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ABSTRACT

DEVELOPMENT OF A ROTORCRAFT TIME DOMAIN SYSTEM
IDENTIFICATION SOFTWARE

Aslandoğan, Ongun Hazar

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. İlkay Yavrucuk

Co-Supervisor: Dr. Gönenç Gürsoy

January 2023, 124 pages

A system identification software to identify stability and control derivatives for rotor-

craft in hover and forward flight conditions is developed in this thesis. To demonstrate

the identification procedure, a high fidelity nonlinear model of the H135 helicopter is

used. Frequency sweep, 3211 and 2311 type inputs are given to the nonlinear heli-

copter model to generate test data. The procedure is carried out by identifying a state

space model structure in time domain using output error method with Levenberg-

Marquardt algorithm. Initially, a model reduction routine is carried out to drop re-

dundant derivatives in the state space linear model structure. By making use of state

and control delays, higher order dynamics introduced to model response are identified

with greater accuracy. The identified system is verified in frequency domain using

frequency sweep maneuvers, whose time domain signals are converted to frequency

domain via discrete Fourier transform.

Keywords: system identification, rotorcraft system identification, time domain sys-
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tem identification, output-error method, model reduction, frequency domain verifica-

tion
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ÖZ

DÖNER KANATLI HAVA ARAÇLARI İÇİN ZAMAN UZAYINDA SİSTEM
TANIMLAMA YAZILIMI GELİŞTİRİLMESİ

Aslandoğan, Ongun Hazar

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İlkay Yavrucuk

Ortak Tez Yöneticisi: Dr. Gönenç Gürsoy

Ocak 2023 , 124 sayfa

Bu tezde döner kanatlı bi hava aracının havada asılı kalma ve ileri uçuş durumların-

daki kararlılık ve kontrol aerodinamik türevlerinin tanımlanması için sistem tanımla

yazılımı geliştirilmiştir. Bu sistem tanımlama işlemini göstermek için H135 helikop-

terinin yüksek sadakat seviyesine sahip doğrusal olmayan bir modeli kullanılmıştır.

Bu doğrusal olmayan helikopter modeline frekans taraması, 3211 ve 2311 tipi girdi-

ler verilerek test verileri oluşturulmuştur. Bu prosedürde zaman uzayında çıktı hatası

metodu ile Levenberg-Marquardt algoritması ile durum uzayı yapısında bir model ta-

nımlanmıştır. Başlandıçta bu model yapısındaki ihtiyaç fazlası türevleri eksiltmek için

bir model küçültme rutini uygulanmıştır. Model cevabındaki yüksek mertebe dina-

miklerin daha yüksek doğrulukta tanımlanabilmesi için durum ve kontrollerde zaman

gecikmeleri kullanılmıştır. Tanımlanan sistem, frekans taraması manevralarının ayrık

Fourier dönüşümü ile frekans uzayından zaman uzayına dönüştürülmesi ile frekans

uzayında doğrulanmıştır.
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Anahtar Kelimeler: sistem tanımlama, döner kanatlı hava aracı sistem tanımlaması,

zaman uzayında sistem tanımlaması, çıktı hatası metodu, model küçültme, frekans

uzayında doğrulama
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CHAPTER 1

INTRODUCTION

1.1 Background and Objectives

Mathematical models are constructed by employing the laws and concepts of math-

ematics and aim to express real life processes. These models are used in numerous

fields of studies whether it is natural sciences, engineering or social sciences. In the

field of aerospace engineering, mathematical models are often used to describe phys-

ical processes taking place in real life. The models of flight vehicle dynamic systems

aim to reflect the actual behavior of those systems with certain degrees of accuracy.

They relate pilot inputs to dynamic vehicle response using theoretical formulations.

Accurate modelling of the actual system is challenging, as all influences on the flight

of an aircraft and their underlying physics are not straightforward. One approach to

construct mathematical models for a system with available input and output data is

system identification. System identification is a field of study which focuses on ex-

tracting the information that is present in the available experimental data by solving

an inverse problem. Even though system identification has numerous areas of utiliza-

tion, this work focuses on aerospace applications and specifically rotorcraft system

identification.

The problem of system identification is to determine a mathematical model that pro-

duces the best matching responses to the measurements when the same test inputs are

provided. The mathematical model structure for state space systems is not unique,

therefore a prior knowledge or a systematic approach to determine the necessary sys-

tem parameters is necessary. System identification is an essential step in aircraft de-

sign as its products can be used to verify wind tunnel data or analytical calculations,
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examine system performance and handling qualities, develop flight stability augmen-

tation systems and build mathematical models for in-flight simulators [18]. Moreover,

system identification can provide insight to actual processes taking place, leading to

more accurate physics based modelling.

The system identification procedure to build mathematical models from experimental

data can be carried out in either frequency domain or time domain. The choice of

domain may depend on the application and the system to be identified, as practices

in both domains have their advantages. Frequency domain methods provide direct in-

sight to aircraft stability characteristics and are better in dealing with noisy data. The

methods aim to reduce the frequency response errors between (errors of magnitude

and phase content) the measured signals and the mathematical model. Algorithms are

usually more efficient since low number of data points are present and no integration

of the system equations is required. For flight vehicle identification, frequency sweep

type maneuvers are well suited for these methods. On the other hand, time domain

methods aim to reduce the errors between time domain signals of measurements and

estimated responses. Usually, 3211 type multistep inputs with shorter durations are

utilized in time domain identification. These methods are more intuitive to work with,

and physical systems are more closely resembled by state space models in time do-

main. Furthermore, a state space model is often the desired final product of system

identification. For these reasons, time domain system identification is studied in this

work.

There are numerous applications of time domain and frequency domain methods on

fixed wing or rotary wing aircraft. The problem of fixed wing aircraft identification is

more straightforward, as the whole aircraft can be considered as a single rigid body.

Furthermore, due to planar symmetry, most fixed wing aircraft exhibit uncoupled dy-

namics between longitudinal and lateral axes. This is not the case for most rotorcraft,

especially for single rotor helicopters. Helicopters are versatile air vehicles that can

be used to execute numerous tasks owing to their ability to hover. However, due to

the presence of rotor, the aircraft cannot be considered as a rigid body. For an ac-

curate helicopter model, the rotor dynamics and the rotor-fuselage interactions are

usually needed to be modelled, but modelling of such dynamics is not straightfor-

ward. They exhibit MIMO flight characteristics which vary considerably with the

2



flight condition. Furthermore, due to their unstable and highly nonlinear nature, the

identification of helicopter dynamics is challenging, and the data collected is prone to

be corrupted by noise due to mechanical vibrations. Therefore, the identification of

rotorcraft dynamics is usually more challenging than fixed wing identification.

The usual workflow of a system identification procedure is as follows. First, the aim

and scope of identification is determined. The optimal inputs to excite the aircraft are

designed, and flight tests are executed. With the collected data, compatibility checks

are performed, and data post-processing is done as required. The mathematical model

structure is determined and constructed with the available information regarding the

system. The collected data are then inserted to the estimation algorithm to identify

a mathematical model that produces the best fitting responses. Finally, the obtained

mathematical model is verified to assess model fidelity. The preferred practice is

to verify the system in frequency domain, if the identification is carried out in time

domain, and vice versa.

The objective of this work is to establish a time domain system identification software

and use it to identify the dynamics of a full scale helicopter. It is aimed to develop

a software that encompasses powerful identification methods in time domain to iden-

tify rotorcraft with additional dynamics. For this purpose, the output error algorithm,

which is widely known in the field, is used as the primary optimization method. One

of the drawbacks of time domain methods is intermediate divergence, which is es-

pecially true for output error method. Owing to the nonlinear behavior of rotorcraft

around hover, simulations in time domain identification can encounter divergence. To

remedy this issue, time domain output error method is coupled with the Levenberg-

Marquardt algorithm. This algorithm not only prevents intermediate divergence to a

great extent, it also alters the iteration step size towards steepest descent of the cost

function. Utilizing the capability of time domain methods to identify linear or non-

linear systems, the option to enable state and control delays on desired parameters is

implemented. With these delays, the aim is to account for the higher order dynam-

ics in the system due to rotor. The acquired models are then verified in frequency

domain, using dissimilar inputs.
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1.2 Literature Review

This section discusses the historical summary of research in system identification and

the evolution of the methods used. References [18], [44] and [28] present summaries

regarding their discipline of system identification and a more comprehensive investi-

gation covering the advancements in both time and frequency domains can be found

in [15]. The early examples of flight vehicle system identification relied on the exper-

imental analysis of the stability derivatives in the 1920s. The interest in determination

of aircraft derivatives from flight test data continued rising since then. In the 1940s

and 1950s, a number of other estimation approaches are proposed. Milliken [26]

used steady state oscillatory excitations to identify aircraft dynamics with frequency

response data, and Seamans et al. [34] introduced the pulse method for aircraft perfor-

mance evaluation. Another important milestone is the usage of response curve fitting

method by Shinbrot [40]. This method is equivalent to the output error algorithm, that

is practiced in this work [18]. Even though the concept of response curve fitting is

implemented to flight vehicle system identification as early as 1950s, the approach is

abandoned at the time due to inadequacy of processing power. Therefore, the identifi-

cation means during the 1940s and 1960s evolved around frequency domain methods.

In 1960, analog matching technique became popular to verify or correct wind tunnel

data. The procedure requires manual tuning of the aircraft derivatives, hence a few

parameters can be adjusted simultaneously and the process time-consuming.

With the technological advancements allowing more powerful processors to be built,

the focus is shifted from frequency domain methods to time domain methods. In

1965, Åström and Bohlin carried out time domain identification with maximum like-

lihood parameter estimation [3]. Following that, several other contributions are made

regarding implementations of various algorithms in the 1970s. A modified Newton-

Raphson optimization technique is proposed by Iliff and Taylor [17] and a Kalman

Filter representation is used with maximum likelihood estimation principle to identify

linear systems by Mehra [25].

One of the early examples of rotorcraft system identification is presented by Kauf-

man and Peress [19] where longitudinal dynamics of S-55 helicopter is identified by

matching frequency responses. Marchand and Fu [23] developed maximum likeli-
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hood parameter estimation in frequency domain to identify Bo-105 helicopter. The

transfer function models of XV-15 tilt-rotor aircraft and Bell214-ST helicopter are

identified using freqeuncy responses and frequency sweep maneuvers by Tischler

[43, 46]. An overview of rotorcraft identification research is presented by Padfield

in [32]. Seher-Weiss carried out identification of H135 helicopter with additional

rotor and engine dynamics in frequency domain [35, 37, 38]. The time domain sys-

tem identification methods are applied to small scale unmanned rotorcraft by Li [21],

Shim et al. [39] and Khaligh et al. [20]. Grauer et al. [12] performed system iden-

tification in both time and frequency domains, employing equation error and output

error methods for a small scale hobby helicopter.

The disciple of system identification is studied by many organizations, and numerous

contributions have been made over past decades. The contributions include system

identification software products such as CIFER [44] SIDPAC [28] and FITLAB [36],

which are being used for commercial projects or for research purposes.

1.3 Outline of the Thesis

In Chapter 1, a general background for the disciple of system identification is pre-

sented. The purpose of system identification is provided with a brief history and the

objective of this thesis. Chapter 2 deals with the mathematical backgrounds of the al-

gorithms used for the development of the system identification software. It starts with

the discussion of appropriate input designs to generate the test data to be employed in

system identification. Then, the mathematical model structure adopted in this work

to represent the dynamics of the actual system is examined, along with a discussion

on modelling higher order dynamics. The maximum likelihood parameter estimation

principle and the implementation of Levenberg-Marquardt algorithm to the output er-

ror optimization method are presented. A systematic model structure determination

routine is discussed to eliminate unnecessary parameters from the model structure.

Finally, the procedure to verify the identified system in frequency domain is exam-

ined. Discrete Fourier transformation to transform time domain signals to frequency

domain is presented, as well as the windowing approach to achieve greater accuracy

during this transformation. Chapter 3 deals with the implementation of the mathe-
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matical theory discussed in the previous chapter and the results obtained. The whole

procedure followed during the implementation of the algorithms and the approaches

to solve the problems confronted are explained. In this chapter, results obtained from

two different implementations of this system identification software are presented. In

the first case, no prior knowledge of the model structure and the initial parameter val-

ues are known, hence model reduction and system identification are carried out with

the algorithms covered in Chapter 2. The second case examines the application of the

maximum likelihood identification method to a model, whose structure is determined

via adaptive learning algorithm along with the initial values of the parameters. Chap-

ter 4 concludes the studies with a summary of the work done and presents possible

fields of research to extend this study.
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CHAPTER 2

THEORY AND PROCEDURE

This study focuses on development of a system identification software for rotorcraft

dynamics using output error algorithm. However, the nonlinear nature of rotorcraft

dynamics due to the presence of rotor creates a challenging identification problem.

The flight test campaign to generate the data set suitable for identification must be

handled with care. Since the identification is carried out in time domain, where sim-

ulation of a mathematical model is required for identification, utilization of an opti-

mization algorithm prone to convergence is required to avoid intermediate divergence.

The higher order dynamics due to rotor also have to be accounted for to achieve an

accurate model. Finally, the identified models must be validated to prove suitability

for applications like controller design or flight simulator development. This chapter

discusses theories behind each step of system identification. Appropriate input de-

sign for identification purposes is discussed, mathematical model structures for flight

vehicle identification are examined along with an approach to account for additional

dynamics. The mathematical background of the output error optimization loop cou-

pled with Levenberg-Marquardt algorithm are examined and a systematic approach

to model structure determination is presented. Finally, the validation of the identified

system in frequency domain is discussed, along with methods to accurately convert

time domain signals to frequency domain.

2.1 Input Design for Time Domain Identification

The first step of the procedure followed in this work is the collection of the test data

suitable for system identification. In system identification applications for a real life
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aircraft, data gathering is performed by carrying out flight tests and recording the

inputs given to the system and the responses of the system. The aim is to excite

modes of the aircraft independently with adequate intensity. It is a crucial step as

the accuracy of parameter estimation relies on the information present in the test

data. If the dynamic characteristics of the system are not reflected in the data, then

those characteristics cannot be identified. Therefore, the maneuvers executed in flight

tests must be tailored such that the aircraft is excited to show its distinct responses.

Generally, the excitement of dynamic modes of an aircraft is done through pulse, step,

multistep or harmonic type inputs [18].

In figure 2.1, the energy spectrum of step, doublet and 3211 type inputs are presented.

The plot shows the frequency bandwidths of the excitements that the inputs generate.

It is important that the natural frequency of the mode aimed to be excited to lie within

the bandwidth of the excitement. As can be seen from the figure, step, and doublet

type inputs excite the system in a narrower frequency range compared to 3211 type in-

puts. Therefore, 3211 type inputs are chosen to be adequate for system identification

of rotorcraft dynamics in time domain. Owing to its simplicity and easy applicabil-

ity, this type of inputs are widely used in time domain system identification of air

vehicles. These inputs are executed starting from a trimmed state of aircraft. Trim

condition of an aircraft is a state of equilibrium where the velocity is fixed and no

rotation around pitch and roll axes are present [41]. Having three time steps of initial

step input may cause the aircraft to deviate far from its trim condition. Therefore, to

prevent any divergence from initial trim condition, 2311 type inputs are also exper-

imented to be used in the test campaign along with 3211 type inputs. As a result, it

is decided that both 3211 and 2311 maneuvers are sufficient and both are included in

the campaign to provide more tests to the estimation algorithm.

It should be noted that frequency sweep type inputs has a wider bandwidth compared

to multistep inputs such as doublet or 3211. A frequency sweep is executed such that

the input is given as a harmonic motion, starting with a lower frequency and gradually

increasing it to cover a wide frequency range. With rewards of broader bandwidth and

eliminating the need to execute test maneuvers in both directions, frequency sweep

tests are usually longer than the discussed multistep input tests. Even though this

type of input seems advantageous, 3211 and 2311 type input are better suited for
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time domain identification. This is due to the fact that the estimation algorithm is

prone to divergence with such lengthy maneuvers, which will be further discussed in

Section 2.3. Nevertheless, frequency sweep type inputs are used for verification of

the identified model in frequency domain, as explained in Section 2.5.

Figure 2.1: Frequency domain comparison of different input types [18]

A physics based high fidelity model of Airbus Helicopters H135 helicopter is used as

the truth model to generate the simulated flight test data, which is also referred as the

truth model data. It is a light utility helicopter with a twin engine configuration. The

helicopter has a four bladed bearingless fiber composite main rotor and the Fenestron

shrouded tail rotor [2]. It can carry five to six passengers, can achieve 136 knots

of speed and 342 nautical miles of range and has a maximum take-off weight of

2980 kg. The helicopter model is developed in MATLAB Simulink environment

and utilizes Aerotim Engineering’s [1] core model components that are developed for

level D flight models certified by European Union Aviation Safety Agency (EASA).

The main rotor model has 10 virtual and 4 actual blades with Pitt-Peters dynamic

inflow model and 2-D lookup tables of CL, CD and CM for blade elements. Also,

second order flapping, dynamic wake distortion, ground effect and vortex ring state

models are present in the model. The maneuvers are simulated with AFCS turned off.

In system identification projects, the scope of a flight test campaign depends on the

goal of identification. This study aims to implement the developed software to iden-

tify the dynamics of the H135 full scale helicopter model in two flight conditions,

namely hover and forward flight with 70 knots speed. Therefore, it is of interest to
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excite the characteristic of the truth model with all input channels separately, which

are longitudinal cyclic, lateral cyclic, collective and pedal. Using 3211 and 2311 type

inputs in both directions and for all four control channels, 16 maneuvers are executed

for one trim condition.

A trial and error process is handled with care to generate adequate truth model data.

First, the truth model is trimmed to one of the desired trim conditions, which are

hover and 70 knots forward flight. Then from the trimmed state of the model 3211

and 2311 inputs are given to each input channel in both directions, where each time

step of a 3211 or 2311 type input is considered to be one second. Note that each input

is given separately, while the model is at trimmed condition. After each input signal

is given, it is checked whether the parameters related to the on axis response of the

input channel is excited sufficiently or not. Pitch rate in longitudinal cyclic tests, roll

rate in lateral cyclic tests, vertical acceleration in collective tests and yaw rate and

lateral acceleration in pedal tests are monitored throughout the simulation process.

Input magnitude is adjusted to ensure that the excitations of the on axis parameters

are adequate. If necessary, the magnitudes of each step of 3211 signal can be altered,

as shown in figure 2.1 as the modified 3211 signal. While simulating test maneuvers,

a closed loop low frequency controller is used in all four controls to prevent the he-

licopter from deviating from the linear region around the initial trim condition. The

controller gains are also adjusted such that the lower frequency controls in the other

axes are not aggressive.

Figures 2.2, 2.3, 2.4 and 2.5 show the feedback controllers used to keep the helicopter

in the linear region around the trim condition. The controllers for the longitudinal

and lateral channels are similar, as they both use ground speed references. For heave

channel, vertical speed is held with a simple proportional feedback controller and

lastly, heading feedback is used for pedal controls.

Figure 2.6 shows that the 3211 type input given to the longitudinal cyclic channel of

the truth model and its response. The control inputs are shown as the delta values

from the trim condition, and the unmodified multistep input is also provided as the

raw input. It can be seen that the feedback controller modifies the multistep input

given to the system and make low frequency adjustments in other controls to keep the
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Figure 2.2: Feedback controller for longitudinal channel

Figure 2.3: Feedback controller for lateral channel

system around hover.

Time histories of Euler angles, accelerations and angular rates are recorded for each

maneuver during simulations with a sampling rate of 60 Hz. During simulations,

Gaussian white noise is added to the control signals which are fed into the plant to

represent process noise. Computer generated noises are associated with seed num-

bers, where every seed indicates a different noise signal. In all control channels,

noise signals with different seed numbers are added, meaning that the noise contents

in each signal are not the same. For process noise ξp , the variance of the noise is de-

cided to be σ2
p = Var(ξp) = 0.15. Even though process noise is implemented during

simulations, it is assumed that the inputs to the system can be measured accurately,

therefore noise free input signals are recorded to be used in identification.

Along with process noise, Gaussian white noise is added to state measurements to

mimic measurement noise in accelerometer and gyroscope readings in real flight tests.

Similarly, noise signals with different seed numbers are added to model outputs. For

accelerometer measurements, the variance of noise is selected to be σ2
a = Var(ξa) =

0.04 and for gyroscope, the variance of noise is σ2
g = Var(ξg) = 0.15. The accelerom-

eter measurements are modelled as f̃ = f + ξa and the gyroscope measurements are

modelled as ω̃ = ω + ξg where f and ω are model outputs and˜ is used to denote

11



Figure 2.4: Feedback controller for heave channel

Figure 2.5: Feedback controller for yaw channel

measurements. As the data set to be identified is generated through simulations, the

need to remedy biases and drifts in data stemming from weather conditions and in-

strumentation is eliminated, which are usually required in real flight applications.
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Figure 2.6: 3211 type input given to longitudinal cyclic channel of truth model and

its response in hover

2.2 Mathematical Model

In this work, the dynamics of a helicopter in hover and forward flight conditions are

identified with the developed software, as a physical mathematical model. For such

models, determination of the complexity and the structure of the model depends on

the application [18, 44]. Since this work focuses on identification in time domain, a

state space representation for aircraft dynamics is adopted as the mathematical model.

Before moving further, some terms and definitions must be examined. First of all,

body fixed reference frame is used throughout the study, as it is preferred for air

vehicles with the ability to hover [44]. The origin of this coordinate frame is located

at the center of gravity of the aircraft. x—axis is towards the nose of the aircraft,

z-axis points towards the downwards of the fuselage and y-axis obeys the right-hand

rule as illustrated in figure 2.7. The notation associated with this coordinate system is

also important. X , Y and Z are resultant aerodynamic force components along body
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axes. L, M and N are rolling, pitching and yawing moments. u, v and w are the

translational velocities along body axes and p, q and r are roll, pitch and yaw rates

around these axes. To express the orientation of the aircraft relative to Earth fixed

coordinate frame, Euler angles are utilized. These are roll angle ϕ, pitch angle θ and

yaw angle ψ.

Figure 2.7: Body fixed reference frame (adapted from [42])

The rigid body dynamics of an aircraft with six degrees of freedom can be expressed

with equations of motion derived from Newton’s second law. The derivation for equa-

tions of motion is not explicitly shown here, but can be found in [10]. The nonlinear

equations of motion are then linearized around a trim condition using small perturba-

tion theory [10]. The trim condition of the aircraft is expressed with values of states

at trim indicated with subscript 0 as u0, v0, w0, θ0 and ϕ0. Then the linearized set of

equations of motion can be represented in a state space form. State space representa-

tion of a dynamic system is a set of first order differential equations. It is a convenient

manner to represent aircraft dynamics as with appropriate selection of system states,

system parameters become aerodynamic derivatives.

The state and control perturbation parameters are translational velocities u, v, w, an-

gular rates p, q, r, Euler angles θ, ϕ and control deflections δlong, δlat, δcol, δped. Note

that the adopted notation for aircraft controls is for rotorcraft. For fixed wing aircraft,
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the aircraft controls can be expressed as δelev, δail, δrud, δthr. The yaw angle ψ is omit-

ted as a perturbation state, as it only indicates the aircraft’s heading, not the dynamics.

The aerodynamic forces and moments are expressed as Taylor Series expansions. By

ignoring higher order terms, the linearized equations of motion are acquired as a set

of equations 2.1. The aerodynamic forces and moments with subscripts in the equa-

tions indicate partial derivatives of these forces and moments relative to the parameter

in the subscript. The derivations of these equations and the assumptions made can be

found in [10, 44]. It is important to note that the linearized equations presented here

indicate the dynamics from the trimmed state of the aircraft.

u̇ =(−g cos θ0) θ +Xuu+Xww + (Xq − w0)q +Xvv +Xpp+ (Xr + v0)r

+Xδlong
δlong +Xδlatδlat +Xδcolδcol +Xδpedδped

(2.1a)

v̇ =(−g sinϕ0 sin θ0) θ + (g cosϕ0 cos θ0)ϕ+ Yuu+ Yww + Yqq + Yvv

+ (Yp + w0)p+ (Yr − u0)r + Yδlong
δlong + Yδlatδlat

+ Yδcolδcol + Yδpedδped

(2.1b)

ẇ =(−g cosϕ0 sin θ0) θ + (−g sinϕ0 cos θ0)ϕ+ Zuu+ Zww + (Zq + u0)q

+ Zvv + (Zp − v0)p+ Zϕϕ+ Zrr + Zδlong
δlong + Zδlatδlat

+ Zδcolδcol + Zδpedδped

(2.1c)

ṗ =Luu+ Lww + Lqq + Lvv + Lpp+ Lrr

+ Lδlong
δlong + Lδlatδlat + Lδcolδcol + Lδpedδped

(2.1d)

q̇ =Muu+Mww +Mqq +Mvv +Mpp+Mrr +Mδlong
δlong +Mδlatδlat

+Mδcolδcol +Mδpedδped
(2.1e)

ṙ =Nuu+Nww +Nqq +Nvv +Npp+Nrr

+Nδlong
δlong +Nδlatδlat +Nδcolδcol +Nδpedδped

(2.1f)

θ̇ = q cosϕ0 − r sinϕ0 (2.1g)
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ϕ̇ = q sinϕ0 tan θ0 + p+ r cosϕ0 tan θ0 (2.1h)

The linearized set of equations can be written in state space form as:

ẋ = Ax+Bu (2.2)

y = Cx+Du (2.3)

Where x is the state vector and u is the control vector given in equations 2.4 and 2.5

respectively. Equation 2.7 shows the eight by eightAmatrix, which consists of stabil-

ity derivatives reflecting the sensitivity of aerodynamic forces and moments to state

parameters. Similarly, the elements of B matrix are control derivatives, reflecting the

sensitivity of forces and moments to aircraft controls, which is given in 2.8. y is the

measurement vector as shown in 2.6. In real life flight test applications, the angu-

lar rate measurements are obtained directly from the gyroscope and the Euler angles

are acquired by the integration of angular rates. The non-gravitational acceleration

a body has is called specific acceleration and since accelerometers measure specific

accelerations, terms ax, ay and az are present in the measurement vector instead of

translational velocities. Consequently, for the measurements calculated by 2.3, the

C and D matrices are constructed such that specific accelerations are present in the

measurement vector as shown in equations 2.9 and 2.10.

x =
[
u w q θ v p ϕ r

]T
(2.4)

u =
[
δlong δlat δcoll δped

]T
(2.5)

y =
[
ax az q θ ay p ϕ r

]T
(2.6)

16



A =



Xu Xw Xq − w0 − g cos θ0 Xv Xp 0 Xr + v0

Zu Zw Zq + u0 −g cosϕ0 cos θ0 Zv Zp − v0 −g sinϕ0 cos θ0 Zr

Mu Mw Mq 0 Mv Mp 0 Mr

0 0 cos θ0 0 0 0 0 − sin θ0

Yu Yw Yq −g sinϕ0 sin θ0 Yv Yp + w0 g cosϕ0 cos θ0 Yr − u0

Lu Lw Lq 0 Lv Lp 0 Lr

0 0 sinϕ0 tan θ0 1 0 0 0 cosϕ0 tan θ0

Nu Nw Nq 0 Nv Np 0 Nr



(2.7)

B =



Xδlong Xδlat Xδcoll Xδped

Zδlong Zδlat Zδcoll Zδped

Mδlong Mδlat Mδcoll Mδped

0 0 0 0

Yδlong Yδlat Yδcoll Yδped

Lδlong Lδlat Lδcoll Lδped

0 0 0 0

Nδlong Nδlat Nδcoll Nδped



(2.8)

C =



Xu Xw Xq − w0 0 Xv Xp 0 Xr + v0

Zu Zw Zq + u0 0 Zv Zp − v0 0 Zr

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

Yu Yw Yq 0 Yv Yp + w0 0 Yr − u0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(2.9)
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D =



Xδlong Xδlat Xδcoll Xδped

Zδlong Zδlat Zδcoll Zδped

0 0 0 0

0 0 0 0

Yδlong Yδlat Yδcoll Yδped

0 0 0 0

0 0 0 0

0 0 0 0



(2.10)

The first four states in the state vector x are mainly associated with the longitudinal

dynamics, and the last four are related to lateral dynamics of the aircraft. By adopt-

ing this order, the coupling terms in A matrix can be easily seen. The assumption

of uncoupled longitudinal and lateral dynamics for fixed wing aircraft is generally a

reasonable one. However, the longitudinal and lateral dynamics of helicopters cannot

be assumed as uncoupled, mainly due to the presence of rotor. One good example

of this coupled motion is due to gyroscopic effect of the rotor. The rotor of a heli-

copter can be thought of as a giant gyroscope. As the helicopter and hence the rotor

has a nonzero pitch rate, a moment is generated in the lateral axis, which produces a

nonzero roll rate. For this reason, it is thought to be necessary to include both longi-

tudinal and lateral states in the state space formulation of the identification model, as

also stated in [44]. Therefore, the identification model has all aerodynamic derivatives

shown in set of equations 2.1 as identification parameters.

The state space model obtained is a set of first order differential equations express-

ing the dynamic behavior of the aircraft. In order to identify a mathematical model

that shows similar behavior to the truth model data, the mathematical model must be

simulated to get outputs. For this purpose, numerical integration is used. Numerous

numerical integration methods are applicable for simulation of mathematical models,

depending on the accuracy required. The simplest of them is the Taylor Series based

Euler’s method, which is a first order accurate numerical method used to approximate

solutions of ordinary differential equations (ODE) with known initial conditions. Let

x be the state vector to be calculated and ∆t to be the simulation time step. It approx-

imates the value at the next time step as:
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x(t+∆t) = x(t) + (∆t)f(t,x(t)) (2.11)

Where f(t,x(t)) = ẋ(t). By using i as the time step index, the equation above can

also be written as:

xi+1 = xi + (∆t)ẋi (2.12)

Therefore, by iterating the algorithm, the time histories of states in vector x can be

acquired. There are other numerical integration methods that can be used for simula-

tion purposes, such as second order accurate Heun’s method or Runge-Kutta methods

with greater order of accuracy. However, as the accuracy of the numerical integra-

tion increases, the computational cost also increases. Therefore, Euler’s method is

adopted for this study to avoid computational overhead and its accuracy is thought to

be sufficient.

2.2.1 Modelling of Additional Dynamics

The model structure discussed so far consists of linearized equations of motion for

rigid body dynamics. This study, however, focuses on identification of rotorcraft

dynamics. Due to the presence of rotor, additional dynamics to the conventional 6DoF

model are observed. These transient effects can be observed in truth model signals

as higher frequency behavior and delayed response between the states and controls.

Tischler [44] proposed modelling each of the additional dynamics as additional states

to the 6DoF model structure. The obtained hybrid model structure has 20 states to be

modelled and identified.

One example to this issue is given in [18] as the downwash lag effect in a fixed wing

aircraft. The angle of attack of the horizontal tail of an aircraft is altered due to

downwash of the wing. A change in the flow over the wing also results in a change

in downwash flow. Hence, the angle of attack that the horizontal tail experiences is

altered. However, due to the transit time effect, the change in the angle of attack of

the horizontal tail is not instant, but with a time delay. This time delay can be used to
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model the angle of attack of the horizontal tail. Following [10,18], the angle of attack

of the horizontal tail can be modelled as:

αH = αwb + iH − εH + αdyn (2.13)

Where αwb is the angle of attack of the wing-body, iH is the horizontal tail trim angle

εH is the downwash angle and αdyn is the dynamic angle of attack. The downwash

angle is further expressed as:

εH =
∂εH
∂α

α(t− τ) +
∂εH
∂CT

CT (t− τ) (2.14)

Where the partial derivatives are the unknown parameters to be identified, CT is the

thrust coefficient and τ represents the transient time delay. In this example, the time

delay is only modelled to account for the transient change in the flow characteristics.

Jategaonkar [18] proposes delay arrays as a more general solution to model additional

dynamics in a system. In this approach, any parameter in the model structure can be

delayed, and the delay amount can be included as an unknown parameter. During

optimization, the unknown time delays should be identified together with the rest of

the unknown parameters. To model the additional dynamics in a helicopter, the delay

array approach can be utilized. Some key derivatives in the model structure can be

delayed to reflect the higher order dynamics.

Additional dynamics in the helicopters mainly stem from the existence of rotor. It not

only introduces asymmetrical flight conditions throughout the operational envelope,

but also the aircraft cannot be considered as a single rigid body. Some of these dy-

namics are results of rotor blade flapping, lead lag dynamics, coning/inflow dynamics

and yaw/engine dynamics. Implementation of time delays in the model structure to

account for such dynamics requires understanding of rotor dynamics, as the parame-

ters to be delayed must be selected reasonably. It is to avoid multiple solutions during

optimization, and time delays lacking physical meanings. One example of the de-

lays in helicopter dynamics is simply the input delay, as helicopters utilize main rotor

flapping to maneuver. The cyclic and collective controls do not directly change the

flapping angles, instead, they modify the pitch angles of each blade and the flapping
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is developed with the rotation of the rotor. To represent this behavior, time delays can

be added to the derivatives relating the longitudinal and lateral cyclic controls to the

pitch and roll moments in the control matrix.

The pitch to roll coupling in helicopters can be given as another example to this dis-

cussion. The main rotor acts like a giant gyroscope, as whenever the helicopter has

a nonzero pitch rate or roll rate, the rotor has a nonzero moment in the other direc-

tion. To illustrate, if the helicopter pitches up, the rotor develops a rolling moment

resulting in coupled longitudinal and lateral dynamics. To account for this gyroscopic

effect, time delays can be introduced to derivatives which relate pitch and roll rates to

moments. Equations 2.15 and 2.16 represent the implementation of time delays to re-

lated parameters in system and control matrices, where symbol τ is used to represent

time delays. Each time delay can have a different value, which are left as unknown

parameters to be identified. However, they cannot physically take negative values, as

that would mean using information from future times. Note that these equations with

all time delays employed on discussed parameters is only representative, as identifi-

cation in different flight conditions can require only few of these time delays or none

at all in the model structure.

ṗ = Lpp(t− τ1) + . . .+ Lqq(t− τ2)+ . . .

+Lδlong
δlong(t− τ3) + . . .+ Lδlatδlat(t− τ4)

(2.15)

q̇ =Mpp(t− τ5) + . . .+Mqq(t− τ6)+ . . .

+Mδlong
δlong(t− τ7) + . . .+Mδlatδlat(t− τ8)

(2.16)

2.3 Output-Error Method

Having discussed the mathematical model to be estimated and adequate input types

to be used for identification purposes, the parameter estimation method used in this

work can now be discussed.

There are numerous studies that focus on identification of aircraft dynamics in both

frequency and time domains. This study covers identification of rotorcraft dynamics
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in time domain using maximum likelihood based output error algorithm. It is one

of the two central identification methods, while the other is filter-error method [18].

Maximum likelihood output-error method is widely used for fixed wing aircraft and

rotorcraft system identification purposes since 1960s. It can handle both linear and

nonlinear model structures with arbitrary complexity [18]. The output-error method

focuses on minimizing the error between the actual system responses (flight test mea-

surements or truth model outputs) and simulated mathematical model outputs by iter-

ating the unknown system parameters. As it is an iterative approach, model response

must be simulated multiple times at each iteration step until a local minimum in the

cost function is achieved.

2.3.1 Maximum Likelihood Estimation Principle

The maximum likelihood estimation theory is based on statistics, where the likelihood

of a number coming within a range of values is expressed by probability density

functions. Although the principle is applicable to any type of probability density

functions, Gaussian (normal) distribution is considered throughout this derivation. A

Gaussian distribution is defined by mean and covariance values. Let a be a random

variable, then the mean value and covariance are defined as:

m = E{a} (2.17)

σ2 = E{(a−m)2} (2.18)

Where E is the expected value, which can also be expressed as the sum of all possible

values, multiplied by their probability of occurrence. Using the definitions of mean

value m and covariance σ2, the Gaussian distribution function of a random variable a

can be written as [18]:

p(a) =
1√
2πσ

exp

[
−(a−m)2

2σ2

]
(2.19)

The discussion can also be extended for a multidimensional distribution where a is a

vector with n Gaussian distribution elements aT = (a1, ..., an) and correspondingly
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mT = (m1, ...,mn). The joint probability distribution function is given as:

p(a1, ..., an) =
1

(2π)n/2
√
|R|

exp

[
−1

2
(a−m)TR−1(a−m)

]
(2.20)

R in equation 2.20 is the measurement error covariance matrix calculated as:

Rij = E{(ai −mi)(aj −mj)} = σiσjρij (2.21)

Where ρij are correlation coefficients with ρii = 1.

In the use of the maximum likelihood principle in system identification, the parameter

vector of Θ which is unknown at the beginning is estimated using a set of observa-

tions (z1, z2, ..., zN) with N number of samples. Defining the conditional probability

p(z | Θ) as the probability of z given Θ. Assuming that the observations in vec-

tor z are independent of each other, the probability p(z | Θ) can be written as the

multiplication of the conditional probability of each observation.

p(z | Θ) =
N∏
k=1

p(zk | Θ) = p(z1 | Θ) · p(z2 | Θ) · p(z3 | Θ) · ... · p(zN | Θ) (2.22)

It is shown that for a multidimensional Gaussian distribution of variables, the joint

probability function also depends on the measurement noise covariance matrix R.

Therefore, the likelihood function can be expressed as p(z(t1), ...,z(tN) | Θ, R)

given parameters Θ and R.

The aim of the maximum likelihood parameter estimate founded by Fisher is to search

values of unknown parameters Θ which maximizes the probability of p(z | Θ, R)
[18]. Therefore, the likelihood function does not deal with the probability distri-

bution of unknown parameters Θ but the probability distribution of z. In order to

implement the maximum likelihood function to the system identification problem,

the error υ(tk) = z(tk) − y(tk) is defined. z is the vector of observations and y

is the vector of model outputs. Assuming that the error υ at each time step tk are

statistically independent, the following relation can be written:
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E{υ(tk)υ(tl)T} = Rδkl (2.23)

δkl is the Kronecker delta, which takes the value of 1 when k = l and 0 otherwise.

The probability density at a singular time is given to be [18]:

p(z(tk) | Θ, R) =
1

(2π)ny/2
√

|R|

× exp

[
−1

2
{z(tk)− y(tk)}TR−1{z(tk)− y(tk)}

] (2.24)

Where ny is the number of observation variables. The likelihood function including

all time steps p(z(t1), ...,z(tN) | Θ, R) becomes:

p (z (t1) , . . . ,z (tN) | Θ, R) =
N∏
k=1

p (z (tk) | Θ, R)

= {(2π)ny |R|}−N/2 exp

[
−1

2

N∑
k=1

[z (tk)− y (tk)]
T R−1 [z (tk)− y (tk)]

]
(2.25)

The parameters Θ andR that maximizes the probability p (z (t1) , . . . ,z (tN) | Θ, R)
can be found by simply taking the derivatives of 2.25 with respect to Θ and R and

equating them to zero. However, for an easier practice, the equivalent problem of

minimization of the negative logarithm of the maximum likelihood function L(z |
Θ, R) is considered.

L(z | Θ, R) =1

2

N∑
k=1

[z (tk)− y (tk)]
T R−1 [z (tk)− y (tk)]

+
N

2
ln(det(R)) +

Nny

2
ln(2π)

(2.26)
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2.3.2 Implementation of Maximum Likelihood Parameter Estimation on Math-

ematical Models

As a general form, a mathematical model of a linear or nonlinear system can be

expressed as [14]:

ẋ = f(Θ,x(t),u(t)), x(t0) = x0 (2.27)

y = g(Θ,x(t),u(t)) (2.28)

z(tk) = y(tk) + υ(tk), tk = 1, ..., N (2.29)

In this mathematical model, it is assumed that inputs are measured without error and

process noise is negligible, meaning that only measurement noise is present. The

measurement noise is assumed to be defined by a Gaussian distribution with zero

mean and identity covariance. It is also assumed that the measurement errors at each

time step tk are statistically independent, as stated in the previous section. The cost

function to be minimized is the negative logarithm of the maximum likelihood func-

tion given in equation 2.26 which can also be denoted as J(Θ, R). The last term in

this cost function has a constant value, as the number of observation parameters and

number of observation data points have a constant value for a given data set. There-

fore, its existence has no impact on the minimization problem. For the rest of the

terms, the measurement noise covariance matrix R has to be known or calculated.

If R is known, the second term in the cost function becomes a constant and can again

be dropped as it does not affect the optimization procedure. The cost function then

becomes:

J(Θ) =
1

2

N∑
k=1

[z (tk)− y (tk)]
T R−1 [z (tk)− y (tk)] (2.30)

However, in the problem examined in this study, the matrix R is not known and has

to be calculated. First, an expression for R is obtained by taking the partial derivative

of the cost function with respect to R and setting it to zero [18].
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R =
1

N

N∑
k=1

[z (tk)− y (tk)] [z (tk)− y (tk)]
T (2.31)

Substitution of expression 2.31 into cost function equation given in 2.26 yields

J(Θ) =
1

2
nyN +

N

2
ln(det(R)) +

Nny

2
ln(2π) (2.32)

As mentioned, for a given data set, the values for ny and N are constant and known.

Thus, the cost function is reduced to the determinant of R.

J(Θ) = det(R) (2.33)

The measurement noise covariance matrixR is a diagonal matrix as stated by equation

2.23. Therefore, the cost function to be minimized is calculated by the product of the

diagonal elements in matrix R.

Now, the aim is to minimize equation 2.33 using an optimization algorithm. First,

appropriate initial guesses for unknown system parameters Θ are chosen. Then the

mathematical model outputs y are calculated. Using measurements z, measurement

noise covariance matrixR is calculated. Utilizing a nonlinear optimization algorithm,

values for Θ are updated. This procedure is repeated until sufficient convergence is

achieved.

2.3.3 Gauss-Newton Algorithm

The Gauss-Newton algorithm is a modified form of the Newton-Raphson algorithm.

It is a second order nonlinear optimization method that is widely used for aircraft

system identification. The aim is to minimize the cost function by iterating the values

for unknown system parameters Θ, therefore the condition for minimization is given

to be:

∂J(Θ)

∂Θ
= 0 (2.34)
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The first two terms of the Taylor expansion about ith iteration value of the parameter

vector Θ is:

(
∂J

∂Θ

)
i+1

≈
(
∂J

∂Θ

)
i

+

(
∂2J

∂Θ2

)
i

∆Θ (2.35)

∆Θ is the parameter update between iterations i and i + 1. The term multiplied

with ∆Θ is the Hessian matrix, which is the second derivatives of the cost function

with respect to system parameters at ith iteration. Using the minimization criteria in

equation 2.34, the parameter update becomes:

∆Θ = −
[(

∂2J

∂Θ2

)
i

]−1(
∂J

∂Θ

)
i

(2.36)

By using initial guesses for system parameters Θ0, the iteration can be initiated to

find the minimum of the cost function. This procedure is called the Newton-Raphson

method. The parameter updates are larger when the cost function is away from its

minima, and they become smaller as the cost is minimized. The number of steps re-

quired for minimization depends on the initial values of the parameters and the shape

of the cost function. To apply the minimization algorithm to the maximum likeli-

hood function, the first and second partial derivatives of equation 2.30 with respect to

parameters Θ are calculated.

∂J

∂Θ
= −

N∑
k=1

[
∂y (tk)

∂Θ

]T
R−1 [z (tk)− y (tk)] (2.37)

∂2J

∂Θ2 =
N∑
k=1

[
∂y (tk)

∂Θ

]T
R−1∂y (tk)

∂Θ
−

N∑
k=1

[
∂2y (tk)

∂Θ2

]T
R−1 [z (tk)− y (tk)]

(2.38)

The calculation of the first gradient of the cost function given in equation 2.37 is

simple, as measured data and system response are known and R can be calculated

from 2.31. It only requires the calculation of response gradients ∂y(tk)/∂Θ. The

calculation of the second gradient of the cost function, however, is more involved as

it requires calculation of second response gradients. The optimization procedure tries
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to minimize the error between measurements and system responses. Therefore, the

last term in equation 2.38 becomes negligible with sufficient data length due to the

assumption of zero mean and identity covariance [18]. The second gradient of J can

be approximated as:

∂2J

∂Θ2 ≈
N∑
k=1

[
∂y(tk)

∂Θ

]T
R−1

[
∂y(tk)

∂Θ

]
(2.39)

With this simplification, the algorithm is called the Gauss-Newton method or modi-

fied Newton-Raphson method. Denoting the parameter update at each iteration step i

as:

Θi+1 = Θi +∆Θ (2.40)

The Gauss-Newton parameter update vector ∆Θ at each iteration can be calculated

from equation 2.41.

∆Θ = F−1 − G (2.41)

F =
N∑
k=1

[
∂y(tk)

∂Θ

]T
R−1

[
∂y(tk)

∂Θ

]
(2.42)

G = −
N∑
k=1

[
∂y(tk)

∂Θ

]T
R−1[z(tk)− y(tk)] (2.43)

F is the Hessian matrix and G is the gradient vector. Since the measurement noise

covariance matrix R is diagonal, the inverse of this matrix is again a diagonal ma-

trix with reciprocals of the elements. From equation 2.31, matrix R represents the

squared and summed errors between each measurement and estimated signal, divided

by the number of data points. The R−1 term in expressions 2.42 and 2.43 represents

a division to squared errors, which is dependent on the units of the signals. This term

is multiplied by partial differences from both sides in 2.42 and by partial differences
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from one side and errors from the other side in 2.43. Therefore, the calculations of F ,

G and the parameter update vector do not depend on the units of the measurements.

Hessian and gradient vector are both constructed from partial derivatives of the system

response y with respect to model parameters Θ. Therefore, these derivatives have to

be calculated to construct F and G. The derivatives can be calculated analytically

by differentiating equation 2.28 with respect to Θ, however, this approach becomes

cumbersome when the model structure is nonlinear [18]. To account for any model

structure, numerical differentiation is employed. The forward differentiation of model

responses with respect to system parameters is expressed as:

[
∂y (tk)

∂Θ

]
ij

≈ ypi (tk)− yi (tk)

δΘj

; i = 1, . . . , ny; j = 1, . . . , nq

≈ gi (x
p (tk) ,u (tk) ,Θ+ δΘje

j)− gi (x (tk) ,u (tk) ,Θ)

δΘj

(2.44)

Where ny is the number of observation variables, nq is the number of unknown system

parameters. The superscript p indicates the perturbed variables δΘj is the perturbed

system parameter at jth element and ej is a vector with one on jth index and zero

elsewhere. As can be seen from the expression, the unperturbed system response is

subtracted from the perturbed system response and divided by the perturbation. The

perturbed system response is obtained by simulating the mathematical model with

perturbed system parameters (Θ+ δΘje
j). The perturbation size for each parameter

is taken to be 10−6 times the value of that parameter. This approach to calculate the

perturbation size is proposed by Jategaonkar in [18], however, since the difference

between perturbed and unperturbed system responses are divided to the perturbation,

different perturbation sizes also work as long as they do not divert the model from the

linear region.

δΘj = 10−6Θj (2.45)

If the value of a parameter is zero, then the perturbation is directly taken as 10−6 as

suggested in [18].
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The forward difference approach presented in 2.44 is a first order accurate approx-

imation for the first derivative of a function. Central differentiation, a second order

accurate approximation method, can also be used to achieve greater precision. How-

ever, it requires the perturbations to be given in both positive and negative directions.

Calculation of the sensitivity matrix ∂y/∂Θ is computationally expensive, as all tests

must be simulated for each perturbed variable in Θ. Therefore, to avoid further com-

putational burden, forward difference formula is thought to be satisfactory and used

to obtain sensitivity matrices.

2.3.4 Levenberg-Marquardt Algorithm

The discussed Gauss-Newton method forms the basis for the maximum likelihood

parameter identification in this work. The parameter update law given in equation

2.41 works decently in applications where the initial guesses for system parameters

are not far from their optimal values and when the identified system behavior is linear.

However, the algorithm is prone to diverge in many applications where no knowledge

is available for good initial parameter guesses. In order to avoid divergence, some

approaches proposed in [18].

The first approach is to reduce the step size by directly multiplying the parameter

update vector ∆Θ with a learning rate gain α between 0 and 1 as shown in equation

2.46. With this approach, the optimization iteration takes smaller parameter update

steps and intermediate divergence can be avoided in some cases. This approach can

also be extended such that the step size reduction is repeated until a reduction in cost

function in a given iteration step is achieved. Even though this approach is useful to

prevent divergence in some cases, the optimization loop can still diverge depending

on the initial guesses of parameters and the cost function.

Θi+1 = Θi + α∆Θ (2.46)

Another approach is to use a line search algorithm to determine the step size of iter-

ation. The parameter update vector is again multiplied with a gain, but this time the

gain is variable and denoted as αi. The algorithm aims to have maximum reduction
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in cost function at each iteration by calculating the proper value for αi.

Θi+1 = Θi + αi∆Θ (2.47)

There are multiple line search algorithms to calculate αi, which can be found in [11,

29]. Similar to previous approach, line search methods result in improvement in

parameter convergence as the optimization iteration converges in some cases whereas

the base Gauss-Newton parameter update method diverges.

Lastly, Levenberg-Marquardt algorithm can be used to remedy intermediate diver-

gence of the optimization loop and to have parameter update in the steepest descent

direction. The algorithm uses the Gauss-Newton method parameter update 2.40 as it

is, however the calculation of the parameter update vector is modified.

(F + λI)∆Θ = −G (2.48)

In the expression 2.48, λ is the Levenberg-Marquardt parameter that is calculated to

obtain the direction of maximum reduction of cost function. It can be seen that for

λ = 0, the expression becomes the same as Gauss-Newton algorithm. As the value

of λ increases, the parameter update approaches to steepest descent. The Levenberg-

Marquardt algorithm follows few iterative steps at each iteration step of maximum

likelihood cost optimization [18, 24]. Using i as the iteration index, the procedure is

given as follows.

1. A reduction factor ν is chosen such that ν > 1. Let λ(i−1) indicate the LM

parameter in the previous iteration. Select an initial value for λ(0) such as λ(0) =

0.001.

2. For λ(i−1) and λ(i−1)/ν, calculate the parameter update from 2.48. Then simu-

late the model and calculate costs Ji = J(Θ(λi−1)) and Jν
i = J(Θ(λi−1/ν)).

3. Follow the logic such that

(i) If Jν
i ≤ Ji−1, set λ(i) = λ(i−1)/ν and ∆Θ = ∆Θ

(
λ(i−1)/ν

)
(ii) If Jν

i > Ji−1 and Ji ≤ Ji−1, then let λ(i) = λ(i−1) and ∆Θ = ∆Θ
(
λ(i−1)

)
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(iii) Else, Jν
i > Ji−1 and Ji > Ji−1, then set λ(i−1) = λ(i−1)ν and repeat

through procedure starting from step 2.

In the first case (indicated by (i)), if the cost obtained using the reduction factor ν

is smaller than the previous cost, both the LM parameter and ∆Θ are updated. In

the second scenario, the cost without using ν provides a lower cost so that ∆Θ is

updated but LM parameter is kept the same. Lastly, if none of the two costs Ji and Jν
i

are smaller than the previous cost Ji−1, then the LM parameter is increased and the

whole algorithm iterates until a lower cost is obtained.

The Gauss-Newton algorithm requires the system responses to be calculated once

to obtain the parameter update vector. In addition, Levenberg-Marquardt algorithm

creates an inner loop in the optimization algorithm to calculate the parameter update

vector with the steepest descent. In one iteration of LM algorithm, the system re-

sponses must be calculated at least twice for parameter sets Θ(λi−1) and Θ(λi−1/).

If a lower cost compared to previous iteration is not acquired, λ is updated and the

system is simulated two more times per each iteration. This computational burden

can result in lengthy run times in problems with large number of unknown parame-

ters, such as identification of system and control matrix parameters of 6DoF systems.

However, LM algorithm shows superior performance in preventing divergence of the

algorithm. It is also seen that the algorithm can achieve satisfactory results even with

initial values far away from their optimal values. Therefore, it is worth to implement

the algorithm even with the drawback of prolonged run times. It is found that the

algorithm works decently with λ(0) = 0.001 and ν = 2 for flight vehicle system

identification problems.

2.4 Model Structure Determination

The modern system identification methods have been used to identify flight vehicle

dynamics since 1960s. The studies have been in the both time and frequency domains,

where the identification is generally done for linear model structures as they are easier

to deal with. While using a linear model structure, transfer function modelling can be

preferred to express the dynamic relation between an input-output pair. Such transfer
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functions are unique, and they hastily give insight to the dynamic characteristics of

the system response, such as dominant modes and derivatives [44]. As the transfer

functions are only used for a single input-output pair, a model involving a multi input

multi output (MIMO) structure requires multiple transfer functions to be identified.

With the increasing number of system states and control channels, the number of

transfer functions to identify increases and becomes cumbersome.

In order to avoid aforementioned issues, state space model structure is adopted in

this work to identify a MIMO helicopter system. State space systems are usually the

desired final product of system identification for simulation model or control system

design [44]. Even though they are better suited for MIMO systems, state space rep-

resentations of dynamic systems are not unique. Meaning that infinitely many state

space systems can be constructed to produce the same model output for the same

inputs. Selecting all elements in system and control matrices A and B as identifi-

cation parameters can result in multiple solutions during optimization. The system

responses may converge to measurements, but the values of the parameters can be

far from their actual values. In identification of flight vehicle dynamics, identifica-

tion of the aerodynamic derivatives with high confidence is crucial as they are used

for control system design and simulation modelling. Therefore, a model structure

determination procedure is required to reduce the uncertainties in the identification

parameters.

First of all, the parameters in system and control matrices known from a prior in-

formation must be calculated. The state and control matrices with all elements as

identification parameters is:

A8×8 =


Θ1 Θ9 . . . Θ57

Θ2
...

...
...

Θ8 . . . . . . Θ64

 , B8×4 =


Θ65 Θ73 . . . Θ89

Θ66
...

...
...

Θ72 . . . . . . Θ96

 (2.49)

The state space model formulation from linearized equations of motion discussed in

section 2.2 includes some terms dependent on the trim condition of the aircraft. The

trim speeds u0, v0, w0 and Euler angles θ0, ϕ0 are known from the simulated data
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(or flight test data for a real life application) and must be implemented to the model

structure. When the dynamics for pitch angle θ and roll angle ϕ are examined, it is

seen that they are not governed by any aerodynamic derivatives, meaning that the cor-

responding rows and columns in matrices A and B are defined. Using the state vector

x =
[
u w q θ v p ϕ r

]T
and control vector u =

[
δlong δlat δcoll δped

]T
,

the state and control matrices with known values and identification parameters are

given in 2.50 and 2.51. This is also the model structure where all the aerodynamic

derivatives in equations 2.7 and 2.8 are written as identification parameters.

A =



Θ1 Θ9 Θ17 −g cos θ0 Θ33 Θ41 0 Θ57

Θ2 Θ10 Θ18 −g cosϕ0 sin θ0 Θ34 Θ42 −g sinϕ0 cos θ0 Θ58

Θ3 Θ11 Θ19 0 Θ35 Θ43 0 Θ59

0 0 cosϕ0 0 0 0 0 − sinϕ0

Θ5 Θ13 Θ21 −g sinϕ0 sin θ0 Θ37 Θ45 g cosϕ0 cos θ0 Θ61

Θ6 Θ14 Θ22 0 Θ38 Θ46 0 Θ62

0 0 sinϕ0 tan θ0 0 0 1 0 cosϕ0 tan θ0

Θ8 Θ16 Θ24 0 Θ40 Θ48 0 Θ64



(2.50)

B =



Θ65 Θ73 Θ81 Θ89

Θ66 Θ74 Θ82 Θ90

Θ67 Θ75 Θ83 Θ91

0 0 0 0

Θ69 Θ77 Θ85 Θ93

Θ70 Θ78 Θ86 Θ94

0 0 0 0

Θ72 Θ80 Θ88 Θ96



(2.51)

The model parameters left to be identified are the aerodynamic derivatives related to

translational forces and moments on the aircraft. Even if Euler angle terms are elimi-

nated from identification, the remaining parameters in a six degree of freedom model

structure might still cause multiple solutions during identification. If the number of

test maneuvers is large, then the scatter of converged parameter values can indicate the

parameter accuracy. However, this is not the case for most applications, as the number
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of repeat maneuvers are usually too small to achieve statistical accuracy [44]. There-

fore, another systematic manner is needed to predict parameter accuracy. Cramer-Rao

bounds and insensitivities are widely used in literature [5, 38] for this purpose. They

provide mathematical basis for parameter accuracy using parameter standard devia-

tion. Cramer-Rao bounds are defined as the minimum standard deviation σi for each

parameter estimate Θi obtained from multiple flight test maneuvers [44].

σi ≥ CRi (2.52)

These bounds can be constructed using the Hessian matrix as:

CRi =
√

(F−1)ii (2.53)

Where the Hessian matrix (also denoted as H in reference [44]) reflects the curvature

of the cost function to changes in parameters Θ. If a variation in one of the parameters

do not cause a significant change in the cost function, then the Cramer-Rao bounds

for that parameter is expected to be large. On the other hand, if the cost function is

sensitive to variations in a parameter, the Cramer-Rao bounds would be small. Since

large Cramer-Rao bounds imply insensitivity of cost function for those parameters,

they should be excluded from the identification or be fixed [44]. Instead of directly

using the Cramer-Rao bounds calculated by equation 2.53, the calculated values are

divided by the parameter values to obtain percentages.

CRi =

∣∣∣∣CRi

Θi

∣∣∣∣× 100%. (2.54)

Insensitivity of a parameter Ii indicates how insensitive the cost function is to changes

in that parameter Θi. High insensitivity for a converged parameter indicates that the

parameter is unimportant in the model structure. Insensitivity is calculated as:

Ii =
1√
Fii

(2.55)

Similarly, insensitivities are normalized using the converged model parameters.
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I i =

∣∣∣∣ IiΘi

∣∣∣∣× 100% (2.56)

The Cramer-Rao bounds and insensitivities are related to each other. The geometric

relation between the two is explained in [22] and shown that the Cramer-Rao bounds

construct the upper limit for insensitivities.

I i ≤ CRi (2.57)

A systematic approach to model structure determination is presented in [44]. First,

the unknown system parameters are initialized, and the model structure is converged

to a solution using the optimization algorithm while all model parameters are present.

The insensitivities for each of the parameters are calculated and normalized using

equations 2.55 and 2.56. The parameter with the largest insensitivity is then dropped

(equated to zero) from the model structure. To repeat this procedure, the remaining

parameters are again initialized, and the optimization is run until convergence. With

the obtained Hessian matrix, insensitivities are calculated again and the parameter

with the greatest insensitivity is removed from the model. This procedure is repeated

until all remaining parameters obey the guideline of I i ≤ 10%. After all insensitive

parameters are dropped, Cramer-Rao bounds are examined. At this point, all param-

eters in the model structure important, as the cost function is sensitive to all of them.

However, large Cramer-Rao bounds indicate correlation between parameters. With

the remaining parameters, the algorithm is initiated again and the parameter with the

largest Cramer-Rao bound is dropped from the model. The procedure is repeated un-

til all parameters agree with the guideline CRi ≤ 20%. When there is no parameter

to drop according to guidelines, the process is terminated. Throughout the iteration,

the converged cost after each parameter drop should be monitored. If dropping a pa-

rameter results in a significant increase in the cost, then the procedure is terminated.

Since the number of parameters in the model structure is reduced by the end of the

whole process, it can also be referred as model reduction.

The model reduction routine aims to avoid multiple solutions in the state space rep-

resentation during optimization and acquire a minimal representation of the dynamic

36



system. With the minimal representation, the important derivatives left in the model

structure converge closer to their actual values. Since one of the main goals in flight

vehicle system identification is accurate estimation of the key aerodynamic deriva-

tives, model reduction procedures are essential. Even though this Hessian based ap-

proach provides a systematic procedure, it does not guarantee the uniqueness of the

obtained model structure. The parameters are dropped from the model structure one

by one, and not introduced to the model structure later. Since the solutions obtained

with the output error algorithm in state space representation are not unique, the ob-

tained final model structure is also not unique. A solution to this issue is proposed

in [13] with the employment of adaptive learning algorithm for model structure de-

termination. Adaptive learning provides unique optimal solutions with guaranteed

convergence, independent of the initial parameter guesses. Results with the Hessian

based model reduction routine and model structure determination with adaptive learn-

ing algorithm are both examined in Chapter 3.

By using a systematic approach to determine the model structure, one can eliminate

the problem of existence of multiple solutions in state space model identification.

Eliminating the least important derivatives from the model, a minimal representation

of the system is achieved. The remaining derivatives are crucial for identification and

since the model is reduced to a minimal form, the accuracy of their converged values

is increased.

2.5 Validation of the Identified System

The system identification procedure examined in this work can be adopted to fit a

mathematical model to a truth model data. The obtained model produces the best

fitting outputs to the truth model measurements when the same inputs are being used.

In order to validate the final product model, the identification results must be verified.

Although validation in frequency domain is of greater importance since the identifi-

cation is done in time domain, model accuracy is also checked using a time domain

error criteria. A root mean square error (RMSE) is defined to verify the model outputs

in time domain [44].
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RMSE =

√√√√(
1

N · no

) N∑
i=1

[
(z − y)T (z − y)

]
(2.58)

Where z are the truth model (or flight test) measurements to be used in validation,

y are the simulated model outputs, N is the total number of data points in signals

and no is the number of state signals in each test. The presented formulation offers

a measure to examine if the time domain errors between simulated and measured

signals are acceptable or not. For fixed-wing aircraft identification, the guideline for

acceptable model accuracy is [44]:

RMSE ≤ 0.5 to 1.0 (2.59)

For helicopters, due to largely coupled longitudinal and lateral dynamics, the ade-

quate error values are larger than fixed-wing models as:

RMSE ≤ 1.0 to 2.0 (2.60)

The guidelines given in 2.59 and 2.60 can be used to make sure the identified model

has good accuracy in time domain. In the literature, however, it is common practice

to verify the results in time domain if the identification is done in frequency domain

and vice versa. Since the focus of this work is time domain identification, the results

are verified in frequency domain. For this purpose, frequency sweep type maneuvers

are need to be simulated with the identified model and the outputs must be converted

to frequency domain. As discussed, frequency sweep inputs are sine wave like sig-

nals with increasing frequency throughout the maneuver. Tischler [44] presents a

formulation for this type of input signal. The input signal is expressed as:

δsweep = Am sin[θ(t)] (2.61)

with

θ(t) ≡
∫ Trec

0

ω(t)dt (2.62)
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The term Am in equation 2.61 is the input amplitude, taken as 1. The frequency of

the oscillations vary with the following expression:

ω = ωmin +K (ωmax − ωmin) (2.63)

Where ωmin = 0.3rad/s, ωmax = 12.0rad/s and K is calculated from:

K = C2 [exp (C1t/Trec )− 1] (2.64)

with C1 = 4.0 and C2 = 0.0187 as suggested in [44].

2.5.1 Transformation of Time Domain Signals to Frequency Domain

The validation of the identified mathematical model in frequency domain requires

transformation of time domain signals to frequency domain. In other words, fre-

quency response functions between input-output pairs must be calculated. As dis-

cussed in the previous sections, it is of better practice to use dissimilar test maneuvers

for verification than the ones used for identification. Furthermore, since frequency

sweep maneuvers cover a greater frequency bandwidth compared to multistep input

types, these types of maneuvers are better suited for frequency domain analyses.

Frequency sweep type inputs excite the system with a sine wave like oscillation in one

channel where the frequency is gradually increased starting from lower frequency to

higher frequency. In figure 2.8, the model response to a frequency sweep type input

given to the longitudinal channel of the truth model in 70 knots forward flight is

shown. The input signals are the delta values from the trim condition and the raw

input signal in the longitudinal cyclic channel without controller interference is also

provided with the input signals modified by the controller.

The frequency sweep type test maneuvers are more lengthy than the multistep input

tests. In order to avoid deviation far from the trim condition, the same low frequency

controllers are used during simulations with the truth model and the identified model.

Now that the time domain input and output signal pairs for both truth model and
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Figure 2.8: Frequency sweep type input given to longitudinal cyclic channel of truth

model and its response in forward flight

identified model are generated, the obtained signals must be converted to frequency

domain. For this purpose, Fourier transform is applied to input-output signal pairs.

Fourier transform is used to decompose time based signals which can be periodic or

non-periodic into their frequency components. The integral governing the Fourier

transform for the input signal x(t) is expressed as:

X(f) =

∫ ∞

−∞
x(t)e−j2πft dt (2.65)

Similarly, for output signal y(t):

Y (f) =

∫ ∞

−∞
y(t)e−j2πft dt (2.66)

The frequency based signals X(f) and Y (f) are the Fourier coefficients. The fre-

quency response function H(f) can be written as:
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H(f) =
Y (f)

X(f)
(2.67)

Once the frequency response function is calculated, magnitude and phase information

can be acquired. However, the expressions 2.65 and 2.66 are not practical since the

time based signal does not extend from −∞ to +∞ in applications. Considering a test

maneuver recorded for a finite time interval, the appropriate transformation method

for continuous time based signals is finite Fourier transform.

X(f, T ) =

∫ T

0

x(t)e−j2πft dt (2.68)

It is also known that the data sampled during flight tests or truth model simulations

is not continuous, but discrete. For discrete signals with constant sampling time, the

discrete Fourier transform (DFT) is used.

X (fk) = X(k∆f) = ∆t
N−1∑
n=0

an exp

[
−j2π(kn)

N

]
(2.69)

Again,X(f) are the Fourier coefficients at each frequency fk. The number of discrete

frequencies is the same as the number of discrete time points in the time based signal.

Therefore, the index k is defined such that k = 0, 1, 2, ..., N − 1. ∆f is the frequency

resolution (∆f = 1/N∆t) which is also the minimum frequency point. The discrete

frequency points are distributed from fmin = 1/N∆t to sampling rate fs = 1/∆t.

The selection of discrete frequencies is given as shown in equation 2.70 [4]. Finally,

an is the time based recorded signal with n = 0, 1, 2, ..., N − 1.

fk =
k

N∆t
k = 0, 1, 2, ..., N − 1 (2.70)

To calculate the frequency response function H , autospectral (also referred to as

power spectral) density functions are needed. These functions represent the change

of the mean square of the time based signal with respect to frequency. Following

the notation used by Bendat and Piersol [4], the rough estimates of the input and out-

put autospectral density functions and input-output cross spectral density function are
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calculated as:

G̃xx(f) =
2

T
|X(f)|2 (2.71)

G̃yy(f) =
2

T
|Y (f)|2 (2.72)

G̃xy(f) =
2

T
[X∗(f)Y (f)] (2.73)

Where T is the length of a test record and ∗ indicates complex conjugate.

2.5.2 Windowing

The estimates of spectral functions are prone to have errors due to noisy measure-

ments of input and output signals. During real life flight testing, the external distur-

bances from atmospheric conditions also contribute to these errors. There are meth-

ods that can be applied to reduce the errors in spectral function estimates. An averag-

ing procedure is proposed in [4] to improve the quality of the estimates. A recorded

data of length Tr is divided into multiple shorter time segments, where each segment

has the same length T . The discrete Fourier transform given in equation 2.69 is ap-

plied to each of these segments and spectral functions are evaluated separately. The

average of these spectral functions is taken to obtain the final (smooth) estimates.

Even though the method of averaging improves the estimates of spectral functions, the

obtained signals in frequency domain still suffer from side lobe leakage if the signal

is non-periodic. The Fourier transform requires the time domain signal to be periodic

by its nature. If the time based signal does not have an integer number of cycles at the

time span of interest, leakage will occur during transformation to frequency domain.

Fourier transformation is a tool to understand the dominant frequency content in a

time based signal. If the estimations of frequency based signals are corrupted with

leakage, frequency content that is not present in the time signal would appear. Since

test recordings are non-periodic most of the time, leakages in frequency domain es-
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timates are unavoidable. In order to diminish the corruption of data with side lobe

leakage, time history windowing (or tapering) is utilized.

As discussed, the side lobe leakage occurs due to discontinuities in time history data.

Windowing can be thought of as multiplying the time intervals with a window gain to

reduce the discontinuities between these intervals. The aforementioned approach of

averaging the rough spectral estimates from multiple time segments directly uses the

time signals. It can be also said that the time section of interest is multiplied by one

and the else by zero, which is essentially the Boxcar (or rectangular) window. This

window can be expressed as:

ub(t) =

1 0 ≤ t ≤ T

0 otherwise
(2.74)

Where ub(t) is the window function. Figure 2.9 shows the Boxcar window for a time

based signal from 0 to T .

Figure 2.9: Boxcar (rectangular) window in time domain [4]

Ub(f) is the Fourier transform of the window function given in 2.74. Ub(f) is plotted

with respect to frequency in figure 2.10. The side lobe leakage can be clearly seen

as the frequency content away from the main lobe is distorted. In this type of win-

dow, the difference between the main lobe and the first side lobes is 13dB and 6dB

thereafter [4].

A window function is introduced to reduce the corruption due to side lobe leakage.

The most common window type that is used in flight vehicle system identification

studied is Hanning window, which has (1− cos) shape [4, 44]. The Hanning window
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Figure 2.10: Boxcar (rectangular) window in frequency domain [4]

function uh(t) is expressed as:

uh(t) =


1
2

(
1− cos 2πt

T

)
= 1− cos2

(
πt
T

)
0 ≤ t ≤ T

0 otherwise
(2.75)

The shape of the Hanning window is presented in figure 2.11

Figure 2.11: Hanning window in time domain [4]

Instead of a constant window gain throughout the time interval, Hanning window

starts and ends at zero. By multiplying the time signal with Hanning window function,

seamless transition between time intervals is achieved. The Fourier transform Uh(f)

of the Hanning window function is plotted in figure 2.12.

As one can see, the side lobe leakage is now significantly suppressed as the drop from

the main lobe to the first side lobe is now 32dB and follows with 18dB. Implementing

the Hanning window function into the DFT expression given in 2.69 results in:
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Figure 2.12: Hanning window in frequency domain [4]

Xi (fk) = ∆t

√
8

3

N−1∑
n=0

ain

(
1− cos2

πn

N

)
exp

[
−j2πkn

N

]
(2.76)

In equation 2.76, the subscript i is used to denote the window index. Using Han-

ning window in calculation of Fourier coefficients results in a loss in magnitude. To

overcome this issue, a correction factor of
√

8/3 calculated from equation 2.77 is

added.

∫ T

0
u2h(t)dt∫ T

0
u2b(t)dt

=
3

8
(2.77)

The segments of the time based test signal can be selected such that they overlap

each other. In fact, by using this approach of overlapped windowing, the quality of

spectral estimates are improved. The number of windows nd for a given test signal

and the overlap ratio can be selected by a trial and error process. As a rule of thumb,

80% overlap is suggested by Tischler in [44]. Using this method of sectioning the test

signal into smaller segments, the minimum frequency for DFT calculations is updated

accordingly. The minimum frequency is governed by the window length, such that

fmin = 1/Tw. For a time segment, there is no information about the frequency content

for frequencies smaller than fmin. By increasing the window size, calculations in

smaller frequencies can be done, however, the number of windows to be averaged

decrease for the same overlap ratio [44].

For time history tapering, numerous window functions are available and any one of

them can be adopted depending on the application. Reference [33] presents a detailed
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discussion on these window functions and their properties. Hanning window is one of

the most commonly used window functions in system identification studies, therefore

it is also adopted for this work.

The rough estimates of spectral functions can be obtained for each windowed time

segment using equations 2.71, 2.72 and 2.73. Averaging the rough estimates from

each window, smooth estimates (denoted withˆ) are obtained.

Ĝxx(f) =

(
1

nd

) nd∑
k=1

G̃xx,k(f) (2.78)

Ĝyy(f) =

(
1

nd

) nd∑
k=1

G̃yy,k(f) (2.79)

Ĝxy(f) =

(
1

nd

) nd∑
k=1

G̃xy,k(f) (2.80)

The smooth estimates of autospectral density function of input and output signals and

their cross power spectral density are used to obtain the frequency response function

H from 2.81.

Ĥ1(f) =
Ĝxy(f)

Ĝxx(f)
(2.81)

An alternative expression is presented in [44] as:

Ĥ2(f) =
Ĝyy(f)

Ĝyx(f)
(2.82)

Both of these expressions essentially produce the same result when input and output

measurements are not corrupted by noise. It is stated in [44] that when output mea-

surements are noisy, but the input measurements are noise free, the expression 2.81

should be adopted. Since this is the case for this study, the frequency response func-

tion is calculated using 2.81. The alternative expression given in 2.82 should be used

in certain situations where the output signal can be considered noise free and noise is

present in the input signal measurements.
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For the visualization of the frequency response function, Bode plots are utilized. Bode

plots display the magnitude and phase content with respect to frequency in semilog-

arithmic plots. The adopted units for magnitude, phase, and frequency are decibels,

degrees, and radians per second respectively. The magnitude and phase of the fre-

quency response function can be found as:

HdB = 20 log10 |H(jω)| (2.83)

Hdeg = ∠H(jω) deg (2.84)

2.5.3 Coherence Function

By plotting the magnitude and phase information, the relations between each input

and output signal pair can be examined throughout the frequency range that DFT is

calculated. However, the input output relation for the whole frequency bandwidth

is not of interest. To determine the appropriate frequency interval, the coherence

function is used.

γ̂2xy(f) =

∣∣∣Ĝxy(f)
∣∣∣2∣∣∣Ĝxx(f)

∣∣∣ ∣∣∣Ĝyy(f)
∣∣∣ (2.85)

Coherence function indicates linear relation between the input and output spectrums.

It takes values between 0 and 1 and the value of 1 implies perfect linear relation

between input and output. Due to the presence of noise in measurements and process,

the coherence function does not take the value of 1 in practice. In system identification

studies, the guideline for the adequate frequency range is indicated by the frequencies

where γ̂xy(f) ≥ 0.6 and not oscillating.
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2.5.4 Validation Criteria

Up to this point, the discussion on this chapter focuses on transformation from time

domain to frequency domain with high accuracy. The time domain input output signal

pairs can be converted to frequency domain using DFT with windowing and by using

equations 2.83 and 2.84, the Bode plots can be generated. By following this procedure

for input output pairs from both simulations of the identified model and turth model

signals, a comparison in frequency domain can be made. For this purpose, an error

function is defined as [44]:

ε(f) ≡ Hsim(f)

Hflight(f)
(2.86)

Applying equations 2.83 and 2.84 to the error function given in 2.86, the magnitude

and phase characteristics of the error between the truth model and the identified model

can be acquired. These magnitude and phase errors compared with error bounds

of maximum unnoticeable added dynamics (MUAD) and allowable error envelopes

(AEE). The zero value for both magnitude and phase signals of the error function

indicates perfect model fit to the truth model data. Therefore, both boundaries are

constructed around the zero value as shown in figure 2.13.

The boundaries of MUAD are constructed such that beyond these bounds, a pilot

would notice the difference between the simulation model and the actual aircraft.

The error tolerances become narrower around the usual pilot operating regime, which

is mid-frequencies [30]. Therefore, the most important section of these bounds for

flight vehicle identification can be considered to be between 1rad/s and 10rad/s. For

smaller or larger frequencies, pilot sensitivity decreases, as can be seen from figure

2.13. These criteria of model validation is proposed to be used as Level D model

fidelity criteria by Tischler [45] and used for identified model validation in references

[9, 13, 30, 47].

Along with MUAD bounds, another validation criteria proposed by Mitchell et al.

[27] known as allowable error envelopes (AEE). Figure 2.13 also shows AEE bound-

aries on a semilogarithmic plot. Even though these bounds look similar to MUAD

boundaries, they both established with different criteria. AEE bounds are constructed
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Figure 2.13: Boundaries of maximum unnoticeable added dynamics (MUAD) [16]

and allowable error envelopes (AEE) [27]

using pilot opinion on task performance, whereas the MUAD bounds are constructed

according to handling quality [30].

The MUAD and AEE bounds constitute the validation criteria for the identified math-

ematical model. The validation procedure can be summarized as follows. The model

and the truth model are simulated with dissimilar inputs compared to identification

maneuver set. Appropriate window size and number of windows are selected for

windowing. The input output signal pairs for both simulation and truth models are

transformed to frequency domain using DFT with windowing given in equation 2.76.

Rough spectral function estimates are obtained from equations 2.71, 2.72 and 2.73.

The rough spectral estimates for each window are averaged to calculate smooth es-

timates. The frequency response functions are calculated using equation 2.81. The

error function is calculated from 2.86 and its magnitude and phase information are

obtained by applying equations 2.83 and 2.84. The coherence function is calculated

using equation 2.85. Considering the guideline for coherence and by evaluating the

magnitude and phase errors according to MUAD and AEE bounds, the model fidelity

is examined.
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CHAPTER 3

IMPLEMENTATION AND RESULTS

The theory and procedure discussed in Chapter 2 are implemented to identify the dy-

namics of a helicopter in two flight conditions. The identification is carried out in two

cases. In the first one, no prior knowledge of the model structure or initial values of

the parameters are available, and the model structure is established via Hessian based

model reduction approach. In the second case, the model structure determination is

carried out using adaptive learning [13] along with an estimation for the initial values

for the parameters. For both trim conditions, the time domain comparisons between

the identified model without time delays, the identified model with time delays and

the truth model are presented for 3211 and 2311 type input tests. Only the tests start-

ing in the positive input direction are shown in this section for simplicity, however,

the rest of the identification maneuvers are presented in Appendix A.

Along with time domain comparison, the frequency response comparisons of the

aforementioned models are illustrated in bode plots obtained from discrete Fourier

transform to frequency sweep maneuvers. Since bode plots can be drawn for any in-

put output pair, only the most important pairs for each input signal are shown. For

longitudinal cyclic maneuvers p/δlong and q/δlong, for lateral cyclic maneuvers p/δlat

and q/δlat, for collective maneuvers r/δcoll and az/δcoll, for pedal maneuvers r/δped

and ay/δped are plotted.

Finally, the magnitude and phase errors of the identified systems are shown along with

the coherence functions. The errors in cyclic maneuvers are compared with MUAD

and AEE bounds, and the errors in collective and pedal maneuvers are compared with

MUAD bounds only.
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3.1 Identification with Hessian Based Model Reduction

In this section, the system identification results with the Hessian based model reduc-

tion approach and no initial parameter guesses are presented. The identification is

carried out for two trim conditions, namely hover and 70 knots forward flight. The

model reduction procedure discussed in Chapter 2 is applied for both trim conditions,

and time delays are added to the model structures as necessary.

The first step of flight vehicle system identification is data gathering through flight

tests. Data gathering is a crucial step that has a direct impact on the identification

results. The flight test campaign must be designed with care to obtain data with ade-

quate quality. For this purpose, the goal of system identification must be determined.

In this study, the aim is to develop a system identification software which can obtain

simple mathematical models for two different flight conditions of a helicopter. The

flight conditions are determined to be hover and forward flight with 70 knots speed

at sea level, where the helicopter exhibits distinct flight characteristics. The test ma-

neuvers must be designed such that the dynamic modes of the aircraft are excited. If

the maneuver data do not contain any information regarding these modes, they cannot

be identified [18]. The types of maneuvers are also related to the domain at which

the identification will be carried out. Frequency sweep type inputs cover a greater

frequency bandwidth compared to multistep inputs and well suited for identification

in frequency domain identification. For time domain identification, frequency sweep

inputs are not preferred as they are lengthy and can result in divergence of the al-

gorithm. Since this work focuses on time domain identification using output error

algorithm, 3211 and 2311 type maneuvers are utilized for identification. However,

frequency sweep type maneuvers are still used to verify the identified system.

The truth model used in this work is developed by Aerotim Engineering [1] and

certified by EASA as a Level D flight simulation model. At the two flight condi-

tions (hover and 70 knots forward flight), the aircraft is trimmed and starting from

these trim conditions, test maneuvers are executed. The list of simulation maneu-

vers recorded at these two trim conditions can be seen in table 3.1. In order to avoid

model deviation far from the initial trim condition, lower frequency controllers are

employed. The generated truth model test data are then corrupted by artificial mea-
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Table 3.1: List of maneuvers at each trim condition

Hover Forward Flight

3211 in both directions in all channels 8 8

2311 in both directions in all channels 8 8

Frequency Sweep in all channels 4 4

surement noise to mimic a real life flight test scenario. The recorded signals are

translational velocities u, v, w in ft/s, translational specific accelerations ax, ay, aZ

in ft/s2, rotational accelerations p, q, r in deg/s and Euler angles ϕ, θ, ψ in deg.

Once the tests signals from the truth model are generated, the initial model structure

is formulated. As stated in [18], a large, extensive mathematical model do not nec-

essarily indicate the best description of the actual system. Adopting the principle of

simplicity, the mathematical model of the helicopter is chosen to be the linearized

set of equations of motion, as shown in set of equations 2.1. When written in ma-

trix form, the differential equations are of form 2.2 and the measurement equation

is given to be as 2.3. The state and control vectors x and u are as given in 2.4 and

2.5. The measurement vector y is expressed as 2.6, since angular rates and specific

accelerations are outputs of gyroscope and accelerometer.

The optimization method for system identification is output error algorithm, which

is based on maximum likelihood parameter estimation principle. The formulation

of the algorithm is presented in Chapter 2 along with the Levenberg-Marquardt al-

gorithm and each step is developed through MATLAB environment. With this opti-

mization algorithm, a system identification software is obtained which estimates the

model parameters when the truth model signals are provided and the model structure

is specified. The system and control matrices are specified as shown in equations 2.50

and 2.51, where system parameters Θ are the unknown values to be determined via

identification. As this case assumes no prior knowledge of the system parameters are

available, the initial values for the unknown parameters are taken to be zeros.

The output error algorithm discussed in this work is an iterative method. The number

of iterations to achieve convergence depends on the number of unknown system pa-
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Table 3.2: Trimmed state values at hover

Parameter Value Parameter Value

u0 0 ft/s δlong0 66.18 %

v0 0 ft/s δlat0 52.65 %

w0 0 ft/s δcoll0 64.13 %

ϕ0 -2.87 deg δped0 37.45 %

θ0 6.76 deg Total Mass 2800.0 kg

rameters, number of available maneuvers and the initial conditions of the parameters.

At each loop, the system states are integrated for the number of maneuvers to cal-

culate model responses. When integrated with the Levenberg-Marquardt algorithm,

not only an inner loop is added to the algorithm, but this additional loop requires

the model to be simulated two times per loop. The computational overhead becomes

more expensive as the number of Levenberg-Marquardt loops and number of ma-

neuvers increase. To overcome prolonged runtimes, parallel computing in MATLAB

environment is utilized during system simulations.

3.1.1 Identification of Dynamics in Hover

The first flight condition to be identified is hover at sea level. The values of the

aircraft states at this trim condition is listed in table 3.2. Note that the values in this

table are representative, not the actual values. As can be seen from table 3.1, there

are 8 of 3211 and 2311 maneuvers each for identification and 4 frequency sweeps at

all channels for verification purposes. Therefore, a total of 16 maneuvers are fed to

the constructed maximum likelihood output error algorithm for this flight condition.

As discussed in section 2.4, state space representations of systems are not unique and

using a model structure shown in equations 2.50 and 2.51 results in redundant pa-

rameters. In order to avoid multiple solutions and parameter redundancy, the model

reduction procedure discussed in 2.4 is applied. This model reduction approach fol-

lows a systematic manner to identify parameters that are of lesser importance. These
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parameters are then equated to zero and dropped from the model structure. First, the

model structure with all system parameters is converged to a solution. The Cramer-

Rao bounds and insensitivities for each parameter are calculated using the Hessian

matrix from equations 2.53 and 2.55. The parameter with the greatest insensitivity

is then dropped according to the guidelines discussed in section 2.4. This procedure

is followed until all model parameters are dropped, to examine the fitting error after

each parameter drop. The error function is the root mean square error, formulated

as shown in equation 2.58. The guideline for an adequate model for rotorcraft is

RMSE < 2 for rotorcraft as given in [44]. Figure 3.1 presents the variation of the

cost function with parameter drop.

Figure 3.1: Variation of RMSE through model reduction in hover

As can be seen from figure 3.1, the cost function of the converged solution exhibits an

oscillating behavior until 44th parameter drop and after that a jump is observed. For

hover condition, the lowest cost is acquired with a model with 29 parameters dropped

from the model structure. This solution has a RMSE value of 1.28, which is well

below the recommended guideline value of 2. In this model structure, the dropped

aerodynamic parameters from the model structure are Xv, Xw, Xr, Xlat, Xcoll, Yp,

Yq, Yu, Yw, Ylong, Ylat, Ycoll, Yped, Zu, Zv Zp, Zq, Zlong, Zlat, Zped, Lw, Lcoll, Lped,

Mv, Mw, Mcoll, Mped, Nu and Nlong. The order that these derivatives are removed
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from the model along with their values, insensitivities and Cramer-Rao bounds are

presented in Appendix B.

With the determined model structure, the converged identification result is examined.

Figure 3.2 shows the variation of parameter values during optimization. It can be seen

that all parameters are converged successfully.

Figure 3.2: Iteration history of parameters for identification in hover

3.1.1.1 Results for Longitudinal Cyclic Input

Identification results to longitudinal cyclic inputs are examined first. Figure 3.3 il-

lustrates the identified model response along with truth model signals for 2311 type

input in positive direction in longitudinal cyclic channel. As can be seen from the

figure, the on axis pitch and the specific acceleration in body x direction responses of

the identified model shows good agreement with the outputs of the truth model. The

yaw rate response and the specific accelerations in body y and z directions deviate

from truth model signals, however, the magnitude of the excitements are also small.

When the off axis roll response is compared, it can be noticed that the truth model

response lags behind the identified system. This issue is also seen in the lateral cyclic

tests, however, only longitudinal cyclic tests are shown here explicitly for simplicity.
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To determine whether this delay in the actual system is acceptable or not, the model

validation procedure in frequency domain discussed in section 2.5 is followed. The

frequency sweep input that is used to generate truth model data are fed to the iden-

tified system. For the input output pairs for each state, frequency response functions

are calculated using Fourier transformation. Bode plots for each input and output

pair can be drawn individually, however, for the sake of simplicity only the important

pairs are shown here as it is the usual practice in literature. For frequency sweep in

longitudinal cyclic channel, q/δlong and p/δlong pairs are shown in figure 3.4

Figure 3.3: Time domain identification results for longitudinal cyclic 2311 input in

positive direction during hover

The figures illustrate that the magnitude signals between the truth model and the

identified model show good agreement, but the error between the phase signals grow

as frequency increases. In figure 3.5, the magnitude and phase errors are compared

with MUAD and AEE bounds. The figure also shows the coherence function of the

related input output pairs.

The frequency range where good identification results are desired are obtained fol-

lowing the guidelines in [44]. It is stated that the frequency bandwidth of interest

is where the coherence function is greater than 0.6 and not oscillating. For p/δlong

pair, there is a drop in the coherence function between 1-2 rad/s and after 9 rad/s.
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Figure 3.4: Bode plots of q/δlong and p/δlong pairs for frequency sweep in longitudinal

cyclic in hover

Figure 3.5: Coherence and Errors of q/δlong and p/δlong pairs for frequency sweep in

longitudinal cyclic in hover

Therefore, the region of interest is between 2 rad/s to 9 rad/s. It can be said that the

magnitude error stays within the error bounds throughout this frequency bandwidth.

However, the phase error is outside of both MUAD and AEE bounds, hence, it is

58



not acceptable. For the on axis pair of q/δlong, both magnitude and phase errors are

acceptable.

With the model structure being used, the phase content present in the truth model data

cannot be modelled with high accuracy. In order to overcome this problem, the reason

of this behavior in off axis dynamics should be examined. As discussed in 2.2.1, the

roll to pitch motion in helicopters is highly coupled due to the gyroscopic motion of

the rotor. This effect can also be referred as the off axis coupling. Furthermore, the

longitudinal and lateral cyclic controls require flapping to developed, meaning that

the response of the rotor to controls is delayed. To account for such dynamics, time

delays are employed in the model structure. When time delays are added to parame-

ters in the control matrix, they represent delays between input-output pairs. However,

time delays in the system matrix represent internal delays between the system states.

In order to avoid unnecessary complications and inclusion of unnecessary parameters

to the model structure, time delays are first added to the control derivatives of Llong,

Llat, Mlong, Mlat. The time delays are implemented in the model structure such that

the operations with the parameters with nonzero delay values are calculated separately

during simulations of the model. These delay values are implemented as unknown pa-

rameters to be identified, where a saturation logic is implemented to prevent negative

time delay values. With the obtained reduced model structure, the identification loop

is initiated again. This time, the set of parameter values are used as initial conditions.

Figure 3.6 displays the iteration histories of the parameters starting from the initial

values of the identification without time delays. It can be observed that convergence

is achieved around 15 iterations. The values of the identified parameters are provided

in Appendix C along with their relative insensitivity and Cramer-Rao percentages.

To check the obtained parameter estimates, some important static stability derivatives

are examined.

The static stability with the variation of angle of attack is examined with Mw deriva-

tive. When the angle of attack of the helicopter increases, the lift force generated by

the rotor blades increase in both retreating and advancing sides. During hover, the lift

increment in the two sides are similar on contrary to forward flight condition. As a

result, the helicopter is neutrally stable and the value of Mw is around zero. In hover,
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Figure 3.6: Iteration history of parameters for identification in hover with additional

dynamics

it can be noticed that the derivative is dropped from the model structure due to high

insensitivity. The dihedral effect is determined with Lv derivative. A stable dihedral

effect indicates the tendency of the helicopter to create restoring rolling moment when

sideslip angle changes. Helicopters have stabilizing dihedral effect, hence the sign of

Lv is negative, as it is the case with the identification results. Helicopters also have

directional (weathercock) stability due to the presence of tail rotor in hover, resulting

in a positive Nv derivative. Finally, the heave stability is investigated with the sign

of Zw. As the vertical velocity increases, the main rotor experiences greater angle of

attack and the thrust increases. Therefore, the sign of Zw is negative for helicopters.

By looking at the results in Appendix C, it can be seen that the identification results

agree with the rotorcraft dynamics. The magnitudes and signs of other derivatives

such as Mu, Xu, Xv, Yu and Yv are also checked and verified with reference [31],

where a more extensive discussion on stability and control derivatives of helicopters

can be found.

Figures 3.7, 3.8 and 3.9 show the identification results in time and frequency domains.

The roll axis response in figure 3.7 exhibits the lag due to additional dynamics, similar

to the truth model response. Furthermore, when the frequency responses in figure

3.9 are examined, it can be seen that the phase response of p/δlong shows a similar
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Figure 3.7: Time domain identification results for longitudinal cyclic 2311 input in

positive direction during hover

Figure 3.8: Time domain identification results for longitudinal cyclic 3211 input in

positive direction during hover

behavior as the truth model. Finally, to validate the obtained results, the magnitude

and phase errors are plotted along with MUAD and AEE bounds in figure 3.10. The

addition of time delays to the model structure do not result in a significant change

that a pilot can notice in q/δlong response. However, the phase error in p/δlong pair

is reduced significantly. The magnitude and phase errors of the system with time

delays are now satisfactory in the frequency bandwidth of acceptable coherence. As

mentioned before, maneuvers where the inputs start in the negative input direction are
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Figure 3.9: Frequency domain comparison of q/δlong and p/δlong input output pairs

in longitudinal cyclic frequency sweep maneuver in hover

Figure 3.10: q/δlong and p/δlong input output pairs and error bounds in longitudinal

cyclic frequency sweep maneuver in hover

presented in Appendix A.
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3.1.1.2 Results for Lateral Cyclic Input

The second input channel that the identification results are examined is lateral cyclic.

3211 and 2311 maneuvers are used for optimization, and only the inputs starting in

the positive direction are presented in this section. The rest of the maneuvers can be

found in Appendix A. The time domain comparisons of the results given in figures

3.11 and 3.12 are examined first. It can be observed that pitch and roll channels

exhibit greater excitation compared to the yaw channel, as expected. The on axis roll

response of the identified model shows good agreement with the truth model. When

the off axis pitch response is compared, it can be said that the overall trend of the

response is similar to the one of truth model. However, the dynamics due to rotor are

still present in the data from the truth model and not captured by the identified model

without time delays. The error between the models is more clear in figure 3.14. While

the model without time delays do not present acceptable results, the model with time

delays does by capturing the higher order dynamics in the actual system. As it is

done for the longitudinal cyclic input responses, the frequency responses of p/δlat

and q/δlat are checked as they are the most important ones.

Figure 3.11: Lateral cyclic 2311 input in positive direction during hover
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Figure 3.12: Lateral cyclic 3211 input in positive direction during hover

Figure 3.13: Frequency domain comparison of q/δlat and p/δlat input output pairs in

lateral cyclic frequency sweep maneuver in hover
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Figure 3.14: q/δlat and p/δlat input output pairs and error bounds in lateral cyclic

frequency sweep maneuver in hover
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3.1.1.3 Results for Collective Input

The results for 2311 and 3211 type inputs from the collective channel are presented.

For this input channel the responses of yaw rate r and vertical specific acceleration

az are considered since the excitements in other channels are small and are of lesser

importance. Clearly, the identified systems with or without time delays can both

capture the dynamics accurately.

Figure 3.15: Collective 2311 input in positive direction during hover

Figure 3.16: Collective 3211 input in positive direction during hover
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Figure 3.17: Frequency domain comparison of r/δcoll and az/δcoll input output pairs

in collective frequency sweep maneuver in hover

Figure 3.18: r/δlat and az/δlat input output pairs and error bounds in collective fre-

quency sweep maneuver in hover
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3.1.1.4 Results for Pedal Input

The last input channel to examine in hovering flight condition is pedal. The dynamics

of yaw rate r and lateral specific acceleration ay are crucial in pedal response. Similar

to collective channel results, the identified systems are adequate whether they have

time delays or not. This is an expected result, since time delays are only added to

pitch and roll derivatives.

Figure 3.19: Pedal 2311 input in positive direction during hover

Figure 3.20: Pedal 3211 input in positive direction during hover
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Figure 3.21: Frequency domain comparison of r/δcoll and ay/δcoll input output pairs

in pedal frequency sweep maneuver in hover

Figure 3.22: r/δlat and ay/δlat input output pairs and error bounds in pedal frequency

sweep maneuver in hover
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3.1.2 Identification of Dynamics in Forward Flight

The second trim condition to be identified is forward flight with 70 knots of speed.

The helicopter states and control positions at this trim condition is listed in table 3.3.

Again, the values in the table are representative values.

As can be seen from table 3.1 there are 16 maneuvers of types 3211 and 2311 ex-

ecuted starting from this trim condition. The procedure followed for forward flight

identification is similar to the hover case. As the first step, a model reduction pro-

cedure is carried out to determine an adequate model structure. As there is no prior

information available about the system parameters, initial values of the parameters

are set to zero. The model is converged with all identification parameters, and the

one with the greatest insensitivity is removed by being equated to zero. Then, again

starting from zero initial values, the procedure is repeated. The model reduction al-

gorithm is continued until all parameters are dropped from the model structure and

the variation of root mean square error is shown in figure 3.23.

By looking at figure 3.23, it can be seen that for the forward flight condition, the low-

est root mean square error can be achieved with a model with 20 derivatives dropped

from the fully populated model structure. Similar to hover trim condition, the RMSE

value of the converged solution with adequate model structure is below the recom-

mended threshold value of 2. The dropped derivatives are Xv, Xq, Xr, Xped, Yu, Yw,

Yq, Yr, Ylong, Ycoll, Zv, Zp, Zq, Zlat, Zped, Lped, Mu, Mv, Mped and Nu. The elim-

ination order of these parameters and their values, insensitivities and Cramer-Rao

Table 3.3: Trimmed state values at 70 knots forward flight

Parameter Value Parameter Value

u0 118.14 ft/s δlong0 55.23 %

v0 -8.65 ft/s δlat0 45.89 %

w0 6.98 ft/s δcoll0 58.54 %

ϕ0 1.00 deg δped0 70.35 %

θ0 2.34 deg Total Mass 2800.0 kg
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Figure 3.23: Variation of RMSE through model reduction in 70 knots forward flight

bounds are presented in Appendix B.

After the determination of the sufficient model structure, the obtained solution is ex-

amined. Figure 3.24 shows the iteration history of the model parameters. It can be

seen that all parameters are converged after around 30 iterations. When the time do-

main results are examined, an inconsistency of the identified model to the truth model

is seen. The phase error of the p/δlong response in longitudinal cyclic tests do not sat-

isfy the MUAD and AEE bounds. The q/δlat response in lateral cyclic frequency

sweep test stays within the AEE bounds, but not MUAD bounds. This is a similar

issue to the one experienced during identification of dynamics in hover. Since the er-

ror bounds are not satisfied in the off axis responses of cyclic input tests, the problem

is thought to be due to additional dynamics that are not present in the identification

model structure.

In helicopters, the pitch to roll motion is coupled due to gyroscopic effect of the rotor.

In order to obtain a high accuracy model, these dynamics must be added to the model

structure as with the employed model structure, the off axis responses to the cyclic

inputs cannot be captured accurately. Following a similar procedure as the hover case,

time delays are added to the model structure to account for the additional dynamics
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Figure 3.24: Iteration history of parameters for identification in 70 knots forward

flight

due to rotor flapping. Initially, time delays are introduced only in the control matrix

in order to avoid state delays. Time delays are added to derivatives Llong, Llat, Mlong,

Mlat and the optimization loop is initiated. The parameter values found with the

model structure without time delays are used as initial values, where the time delays

are also identification parameters. Unlike identification in hover, the introduction

of input delays to the control matrix are not sufficient to represent the additional

dynamics in the system. Therefore, along with input delays, time delays are also

introduced in the system matrix for pitch and roll related derivatives of Lp, Lq, Mp,

Mq. With input and state delays, the optimization algorithm is executed again. Note

that the delay parameters are saturated to zero to prevent negative time delays. Figure

3.25 shows the iteration histories of identification parameters.

The values, Cramer-Rao bounds and insensitivities of the identified parameters are

provided in Appendix C. The values of the important derivatives are checked with

reference [31] to confirm that they agree with rotorcraft dynamics. First of all, the an-

gle of attack static stability derivativeMw is examined. In contrast to hover condition,

this derivative is more dominant in forward fight conditions owing to the presence of
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Figure 3.25: Iteration history of parameters for identification in 70 knots forward

flight with additional dynamics

horizontal tail. Since the horizontal tail provides restoring moment when the angle

of attack changes, this derivative is expected to be negative in forward flight. The

discussions for the dihedral effect derivative Lv is similar to hover, where the sign of

the derivative is again negative. The weathercock stability derivative Nv is positive in

forward flight conditions, but along with the contribution of the tail rotor, the vertical

tail also produces restoring yaw moment. The heave stability derivative Zw is again

negative, as it is in the hover condition. The results in Appendix C show that the

obtained parameter values are consistent with helicopter dynamics.

3.1.2.1 Results for Longitudinal Cyclic Input

The first input channel that the results are examined is longitudinal cyclic. Responses

from the identified models with and without time delays are shown in figures 3.26

and 3.27, along with the simulation data from the truth model. Similar to the discus-

sion in hover, accurate identification of the pitch and roll dynamics in longitudinal

and lateral cyclic maneuvers have the utmost importance. The pitch rate response of

the two identified models are perfectly fitted to the truth model data. The specific ac-

celeration responses also show good agreement with the truth model data. When the
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roll rate responses are compared, It is seen that the identified models can capture the

magnitude content accurately, but the higher frequency oscillations are not identified

precisely without time delays.

Figure 3.26: Longitudinal cyclic 2311 input in positive direction during 70 knots

forward flight

Figure 3.27: Longitudinal cyclic 3211 input in positive direction during 70 knots

forward flight

The need for time delays become more apparent in figures 3.28 and 3.29. Figure 3.28

displays the frequency responses of the identified systems and the truth model with

bode plots. The phase response of the identified model for p/δlong input output pair is
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refined significantly with the introduction of time delays. Figure 3.29 visualizes the

error in the frequency responses of the two identified models. While no significant

improvement is observed in pitch rate response errors, the phase error of the roll

rate diminished significantly. Even though the phase error of the pitch rate degraded

slightly, a pilot cannot notice this difference since the error is still within the MUAD

bounds.

Figure 3.28: Bode plots of q/δlong and p/δlong pairs for frequency sweep in longitu-

dinal cyclic in 70 knots forward flight
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Figure 3.29: Coherence and Errors of q/δlong and p/δlong pairs for frequency sweep

in longitudinal cyclic in 70 knots forward flight

3.1.2.2 Results for Lateral Cyclic Input

The obtained models produce overall satisfactory identification results in lateral cyclic

maneuvers. However, the high frequency oscillations in the pitch rate response cannot

be captured accurately with the model structure without time delays, as can be seen

in figures 3.30 and 3.31. This error is also reflected in frequency domain responses.

Figure 3.33 displays the magnitude and phase errors. The frequency response of roll

rate produces good coherence values on a wide frequency range, and the errors are

small. The phase error in the pitch rate response is brought down to acceptable region

with utilization of time delays.
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Figure 3.30: Lateral cyclic 2311 input in positive direction during 70 knots forward

flight

Figure 3.31: Lateral cyclic 3211 input in positive direction during 70 knots forward

flight
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Figure 3.32: Frequency domain comparison of q/δlat and p/δlat input output pairs in

lateral cyclic frequency sweep maneuver 70 knots in forward flight

Figure 3.33: q/δlat and p/δlat input output pairs and error bounds in lateral cyclic

frequency sweep maneuver in 70 knots forward flight
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3.1.2.3 Results for Collective Input

When the obtained models are compared with the truth model signals in collective

input tests, it is seen that an overall acceptable model fit is acquired. The models

with or without time delays produce sufficient accuracy, as verified by the errors in

frequency domain in figure 3.37.

Figure 3.34: Collective 2311 input in positive direction during 70 knots forward flight

Figure 3.35: Collective 3211 input in positive direction during 70 knots forward flight
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Figure 3.36: Frequency domain comparison of r/δcoll and az/δcoll input output pairs

in collective frequency sweep maneuver in 70 knots forward flight

Figure 3.37: r/δlat and az/δlat input output pairs and error bounds in collective fre-

quency sweep maneuver in 70 knots forward flight
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3.1.2.4 Results for Pedal Input

The discussion for pedal tests is similar to the one for collective tests. The model fits

are decent event without time delays, so no time delays are added to related deriva-

tives.

Figure 3.38: Pedal 2311 input in positive direction during 70 knots forward flight

Figure 3.39: Pedal 3211 input in positive direction during 70 knots forward flight
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Figure 3.40: Frequency domain comparison of r/δcoll and ay/δcoll input output pairs

in pedal frequency sweep maneuver in 70 knots forward flight

Figure 3.41: r/δlat and ay/δlat input output pairs and error bounds in pedal frequency

sweep maneuver in 70 knots forward flight
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3.2 Results with an Initial Model Structure from Adaptive Learning

This section focuses on the identification of rotorcraft dynamics, where the initial

model structure and the initial conditions of the model parameters are determined

via adaptive learning algorithm. The obtained model structure is then inserted to the

maximum likelihood output error algorithm developed through Chapter 2, to account

for the higher order dynamics in the system and refine the identified model in time

domain. The theory and implementation of the adaptive learning algorithm is not

shown here explicitly, but can be accessed in [13]. To generate the truth model data,

the same high fidelity model of H135 helicopter is utilized.

The adaptive learning algorithm is an equation error based optimization method, de-

veloped using the algorithms for adaptive control presented in [6–8]. The 6-Dof

dynamics of the helicopter is implemented in the adaptive learning representation,

where the aerodynamic derivatives in the state and control matrices have adaptive

weights. Using the adaptive learning parameter update law, these weights, which can

be referred as identification parameters, are converged around the ideal weight val-

ues. The algorithm guarantees the identification parameters to be constrained with

constant oscillations in the converged state. As the weights are driven to their ideal

values with convergence, a unique optimal solution exists as linearly independent set

of vectors are accumulated in the data stack matrix. The data stack matrix is con-

structed by the concatenation of the basis (state) vectors selected from time histories

of the truth model maneuver signals. The linear independence between the basis vec-

tors is ensured by the maximization of the minimum singular value of the data stack

matrix [6]. After the initiation of the learning algorithm, the minimum singular value

of the data stack matrix increases as new basis vectors are selected to be included

in the data stack matrix. Once the data stack matrix is full, new basis vectors are

selected such that the minimum singular value is increased when an old basis vector

is replaced with the new one. When minimum singular value stops increasing and

converges, parameter convergence is achieved. Furthermore, by utilizing minimum

singular value maximization principle, the same converged values of parameters can

be achieved independent of the initial parameter guesses. This is due to the fact that

the parameter estimates of adaptive learning depends on the data being used, not
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initial values. Figure 3.42 illustrates this issue as the same parameter estimates are

achieved with zero and random initial conditions and the same minimum singular

value history is obtained for both cases. The horizontal axis represents epoch, which

is the concatenated time histories of all test maneuvers used in identification.

Figure 3.42: Example parameter convergence with adaptive learning (adapted from

[13])

A model structure determination routine aims to achieve a minimal model represen-

tation with redundant derivatives dropped from the model structure. In that sense, the

procedure can be referred to as model reduction. The oscillating boundedness of the

converged parameters can also be employed as a basis for a model structure deter-

mination routine. Each identification parameter is considered as a random variable

associated with a mean value and standard deviation. The statistical properties of the

oscillations indicate the parameter influence on the model response. The standard

deviation of each parameter estimate can be directly calculated from the oscillations

in its converged state. Whenever a parameter is removed from the model structure,

the remaining parameters converge and oscillate around another value, which creates

a bias between the parameter estimates as shown in 3.43
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Figure 3.43: Example parameter reduction with adaptive learning [13]

Initially, with all unknown parameters present in the model structure, the algorithm is

converged. Then, the parameter with the greatest variance (or standard deviation) is

removed from the model by being equated to zero. After parameter elimination, the

model is rapidly re-converged and the biases and variances of the converged param-

eter oscillations and biases are examined. This procedure is repeated and the param-

eters of lesser importance are dropped from the model structure one by one, similar

to the Hessian based routine discussed in Chapter 2. The approach makes use of the

bias variance tradeoff presented in [28] to determine an adequate model structure. In

the initial phases of model reduction, the standard deviations of parameter estimates

are large and the biases after parameter drops are small. As parameters are removed

from the model, the bias errors grow and standard deviations become smaller. Using

this principle, the model reduction procedure is terminated when the sum of squares

of biases and sum of variances are roughly equal. The parameters removed from the

model structure can be found in reference [13].

The converged parameter values are then inserted in the maximum likelihood output

error algorithm developed in Chapter 2 to refine the obtained solution and introduce

time delays in related parameters to account for additional dynamics in the actual

system. During maximum likelihood refinement, Levenberg-Marquardt algorithm

is again employed to avoid intermediate divergence and have parameter updates in

the steepest descent direction of the cost function. Figure 3.44 shows the iteration

histories of the parameters together with the acquired root mean square error (RMSE)

values in hover.
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Figure 3.44: Iteration histories in hover [13]

As discussed in previous chapters, using maximum likelihood output error algorithm,

the identification results may depend on the initial conditions of the model parameters

and the model structure specified. If the starting point of the algorithm is far from the

optimal solution, intermediate divergence can be experienced. The Hessian based

model reduction approach discussed in Chapter 2 presents a systematic procedure to

achieve an adequate model structure, but do guarantee uniqueness of the solution. As

parameters are removed one by one using the Hessian matrix, the arrived final model

structure might not be the unique and optimal one. The properties of adaptive learning

makes up for these shortcomings of the output error algorithm, as it provides unique

and optimal solutions independent of the initial parameter guesses. Therefore, it is a

perfect startup method to be used prior to maximum likelihood optimization.

The identification using adaptive learning method is carried out by employing the

3211 type maneuvers as the identification data. 2311 and frequency sweep type ma-

neuvers are used for verification in time and frequency domains respectively. The

obtained model structures are then fed to the maximum likelihood algorithm, where

time delays are added to related parameters as necessary. Similar to the previous case,

the implemented time delay parameters are saturated to zero in order to prevent non-
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physical negative time delays. Identifications in two flight conditions are performed,

namely hover and forward light with 70 knots speed.

3.2.1 Identification of Dynamics in Hover

First, the identification results in hover are examined. Figure 3.45 shows the 2311

type maneuvers executed in each control channel. By looking at the responses, it can

be seen that both standalone adaptive learning algorithm and maximum likelihood

refinement are successful in terms of capturing the overall dynamics of the aircraft.

Figure 3.45: Time domain results of adaptive learning and maximum likelihood re-

finement in hover

The difference between the two algorithms becomes more apparent when the fre-

quency responses are examined. The frequency response of the frequency sweep ma-

neuver in longitudinal cyclic channel is displayed in figure 3.46. The error magnitude

and phase errors of the identified models are compared with MUAD and AEE bounds

in figure 3.47. Even though the general characteristics of the helicopter are captured

by adaptive learning, the magnitude and phase errors are not within the bounds for
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pitch and roll responses. Due to presence of rotor dynamics in the truth model data, a

model structure with 6DOF is often found deficient to identify the system precisely.

To refine the obtained results and to account for the additional dynamics due to ro-

tor, a secondary algorithm is necessary. For this purpose, the maximum likelihood

parameter estimation principle discussed in this work is employed. The output error

algorithm developed in this work provides excellent results with its higher accuracy

in identification and capability to handle time delays in the model structure. In figure

3.47, it is seen that with the ML refinement, phase and magnitude errors are reduced

significantly.

Figure 3.46: Frequency domain comparison of adaptive learning and maximum like-

lihood refinement with truth model in longitudinal cyclic maneuver in hover

A similar observation can be made for lateral cyclic input tests. The off axis pitch

response of the model from adaptive learning produces high magnitude and phase

errors. With the employment of time delays and output error method, the errors are

diminished. When collective and pedal tests are considered, however, the models

obtained via adaptive learning provide satisfactory results.
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Figure 3.47: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in longitudinal cyclic maneuver in hover

Figure 3.48: Frequency domain comparison of adaptive learning and maximum like-

lihood refinement with truth model in lateral cyclic maneuver in hover
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Figure 3.49: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in lateral cyclic maneuver in hover

Figure 3.50: Frequency domain comparison of adaptive learning and maximum like-

lihood refinement with truth model in collective maneuver in hover
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Figure 3.51: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in collective maneuver in hover

Figure 3.52: Frequency domain comparison of adaptive learning and maximum like-

lihood refinement with truth model in pedal maneuver in hover
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Figure 3.53: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in pedal maneuver in hover
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3.2.2 Identification of Dynamics in Forward Flight

The second flight condition to be identified is forward flight with 70 knots of speed.

First, the model reduction routine with adaptive learning is executed and the attained

model structure and parameter values are provided to the maximum likelihood algo-

rithm. Again, the standalone adaptive learning algorithm can capture the dynamics

of the helicopter up to some extent, but maximum likelihood refinement is neces-

sary to have smaller errors in frequency content. Like the results in hover, the pitch

and roll responses in longitudinal and lateral cyclic maneuvers are improved signifi-

cantly with the addition of time delays. Also, slight improvements on collective and

pedal responses are observed. These improvements are not due to involvement of

time delays, as they are only placed at the roll and pitch derivatives of the model.

The improvement in these maneuvers is a result of maximum likelihood estimation

principle.

Figure 3.54: Time domain results of adaptive learning and maximum likelihood re-

finement in 70 knots forward flight
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Figure 3.55: Frequency domain comparison of adaptive learning and maximum likeli-

hood refinement with truth model in longitudinal cyclic maneuver in 70 knots forward

flight

Figure 3.56: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in longitudinal cyclic maneuver in 70 knots forward flight
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Figure 3.57: Frequency domain comparison of adaptive learning and maximum like-

lihood refinement with truth model in lateral cyclic maneuver in 70 knots forward

flight

Figure 3.58: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in lateral cyclic maneuver in 70 knots forward flight
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Figure 3.59: Frequency domain comparison of adaptive learning and maximum like-

lihood refinement with truth model in collective maneuver in 70 knots forward flight

Figure 3.60: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in collective maneuver in 70 knots forward flight
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Figure 3.61: Frequency domain comparison of adaptive learning and maximum like-

lihood refinement with truth model in pedal maneuver in 70 knots forward flight

Figure 3.62: Coherence and errors of adaptive learning and maximum likelihood

refinement with truth model in pedal maneuver in 70 knots forward flight
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All in all, it can be said that the system identification software developed in this work

is a powerful and versatile tool that can be used on its own, or in conjunction with an-

other startup algorithm. When used alongside the adaptive learning algorithm, a more

robust and faster overall procedure can be executed. The adaptive learning guarantees

parameter convergence even with initial conditions away from their optimal values

and provides unique optimal solutions. Since the algorithm is equation error based,

the whole model reduction loop is often faster than the traditional Hessian based

model reduction routine. Having a pre-determined model structure and decent initial

parameter values, fast and accurate parameter convergence can be achieved with the

developed software. If no prior algorithm is available, the developed software can be

used on its own to execute a model reduction routine and carry out identification, as

shown with the results.
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CHAPTER 4

CONCLUSIONS AND FUTURE STUDIES

4.1 Conclusions

This work focuses on the development of a time domain system identification soft-

ware to be used for rotorcraft identification. With the constructed software, the dy-

namics of H135 full scale helicopter in hover and 70 knots forward flight trim condi-

tions are identified. To generate the adequate test data, a high fidelity nonlinear model

of the helicopter is used as the truth model. The input signals are carefully constructed

such that the distinct dynamics of the aircraft are excited at each flight condition. A

state space mathematical model structure is adopted as the system to be identified.

With the implementation of output error method with Levenberg-Marquardt algo-

rithm, the identification loop is constructed. Using the Hessian base model reduction

routine, the redundant derivatives in the initial model structure are determined, and

dropped from the model structure. With the obtained minimal representation of the

dynamic system, the system identification procedure is carried out. In the truth model

data, additional rotor dynamics are present, such as flapping, inflow and engine dy-

namics. It is seen that the state space model structure is insufficient to reflect such

dynamics. To account for such dynamics, state and control delays are employed. It is

seen that the time domain outputs of the obtained mathematical models are adequate

in terms of capturing the dynamics of the helicopter. To verify the obtained models

in frequency domain, frequency sweep maneuvers are executed with the truth model

and the identified models. The obtained time domain signals are converted to fre-

quency domain via discrete Fourier transformation. To increase accuracy during this

transformation, windowing of time domain signals is used. Magnitude and phase er-

rors of the obtained frequency domain data are calculated and compared with MUAD
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and AEE bounds. It is observed that the identified models also show sufficient accu-

racy in frequency domain, hence the identified models are acceptable. In this work,

another study is carried out where initial model structure and the initial conditions

for the model parameters are determined with a startup algorithm, adaptive learning.

This algorithm guarantees convergence independent of the initial parameter guesses

and provides unique optimal solutions. As it makes up for the shortcomings of the

maximum likelihood output error method, it is the ideal startup algorithm. Similar

to the first case, the time delays in the model structure are employed to account for

the additional dynamics in the truth model signals. The obtained systems again show

acceptable results in time and frequency domains. Therefore, the developed software

for system identification can either be employed on its own to determine a minimal

model structure, or used in conjunction with a startup algorithm to identify a dynamic

system.

4.2 Future Studies

The system identification software developed in this work presents satisfactory re-

sults in both time and frequency domains. To further extend this study and increase

its accuracy, some additions, and improvements can be made. Firstly, the time do-

main to frequency domain transformation requires long execution times. If the DFT

algorithm is replaced with the efficient chirp-z transformation, the runtimes would be

shortened. The accuracy of the frequency domain data highly depends on the transfor-

mation algorithm and the windowing method. In this work, the number of windows

and window overlap is chosen via a trial and error process. However, the composite

windowing approach presented in [44] proposes a systematic approach to select the

optimal window size and amount. It introduces an additional computational burden,

but increases the accuracy of frequency response estimates. Finally, the models ob-

tained with system delays can be transformed to linear systems by making use of Padé

approximations, if the desired final product is a linear system.
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Appendix A

ADDITIONAL IDENTIFICATION RESULTS

This section presents additional response plots of the identified systems. The 2311

and 3211 type input tests starting in the negative input direction are provided for

rotorcraft identification with Hessian based model reduction approach.

A.1 Additional Results in Hover

A.1.1 Results for Longitudinal Cyclic Input

Figure A.1: Longitudinal cyclic 2311 input in negative direction during hover
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Figure A.2: Longitudinal cyclic 3211 input in negative direction during hover

A.1.2 Results for Lateral Cyclic Input

Figure A.3: Lateral cyclic 2311 input in negative direction during hover
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Figure A.4: Lateral cyclic 3211 input in negative direction during hover

A.1.3 Results for Collective Input

Figure A.5: Collective 2311 input in negative direction during hover

109



Figure A.6: Collective 3211 input in negative direction during hover

A.1.4 Results for Pedal Input

Figure A.7: Pedal 2311 input in negative direction during hover
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Figure A.8: Pedal 3211 input in negative direction during hover

A.2 Additional Results in Forward Flight

A.2.1 Results for Longitudinal Cyclic Input

Figure A.9: Longitudinal cyclic 2311 input in negative direction during 70 knots

forward flight
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Figure A.10: Longitudinal cyclic 3211 input in negative direction during 70 knots

forward flight

A.2.2 Results for Lateral Cyclic Input

Figure A.11: Lateral cyclic 2311 input in negative direction during 70 knots forward

flight
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Figure A.12: Lateral cyclic 3211 input in negative direction during 70 knots forward

flight

A.2.3 Results for Collective Input

Figure A.13: Collective 2311 input in negative direction during 70 knots forward

flight
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Figure A.14: Collective 3211 input in negative direction during 70 knots forward

flight

A.2.4 Results for Pedal Input

Figure A.15: Pedal 2311 input in negative direction during 70 knots forward flight

114



Figure A.16: Pedal 3211 input in negative direction during 70 knots forward flight
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Appendix B

PARAMETERS REMOVED FROM THE MODEL STRUCTURE

The parameters removed from the model structure with Hessian based model reduc-

tion approach is presented in this section. The parameters are presented in the order

that they are dropped in tables B.1 and B.2. Along with the converged values of the

parameters, insensitivities and Cramer-Rao bounds are also provided.

B.1 Removed Parameters in Hover

Table B.1: List of parameters removed from the model structure in hover

Drop Order Parameter Value I (%) CR (%)

1 Ycoll 0.0028 42.5 56.8

2 Zq 0.0055 17.8 39.7

3 Zlat 0.0205 12.5 33.1

4 Zp -0.003 45.3 64.4

5 Zv -0.019 10.3 13.3

6 Zped -0.0089 8.8 8.9

7 Mw -0.19 9.4 30.4

8 Xv -0.0066 4.2 9.5

9 Zlong -0.0705 3.8 5.3

10 Yu 0.0071 3.4 8.8

11 Yw -0.0262 3.4 6.6

12 Xped 0.0073 2.6 4.5
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Table B.1: List of parameters removed from the model structure in hover (Continued)

Drop Order Parameter Value I (%) CR (%)

13 Ylong -0.0135 2.7 6.4

14 Zu 0.0632 2.6 3.4

15 Xw 0.0270 3.7 4.7

16 Yp -0.0113 2.2 5.1

17 Lcoll 0.6914 2.1 3.3

18 Xr 0.0066 1.7 2.2

19 Xlat -0.0164 2.3 6.7

20 Xcoll 0.0588 1.5 1.7

21 Mped -0.2133 1.5 3.3

22 Ylat 0.0497 1.1 1.4

23 Lw 1.5964 1.0 2.4

24 Mcoll 1.3749 2.0 2.2

25 Yq 0.0195 0.8 1.0

26 Mv 1.0678 0.7 1.1

27 Lped -1.0731 0.9 1.3

28 Nlong -0.8022 0.7 2.5

29 Nu 0.1130 1.9 8.6
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B.2 Removed Parameters in Forward Flight

Table B.2: List of parameters removed from the model structure in forward flight

Drop Order Parameter Value I (%) CR (%)

1 Xped -0.0001 35.6 51.5

2 Zq 0.0087 26.4 51.4

3 Xr 0.0009 21.9 27.7

4 Zped -0.0086 21.4 24.1

5 Ycoll -0.0100 16.6 20.6

6 Lped 0.1731 10.9 20.1

7 Yr 0.0069 7.1 9.5

8 Nu 0.0350 16.3 88.1

9 Xv -0.0014 11.5 26.3

10 Yw -0.0078 7.7 14.6

11 Xq 0.0088 4.5 8.8

12 Zp 0.0352 3.9 16.2

13 Mped 0.1083 3.4 4.3

14 Yu 0.0295 3.1 3.9

15 Ylong -0.0563 2.5 3.8

16 Zlat 0.0730 2.1 2.4

17 Yq 0.0522 1.8 1.9

18 Mv -0.0637 2.4 9.1

19 Zv -0.0412 2.0 3.0

20 Mu 0.0075 2.5 3.7
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Appendix C

IDENTIFIED PARAMETERS

The parameters identified with the model structure with Hessian based model reduc-

tion approach is presented in this section. The converged values of the parameters,

insensitivities and Cramer-Rao bounds are provided.

C.1 Identified Parameters in Hover

Table C.1: List of parameters identified in hover

Parameter Value I (%) CR (%)

Xu -0.0220 1.4 3.0

Xp 0.0421 0.5 0.8

Xq 0.0495 0.4 0.9

Xlong -0.2114 0.3 0.5

Yv -0.1490 0.5 0.6

Yr 0.0745 0.4 0.7

Yped -0.1853 0.3 0.4

Zw -0.3682 1.7 1.8

Zr 0.0101 2.1 4.8

Zcoll -0.8611 0.5 0.5

Lu 0.9112 0.6 2.2

Lv -2.4459 0.4 1.3

Lp -3.2899 0.2 1.3
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Table C.1: List of parameters identified in hover (Continued)

Parameter Value I (%) CR (%)

Lq 2.3966 0.1 1.0

Lr 0.0793 2.5 5.0

Llong -5.8977 0.1 1.0

Llat 6.6955 0.2 1.1

Mu 1.0962 0.4 1.5

Mp -2.7426 0.2 1.0

Mq -1.8474 0.2 1.0

Mr -0.2466 0.6 1.5

Mlong 5.4743 0.1 0.7

Mlat 2.9367 0.4 1.7

Nv 1.4273 0.3 0.8

Nw -0.0826 2.2 3.8

Np -0.3797 1.2 3.1

Nq 0.1123 1.7 3.6

Nr -1.6714 0.2 0.4

Nlat 0.8692 0.9 2.5

Ncoll 1.9964 0.2 0.4

Nped 3.6093 0.2 0.5

τLlong
0.1833 0.4 0.8

τLlat
0 - -

τMlong
0 - -

τMlat
0.1167 1.7 2.8
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C.2 Identified Parameters in Forward Flight

Table C.2: List of parameters identified in forward flight

Parameter Value I (%) CR (%)

Xu -0.0477 1.1 1.7

Xw 0.0696 0.5 0.7

Xp 0.0614 0.5 1.2

Xlong -0.0817 0.7 1.2

Xlat -0.0438 0.7 1.7

Xcoll 0.0563 1.3 1.7

Yv -0.0958 0.5 0.6

Yp -0.0310 1.5 4.2

Ylat 0.0636 0.7 2.0

Yped -0.0579 1.8 2.1

Zu 0.1002 3.2 4.8

Zw -0.4676 0.5 0.6

Zr 0.0097 2.5 5.9

Zlong -0.3474 1.0 1.3

Zcoll -0.9002 0.7 0.8

Lu -1.4341 1.7 7.3

Lv -2.1558 0.3 6.9

Lw 3.0146 0.4 7.3

Lp -8.7456 0.1 6.7

Lq 3.6001 0.3 6.6

Lr 0.3845 2.0 4.9

Llong -4.2317 0.4 7.7

Llat 8.1947 0.1 6.6

Lcoll 1.8070 1.5 7.2
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Table C.2: List of parameters identified in forward flight (Continued)

Parameter Value I (%) CR (%)

Mw -1.0157 0.3 5.2

Mp -1.4082 0.2 7.0

Mq -1.8389 0.2 5.1

Mr 0.0258 2.2 3.7

Mlong 3.4339 0.2 5.3

Mlat 1.1811 0.2 7.3

Mcoll 2.0220 0.4 5.6

Nv 1.2672 0.1 0.2

Nw -0.1644 1.3 2.9

Np -0.4528 0.3 2.3

Nq 0.5770 0.4 1.4

Nr -0.4201 0.2 0.6

Nlong -1.0436 0.4 1.2

Nlat 0.5044 0.2 1.9

Ncoll 0.8713 0.5 1.0

Nped 2.0433 0.1 0.2

τLp 0.0500 1.0 9.8

τLq 0.1108 1.3 8.1

τLlong
0.2015 0.7 2.0

τLlat
0.0341 1.9 10.5

τMp 0.1345 0.6 2.9

τMq 0.0286 3.1 12.4

τMlong
0 - -

τMlat
0.1426 0.8 2.3
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