k) + z
(k)
ℓ − αℓe

jβℓ
∣∣2 = ∥∥AHw(k) + z(k) − γ

∥∥2
2
, (3.11)

where A = [ a1 . . . aL ] is the N × L matrix consisting of array steering vectors.

As β = ∠γ in (3.11), the solution of (3.10) becomes

β(k+1) = ∠
(
AHw(k) + z(k)

)
. (3.12)

After replacing βℓ in the objective function of (3.7) by β
(k+1)
ℓ , we obtain an equivalent

problem of finding α(k+1) as follows:

α(k+1) = argmin
α∈RL

+

(
L∑

ℓ=1

hℓ (bℓ − αℓ)
2 + (ρL/2)

L∑
ℓ=1

(rℓ − αℓ)
2

)
, (3.13)

where rℓ =
∣∣aH

ℓ w
(k) + z

(k)
ℓ

∣∣, ℓ = 1, . . . , L.

Taking the derivative of the objective function in (3.13) with respect to αℓ and zeroing

at α(k+1)
ℓ , we get

0 = 2hℓ bℓ − 2hℓ α
(k+1)
ℓ + ρL rℓ − ρLα

(k+1)
ℓ , ℓ = 1, . . . , L.
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Since αℓ denotes the magnitude, i.e., αℓ ≥ 0, the solution is given as follows:

α
(k+1)
ℓ =


ρL rℓ + 2hℓ bℓ
ρL + 2hℓ

if (ρL rℓ + 2hℓ bℓ)/(ρL + 2hℓ) ≥ 0 and ρL + 2hℓ ̸= 0

0 otherwise,
(3.14)

for ℓ = 1, . . . , L.

For our application, ρL > 0, rℓ ≥ 0, hℓ ≥ 0 and bℓ ≥ 0 satisfy that ρL rℓ + 2hℓ bℓ ≥ 0

and ρL + 2hℓ > 0, and hence, (3.14) can be simplified as

α
(k+1)
ℓ =

ρL rℓ + 2hℓ bℓ
ρL + 2hℓ

, ℓ = 1, . . . , L. (3.15)

Step-2: We update w by solving

w(k+1) = argmin
w∈CN

LρL,ρN

(
w,α(k+1),β(k+1),v(k+1), z(k), τ (k)

)
. (3.16)

According to (3.16), all variables except w are fixed in (3.4). Thus, the objective

function of (3.7) that is modified from (3.4) due to the fixed z(k) and τ (k) can be

manipulated further by using the fixed

γ(k+1) = α(k+1) ⊙ ejβ
(k+1)

,

as in (3.11). Then, (3.16) is equivalent to

w(k+1) = argmin
w∈CN

(∥∥AHw + z(k) − γ(k+1)
∥∥2
2
+ (ρN/ρL)

∥∥w + τ (k) − v(k+1)
∥∥2
2

)
,

(3.17)

which is quadratic in w. Setting the gradient of the objective function in (3.17) with

respect to w∗ (conjugate of w) equal to zero for w(k+1) [36], we get

0 = A
(
AHw(k+1) + z(k) − γ(k+1)

)
+ (ρN/ρL)

(
w(k+1) + τ (k) − v(k+1)

)
,

and find

w(k+1) =

(
AAH +

ρN
ρL

IN

)−1(
A(γ(k+1) − z(k)) +

ρN
ρL

(
v(k+1) − τ (k)

))
. (3.18)

Step-3: The dual updates are as follows:

z(k+1) = z(k) +AHw(k+1) − γ(k+1), (3.19)

τ (k+1) = τ (k) +w(k+1) − v(k+1). (3.20)
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We have described the steps to compute the transmitter weights satisfying the PAPR

constraint. Then, we have a suggestion for penalty parameters selection. The sug-

gested method has two distinct penalty parameters ρL and ρN , and they are jointly

used only in (3.18). Here, we suggest that the ratio ρN/ρL should be equal to ∥A∥2,

which is also equal to the largest singular value of matrix A, for keeping a balance

between A
(
γ(k+1) − z(k)

)
and (ρN/ρL)

(
v(k+1) − τ (k)

)
. Hence, ρN can be set as

ρN = ρL∥A∥2. (3.21)

The suggested method is referred to as PAPR-ADMM outlined in Algorithm 3.1.

The PAPR-ADMM requires an initial condition vector w(1) ∈ CN , which can be a

unimodular vector for the transmit beamforming application. After initializing dual

variables as y(1) = 0L, λ(1) = 0N , the steps described in this section are iteratively

applied until the condition ∥∥w(k) −w(k−1)
∥∥
2∥∥w(k−1)

∥∥
2

≤ 10−6

or the maximum iteration number k = kmax is satisfied. Due to the update equation

(3.18), the final transmitter weight vector wfinal after termination of iterations, i.e.,

wfinal = w(k), may require an adjustment to meet the PAPR constraint of (2.10). In

other words, PAPR
(
wfinal

)
≤ σ may not hold. We suggest implementing the PAPR

update again on wfinal:

w⋆ = argmin
w∈CN

∥∥wfinal −w
∥∥2
2

subject to PAPR (w) ≤ σ

∥w∥22 = P.

(3.22)

Note that w⋆ is simply the Euclidean projection of wfinal onto the feasible set of the

transmit beamforming problem (2.10) that is given by [17], see also Algorithm 2.1.

Conventionally ADMM is built on the real-valued and convex functions. In this chap-

ter, we have given the formulation by separating the real and imaginary parts of com-

plex variables, see (3.4). Then, we have utilized the complex-valued vector-matrix

calculations to get an equivalent form, see the primal and dual updates. Depending

on the application, e.g., when AHw is the DFT of w, we can apply DFT and inverse

DFT and simplify the matrix inverse calculation in (3.18).
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Algorithm 3.1: Proposed method PAPR-ADMM for the transmit beamformer design

under a PAPR constraint, also see [37].
Input : w(1) ∈ CN , A ∈ CN×L, b ∈ RL

+, h ∈ RL
+, ρL > 0, σ ≥ 1,

P ∈ R++, kmax ∈ {1, 2, . . .}
Output : w⋆ ∈ CN

Initialization: w(0) = 2w(1), y(1) = 0L, λ(1) = 0N , k = 1

1 Compute ρN from (3.21)

2 Assign z(1) = y(1)/ρL and τ (1) = λ(1)/ρN

3 while k ≤ kmax and
(∥∥w(k) −w(k−1)

∥∥
2
/
∥∥w(k−1)

∥∥
2

)
> 10−6 do

// Step-1

4 Determine v(k+1) from (3.9) by applying Algorithm 2.1

5 Compute β(k+1) from (3.12)

6 Compute α(k+1) from (3.15)

// Step-2

7 Compute w(k+1) from (3.18) by using γ(k+1) = α(k+1) ⊙ ejβ
(k+1)

// Step-3

8 Compute z(k+1) from (3.19)

9 Compute τ (k+1) from (3.20)

10 k = k + 1

11 end

12 Determine w⋆ from (3.22) by using wfinal = w(k) and applying Algorithm 2.1

13 return w⋆

Next, we present an extension of the formulation to the wideband transmit beam-

former design.

3.3 Wideband Beamforming

In wideband beamforming, the goal is to set the sensor weights that give the de-

sired beampattern within the negligible difference for different operating frequen-

cies/wavelengths. The wavelengths of interest correspond a limited bandwidth around

the center frequency of the transmitter. Considering the well-known quality factor

22



definition,

Qf =
fc
∆f

, (3.23)

where fc is the center frequency and ∆f is the bandwidth of the transmitting elements

for the definition of frequency samples fi ∈ [fc −∆f/2, fc +∆f/2], we compute the

wavelength corresponding to fi as

λi =
c

fi
, i = 1, . . . , F.

For i = 1, . . . , F , and ℓ = 1, . . . , L, we express the array steering vector correspond-

ing to the ith operating frequency fi and ℓth direction pair (ϕℓ, θℓ) as follows:

aiℓ =
[
ejk

T
iℓp1 . . . ejk

T
iℓpN

]T ∈ CN ,

where kiℓ ∈ R3 is the wavenumber given as

kiℓ = (2π/λi)[ cosϕℓ cos θℓux sinϕℓ cos θℓuy sin θℓuz ]
T.

By concatenating the N × L dimensional matrices

Ai = [ ai1 . . . aiL ], i = 1, . . . , F,

we define

Awb = [A1 . . . AF ],

which is an N × FL matrix of array steering vectors. Similarly, we can obtain the

desired beampattern vector bwb ∈ RFL
+ by concatenating the desired beampatterns for

operating frequency samples as

bwb =
[
bT
1 . . . bT

F

]T
.

Thus, the wideband beamforming problem with PAPR constraint is given as

minimize
FL∑
ℓ=1

hℓ

(
bℓ −

∣∣aH
ℓ w
∣∣)2

subject to PAPR (w) ≤ σ

∥w∥22 = P

(3.24)

with variable w ∈ CN , where aℓ is the ℓth column of Awb, bℓ is the ℓth entry of

bwb, and hℓ ∈ R+ is the weighting coefficient for the squared magnitude error cor-

responding to the ℓth direction pair, ℓ = 1, . . . , FL. This problem has the form of

(2.10), and it can be solved by replacing A and b in Algorithm 3.1 with Awb and bwb,

respectively.
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3.4 Algorithm Convergence

The convergence of ADMM for nonconvex problems is an important theoretic prob-

lem of the optimization literature, [29]. Algorithm convergence depends on the initial

primal and dual points, the penalty parameter and also on the formulation of update

steps, [28]. Unfortunately, the PAPR constraint (due to its nonlinearity) does not lend

itself to further analysis. In our experience, PAPR-ADMM with the suggested set-

tings has converged at all runs that we have implemented. The main difficulty that we

face is not the convergence, the need of running PAPR-ADMM repeatedly with dif-

ferent initial conditions to avoid local optima. The sensitivity to the initial conditions

is expected for given the multimodal nature of the beampattern matching problem,

as discussed in [11]. To improve the performance, we suggest using the formulation

(3.9) instead of (3.8) and examine this suggestion with some common parameter set-

tings in Section 3.6.1. The reader is also invited to conduct Monte-Carlo trials of

PAPR-ADMM with randomized initial conditions by running the ready-to-use MAT-

LAB [37], Python [38], R [39] and C++ [40] codes.

3.5 Computational Complexity Considerations

We are able to present Algorithm 3.1, whose each step either has a closed-form ex-

pression or applies Algorithm 2.1. Algorithm 3.1 uses Algorithm 2.1 at Step-1 of

each iteration and once after the termination of iterations. Algorithm 2.1 requires a

sorting operation with the complexity of O (N logN) operations and a processing of

a vector with the worst case complexity of O (N2).

In Step-1 of Algorithm 3.1, the necessary updates are implemented through (3.12) and

(3.15) both requiringO (LN) multiplications. In Step-2, (3.18) requiresO (LN2). In

Step-3, (3.19) and (3.20) require O (LN) and O (N), respectively. Thus, the com-

putational complexity of each iteration is O (LN2), which can be reduced further by

computing the matrix inverse in (3.18) offline and storing the result. With the storage

option, the computational complexity of Step-2 is reduced to O (N2), and the overall

complexity of each iteration becomes O (N2 + LN) and O (N2 + FLN) multipli-

cations for narrowband and wideband beamformers, respectively.
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3.6 Numerical Results

Unless otherwise is stated, we set ρL = 25, kmax = 10000. For ℓ = 1, . . . , L, the

weighting coefficient hℓ is set to δm if the ℓth direction sample is associated with the

main lobe (or passband), and to δs otherwise (sidelobe or stopband), where δs/δm =

100. The initial condition weight vector w(1) =
[
w

(1)
1 . . . w

(1)
N

]T has the entries

w
(1)
n = ej2πµn , n = 1, . . . , N , where {µn}Nn=1 are the independent and identically

distributed random variables, which are uniformly distributed on (0, 1).

3.6.1 Effect of the Fixed Total Power

We assume a sonar system having N = 32 elements uniform linear array (ULA). The

distance between neighboring sensors is λ/2 for the center frequency 150 kHz, where

λ is determined by using the speed of sound in water, which is taken as 1500 m/s.

The design of a one-dimensional flat-top beampattern is considered in this experi-

ment. The PSL of the desired beampattern is 30 dB. The main lobe is centered at

(0◦, 0◦) in (azimuth, elevation). The desired half-beamwidth and transition width are

45◦ and 8◦ in azimuth, respectively. The direction samples are taken by using a uni-

form grid spacing of 0.1◦.

Our goal is to examine the algorithm performance when (3.8) is utilized instead of

(3.9) in Step-1. We have 10 realizations for the initial weight vector. For each real-

ization, we apply PAPR-ADMM by setting PAPR = σ ∈ {1, 2}, and P = N with the

formulation given by (3.8) (fixed total power), or (3.9) (varying total power).

In Figure 3.1, the augmented Lagrangian function (ALF) value (3.4) versus iteration

number k is shown. Comparing Figures 3.1a and 3.1b, we notice that the fixed total

power formulation prevents the monotonicity of ALF when PAPR = 1. For PAPR

= 2, both formulations provide the monotonous ALF values after some iterations,

as shown in Figures 3.1c and 3.1d. Moreover, Table 3.1 shows that the formulation

(3.9) usually leads to a solution giving better performance metrics (less power swing

in the main lobe, higher PSL) than those of (3.8). Hence, we suggest the usage of

formulation (3.9) in Step-1 of Algorithm 3.1 for the performance improvement.
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Figure 3.1: Augmented Lagrangian function (3.4) versus iteration number, LρL,ρN

(
w(k),α(k),β(k),v(k),y(k),λ(k)

)
, for the narrowband transmit beamforming with 32

elements ULA: (a) PAPR = 1 using (3.8), (b) PAPR = 1 using (3.9), (c) PAPR = 2

using (3.8), and (d) PAPR = 2 using (3.9).

3.6.2 Main Lobe Average Power Versus PAPR

We consider the sonar system given in Section 3.6.1 by setting PAPR as σ ∈ {1, 1.01,
1.02, 1.03, 1.04, 1.05, 1.1, 1.2, 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75, 1.8, 1.9, 2, 3, 4, 5,

6} and using PAPR-ADMM initialized with the same initial vector w(1).

The goal is to observe the main lobe average power versus PAPR for narrowband

transmit beamforming. As a strategy for maximizing the total transmitted power,

transmitter weights are normalized so that the peak (or maximum) power is always

fixed to the maximum allowed power that can be transmitted from an antenna. Thus,

each weight wσ for PAPR = σ is scaled to have entries with the maximum magnitude

of 1 before computing the main lobe average power. Consequently, the numerator of

(2.1) is fixed to 1 for each wσ, and only ∥wσ∥22 is affected from the changed σ. Owing

to the power conservation, we increase the average power of the designed beampat-

tern by increasing ∥wσ∥22. Our method actually solves a constrained least-squares
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Table 3.1: Performance metrics of 10 realizations for the narrowband transmit beam-

forming with 32 elements ULA and PAPR ≤ σ by using (3.8) with P = 32 and (3.9).

σ = 1 σ = 2

Pm
p-p (dB) PSL (dB) Pm

p-p (dB) PSL (dB)

# (3.8) (3.9) (3.8) (3.9) (3.8) (3.9) (3.8) (3.9)

1 11.3612 15.6160 3.1925 8.2945 5.6236 1.6129 12.1844 28.0961

2 30.8255 16.8515 −16.9287 10.6568 6.1817 1.6942 12.0562 26.9719

3 23.6257 9.7819 −8.2082 21.0342 5.8507 1.3171 12.0346 27.4168

4 40.9117 14.5736 −27.3392 12.4576 5.2061 1.9593 12.3528 26.5214

5 11.8548 18.2355 5.3457 5.7737 5.3079 0.8077 12.3051 26.8273

6 8.7353 9.9073 6.8774 18.1448 6.0472 1.9623 12.0675 24.8963

7 8.7565 9.1254 5.6044 18.6577 5.7129 1.3863 12.1685 28.2452

8 7.8473 13.6166 8.6415 10.9221 6.0557 1.3971 11.9522 28.2863

9 9.0881 8.1983 6.4345 17.6731 5.9224 1.5101 12.0335 27.5341

10 25.4156 10.3492 −12.6823 14.1019 6.1426 1.9500 12.0646 26.7344

problem by trying to keep the ratio of average powers in the main lobe and sidelobe

at some level. Hence, we observe that the main lobe average power is decreased when

PAPR (wσ) is increased, as shown in Figure 3.2. Owing to the same initial point, we

can observe the achievable PAPR to which PAPR (wσ) converges. This value is less

than 5 for our parameters and initial point, and the results are not affected any more

if we increase σ from 5 to 6.

For some PAPR values, the performance metrics of the designed beampatterns are

given in Table 3.2. The performance metrics are as follows: Pm
avg(wσ) is the main

lobe average power (A.11), Pm
min is the minimum power in the main lobe (A.12),

Pm
max is the maximum power in the main lobe (A.13), Pm

p-p is the peak-to-peak power

swing in the main lobe (A.14), Peff(wσ) is the power efficiency (A.15), P s
avg(wσ)
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Figure 3.2: Main lobe average power versus PAPR for the narrowband transmit beam-

forming with 32 elements ULA (base-2 log scale is used for the PAPR axis).

is the sidelobe average power (A.16), Pm/s
avg (wσ) is the ratio of average powers in the

main lobe and sidelobe (A.19), and Rmax(wσ) is the maximum range ratio (A.20).

Further details on the performance metrics are given in Appendix A.

The beampatterns corresponding to σ ∈ {1, 1.6, 2, 5} are shown in Figure 3.3. As a

comparison, σ = 1 design (PAPR = 1 case) presents maximum average power over

the illuminated sector (Pm
avg(wσ) = 16.3609 dB) at the expense of a large peak-to-

peak power swing (Pm
p-p = 9.7083 dB). While σ = 1.6 design has about 2 dB less

average power in the main lobe (Pm
avg(wσ) = 14.3975 dB), yet has a peak-to-peak

power swing of 1.9813 dB in the main lobe. Furthermore, σ = 1.6 design has a better

PSL than σ = 1 design by 6.5 dB. On the other extreme, when the PAPR constraint

is ignored, which is the case of σ = 5 or σ = 6; the power swing in the main lobe is

minimized to 0.5470 dB and PSL is improved to 28.7207 dB, yet the average power

over the illuminated region is only 9.6810 dB which is about a quarter of σ = 1

design. The maximum range is decreased to 89.31% (about 10% range loss) and

68.08 (about 30% range loss) for σ = 1.6 and σ = 5 (or σ = 6) designs, respectively.

As noted previously, our aim is to let the designer trade-off between several metrics,

as shown in Table 3.2, with a proper choice of PAPR value.
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Table 3.2: Performance metrics for the narrowband transmit beamforming with 32 elements ULA and PAPR ≤ σ.

σ 1 1.01 1.02 1.05 1.4 1.6 1.75 1.9 2 3 4 5, 6

Pm
avg(wσ) (dB) 16.3609 16.3205 16.2850 16.2237 14.9758 14.3975 13.9638 13.5994 13.3865 11.6160 10.3677 9.6810

Pm
p-p (dB) 9.7083 8.8528 8.5463 7.6724 3.6882 1.9813 1.0921 0.6956 0.5755 0.5489 0.5364 0.5470

PSL (dB) 19.9537 21.6018 21.7920 22.4198 24.1667 26.5034 27.3493 27.6373 28.7691 28.8939 28.6532 28.7207

PAPR (wσ) 1 1.01 1.02 1.05 1.4 1.6 1.75 1.9 2 3 4 4.6884

Peff(wσ) (%) 100.00 99.01 98.04 95.24 71.43 62.50 57.14 52.63 50.00 33.33 25.00 21.33

Pm
min (dB) 9.9636 10.8448 11.1819 11.8113 12.5919 13.3165 13.3591 13.2474 13.0861 11.2791 9.9710 9.2830

Pm
max (dB) 19.6719 19.6976 19.7282 19.4837 16.2801 15.2978 14.4512 13.9430 13.6616 11.8280 10.5074 9.8300

P s
avg(wσ) (dB) −13.164 −13.295 −13.535 −13.620 −14.898 −15.525 −16.010 −16.385 −16.608 −18.382 −19.631 −20.318

Pm/s
avg (wσ) (dB) 29.5250 29.6155 29.8201 29.8441 29.8736 29.9225 29.9742 29.9845 29.9943 29.9984 29.9992 29.9993

Rmax (%) 100.00 99.77 99.56 99.21 92.34 89.31 87.11 85.30 84.26 76.10 70.82 68.08
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Figure 3.3: Beampattern versus PAPR for the narrowband transmit beamforming with

32 elements ULA.

3.6.3 Radar Waveform Design With Unimodular Sequence

The second experiment is related to a radar application, where a unimodular periodic

sequence is required to communicate through a crowded channel. While the beam-

forming applications are our main concern, we also give this example to put forward

the feasibility of the method in other applications.

We compare the proposed method PAPR-ADMM with the unimodular sequence de-

sign methods SHAPE [26], LPNN [21], ADMM [23] for the radar waveform de-

sign experiment described in [23]. The radar has the sample rate 810 kHz and the

pulse duration 200 µs, and therefore, the sequence length is N = 162. With respect

to the normalized frequency, the stopband intervals are [0, 0.0617], [0.0988, 0.2469],

[0.2593, 0.2840], [0.3086, 0.3827], [0.4074, 0.4938], [0.5185, 0.5556], and [0.9383, 1],

and the rest of intervals correspond to the passband. The SHAPE1 and ADMM require

upper and lower masks for passband specified by the ripple constraint 0.2, whereas

LPNN and PAPR-ADMM require the unity passband mask. The peak stopband level

is η = 0.01 or η = −20 dB. The spectrum of each unimodular sequence is shown in

Figure 3.4, and the corresponding peak-to-peak power swing in the passband, Pm
p-p,

1 MATLAB code is available on www.sal.ufl.edu/shape
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Figure 3.4: Spectrum comparison for radar waveform design.

Table 3.3: Comparison of the peak-to-peak power swing in the passband and PSL

values for radar waveform design.

Method SHAPE [26] LPNN [21] ADMM [23] PAPR-ADMM

Pm
p-p (dB) 2.7351 9.9479 1.7607 1.3923

PSL (dB) 15.1515 13.5066 19.0311 19.2418

and PSL values are given in Table 3.3. Each sequence has comparable autocorrelation

sidelobe levels, as shown in Figure 3.5.

Next, we compare our method with ANSLM [27]. For PAPR-ADMM, η = −29 dB,

and the ratio of stopband and passband sample weighting coefficients is δs/δm = 1000

to increase the power fluctuations in the passband. The spectra of sequences designed

by using ANSLM and PAPR-ADMM are shown in Figure 3.6. For ANSLM, PSL

and Pm
p-p values are 24.1653 dB and 9.2059 dB, respectively. With PAPR-ADMM, we

observe PSL as 25.7239 dB and Pm
p-p as 6.7645 dB. Both sequences have comparable

autocorrelation sidelobe levels, as shown in Figure 3.7.
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Figure 3.6: Spectrum comparison with ANSLM for radar waveform design.

3.6.4 Wideband Transmit Beamforming

We consider a sonar system having N = 144 elements uniform rectangular array

(URA). The distance between neighboring sensors is λ/2 for 150 kHz with the prop-

agation speed of 1500 m/s. The center frequency fc is 140 kHz and the quality factor

Qf is 14. Using (3.23), we compute ∆f as 10 kHz. Then, we take frequency samples

fi ∈ {135, 137.5, 140, 142.5, 145} kHz, i = 1, . . . , 5. Setting PAPR = σ ∈ {1,
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Figure 3.7: Autocorrelation function comparison with ANSLM for radar waveform

design.

2, 8, 36}, and using PAPR-ADMM initialized with the same vector w(1), we find

the transmitter weights wσ that can be used to compute the two-dimensional flat-top

beampatterns corresponding to these frequencies. The PSL of the desired beampat-

tern is 15 dB. The main lobe is inside of an elliptical region centered at (0◦, 0◦) and

having semi-major and semi-minor axis of 30◦ and 15◦, respectively. The sidelobe is

outside of an elliptical region centered at (0◦, 0◦) and having semi-major and semi-

minor axis of 40◦ and 20◦, respectively. The direction samples are taken by using a

uniform grid spacing of 1◦. Since the array has uniform grid and the desired beam-

pattern is symmetric in azimuth and elevation, we can assume that the transmitter

weights are symmetric in horizontal and vertical directions. Therefore, we decrease

the search space dimension from 144 to 36 and set σ as 36 at most.

The beampatterns on cutting-planes, i.e., (ϕ, 0◦) and (0◦, θ) planes, are shown in Fig-

ures 3.8 and 3.9. For σ ∈ {1, 2}, the main lobe has higher power swing than that of

beampatterns corresponding to σ ∈ {8, 36}. Table 3.4 shows the performance met-

rics. The maximum of achievable PAPR is observed as PAPR (wσ) = 12.3001 by

relaxing the PAPR constraint as σ = 36.
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Figure 3.8: Beampatterns on cutting-planes for the wideband transmit beamforming

with 144 elements URA and PAPR values, (a) σ = 1, (b) σ = 2, (c) σ = 8 and (d)

σ = 36.
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Figure 3.9: Two-dimensional viewed beampatterns on cutting-planes for the wide-

band transmit beamforming with 144 elements URA and PAPR values, (a) σ = 1, (b)

σ = 2, (c) σ = 8 and (d) σ = 36.
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Table 3.4: Performance metrics for the wideband transmit beamforming with 144

elements URA and PAPR ≤ σ.

σ 1 2 8 36

Pm
p-p (dB) 12.5855 8.6816 7.4218 7.1117

PSL (dB) −5.1418 2.7020 5.6946 5.9029

PAPR (wσ) 1 2 8 12.3001

Peff(wσ) (%) 100.00 50.00 12.50 8.13

3.7 Conclusion

The main goal of this chapter is to examine the transmit beamformer design problem

under the peak-to-average-power-ratio (PAPR) constraint. The PAPR constraint is

included in the problem setting to provide a trade-off mechanism between the beam-

pattern shape, average power in the main lobe and other classical metrics, such as

the integrated sidelobe level and the peak sidelobe level. By using an alternating di-

rection method of multipliers (ADMM) formulation, we combine the phase retrieval

method PhareADMM [24] and the alternating projection method [17] to solve the

problem. Our formulation includes the distinct penalty parameters in the augmented

Lagrangian function for the beam shape and PAPR constraints. Thus, we can control

the constraint violation of the beam shape and PAPR separately. Owing to the gen-

erality of formulation, the suggested method PAPR-ADMM can be applied to both

narrowband and wideband beamforming.
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CHAPTER 4

TRANSMIT BEAMFORMING PROBLEM WITH PAPR CONSTRAINT:

CONSENSUS ADMM-BASED SOLUTION

In this chapter, we present a solution for the transmit beamformer design problem

under the PAPR constraint after expressing the problem in a consensus form. The so-

lution is based on the consensus ADMM. Before introducing the solution, we briefly

describe the consensus ADMM in the next section.

4.1 Consensus ADMM

We let a convex optimization problem be

minimize
M∑

m=1

fm(x)

subject to x ∈ S
(4.1)

with variable x ∈ RN , where the functions fm : RN → R, m = 1, . . . ,M , are

convex, and the set S ⊆ RN is nonempty, closed, and convex.

When the objective function and constraints of an optimization problem can be split

into terms, as in f(x) =
∑M

m=1 fm(x), one of the generic approaches is the consensus

optimization, [28]. We can construct a consensus optimization problem equivalent to

(4.1) as

minimize I(z) +
M∑

m=1

fm(xm)

subject to xm = z, m = 1, . . . ,M,

(4.2)

with variables x1, . . . ,xM , z ∈ RN , where IS : RN → R ∪ {+∞} is the indicator
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function of S, that is

I(z) =

0 if z ∈ S
+∞ otherwise.

(4.3)

The ADMM steps for solving the consensus problem (4.2) can be determined from

the augmented Lagrangian function given as

Lρ

(
{xm,ym}Mm=1, z

)
= I(z)+

M∑
m=1

(
fm(xm)+yT

m(xm−z)+(ρ/2)∥xm−z∥22
)
, (4.4)

where ρ > 0 is the step size and ym ∈ RN , m = 1, . . . ,M , are the dual variables.

These steps are given as follows:{
x(k+1)
m

}M
m=1

= argmin
x1,...,xM∈RN

Lρ

({
xm,y

(k)
m

}M
m=1

, z(k)
)
, (4.5a)

z(k+1) = argmin
z∈RN

Lρ

({
x
(k+1)
m ,y

(k)
m

}M
m=1

, z
)
, (4.5b)

y(k+1)
m = y(k)

m + ρ
(
x(k+1)
m − z(k+1)

)
, m = 1, . . . ,M, (4.5c)

After eliminating constants or completing linear and quadratic terms, and using um =

ym/ρ, m = 1, . . . ,M , the scaled form of ADMM steps for (4.2) are

x(k+1)
m = argmin

xm∈RN

(
fm(xm) + (ρ/2)

∥∥xm − z(k) + u(k)
m

∥∥2
2

)
, m = 1, . . . ,M, (4.6a)

z(k+1) = argmin
z∈S

∥∥x̄(k+1) − z+ ū(k)
∥∥2
2
, (4.6b)

u(k+1)
m = u(k)

m +
(
x(k+1)
m − z(k+1)

)
, m = 1, . . . ,M, (4.6c)

where x̄(k+1) = (1/M)
∑M

m=1 x
(k+1)
m and ū(k) = (1/M)

∑M
m=1 u

(k)
m . Note that the

update (4.6b), which is a simplified expression equivalent to the actual problem

z(k+1) = argmin
z∈RN

(
I(z) + (Mρ/2)

∥∥x̄(k+1) − z+ ū(k)
∥∥2
2

)
, (4.7)

denotes the Euclidean projection of x̄(k+1)+ ū(k) on S. The updates (4.6a) and (4.6c)

can be computed in parallel for m = 1, . . . ,M . The ADMM with update steps

like (4.6) is referred to as consensus ADMM due to the applicability of the parallel

computation, [28].

The transmit beampattern design problem (2.10) has a convenient form to apply the

consensus ADMM steps similar to that given in (4.6). In the next section, we intro-

duce a consensus ADMM-based solution to this problem.
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4.2 Proposed Method

We suggest introducing local variables wℓ ∈ CN with equality constraints wℓ = v,

ℓ = 1, . . . , L, where v ∈ CN is the common global vector, into (2.10) for constructing

a consensus optimization problem as follows:

minimize
L∑

ℓ=1

hℓ (bℓ − |aH
ℓ wℓ|)2

subject to wℓ = v, ℓ = 1, . . . , L

PAPR (v) ≤ σ

∥v∥22 = P

(4.8)

with variables w1, . . . ,wL,v ∈ CN . Here the common global vector v also prevents

the appearance of the PAPR constraint argument in the objective function.

To circumvent the absolute value operator in the objective function, we introduce the

auxiliary variables αℓ ∈ R+ and βℓ ∈ R as

aH
ℓ wℓ = αℓ e

jβℓ , (4.9)

where

αℓ = |aH
ℓ wℓ| ≥ 0 and βℓ = ∠(aH

ℓ wℓ),

for ℓ = 1, . . . , L. After using (4.9) and replacing |aH
ℓ wℓ| with αℓ in (4.8), the problem

becomes

minimize
L∑

ℓ=1

hℓ (bℓ − αℓ)
2

subject to aH
ℓ wℓ = αℓ e

jβℓ , ℓ = 1, . . . , L

wℓ = v, ℓ = 1, . . . , L

PAPR (v) ≤ σ

∥v∥22 = P

(4.10)

with variables w1, . . . ,wL,v ∈ CN , α1, . . . , αL ∈ R+ and β1, . . . , βL ∈ R. Thus,

the problem formulation in (2.10) is converted to (4.10) having a convex objective

function and nonconvex constraints.

The augmented Lagrangian for the application of ADMM on (4.10) requires the def-
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inition of penalty parameters. We present the augmented Lagrangian function as

LρL,ρN

(
{wℓ,λℓ}Lℓ=1,α,β,v,y

)
=

L∑
ℓ=1

hℓ (bℓ − αℓ)
2

+
L∑

ℓ=1

Re {yℓ}Re
{
aH
ℓ wℓ − αℓ e

jβℓ
}
+

L∑
ℓ=1

Im {yℓ} Im
{
aH
ℓ wℓ − αℓ e

jβℓ
}

+
ρL
2

L∑
ℓ=1

(
Re
{
aH
ℓ wℓ − αℓ e

jβℓ
})2

+
ρL
2

L∑
ℓ=1

(
Im
{
aH
ℓ wℓ − αℓ e

jβℓ
})2

+
L∑

ℓ=1

N∑
n=1

Re {λℓ,n}Re {wℓ,n − vn}+
L∑

ℓ=1

N∑
n=1

Im {λℓ,n} Im {wℓ,n − vn}

+
ρN
2

L∑
ℓ=1

N∑
n=1

(Re {wℓ,n − vn})2 +
ρN
2

L∑
ℓ=1

N∑
n=1

(Im {wℓ,n − vn})2, (4.11)

where ρL > 0 and ρN > 0 are two distinct penalty parameters corresponding to beam-

pattern shape and PAPR constraints, respectively; y = [ y1 . . . yL ]
T ∈ CL and λℓ =

[λℓ,1 . . . λℓ,N ]T ∈ CN , ℓ = 1, . . . , L, are the dual variables; α = [α1 . . . αL ]
T ∈ RL

+

and β = [ β1 . . . βL ]
T ∈ RL are the auxiliary variables. In (4.11), the real and imagi-

nary parts are separately considered due to the nature of ADMM, which is built on the

real-valued and convex functions. Here, we utilize two different penalty parameters

ρL and ρN in this application, as in PAPR-ADMM, rather than the usual definition of

the augmented Lagrangian functions, where a single penalty parameter is assigned to

all constraints.

We use ADMM steps to minimize (4.11) under the PAPR constraint with respect to

variable sets {wℓ}Lℓ=1 and {α,β,v} separately. The ADMM steps involved in each

iteration are as follows:

Step-1: For given variables at the iteration number k,
{
w

(k)
ℓ ,λ

(k)
ℓ

}L
ℓ=1

and y(k), the

auxiliary variables at k + 1 can be determined by solving the problem

{α(k+1),β(k+1),v(k+1)} = argmin LρL,ρN

({
w

(k)
ℓ ,λ

(k)
ℓ

}L
ℓ=1

,α,β,v,y(k)
)

subject to PAPR (v) ≤ σ

∥v∥22 = P

(4.12)
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with variables α ∈ RL
+, β ∈ RL and v ∈ CN .

We introduce vectors z = [ z1 . . . zL ]
T = y/ρL ∈ CL and τ ℓ = [ τℓ,1 . . . τℓ,N ]T =

λℓ/ρN ∈ CN for using the scaled form of ADMM. We also consider a function

g(α,β,v) =
L∑

ℓ=1

hℓ (bℓ − αℓ)
2 +

ρL
2

L∑
ℓ=1

∣∣aH
ℓ w

(k)
ℓ + z

(k)
ℓ − αℓ e

jβℓ
∣∣2

+
ρNL

2
∥w̄(k) + τ̄ (k) − v∥22, (4.13)

where w̄(k) = (1/L)
∑L

ℓ=1 w
(k)
ℓ and τ̄ (k) = (1/L)

∑L
ℓ=1 τ

(k)
ℓ , such that

g(α,β,v)
c
= LρL,ρN

({
w

(k)
ℓ ,λ

(k)
ℓ

}L
ℓ=1

,α,β,v,y(k)
)
.

Thus, a problem equivalent to (4.12) can be given as

{α(k+1),β(k+1),v(k+1)} = argmin g(α,β,v)

subject to PAPR (v) ≤ σ

∥v∥22 = P

(4.14)

with variables α ∈ RL
+, β ∈ RL and v ∈ CN .

In (4.14), v appears only in the last term of objective function, and therefore v(k+1)

can be determined by solving the equivalent problem

v(k+1) = argmin
v∈CN

∥∥w̄(k) + τ̄ (k) − v
∥∥2
2

subject to PAPR (v) ≤ σ

∥v∥22 = P,

(4.15)

whose solution can be determined by following the steps given in [17, Algorithm 2],

see also Algorithm 2.1. As with PAPR-ADMM, we suggest replacing P in (4.15) by∥∥w̄(k) + τ̄ (k)
∥∥2
2

to obtain the problem

v(k+1) = argmin
v∈CN

∥∥w̄(k) + τ̄ (k) − v
∥∥2
2

subject to PAPR (v) ≤ σ

∥v∥22 =
∥∥w̄(k) + τ̄ (k)

∥∥2
2
,

(4.16)

whose solution improves the performance of suggested method.

Similarly, β appears only in the middle term of the objective function of (4.14), and

an equivalent problem of determining β(k+1) is

β(k+1) = argmin
α∈RL

+,β∈RL

L∑
ℓ=1

∣∣aH
ℓ w

(k)
ℓ + z

(k)
ℓ − αℓe

jβℓ
∣∣2. (4.17)
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The solution of (4.17), β(k+1) =
[
β
(k+1)
1 . . . β

(k+1)
L

]T, has the entries

β
(k+1)
ℓ = ∠

(
aH
ℓ w

(k)
ℓ + z

(k)
ℓ

)
, ℓ = 1, . . . , L. (4.18)

We substitute β(k+1)
ℓ for βℓ in the objective function of (4.14) and obtain an equivalent

problem of finding α(k+1) as follows:

α(k+1) = argmin
α∈RL

+

(
L∑

ℓ=1

hℓ (bℓ − αℓ)
2 + (ρL/2)

L∑
ℓ=1

(rℓ − αℓ)
2

)
, (4.19)

where rℓ =
∣∣aH

ℓ w
(k)
ℓ + z

(k)
ℓ

∣∣, ℓ = 1, . . . , L. Except the definition of rℓ, the expressions

of (4.19) and (3.13) are identical. As with (3.13), the solution of (4.19) is

α
(k+1)
ℓ =

ρL rℓ + 2hℓ bℓ
ρL + 2hℓ

, ℓ = 1, . . . , L (4.20)

due to the parameter settings, ρL > 0, rℓ ≥ 0, hℓ ≥ 0 and bℓ ≥ 0.

Step-2: We update {wℓ}Lℓ=1 by solving{
w

(k+1)
ℓ

}L
ℓ=1

= argmin
{wℓ}Lℓ=1∈CN

LρL,ρN

({
wℓ, τ

(k)
ℓ

}L
ℓ=1

,α(k+1),β(k+1),v(k+1), z(k)
)
.

(4.21)

According to (4.21), all variables except {wℓ}Lℓ=1 are fixed in (4.11). Thus, a problem

equivalent to (4.21) can be given as

{
w

(k+1)
ℓ

}L
ℓ=1

= argmin
w1,...,wL∈CN

(
L∑

ℓ=1

∣∣aH
ℓ wℓ + z

(k)
ℓ − γ

(k+1)
ℓ

∣∣2
+ (ρN/ρL)

L∑
ℓ=1

∥∥wℓ + τ
(k)
ℓ − v(k+1)

∥∥2
2

)
, (4.22)

where γ
(k+1)
ℓ = α

(k+1)
ℓ ejβ

(k+1)
ℓ , ℓ = 1, . . . , L.

The equivalent problems for w(k+1)
ℓ , ℓ = 1, . . . , L, can be given as

w
(k+1)
ℓ = argmin

wℓ∈CN

(∣∣aH
ℓ wℓ + z

(k)
ℓ − γ

(k+1)
ℓ

∣∣2 + ρN
ρL

∥∥wℓ + τ
(k)
ℓ − v(k+1)

∥∥2
2

)
.

(4.23)

For ℓ = 1, . . . , L, by setting the gradient of the objective function in (4.23) with

respect to w∗
ℓ (conjugate of wℓ) equal to zero at w(k+1)

ℓ [36], we get

0 = aℓ

(
aH
ℓ w

(k+1)
ℓ + z

(k)
ℓ − γ

(k+1)
ℓ

)
+

ρN
ρL

(
w

(k+1)
ℓ + τ

(k)
ℓ − v(k+1)

)
,
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and find

w
(k+1)
ℓ =

(
aℓa

H
ℓ +

ρN
ρL

IN

)−1(
aℓ

(
γ
(k+1)
ℓ − z

(k)
ℓ

)
+

ρN
ρL

(
v(k+1) − τ

(k)
ℓ

))
=

ρL
ρN

(
IN −

aℓa
H
ℓ

ρN
ρL

+ aH
ℓ aℓ

)(
aℓ

(
γ
(k+1)
ℓ − z

(k)
ℓ

)
+

ρN
ρL

(
v(k+1) − τ

(k)
ℓ

))
.

(4.24)

Step-3: The dual updates are as follows:

z
(k+1)
ℓ = z

(k)
ℓ + aH

ℓ w
(k+1)
ℓ − γ

(k+1)
ℓ , ℓ = 1, . . . , L, (4.25)

τ
(k+1)
ℓ = τ

(k)
ℓ +w

(k+1)
ℓ − v(k+1), ℓ = 1, . . . , L. (4.26)

We have described the consensus ADMM steps to compute the transmitter weights

satisfying the PAPR constraint. These steps are iteratively applied until the condition∥∥w̄(k) − w̄(k−1)
∥∥
2∥∥w̄(k−1)

∥∥
2

≤ 10−6

or the maximum iteration number k = kmax is satisfied. After termination of itera-

tions, the solution is determined from

w⋆ = argmin
w∈CN

∥w̄final + τ̄ final −w∥22

subject to PAPR (w) ≤ σ

∥w∥22 = P,

(4.27)

where the vectors w̄final and τ̄ final are formed by the final entries of mean vectors w̄

and τ̄ , respectively, after terminating the iterations. It should be noted that (4.27) has

the form of the common global variable v update given in (4.16), where the objective

function depends on the mean vector τ̄ of the dual variables {τ ℓ}Lℓ=1, in contrast to

the objective function given in (3.22) for the ADMM-based formulation, where v is

an auxiliary variable.

The consensus ADMM-based method, PAPR-cADMM, for computing the transmitter

weights under the PAPR constraint is outlined in Algorithm 4.1.

The convergence of PAPR-cADMM is similar to that of PAPR-ADMM discussed

in Section 3.4. We suggest using the formulation (4.16) instead of (4.15) for im-

proving the performance. This suggestion is examined via an experiment given in
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Algorithm 4.1: Proposed method PAPR-cADMM for the narrowband transmit beam-

former design under a PAPR constraint.
Input : w̄(1) ∈ CN , A ∈ CN×L, b ∈ RL

+, h ∈ RL
+, ρL > 0, ρN > 0,

σ ≥ 1, P ∈ R++, kmax ∈ {1, 2, . . .}
Output : w⋆ ∈ CN

Initialization: w̄(0) = 2w̄(1),
{
w

(1)
ℓ = w̄(1),λ

(1)
ℓ = 0N

}L
ℓ=1

, y(1) = 0L, k = 1

1 Assign z(1) = y(1)/ρL, and τ
(1)
ℓ = λ

(1)
ℓ /ρN , ℓ = 1, . . . , L

2 while k ≤ kmax and
(∥∥w̄(k) − w̄(k−1)

∥∥
2
/
∥∥w̄(k−1)

∥∥
2

)
> 10−6 do

// Step-1

3 Determine v(k+1) from (4.16)

4 Compute β(k+1) from (4.18)

5 Compute α(k+1) from (4.20)

// Step-2

6 Determine w
(k+1)
ℓ from (4.24) by using γ

(k+1)
ℓ = α

(k+1)
ℓ ejβ

(k+1)
ℓ , ℓ = 1, . . . , L

// Step-3

7 Compute z(k+1) from (4.25)

8 Compute τ
(k+1)
ℓ , ℓ = 1, . . . , L, from (4.26)

9 w̄(k+1) = (1/L)
L∑

ℓ=1

w
(k+1)
ℓ

10 τ̄ (k+1) = (1/L)
L∑

ℓ=1

τ
(k+1)
ℓ

11 k = k + 1

12 end

13 Determine w⋆ from (4.27) by using w̄final = w̄(k) and τ̄ final = τ̄ (k)

14 return w⋆

Section 4.5.1. Next, we present an extension of PAPR-cADMM to the wideband

transmit beamformer design.
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4.3 An Extension of the Proposed Method to Wideband Beamforming

As described in Section 3.3, the main task of a wideband beamforming application is

to set the sensor weights yielding the desired beampattern within the negligible dif-

ference for different operating frequencies/wavelengths. With a minor modification

of (3.24) to invoke the consensus optimization, the wideband beamforming problem

with PAPR constraint is given as

minimize
F∑
i=1

L∑
ℓ=1

hi,ℓ (bi,ℓ − |aH
i,ℓw|)2

subject to PAPR (w) ≤ σ

∥w∥22 = P

(4.28)

with variable w ∈ CN .

Similar to (4.8), we introduce the local variables {wi}Fi=1 ∈ CN and let v ∈ CN be a

common global vector in the consensus optimization problem:

minimize
F∑
i=1

L∑
ℓ=1

hi,ℓ (bi,ℓ − |aH
i,ℓwi|)2

subject to wi = v, i = 1, . . . , F

PAPR (v) ≤ σ

∥v∥22 = P

(4.29)

with variables w1, . . . ,wF ,v ∈ CN .

For i = 1, . . . , F and ℓ = 1, . . . , L, we let the auxiliary variables αi,ℓ ∈ R+ and

βi,ℓ ∈ R be

αi,ℓ = |aH
i,ℓwi| and βi,ℓ = ∠(aH

i,ℓwi),

respectively, to have

aH
i,ℓwi = αi,ℓ e

jβi,ℓ . (4.30)

By using (4.30) and replacing |aH
i,ℓwi| with αi,ℓ in (4.29), we construct a problem

minimize
F∑
i=1

L∑
ℓ=1

hi,ℓ (bi,ℓ − αi,ℓ)
2

subject to aH
i,ℓwi = αi,ℓ e

jβi,ℓ , i = 1, . . . , F, and ℓ = 1, . . . , L

wi = v, i = 1, . . . , F

PAPR (v) ≤ σ

∥v∥22 = P

(4.31)
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with variables w1, . . . ,wF ,v ∈ CN , α1,1, . . . , αF,L ∈ R+ and β1,1, . . . , βF,L ∈ R.

Thus, the problem (4.28) has been converted to (4.31) with a convex objective func-

tion and nonconvex constraints.

The augmented Lagrangian function for (4.31) is given as

LρL,ρN

(
{wi,αi,βi,yi,λi}Fi=1,v

)
=

F∑
i=1

L∑
ℓ=1

hi,ℓ (bi,ℓ − αi,ℓ)
2 +

F∑
i=1

L∑
ℓ=1

Re {yi,ℓ}Re
{
aH
i,ℓwi − αi,ℓ e

jβi,ℓ
}

+
F∑
i=1

L∑
ℓ=1

Im {yi,ℓ} Im
{
aH
i,ℓwi − αi,ℓ e

jβi,ℓ
}

+
ρL
2

F∑
i=1

L∑
ℓ=1

(
Re
{
aH
i,ℓwi − αi,ℓ e

jβi,ℓ
})2

+
ρL
2

F∑
i=1

L∑
ℓ=1

(
Im
{
aH
i,ℓwi − αi,ℓ e

jβi,ℓ
})2

+
F∑
i=1

N∑
n=1

Re {λi,n}Re {wi,n − vn}+
F∑
i=1

N∑
n=1

Im {λi,n} Im {wi,n − vn}

+
ρN
2

F∑
i=1

N∑
n=1

(Re {wi,n − vn})2 +
ρN
2

F∑
i=1

N∑
n=1

(Im {wi,n − vn})2, (4.32)

where ρL > 0 and ρN > 0 are two distinct penalty parameters for beampattern

shape and PAPR constraints, respectively, yi = [ yi,1 . . . yi,L ]
T ∈ CL and λi =

[λi,1 . . . λi,N ]T ∈ CN are the dual variables, and αi = [αi,1 . . . αi,L ]
T ∈ RL

+ and

βi = [ βi,1 . . . βi,L ]
T ∈ RL are the auxiliary variables for i = 1, . . . , F .

The consensus ADMM steps for wideband transmit beamforming are similar to those

given in the previous section.

Step-1: For given
{
w

(k)
i ,y

(k)
i ,λ

(k)
i

}F
i=1

, the remaining variables at k + 1 can be

determined by solving the problem

{{
α

(k+1)
i ,β

(k+1)
i

}F
i=1

,v(k+1)
}
= argmin g({αi,βi}Fi=1,v)

subject to PAPR (v) ≤ σ

∥v∥22 = P

(4.33)
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with variables α1, . . . ,αF ∈ RL
+, β1, . . . ,βF ∈ RL and v ∈ CN , where

g({αi,βi}Fi=1,v) =
F∑
i=1

L∑
ℓ=1

hi,ℓ (bi,ℓ − αi,ℓ)
2

+
ρL
2

F∑
i=1

L∑
ℓ=1

∣∣aH
i,ℓw

(k)
i + z

(k)
i,ℓ − αi,ℓ e

jβi,ℓ
∣∣2

+
ρNF

2
∥w̄(k) + τ̄ (k) − v∥22

c
= LρL,ρN

({
w

(k)
i ,αi,βi,y

(k)
i ,λ

(k)
i

}F
i=1

,v
)

(4.34)

with the scaled dual variables zi = [ zi,1 . . . zi,L ]
T = yi/ρL ∈ CL and τ i =

[ τi,1 . . . τi,N ]T = λi/ρN ∈ CN , i = 1, . . . , F , and the mean vectors w̄(k) =

(1/F )
∑F

i=1 w
(k)
i and τ̄ (k) = (1/F )

∑F
i=1 τ

(k)
i .

Following the suggested formulation (4.16), instead of (4.15), to improve the perfor-

mance, we use ∥v∥22 = ∥w̄(k) + τ̄ (k)∥22 for the global variable update, that is

v(k+1) = argmin
v∈CN

∥w̄(k) + τ̄ (k) − v∥22

subject to PAPR (v) ≤ σ

∥v∥22 = ∥w̄(k) + τ̄ (k)∥22.

(4.35)

which can be solved by applying [17, Algorithm 2], see also Algorithm 2.1.

The variable βi appears only in the middle term of the objective function of (4.33),

and an equivalent problem of determining
{
β

(k+1)
i

}F
i=1

is

β
(k+1)
i = argmin

αi∈RL
+,βi∈RL

L∑
ℓ=1

∣∣aH
i,ℓw

(k)
i + z

(k)
i,ℓ − αi,ℓe

jβi,ℓ
∣∣2, i = 1, . . . , F. (4.36)

Letting Ai = [ ai,1 . . . ai,L ] ∈ CN×L and γi = αi⊙ejβi ∈ CL, the objective function

of (4.36) can be expressed as
L∑

ℓ=1

∣∣aH
i,ℓw

(k)
i + z

(k)
i,ℓ − αi,ℓe

jβi,ℓ
∣∣2 = ∥∥AH

i w
(k)
i + z

(k)
i − γi

∥∥2
2
. (4.37)

As βi = ∠γi in (4.37), the solution of (4.36) is

β
(k+1)
i = ∠

(
AH

i w
(k)
i + z

(k)
i

)
, i = 1, . . . , F. (4.38)

After replacing βi,ℓ in the objective function of (4.33) by β
(k+1)
i,ℓ , we obtain an equiv-

alent problem of finding
{
α

(k+1)
i

}F
i=1

as follows:

α
(k+1)
i = argmin

αi∈RL
+

(
L∑

ℓ=1

hi,ℓ (bi,ℓ − αi,ℓ)
2 + (ρL/2)

L∑
ℓ=1

(ri,ℓ − αi,ℓ)
2

)
, (4.39)

47



where ri,ℓ =
∣∣aH

i,ℓw
(k)
i + z

(k)
i,ℓ

∣∣ for i = 1, . . . , F , and ℓ = 1, . . . , L. After taking the

derivative of the objective function with respect to αi,ℓ and zeroing at α(k+1)
i,ℓ , we find

α
(k+1)
i,ℓ =

ρL ri,ℓ + 2hi,ℓ bi,ℓ
ρL + 2hi,ℓ

, i = 1, . . . , F, and ℓ = 1, . . . , L, (4.40)

due to our parameter settings, ρL > 0, ri,ℓ ≥ 0, hi,ℓ ≥ 0 and bi,ℓ ≥ 0.

Step-2: We update {wi}Fi=1 by solving

w
(k+1)
i = argmin

wi∈CN

(∥∥AH
i wi + z

(k)
i − γ

(k+1)
i

∥∥2
2
+

ρN
ρL

∥∥wi + τ
(k)
i − v(k+1)

∥∥2
2

)
,

(4.41)

whose objective function is quadratic in wi. For i = 1, . . . , F , we find

w
(k+1)
i =

(
AiA

H
i +

ρN
ρL

IN

)−1(
Ai

(
γ
(k+1)
i − z

(k)
i

)
+

ρN
ρL

(
v(k+1) − τ

(k)
i

))
.

(4.42)

Step-3: The dual updates are as follows:

z
(k+1)
i = z

(k)
i +AH

i w
(k+1)
i − γ

(k+1)
i , i = 1, . . . , F, (4.43)

τ
(k+1)
i = τ

(k)
i +w

(k+1)
i − v(k+1), i = 1, . . . , F. (4.44)

Steps 1 to 3 are iteratively applied. The stopping criteria are identical to those given

for PAPR-cADMM. After satisfying any of these criteria, the iteration is terminated

and the solution is determined from

w⋆ = argmin
w∈CN

∥w̄final + τ̄ final −w∥22

subject to PAPR (w) ≤ σ

∥w∥22 = P,

(4.45)

where the vectors w̄final and τ̄ final are formed by the final entries of mean vectors w̄

and τ̄ , respectively.

Similar to (3.21), we suggest an expression for adjusting ρN as follows:

ρN = ρLξ max
i∈{1,...,F}

∥Ai∥2, (4.46)

where ξ > 0 is a coefficient. The selection of ξ is discussed in Section 4.5.3.
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Algorithm 4.2: Proposed method PAPR-cADMM-wb for the wideband transmit

beamformer design under a PAPR constraint.
Input : w̄(1) ∈ CN , A ∈ CN×L, b ∈ RL

+, h ∈ RL
+, ρL > 0, ξ > 0, σ ≥ 1,

P ∈ R++, kmax ∈ {1, 2, . . .}
Output : w⋆ ∈ CN

Initialization: w̄(0) = 2w̄(1), {w(1)
i = w̄(1), λ

(1)
i = 0N , y

(1)
i = 0L}Fi=1, k = 1

1 Compute ρN from (4.46)

2 Assign z
(1)
i = y

(1)
i /ρL and τ

(1)
i = λ

(1)
i /ρN , i = 1, . . . , F

3 while k ≤ kmax and
(∥∥w̄(k) − w̄(k−1)

∥∥
2
/
∥∥w̄(k−1)

∥∥
2

)
> 10−6 do

// Step-1

4 Determine v(k+1) from (4.35)

5 Compute β
(k+1)
i , i = 1, . . . , F , from (4.38)

6 Compute α
(k+1)
i , i = 1, . . . , F , from (4.40)

// Step-2

7 Determine w
(k+1)
i from (4.42) by using γ

(k+1)
i = α

(k+1)
i ⊙ ejβ

(k+1)
i ,

i = 1, . . . , F

// Step-3

8 Compute z
(k+1)
i , i = 1, . . . , F , from (4.43)

9 Compute τ
(k+1)
i , i = 1, . . . , F , from (4.44)

10 w̄(k+1) = (1/F )
F∑
i=1

w
(k+1)
i

11 τ̄ (k+1) = (1/F )
F∑
i=1

τ
(k+1)
i

12 k = k + 1

13 end

14 Determine w⋆ from (4.45) by using w̄final = w̄(k) and τ̄ final = τ̄ (k)

15 return w⋆

For the wideband transmit beamformer design under a PAPR constraint, we have

presented a consensus ADMM-based method. The method is referred to as PAPR-

cADMM-wb and is outlined in Algorithm 4.2. When comparing (4.38), (4.42) and

(4.43) with (3.12), (3.18) and (3.19), respectively, PAPR-cADMM-wb can be consid-

ered to have a similar formulation with PAPR-ADMM.
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4.4 Computational Complexity Considerations

We present Algorithms 4.1 and 4.2 in this chapter. To follow these algorithms step-

by-step, we either compute a closed-form expression or utilize Algorithm 2.1. Similar

to PAPR-ADMM given in Algorithm 3.1, these algorithms use Algorithm 2.1 in their

Step-1 of each iteration and one more time after their iterations terminate. Algo-

rithm 2.1 requires a sorting operation with the complexity of O (N logN) operations

and computes a vector for the worst case complexity of O (N2).

In Step-1 of PAPR-cADMM given in Algorithm 4.1, the required updates are imple-

mented through the equations (4.18) and (4.20) requiring O (N) multiplications. In

Step-2, (4.24) requiresO (N2). In Step-3, (4.25) and (4.26) requireO (N). Thus, the

overall complexity of each iteration is O (N2) multiplications.

In Step-1 of PAPR-cADMM-wb given in Algorithm 4.2, (4.38) and (4.40) require

O (LN) multiplications. In Step-2, (4.42) requires O (LN2) that can be reduced to

O (N2) by computing the matrix inverse in (4.42) offline and storing the result. In

Step-3, (4.43) and (4.44) require O (LN) and O (N), respectively. By the storage

option, the overall complexity of each iteration is O (N2 + LN) multiplications.

Note that O (N2) and O (N2 + LN) multiplications for Algorithms 4.1 and 4.2, re-

spectively, are given by considering the parallel processing. If the consensus ADMM

steps are processed within loops by a single processor instead of the parallel compu-

tation with multiple processors, Algorithms 4.1 and 4.2 have the overall complexi-

ties O (LN2) and O (FN2 + FLN) multiplications, respectively, per iteration. For

L ≫ N , the overall complexity of PAPR-cADMM without parallel computation is

higher than that of PAPR-ADMM with offline computation of the matrix inverse.

4.5 Numerical Results

We compare PAPR-cADMM with PAPR-ADMM through the narrowband transmit

beamformer design with the 32 elements ULA, whose specifications are given in

Section 3.6.1, and its wideband extension. We use a uniform grid spacing of 1◦ for

the direction samples. The parameter settings in Section 3.6, except for ρN , are used.
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Figure 4.1: Augmented Lagrangian function (4.11) versus iteration number, LρL,ρN

(
{w(k)

ℓ ,λ
(k)
ℓ }Lℓ=1,α

(k),β(k),v(k),y(k)
)
, for the narrowband transmit beamforming

with 32 elements ULA: (a) PAPR = 1 using (4.15), (b) PAPR = 1 using (4.16),

(c) PAPR = 2 using (4.15), and (d) PAPR = 2 using (4.16).

4.5.1 Effect of the Fixed Total Power

We aim to examine the performance of PAPR-cADMM when its Step-1 is coupled

with (4.15) instead of (4.16). We run PAPR-cADMM to design a narrowband transmit

beamformer with 32 elements ULA for ρN = 50 and 10 realizations of the initial

weight vector. Each realization is used with PAPR = σ ∈ {1, 2}, and the formulations

(4.15), where P = N , (fixed total power) and (4.16) (varying total power).

The plots in Figure 4.1 show the augmented Lagrangian function (ALF) value (4.11)

versus iteration number k on a case by case basis. Comparing Figures 4.1a and 4.1b

(Figures 4.1c and 4.1d), we see that the varying total power formulation (4.16) is more

effective than the fixed one (4.15) for minimizing ALF. Furthermore, Table 4.1 shows

that the varying total power formulation (4.16) usually leads to a solution yielding

less power swing in the main lobe, higher PSL than that of (4.15). Hence, we suggest

the formulation of Step-1 with (4.16) for the performance improvement.
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Table 4.1: Performance metrics of 10 realizations for the narrowband transmit beam-

forming with 32 elements ULA and PAPR ≤ σ by using (4.15) with P = 32 and

(4.16).

σ = 1 σ = 2

Pm
p-p (dB) PSL (dB) Pm

p-p (dB) PSL (dB)

# (4.15) (4.16) (4.15) (4.16) (4.15) (4.16) (4.15) (4.16)

1 36.6299 15.2172 −16.8912 14.7920 18.8737 2.5639 1.5319 26.7935

2 23.5012 12.2477 −3.6153 16.9157 26.9968 2.1811 −6.6780 28.1264

3 25.0891 13.0257 −5.3465 17.8068 17.4444 3.5058 2.9216 26.2687

4 27.3730 6.6815 −7.7870 22.7151 39.4854 2.3997 −19.2836 27.9000

5 33.9836 12.5039 −12.9631 16.8245 33.0596 1.6521 −12.4666 28.1812

6 31.5445 8.8537 −10.9930 19.0053 35.1723 1.9843 −15.5809 26.3707

7 16.5522 29.1457 2.0605 0.4463 24.4567 0.8877 −4.0839 28.7702

8 31.8635 9.4145 −11.6401 19.0342 28.3707 1.6264 −8.3680 28.3336

9 23.2363 14.6915 −3.0456 13.9807 33.7948 1.7801 −13.6902 28.4878

10 42.5626 8.9313 −22.4913 19.0073 33.8891 2.9863 −14.0109 26.0119

4.5.2 Narrowband Transmit Beamforming

We compare two methods, PAPR-ADMM and PAPR-cADMM using ρN from (3.21)

and ρN = 50, respectively, and starting at the same point, for the narrowband transmit

beamforming with 32 elements ULA. Within 100 Monte Carlo (MC) runs, the mean

and variance of PSL and Pm
p-p (peak-to-peak power swing in the main lobe) values are

given in Table 4.2. The corresponding PSL -Pm
p-p pairs are visualized in Figure 4.2.

We let an optimal value

p⋆nb =
L∑

ℓ=1

hℓ (bℓ − |aH
ℓ w

⋆|)2 (4.47)
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Table 4.2: Comparison of the mean and variance of PSL -Pm
p-p pairs for the narrow-

band transmit beamforming experiment with 100 MC runs.

Mean Variance

Method PSL (dB) Pm
p-p (dB) PSL (dB) Pm

p-p (dB)

PAPR-ADMM 17.8829 11.7817 28.7748 16.2247

PAPR-cADMM 18.2797 12.0222 31.7405 18.9551
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16
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P
m p
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)

PAPR-ADMM
PAPR-cADMM

Figure 4.2: The PSL -Pm
p-p pairs for the narrowband transmit beamforming experi-

ment with 100 MC runs.

denote the value of the objective function evaluated at w⋆ for the narrowband trans-

mit beamformer design problem (2.10), and compare the histogram of the dB-scaled

optimal values, 10 log10(p⋆nb), as shown in Figure 4.3. Figure 4.4 shows beampat-

terns for the one where PAPR-cADMM gives its largest PSL and smallest Pm
p-p values

out of 100 MC runs. Note that a weight vector yielding better performance metrics

(say, lower Pm
p-p or higher PSL) than that of another weight vector may not achieve

a lower objective function value, as shown in Figure 4.4. One reason is that PAPR-

ADMM and PAPR-cADMM minimize the convex functions, which are two distinct

augmented Lagrangian functions given in (3.4) and (4.11), respectively, instead of

the nonconvex objective function of (2.10), in different ways. Another reason is that
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Figure 4.3: Histogram of optimal values of (2.10) for the narrowband transmit beam-

forming experiment with 100 MC runs.
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Figure 4.4: Beampattern comparison for the one where PAPR-cADMM gives its

largest PSL and smallest Pm
p-p values out of 100 MC runs.

the PAPR constraint is highly nonlinear and difficult to characterize, as discussed in

Section 2.3, and therefore, a minor change in penalty parameter ρN can result in a

significant performance improvement or degradation rather than changing the rate of

convergence. In brief, the nonconvex structure of problem makes the performances

of PAPR-ADMM and PAPR-cADMM hard to characterize.
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Table 4.3: Comparison of the mean and variance of PSL -Pm
p-p pairs for the wideband

transmit beamforming experiment with 100 MC runs.

Mean Variance

Method PSL (dB) Pm
p-p (dB) PSL (dB) Pm

p-p (dB)

PAPR-ADMM 10.8346 17.6425 21.4170 44.6496

PAPR-cADMM-wb 11.4611 15.3020 22.8014 30.6496

4.5.3 Wideband Transmit Beamforming

In wideband transmit beamforming experiment, we consider the specifications given

in Section 3.6.1 for the narrowband transmit beamformer design with the 32 elements

ULA, and set PAPR = 1. The wideband beamforming parameters are fc = 140 kHz

and Qf = 14, which are the center frequency and the quality factor, respectively.

From (3.23), the bandwidth ∆f is equal to 10 kHz. The frequency samples are fi ∈
{135, 137.5, 140, 142.5, 145} kHz, i = 1, . . . , 5.

We compare PAPR-ADMM and PAPR-cADMM for the wideband transmit beam-

forming with 32 elements ULA by using the same initial point. For PAPR-ADMM

and PAPR-cADMM, ρN is set by using (3.21) and (4.46) with ξ = 0.27, respectively.

Here, ξ is empirically determined to obtain the objective function values yielding a

multimodal distribution.

Table 4.3 shows the mean and variance of PSL and Pm
p-p values corresponding to 100

MC runs. In Figure 4.5, PSL -Pm
p-p pairs are visualized.

We let an optimal value p⋆wb be equal to the value of the objective function evaluated

at w⋆ for the wideband transmit beamformer design problem (3.24), that is

p⋆wb =
FL∑
ℓ=1

hℓ

(
bℓ −

∣∣aH
ℓ w

⋆
∣∣)2, (4.48)

and compare the histogram of the dB-scaled optimal values, 10 log10(p⋆wb), as shown

in Figure 4.6. Both of the histograms are bimodal. However, whether the histogram

of the optimal values achieved by PAPR-cADMM is multimodal or not depends on
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Figure 4.5: The PSL -Pm
p-p pairs for the wideband transmit beamforming experiment

with 100 MC runs.
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Figure 4.6: Histogram of optimal values of (3.24) for the wideband transmit beam-

forming experiment with 100 MC runs.

the selection of ξ.

Figures 4.7 and 4.8 shows the beampatterns corresponding to the PSL -Pm
p-p pairs,

where PAPR-cADMM-wb gives its largest PSL and smallest Pm
p-p values, respectively.

In addition to PSL -Pm
p-p pairs, these figures show p⋆wb values.
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Figure 4.7: Beampattern comparison for the one where PAPR-cADMM-wb gives its

largest PSL value out of 100 MC runs: (a) PAPR-ADMM and (b) PAPR-cADMM-

wb.
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Figure 4.8: Beampattern comparison for the one where PAPR-cADMM-wb gives its

smallest Pm
p-p value out of 100 MC runs: (a) PAPR-ADMM and (b) PAPR-cADMM-

wb.
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4.6 Conclusion

The main goal of this chapter is to present a solution for the transmit beamformer

design problem under the PAPR constraint after expressing the problem in a consen-

sus form. Our solution uses the consensus ADMM, which allows parallel computa-

tion. The suggested methods, PAPR-cADMM and PAPR-cADMM-wb, can be used

to design narrowband and wideband beamformers, respectively. Both methods are

applicable via parallel processing. The formulations of PAPR-cADMM and PAPR-

cADMM-wb allow L (number of direction samples) and F (number of frequencies)

individual updates in parallel, respectively. The main consideration in parallel com-

putation is the number of processors (or cores). When the number of processors is

less than the number of individual updates, all individual updates cannot be simulta-

neously processed, and some of these updates wait for idle processors. Since L≫ F

typically holds, the parallel computation in the narrowband case may not be as prac-

tical as in the wideband case.

Numerical results reveal that PAPR-ADMM and PAPR-cADMM have comparable

performance, especially when the mean values given in Tables 4.2 and 4.3 are com-

pared. Considering the formulations of PAPR-ADMM and PAPR-cADMM, both

methods have computational advantages depending on applications, see Section 4.4.

When the offline computation and the storage options are available for the inverse

matrix required in (3.18), PAPR-ADMM becomes preferable to PAPR-cADMM in

the narrowband case with L higher than the number of processors, which is a typi-

cal case. To design a wideband transmit beamformer, the consensus ADMM-based

method PAPR-cADMM-wb behaves as PAPR-ADMM applied in a parallel manner.

For an F value, which ensures the simultaneous processing of all individual up-

dates, PAPR-cADMM-wb with O (N2 + LN) is preferable to PAPR-ADMM with

O (N2 + FLN).
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CHAPTER 5

MAXIMUM LIKELIHOOD ESTIMATION OF NOISY AUTOREGRESSIVE

MODEL PARAMETER WITH INDEPENDENT SNAPSHOTS

In this chapter, we study the noisy autoregressive (AR) parameter estimation prob-

lem in the presence of multiple independent snapshots. We solely focus on the pa-

rameter estimation problem for the scalar AR processes. We apply the expectation-

maximization (EM) method [41] by assigning the noise-free snapshots as the missing

data to develop a solution. In the maximization step (M-step) of EM method, we

transform the AR parameter estimation problem into a form that can be solved by us-

ing an approach similar to the recent work in [9] which is a two-stage method utilized

for AR parameter estimation for a single noise-free snapshot. For the calculation of

the expectation step (E-step), we describe an approximate yet highly efficient method

to reduce the computational load.

5.1 Related Works and Contributions

Model parameter estimation of an AR process observed under noise, namely noisy

AR parameter estimation problem, is prone to estimator bias and statistical efficiency

problems when modeling assumptions are not carefully taken into account. For in-

stance, AR parameter estimates obtained from Yule-Walker (YW) equations are typ-

ically biased due to the bias of the zero-lag term of the autocorrelation introduced

by white noise [42]. Furthermore, when the variance of the noise corrupting the

AR process is not known, an asymptotic Cramér-Rao bound (CRB) study by Weru-

aga et al. reveals that the joint estimation of the autoregressive signal variance and

noise variance is not a well-conditioned problem [43, 44]. In spite of these setbacks,
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several practical solutions have been developed for the noisy AR parameter estima-

tion problem in the literature. For example, since the autoregressive moving average

(ARMA) model also characterizes the noisy AR processes, it is possible to apply

ARMA modeling approaches, such as the maximum likelihood [45], the modified

YW [46], and the recursive prediction error [47], for the solution of noisy AR pa-

rameter estimation problem. In addition, a number of improved least-squares (LS)

solutions are introduced to compensate for the bias in the parameter estimates due

to the measurement noise [48–50]. The main challenge for the bias compensating

solutions is the estimation of the measurement noise variance. The solutions based

on the eigendecomposition [49] and the inverse filtering coupled with YW equations

[50] have been suggested for this purpose. Among other solutions, we can list a

subspace-based solution [51], an errors-in-variables approach utilizing both low and

high order YW equations [52], a nonlinear optimization (for estimating the measure-

ment noise variance) solution [53], a solution with two interacting Kalman filters [54]

and some adaptive filtering type solutions [55–57]. A particularly interesting solution

is the method presented in [58], based on the approach developed by Mehra [59],

that avoids the estimation of the process and measurement noise variances. Recently,

four novel methods have been proposed in [60]. The first one utilizes the null space

of AR parameter vector, the second one solves a constrained LS problem, the third

one reduces the parameter estimation problem for an AR(P ) process to a problem of

estimating two parameters, and the fourth one is based on the eigendecomposition of

the enlarged autocorrelation matrix.

The EM method has been previously applied to the noisy AR parameter estimation

problem in [61], and some computational simplifications in the M-step have been sug-

gested. Different from [61], we formulate the M-step such that it is possible to extend

the maximum likelihood like estimator given in [9] to the multiple-snapshot setting

and also describe some novel computational load reduction methods for the E-step.

In [62], a related EM-based method using Kalman filters is presented for the colored

Gaussian noise. It is well known that the performance of EM algorithm is sensitive to

initialization, that is, EM iterations can converge to a local maximum, instead of the

global maximum, due to poor initialization [63]. We present an initialization method

for the suggested method (see Section 5.3), consider the cases of known/unknown
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measurement noise variance individually, and present detailed comparisons with the

alternative estimators and CRBs derived in [43, 44].

In the literature, there are several works, including [64–66], which are based on the

Whittle likelihood [67], a frequency-domain approximation to the exact likelihood

function. While Whittle likelihood maximization is computationally easier, the re-

sulting parameter estimates with finite sample sizes are biased, especially for short

data records [66]. As the sample size increases, time- and frequency-domain solu-

tions yield similar results [68]. Further discussions on time- and frequency-domain

approaches can be found in [44]. Here, we focus on the time-domain approach in

relation to our main goal of extending the maximum likelihood like estimator in [9]

to the noisy, multiple-snapshot setting.

The AR modeling has several important applications in the speech processing area.

In this area, the typical data size can be hundreds of samples, and frequency domain

methods can be utilized in this large sample-size regime without any performance

worries. In some other applications, such as radar signal processing applications, the

data size can be much smaller, and the data collection mechanism can operate inter-

mittently, in contrast to the continuous data-collection modality in speech processing,

leading to multiple, short data-length (snapshot) observations [69–71]. For example,

in the clutter (the unwanted echoes received by radar systems [69]) cancellation ap-

plication of radar signal processing, the clutter power spectral density is estimated

from a collection of snapshots [69]. Each entry of the snapshot vector is formed by

a radar pulse return from a particular range cell. The number of transmitted pulses,

which is the dimension of the snapshot vector, affects all subsequent radar operations,

and it can be as few as 10-20 pulses due to other constraints [72]. For this applica-

tion, the structured estimation of the clutter power spectrum from small-dimensional

multiple snapshots becomes a necessity. Some solutions to this problem, in addi-

tion to the examined maximum likelihood solution, are the multiple-snapshot version

of Burg’s method [70] or the multiple-snapshot version of any other AR parameter

estimation method given in [73]. In this chapter, we consider the AR parameter esti-

mation problem specifically for small-dimensional multiple snapshots and pursue an

exact time-domain maximum likelihood parameter estimation solution.
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Figure 5.1: Signal model block diagram for the noisy AR parameter estimation prob-

lem: AR process samples x[n] corrupted by the observation noise v[n] to form the

observed sequence y[n].

This chapter presents the following main contributions.

• Expressing the conventional EM formulation as a multiple-snapshot, noise-free

AR parameter estimation problem (Section 5.2.1).

• Extension of the efficient single snapshot noise-free AR parameter estimation

method given in [9] to the multiple-snapshot case and its application in the

solution of EM problem (Section 5.2.2).

• An approximate but efficient version of the proposed solution by using a matrix

inversion-free Kalman smoother [74, Sec. 5.2.4] and the Gohberg-Semencul

formula [73, Sec. 3.9.4] (Section 5.2.3).

5.2 Noisy AR Parameter Estimation Problem

Consider the transfer function given below for the generation of an AR(P ) process.

H(z) =
σϵ

1 + a1z−1 + a2z−2 + · · ·+ aP z−P
=

σϵ

A(z)
, (5.1)

where a1, a2, . . . , aP can be either the real- or complex-valued constants, and σϵ is a

real-valued constant scaling the input.

The filter H(z) is assumed to be excited with zero-mean, unit variance complex-

valued (circular symmetric) white Gaussian noise, as shown in Figure 5.1. The filter

H(z) is also assumed to be stable so that the filter output, i.e., the AR(P ) process,

is wide-sense stationary. The output of the filter at steady-state is denoted as x[n].

The lth snapshot xl is an N -dimensional vector formed by concatenating the N -

consecutive x[n] samples. It is assumed that a total number of L snapshot vectors
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are collected where each snapshot is independent and identically distributed (i.i.d.)

Gaussian vector.

The autocorrelation matrix of the snapshot xl is denoted as R = Rf,Nσ
2
ϵ where Rf,N

is an N ×N Hermitian Toeplitz matrix given as

Rf,N =


rf [0] rf [−1] . . . rf [−N + 1]

rf [1] rf [0] . . . rf [−N + 2]
...

... . . . ...

rf [N − 1] rf [N − 2] . . . rf [0]

 (5.2)

with the first column entries

rf [k] = E{x[n]x∗[n− k]}/σ2
ϵ , k = 0, . . . , N − 1.

Here, it is assumed that snapshot vectors are observed under independent additive

white Gaussian noise, i.e., the lth observation vector is yl = xl + vl as y[n] =

x[n] + v[n] in Figure 5.1, where vl vectors are an i.i.d. circular symmetric Gaussian

distributed vector with zero-mean and covariance matrix σ2
vIN . Hence, the sample

signal-to-noise ratio is

SNR =
σ2
ϵ rf [0]

σ2
v

.

The general AR parameter estimation problem is the estimation of the unknown non-

random parameter vector θ =
[
σ2
v σ2

ϵ aT
]T, where a = [ a1 . . . aP ]T, given the

observation vectors yl, l = 1, . . . , L. If the noise variance σ2
v is known, the unknown

parameter vector becomes θ =
[
σ2
ϵ aT

]T. For this case, the true value for the noise

variance can be substituted for its estimate in the formulation given below. If the

noise variance is known to be zero, the problem becomes the AR parameter estima-

tion problem with multiple noise-free snapshots. The solution of this problem can be

retrieved as the limiting case of the discussion as σ2
v → 0.

5.2.1 Expectation-Maximization Formulation for the Noisy AR Parameter Es-

timation With Multiple Snapshots

For the solution of the problem, we apply the expectation-maximization method. To

do that, we define the N × L matrices X = [x1 . . . xL ] and Y = [y1 . . . yL ]
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to denote the noise-free AR process snapshots and observations, respectively. The

snapshot matrix X is the latent variable of the problem. The N × 2L dimensional

Z = [X Y ]

is the complete data matrix. The log-likelihood of the complete data matrix

Λ(Z;θ) = log f(X,Y;θ)

= log f(Y|X;θ) + log f(X;θ)

can be written as

Λ(Z;θ)
c
= −

L∑
l=1

{
N log(σ2

v) +
∥yl − xl∥22

σ2
v

+ log det
(
σ2
ϵRf,N

)
+

xH
l R

−1
f,Nxl

σ2
ϵ

}
,

(5.3)

where the first two and last two terms of the summation correspond to log f(Y|X;θ)

and log f(X;θ), respectively. The symbol c
= denotes the equality of both sides apart

from constant terms.

The EM method has two steps: In the expectation step, the expected value of the

complete log-likelihood is calculated with respect to the posterior density of the latent

variables. The expectation operation can be written as

J (θ) = E{Λ(Z;θ)|Y;θold}. (5.4)

Here the vector θold =
[
(σ2

v)
old (σ2

ϵ )
old (aold)T

]T contains the current estimates for

the unknown parameters to be updated. In the second step, the expectation result is

maximized with respect to the unknown parameters to update the unknown parame-

ters, that is θnew = argmaxθ J (θ). The algorithm is initiated with a proper θold value

for the implementation of the first step (posterior calculation) and iteratively run by

using θnew of an earlier iteration as the θold of the next iteration until the convergence

of the estimates.

To execute the expectation step, we need the posterior density of latent variables,

f(xl|yl;θ
old), l = 1, . . . , L. It is well known that the posterior density f(xl|yl;θ

old) is

the Gaussian vector with mean vector

x̂l = (σ2
ϵ )

oldRf,N(a
old)
(
(σ2

ϵ )
oldRf,N(a

old) + (σ2
v)

oldIN
)−1

yl (5.5)
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and covariance matrix

K = (σ2
ϵ )

oldRf,N(a
old)

− (σ4
ϵ )

oldRf,N(a
old)
(
(σ2

ϵ )
oldRf,N(a

old) + (σ2
v)

oldIN
)−1

Rf,N(a
old). (5.6)

Taking the expectation of the complete log-likelihood function in (5.3) with respect

to the posterior density results in (5.4) that is

J (σ2
v , σ

2
ϵ , a)

c
= −

L∑
l=1

{
N log(σ2

v) +
∥yl − x̂l∥22 + tr (K)

σ2
v

}

−
L∑
l=1

{
log det

(
σ2
ϵRf,N

)
+

x̂H
l R

−1
f,N x̂l + tr

(
R−1

f,NK
)

σ2
ϵ

}
, (5.7)

which completes the first step (expectation step) of EM method.

The maximization step of EM begins with the partial derivative calculation of J (σ2
v ,

σ2
ϵ , a) given in (5.7) with respect to σ2

v . Setting the result equal to zero, we get the

update expression for the measurement noise variance σ2
v estimate

(σ2
v)

new =
1

LN

(
L tr (K) +

L∑
l=1

∥yl − x̂l∥22

)
. (5.8)

Similarly, by taking the partial derivative ofJ (σ2
v , σ

2
ϵ , a) with respect to σ2

ϵ and equat-

ing the result to zero, we get the update expression for the process noise variance σ2
ϵ

estimate

(σ2
ϵ )

new =
1

LN

(
L tr

(
R−1

f,NK
)
+

L∑
l=1

x̂H
l R

−1
f,N x̂l

)
. (5.9)

Substituting (σ2
v)

new and (σ2
ϵ )

new given in (5.8) and (5.9), respectively, into (5.7), we

get the compressed expected log-likelihood function as

J
(
(σ2

v)
new, (σ2

ϵ )
new, a

) c
= − log det (Rf,N)

−N log

(
L tr

(
R−1

f,NK
)
+

L∑
l=1

x̂H
l R

−1
f,N x̂l

)
, (5.10)

where Rf,N is a function of the unknown parameter vector a = [ a1 . . . aP ]T. The

maximization of (5.10) with respect to a is more challenging than earlier steps and

is the main challenge of the problem. Fortunately, by expressing L tr
(
R−1

f,NK
)

as

a quadratic term, the function (5.10) can be converted into a form similar to that of
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the single noise-free snapshot case given in [9] and the approach given therein can be

utilized to maximize (5.10) with respect to a.

To express L tr
(
R−1

f,NK
)

as a quadratic term, we introduce the eigendecomposition

of the covariance matrix K =
∑N

n=1 λnene
H
n into the problem. Here λn and en are

an eigenvalue and an associated unit norm eigenvector of matrix K, respectively. It

should be noted that we can find an orthonormal set of the eigenvectors en, since

the matrix K is Hermitian. With the eigendecomposition, it is possible to express

tr
(
R−1

f,NK
)

as

tr
(
R−1

f,NK
)
=

N∑
n=1

λne
H
nR

−1
f,Nen. (5.11)

By introducing the scaled versions of eigenvectors en as ēn =
√
Lλnen, we can write

L tr
(
R−1

f,NK
)
=

N∑
n=1

ēHnR
−1
f,N ēn. (5.12)

Hence, the maximization of compressed likelihood relation in (5.10) is equivalent to

the following minimization problem

anew = argmin
a

(1/N) log det (Rf,N) + log

(
N∑

n=1

ēHnR
−1
f,N ēn +

L∑
l=1

x̂H
l R

−1
f,N x̂l

)
= argmin

a
(1/N) log det (Rf,N) + log

(
La=L+N∑

ℓ=1

fHℓ R
−1
f,N(a)fℓ

)
. (5.13)

In the second line of (5.13), we combine the sums in the argument of logarithm by

augmenting the set of {x̂l}Ll=1 vectors with {ēn}Nn=1 vectors to form a set of vectors

with La = L+N elements where fL+n = ēn.

Assuming that the solution of (5.13), that is anew, is available; the remaining unknown

parameter can be estimated from (5.9) as

(σ2
ϵ )

new =
1

LN

(
L tr

(
R−1

f,N(a
new)K

)
+

L∑
l=1

x̂H
l R

−1
f,N(a

new)x̂l

)

=
1

LN

La∑
ℓ=1

fHℓ R
−1
f,N(a

new)fℓ. (5.14)

Hence, the crux of the parameter problem is the solution of the optimization problem

given in (5.13).

When compared with the minimization problem [9, Eq. 11], whose cost function is

(1/N) log det (Rf,N) + log
(
xHR−1

f,Nx
)
,
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we see that cost function of the minimization problem in (5.13) differs from the earlier

one with the inclusion of

La = L+N

snapshots instead of a single one. We present the details for this extension in the

following section. We reiterate that some of the snapshots in this formulation are

generated from the eigendecomposition of K matrix and augmented to actual snap-

shots, called observation vectors, to facilitate a solution similar to the one in [9]. In

Section 5.2.3, we present a reduced complexity implementation alternative for this

solution. Different methods of initialization for the EM method are provided in Sec-

tion 5.3.

5.2.2 AR Parameter Estimation Problem With Multiple Noise-free Snapshots

The method in [9] is an efficient method for AR parameter estimation which is de-

veloped for a single snapshot under the noiseless observation scenario. This method

can be considered as an alternative for numerical search based maximum likelihood

estimator having much higher complexity, and it is shown that the method performs

very similar to the maximum likelihood estimator in many scenarios. In this section,

we present the multiple-snapshot extension of this method.

5.2.2.1 The First Stage: Weighted Forward-Backward Prediction With the In-

creased Number of Snapshots

Following [9], we ignore log det (Rf,N) term in (5.13) and use the weighted forward-

backward prediction method to generate the first stage estimate of a, aFS, as follows:

aFS = argmin
a

La∑
ℓ=1

(
N−P∑
n=1

wb[n]
∣∣eℓ,b[n]∣∣2 + N∑

n=P+1

wf [n]
∣∣eℓ,f [n]∣∣2) , (5.15)

where

eℓ,f [n] = fℓ,n + aTfℓ,n−1:−1:n−P and eℓ,b[n] = fℓ,n + aHfℓ,n+1:n+P

are the forward and backward prediction errors with weights

wf [n] = n− P and wb[n] = N − P + 1− n,
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respectively. The problem in (5.15) can be solved by introducing the linear equation

systems

Aℓ,fa = −bℓ,f and Aℓ,ba = −bℓ,b

given below for ℓ = 1, . . . , La, which generate the forward and backward prediction

errors: 
fℓ,P fℓ,P−1 . . . fℓ,1

fℓ,P+1 fℓ,P . . . fℓ,2
...

... . . .
...

fℓ,N−1 fℓ,N−2 . . . fℓ,N−P


︸ ︷︷ ︸

Aℓ,f


a1

a2
...

aP


︸ ︷︷ ︸

a

= −


fℓ,P+1

fℓ,P+2

...

fℓ,N


︸ ︷︷ ︸

bℓ,f

,


f ∗
ℓ,N−P+1 f ∗

ℓ,N−P+2 . . . f ∗
ℓ,N

f ∗
ℓ,N−P f ∗

ℓ,N−P+1 . . . f ∗
ℓ,N−1

...
... . . .

...

f ∗
ℓ,2 f ∗

ℓ,3 . . . f ∗
ℓ,P+1


︸ ︷︷ ︸

Aℓ,b


a1

a2
...

aP


︸ ︷︷ ︸

a

= −


f ∗
ℓ,N−P

f ∗
ℓ,N−P−1

...

f ∗
ℓ,1


︸ ︷︷ ︸

bℓ,b

.

Using the introduced matrices, the final result of the first stage becomes

aFS = −
(

La∑
ℓ=1

(
AH

ℓ,fWAℓ,f +AH
ℓ,bWAℓ,b

))−1( La∑
ℓ=1

(
AH

ℓ,fWbℓ,f +AH
ℓ,bWbℓ,b

))
,

(5.16)

where W is the diagonal matrix with the diagonal entries of wf [n], n = P + 1, P +

2, . . . , N , that is

W = diag (1, 2, . . . , N − P ) .

5.2.2.2 The Second Stage: Maximizing Likelihood Around the First Stage Es-

timate

The second stage takes into account log det (Rf,N) in (5.13), [9]. The nonlinear func-

tion is expanded into Taylor series at the operating point of a = aFS and a quadratic

approximation for both terms of the sum forming the cost function of (5.13) is formed.

We note that both det (Rf,N) and R−1
f,N are highly nonlinear functions of a.

For the quadratic approximation of log det (Rf,N), we can follow the procedure given
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in [9, Eq. 11]. The procedure uses the expression

det (Rf,N) = det (Rf,P )

=
P∏
i=1

(1− |ki|2)−i, N ≥ P,

[4, 75], that connects the autocorrelation matrix determinant of an AR(P ) process to

the reflection coefficients ki, i = 1, . . . , P , of its synthesis filter. The log-determinant

log det (Rf,N) = −
P∑
i=1

i log
(
1− |ki|2

)
is approximated via Taylor series at the expansion point of the reflection coefficient

vector k = [ k1 . . . kP ]T that corresponds to the first stage estimate aFS and introduc-

ing a perturbation vector δk as in [9, Eq. 16].

For the quadratic approximation of
∑La

ℓ=1 f
H
ℓ R

−1
f,N fℓ, we can use [9, Eq. 21] directly

La∑
ℓ=1

fHℓ R
−1
f,N fℓ =

La∑
ℓ=1

(
∥bℓ,1 +Mℓ,1(Gδk +Gcδ

∗
k)∥22

− ∥bℓ,2 +Mℓ,2(Gδk +Gcδ
∗
k)∥22

)
, (5.17)

where the N ×P dimensional Mℓ,1 and the P ×P dimensional Mℓ,2 are Hankel and

Toeplitz matrices, respectively, with the definitions of

Mℓ,1 =



f ∗
ℓ,2 f ∗

ℓ,3 f ∗
ℓ,4 . . . f ∗

ℓ,P+1

f ∗
ℓ,3 f ∗

ℓ,4 f ∗
ℓ,5 . . . f ∗

ℓ,P+2

...
...

... . . .
...

f ∗
ℓ,N−1 f ∗

ℓ,N 0 . . . 0

f ∗
ℓ,N 0 0 . . . 0

0 0 0 . . . 0


, (5.18)

Mℓ,2 =



fℓ,N fℓ,N−1 fℓ,N−2 . . . fℓ,N−P+1

0 fℓ,N fℓ,N−1 . . . fℓ,N−P+2

0 0 fℓ,N . . . fℓ,N−P+3

...
...

... . . . ...

0 0 0 . . . fℓ,N


, (5.19)

bℓ,1 = f∗ℓ,1:N + Mℓ,1aFS and bℓ,2 = Mℓ,2aFS are constant vectors. The matrices G

and Gc are the P × P Jacobian matrices having entries [G]ij =
∂ai
∂kj

and [Gc]ij =
∂ai
∂k∗j
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evaluated at the expansion point of aFS and (Gδk +Gcδ
∗
k) is the perturbation vector

for aFS such that k+ δk is the reflection coefficients corresponding to aFS + (Gδk +

Gcδ
∗
k). These matrices can be efficiently calculated via the inverse Levinson-Durbin

recursion, as given in [9, Algorithm 2].

By the Taylor series expansion of

log (A+Bx) ≈ log (A) + (B/A)x

for |x| ≪ 1, we can approximate the second term of (5.13) as

log
La∑
ℓ=1

fHℓ R
−1
f,N fℓ ≈ log (A) +

La∑
ℓ=1

∥bℓ,1 +Mℓ,1(Gδk +Gcδ
∗
k)∥22 − ∥bℓ,1∥22

A

−
La∑
ℓ=1

∥bℓ,2 +Mℓ,2(Gδk +Gcδ
∗
k)∥22 − ∥bℓ,2∥22

A
, (5.20)

where

A =
La∑
ℓ=1

(
∥bℓ,1∥22 − ∥bℓ,2∥22

)
is the value when δk is replaced by all zeros vector in (5.17). Thus, A can be ex-

pressed as

A =
La∑
ℓ=1

fHℓ R
−1
f,N(aFS)fℓ,

where fHℓ R
−1
f,N(aFS)fℓ can be efficiently calculated by using [9, Algorithm 1], even

without constructing Rf,N .

Following the step of optimization, we reach the following equation system for the

solution of δk and δ∗
k, which are perturbation vectors for the complex-valued reflec-

tion coefficients corresponding to the initial reflection coefficient vector k generated

from aFS: Q1 + Q̃1 Q2 + Q̃2

Q∗
2 + Q̃∗

2 Q∗
1 + Q̃∗

1

 δk

δ∗
k

 = −

 r1 + r̃1

r∗1 + r̃∗1

 . (5.21)

In the last equation, we have

Q̃1 =
(GHPGc)

∗ +GH
c PG

A
, (5.22)

Q̃2 =
(GHPG)∗ +GH

c PGc

A
, (5.23)
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and

r̃1 =
(GHv)∗ +GH

c v

A
, (5.24)

where

P =
La∑
ℓ=1

(MH
ℓ,1Mℓ,1 −MH

ℓ,2Mℓ,2) and v =
La∑
ℓ=1

(MH
ℓ,1bℓ,1 −MH

ℓ,2bℓ,2).

The diagonal matrices Q1 and Q2 have the diagonal entries

[Q1]ii =
i(k∗

i )
2

N(1− |ki|2)2
and [Q2]ii =

i

N(1− |ki|2)2
,

respectively, and r1 = [ r1,1 . . . r1,P ]T has the entries

r1,i =
ik∗

i

N(1− |ki|2)
for i = 1, . . . , P .

To express (5.21), the gradients of quadratic approximations of (1/N) log det (Rf,N)

and log
∑La

ℓ=1 f
H
ℓ R

−1
f,N fℓ with respect to δ∗

k,

∇δ∗k

(
(1/N) log det (Rf,N)

)
= Q∗

2δk +Q∗
1δ

∗
k + r∗1,

∇δ∗k

(
log

La∑
ℓ=1

fHℓ R
−1
f,N fℓ

)
= Q̃∗

2δk + Q̃∗
1δ

∗
k + r̃∗1,

are used, as derived in [9].

For the real-valued processes, the reflection coefficients are also real-valued, i.e.,

δk = δ∗
k, and hence, (5.21) can be simplified as(

Q1 + Q̃1 +Q2 + Q̃2

)
δk = −(r1 + r̃1). (5.25)

The proposed method for the AR parameter estimation from multiple noise-free snap-

shots is outlined in Algorithm 5.1. It should be observed from Algorithm 5.1 that the

second stage is iteratively applied by using the previous iteration result as the initial

point of the following iteration.

5.2.3 An Efficient Implementation for the Suggested Solution

The expectation step of the suggested method requires the inversion of an N × N

matrix for the calculation of posterior density parameters, i.e., mean vector (5.5) and
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Algorithm 5.1: Suggested method for the AR parameter estimation from multiple

noise-free snapshots.
Input : X = [x1 . . . xL ], P

Output : â, σ̂2
ϵ

// The first stage estimation by (5.16) for La = L and fl = xl, l = 1, . . . , L

1 aFS = −
(

La∑
ℓ=1

(
AH

ℓ,fWAℓ,f +AH
ℓ,bWAℓ,b

))−1( La∑
ℓ=1

(
AH

ℓ,fWbℓ,f +AH
ℓ,bWbℓ,b

))
// The second stage estimation by using La = L and fl = xl, l = 1, . . . , L

2 aold = aFS

3 for iteration← 1 to 10 do

// The loop with 10 iterations yields good performance, see [9]

4 k = atog
([

1 (aold)T
]T) // atog (·): Step-down recursion, [4, p. 236]

5 if X is real-valued then

6 Solve
(
Q1 + Q̃1 +Q2 + Q̃2

)
δk = −(r1 + r̃1) // See (5.25)

7 else

8 Solve

Q1 + Q̃1 Q2 + Q̃2

Q∗
2 + Q̃∗

2 Q∗
1 + Q̃∗

1

 δk

δ∗
k

 = −

 r1 + r̃1

r∗1 + r̃∗1

 // See (5.21)

9 end

10 k = k+ δk // Reflection coefficients update

11
[
1 (anew)T

]T
= gtoa (k) // gtoa (·): Step-up recursion, [4, p. 233]

12 aold = anew

13 end

14 (σ2
ϵ )

new =
(
1/(LN)

) La∑
ℓ=1

fHℓ R
−1
f,N(a

new)fℓ // fHℓ R
−1
f,N(a

new)fℓ is calculated by

applying [9, Algorithm 1]

15 return â = anew, σ̂2
ϵ = (σ2

ϵ )
new

error covariance matrix (5.6). In general, the observation vector length (N ) is much

greater than the order of AR process (P ), and the implementation cost of the ex-

pectation step becomes a computational bottleneck. In this section, we present four

approaches to reduce the computational load. We start with the disturbance smoother,

a variation of the Kalman smoothers which does not require any matrix inversion for

the estimation of the mean vector in the present problem setup [74, Sec. 5.2.4].
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5.2.3.1 Efficient Calculation of the Mean Vector

It is well known that the Wiener filtering operation, which is the operation imple-

mented with the set of equations (5.5) and (5.6), coincides with the Kalman filtering

for the processing of a wide sense stationary input, with rational power spectral den-

sity, corrupted by independent measurement noise, [4]. To facilitate the recursive

calculation via the Kalman smoothing, we introduce the following state space model:

x[n]

x[n− 1]

x[n− 2]
...

x[n− P + 1]


︸ ︷︷ ︸

sn

=



−aold
1 −aold

2 −aold
3 . . . −aold

P

1 0 0 . . . 0

0 1 0 . . . 0
... . . . . . . . . . ...

0 0 . . . 1 0


︸ ︷︷ ︸

A



x[n− 1]

x[n− 2]

x[n− 3]
...

x[n− P ]


︸ ︷︷ ︸

sn−1

+



σold
ϵ

0

0
...

0


︸ ︷︷ ︸

b

wn,

yn=
[
1 0 . . . 0

]
︸ ︷︷ ︸

c

sn + vn, (5.26)

where wn, yn and vn denote the process noise w[n], the measurement y[n] and the

measurement noise v[n], respectively.

Algorithm 5.2 outlines the disturbance smoother for the state space model of (5.26).

The disturbance smoother is a three-pass operation, where in the first pass the Kalman

filtering is applied in the forward direction, the disturbance is estimated in the second

pass and the smoothed state vector is formed in the last pass, [74, Sec. 5.2.4]. The

passes do not involve any matrix inversion operation. Hence, the mean vector calcu-

lation cost is effectively reduced from the N × N matrix inversion cost to the order

of N complex multiplications. The computational savings becomes very significant

when N ≥ 100.

5.2.3.2 Approximating the Error Covariance Matrix

The matrix K in (5.6) corresponds to the error covariance matrix of the Wiener filter

estimate. Unfortunately, it is not possible to retrieve an error covariance matrix of size

N×N from a Kalman filtering implementation. To avoid the calculation of K matrix,

we examine the limiting case of N → ∞ that corresponds to the infinite impulse
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Algorithm 5.2: The disturbance smoother, also see [76].
Input : yn, n = 1, . . . , N

Output : cs̆n|N , n = 1, . . . , N , i.e., the first element of s̆n|N

// State Equation: sn = Asn−1 + bwn, (wn ∼ CN (0, 1))

// yn = csn + vn, (vn ∼ CN (0, (σ2
v)

old))

// Kalman Filtering

1 ŝ0|0 = 0N , P0|0 = (σ2
ϵ )

oldRf,N(a
old) // see (5.2)

2 for n← 0 to N − 1 do

3 ŝn+1|n = Aŝn|n

4 Pn+1|n = APn|nAH + bbH

5 ϵn+1 = yn+1 − cŝn+1|n

6 γn+1 = cPn+1|ncH + (σ2
v)

old

7 Hn+1 = Pn+1|ncHγ
−1
n+1

8 ŝn+1|n+1 = ŝn+1|n +Hn+1ϵn+1

9 Pn+1|n+1 = Pn+1|n −Hn+1cPn+1|n

10 Λn+1 = A−AHn+1c

11 end

// Backward Smoothing

12 pN−1 = cHϵNγ
−1
N

13 êN−1|N = bHpN−1

14 for n← N − 2 to 1 do

15 pn = cHϵn+1γ
−1
n+1 +ΛH

n+1pn+1

16 ên|N = bHpn

17 end

// Smoothed State Vector

18 s̆1|N = P0|0(cHϵ1γ
−1
1 +ΛH

1p1)

19 for n← 2 to N − 1 do

20 s̆n|N = As̆n−1|N + bên−1|N

21 end

22 s̆N |N = ŝN |N

23 return cs̆n|N
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response (IIR) noncausal Wiener filtering operation, [4, Sec. 7.3]. As N → ∞, the

error covariance matrix approaches to a Hermitian Toeplitz matrix whose first column

is sufficient to characterize the complete matrix, [77]. For the filtering application

with the noncausal IIR Wiener filter H IIR-NC(z), the error autocorrelation sequence

can be expressed as

re[k] = (σ2
v)

oldhIIR-NC[k],

where hIIR-NC[k] is the impulse response of the noncausal IIR Wiener filter. We sug-

gest using the residue theorem to evaluate the inverse z-transform of H IIR-NC(z) for

the calculation of error correlation sequence:

re[k] =
(σ2

v)
old

2πj

∮
C:|z|=1

H IIR-NC(z) zk−1 dz, k = 0, 1, . . . , P, (5.27)

where

H IIR-NC(z) =
(σ2

ϵ )
old

(σ2
ϵ )

old + (σ2
v)

old Aold(z)
(
Aold(1/z∗)

)∗ ,
[4, Sec. 7.3] for

Aold(z) = 1 + aold
1 z−1 + aold

2 z−2 + · · ·+ aold
P z−P .

We suggest calculating only P+1 error correlation lags given in (5.27) and construct-

ing K as a banded matrix with P nonzero super/sub-diagonals.

5.2.3.3 Efficient Calculation of Trace Term

The compressed likelihood function in (5.10) requires the calculation of trace term,

tr
(
R−1

f,NK
)
, where R−1

f,N depends on the optimization variable a and K is a constant

matrix. It has been suggested that this problem is solved by an eigenvalue decompo-

sition of K and expressing tr
(
R−1

f,NK
)

as a sum of quadratic terms. We present an

efficient method that avoids the computationally costly eigendecomposition step.

We utilize the Gohberg-Semencul (GS) formula from [73, Sec. 3.9.4] for the inverse

of Rf,N . The GS formula states that

R−1
f,N = A1A

H
1 −A2A

H
2 ,
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where the N ×N dimensional matrices A1 and A1 are given as follows:

A1 =



1 0

a1 1
... a1 1

aP
. . . a1 1

0 aP
. . . . . . . . .

... . . . . . . . . . . . . 1

0 . . . 0 aP . . . a1 1


, (5.28)

A2 =



0 0
... 0

0
. . . 0

a∗P
. . . . . . . . .

a∗P−1 a∗P
. . . . . . . . .

... . . . . . . . . . . . . . . .

a∗1 . . . a∗P−1 a∗P 0 . . . 0


. (5.29)

By defining an N ×N dimensional shift matrix S as

S =



0 0

1 0

0 1
. . .

... . . . . . . . . .

0 . . . 0 1 0


,

A1 matrix can be expressed as

A1 =
[
a+ Sa+ S2a+ . . . SN−1a+

]
,

where a+ denotes the first column of A1 matrix from (5.28) and Ska+ is the (k+1)th

column formed by shifting a+ vector k times. We also define

A2 =
[
a∗
R Sa∗

R S2a∗
R . . . SN−1a∗

R

]
,

where a∗
R is the first column of A2 matrix. Using these definitions, tr

(
R−1

f,NK
)

can
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be expressed as

tr
(
R−1

f,NK
)
= tr

(
(A1A

H
1 −A2A

H
2 )K

)
= tr

(
AH

1KA1

)
− tr

(
AH

2KA2

)
= aH

+

(
N−1∑
k=0

(Sk)HKSk

)
a+ − aT

R

(
N−1∑
k=0

(Sk)HKSk

)
a∗
R

= aH
+Va+ − aT

RVa∗
R, (5.30)

where V =
∑N−1

k=0 (S
k)HKSk. Hence, tr

(
R−1

f,NK
)

is a quadratic product of the

unknown parameters.

5.2.3.4 Efficient Calculation of Optimal Perturbation Around the First Stage

Estimate

The objective function (5.10) to be maximized includes det (Rf,N) and L tr
(
R−1

f,NK
)

+
∑L

l=1 x̂
H
l R

−1
f,N x̂l, where the elements of matrix Rf,N are the functions of vector a.

While the determinant of Rf,N can be written as a quadratic product of the reflection

coefficients corresponding to the vector a, the other reduces to quadratic product in

terms of a. Following the approach given in [9], we convert the problem domain

to the reflection coefficient domain and treat a as a vector-valued function of the

reflection coefficients, and then, we expand it into a Taylor series around the reflection

coefficients derived from the first stage result (aFS) and keep only the first order term,

i.e., the Jacobian term, in the expansion. In brief, for

tr
(
R−1

f,NK
)
= aH

+Va+ − aT
RVa∗

R,

we express the unknown vectors a+ and aR as follows:

a+ = aFS,+ +G+δk +G+cδ
∗
k,

aR = aFS,R +GRδk +GRcδ
∗
k,

where aFS,+ =
[
1 aT

FS 0T
N−P−1

]T and aFS,R =
[
0T
N−P aT

FS,P :−1:1

]T. The vectors δk

and its conjugate δ∗
k denote the unknown reflection coefficient perturbation vectors.

The matrices G+, G+c, GR and GRc are the Jacobian matrices, for the vector-valued
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functions aFS,+ and aFS,R in terms of their reflection coefficients, with the definitions

given below.

G+ =
[
0P GT 0P×(N−P−1)

]T
,

G+c =
[
0P GT

c 0P×(N−P−1)

]T
,

GR =
[
0P×(N−P ) G̃T

]T
,

GRc =
[
0P×(N−P ) G̃T

c

]T
,

where G and Gc are the Jacobian matrices corresponding to aFS, as defined in the

description of (5.17); [G̃]ij = [G]pj and [G̃c]ij = [Gc]pj for p = P − i + 1 and

i, j ∈ {1, . . . , P}. With these definitions, the gradient of aH
+Va+ with respect to δ∗

k

can be given as

∇δ∗k
(aH

+Va+) = Q3δk +Q3cδ
∗
k + r3,

where

Q3 = GH
+VG+ +

(
GH

+cVG+c
)∗
,

Q3c = GH
+VG+c +

(
GH

+cVG+

)∗
,

and

r3 = GH
+VaFS,+ +

(
GH

+cVaFS,+
)∗
.

Similarly, the gradient of aT
RVa∗

R with respect to δ∗
k is

∇δ∗k

(
aT
RVa∗

R

)
= Q4δk +Q4cδ

∗
k + r4,

where

Q4 = GT
RV

∗G∗
Rc +

(
GT

RcV
∗G∗

R

)∗
,

Q4c = GT
RV

∗G∗
R +

(
GT

RcV
∗G∗

Rc

)∗
,

and

r4 = GT
RV

∗a∗
FS,R +

(
GT

RcV
∗a∗

FS,R

)∗
.

Combining the gradient results of tr
(
R−1

f,NK
)

with the gradients of terms used for

(5.21), we get the following equation system:Q1 + Q̃1 +Qtr,1 Q2 + Q̃2 +Qtr,2

Q∗
2 + Q̃∗

2 +Q∗
tr,2 Q∗

1 + Q̃∗
1 +Q∗

tr,1

 δk

δ∗
k

 = −

 r1 + r̃1 + rtr

r∗1 + r̃∗1 + r∗tr

 , (5.31)
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where

Qtr,1 =
L

A
(Q3c −Q4c)

∗,

Qtr,2 =
L

A
(Q3 −Q4)

∗,

and

rtr =
L

A
(r3 − r4)

∗

with

A = L tr
(
R−1

f,NK
)
+

L∑
l=1

x̂H
l R

−1
f,N x̂l.

In (5.31), the terms Q1, Q2 and r1 corresponding to (1/N) log det (Rf,N) are the

same as used in (5.21); the terms Q̃1, Q̃2 and r̃1 corresponding to
∑L

l=1 x̂
H
l R

−1
f,N x̂l

are calculated as given in (5.22), (5.23) and (5.24), respectively, by using

P =
L∑
l=1

(
MH

l,1Ml,1 −MH
l,2Ml,2

)
and v =

L∑
l=1

(
MH

l,1bl,1 −MH
l,2bl,2

)
,

where bl,1 = x̂∗
l,1:N +Ml,1 aFS, bl,2 = Ml,2 aFS, and the matrices Ml,1 and Ml,2 are

formed by using (5.18) and (5.19), respectively, with fl = x̂l, l = 1, . . . , L.

To determine the optimal perturbation vector for the real-valued processes, by using

the condition δk = δ∗
k, (5.31) can be simplified as(

Q1 + Q̃1 +Qtr,1 +Q2 + Q̃2 +Qtr,2

)
δk = −(r1 + r̃1 + rtr). (5.32)

To solve the problem of AR parameter estimation with multiple noisy snapshots, the

suggested second stage for the calculation of tr
(
R−1

f,NK
)

without an eigendecompo-

sition is outlined in Algorithm 5.3. The complete procedure including four cases is

given in Algorithm 5.4. In Algorithm 5.4, the first case calculates K matrix exactly

and assumes σ2
v is known by following Line 4 in Algorithm 5.5, and Lines 5 and 10

in Algorithm 5.6; the second case calculates K matrix approximately and assumes σ2
v

is known by following Line 7 in Algorithm 5.5, and Lines 7 and 10 in Algorithm 5.6;

the third and fourth cases are similar to the first and second cases, respectively, except

σ2
v is estimated via Line 12 in Algorithm 5.6.
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Algorithm 5.3: Efficient calculation of the optimal perturbation around aFS.

Input : X̂ =
[
x̂1 . . . x̂L

]
, K, aFS

Output : anew, (σ2
ϵ )

new

1 aold = aFS

2 for iteration← 1 to 10 do

// The loop with 10 iterations yields good performance

3 k = atog
([

1 (aold)T
]T) // atog (·): Step-down recursion, [4, p. 236]

4 if X̂ is real-valued then

5 Solve
(
Q1 + Q̃1 +Qtr,1 +Q2 + Q̃2 +Qtr,2

)
δk = −(r1 + r̃1 + rtr)

// See (5.32), where tr
(
R−1

f,NK
)

is computed by the GS formula for R−1
f,N

6 else

7 SolveQ1 + Q̃1 +Qtr,1 Q2 + Q̃2 +Qtr,2

Q∗
2 + Q̃∗

2 +Q∗
tr,2 Q∗

1 + Q̃∗
1 +Q∗

tr,1

 δk

δ∗
k

 = −

 r1 + r̃1 + rtr

r∗1 + r̃∗1 + r∗tr


// See (5.31), where tr

(
R−1

f,NK
)

is computed by the GS formula for R−1
f,N

8 end

9 k = k+ δk // Reflection coefficients update

10
[
1 (anew)T

]T
= gtoa (k) // gtoa (·): Step-up recursion, [4, p. 233]

11 aold = anew

12 end

13 (σ2
ϵ )

new =
(
1/(LN)

)(
L tr

(
R−1

f,N(a
new)K

)
+

L∑
l=1

x̂H
l R

−1
f,N(a

new)x̂l

)
// tr

(
R−1

f,N(a
new)K

)
is computed by the GS formula for R−1

f,N(a
new)

14 return anew, (σ2
ϵ )

new
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Algorithm 5.4: Proposed AR parameter estimation method, also see [76].
Input : Y = [y1 . . . yL ], P , tmax: the maximum number of iterations, σ2

v

(optional)

Output : â, σ̂2
ϵ , σ̂2

v (or σ2
v if exists)

Initialization: aold = ainit, (σ2
ϵ )

old = (σ2
ϵ )

init and (σ2
v)

old = (σ2
v)

init by applying

Algorithm 5.7

1 for t← 1 to tmax do

// Expectation step of EM, see (5.5) and (5.6)

2 Compute X̂ and K by applying Algorithm 5.5

// Maximization step of EM

3 Compute anew, (σ2
ϵ )

new and (σ2
v)

new by applying Algorithm 5.6

4 aold = anew, (σ2
ϵ )

old = (σ2
ϵ )

new and (σ2
v)

old = (σ2
v)

new

5 end

6 return â = anew, σ̂2
ϵ = (σ2

ϵ )
new, σ̂2

v = (σ2
v)

new

Algorithm 5.5: Expectation step of EM for the proposed AR parameter estimation

method given in Algorithm 5.4.
Input : aold, (σ2

ϵ )
old, (σ2

v)
old

Output : X̂ = [ x̂1 . . . x̂L ], K

1 if the exact calculation of the covariance matrix K is desired then

2 Q =
(
(σ2

ϵ )
oldRf,N(a

old) + (σ2
v)

oldIN
)−1 // N ×N matrix inversion

3 Compute X̂ = [ x̂1 . . . x̂L ], where x̂l = (σ2
ϵ )

oldRf,N(a
old)Qyl is the mean

vector of the posterior density f(xl|yl;θ
old) for l = 1, . . . , L

4 K = (σ2
ϵ )

oldRf,N(a
old)− (σ4

ϵ )
oldRf,N(a

old)QRf,N(a
old)

5 else

6 Compute X̂ = [ x̂1 . . . x̂L ] by applying Algorithm 5.2

7 Construct K matrix as a banded matrix with P nonzero super/sub-diagonals

by using P + 1 error correlation lags,

re[k] = ((σ2
v)

old/(2πj))
∮
C:|z|=1

H IIR-NC(z) zk−1 dz, k = 0, 1, . . . , P , where

H IIR-NC(z) = (σ2
ϵ )

old/
(
(σ2

ϵ )
old + (σ2

v)
oldAold(z)

(
Aold(1/z∗)

)∗) and

Aold(z) = 1 + aold
1 z−1 + aold

2 z−2 + · · ·+ aold
P z−P .

8 end

9 return X̂, K
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Algorithm 5.6: Maximization step of EM for the proposed AR parameter estimation

method given in Algorithm 5.4.

Input : X̂ = [ x̂1 . . . x̂L ], K

Output : anew, (σ2
ϵ )

new, (σ2
v)

new

// The first stage estimation by (5.16) for La = L and fl = x̂l, l = 1, . . . , L

1 aFS = −
(

La∑
ℓ=1

(
AH

ℓ,fWAℓ,f +AH
ℓ,bWAℓ,b

))−1( La∑
ℓ=1

(
AH

ℓ,fWbℓ,f +AH
ℓ,bWbℓ,b

))
// The second stage estimation

2 if the exact calculation of the covariance matrix K is desired then

3 K =
N∑

n=1

λnene
H
n // The eigendecomposition of N ×N matrix

4 Form the set of La = L+N vectors fℓ, ℓ = 1, . . . , La, where fl = x̂l,

l = 1, . . . , L, and fL+n =
√
Lλnen, n = 1, . . . , N

5 Compute anew and (σ2
ϵ )

new by following Lines 2 to 14 in Algorithm 5.1

6 else

7 Compute anew and (σ2
ϵ )

new by applying Algorithm 5.3

8 end

9 if σ2
v exists then

10 (σ2
v)

new = σ2
v

11 else

12 (σ2
v)

new =
(
1/(LN)

)(
L tr (K) +

L∑
l=1

∥yl − x̂l∥22
)

13 end

14 return anew, (σ2
ϵ )

new, (σ2
v)

new

5.2.4 Computational Complexity Considerations

In noise-free multiple-snapshot case given in Algorithm 5.1, aFS is computed with

O (P 3) multiplications in the first stage, and the optimal perturbation vector δk is

computed withO (P 3) andO (8P 3) multiplications for the real- and complex-valued

processes, respectively, in the second stage. In (5.21), A =
∑La

ℓ=1 f
H
ℓ R

−1
f,N fℓ, which

is required to get Q̃1, Q̃2 and r̃1, is calculated efficiently by using [9, Algorithm 1],

which decreasesO (N3) operations toO (NP ) multiplications to calculate fHℓ R
−1
f,N fℓ.

The noise-free case requires La = L snapshots and corresponds to O (LNP + P 3)
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and O (LNP + 8P 3) multiplications per EM iteration for the real- and complex-

valued processes, respectively.

In noisy multiple-snapshot case with the exact calculation of K matrix given in Al-

gorithm 5.4, both of the inversion and eigendecomposition of N ×N matrix required

in expectation step of EM and the second part of the maximization step of EM, re-

spectively, are computed with O (N3) operations. Owing to Line 5, Algorithm 5.1

is also utilized for this case with La = L + N instead of La = L corresponding to

the noise-free case. Hence, the overall complexity is O (N3 + (L+N)NP + P 3)

and O (N3 + (L+N)NP + 8P 3) operations for the real- and complex-valued pro-

cesses, respectively, in each EM iteration.

When K matrix is calculated approximately in Algorithm 5.4, the inversion of N×N

matrix is not required due to the disturbance smoother, and the eigendecomposition of

K matrix is eliminated by using the GS formula for the second stage estimation given

in Algorithm 5.3. Similar to Algorithm 5.1, Algorithm 5.3 has the complexity of

O (LNP + P 3) and O (LNP + 8P 3) multiplications per EM iteration for the real-

and complex-valued processes, respectively.

5.3 Initialization of the Suggested Algorithm

The proposed method requires the initial estimates for a, σ2
ϵ and σ2

v , see (5.5) and

(5.6). By applying the weighted forward-backward prediction approach to the set of

{yl}Ll=1 vectors, as applied to the set of {fℓ}La
ℓ=1 vectors in (5.15), the initial estimate

of a, ainit, is calculated as

ainit = −
(

L∑
l=1

(
AH

l,fWAl,f +AH
l,bWAl,b

))−1( L∑
l=1

(
AH

l,fWbl,f +AH
l,bWbl,b

))
(5.33)

where

Al,f =


yl,P yl,P−1 . . . yl,1

yl,P+1 yl,P . . . yl,2
...

... . . .
...

yl,N−1 yl,N−2 . . . yl,N−P

 , bl,f =


yl,P+1

yl,P+2

...

yl,N

 ,
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Al,b =


y∗l,N−P+1 y∗l,N−P+2 . . . y∗l,N

y∗l,N−P y∗l,N−P+1 . . . y∗l,N−1

...
... . . .

...

y∗l,2 y∗l,3 . . . y∗l,P+1

 , bl,b =


y∗l,N−P

y∗l,N−P−1

...

y∗l,1

 ,

and W = diag (1, 2, . . . , N − P ). Then, the initial values of σ2
ϵ and σ2

v are deter-

mined by using YW equations and ainit.

According to the block diagram shown in Figure 5.1, the YW equations for the auto-

correlation sequence of the AR(P ) process x[n] can be written as

rx[k] = −
P∑

p=1

aprx[k − p] + σ2
ϵ δ[k], k ≥ 0, (5.34)

where rx[k] = E{x[n]x∗[n − k]}, and the YW equations for the autocorrelation se-

quence of y[n] can be expressed as

ry[k] = rx[k] + σ2
vδ[k], k ≥ 0, (5.35)

which implies that ry[k] = rx[k] for k > 0, [4]. Using (5.34) and (5.35), we get

(Ry − σ2
vIP ) a = −ry, (5.36)

where

Ry =


ry[0] ry[−1] . . . ry[−P + 1]

ry[1] ry[0] . . . ry[−P + 2]
...

... . . . ...

ry[P − 1] ry[P − 2] . . . ry[0]

 and ry =


ry[1]

ry[2]
...

ry[P ]

 .

In (5.36), Ry and ry are replaced with R̂y and r̂y estimates formed by using

r̂y[k] =
1

L

L∑
l=1

r̂yl [k],

where

r̂yl [k] =
1

N

N−1∑
n=k

yl[n] y
∗
l [n− k], k = 0, 1, . . . , P and l = 1, . . . , L,

and r̂y[−k] = r̂∗y[k]. Replacing a with ainit, the LS solution of

(R̂y − σ2
vIP ) a

init = −r̂y
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for σ2
v is the initial value of σ2

v , that is

(σ2
v)

init =
Re
{
(ainit)H

(
r̂y + R̂ya

init
)}

∥ainit∥22
, (5.37)

see [52, Eq. 46] and [60, Eq. 23] for the real-valued AR process. Using YW equations

(5.34) and (5.35) for k = 0, the initial value of σ2
ϵ is calculated as

(σ2
ϵ )

init = r̂y[0] + (ainit)Tr̂∗y − (σ2
v)

init

= r̂y[0] + r̂Hy a
init − (σ2

v)
init. (5.38)

For the initialization of σ2
ϵ and σ2

v , another suggestion can be made by assuming that

(σ2
v)

init = (σ2
ϵ )

init

and following the approach for the estimate of

σ̂2
ϵ =

(
xHR−1

f,Nx
)
/N

given in [9] such that

(σ2
v)

init + (σ2
ϵ )

init =
1

LN

L∑
l=1

yH
l R

−1
f,N(a

init)yl. (5.39)

Thus, we have

(σ2
v)

init = (σ2
ϵ )

init =
1

2LN

L∑
l=1

yH
l R

−1
f,N(a

init)yl. (5.40)

If the measurement noise variance σ2
v is known, say the unknown parameter vector is

changed from θ =
[
σ2
v σ2

ϵ aT
]T to θ =

[
σ2
ϵ aT

]T, then the true value σ2
v can be

substituted for (σ2
v)

init in (5.39). Therefore, we get

(σ2
ϵ )

init =
1

LN

L∑
l=1

yH
l R

−1
f,N(a

init)yl − σ2
v . (5.41)

The initialization methods are summarized in Algorithm 5.7.
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Algorithm 5.7: Initialization of the proposed AR parameter estimation method, also

see [76].
Input : Y = [y1 . . . yL ], P , σ2

v (optional)

Output : ainit, (σ2
ϵ )

init, (σ2
v)

init

1 ainit = −
(

L∑
l=1

(
AH

l,fWAl,f +AH
l,bWAl,b

))−1( L∑
l=1

(
AH

l,fWbl,f +AH
l,bWbl,b

))
2 if σ2

v exists then

3 (σ2
v)

init = σ2
v and (σ2

ϵ )
init =

(
1/(LN)

) L∑
l=1

yH
l R

−1
f,N(a

init)yl − σ2
v

4 else

5 (σ2
v)

init = Re
{
(ainit)H(r̂y + R̂ya

init)
}
/∥ainit∥22 and

(σ2
ϵ )

init = r̂y[0] + r̂Hy a
init − (σ2

v)
init,

6 or (σ2
v)

init = (σ2
ϵ )

init =
(
1/(2LN)

) L∑
l=1

yH
l R

−1
f,N(a

init)yl

7 end

8 return ainit, (σ2
ϵ )

init, (σ2
v)

init

5.4 Numerical Results

We present a performance comparison of the suggested AR parameter estimation

method under different noise conditions including the noise-free case. The perfor-

mance comparison of AR parameter estimation methods requires an application spe-

cific fidelity criterion such as spectral peak location, spurious peak avoidance, filter

coefficient/pole accuracy etc., as discussed at length in [75].

In this study, we use objective metrics such as total mean square error (MSE)

E{∥a− â∥22},

attained likelihood value and the Hellinger distance between the true and estimated

Gaussian random vector densities. The Hellinger distance between zero-mean Gaus-

sian vectors p and q with covariance matrices Σ1 and Σ2, [78], is given as

H(p,q) =
√
1−

(
|Σ1|1/4 |Σ2|1/4/|(Σ1 + Σ2)/2|1/2

)
. (5.42)

The Hellinger distance is a true metric satisfying positivity, symmetry, triangle in-

equality axioms. The Hellinger distance is utilized to upper bound the detection error
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of equally likely hypotheses p and q with pe ≤
(
1−H2(p,q)

)
/2, and used as a robust

measure for the distance between distributions, [79]. All experiments are conducted

by using 100 Monte Carlo runs.

Experiment 1 - Multiple Noise-free Snapshots: This experiment compares the

likelihood values attained by the estimates of different methods including the forward-

backward (FB) prediction, the weighted forward-backward (wFB) prediction, which

performs only the first stage estimation presented in Section 5.2.2.1, and the numer-

ical search method initialized with Burg’s method. For comparison purposes, one of

the cases presented in [9] that is the estimation of the real- and complex-valued AR(6)

parameters randomly generated from the uniformly distributed reflection coefficients

and σ2
ϵ = 0.36 for a single snapshot scenarios is repeated for L = 10 snapshots.

The results in Figure 5.2 closely follow the earlier conclusions and reveal that the

proposed approach yields likelihood values which are almost identical to the ones

attained by the numerical search having much higher complexity.

Experiment 2 - Multiple Noisy Snapshots: This experiment examines the estima-

tion accuracy of the method on an AR(4) system with

A(z) = 1 + 0.1z−1 + 0.2z−2 + 0.3z−3 + 0.4z−4

under unity measurement noise variance, σ2
v = 1. The parameter σ2

ϵ in (5.1) is varied

according to the experiment SNR. Figure 5.3 shows the Hellinger distance and total

MSE comparisons for different L (number of snapshots) values, where each of the L

snapshots is a vector of length N = 50. Four estimators, for the cases of K is calcu-

lated exactly or approximately and σ2
v is known exactly or estimated, are compared.

Figure 5.3 also includes the estimator performance in the noise-free scenario. The

estimator for the noise-free case has x̂l = yl and K = 0N×N . These relations can be

also retrieved from (5.5) and (5.6) as σ2
v → 0. The asymptotic CRB (ACRB) [43, 44]

is provided as a performance benchmark for total MSE comparisons. The results of a

similar setup constructed to compare the estimation accuracy for the complex-valued

AR(4) system with

A(z) = 1 + (0.1 + j0.2)z−1 + (0.2− j0.3)z−2 + (0.3 + j0.1)z−3 + (0.4− j0.2)z−4
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Figure 5.2: Experiment 1 - Multiple noise-free snapshots: Likelihood value compari-

son for AR(6) parameters randomly generated from the uniformly distributed reflec-

tion coefficients and σ2
ϵ = 0.36; (a) real- and (b) complex-valued AR processes.

and σ2
v = 1 are shown in Figure 5.4.

The results shown in Figure 5.3 with SNR = 0 dB and Figure 5.4 with SNR = 0

dB and SNR = 5 dB are obtained by initializing the suggested method with (5.40),

instead of (5.37) and (5.38) used in Algorithm 5.4. Further details on the algorithm

initialization are given in Section 5.3.
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Figure 5.3: Experiment 2 - Hellinger distance and total MSE comparisons of the

proposed method at different numbers of snapshots for the real-valued AR(4).
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Figure 5.4: Experiment 2 - Hellinger distance and total MSE comparisons of the

proposed method at different numbers of snapshots for the complex-valued AR(4).
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Table 5.1: Hellinger distance comparison of the proposed method at 10 dB SNR for

different sample sizes and numbers of snapshots on the real-valued AR(4) process

given in Experiment 2.

σ2
v : exact σ2

v : est.

N L K: exact K: app. K: exact K: app.

50 1 0.7017 0.7022 0.6884 0.6869

50 5 0.3624 0.3627 0.3559 0.3551

50 10 0.2602 0.2604 0.2642 0.2643

100 1 0.7041 0.7043 0.6870 0.6866

100 5 0.3799 0.3801 0.4270 0.4272

100 10 0.2680 0.2681 0.3580 0.3585

150 1 0.6905 0.6906 0.6870 0.6869

150 5 0.3794 0.3796 0.4705 0.4706

150 10 0.2590 0.2591 0.4288 0.4291

500 1 0.7080 0.7081 0.8247 0.8247

500 5 0.3652 0.3653 0.7804 0.7804

500 10 0.2645 0.2645 0.7771 0.7771

1000 1 0.6882 0.6882 0.9210 0.9210

1000 5 0.3733 0.3733 0.9295 0.9295

1000 10 0.2631 0.2631 0.9222 0.9222

We note from Figures 5.3 and 5.4 that there is a significant performance gap between

the cases of known and unknown measurement noise variance. Yet, in both cases the

total MSE value for vector a coincides the ACRB associated with the problem. More

detailed numerical results for SNR of 10 dB are given in Tables 5.1 to 5.4.

In Tables 5.2 and 5.4, the column labeled as “CRB” is the nonasymptotic (exact)
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Table 5.2: Total MSE comparison of the proposed method at 10 dB SNR for different

sample sizes and numbers of snapshots on the real-valued AR(4) process given in

Experiment 2.

σ2
v : exact σ2

v : est. σ2
v : exact

N L K: exact K: app. K: exact K: app. ACRB[43, 44] CRB

50 1 0.0946 0.0948 0.0944 0.0938 0.0817 0.0858

50 5 0.0163 0.0163 0.0164 0.0164 0.0163 0.0165

50 10 0.0085 0.0086 0.0090 0.0090 0.0082 0.0082

100 1 0.0420 0.0420 0.0424 0.0424 0.0409 0.0418

100 5 0.0089 0.0089 0.0099 0.0099 0.0082 0.0082

100 10 0.0043 0.0043 0.0053 0.0053 0.0041 0.0041

150 1 0.0280 0.0280 0.0283 0.0283 0.0272 0.0277

150 5 0.0060 0.0060 0.0078 0.0078 0.0054 0.0055

150 10 0.0028 0.0028 0.0046 0.0046 0.0027 0.0027

500 1 0.0087 0.0087 0.0114 0.0114 0.0082 0.0082

500 5 0.0017 0.0017 0.0048 0.0048 0.0016 0.0016

500 10 0.0008 0.0008 0.0041 0.0041 0.0008 0.0008

1000 1 0.0043 0.0043 0.0074 0.0074 0.0041 0.0041

1000 5 0.0009 0.0009 0.0046 0.0046 0.0008 0.0008

1000 10 0.0004 0.0004 0.0038 0.0038 0.0004 0.0004

bound for the problem by numerical differentiation expressions [80, Eq. (3.31), p. 47]

and [80, Eq. (15.52), p. 525] corresponding to the real- and complex-valued AR pro-

cesses, respectively.
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Table 5.3: Hellinger distance comparison of the proposed method at 10 dB SNR

for different sample sizes and numbers of snapshots on the complex-valued AR(4)

process given in Experiment 2.

σ2
v : exact σ2

v : est.

N L K: exact K: app. K: exact K: app.

50 1 0.7654 0.7610 0.7329 0.7290

50 5 0.3872 0.3860 0.4247 0.4251

50 10 0.2782 0.2778 0.3379 0.3419

100 1 0.7138 0.7122 0.7221 0.7218

100 5 0.3791 0.3779 0.5876 0.5888

100 10 0.2749 0.2755 0.5516 0.5531

150 1 0.7328 0.7319 0.7883 0.7883

150 5 0.3737 0.3730 0.7022 0.7027

150 10 0.2742 0.2743 0.7002 0.7007

500 1 0.7336 0.7332 0.9700 0.9700

500 5 0.3716 0.3715 0.9705 0.9705

500 10 0.2547 0.2548 0.9676 0.9676

1000 1 0.6911 0.6909 0.9979 0.9979

1000 5 0.3613 0.3613 0.9985 0.9985

1000 10 0.2646 0.2644 0.9985 0.9985
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Table 5.4: Total MSE comparison of the proposed method at 10 dB SNR for different

sample sizes and numbers of snapshots on the complex-valued AR(4) process given

in Experiment 2.

σ2
v : exact σ2

v : est. σ2
v : exact

N L K: exact K: app. K: exact K: app. ACRB[43, 44] CRB

50 1 0.1504 0.1424 0.1250 0.1191 0.0996 0.1034

50 5 0.0199 0.0194 0.0189 0.0186 0.0199 0.0199

50 10 0.0107 0.0105 0.0107 0.0106 0.0100 0.0099

100 1 0.0477 0.0468 0.0414 0.0412 0.0498 0.0504

100 5 0.0112 0.0110 0.0121 0.0121 0.0100 0.0099

100 10 0.0049 0.0049 0.0075 0.0075 0.0050 0.0049

150 1 0.0363 0.0358 0.0307 0.0306 0.0332 0.0333

150 5 0.0064 0.0063 0.0094 0.0094 0.0066 0.0066

150 10 0.0034 0.0034 0.0077 0.0077 0.0033 0.0033

500 1 0.0108 0.0108 0.0131 0.0131 0.0100 0.0099

500 5 0.0020 0.0020 0.0074 0.0074 0.0020 0.0020

500 10 0.0009 0.0010 0.0062 0.0062 0.0010 0.0010

1000 1 0.0049 0.0048 0.0098 0.0098 0.0050 0.0049

1000 5 0.0010 0.0010 0.0066 0.0066 0.0010 0.0010

1000 10 0.0004 0.0004 0.0063 0.0063 0.0005 0.0005
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Experiment 3 - Single Noisy Snapshot: This experiment compares the estimation

accuracy of the proposed method with those of the state-of-the-art methods, SS [51],

EIV [52], IFILS [50], XZ [53], and four methods (EVK-1, EVK-2, EVK-3, EVK-

4) given in [60] for the unknown noise variance. The experiment is conducted on

the single snapshot real-valued AR(4) process defined in Experiment 2. Similar to

Example 1 given in [60], the parameter settings are as follows: q = 2 and δ = 0.001

for IFILS; δ1 = 0.01 when SNR = 0 dB and δ1 = 0.001 when SNR = 5 dB or SNR

= 10 dB, δ2 = 0.01 and η = 0.96 for XZ; q = 3 and δ = 0.1 for EVK-1 and EVK-2;

q = 4 and δ = 0.1 for EVK-3; q = 3 and m = 8 for EVK-4. (The reader can consult

[60] for the parameter descriptions.)

Tables 5.5 and 5.6 show that the suggested method using either the exact or approxi-

mated error covariance matrix K provides more accurate AR parameter estimates in

terms of Hellinger distance and total MSE in comparison to other methods. More-

over, Table 5.7 shows information on the number of unstable AR systems out of 100

trials. (The results for SNR = 0 dB are obtained by initializing with (5.40).)

Experiment 4 - Average Computational Time: This experiment compares the av-

erage computational time (in seconds) of the proposed method for different N (sam-

ple size) and L (number of snapshots) values in Experiment 2 setup at SNR = 10 dB.

Tables 5.8 and 5.9 show that the suggested method with approximate error covariance

matrix K (eliminating the inversion of an N×N matrix via the disturbance smoother

in expectation step and the eigendecomposition via the GS formula in maximization

step of EM) requires significantly less CPU time than the suggested method with ex-

act K matrix. In Tables 5.8 and 5.9, the column labeled “Ratio” contains the ratios of

average computational times.
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Table 5.5: Hellinger distance comparison for the single snapshot real-valued AR(4) process given in Experiment 2.

N SNR K: exact K: app. SS [52] EIV [51] IFILS [50] XZ [53] EVK-1 [60] EVK-2 [60] EVK-3 [60] EVK-4 [60]

50 0 dB 0.8312 0.8315 0.9326 0.9387 0.9402 0.9515 0.9355 0.9441 0.9630 0.8967

50 5 dB 0.7451 0.7446 0.9299 0.8501 0.8589 0.9472 0.8465 0.9359 0.9034 0.8925

50 10 dB 0.6884 0.6869 0.9226 0.8177 0.8109 0.9149 0.7843 0.9057 0.8659 0.9076

100 0 dB 0.8558 0.8555 0.9596 0.9535 0.9602 0.9858 0.9606 0.9781 0.9782 0.9259

100 5 dB 0.8297 0.8299 0.9314 0.8687 0.9177 0.9417 0.8595 0.9487 0.9436 0.9623

100 10 dB 0.6870 0.6866 0.9190 0.8027 0.8405 0.9137 0.7917 0.9048 0.8869 0.9755

150 0 dB 0.8703 0.8698 0.9594 0.9623 0.9704 0.9703 0.9602 0.9877 0.9752 0.9576

150 5 dB 0.8893 0.8895 0.9351 0.8788 0.9105 0.9286 0.8885 0.9347 0.9432 0.9767

150 10 dB 0.6870 0.6869 0.9291 0.8233 0.8753 0.8919 0.8122 0.8950 0.8914 0.9855
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Table 5.6: Total MSE comparison for the single snapshot real-valued AR(4) process given in Experiment 2.

N SNR K: exact K: app. SS [52] EIV [51] IFILS [50] XZ [53] EVK-1 [60] EVK-2 [60] EVK-3 [60] EVK-4 [60]

50 0 dB 0.2520 0.2534 0.6938 0.3245 0.2554 0.3685 0.5761 0.6164 0.6421 0.3814

50 5 dB 0.1156 0.1152 0.3225 0.1777 0.1691 0.2993 0.2921 0.3943 0.4148 0.2310

50 10 dB 0.0944 0.0938 0.2672 0.1486 0.1456 0.2075 0.2017 0.2301 0.3716 0.1888

100 0 dB 0.1265 0.1266 0.9673 0.2867 0.2675 0.4038 0.5159 0.6870 0.5805 0.3014

100 5 dB 0.0620 0.0620 0.2090 0.1213 0.1450 0.1772 0.1587 0.2430 0.3508 0.1452

100 10 dB 0.0424 0.0424 0.1943 0.0867 0.0884 0.1860 0.1572 0.2482 0.3240 0.1193

150 0 dB 0.0849 0.0848 0.2577 0.1860 0.1711 0.2945 0.4021 0.4964 0.4038 0.2034

150 5 dB 0.0502 0.0502 0.1090 0.0764 0.1030 0.1918 0.1825 0.2439 0.2787 0.1171

150 10 dB 0.0283 0.0283 0.1235 0.0460 0.0668 0.1647 0.1052 0.1628 0.2125 0.0881
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Table 5.7: Comparison of the number of unstable system estimates out of 100 runs for the single snapshot real-valued AR(4) process given

in Experiment 2.

N SNR K: exact K: app. SS [52] EIV [51] IFILS [50] XZ [53] EVK-1 [60] EVK-2 [60] EVK-3 [60] EVK-4 [60]

50 0 dB − − 70 10 13 36 31 35 19 −

50 5 dB − − 62 10 8 20 19 22 12 −

50 10 dB − − 60 6 11 26 14 14 8 −

100 0 dB − − 60 10 14 26 15 21 10 −

100 5 dB − − 33 4 7 30 10 16 2 −

100 10 dB − − 34 1 5 17 8 11 5 −

150 0 dB − − 46 8 8 29 15 19 7 −

150 5 dB − − 19 3 6 16 9 14 7 −

150 10 dB − − 23 − 1 15 2 5 3 −
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Table 5.8: The average computational time (in seconds) comparison of the proposed

method at 10 dB SNR for different sample sizes and numbers of snapshots for the

real-valued AR(4) process in Experiment 2.

σ2
v : exact σ2

v : est.

N L K: exact K: app. Ratio K: exact K: app. Ratio

50 1 0.2810 0.0372 7.5514 0.2802 0.0370 7.5788

50 5 0.3008 0.0654 4.5955 0.3009 0.0654 4.5989

50 10 0.3270 0.0941 3.4736 0.3270 0.0942 3.4703

100 1 0.5801 0.0427 13.5718 0.5806 0.0428 13.5522

100 5 0.6071 0.0810 7.4917 0.6072 0.0812 7.4793

100 10 0.6327 0.1152 5.4907 0.6348 0.1151 5.5170

150 1 0.9734 0.0519 18.7452 0.9723 0.0518 18.7583

150 5 0.9845 0.0976 10.0890 0.9863 0.0976 10.1026

150 10 1.0143 0.1377 7.3640 1.0160 0.1380 7.3642

500 1 5.6314 0.1071 52.5841 5.8269 0.1070 54.4819

500 5 5.7710 0.2515 22.9437 5.9788 0.2525 23.6791

500 10 5.9106 0.3766 15.6936 6.1155 0.3774 16.2040

1000 1 18.9031 0.2096 90.1922 19.0119 0.2093 90.8282

1000 5 20.2822 0.5896 34.4003 20.5374 0.5886 34.8913

1000 10 21.2807 0.9352 22.7548 21.6083 0.9370 23.0603
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Table 5.9: The average computational time (in seconds) comparison of the proposed

method at 10 dB SNR for different sample sizes and numbers of snapshots for the

complex-valued AR(4) process in Experiment 2.

σ2
v : exact σ2

v : est.

N L K: exact K: app. Ratio K: exact K: app. Ratio

50 1 0.5379 0.0562 9.5631 0.5351 0.0552 9.6881

50 5 0.5829 0.1083 5.3835 0.5812 0.1082 5.3716

50 10 0.6369 0.1628 3.9128 0.6380 0.1638 3.8959

100 1 1.2242 0.0729 16.7909 1.2054 0.0725 16.6221

100 5 1.2338 0.1328 9.2888 1.2373 0.1361 9.0880

100 10 1.2879 0.1951 6.6009 1.2800 0.1940 6.5986

150 1 1.9246 0.0811 23.7213 1.9184 0.0814 23.5769

150 5 1.9972 0.1590 12.5615 1.9967 0.1607 12.4283

150 10 2.0345 0.2273 8.9494 2.0287 0.2285 8.8783

500 1 13.7240 0.1844 74.4286 13.7681 0.1850 74.4232

500 5 14.2745 0.4096 34.8524 14.2137 0.4110 34.5829

500 10 14.8254 0.6022 24.6197 14.7588 0.6093 24.2244

1000 1 48.2300 0.3524 136.8763 48.0578 0.3531 136.0939

1000 5 48.8622 0.8417 58.0521 48.3051 0.8422 57.3534

1000 10 51.6543 1.2907 40.0217 50.9763 1.2935 39.4101
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5.5 Conclusion

An expectation-maximization based solution for the noisy AR parameter estimation

problem and its efficient implementation are given in this chapter. The formulation

given in [9] for a single snapshot likelihood maximization of AR parameter estima-

tion problem is extended to the multiple snapshots. Our formulation also covers the

problem of AR parameter estimation under the effect of white noise with the un-

known variance given multiple independent snapshots. Furthermore, an approximate

implementation of the suggested method is given. With a significant less computa-

tional load, the approximate version shows a performance almost identical to that of

the exact version. We present the MATLAB codes of the proposed method in [76] for

further exploration.
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CHAPTER 6

CONCLUSIONS

This thesis presents algorithms for two problems of interest in signal processing area.

These problems are as follows:

1. Transmit beamformer design subject to a peak-to-average power ratio (PAPR)

constraint.

2. Maximum likelihood autoregressive (AR) model parameter estimation from the

independent snapshots corrupted by white Gaussian measurement noise.

Both problems have multiple application specific variations, which can be solved by

the proposed general algorithms.

In Chapters 2 and 3, we cover the transmit beamformer design problem under a PAPR

constraint. The PAPR constraint is included in the problem setting to provide a trade-

off mechanism between the beam shape, average power in the main lobe and other

classical metrics, such as the integrated sidelobe level, the peak-sidelobe level, etc.

Typically, a flat-top beampattern and maximum average power transmission over the

sector of interest are jointly desired. Unfortunately, these two objectives are contra-

dictory, and the introduced PAPR constraint provides a mean of trading one objective

with the other, see Section 3.6.2. For the problem solution, we use the alternating

direction method of multipliers (ADMM), which is capable of converging on a so-

lution for the problems with convex objective function and nonconvex constraints.

We combine the phase retrieval method PhareADMM [24] and the alternating pro-

jection method [17] through an ADMM formulation. For the beam shape and PAPR

constraints, we make use of distinct penalty parameters in the augmented Lagrangian

function. Thus, we can control the constraint violation of the beam shape and PAPR
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separately. Owing to the generality of formulation, the suggested method PAPR-

ADMM can be applied to both narrowband and wideband beamforming. Further-

more, depending on the application, a fast implementation with FFT (fast Fourier

transform) can also be used. We invite readers to explore the MATLAB [37], Python

[38], R [39], and C++ [40] implementations of the PAPR-ADMM method.

In Chapter 4, we present a solution for the transmit beamformer design problem of in-

terest after expressing the problem in a consensus form. Our solution is based on the

consensus ADMM, which is suitable for parallel computation. Numerical results in-

dicate that PAPR-ADMM and its consensus-based counterpart PAPR-cADMM yield

comparable performance. Considering their formulations, both methods have compu-

tational advantages depending on applications, see Section 4.4. The PAPR-cADMM

and its wideband version PAPR-cADMM-wb allow L (number of direction samples)

and F (number of frequencies) individual updates in parallel, respectively. However,

L is generally much higher than the number of available processors (or cores) for

parallel computation. In such a case, all of the L individual updates cannot be si-

multaneously processed, which makes some of these updates wait for idle processors.

Hence, PAPR-ADMM becomes preferable to PAPR-cADMM in the narrowband case

for higher values of L. For wideband beamforming, the value of F typically fulfills

the simultaneous processing of updates, and PAPR-cADMM-wb is preferred.

In Chapter 5, we describe an expectation-maximization based solution for noisy AR

parameter estimation problem and its efficient implementation. The heart of the

method contains an extension of the formulation given in [9] for a single snapshot

likelihood maximization of AR parameter estimation problem to the multiple snap-

shots. In addition to this, the current formulation examines the problem of AR pa-

rameter estimation under the effect of white noise with the unknown variance given

multiple independent snapshots. A highly efficient, yet approximate, implementation

of the suggested method is also given. The performance of the approximate ver-

sion is almost identical to the exact version; but the approximate version eliminates

N3 + N2P multiplications per EM iteration (N is the snapshot vector length) that

results in significant cost savings in both computation and memory. We present the

ready-to-use MATLAB codes reproducing the presented numerical results for further

exploration in [76].
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APPENDIX A

PERFORMANCE METRICS FOR TRANSMIT BEAMFORMING

Let the function Pσ(ϕ, θ) : R2 → R to compute the transmitted power in the direction

pair (ϕ, θ) ∈ R2 by the transmitter weights wσ ∈ CN having 1 ≤ PAPR (wσ) ≤ σ

be

Pσ(ϕ, θ) =
∣∣a(ϕ, θ)Hwσ

∣∣2, (A.1)

where the steering function a(ϕ, θ) : R2 → CN is given as

a(ϕ, θ) = [ a1(ϕ, θ) . . . aN(ϕ, θ) ]
T (A.2)

with

an(ϕ, θ) = ejk(ϕ,θ)
Tpn , n = 1, . . . , N, (A.3)

for the wavenumber k, as a function of (ϕ, θ)

k(ϕ, θ) = (2π/λ) [ cosϕ cos θux sinϕ cos θuy sin θuz ]
T. (A.4)

The integrated sidelobe level (ISL) can be expressed as

ISL =

∫∫
(ϕ,θ)∈S

Pσ(ϕ, θ) dϕ dθ, (A.5)

where

S = Φs ×Θs =
{
(ϕ, θ)

∣∣ϕ ∈ Φs, θ ∈ Θs
}

denotes the set of direction pairs for the sidelobe.

The average of ISL over the set S is

ISL =
1

card (S)

∫∫
(ϕ,θ)∈S

Pσ(ϕ, θ) dϕ dθ. (A.6)
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Substituting (A.1) into (A.6), we get

ISL =
1

card (S)

∫∫
(ϕ,θ)∈S

wH
σa(ϕ, θ)a(ϕ, θ)

Hwσ dϕ dθ

= wH
σ

1

card (S)

∫∫
(ϕ,θ)∈S

a(ϕ, θ)a(ϕ, θ)H dϕ dθwσ

= wH
σ

1

card (S)

∫∫
(ϕ,θ)∈S


a1(ϕ, θ)

...

aN(ϕ, θ)

 [ a∗1(ϕ, θ) . . . a
∗
N(ϕ, θ) ] dϕ dθwσ

= wH
σRSwσ (A.7)

where the entries of the N ×N matrix RS are

[RS ]mn =
1

card (S)

∫∫
(ϕ,θ)∈S

am(ϕ, θ)a
∗
n(ϕ, θ) dϕ dθ

=
1

card (S)

∫∫
(ϕ,θ)∈S

ejk(ϕ,θ)
Tpme−jk(ϕ,θ)Tpn dϕ dθ

=
1

card (S)

∫∫
(ϕ,θ)∈S

ejk(ϕ,θ)
T(pm−pn) dϕ dθ (A.8)

for m,n = 1, . . . , N .

Similarly, to integrate the power in the main lobe, the N ×N matrix RM is given as

RM =
1

card (M)

∫∫
(ϕ,θ)∈M

a(ϕ, θ)a(ϕ, θ)H dϕ dθ (A.9)

with the entries

[RM]mn =
1

card (M)

∫∫
(ϕ,θ)∈M

ejk(ϕ,θ)
T(pm−pn) dϕ dθ, m, n = 1, . . . , N, (A.10)

where

M = Φm ×Θm =
{
(ϕ, θ)

∣∣ϕ ∈ Φm, θ ∈ Θm
}

denotes the set of direction pairs for the main lobe.

By using these definitions, the performance metrics related to the power computations

are given as follows:
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• The average power in the main lobe is

Pm
avg(wσ) = wH

σRMwσ. (A.11)

• The minimum power in the main lobe is

Pm
min = min

(ϕ,θ)∈M
Pσ(ϕ, θ). (A.12)

• The maximum power in the main lobe is

Pm
max = max

(ϕ,θ)∈M
Pσ(ϕ, θ). (A.13)

• The peak-to-peak power swing in the main lobe is

Pm
p-p =

Pm
max

Pm
min

. (A.14)

• The power efficiency is

Peff(wσ) =
PAPR (w1)

PAPR (wσ)

=
(
PAPR (wσ)

)−1
, (A.15)

where w1 denotes the weight satisfying PAPR = 1 constraint, i.e., the unimod-

ular condition.

• The average power in the sidelobe is

P s
avg(wσ) = wH

σRSwσ. (A.16)

• The maximum power in the sidelobe is

P s
max = max

(ϕ,θ)∈S
Pσ(ϕ, θ). (A.17)

• The peak sidelobe level is

PSL =
Pm
min

P s
max

. (A.18)

• The ratio of average powers in the main lobe and sidelobe is

Pm/s
avg (wσ) =

wH
σRMwσ

wH
σRSwσ

. (A.19)
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• The maximum range ratio is

Rmax(wσ) =

(
Pm

avg(wσ)

Pm
avg(w1)

)1/4

=

(
wH

σRMwσ

wH
1RMw1

)1/4

(A.20)

from the relation [1] that the maximum range is proportional to

(average power× aperture)1/4.
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